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Preface

These are the lecture notes of the Ph.D. level course ‘Nonsmooth Differential Geometry’ given

by the first author at SISSA (Trieste, Italy) from October 2017 to March 2018. The material

discussed in the classroom has been collected and reorganised by the second author.

The course was intended for students with no prior exposure to non-smooth calculus and

aimed at giving a rather complete picture of first-order Sobolev calculus on general metric

measure spaces and a glimpse at second order calculus on RCD spaces.

For this reason the first lectures covered basic material like the concept of absolutely

continuous curve or Bochner integration. This material is collected in Chapter 1.

A great deal of time has been spent at introducing the by-now classical concept of real

valued Sobolev function on a metric measure space. Out of the several equivalent definitions,

the approach chosen in the course has been the one based on the concept of ‘test plan’

introduced in [5] as it better fits what comes next. The original approach by relaxation due

to Cheeger [14] and the one by Shanmugalingam [29] based on the concept of ‘modulus of a

family of curves’ are presented, but for time constraint the equivalence of these notions with

the one related to test plans has not been proved. These topics are covered in Chapter 2.

The definition of Sobolev map on a metric measure space does not come with a notion of

differential, as it happens in the Euclidean setting, but rather with an object, called minimal

weak upper gradient, which plays the role of ‘modulus of the distributional differential’. One

of the recent achievements of the theory, obtained in [18], has been to show that actually

a well-defined notion of differential exists also in this setting: its introduction is based on

the concept of L∞/L0-normed module. Chapter 3 investigates these structures from a rather

abstract perspective without insisting on their use in non-smooth analysis.

The core of the course is then covered in Chapter 4, where first-order calculus is studied

in great detail and the key notions of tangent/cotangent modules are introduced. Beside

the notion of differential of a Sobolev map, other topics discussed are the dual concept of

divergence of a vector field and how these behave under transformation of the metric measure

structures. For simplicity, some of the constructions, like the one of speed of a test plan, are

presented only in the technically convenient case of infinitesimally Hilbertian metric measure

spaces, i.e. those for which the corresponding Sobolev space W 1,2 is Hilbert.

A basic need in most branches of mathematical analysis is that of a regularisation proce-

dure. In working on a non-smooth environment this is true more than ever and classical tools

like covering arguments are typically unavailable if one does not assume at least a doubling
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property at the metric level. Instead the key, and often only, tool one has at disposal is

that of regularisation via the heat flow (which behaves particularly well under a lower Ricci

curvature bound, a situation which the theory presented here aims to cover). Such flow can

be introduced in a purely variational way as gradient flow of the ‘Dirichlet energy’ (in this

setting called Cheeger energy) in the Hilbert space L2, and thus can be defined in general

metric measure spaces. In Chapter 5 we present a quick overview of the general theory of

gradient flows in Hilbert spaces and then we discuss its application to the study of the heat

flow in the ‘linear’ case of infinitesimally Hilbertian spaces.

Finally, the last lessons aimed at a quick guided tour in the world of RCD spaces and

second order calculus on them. This material is collected in Chapter 6, where:

- We define RCD(K,∞) spaces.

- Prove some better estimates for the heat flow on them.

- Introduce the algebra of ‘test functions’ on RCD spaces, which is the ‘largest algebra of

smooth functions’ that we have at disposal in this environment, in a sense.

- Quickly develop the second-order differential calculus on RCD spaces, by building on top

of the first-order one. Meaningful and ‘operative’ definitions (among others) of Hessian,

covariant derivative, exterior derivative and Hodge Laplacian are discussed.

These lecture notes are mostly self-contained and should be accessible to any Ph.D. student

with a standard background in analysis and geometry: having basic notions of measure theory,

functional analysis and Riemannian geometry suffices to navigate this text. Hopefully, this

should provide a hands-on guide to recent mathematical theories accessible to the widest

possible audience.

The most recent research-level material contained here comes, to a big extent, from the

paper [18], see also the survey [20]. With respect to these presentations, the current text

offers a gentler introduction to all the topics, paying little in terms of generality: as such it

is the most suitable source for the young researcher who is willing to learn about this fast

growing research direction. The presentation is also complemented by a collection of exercises

scattered through the text; since these are at times essential for the results presented, their

solutions are reported (or, sometimes, just sketched) in Appendix B.

We wish to thank Emanuele Caputo, Francesco Nobili, Francesco Sapio and Ivan Yuri

Violo for their careful reading of a preliminary version of this manuscript.

Trieste, Italy Nicola Gigli

Jyväskylä, Finland Enrico Pasqualetto

January 2019
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Notation

Rn: n-dimensional Euclidean space.

Q: set of rational numbers.

N: set of natural numbers.

Ln: n-dimensional Lebesgue measure.

L1: 1-dimensional Lebesgue measure restricted to the interval [0, 1].

f ∨ g: maximum between two real-valued functions f and g.

f ∧ g: minimum between two real-valued functions f and g.

f+: positive part of a real-valued function f .

f−: negative part of a real-valued function f .

lim: limsup.

lim: liminf.

χE : characteristic function of a set E.

V ′: dual of a normed space V .

`∞: space of bounded sequences in R.

Graph(T ): graph of a map T .

(X, d): metric space (typically complete and separable).

P(X): space of Borel probability measures on X.

C(X): space of real-valued continuous functions on X.

Cb(X): space of bounded continuous functions on X.

Br(x): open ball of center x ∈ X and radius r > 0.

B̄r(x): closed ball of center x ∈ X and radius r > 0.

clX(E): closure of a set E in X.

dist(E,F ): distance between two sets E,F ⊆ X.

δx: Dirac delta measure at a point x ∈ X.

‖ · ‖TV: total variation norm.

M(X): space of signed Radon measures on X.

µ+: positive part of a measure µ.

µ−: negative part of a measure µ.

spt(µ): support of a measure µ.
dµ
dν : Radon-Nikodým derivative of µ with respect to ν.

T∗µ: pushforward of a measure µ under the map T .
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spt(f): support of a real-valued Lipschitz function f on X.

LIP(X): space of real-valued Lipschitz functions on X.

LIPbs(X): elements of LIP(X) having bounded support.

Lip(f): (global) Lipschitz constant of a function f ∈ LIP(X).

lip(f): local Lipschitz constant of a function f ∈ LIP(X).

lipa(f): asymptotic Lipschitz constant of a function f ∈ LIP(X).

d: sup distance on the space C([0, 1],X) of continuous curves in X.

|γ̇|: metric speed of an absolutely continuous curve γ : [0, 1]→ X.

KE: kinetic energy functional on C([0, 1],X).

Geo(X): space of (constant speed) geodesics of X.

(X, d,m): metric measure space.

m′: Borel probability measure on X having the same null sets as m.

Lp(m): space of p-integrable functions on X, with p ∈ [1,∞].

Lploc(m): space of locally p-integrable functions on X.

L0(m): space of Borel functions on X (modulo m-a.e. equality).

et: evaluation map at time t ∈ [0, 1].

π: test plan.

Comp(π): compression constant of a test plan π.

Restrst : restriction operator between t and s.

S2(X): Sobolev class over (X, d,m).

S2
loc(X): local Sobolev class over (X, d,m).

W 1,2(X): Sobolev space over (X, d,m).

|Df |: minimal weak upper gradient of a Sobolev function f .

Derπ(f): derivative of a Sobolev function f in the direction of a test plan π.

E∗,a, E∗, ECh: Cheeger energies.

W 1,2
∗,a (X), W 1,2

∗ (X), W 1,2
Ch (X): Sobolev spaces associated to the Cheeger energies.

Γ(X): space of absolutely continuous curves in X.

Dom(γ): interval of definition of a curve γ ∈ Γ(X).

Mod2(Γ): 2-modulus of a curve family Γ.

W 1,2
Sh (X): Sobolev space obtained via the 2-modulus.

M : L2(m)-normed L∞(m)-module.

|v|: pointwise norm of an element v ∈M .

M |E : restriction of M to a Borel set E ⊆ X.

M (S): submodule generated by a set S ⊆M .

M 0: L0(m)-normed L0(m)-module.

M ∗: dual of M (in the sense of modules).

|L|∗: (dual) pointwise norm of an element L ∈M ∗.

IntM : natural map from M ∗ to M ′ obtained by integration.

IM : canonical embedding M ↪→M ∗∗ in the (module) bidual.
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H : Hilbert module.

〈·, ·〉: pointwise scalar product on a Hilbert module H .

H1 ⊗H2: tensor product of two Hilbert modules H1 and H2.

v ⊗ w: tensor product between v ∈H1 and w ∈H2.

|A|HS: pointwise Hilbert-Schmidt norm of a tensor A ∈H1 ⊗H2.

t: transposition operator from H1 ⊗H2 to H2 ⊗H1.

ΛkH 0: k-th exterior product of a Hilbert L0-module H 0.

v ∧ w: wedge product between v, w ∈H 0.

Comp(ϕ): compression constant of a map of bounded compression.

ϕ∗M : pullback module of M under the map ϕ.

ϕ∗, [ϕ∗]: pullback map.

L2(T ∗X): cotangent module associated to a metric measure space (X, d,m).

df : differential (as an element of the cotangent module) of a Sobolev function f ∈ S2(X).

L2(TX): tangent module associated to (X, d,m).

Grad(f): set of gradients of an element f ∈ S2(X).

∇f : the only element of Grad(f) when (X, d,m) is infinitesimally Hilbertian.

div: divergence operator.

π′: speed of a test plan π.

∂−E: subdifferential of an operator E.

|∂−E|: slope of an operator E.

D(E): domain of an operator E.

∆: Laplacian operator.

(ht)t≥0: heat flow (for functions).

hϕ: ‘mollified’ heat flow.

Test∞(X) : space of test functions on an RCD(K,∞) space (X, d,m).

Test∞+ (X) : space of non-negative test functions on X.

L2
(
(T ∗)⊗2X

)
: the tensor product L2(T ∗X)⊗ L2(T ∗X).

L2(T⊗2X): the tensor product L2(TX)⊗ L2(TX).

W 2,2(X), H2,2(X): second-order Sobolev spaces over X.

Hf : Hessian of a function f ∈W 2,2(X).

∆: measure-valued Laplacian operator.

Γ2: Bakry-Émery curvature operator.

ess int(E): essential interior of a Borel set E ⊆ X.

W 1,2
C (TX), H1,2

C (TX): spaces of Sobolev vector fields on X.

∇X: covariant derivative of a Sobolev vector field X ∈W 1,2
C (TX).

∇ZX: covariant derivative of X in direction Z.

]: Riesz (musical) isomorphism from L2
(
(T ∗)⊗2X

)
to L2(T⊗2X).

[X,Y ]: Lie brackets between X and Y .

TestV(X): space of test vector fields on X.
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ΛkL0(T ∗X): k-th exterior power of the cotangent L0-module L0(T ∗X):

dω: exterior differential of a k-form ω.

W 1,2
d (ΛkT ∗X), H1,2

d (ΛkT ∗X): spaces of k-forms admitting an exterior differential.

TestFormk(X): space of test k-forms on X.

HkdR(X): k-th de Rham-cohomology group of X.

∆H: Hodge Laplacian operator.

W 1,2
H (ΛkT ∗X), H1,2

H (ΛkT ∗X): spaces of k-forms admitting a Hodge Laplacian.

∆C: connection Laplacian operator.

δω: codifferential of a k-form ω.

Harmk(X): space of harmonic k-forms on X.

(hH,t)t≥0: heat flow (for k-forms).

(hC,t)t≥0: heat flow (for vector fields).

Ric: Ricci curvature operator.



Chapter 1

Preliminaries

In this chapter we introduce several classic notions that will be needed in the sequel. Namely,

in Section 1.1 we review the basics of measure theory, with a particular accent on the space

L0(m) of Borel functions considered up to m-almost everywhere equality (see Subsection 1.1.2);

in Section 1.2 we discuss about continuous, absolutely continuous and geodesic curves on

metric spaces; in Section 1.3 we collect the most important results about Bochner integration.

Some functional analytic tools will be treated in Appendix A.

1.1 General measure theory

1.1.1 Borel probability measures

Given a complete and separable metric space (X, d), let us denote

P(X) :=
{

Borel probability measures on (X, d)
}
,

Cb(X) :=
{

bounded continuous functions f : X→ R
}
.

(1.1)

We can define a topology on P(X), called weak topology, as follows:

Definition 1.1.1 (Weak topology) The weak topology on P(X) is defined as the coarsest

topology on P(X) such that:

the function P(X) 3 µ 7−→
ˆ
f dµ is continuous, for every f ∈ Cb(X). (1.2)

Remark 1.1.2 If a sequence of measures (µn)n weakly converges to a limit measure µ, then

µ(Ω) ≤ lim
n→∞

µn(Ω) for every Ω ⊆ X open. (1.3)

Indeed, let fk := k d(·,X \ Ω) ∧ 1 ∈ Cb(X) for k ∈ N. Hence fk(x) ↗ χΩ(x) for all x ∈ X, so

that µ(Ω) = supk
´
fk dµ by monotone convergence theorem. Since ν 7→

´
fk dν is continuous

for any k, we deduce that the function ν 7→ ν(Ω) is lower semicontinuous as supremum of

continuous functions, thus yielding (1.3).

11
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In particular, if a sequence (µn)n ⊆P(X) weakly converges to some µ ∈P(X), then

µ(C) ≥ lim
n→∞

µn(C) for every C ⊆ X closed. (1.4)

To prove it, just apply (1.3) to Ω := X \ C. �

Remark 1.1.3 We claim that if
´
f dµ =

´
f dν for every f ∈ Cb(X), then µ = ν.

Indeed, µ(C) = ν(C) for any C ⊆ X closed as a consequence of (1.4), whence µ = ν by the

monotone class theorem. �

Remark 1.1.4 Given any Banach space V , we denote by V ′ its dual Banach space. Then

P(X) is continuously embedded into Cb(X)′. (1.5)

Such embedding is given by the operator sending µ ∈P(X) to the map Cb(X) 3 f 7→
´
f dµ,

which is injective by Remark 1.1.3 and linear by definition. Finally, continuity stems from

the inequality
∣∣ ´ f dµ

∣∣ ≤ ‖f‖Cb(X), which holds for any f ∈ Cb(X). �

Fix a countable dense subset (xn)n of X. Let us define

A :=
{(
a− b d(·, xn)

)
∨ c : a, b, c ∈ Q, n ∈ N

}
,

Ã :=
{
f1 ∨ . . . ∨ fn : n ∈ N, f1, . . . , fn ∈ A

}
.

(1.6)

Observe that A and Ã are countable subsets of Cb(X). We claim that:

f(x) = sup
{
g(x) : g ∈ A, g ≤ f

}
for every f ∈ Cb(X) and x ∈ X. (1.7)

Indeed, the inequality ≥ is trivial, while to prove ≤ fix x ∈ X and ε > 0. The function f being

continuous, there is a neighbourhood U of x such that f(y) ≥ f(x) − ε for all y ∈ U . Then

we can easily build a function g ∈ A such that g ≤ f and g(x) ≥ f(x)− 2 ε. By arbitrariness

of x ∈ X and ε > 0, we thus proved the validity of (1.7).

Exercise 1.1.5 Suppose that X is compact. Prove that if a sequence (fn)n ⊆ C(X) satisfies

fn(x)↘ 0 for every x ∈ X, then fn → 0 uniformly on X. �

Corollary 1.1.6 Suppose that X is compact. Then Ã is dense in C(X) = Cb(X). In partic-

ular, the space C(X) is separable.

Proof. Fix f ∈ C(X). Enumerate {g ∈ A : g ≤ f} as (gn)n. Call hn := g1 ∨ . . . ∨ gn ∈ Ã for

each n ∈ N, thus hn(x) ↗ f(x) for all x ∈ X by (1.7). Hence (f − hn)(x) ↘ 0 for all x ∈ X

and accordingly f − hn → 0 in C(X) by Exercise 1.1.5, proving the statement. �

The converse implication holds true as well:

Exercise 1.1.7 Let (X, d) be a complete and separable metric space. Prove that if Cb(X) is

separable, then the space X is compact. �
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Corollary 1.1.8 It holds that

ˆ
f dµ = sup

{ˆ
g dµ

∣∣∣∣ g ∈ Ã, g ≤ f
}

for every µ ∈P(X) and f ∈ Cb(X). (1.8)

Proof. Call (gn)n =
{
g ∈ A : g ≤ f

}
and put hn := g1 ∨ . . . ∨ gn ∈ Ã, thus hn(x)↗ f(x) for

all x ∈ X and accordingly
´
f dµ = limn

´
hn dµ, proving (1.8). �

We endow P(X) with a distance δ. Enumerate
{
g ∈ Ã ∪ (−Ã) : ‖g‖Cb(X) ≤ 1

}
as (fi)i.

Then for any µ, ν ∈P(X) we define

δ(µ, ν) :=
∞∑
i=0

1

2i

∣∣∣∣ˆ fi d(µ− ν)

∣∣∣∣. (1.9)

Proposition 1.1.9 The weak topology on P(X) is induced by the distance δ.

Proof. To prove one implication, we want to show that for any f ∈ Cb(X) the map µ 7→
´
f dµ

is δ-continuous. Fix µ, ν ∈P(X). Given any ε > 0, there exists a map g ∈ Ã such that g ≤ f
and

´
g dµ ≥

´
f dµ− ε, by Corollary 1.1.8. Let i ∈ N be such that fi = g/‖g‖Cb(X). Then

ˆ
f dν −

ˆ
f dµ ≥ ‖g‖Cb(X)

ˆ
fi d(ν − µ)− ε ≥ −‖g‖Cb(X) 2i δ(ν, µ)− ε,

whence limδ(ν,µ)→0

´
f d(ν − µ) ≥ 0 by arbitrariness of ε, i.e. the map µ 7→

´
f dµ is δ-lower

semicontinuous. Its δ-upper semicontinuity can be proved in an analogous way.

Conversely, fix µ ∈P(X) and ε > 0. Choose N ∈ N such that 2−N < ε/2. Then there is

a weak neighbourhood W of µ such that
∣∣ ´ fi d(µ−ν)

∣∣ < ε/4 for all i = 0, . . . , N and ν ∈W .

Therefore

δ(µ, ν) ≤
N∑
i=0

1

2i

∣∣∣∣ ˆ fi d(µ− ν)

∣∣∣∣+

∞∑
i=N+1

1

2i
≤ ε

2
+

1

2N
< ε for every ν ∈W,

proving that W is contained in the open δ-ball of radius ε centered at µ. �

Remark 1.1.10 Suppose that X is compact. Then C(X) = Cb(X), thus accordingly P(X) is

weakly compact by (1.5) and Banach-Alaoglu theorem. Conversely, for X non-compact this is

in general no longer true. For instance, take X := R and µn := δn. Suppose by contradiction

that a subsequence (µnm)m weakly converges to some limit µ ∈ P(R). For any k ∈ N we

have that µ
(
(−k, k)

)
≤ limm δnm

(
(−k, k)

)
= 0, so that µ(R) = limk→∞ µ

(
(−k, k)

)
= 0, which

leads to a contradiction. This proves that P(R) is not weakly compact. �

Definition 1.1.11 (Tightness) A set K ⊆P(X) is said to be tight provided for every ε > 0

there exists a compact set Kε ⊆ X such that µ(Kε) ≥ 1− ε for every µ ∈ K.

Theorem 1.1.12 (Prokhorov) Let K ⊆ P(X) be fixed. Then K is weakly relatively com-

pact if and only if K is tight.
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Proof. In light of Proposition 1.1.9, compactness and sequential compactness are equivalent.

We separately prove the two implications:

Sufficiency. Fix K ⊆ P(X) tight. Without loss of generality, suppose that K = (µi)i∈N.

For any n ∈ N, choose a compact set Kn ⊆ X such that µi(Kn) ≥ 1 − 1/n for all i. By a

diagonalization argument we see that, up to a not relabeled subsequence, µi|Kn converges to

some measure νn in duality with Cb(Kn) for all n ∈ N, as a consequence of Remark 1.1.10.

We now claim that:

νn → ν in total variation norm, for some measure ν,

µi ⇀ ν in duality with Cb(X).
(1.10)

To prove the former, recall (cf. Remark 1.1.15 below) that for any m ≥ n ≥ 1 one has

‖νn − νm‖TV = sup

{ˆ
f d(νn − νm)

∣∣∣∣ f ∈ Cb(X), ‖f‖Cb(X) ≤ 1

}
.

Then fix f ∈ Cb(X) with ‖f‖Cb(X) ≤ 1. We can assume without loss of generality that (Kn)n

is increasing. We deduce from (1.3) that νm(Km\Kn) ≤ limi µi|Km(X\Kn) ≤ 1/n. Therefore

ˆ
f d(νn − νm) ≤ lim

i→∞

(ˆ
f dµi −

ˆ
f dµi

)
+

1

n
+

1

m
=

1

n
+

1

m
,

proving that (νn)n is Cauchy with respect to ‖ · ‖TV and accordingly the first in (1.10). For

the latter, notice that for any f ∈ Cb(X) it holds that∣∣∣∣ ˆ f d(µi − ν)

∣∣∣∣ =

∣∣∣∣ˆ
Kn

f d(µi − νn)−
ˆ
Kn

f d(ν − νn) +

ˆ
X\Kn

f dµi −
ˆ

X\Kn
f dν

∣∣∣∣
≤
∣∣∣∣ˆ

Kn

f d(µi − νn)

∣∣∣∣+ ‖f‖Cb(X) ‖ν − νn‖TV +
2 ‖f‖Cb(X)

n
.

By first letting i→∞ and then n→∞, we obtain that limi

∣∣ ´ f d(µi− ν)
∣∣ = 0, showing the

second in (1.10). Hence sufficiency is proved.

Necessity. Fix K ⊆ P(X) weakly relatively sequentially compact. Choose ε > 0 and a

sequence (xn)n that is dense in X. Arguing by contradiction, we aim to prove that

∀i ∈ N ∃Ni ∈ N : µ

( Ni⋃
j=1

B̄1/i(xj)

)
≥ 1− ε

2i
∀µ ∈ K. (1.11)

If not, there exist i0 ∈ N and (µm)m ⊆ K such that µm
(⋃m

j=1 B̄1/i0(xj)
)
< 1 − ε holds for

every m ∈ N. Up to a not relabeled subsequence µm ⇀ µ ∈P(X) and accordingly

µ

( n⋃
j=1

B1/i0(xj)

)
(1.3)

≤ lim
m→∞

µm

( m⋃
j=1

B̄1/i0(xj)

)
≤ 1− ε for any n ∈ N,

which contradicts the fact that limn→∞ µ
(⋃n

j=1B1/i0(xj)
)

= µ(X) = 1. This proves (1.11).
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Now define K :=
⋂
i∈N
⋃Ni
j=1 B̄1/i(xj). Such set is compact, as it is closed and totally

bounded by construction. Moreover, for any µ ∈ K one has that

µ(X \K) ≤
∑
i

µ

( Ni⋂
j=1

X \ B̄1/i(xj)

)
(1.11)

≤ ε
∑
i

1

2i
= ε,

thus proving also necessity. �

Remark 1.1.13 We have that a set K ⊆P(X) is tight if and only if

∃Ψ : X→ [0,+∞], with compact sublevels, such that s := sup
µ∈K

ˆ
Ψ dµ < +∞. (1.12)

To prove sufficiency, first notice that Ψ is Borel as its sublevels are closed sets. Now fix ε > 0

and choose C > 0 such that s/C < ε. Moreover, by applying Čebyšëv’s inequality we obtain

that C µ{Ψ > C} ≤
´

Ψ dµ ≤ s for all µ ∈ K, whence µ
(
{Ψ ≤ C}

)
≥ 1− s/C > 1− ε.

To prove necessity, suppose K tight and choose a sequence (Kn)n of compact sets such

that µ(X \Kn) ≤ 1/n3 for all n ∈ N and µ ∈ K. Define Ψ(x) := inf
{
n ∈ N : x ∈ Kn

}
for

every x ∈ X. Clearly Ψ has compact sublevels by construction. Moreover, it holds that

sup
µ∈K

ˆ
Ψ dµ = sup

µ∈K

∑
n

ˆ
Kn+1\Kn

Ψ dµ ≤
∑
n

n+ 1

n3
< +∞,

as required. �

Remark 1.1.14 Let µ ≥ 0 be a finite non-negative Borel measure on X. Then for any Borel

set E ⊆ X one has

µ(E) = sup
{
µ(C) : C ⊆ E closed

}
= inf

{
µ(Ω) : Ω ⊇ E open

}
. (1.13)

To prove it, it suffices to show that the family of all Borel sets E satisfying (1.13), which we

shall denote by E, forms a σ-algebra containing all open subsets of X. Then fix Ω ⊆ X open.

Call Cn :=
{
x ∈ Ω : d(x,X\Ω) ≥ 1/n

}
for all n ∈ N, whence (Cn)n is an increasing sequence

of closed sets and µ(Ω) = limn µ(Cn) by continuity from below of µ. This grants that Ω ∈ E.

It only remains to show that E is a σ-algebra. It is obvious that ∅ ∈ E and that E is stable

by complements. Now fix (En)n ⊆ E and ε > 0. There exist (Cn)n closed and (Ωn)n open

such that Cn ⊆ En ⊆ Ωn and µ(Ωn) − ε 2−n ≤ µ(En) ≤ µ(Cn) + ε 2−n for every n ∈ N. Let

us denote Ω :=
⋃
n Ωn. Moreover, continuity from above of µ yields the existence of N ∈ N

such that µ
(⋃

n∈NCn \ C
)
≤ ε, where we put C :=

⋃N
n=1Cn. Notice that Ω is open, C is

closed and C ⊆
⋃
nEn ⊆ Ω. Finally, it holds that

µ

( ∞⋃
n=1

En \ C
)
≤
∞∑
n=1

µ(En \ Cn) + ε ≤
∞∑
n=1

ε

2n
+ ε = 2 ε,

µ

(
Ω \

∞⋃
n=1

En

)
≤
∞∑
n=1

µ(Ωn \ En) ≤
∞∑
n=1

ε

2n
= ε.

This grants that
⋃
nEn ∈ E, concluding the proof. �
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Remark 1.1.15 (Total variation norm) During the proof of Theorem 1.1.12, we needed

the following two properties of the total variation norm:

‖µ‖TV = sup

{ˆ
f dµ

∣∣∣∣ f ∈ Cb(X), ‖f‖Cb(X) ≤ 1

}
for any signed Borel

measure µ on X,(
P(X), ‖ · ‖TV

)
is complete.

(1.14)

In order to prove them, we proceed as follows. Given a signed measure µ, let us consider its

Hahn-Jordan decomposition µ = µ+−µ−, where µ± are non-negative measures with µ+ ⊥ µ−,

which satisfy µ(P ) = µ+(X) and µ(P c) = −µ−(X) for a suitable Borel set P ⊆ X. Hence by

definition the total variation norm is defined as

‖µ‖TV := µ+(X) + µ−(X). (1.15)

Such definition is well-posed, since the Hahn-Jordan decomposition (µ+, µ−) of µ is unique.

To prove the first in (1.14), we start by noticing that
´
f dµ ≤

´
|f | d(µ+ + µ−) ≤ ‖µ‖TV

holds for any f ∈ Cb(X) with ‖f‖Cb(X) ≤ 1, proving one inequality. To show the converse

one, let ε > 0 be fixed. By Remark 1.1.14, we can choose two closed sets C ⊆ P and C ′ ⊆ P c

such that µ+(P \C), µ−(P c \C ′) < ε. Call fn :=
(
1−n d(·, C)

)+
and gn :=

(
1−n d(·, C ′)

)+
,

so that fn ↘ χC and gn ↘ χC′ as n→∞. Now define hn := fn− gn. Since |hn| ≤ 1, we have

that (hn)n ⊆ Cb(X) and ‖hn‖Cb(X) ≤ 1 for every n ∈ N. Moreover, it holds that

lim
n→∞

ˆ
hn dµ = lim

n→∞

[ˆ
fn dµ+ −

ˆ
fn dµ− −

ˆ
gn dµ+ +

ˆ
gn dµ−

]
= µ+(C) + µ−(C ′) ≥ µ+(P ) + µ−(P c)− 2 ε = ‖µ‖TV − 2 ε.

By arbitrariness of ε > 0, we conclude that limn

´
hn dµ ≥ ‖µ‖TV, proving the first in (1.14).

To show the second, fix a sequence (µn)n ⊆P(X) that is ‖ · ‖TV-Cauchy. Notice that∣∣µ(E)
∣∣ ≤ ‖µ‖TV for every signed measure µ and Borel set E ⊆ X.

Indeed,
∣∣µ(E)

∣∣ ≤ µ+(E) + µ−(E) ≤ µ+(X) + µ−(X) = ‖µ‖TV. Therefore∣∣µn(E)− µm(E)
∣∣ ≤ ‖µn − µm‖TV for every n,m ∈ N and E ⊆ X Borel. (1.16)

In particular,
(
µn(E)

)
n

is Cauchy for any E ⊆ X Borel, so that limn µn(E) = L(E) for some

limit L(E) ∈ [0, 1]. We thus deduce from (1.16) that

∀ε > 0 ∃ n̄ε ∈ N :
∣∣L(E)− µn(E)

∣∣ ≤ ε ∀n ≥ n̄ε ∀E ⊆ X Borel. (1.17)

We claim that L is a probability measure. Clearly, L(∅) = 0 and L(X) = 1. For any E,F Borel

with E∩F = ∅, we have L(E∪F ) = limn µn(E∪F ) = limn µn(E)+limn µn(F ) = L(E)+L(F ),

which grants that L is finitely additive. To show that it is also σ-additive, fix a sequence (Ei)i
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of pairwise disjoint Borel sets. Let us call UN :=
⋃N
i=1Ei for all N ∈ N and U :=

⋃∞
i=1Ei.

Given any ε > 0, we infer from (1.17) that for any n ≥ n̄ε one has

lim
N→∞

∣∣L(U)− L(UN )
∣∣ ≤ ∣∣L(U)− µn(U)

∣∣+ lim
N→∞

∣∣µn(U)− µn(UN )
∣∣+ lim

N→∞

∣∣µn(UN )− L(UN )
∣∣

≤ 2 ε+ lim
N→∞

∣∣µn(U)− µn(UN )
∣∣ = 2 ε,

where the last equality follows from the continuity from below of µn. By letting ε→ 0 in the

previous formula, we thus obtain that L(U) = limN L(UN ) =
∑∞

i=1 L(Ei), so that L ∈P(X).

Finally, we aim to prove that limn ‖L− µn‖TV = 0. For any n ∈ N, choose a Borel set Pn ⊆ X

satisfying (L− µn)(Pn) = (L− µn)+(X) and (L− µn)(P cn) = −(L− µn)−(X). Now fix ε > 0.

Hence (1.17) guarantees that for every n ≥ n̄ε it holds that

‖L− µn‖TV = (L− µn)(Pn)− (L− µn)(P cn) =
∣∣(L− µn)(Pn)

∣∣+
∣∣(L− µn)(P cn)

∣∣ ≤ 2 ε.

Therefore µn converges to L in the ‖ · ‖TV-norm. Since L ≥ 0 by construction, the proof of

(1.14) is achieved. �

We now present some consequences of Theorem 1.1.12:

Corollary 1.1.16 (Ulam’s theorem) Any µ ∈P(X) is concentrated on a σ-compact set.

Proof. Clearly the singleton {µ} is weakly relatively compact, so it is tight by Theorem 1.1.12.

Thus for any n ∈ N we can choose a compact set Kn ⊆ X such that µ(X \ Kn) < 1/n. In

particular, µ is concentrated on
⋃
nKn, yielding the statement. �

Corollary 1.1.17 Let µ ∈P(X) be given. Then µ is inner regular, i.e.

µ(E) = sup
{
µ(K) : K ⊆ E compact

}
for every E ⊆ X Borel. (1.18)

In particular, µ is a Radon measure.

Proof. By Corollary 1.1.16, there exists an increasing sequence (Kn)n of compact sets such

that limn µ
(
X \Kn

)
= 0. Any closed subset C of X that is contained in some Kn is clearly

compact, whence

µ(E) = lim
n→∞

µ(E ∩Kn) = lim
n→∞

sup
{
µ(C) : C ⊆ E ∩Kn closed

}
≤ sup

{
µ(K) : K ⊆ E compact

}
for every E ⊆ X Borel,

proving (1.18), as required. �

Given any function f : X→ R, let us define

Lip(f) := sup
x,y∈X
x 6=y

∣∣f(x)− f(y)
∣∣

d(x, y)
∈ [0,+∞]. (1.19)
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We say that f is Lipschitz provided Lip(f) < +∞ and we define

LIP(X) :=
{
f : X→ R : Lip(f) < +∞

}
,

LIPbs(X) :=
{
f ∈ LIP(X) : spt(f) is bounded

}
⊆ Cb(X).

(1.20)

We point out that continuous maps having bounded support are not necessarily bounded.

Proposition 1.1.18 (Separability of Lp(µ) for p <∞) Let µ ∈ P(X) and p ∈ [1,∞).

Then the space LIPbs(X) is dense in Lp(µ). In particular, the space Lp(µ) is separable.

Proof. First, notice that LIPbs(X) ⊆ L∞(µ) ⊆ Lp(µ). Call C the Lp(µ)-closure of LIPbs(X).

Step 1. We claim that
{
χC : C ⊆ X closed bounded

}
is contained in the set C . Indeed,

called fn :=
(
1 − n d(·, C)

)+ ∈ LIPbs(X) for any n ∈ N, one has fn → χC in Lp(µ) by

dominated convergence theorem.

Step 2. We also have that
{
χE : E ⊆ X Borel

}
⊆ C . Indeed, we can pick an increasing

sequence (Cn)n of closed subsets of E such that µ(E) = limn µ(Cn), as seen in (1.13). Then

one has that ‖χE − χCn‖Lp(µ) = µ(E \ Cn)1/p → 0, whence χE ∈ C by Step 1.

Step 3. To prove that Lp(µ) ⊆ C , fix f ∈ Lp(µ), without loss of generality say f ≥ 0. Given

any n, i ∈ N, let us define Eni := f−1
(
[i/2n, (i + 1)/2n[

)
. Observe that (Eni)i is a Borel

partition of X, thus it makes sense to define fn :=
∑

i∈N i 2−n χEni ∈ Lp(µ). Given that we

have fn(x) ↗ f(x) for µ-a.e. x ∈ X, it holds fn → f in Lp(µ) by dominated convergence

theorem. We aim to prove that (fn)n ⊆ C , which would immediately imply that f ∈ C .

Then fix n ∈ N. Notice that fn is the Lp(µ)-limit of fNn :=
∑N

i=1 i 2−n χEni as N →∞, again

by dominated convergence theorem. Given that each fNn ∈ C by Step 2, we get that fn is

in C as well. Hence LIPbs(X) is dense in Lp(µ).

Step 4. Finally, we prove separability of Lp(µ). We can take an increasing sequence (Kn)n

of compact subsets of X such that the measure µ is concentrated on
⋃
nKn, by Corollary

1.1.16. Since χKn f → f in Lp(µ) for any f ∈ Lp(µ), we see that⋃
n∈N

{
f ∈ Lp(µ) : f = 0 µ-a.e. in X \Kn

}︸ ︷︷ ︸
=:Sn

is dense in Lp(µ).

To conclude, it is sufficient to show that each Sn is separable. Observe that C(Kn) is sep-

arable by Corollary 1.1.6, thus accordingly its subset LIPbs(Kn) is separable with respect

to ‖ · ‖Cb(Kn). In particular, LIPbs(Kn) is separable with respect to ‖ · ‖Lp(µ). Moreover,

LIPbs(Kn) is dense in Lp(µ|Kn) ∼= Sn by the first part of the statement, therefore each Sn is

separable. �

1.1.2 The space L0(m)

By metric measure space we mean a triple (X, d,m), where

(X, d) is a complete and separable metric space,

m 6= 0 is a non-negative Borel measure on (X, d), which is finite on balls.
(1.21)
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Let us denote by L0(m) the vector space of all Borel functions f : X → R, which are

considered modulo m-a.e. equality. Then L0(m) becomes a topological vector space when

endowed with the following distance: choose any Borel probability measure m′ ∈P(X) such

that m � m′ � m (for instance, pick any Borel partition (En)n made of sets having finite

positive m-measure and set m′ :=
∑

n

χEnm
2n m(En)) and define

dL0(f, g) :=

ˆ
|f − g| ∧ 1 dm′ for every f, g ∈ L0(m). (1.22)

Such distance may depend on the choice of m′, but its induced topology does not, as we are

going to show in the next result:

Proposition 1.1.19 A sequence (fn)n ⊆ L0(m) is dL0-Cauchy if and only if

lim
n,m→∞

m
(
E ∩

{
|fn − fm| > ε

})
= 0

for every ε > 0 and E ⊆ X

Borel with m(E) < +∞.
(1.23)

Proof. We separately prove the two implications:

Necessity. Suppose that (1.23) holds. Fix ε > 0. Choose any point x̄ ∈ X, then there

exists R > 0 such that m′
(
BR(x̄)

)
≥ 1 − ε. Recall that m is finite on bounded sets by

hypothesis, so that m
(
BR(x̄)

)
< +∞. Moreover, since m′ is a finite measure, we clearly have

that χBR(x̄)
dm′

dm ∈ L1(m). Now let us call Anm(ε) the set BR(x̄) ∩
{
|fn − fm| > ε

}
. Then

property (1.23) grants that χAnm(ε) → 0 in L1(m) as n,m→∞, whence an application of the

dominated convergence theorem yields

lim
n,m→∞

m′
(
Anm(ε)

)
= lim

n,m→∞

ˆ
χAnm(ε) χBR(x̄)

dm′

dm
dm = 0. (1.24)

Therefore we deduce thatˆ
|fn − fm| ∧ 1 dm′ =

ˆ
X\BR(x̄)

|fn − fm| ∧ 1 dm′ +

ˆ
BR(x̄)

|fn − fm| ∧ 1 dm′

≤ ε+

ˆ
BR(x̄)∩{|fn−fm|≤ε}

|fn − fm| ∧ 1 dm′ +

ˆ
Anm(ε)

|fn − fm| ∧ 1 dm′

≤ 2 ε+ m′
(
Anm(ε)

)
,

from which we see that limn,m dL0(fn, fm) ≤ 2 ε by (1.24). By arbitrariness of ε > 0, we

conclude that limn,m dL0(fn, fm) = 0, which shows that the sequence (fn)n is dL0-Cauchy.

Sufficiency. Suppose that (fn)n is dL0-Cauchy. Fix any ε ∈ (0, 1) and a Borel set E ⊆ X

with m(E) < +∞. Hence the Čebyšëv inequality yields

m′
({
|fn − fm| > ε

})
= m′

({
|fn − fm| ∧ 1 > ε

})
≤ 1

ε

ˆ
|fn − fm| ∧ 1 dm′ =

dL0(fn, fm)

ε
,

so that limn,mm′
({
|fn − fm| > ε

})
= 0. Finally, observe that χE

dm
dm′ ∈ L

1(m′), whence

m
(
E ∩

{
|fn − fm| > ε

})
=

ˆ
χE

dm

dm′
χ{|fn−fm|>ε} dm′

n,m−→ 0

by dominated convergence theorem. Therefore (1.23) is proved. �
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Remark 1.1.20 Recall that two metrizable spaces with the same Cauchy sequences have the

same topology, while the converse implication does not hold in general. For instance, consider

the real line R endowed with the following two distances:

d1(x, y) := |x− y|,
d2(x, y) :=

∣∣arctan(x)− arctan(y)
∣∣, for every x, y ∈ R.

Then d1 and d2 induce the same topology on R, but the d2-Cauchy sequence (xn)n ⊆ R
defined by xn := n is not d1-Cauchy. �

We now show that the distance dL0 metrizes the ‘local convergence in measure’:

Proposition 1.1.21 Let f ∈ L0(m) and (fn)n ⊆ L0(m). Then the following are equivalent:

i) It holds that dL0(fn, f)→ 0 as n→∞.

ii) Given any subsequence (nm)m, there exists a further subsequence (nmk)k such that the

limit limk fnmk (x) = f(x) is verified for m-a.e. x ∈ X.

iii) We have that limnm
(
E ∩

{
|fn − f | > ε

})
= 0 is satisfied for every ε > 0 and E ⊆ X

Borel with m(E) < +∞.

iv) We have that limnm
′({|fn − f | > ε

})
= 0 for every ε > 0.

Proof. The proof goes as follows:

i) =⇒ ii) Since |fnm − f | ∧ 1→ 0 in L1(m′), there is (nmk)k such that |fnmk − f |(x) ∧ 1→ 0

for m′-a.e. x ∈ X, or equivalently fnmk (x)→ f(x) for m-a.e. x ∈ X.

ii) =⇒ iii) Fix (nm)m, ε > 0 and E ⊆ X Borel with m(E) < +∞. Since χ{|fnmk−f |>ε}
→ 0

pointwise m-a.e. for some (mk)k and χE ∈ L1(m), we apply the dominated convergence

theorem to deduce that limk

´
χE χ{|fnmk−f |>ε}

dm = 0, i.e. limnm
(
E ∩

{
|fn − f | > ε

})
= 0.

iii) =⇒ iv) Fix δ > 0 and x̄ ∈ X, then there is R > 0 such that m′
(
X \ BR(x̄)

)
< δ. Exactly

as we did in (1.24), we can prove that limnm
(
BR(x̄) ∩

{
|fn − f | > ε

})
= 0 implies that the

limit limnm
′(BR(x̄) ∩

{
|fn − f | > ε

})
= 0 holds as well. Therefore

lim
n→∞

m′
({
|fn − f | > ε

})
≤ δ + lim

n→∞
m′
(
BR(x̄) ∩

{
|fn − f | > ε

})
= δ.

By letting δ ↘ 0, we thus conclude that limnm
′({|fn − f | > ε

})
= 0, as required.

iv) =⇒ i) Take any ε ∈ (0, 1). Notice that

dL0(fn, f) =

ˆ
|fn − f | ∧ 1 dm′ =

ˆ
{|fn−f |≤ε}

|fn − f | ∧ 1 dm′ +

ˆ
{|fn−f |>ε}

|fn − f | ∧ 1 dm′

≤ ε+ m′
({
|fn − f | > ε

})
,

whence limn dL0(fn, f) ≤ ε, thus accordingly limn dL0(fn, f) = 0 by arbitrariness of ε. �
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In particular, Proposition 1.1.21 grants that the completeness of L0(m) does not depend

on the particular choice of the measure m′.

Remark 1.1.22 The inclusion map Lp(m) ↪→ L0(m) is continuous for every p ∈ [1,∞].

Indeed, choose any m′ ∈ P(X) with m � m′ ≤ m and define dL0 as in (1.22). Now take

any sequence (fn)n in Lp(m) that Lp(m)-converges to some limit f ∈ Lp(m). In particular,

we have that fn → f in Lp(m′), so that

dL0(fn, f) =

ˆ
|fn − f | ∧ 1 dm′ ≤

ˆ
|fn − f |dm′ ≤ ‖fn − f‖Lp(m′)

n−→ 0,

which proves the claim. �

Exercise 1.1.23 Prove that Lp(m) is dense in L0(m) for every p ∈ [1,∞]. �

Proposition 1.1.24 The space
(
L0(m), dL0

)
is complete and separable.

Proof. The proof goes as follows:

Completeness. Fix a dL0-Cauchy sequence (fn)n ⊆ L0(m) and some ε > 0. Then there

exists a subsequence (nk)k such that m′
({
|fnk+1

− fnk | > 1/2k
})

< ε/2k holds for all k. Let

us call Ak :=
{
|fnk+1

− fnk | > 1/2k
}

and A :=
⋃
k Ak, so that m′(A) ≤ ε. Given x ∈ X \ A,

it holds that
∣∣fnk+1

(x)− fnk(x)
∣∣ ≤ 1/2k for all k, in other words

(
fnk(x)

)
k
⊆ R is a Cauchy

(thus also converging) sequence, say fnk(x) → f(x) for some f(x) ∈ R. Up to performing

a diagonalisation argument, we have that fnk → f pointwise m′-a.e. for some f ∈ L0(m).

Therefore Proposition 1.1.21 grants that dL0(fn, f)→ 0, as required.

Separability. Fix f ∈ L0(m). Take any increasing sequence (En)n of Borel subsets of X

having finite m-measure and such that X =
⋃
nEn. Denote fn :=

(
(χEn f) ∧ n

)
∨ (−n) for

every n ∈ N. By dominated convergence theorem, we have that fn → f in L0(m). Moreover,

it holds that (fn)n ⊆ L1(m). Hence we get the statement by recalling Remark 1.1.22 and the

fact that L1(m) is separable. �

Remark 1.1.25 Notice that dL0(f, g) = dL0(f+h, g+h) for every f, g, h ∈ L0(m). However,

the distance dL0 is not induced by any norm, as shown by the fact that dL0(λ f, 0) differs

from |λ| dL0(f, 0) for some λ ∈ R and f ∈ L0(m). �

Exercise 1.1.26 Suppose that the measure m has no atoms. Let L : L0(m) → R be linear

and continuous. Then L = 0. �

Exercise 1.1.27 Let (X, d,m) be any metric measure space. Then the topology of L0(m)

comes from a norm if and only if m has finite support. �
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1.1.3 Pushforward of measures

Consider two complete separable metric spaces (X, dX), (Y, dY) and a Borel map T : X→ Y.

Given a Borel measure µ ≥ 0 on X, we define the pushforward measure T∗µ as

T∗µ(E) := µ
(
T−1(E)

)
for every E ⊆ X Borel. (1.25)

It can be readily checked that T∗µ is a Borel measure on Y.

Remark 1.1.28 In general, if µ is a Radon measure then T∗µ is not necessarily Radon.

However, if µ is a finite Radon measure then T∗µ is Radon by Corollary 1.1.17. �

Example 1.1.29 Let us consider the projection map R2 3 (x, y) 7→ π1(x, y) := x ∈ R. Given

any Borel subset E of R, it clearly holds that π1
∗L

2(E) = 0 if L1(E) = 0 and π1
∗L

2(E) = +∞
if L1(E) > 0. �

Proposition 1.1.30 Let ν ≥ 0 be a Borel measure on Y. Then ν = T∗µ if and only if

ˆ
f dν =

ˆ
f ◦ T dµ for every f : X→ [0,+∞] Borel. (1.26)

We shall call (1.26) the change-of-variable formula.

Proof. Given E ⊆ Y Borel and supposing the validity of (1.26), we have that

ν(E) =

ˆ
χE dν =

ˆ
χE ◦ T dµ =

ˆ
χT−1(E) dµ = µ

(
T−1(E)

)
= T∗µ(E),

proving sufficiency. On the other hand, by Cavalieri’s principle we see that

ˆ
f dT∗µ =

ˆ +∞

0
T∗µ

(
{f ≥ t}

)
dt =

ˆ +∞

0
µ
(
{f ◦ T ≥ t}

)
dt =

ˆ
f ◦ T dµ

is satisfied for any Borel map f : X→ [0,+∞], granting also necessity. �

Remark 1.1.31 Observe that

T = T̃ µ-a.e. =⇒ T∗µ = T̃∗µ,

f = f̃ (T∗µ)-a.e. =⇒ f ◦ T = f̃ ◦ T µ-a.e..
(1.27)

Moreover, if ν ≥ 0 is a Borel measure on Y satisfying T∗µ ≤ Cν for some C > 0 and p ∈ [1,∞],

then the operator Lp(ν) 3 f 7→ f ◦ T ∈ Lp(µ) is well-defined, linear and continuous. Indeed,

we have for any f ∈ Lp(ν) that

ˆ
|f ◦ T |p dµ =

ˆ
|f |p ◦ T dµ

(1.26)
=

ˆ
|f |p dT∗µ ≤ C

ˆ
|f |p dν.

In particular, the operator Lp(T∗µ) 3 f 7→ f ◦ T ∈ Lp(µ) is an isometry. �
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1.2 Spaces of curves

We equip the space C([0, 1],X) of all continuous curves in X with the sup distance:

d(γ, γ̃) := max
t∈[0,1]

d(γt, γ̃t) for every γ, γ̃ ∈ C([0, 1],X). (1.28)

Proposition 1.2.1 Let (X, d) be a complete (resp. separable) metric space. Then the metric

space
(
C([0, 1],X), d

)
is complete (resp. separable).

Proof. The proof goes as follows:

Completeness. Take a d-Cauchy sequence (γn)n ⊆ C([0, 1],X). Hence for any ε > 0 there

exists nε ∈ N such that d(γn, γm) < ε for all n,m ≥ nε. In particular, (γnt )n is d-Cauchy for

each t ∈ [0, 1], so that limn γ
n
t = γt with respect to d for a suitable γt ∈ X, by completeness

of (X, d). Given any ε > 0 and n ≥ nε, we have supt d(γnt , γt) ≤ supt limm d(γnt , γ
m
t ) ≤ ε and

lim
s→t

d(γs, γt) ≤ lim
s→t

[
d(γs, γ

n
s ) + d(γns , γ

n
t ) + d(γnt , γt)

]
≤ 2 ε+ lim

s→t
d(γns , γ

n
t ) = 2 ε ∀t ∈ [0, 1],

proving that γ is continuous and limn d(γn, γ) = 0. Then
(
C([0, 1],X), d

)
is complete.

Separability. Fix (xn)n ⊆ X dense. Given k, n ∈ N and f : {0, . . . , n− 1} → N, we let

Ak,n,f :=
{
γ ∈ C([0, 1],X)

∣∣∣ d(γt, xf(i)) < 1/2k ∀i = 0, . . . , n− 1, t ∈
[
i/n, (i+ 1)/n

]}
.

We then claim that ⋃
n,f

Ak,n,f = C([0, 1],X) for every k ∈ N,

d(γ, γ̃) ≤ 1

2k−1
for every γ, γ̃ ∈ Ak,n,f .

(1.29)

To prove the first in (1.29), fix k ∈ N and γ ∈ C([0, 1],X). Since γ is uniformly continuous,

there exists δ > 0 such that d(γt, γs) < 1/2k+1 provided t, s ∈ [0, 1] satisfy |t− s| < δ. Choose

any n ∈ N such that 1/n < δ. Since (xn)n is dense in X, for every i = 0, . . . , n − 1 we can

choose f(i) ∈ N such that d(xf(i), γi/n) < 1/2k+1. Hence for any i = 0, . . . , n− 1 it holds that

d(γt, xf(i)) ≤ d(γt, γi/n) + d(γi/n, xf(i)) <
1

2k
for every t ∈

[
i

n
,
i+ 1

n

]
,

proving that γ ∈ Ak,n,f and accordingly the first in (1.29). To prove the second, simply notice

that d(γt, γ̃t) ≤ d(γt, xf(i))+d(xf(i), γ̃t) < 1/2k−1 for all i = 1, . . . , n−1 and t ∈
[
i/n, (i+1)/n

]
.

In order to conclude, pick any γk,n,f ∈ Ak,n,f for every k, n, f . The family (γk,n,f )k,n,f ,

which is clearly countable, is d-dense in C([0, 1],X) by (1.29), giving the statement. �

We say that C([0, 1],X) is a Polish space, i.e. a topological space whose topology comes

from a complete and separable distance.

Exercise 1.2.2 Any open subset of a Polish space is a Polish space. �
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Definition 1.2.3 (Absolutely continuous curves) We say that a curve γ : [0, 1]→ X is

absolutely continuous, briefly AC, provided there exists a map f ∈ L1(0, 1) such that

d(γt, γs) ≤
ˆ t

s
f(r) dr for every t, s ∈ [0, 1] with s < t. (1.30)

Clearly, all absolutely continuous curves are continuous.

Remark 1.2.4 If X = R then this notion of AC curve coincides with the classical one. �

Theorem 1.2.5 (Metric speed) Let γ be an absolutely continuous curve in X. Then

∃ |γ̇t| := lim
h→0

d(γt+h, γt)

|h|
for a.e. t ∈ [0, 1]. (1.31)

Moreover, the function |γ̇|, which is called metric speed of γ, belongs to L1(0, 1) and is the

minimal function (in the a.e. sense) that can be chosen as f in (1.30).

Proof. Fix (xn)n ⊆ X dense. We define gn(t) := d(γt, xn) for all t ∈ [0, 1]. Then

∣∣gn(t)− gn(s)
∣∣ ≤ d(γt, γs) ≤

ˆ t

s
f(r) dr for every t, s ∈ [0, 1] with s < t, (1.32)

showing that each gn : [0, 1] → R is AC. Hence gn is differentiable a.e. and by applying the

Lebesgue differentiation theorem to (1.32) we get that
∣∣g′n(t)

∣∣ ≤ f(t) for a.e. t ∈ [0, 1]. Let us

call g := supn g
′
n, so that g ∈ L1(0, 1) with |g| ≤ f a.e.. Moreover, one has that

d(γt, γs) = sup
n∈N

[
gn(t)− gn(s)

]
for every t, s ∈ [0, 1]. (1.33)

Indeed, d(γt, γs) ≥
[
gn(t) − gn(s)

]
for all n by triangle inequality. On the other hand, given

any ε > 0 we can choose n ∈ N such that d(xn, γs) < ε, whence gn(t)− gn(s) ≥ d(γt, γs)− 2 ε.

We thus deduce from (1.33) that g can substitute the function f in (1.30), because

d(γt, γs) = sup
n∈N

ˆ t

s
g′n(r) dr ≤

ˆ t

s
g(r) dr for every t, s ∈ [0, 1] with s < t. (1.34)

In order to conclude, it only remains to prove that g is actually the metric speed. By applying

Lebesgue differentiation theorem to (1.34), we see that lims→t d(γt, γs)/|t − s| ≤ g(t) holds

for almost every t ∈ [0, 1]. Conversely, d(γt, γs) ≥ gn(t) − gn(s) =
´ t
s g
′
n(r) dr is satisfied for

every s < t and n ∈ N by triangle inequality, so lims→t d(γt, γs)/|t− s| ≥ g′n(t) is satisfied for

a.e. t ∈ [0, 1] and for every n ∈ N by Lebesgue differentiation theorem. This implies that

g(t) ≥ lim
s→t

d(γt, γs)

|t− s|
≥ lim

s→t

d(γt, γs)

|t− s|
≥ sup

n∈N
g′n(t) = g(t) for a.e. t ∈ [0, 1],

thus concluding the proof. �
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Remark 1.2.6 Let us define the function ms : C([0, 1], X)× [0, 1] −→ [0,+∞] as

ms(γ, t) :=

{
|γ̇t| = limh→0 d(γt+h, γt)/|h|
+∞

if such limit exists finite,

otherwise.

We claim that ms is Borel. To prove it, consider an enumeration (rn)n of Q∩ (0,+∞). Given

any ε, h > 0 and n ∈ N, we define the Borel sets A(ε, n, h) and B(ε, n) as follows:

A(ε, n, h) :=

{
(γ, t) :

∣∣∣∣d(γt+h, γt)

|h|
− rn

∣∣∣∣ < ε

}
, B(ε, n) :=

⋃
0<δ∈Q

⋂
h∈(0,δ)∩Q

A(ε, n, h).

Hence limh→0 d(γt+h, γt)/|h| exists finite if and only if (γ, t) ∈
⋂
j∈N

⋃
n∈NB(2−j , n). Now let

us call C(j, n) := B(2−j , n) \
⋃
i<nB(2−j , i) for every j, n ∈ N. Then the map fj , defined as

fj(γ, t) :=

{
rn

+∞
if (γ, t) ∈ C(j, n) for some n ∈ N,
if (γ, t) /∈

⋃
nC(j, n),

is Borel by construction. Given that fj(γ, t)
j→ ms(γ, t) for every (γ, t), we finally conclude

that the function ms is Borel. �

We define the kinetic energy functional KE : C([0, 1],X)→ [0,+∞] as follows:

KE(γ) :=

{ ´ 1
0 |γ̇t|

2 dt

+∞
if γ is AC,

if γ is not AC.
(1.35)

Proposition 1.2.7 The functional KE is d-lower semicontinuous.

Proof. Fix a sequence (γn)n ⊆ C([0, 1],X) that d-converges to some γ ∈ C([0, 1],X). We

can take a subsequence (γnk)k satisfying limk KE(γnk) = limn KE(γn). Our aim is to prove

the inequality KE(γ) ≤ limk KE(γnk). The case in which limk KE(γnk) = +∞ is trivial, so

suppose that such limit is finite. In particular, up to discarding finitely many γnk ’s, we have

that all curves γnk are absolutely continuous with
(
|γ̇nk |

)
k
⊆ L2(0, 1) bounded. Therefore, up

to a not relabeled subsequence, |γ̇nk | converges to some limit function G ∈ L2(0, 1) ⊆ L1(0, 1)

weakly in L2(0, 1). Given any t, s ∈ [0, 1] with s < t, we thus have that

d(γt, γs) = lim
k→∞

d(γnkt , γnks ) ≤ lim
k→∞

ˆ t

s
|γ̇nkr | dr = lim

k→∞

〈
|γ̇nk |, χ[s,t]

〉
L2(0,1)

=

ˆ t

s
G(r) dr,

which grants that γ is absolutely continuous with |γ̇| ≤ G a.e. by Theorem 1.2.5. Hence

KE(γ) =

ˆ 1

0
|γ̇t|2 dt ≤ ‖G‖2L2(0,1) ≤ lim

k→∞

ˆ 1

0
|γ̇nkt |2 dt = lim

k→∞
KE(γnk),

proving the statement. �
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Exercise 1.2.8 Prove that

KE(γ) = sup
0=t0<...<tn=1

n−1∑
i=0

d(γti+1 , γti)
2

ti+1 − ti
holds for every γ ∈ C([0, 1],X). (1.36)

�

Definition 1.2.9 (Geodesic curve) A curve γ : [0, 1]→ X is said to be a geodesic provided

d(γt, γs) ≤ |t− s| d(γ0, γ1) holds for every t, s ∈ [0, 1]. (1.37)

Clearly, any geodesic curve is continuous.

Proposition 1.2.10 Let γ ∈ C([0, 1],X) be fixed. Then the following are equivalent:

i) The curve γ is a geodesic.

ii) It holds that d(γt, γs) = |t− s| d(γ0, γ1) for every t, s ∈ [0, 1].

iii) The curve γ is AC, its metric speed |γ̇| is a.e. constant and d(γ0, γ1) =
´ 1

0 |γ̇t|dt.

iv) It holds that KE(γ) = d(γ0, γ1)2.

Proof. The proof goes as follows:

i) =⇒ ii) Suppose that d(γt, γs) < (t− s) d(γ0, γ1) for some 0 ≤ s < t ≤ 1, then

d(γ0, γ1) ≤ d(γ0, γs) + d(γs, γt) + d(γt, γ1) <
[
t+ (t− s) + (1− s)

]
d(γ0, γ1) = d(γ0, γ1),

which leads to a contradiction. Hence d(γt, γs) = |t− s| d(γ0, γ1) for every t, s ∈ [0, 1].

ii) =⇒ iii) Observe that d(γt, γs) = (t−s) d(γ0, γ1) =
´ t
s d(γ0, γ1) dt holds for every t, s ∈ [0, 1]

with s < t, whence the curve γ is AC. Moreover, |γ̇t| = limh→0 d(γt+h, γt)/|h| = d(γ0, γ1) holds

for a.e. t ∈ [0, 1], thus accordingly
´ 1

0 |γ̇t| dt = d(γ0, γ1).

iii) =⇒ iv) Clearly |γ̇t| = d(γ0, γ1) for a.e. t ∈ [0, 1], hence KE(γ) =
´ 1

0 |γ̇t|
2 dt = d(γ0, γ1)2.

iv) =⇒ i) Notice that the function (0,+∞)2 3 (a, b) 7→ a2/b is convex and 1-homogeneous,

therefore subadditive. Also, γ is AC since KE(γ) < ∞. Then for all t, s ∈ (0, 1) with s < t

one has

d(γ0, γ1)2 =

ˆ s

0
|γ̇r|2 dr +

ˆ t

s
|γ̇r|2 dr +

ˆ 1

t
|γ̇r|2 dr

≥ 1

s

(ˆ s

0
|γ̇r| dr

)2

+
1

t− s

(ˆ t

s
|γ̇r| dr

)2

+
1

1− t

(ˆ 1

t
|γ̇r| dr

)2

≥ d(γ0, γs)
2

s
+

d(γs, γt)
2

t− s
+

d(γt, γ1)2

1− t

≥
[
d(γ0, γs) + d(γs, γt) + d(γt, γ1)

]2
s+ (t− s) + (1− t)

≥ d(γ0, γ1)2,

where the last line follows from the subadditivity of the function (0,+∞)2 3 (a, b) 7→ a2/b.

Hence all inequalities are actually equalities, which forces d(γt, γs) = (t− s) d(γ0, γ1). �
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Let us define

Geo(X) :=
{
γ ∈ C([0, 1],X) : γ is a geodesic

}
. (1.38)

Since uniform limits of geodesic curves are geodesic, we have that Geo(X) is d-closed.

Definition 1.2.11 (Geodesic space) We say (X, d) is a geodesic space provided for any

pair of points x, y ∈ X there exists a curve γ ∈ Geo(X) such that γ0 = x and γ1 = y.

Proposition 1.2.12 (Kuratowski embedding) Let (X, d) be a complete and separable

metric space. Then there exists a complete, separable and geodesic metric space (X̃, d̃) such

that X is isometrically embedded into X̃.

Proof. Fix (xn)n ⊆ X dense. Let us define the map ι : X→ `∞ as follows:

ι(x) :=
(
d(x, xn)− d(x0, xn)

)
n

for every x ∈ X.

Since
∣∣d(x, xn)− d(x0, xn)

∣∣ ≤ d(x, x0) for any n ∈ N, we see that ι(x) actually belongs to the

space `∞ for every x ∈ X. By arguing as in the proof of Theorem 1.2.5, precisely when we

showed (1.33), we deduce from the density of (xn)n in X that∥∥ι(x)− ι(y)
∥∥
`∞

= sup
n∈N

∣∣d(x, xn)− d(y, xn)
∣∣ = d(x, y) holds for every x, y ∈ X,

which proves that ι is an isometry. The Banach space `∞ is clearly geodesic, but it is not

separable, so that we cannot just take X̃ = `∞. We thus proceed as follows: call X0 := ι(X)

and recursively define Xn+1 :=
{
λx + (1 − λ) y : λ ∈ [0, 1], x, y ∈ Xn

}
for every n ∈ N.

Finally, let us denote X̃ := cl`∞
⋃
n Xn, which is the closed convex hull of X0. Note that X is

separable, so that X0 and accordingly X̃ are separable, and that ι : X → X̃ is an isometry.

Since X̃ is also complete and geodesic, we get the statement. �

1.3 Bochner integral

Fix a Banach space B and a metric measure space (X, d, µ) with µ ∈P(X).

A map f : X→ B is said to be simple provided it can be written as f =
∑n

i=1
χEi vi, for

some v1, . . . , vn ∈ B and some Borel partition E1, . . . , En of X.

Definition 1.3.1 (Strongly Borel) A map f : X → B is said to be strongly Borel (resp.

strongly µ-measurable) provided it is Borel (resp. µ-measurable) and there exists a separable

subset V of B such that f(x) ∈ V for µ-a.e. x ∈ X. This last condition can be briefly expressed

by saying that f is essentially separably valued.

Lemma 1.3.2 Let f : X→ B be any given map. Then f is strongly Borel if and only if it is

Borel and there exists a sequence (fn)n of simple maps such that limn

∥∥fn(x)− f(x)
∥∥
B = 0 is

satisfied for µ-a.e. x ∈ X.
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Proof. We separately prove the two implications:

Sufficiency. Choose any Vn ⊆ B separable such that fn(x) ∈ Vn for µ-a.e. x ∈ X. Then

the set V :=
⋃
n Vn is separable and f(x) ∈ V for µ-a.e. x ∈ X, whence f is strongly Borel.

Necessity. We can assume without loss of generality that f(x) ∈ V for every x ∈ X. Choose

a dense countable subset (vn)n of V and notice that V ⊆
⋃
nBε(vn) for every ε > 0. We

define Pε : V → (vn)n as follows:

Pε :=
∑
n∈N

χC(ε,n) vn, where C(ε, n) :=
(
V ∩Bε(vn)

)
\
⋃
i<n

Bε(vi). (1.39)

Let us call fε := Pε◦f . Since
∥∥Pε(v)− v

∥∥
B ≤ ε for all v ∈ V , we have that

∥∥fε(x)− f(x)
∥∥
B ≤ ε

for all x ∈ X, so that f can be pointwise approximated by maps taking countably many values.

With a cut-off argument, we can then approximate f by simple maps, as required. �

Given a simple map f : X→ B and a Borel set E ⊆ X, we define

ˆ
E
f dµ :=

n∑
i=1

µ(Ei ∩ E) vi ∈ B if f =

n∑
i=1

χEi vi. (1.40)

Exercise 1.3.3 Show that the integral in (1.40) is well-posed, i.e. it does not depend on the

particular way of writing f , and that it is linear. �

Definition 1.3.4 (Bochner integral) A map f : X → B is said to be Bochner integrable

provided there exists a sequence (fn)n of simple maps such that each x 7→
∥∥fn(x)− f(x)

∥∥
B is

a µ-measurable function and limn

´
‖fn − f‖B dµ = 0. In this case, we define

ˆ
E
f dµ := lim

n→∞

ˆ
E
fn dµ for every E ⊆ X Borel. (1.41)

Remark 1.3.5 It follows from the very definition that the inequality∥∥∥∥ˆ
E
f dµ

∥∥∥∥
B
≤
ˆ
E
‖f‖B dµ (1.42)

holds for every f simple. Now fix a Bochner integrable map f and a sequence (fn)n of simple

maps that converge to f as in Definition 1.3.4. Hence we have that∥∥∥∥ˆ
E

(fn − fm) dµ

∥∥∥∥
B

(1.42)

≤
ˆ
E
‖fn − f‖B dµ+

ˆ
E
‖f − fm‖B dµ

n,m−→ 0,

proving that
( ´

E fn dµ
)
n

is Cauchy in B and accordingly the limit in (1.41) exists. Further,

take another sequence (gn)n of simple maps converging to f in the sense of Definition 1.3.4.

Therefore one has that∥∥∥∥ˆ
E

(fn − gn) dµ

∥∥∥∥
B

(1.42)

≤
ˆ
E
‖fn − f‖B dµ+

ˆ
E
‖f − gn‖B dµ

n−→ 0,

which implies limn

´
E fn dµ = limn

´
E gn dµ. This grants that

´
E f dµ is well-defined. �
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Proposition 1.3.6 Let f : X→ B be a given map. Then f is Bochner integrable if and only

if it is strongly µ-measurable and
´
‖f‖B dµ < +∞.

Proof. Necessity is trivial. To prove sufficiency, consider the maps Pε defined in (1.39) and

call fε := Pε ◦ f . Hence we have
´
‖fε − f‖B dµ ≤ ε for all ε > 0. Recall that the projection

maps Pε are written in the form
∑

n∈N χC(ε,n) vn, so that fε =
∑

n∈N χf−1(C(ε,n)) vn. Now let

us define gkε :=
∑

n≤k χf−1(C(ε,n)) vn for all k ∈ N. Given that
∑

n∈N µ
(
f−1(C(ε, n))

)
‖vn‖B is

equal to
´
‖fε‖B dµ, which is smaller than

´
‖f‖B dµ+ ε and accordingly finite, we see that

ˆ
‖gkε − fε‖B dµ =

∞∑
n=k+1

µ
(
f−1(C(ε, n))

)
‖vn‖B

k−→ 0.

Since the maps gkε are simple, we can thus conclude by a diagonalisation argument. �

Example 1.3.7 Denote by M([0, 1]) the Banach space of all signed Radon measures on [0, 1],

endowed with the total variation norm. Then the map [0, 1]→M([0, 1]), which sends t ∈ [0, 1]

to δt ∈P([0, 1]), is not strongly Borel (thus also not Borel).

Indeed, notice that ‖δt − δs‖TV = 2 for every t, s ∈ [0, 1] with t 6= s. Now suppose that

there exists a Borel set N ⊆ [0, 1] with L1(N) = 0 such that
{
δt : t ∈ [0, 1] \N

}
is separable.

Take a countable dense subset (µn)n of such set. Hence for every t ∈ [0, 1] \N we can choose

an index n(t) ∈ N such that ‖δt − µn(t)‖TV < 1. Clearly the function n : [0, 1] \N → N must

be injective, which contradicts the fact that [0, 1] \N is not countable. �

Let us define the space L1(µ;B) as follows:

L1(µ;B) :=
{
f : X→ B Bochner integrable

}
/(µ-a.e. equality). (1.43)

Then L1(µ;B) is a Banach space if endowed with the norm ‖f‖L1(µ;B) :=
´ ∥∥f(x)

∥∥
B dµ(x).

Remark 1.3.8 Given two metric spaces X,Y and a continuous map f : X → Y, we have

that the image f(X) is separable whenever X is separable.

Indeed, if (xn)n is dense in X, then
(
f(xn)

)
n

is dense in f(X) by continuity of f . �

Proposition 1.3.9 Let E ⊆ X be Borel. Let V be another Banach space. Then:

i) For every f ∈ L1(µ;B), it holds that∥∥∥∥ˆ
E
f dµ

∥∥∥∥
B
≤
ˆ
E
‖f‖B dµ. (1.44)

In particular, the map L1(µ;B)→ B sending f to
´
f dµ is linear and continuous.

ii) The space Cb(X,B) is (contained and) dense in L1(µ;B).

iii) If ` : B→ V is linear continuous and f ∈ L1(µ;B), one has that ` ◦ f ∈ L1(µ;V) and

`

(ˆ
E
f dµ

)
=

ˆ
E
` ◦ f dµ. (1.45)
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Proof. The proof goes as follows:

i) As already mentioned in (1.42), we have that the inequality (1.44) is satisfied whenever the

map f is simple, because if f =
∑n

i=1
χEi vi then∥∥∥∥ˆ

E
f dµ

∥∥∥∥
B
≤

n∑
i=1

∥∥∥∥ˆ χEi∩E vi dµ

∥∥∥∥
B

=

n∑
i=1

µ(Ei ∩ E) ‖vi‖B =

ˆ
E
‖f‖B dµ.

For f generic, choose a sequence (fn)n of simple maps that converge to f in L1(µ;B). Then∥∥∥∥ˆ
E
f dµ

∥∥∥∥
B

= lim
n→∞

∥∥∥∥ˆ
E
fn dµ

∥∥∥∥
B
≤ lim

n→∞

ˆ
E
‖fn‖B dµ =

ˆ
E
‖f‖B dµ,

thus proving the validity of (1.44).

ii) The elements of C(X,B), which are clearly Borel, are (essentially) separably valued by

Remark 1.3.8, in other words they are strongly Borel. This grants that Cb(X,B) ⊆ L1(µ;B).

To prove its density, it suffices to approximate just the maps of the form χE v. First choose

any sequence (Cn)n of closed subsets of E with µ(E \ Cn) ↘ 0, so that χCnv → χE v with

respect to the L1(µ;B)-norm, then for each n ∈ N notice that the maps
(
1 − k d(·, Cn)

)+
v

belong to Cb(X,B) and L1(µ;B)-converge to χCnv as k →∞. So Cb(X,B) is dense in L1(µ;B).

iii) In the case in which f is simple, say f =
∑n

i=1
χEi vi, one has that

`

( ˆ
E
f dµ

)
=

n∑
i=1

µ(Ei ∩ E) `(vi) =

ˆ
E
` ◦ f dµ.

For a general f , choose a sequence (fn)n of simple maps that L1(µ;B)-converge to f . We

note that the inequality
´ ∥∥`(f − fn)

∥∥
V(x) dµ(x) ≤ ‖`‖

´
‖f − fn‖B dµ is satisfied, where ‖`‖

stands for the operator norm of `. In particular
´
E ` ◦ fn dµ→

´
E ` ◦ f dµ. Therefore

`

( ˆ
E
f dµ

)
= lim

n→∞
`

( ˆ
E
fn dµ

)
= lim

n→∞

ˆ
E
` ◦ fn dµ =

ˆ
E
` ◦ f dµ,

proving (1.45) as required. �

Definition 1.3.10 (Closed operator) A closed operator T : B→ V is a couple
(
D(T ), T

)
,

where D(T ) is a linear subspace of B and T : D(T )→ V is a linear map whose graph, defined

as Graph(T ) :=
{

(v, Tv) : v ∈ D(T )
}

, is a closed subspace of the product space B× V.

Closedness of Graph(T ) can be equivalently stated as follows: if a sequence (vn)n ⊆ D(T )

satisfy limn ‖vn − v‖B = 0 and limn ‖Tvn − w‖V = 0 for some vectors v ∈ B and w ∈ V, then

necessarily v ∈ D(T ) and w = Tv.

Example 1.3.11 (of closed operators) We provide three examples of closed operators:

i) Let B = V = C([0, 1]). Then take D(T1) = C1([0, 1]) and T1(f) = f ′.

ii) Let B = V = L2(0, 1). Then take D(T2) = W 1,2(0, 1) and T2(f) = f ′.
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iii) Let B = L2(Rn) and V =
[
L2(Rn)

]n
. Then take D(T3) = W 1,2(Rn) and T3(f) equal to

the n-tuple (∂x1f, . . . , ∂xnf). �

Example 1.3.12 (of non-closed operator) Consider B = V = L2(Rn), with n > 1. We

define D(T4) = W 1,2(Rn) and T4(f) = ∂x1f . Then
(
D(T4), T4

)
is not a closed operator. �

Exercise 1.3.13 Prove Example 1.3.11 and Example 1.3.12. �

Remark 1.3.14 Let f ∈ L1(µ;B) be given. Suppose there exists a closed subspace V of B
such that f(x) ∈ V holds for µ-a.e. x ∈ X. Then

´
E f dµ ∈ V for every E ⊆ X Borel.

We argue by contradiction: suppose
´
E f dµ /∈ V , then we can choose ` ∈ B′ with ` = 0

on V and `
( ´

E f dµ
)

= 1 by Hahn-Banach theorem. But the fact that (` ◦ f)(x) = 0 holds

for µ-a.e. x ∈ X implies `
( ´

E f dµ
)

=
´
E ` ◦ f dµ = 0 by (1.45), giving a contradiction. �

Theorem 1.3.15 (Hille) Let T : B→ V be a closed operator. Consider a map f ∈ L1(µ;B)

that satisfies f(x) ∈ D(T ) for µ-a.e. x ∈ X and T ◦ f ∈ L1(µ;V). Then for every E ⊆ X

Borel it holds that
´
E f dµ ∈ D(T ) and that

T

( ˆ
E
f dµ

)
=

ˆ
E
T ◦ f dµ. (1.46)

Proof. Define the map Φ : X→ B×V as Φ(x) :=
(
f(x), (T ◦f)(x)

)
for µ-a.e. x ∈ X. One can

readily check that Φ ∈ L1(µ;B× V). Moreover, Φ(x) ∈ Graph(T ) for µ-a.e. x ∈ X, whence( ˆ
E
f dµ,

ˆ
E
T ◦ f dµ

)
=

ˆ
E

Φ(x) dµ(x) ∈ Graph(T )

by Remark 1.3.14. This means that
´
E f dµ ∈ D(T ) and that T

( ´
E f dµ

)
=

´
E T ◦ f dµ.

�

Let us now concentrate our attention on the case in which X = [0, 1] and µ = L1|[0,1]
.

Proposition 1.3.16 Let v : [0, 1]→ B be an absolutely continuous curve. Suppose that

v′t := lim
h→0

vt+h − vt
h

∈ B exists for a.e. t ∈ [0, 1]. (1.47)

Then the map v′ : [0, 1]→ B is Bochner integrable and satisfies

vt − vs =

ˆ t

s
v′r dr for every t, s ∈ [0, 1] with s < t. (1.48)

Proof. First of all, by arguing as in Remark 1.2.6, we see that v′ is Borel. Moreover, if V is a

closed separable subspace of B such that vt ∈ V for a.e. t ∈ [0, 1], then v′t ∈ V for a.e. t ∈ [0, 1]

as well, i.e. v′ is essentially separably valued. Hence v′ is a strongly Borel map. Since the

function ‖v′‖B coincides a.e. with the metric speed |v̇|, which belongs to L1(0, 1), we conclude

that v′ is Bochner integrable by Proposition 1.3.6. Finally, to prove (1.48) it is enough to

show that vt = v0 +
´ t

0 v
′
s ds for any t ∈ [0, 1]. For every ` ∈ B′ it holds that t 7→ `(vt) ∈ R is

absolutely continuous, with d
dt`(vt) = `(v′t) for a.e. t ∈ [0, 1]. Therefore

`(vt) = `(v0) +

ˆ t

0

(
d

ds
`(vs)

)
ds = `(v0) +

ˆ t

0
`(v′s) ds

(1.45)
= `

(
v0 +

ˆ t

0
v′s ds

)
,

which implies that vt = v0 +
´ t

0 v
′
s ds by arbitrariness of ` ∈ B′. Thus (1.48) is proved. �
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Example 1.3.17 Let us define the map v : [0, 1]→ L1(0, 1) as vt := χ[0,t] for every t ∈ [0, 1].

Then v is 1-Lipschitz (so also absolutely continuous), because ‖vt − vs‖L1(0,1) = t − s holds

for every t, s ∈ [0, 1] with s < t, but v is not differentiable at any t ∈ [0, 1]: the incremental

ratios h−1(vt+h − vt) = h−1χ(t,t+h] pointwise converge to 0 as h↘ 0 and have L1(0, 1)-norm

equal to 1. Notice that the probability measures h−1χ(t,t+h] L
1 weakly converges to δt. �

Proposition 1.3.18 (Lebesgue points) Let v : [0, 1]→ B be Bochner integrable. Then

lim
h↘0

 t+h

t−h
‖vs − vt‖B ds = 0 for a.e. t ∈ [0, 1]. (1.49)

Proof. Choose a separable set V ⊆ B such that vt ∈ V for a.e. t ∈ [0, 1] and a sequence (wn)n

that is dense in V . For any n ∈ N, the map t 7→ ‖vt − wn‖B ∈ R belongs to L1(0, 1), hence

there exists a Borel set Nn ⊆ [0, 1], with L1(Nn) = 0, such that

‖vt − wn‖B = lim
h↘0

 t+h

t−h
‖vs − wn‖B ds holds for every t ∈ [0, 1] \Nn,

by Lebesgue differentiation theorem. Call N :=
⋃
nNn, which is an L1-negligible Borel subset

of [0, 1]. Therefore for every t ∈ [0, 1] \N one has that

lim
h↘0

 t+h

t−h
‖vs − vt‖B ds ≤ inf

n∈N
lim
h↘0

[ t+h

t−h
‖vs − wn‖B ds+ ‖vt − wn‖B

]
= inf

n∈N
2 ‖vt − wn‖B = 0

by density of (wn)n in V . Hence (1.49) is proved, getting the statement. �

Fix two metric measure spaces (X, dX.µ), (Y, dY, ν), with µ and ν finite measures. In the

following three results we will distinguish real-valued functions from their equivalence classes

up to a.e. equality: namely, we will denote by f : Y → R the ν-measurable maps and by [f ]

the elements of L1(ν).

Proposition 1.3.19 Let X 3 x 7→ [fx] ∈ L1(ν) be any µ-measurable map. Then there exists

a choice (x, y) 7→ f̃(x, y) of representatives, i.e.
[
f̃(x, ·)

]
= [fx] holds for µ-a.e. x ∈ X, which

is Borel measurable. Moreover, any two such choices agree (µ× ν)-a.e. in X×Y.

Proof. The statement is clearly verified when x 7→ [fx] is a simple map. For x 7→ [fx] generic,

define [fkx ] := χAk(x) [fx] for µ-a.e. x ∈ X, where we set Ak :=
{
x ∈ X :

∥∥[fx]
∥∥
L1(ν)

≤ k
}

.

Now let k ∈ N be fixed. Given that [fk] belongs to L1
(
µ;L1(ν)

)
, we can choose a sequence of

simple maps [gn] : X → L1(ν) such that
∥∥[gn]− [fk]

∥∥
L1(µ;L1(ν))

≤ 2−2n for every n ∈ N. As

observed in the first part of the proof, we can choose a Borel representative g̃n : X×Y → R
of [gn] for every n ∈ N. By using Čebyšëv’s inequality, we obtain that

µ
({
x ∈ X :

∥∥[gnx ]− [fkx ]
∥∥
L1(ν)

> 2−n
})
≤ 1

2n
holds for every n ∈ N.

Therefore we have that

µ

(⋃
n0∈N

{
x ∈ X :

∥∥[gnx ]− [fkx ]
∥∥
L1(ν)

≤ 2−n for all n ≥ n0

})
= µ(X). (1.50)
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Then the functions g̃n converge (µ× ν)-a.e. to some limit function f̃k : X×Y → R, which is

accordingly a Borel representative of [fk]. To conclude, let us define

f̃(x, y) :=
∑
k∈N

χAk\
⋃
i<k Ai

(x) f̃k(x, y) for every (x, y) ∈ X×Y.

Therefore f̃ is the desired representative of x 7→ [fx], whence the statement is proved. �

Proposition 1.3.20 Consider the operator Φ : L1
(
µ;L1(ν)

)
→ L1(µ× ν) sending x 7→ [fx]

to (the equivalence class of) one of its Borel representatives f̃ found in Proposition 1.3.19.

Then the map Φ is (well-defined and) an isometric isomorphism.

Proof. Well-posedness of Φ follows from Proposition 1.3.19 and from the fact that∥∥[f·]
∥∥
L1(µ;L1(ν))

=

ˆˆ ∣∣[fx]
∣∣(y) dν(y) dµ(x) =

ˆˆ
|f̃ |(x, y) dν(y)µ(x) =

ˆ
|f̃ | d(µ× ν)

where the last equality is a consequence of Fubini theorem. The same equalities also guarantee

that Φ is an isometry. Moreover, the map Φ is linear, continuous and injective. In order to

conclude, it suffices to show that the image of Φ is dense. Given any f̃ ∈ Cb(X × Y), we

have that limx′→x
´ ∣∣f̃(x′, y) − f̃(x, y)

∣∣ dν(y) = 0 for every x ∈ X by dominated convergence

theorem, so that x 7→ f̃(x, ·) ∈ L1(ν) is continuous and accordingly in L1
(
µ;L1(ν)

)
. In other

words, we proved that any f̃ ∈ Cb(X × Y) belongs to the image of Φ. Since Cb(X × Y) is

dense in L1(µ× ν) by Proposition 1.1.18, we thus obtained the statement. �

Proposition 1.3.21 Let
(
x 7→ [fx]

)
∈ L1

(
µ;L1(ν)

)
and call [f̃ ] its image under Φ. Then(ˆ

[fx] dµ(x)

)
(y) =

ˆ
f̃(x, y) dµ(x) holds for ν-a.e. y ∈ Y. (1.51)

Proof. First of all, we define the linear and continuous operator T1 : L1
(
µ;L1(ν)

)
→ L1(ν)

as T1(f) :=
´

[fx] dµ(x) ∈ L1(ν) for every f ∈ L1
(
µ;L1(ν)

)
. On the other hand, by Fubini

theorem it makes sense to define T2(f̃) :=
(
y 7→

´
f̃(x, y) dµ(x)

)
∈ L1(ν) for all f̃ ∈ L1(µ×ν),

so that T2 : L1(µ× ν)→ L1(ν) is a linear and continuous operator. Therefore the diagram

L1
(
µ;L1(ν)

)
L1(µ× ν)

L1(ν)

Φ

T1
T2

is commutative, because T1 and T2 ◦ Φ clearly agree on simple maps f : X → L1(ν). Hence

formula (1.51) is proved, as required. �

Lemma 1.3.22 (Easy version of Dunford-Pettis) Let (fn)n ⊆ L1(ν) be a sequence with

the following property: there exists g ∈ L1(ν) such that |fn| ≤ g holds ν-a.e. for every n ∈ N.

Then there exists a subsequence (nk)k and some function f ∈ L1(ν) such that fnk ⇀ f weakly

in L1(ν) and |f | ≤ g holds ν-a.e. in Y.
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Proof. For any k ∈ N, denote fkn := min
{

max{fn,−k}, k
}

and gk := min
{

max{g,−k}, k
}

.

The sequence (fkn)n is bounded in L2(ν) for any fixed k ∈ N, thus a diagonalisation argument

shows the existence of (ni)i and (hk)k ⊆ L2(ν) such that fkni ⇀ hk weakly in L2(ν) for all k.

In particular, fkni ⇀ hk weakly in L1(ν) for all k. Moreover, one can readily check that

|fkni − f
k′
ni | ≤ |gk − gk′ | holds ν-a.e. for every i, k, k′ ∈ N. (1.52)

By using (1.52), the lower semicontinuity of ‖ · ‖L1(ν) with respect to the weak topology and

the dominated convergence theorem, we then deduce that

ˆ
|hk − hk′ |dν ≤ lim

i→∞

ˆ
|fkni − f

k′
ni |dν ≤

ˆ
|gk − gk′ | dν

k,k′−→ 0, (1.53)

which grants that the sequence (hk)k ⊆ L1(ν) is Cauchy. Call f ∈ L1(ν) its limit. To prove

that fni ⇀ f weakly in L1(ν) as i→∞, observe that for any ` ∈ L∞(ν) it holds that

lim
i→∞

∣∣∣∣ˆ (fni − f) `dν

∣∣∣∣ ≤ lim
i→∞

[ˆ
|fni − fkni | |`|dν +

∣∣∣∣ˆ (fkni − hk) `dν

∣∣∣∣+

ˆ
|hk − f | |`| dν

]
≤
(
‖g − gk‖L1(ν) + ‖hk − f‖L1(ν)

)
‖`‖L∞(ν)

≤ 2 ‖g − gk‖L1(ν) ‖`‖L∞(ν)
k−→ 0,

where the second inequality stems from (1.52) and the third one from (1.53).

Finally, in order to prove the ν-a.e. inequality |f | ≤ g it is clearly sufficient to show that∣∣∣∣ˆ f ` dν

∣∣∣∣ ≤ ˆ
g `dν for every ` ∈ L∞(ν) with ` ≥ 0. (1.54)

Property (1.54) can be proved by noticing that for any non-negative ` ∈ L∞(ν) one has∣∣∣∣ ˆ f ` dν

∣∣∣∣ = lim
i→∞

∣∣∣∣ ˆ fni `dν

∣∣∣∣ ≤ lim
i→∞

ˆ
|fni | `dν ≤

ˆ
g ` dν.

Therefore the statement is achieved. �

Hereafter, we shall make use of the following shorthand notation:

L1 := L1
|[0,1]

and ∆ :=
{

(t, s) ∈ [0, 1]2 : s ≤ t
}
. (1.55)

Proposition 1.3.23 Let f : [0, 1]→ L1(ν) and g ∈ L1
(
L1;L1(ν)

)
be given. Suppose that

∣∣ft(y)− fs(y)
∣∣ ≤ ˆ t

s
gr(y) dr holds for ν-a.e. y ∈ Y, for every (t, s) ∈ ∆. (1.56)

Then f is absolutely continuous and L1-a.e. differentiable. Moreover, its derivative satisfies

|f ′t |(y) ≤ gt(y) for (L1 × ν)-a.e. (t, y) ∈ [0, 1]×Y. (1.57)



1.3. Bochner integral 35

Proof. By integrating (1.56), we get that ‖ft − fs‖L1(ν) ≤
´ t
s ‖gr‖L1(ν) dr for every (t, s) ∈ ∆.

This proves that t 7→ ft ∈ L1(ν) is AC, but in general this does not grant that t 7→ ft is a.e.

differentiable, cf. for instance Example 1.3.17. We thus proceed in the following way: let us

define gεt := 1
ε

´ t+ε
t gr dr for every ε > 0 and t ∈ [0, 1]. Observe that

‖gε· ‖L1(L1×ν) =

ˆ 1

0

ˆ
|gεt |(y) dν(y) dt ≤

ˆ 1

0

ˆ  t+ε

t
|gr|(y) dr dν(y) dt

≤
ˆ 1

0

ˆ
|gr|(y) dν(y) dr = ‖g·‖L1(L1×ν)

(1.58)

is satisfied for every ε > 0. Given any map h ∈ C
(
[0, 1], L1(ν)

)
, it clearly holds that hε· → h·

in L1(L1 × ν) as ε↘ 0. Therefore for any such h one has that

lim
ε↘0
‖gε − g‖L1(L1×ν) ≤ lim

ε↘0

[∥∥(g − h)ε
∥∥
L1(L1×ν)

+ ‖hε − h‖L1(L1×ν)

]
+ ‖h− g‖L1(L1×ν)

≤ 2 ‖g − h‖L1(L1×ν) + lim
ε↘0
‖hε − h‖L1(L1×ν)

= 2 ‖g − h‖L1(L1×ν),

where the second inequality follows from (1.58) and the third one from continuity of h. Given

that C
(
[0, 1], L1(ν)

)
is dense in L1

(
L1;L1(ν)

)
, we conclude that limε↘0 ‖gε − g‖L1(L1×ν) = 0.

In particular, there exists a sequence εn ↘ 0 and a function G ∈ L1(L1× ν) such that the

inequality gεn ≤ G holds (L1 × ν)-a.e. for every n ∈ N. This grants that∣∣∣∣ft+εn − ftεn

∣∣∣∣ ≤ 1

εn

ˆ t+εn

t
gr dr = gεnt ≤ Gt holds ν-a.e. for a.e. t ∈ [0, 1]. (1.59)

The bound in (1.59) allows us to apply Lemma 1.3.22: up to a not relabeled subsequence, we

have that (f·+εn − f·)/εn weakly converges in L1(L1 × ν) to some function f ′ ∈ L1(L1 × ν).

Moreover, simple computations yield
ˆ t

s

fr+εn − fr
εn

dr =

 t+εn

t
fr dr −

 s+εn

s
fr dr for every (t, s) ∈ ∆. (1.60)

The continuity of r 7→ fr ∈ L1(ν) grants that the right hand side in (1.60) converges to ft−fs
in L1(ν) as n→∞. On the other hand, for every ` ∈ L∞(ν) it holds that

ˆ
`(y)

( ˆ t

s

fr+εn − fr
εn

dr

)
(y) dν(y) =

ˆ
`(y)χ[s,t](r)︸ ︷︷ ︸
∈L∞(L1×ν)

fr+εn(y)− fr(y)

εn
d(L1 × ν)(r, y),

which in turn converges to
´
`(y)

( ´ t
s f
′
r dr

)
(y) dν(y) as n → ∞. In other words, we showed

that
´ t
s (fr+εn − fr)/εn dr ⇀

´ t
s f
′
r dr weakly in L1(ν). So by letting n→∞ in (1.60) we get

ˆ t

s
f ′r dr = ft − fs for every (t, s) ∈ ∆.

Therefore Proposition 1.3.18 implies that f ′t is the strong derivative in L1(ν) of the map

t 7→ ft for a.e. t ∈ [0, 1]. Finally, by recalling (1.56) we also conclude that (1.57) is verified.

�
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Lemma 1.3.24 Let h ∈ L1(0, 1) be given. Then h ∈ W 1,1(0, 1) if and only if there exists a

function g ∈ L1(0, 1) such that

ht − hs =

ˆ t

s
gr dr holds for L2-a.e. (t, s) ∈ ∆. (1.61)

Moreover, in such case it holds that h′ = g.

Proof. Necessity. Fix any family of convolution kernels ρε ∈ C∞c (R), i.e.
´
ρε(x) dx = 1,

the support of ρε is contained in (−ε, ε) and ρε ≥ 0. Let us define hε := h ∗ ρε for all ε > 0.

Recall that hε ∈ C∞c (R) and that (hε)′ = (h′)∗ρε. Choose a sequence εn ↘ 0 and a negligible

Borel set N ⊆ [0, 1] such that hεnt → ht as n→∞ for every t ∈ [0, 1] \N . Given that we have

the equality hεnt − hεns =
´ t
s (hεn)′r dr for every n ∈ N and (t, s) ∈ ∆, we can finally conclude

that ht − hs =
´ t
s h
′
r dr for L2-a.e. (t, s) ∈ ∆, proving (1.61) with g = h′.

Sufficiency. By Fubini theorem, we see that for a.e. ε > 0 it holds that ht+ε−ht =
´ t+ε
t gr dr

for a.e. t ∈ [0, 1]. In particular, there is a sequence εn ↘ 0 such that ht+εn − ht =
´ t+εn
t gr dr

for every n ∈ N and for a.e. t ∈ [0, 1]. Now fix ϕ ∈ C∞c (0, 1). Then

ˆ
ϕt−εn − ϕt

εn
ht dt =

ˆ
ht+εn − ht

εn
ϕt dt =

ˆ (  t+εn

t
gr dr

)
ϕt dt. (1.62)

By applying the dominated convergence theorem, we finally deduce by letting n→∞ in the

equation (1.62) that −
´
ϕ′t ht dt =

´
gt ϕt dt. Hence h ∈W 1,1(0, 1) and h′ = g. �

Bibliographical remarks

Much of the material of Section 1.1 can be found e.g. in the authoritative monograph [12].

The definitions and results about (absolutely) continuous curves presented in Section 1.2

are mostly taken from the book [13]; the above proof of Theorem 1.2.5 can be found in [3].

The results in Section 1.3 about the Bochner integral are taken from [15].



Chapter 2

Sobolev calculus on metric measure

spaces

Several different approaches to the theory of weakly differentiable functions over abstract

metric measure spaces made their appearance in the literature throughout the last twenty

years. Amongst them, we shall mainly follow the one (based upon the concept of test plan)

that has been proposed by Ambrosio, Gigli and Savaré. The whole Section 2.1 is devoted to

the definition of such notion of Sobolev space W 1,2(X) and to its most important properties.

Furthermore, in Section 2.2 we describe two alternative definitions of Sobolev space, which

are both completely equivalent to the previous one: the approach of Cheeger and that of

Shanmugalingam, discussed in Subsections 2.2.1 and 2.2.2 respectively. The former is obtained

via relaxation of the local Lipschitz constant, while the latter relies upon the potential-

theoretic notion of 2-modulus of curves.

2.1 Sobolev space via test plans

2.1.1 Test plans

Let (X, d,m) be a fixed metric measure space.

For every t ∈ [0, 1], we define the evaluation map at time t as follows:

et : C([0, 1],X) −→ X,

γ 7−→ γt.
(2.1)

It is clear that each map et is 1-Lipschitz.

In Subsection 2.1.2, a special role will be played by the class of Borel probability measures

that we are now going to describe: the so-called ‘test plans’.

Definition 2.1.1 (Test plan) A probability measure π ∈ P
(
C([0, 1],X)

)
is said to be a

test plan on X provided the following two properties are satisfied:

37
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i) There exists a constant C > 0 such that (et)∗π ≤ Cm for every t ∈ [0, 1].

ii) It holds that
´

KE(γ) dπ(γ) =
´ 1

0

´
|γ̇t|2 dπ(γ) dt < +∞.

The least constant C > 0 that can be chosen in i) is called compression constant of π and is

denoted by Comp(π).

It follows from ii) that test plans must be concentrated on absolutely continuous curves.

Example 2.1.2 Let us fix a measure µ ∈P(X) with µ ≤ Cm for some C > 0. Let us denote

by Const : X → C([0, 1],X) the function sending any point x ∈ X to the curve identically

equal to x. Then Const∗µ turns out to be a test plan on X. �

Example 2.1.3 Suppose to have a Borel map F : X × [0, 1] → X, called flow , with the

following properties: there exist two constants L,C > 0 such that

F·(x) : t 7→ Ft(x) is L-Lipschitz for every x ∈ X,

(Ft)∗m ≤ Cm for every t ∈ [0, 1].
(2.2)

The second requirement means, in a sense, that the mass is well-distributed by the flow F .

Now consider any measure µ ∈P(X) such that µ ≤ cm for some c > 0. Then

π := (F·)∗µ is a test plan on X. (2.3)

Its verification is straightforward: (et)∗π = (et)∗(F·)∗µ = (Ft)∗µ ≤ c (Ft)∗m ≤ cCm shows

the first property of test plans, while the fact that
∣∣ ˙Ft(x)

∣∣ ≤ L holds for every x ∈ X and

almost every t ∈ [0, 1] grants the second one. Therefore (2.3) is proved. �

Proposition 2.1.4 Let π be a test plan on X and p ∈ [1,∞). Then for every f ∈ Lp(m) the

map [0, 1] 3 t 7→ f ◦ et ∈ Lp(π) is continuous.

Proof. First of all, one has that
´
|f ◦et|p dπ ≤ Comp(π)

´
|f |p dm for every f ∈ Lp(m). Given

any g ∈ Cb(X) ∩ Lp(m), it holds that
∣∣g(γs)− g(γt)

∣∣p → 0 as s→ t for every γ ∈ C([0, 1],X)

and |g ◦ es − g ◦ et|p ≤ 2 ‖g‖pCb(X) ∈ L
∞(π), so that lims→t

´ ∣∣g ◦ es − g ◦ et
∣∣p dπ = 0 by the

dominated convergence theorem. This guarantees that

lim
s→t
‖f ◦ es − f ◦ et‖Lp(π) ≤ lim

s→t

[
‖f ◦ es − g ◦ es‖Lp(π) + ‖g ◦ et − f ◦ et‖Lp(π)

]
≤ 2 Comp(π)1/p ‖f − g‖Lp(m),

whence ‖f ◦ es − f ◦ et‖Lp(π) → 0 as s→ t by density of Cb(X) ∩ Lp(m) in Lp(m), which can

be proved by suitably adapting the proof of Proposition 1.1.18. �

Let t, s ∈ [0, 1] be fixed. Then we define the map Restrst : C([0, 1],X)→ C([0, 1],X) as

Restrst (γ)r := γ(1−r)t+rs for every γ ∈ C([0, 1],X) and r ∈ [0, 1]. (2.4)

We call Restrst the restriction operator between the times t and s.
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Exercise 2.1.5 Prove that the map Restrst is continuous. �

Lemma 2.1.6 Let π be a test plan on X. Then:

i) For any Γ ⊆ C([0, 1],X) Borel with π(Γ) > 0, it holds that π(Γ)−1 π|Γ is a test plan.

ii) For any t, s ∈ [0, 1], the measure (Restrst )∗π is a test plan on X.

Proof. In order to prove i), just observe that

(et)∗
(
π(Γ)−1 π|Γ

)
≤ π(Γ)−1 (et)∗π ≤ Comp(π)π(Γ)−1 m,ˆ 1

0

ˆ
|γ̇t|2 d

(
π(Γ)−1 π|Γ

)
(γ) dt = π(Γ)−1

ˆ 1

0

ˆ
Γ
|γ̇t|2 dπ(γ) dt < +∞.

To prove ii), notice that if γ ∈ C([0, 1],X) is absolutely continuous, then σ := Restrst (γ) is

absolutely continuous as well and satisfies |σ̇r| = |s− t||γ̇(1−r)t+rs| for a.e. r ∈ [0, 1]. Hence

(er)∗(Restr
s
t )∗π = (er ◦ Restrst )∗π = (e(1−r)t+rs)∗π ≤ Comp(π)m,ˆ 1

0

ˆ
|σ̇r|2 d

(
(Restrst )∗π

)
(σ) dr ≤ |s− t|

ˆ 1

0

ˆ
|γ̇r|2 dπ(γ) dr < +∞,

which concludes the proof of the statement. �

2.1.2 Definition of Sobolev space

The definition of Sobolev function (via test plans) is strongly inspired by the following fact:

Remark 2.1.7 Consider f ∈ C1(Rn) and G ∈ C(Rn). Then G ≥ |df | if and only if

∣∣f(γ1)− f(γ0)
∣∣ ≤ ˆ 1

0
G(γt)|γ′t| dt for every γ ∈ C1([0, 1],Rn). (2.5)

This means that the map |df | can be characterised, in a purely variational way, as the least

continuous function G : Rn → R for which (2.5) is satisfied. �

With the previous observation in mind, we can provide the following definition of Sobolev

function for general metric measure spaces (by relying upon the notion of test plan):

Definition 2.1.8 (Sobolev class) The Sobolev class S2(X) is defined as the space of all

Borel functions f : X → R that satisfy the following property: there exists a function G ∈
L2(m) with G ≥ 0 such that

ˆ ∣∣f(γ1)− f(γ0)
∣∣ dπ(γ) ≤

ˆ 1

0

ˆ
G(γt)|γ̇t| dπ(γ) dt for every test plan π on X. (2.6)

Any such G is said to be a weak upper gradient for f .
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Remark 2.1.9 In giving Definition 2.1.8 we implicitly used the fact that

C([0, 1],X)× [0, 1] 3 (γ, t) 7−→ G(γt)|γ̇t| is Borel. (2.7)

The map e : C([0, 1],X)× [0, 1]→ X sending (γ, t) to γt can be easily seen to be continuous,

whence G ◦ e is Borel. Since the map in (2.7) is nothing but G ◦ ems – where ms is has been

defined and proven to be Borel in Remark 1.2.6 – we conclude that (2.7) is satisfied. �

Remark 2.1.10 We claim that

f ◦ e1 − f ◦ e0 ∈ L1(π) for every f ∈ S2(X). (2.8)

In order to prove (2.8), by (2.6) it suffices to notice that the Hölder inequality gives( ˆ 1

0

ˆ
G(γt)|γ̇t|π(γ) dt

)2

≤
(ˆ 1

0

ˆ
G2 ◦ et dπ dt

)( ˆ 1

0

ˆ
|γ̇t|2 π(γ) dt

)
≤ Comp(π) ‖G‖2L2(m)

ˆ 1

0

ˆ
|γ̇t|2 dπ(γ) dt < +∞.

In particular,

the map L2(m) 3 G 7→
ˆ 1

0

ˆ
G(γt)|γ̇t|dπ(γ) dt is linear and continuous. (2.9)

�

Proposition 2.1.11 Let f ∈ S2(X) be fixed. Then the set of all weak upper gradients of f

is closed and convex in L2(m). In particular, there exists a unique weak upper gradient of f

having minimal L2(m)-norm.

Proof. Convexity is trivial. To prove closedness, fix a sequence (Gn)n ⊆ L2(m) of weak upper

gradients of f that L2(m)-converges to some G ∈ L2(m). Hence (2.9) grants that

ˆ ∣∣f(γ1)− f(γ0)
∣∣dπ(γ) ≤

ˆ 1

0

ˆ
Gn(γt)|γ̇t|dπ(γ) dt

n−→
ˆ 1

0

ˆ
G(γt)|γ̇t| dπ(γ) dt,

proving that G is a weak upper gradient of f . Hence the set of weak upper gradients of f is

closed. Since L2(m) is Hilbert, even the last statement follows. �

Definition 2.1.12 (Minimal weak upper gradient) Let f ∈ S2(X). Then the unique

weak upper gradient of f having minimal norm is called minimal weak upper gradient of f

and is denoted by |Df | ∈ L2(m).

An important property of weak upper gradients is given by their lower semicontinuity:

Proposition 2.1.13 Let the sequence (fn)n ⊆ S2(X) satisfy fn(x) → f(x) for a.e. x ∈ X,

for some Borel map f : X → R. Let Gn ∈ L2(m) be a weak upper gradient of fn for every

n ∈ N. Suppose that Gn ⇀ G weakly in L2(m), for some G ∈ L2(m). Then f ∈ S2(X) and G

is a weak upper gradient of f .
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Proof. First of all, it holds that fn(γ1) − fn(γ0)
n→ f(γ1) − f(γ0) for π-a.e. γ. Moreover,

the map sending H ∈ L2(m) to
´ 1

0

´
H(γt)|γ̇t| dπ(γ) dt is strongly continuous and linear by

Remark 2.1.10, thus it is also weakly continuous. Hence Fatou’s lemma yields

ˆ ∣∣f(γ1)− f(γ0)
∣∣dπ(γ) ≤ lim

n→∞

ˆ ∣∣fn(γ1)− f(γ0)
∣∣ dπ(γ) ≤ lim

n→∞

ˆ 1

0

ˆ
Gn(γt)|γ̇t|dπ(γ) dt

=

ˆ 1

0

ˆ
G(γt)|γ̇t|dπ(γ) dt,

which shows that f ∈ S2(X) and that G is a weak upper gradient for f . �

Exercise 2.1.14 Given a metric space (X, d) and α ∈ (0, 1), we set the distance dα on X as

dα(x, y) := d(x, y)α for every x, y ∈ X.

Prove that the metric space (X, dα), which is called the snowflaking of (X, d), has the following

property: if a curve γ is dα-absolutely continuous, then it is constant.

Now consider any Borel measure m on (X, d). Since d and dα induce the same topology

on X, we have that m is also a Borel measure on (X, dα). Prove that any Borel map on X

belongs to S2(X, dα,m) and has null minimal weak upper gradient. �

Those elements of the Sobolev class S2(X) that are also 2-integrable constitute the Sobolev

space W 1,2(X), which comes with a natural Banach space structure:

Definition 2.1.15 (Sobolev space) We define the Sobolev space W 1,2(X) associated to

the metric measure space (X, d,m) as W 1,2(X) := L2(m) ∩ S2(X). Moreover, we define

‖f‖W 1,2(X) :=
√
‖f‖2L2(m) +

∥∥|Df |∥∥2

L2(m)
for every f ∈W 1,2(X). (2.10)

Remark 2.1.16 It is trivial to check that∣∣D(λf)
∣∣ = |λ||Df | for every f ∈ S2(X) and λ ∈ R,∣∣D(f + g)

∣∣ ≤ |Df |+ |Dg| for every f, g ∈ S2(X).
(2.11)

In particular, S2(X) is a vector space, so accordingly W 1,2(X) is a vector space as well. �

Theorem 2.1.17 The space
(
W 1,2(X), ‖ · ‖W 1,2(X)

)
is a Banach space.

Proof. First of all, we claim that S2(X) 3 f 7→
∥∥|Df |∥∥

L2(m)
∈ R is a seminorm: this follows

by taking the L2(m)-norm in (2.11). Then also ‖ · ‖W 1,2(X) is a seminorm. Actually, it is a

norm because ‖f‖W 1,2(X) = 0 implies ‖f‖L2(m) = 0 and accordingly f = 0. It thus remains

to show that W 1,2(X) is complete. To this aim, fix a Cauchy sequence (fn)n ⊆ W 1,2(X). In

particular, such sequence is L2(m)-Cauchy, so that it has an L2(m)-limit f . Moreover, the

sequence
(
|Dfn|

)
n

is bounded in L2(m). Hence there exists a subsequence (fnk)k such that

|Dfnk |⇀ G weakly in L2(m), for some G ∈ L2(m),

fnk(x)
k−→ f(x) for m-a.e. x ∈ X.

(2.12)
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Then Proposition 2.1.13 grants that f ∈W 1,2(X) and that G is a weak upper gradient for f .

Finally, with a similar argument we get
∥∥|D(fnk − f)|

∥∥
L2(m)

≤ limm

∥∥|D(fnk − fnm)|
∥∥
L2(m)

for every k ∈ N. By recalling that (fn)n is W 1,2(X)-Cauchy, we thus conclude that

lim
k→∞

∥∥|D(fnk − f)|
∥∥
L2(m)

≤ lim
k→∞

lim
m→∞

∥∥|D(fnk − fnm)|
∥∥
L2(m)

= 0,

proving that fnk → f in W 1,2(X), which in turn grants that fn → f in W 1,2(X). �

Remark 2.1.18 In general, W 1,2(X) is not a Hilbert space. For instance, W 1,2(Rn, d,Ln) is

not Hilbert for any distance d induced by a norm not coming from a scalar product. �

Proposition 2.1.19 Let (fn)n ⊆ S2(X) be given. Suppose that there exists f : X→ R Borel

such that f(x) = limn fn(x) for m-a.e. x ∈ X. Then
∥∥|Df |∥∥

L2(m)
≤ limn

∥∥|Dfn|∥∥L2(m)
, where

we adopt the convention that
∥∥|Df |∥∥

L2(m)
:= +∞ whenever f /∈ S2(X).

In particular, if a sequence (gn)n ⊆W 1,2(X) is L2(m)-converging to some limit g ∈ L2(m),

then it holds that
∥∥|Dg|∥∥

L2(m)
≤ limn

∥∥|Dgn|∥∥L2(m)
.

Proof. The case limn

∥∥|Dfn|∥∥L2(m)
= +∞ is trivial, then assume that such liminf is finite. Up

to subsequence, we can also assume that such liminf is actually a limit. This grants that the

sequence
(
|Dfn|

)
n

is bounded in L2(m), thus (up to subsequence) we have that |Dfn| ⇀ G

weakly in L2(m) for some G ∈ L2(m). Hence Proposition 2.1.13 grants that f ∈ S2(X) and G

is a weak upper gradient for f , so that
∥∥|Df |∥∥

L2(m)
≤ ‖G‖L2(m) ≤ limn

∥∥|Dfn|∥∥L2(m)
.

For the last assertion, first take a subsequence such that limn

∥∥|Dgn|∥∥L2(m)
is actually a

limit and then note that there is a further subsequence (gnk)k such that g(x) = limk gnk(x)

holds for m-a.e. x ∈ X. To conclude, apply the first part of the statement. �

Proposition 2.1.20 Let f ∈ S2(X) be given. Consider a weak upper gradient G ∈ L2(m) of

f . Then for every test plan π on X and for every t, s ∈ [0, 1] with s < t it holds that

∣∣f(γt)− f(γs)
∣∣ ≤ ˆ t

s
G(γr)|γ̇r| dr for π-a.e. γ ∈ C([0, 1],X). (2.13)

Proof. We argue by contradiction: suppose the existence of t, s ∈ [0, 1] with s < t and of a

Borel set Γ ⊆ C([0, 1],X) with π(Γ) > 0 such that
∣∣f(γt)− f(γs)

∣∣ > ´ t
s G(γr)|γ̇r|dr holds for

every γ ∈ Γ. Lemma 2.1.6 grants that the measure π̃ := (Restrts)∗
(
π(Γ)−1 π|Γ

)
is a test plan

on X, thus accordingly

π(Γ)−1

ˆ
Γ

∣∣f(γt)− f(γs)
∣∣dπ(γ) =

ˆ ∣∣f(σ1)− f(σ0)
∣∣ dπ̃(σ) ≤

ˆ 1

0

ˆ
G(σr)|σ̇r|dπ̃(σ) dr

= π(Γ)−1

ˆ t

s

ˆ
Γ
G(γr)|γ̇r| dπ(γ) dr,

which leads to a contradiction. Therefore the statement is achieved. �
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We are in a position to prove some alternative characterisations of weak upper gradients:

Theorem 2.1.21 Let (X, d,m) be a metric measure space as in (1.21). Let us fix a Borel

function f : X→ R. Let G ∈ L2(m) satisfy G ≥ 0 m-a.e.. Then the following are equivalent:

i) f ∈ S2(X) and G is a weak upper gradient of f .

ii) For any test plan π, we have that t 7→ f ◦ et − f ◦ e0 ∈ L1(π) is AC. For a.e. t ∈ [0, 1],

there exists the strong L1(π)-limit of (f ◦ et+h− f ◦ et)/h as h→ 0. Such limit, denoted

by Derπ(f)t ∈ L1(π), satisfies
∣∣Derπ(f)t

∣∣(γ) ≤ G(γt)|γ̇t| for (π × L1)-a.e. (γ, t).

iii) For every test plan π, we have for π-a.e. γ that f ◦ γ belongs to W 1,1(0, 1) and that the

inequality
∣∣(f ◦ γ)′t

∣∣ ≤ G(γt)|γ̇t| holds for a.e. t ∈ [0, 1].

If the above hold, then the equality Derπ(f)t(γ) = (f ◦ γ)′t is verified for (π × L1)-a.e. (γ, t).

Proof. The proof goes as follows:

i) =⇒ ii) We have that
∣∣f(γt)− f(γs)

∣∣ ≤ ´ t
s G(γr)|γ̇r| dr is satisfied for every (t, s) ∈ ∆ and

for π-a.e. γ by Proposition 2.1.20. Since the map (γ, t) 7→ G(γt)|γ̇t| belongs to L1(π × L1)

by Remark 2.1.10 and Remark 1.2.6, we obtain ii) by applying Proposition 1.3.23.

ii) =⇒ iii) By Fubini’s theorem, one has for π-a.e. γ that f(γt)− f(γs) =
´ t
s Derπ(f)r(γ) dr

holds for L2-a.e. (t, s) ∈ ∆, whence iii) stems from Lemma 1.3.24. Further, for π-a.e. γ we

have

ˆ t

s
(f ◦ γ)′r dr = f(γt)− f(γs) =

ˆ t

s
Derπ(f)r(γ) dr for L2-a.e. (t, s) ∈ ∆,

which in turn implies the last statement of the theorem.

iii) =⇒ i) Fix a test plan π on X. Choose a point x̄ ∈ X and a sequence of 1-Lipschitz

functions (ηn)n ⊆ Cb(X) such that ηn = 1 on Bn(x̄) and spt(ηn) ⊆ Bn+2(x̄). Let us define

fmn := ηn min
{

max{f,−m},m
}

for every m,n ∈ N.

Fix m,n ∈ N. Notice that fmn ◦ γ ∈ W 1,1(0, 1) for π-a.e. γ, so that Lemma 1.3.24 implies

that

ˆ ∣∣fmn(γt)− fmn(γs)
∣∣dπ(γ) ≤

ˆˆ t

s

∣∣(fmn ◦ γ)′r
∣∣dr dπ(γ) for L2-a.e. (t, s) ∈ ∆. (2.14)

The right hand side in (2.14) is clearly continuous in (t, s). Since fmn ∈ L1(m), we deduce

from Proposition 2.1.4 that also the left hand side is continuous in (t, s), thus in particular

ˆ ∣∣fmn(γ1)− fmn(γ0)
∣∣dπ(γ) ≤

ˆˆ 1

0

∣∣(fmn ◦ γ)′t
∣∣ dt dπ(γ). (2.15)
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Moreover,
∣∣(fmn ◦ γ)′t

∣∣ ≤ m |γ̇t|χBn(x̄)c(γt) +
∣∣(f ◦ γ)′t

∣∣ is satisfied for (π ×L1)-a.e. (γ, t) as a

consequence of the Leibniz rule, whence
ˆ ∣∣f(γ1)− f(γ0)

∣∣ dπ(γ) ≤ lim
m→∞

lim
n→∞

ˆ ∣∣fmn(γ1)− fmn(γ0)
∣∣dπ(γ)

≤ lim
m→∞

lim
n→∞

ˆˆ 1

0

[
m |γ̇t|χBn(x̄)c(γt) +

∣∣(f ◦ γ)′t
∣∣]dtdπ(γ)

= lim
m→∞

ˆˆ 1

0

∣∣(f ◦ γ)′t
∣∣ dt dπ(γ) ≤

ˆˆ 1

0
G(γt)|γ̇t| dt dπ(γ),

where the first line follows from Fatou lemma, the second one from (2.15) and the third one

from the dominated convergence theorem. Therefore i) is proved. �

Remark 2.1.22 To be more precise, the last statement in Theorem 2.1.21 should be stated

as follows: we can choose a Borel representative F ∈ L1(L1 × π) of t 7→ Derπ(f)t ∈ L1(π) in

the sense of Proposition 1.3.19, since such map belongs to L1
(
L1;L1(π)

)
by ii). Analogously,

we can choose a Borel representative F̃ ∈ L1(π×L1) of γ 7→
(
t 7→ (f ◦ γ)′t ∈ L1(0, 1)

)
, which

belongs to L1
(
π;L1(L1)

)
by iii). Then F (t, γ) = F̃ (γ, t) holds for (π × L1)-a.e. (γ, t). �

We point out some consequences of Theorem 2.1.21:

Proposition 2.1.23 Let f ∈ S2(X) be given. Consider two weak upper gradients G1, G2 ∈
L2(m) of f . Then G1 ∧G2 is a weak upper gradient of f .

Proof. By point ii) of Theorem 2.1.21 we have
∣∣Derπ(f)t

∣∣(γ) ≤ Gi(γt)|γ̇t| for i = 1, 2 and

for (π × L1)-a.e. (γ, t), thus also
∣∣Derπ(f)t

∣∣(γ) ≤ (G1 ∧ G2)(γt)|γ̇t| for (π × L1)-a.e. (γ, t).

Therefore G1 ∧G2 is a weak upper gradient of f , again by Theorem 2.1.21. �

Corollary 2.1.24 Let f ∈ S2(X) be given. Let G ∈ L2(m) be a weak upper gradient of f .

Then it m-a.e. holds that |Df | ≤ G. In other words, |Df | is minimal also in the m-a.e. sense.

Proof. We argue by contradiction: suppose that there exists a weak upper gradient G of f

such that m
({
G < |Df |

})
> 0. Hence the function G ∧ |Df |, which has an L2(m)-norm that

is strictly smaller than
∥∥|Df |∥∥

L2(m)
, is a weak upper gradient of f by Proposition 2.1.23. This

leads to a contradiction, thus proving the statement. �

Given any f ∈ LIP(X), we define the local Lipschitz constant lip(f) : X→ [0,+∞) as

lip(f)(x) := lim
y→x

∣∣f(y)− f(x)
∣∣

d(y, x)
if x ∈ X is an accumulation point (2.16)

and lip(f)(x) := 0 otherwise.

Remark 2.1.25 Given a Lipschitz function f ∈ LIP(X) and an AC curve γ : [0, 1] → X, it

holds that t 7→ f(γt) ∈ R is AC and satisfies∣∣(f ◦ γ)′t
∣∣ ≤ lip(f)(γt) |γ̇t| for a.e. t ∈ [0, 1]. (2.17)
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Indeed, to check that f ◦ γ is AC simply notice that
∣∣f(γt)− f(γs)

∣∣ ≤ Lip(f)
´ t
s |γ̇r|dr holds

for any t, s ∈ [0, 1] with s ≤ t. Now fix t ∈ [0, 1] such that both (f ◦ γ)′t and |γ̇t| exist (which

holds for a.e. t). If γ is constant in some neighbourhood of t, then (2.17) is trivially verified

(since the left hand side is null). In the remaining case, we have that

(f ◦γ)′t = lim
h→0

∣∣(f ◦ γ)t+h − (f ◦ γ)t
∣∣

|h|
≤ lim

h→0

∣∣f(γt+h)− f(γt)
∣∣

d(γt+h, γt)
lim
h→0

d(γt+h, γt)

|h|
≤ lip(f)(γt) |γ̇t|,

thus obtaining (2.17). �

Proposition 2.1.26 Let f ∈ LIPbs(X) be given. Then f ∈ S2(X) and |Df | ≤ lip(f) ≤ Lip(f)

holds m-a.e. in X.

Proof. For any AC curve γ, we have that
∣∣f(γ1)− f(γ0)

∣∣ ≤ ´ 1
0 lip(f)(γt) |γ̇t|dt by (2.17). By

integrating such inequality with respect to any test plan π, we get the statement. �

We conclude the present subsection by proving that the Sobolev spaceW 1,2(X) is separable

whenever it is reflexive:

Theorem 2.1.27 Let (X, d,m) be a metric measure space. Suppose that W 1,2(X) is reflexive.

Then W 1,2(X) is separable.

Proof. Apply Lemma A.1 to E1 = W 1,2(X), E2 = L2(m) and i the inclusion E1 ↪→ E2. �

2.1.3 Calculus rules

Minimal weak upper gradients satisfy the following calculus rules:

Theorem 2.1.28 The following properties hold:

A) Locality. Let f, g ∈ S2(X) be given. Then |Df | = |Dg| holds m-a.e. in {f = g}.

B) Chain rule. Let f ∈ S2(X) be given.

B1) If a Borel set N ⊆ R is L1-negligible, then |Df | = 0 holds m-a.e. in f−1(N).

B2) If ϕ : R→ R is a Lipschitz function, then ϕ◦f ∈ S2(X) and |D(ϕ◦f)| = |ϕ′|◦f |Df |
holds m-a.e., where |ϕ′| ◦ f is arbitrarily defined on f−1

({
t ∈ R : @ϕ′(t)

})
.

C) Leibniz rule. Let f, g ∈ S2(X) ∩ L∞(m) be given. Then fg ∈ S2(X) ∩ L∞(m) and the

inequality |D(fg)| ≤ |f ||Dg|+ |g||Df | holds m-a.e. in X.

Proof. We divide the proof into several steps:

Step 1. First of all, we claim that

f ∈ S2(X), ϕ ∈ LIP(R) =⇒ ϕ ◦ f ∈ S2(X), |D(ϕ ◦ f)| ≤ Lip(ϕ)|Df | m-a.e.. (2.18)

Indeed, the inequality
´ ∣∣(ϕ ◦ f)(γ1) − (ϕ ◦ f)(γ0)

∣∣ dπ(γ) ≤ Lip(ϕ)
´´ 1

0 |Df |(γt)|γ̇t| dt dπ(γ)

holds for any test plan π, thus proving (2.18).
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Step 2. Given h ∈W 1,1(0, 1) and ϕ ∈ C1(R) ∩ LIP(R), we have that ϕ ◦ h ∈W 1,1(0, 1) and

that (ϕ ◦ h)′ = ϕ′ ◦ hh′ holds a.e. in (0, 1). In order to prove it, call hε := h ∗ ρε for all ε > 0,

notice that (ϕ ◦ hε)′ = ϕ′ ◦ hε h′ε because hε is smooth and finally pass to the limit as ε↘ 0.

Step 3. We now claim that

f ∈ S2(X), ϕ ∈ C1(R) ∩ LIP(R) =⇒
∣∣D(ϕ ◦ f)

∣∣ ≤ |ϕ′| ◦ f |Df | m-a.e.. (2.19)

To prove it: fix a test plan π. For π-a.e. γ, it holds that t 7→ f(γt) belongs to W 1,1(0, 1) and

that
∣∣(f ◦ γ)′t

∣∣ ≤ |Df |(γt)|γ̇t| for a.e. t ∈ [0, 1], by Theorem 2.1.21. Hence Step 2 grants that

the function t 7→ (ϕ ◦ f)(γt) is in W 1,1(0, 1) and satisfies∣∣(ϕ ◦ f ◦ γ)′t
∣∣ ≤ (|ϕ′| ◦ f)(γt) ∣∣(f ◦ γ)′t

∣∣ ≤ (|ϕ′| ◦ f)(γt) |Df |(γt) |γ̇t| for a.e. t ∈ [0, 1],

whence |D(ϕ ◦ f)| ≤ |ϕ′| ◦ f |Df | holds m-a.e. by Theorem 2.1.21, thus proving (2.19).

Step 4. We want to show that

f ∈ S2(X), K ⊆ R compact with L1(K) = 0 =⇒ |Df | = 0 m-a.e. in f−1(K). (2.20)

For any n ∈ N, let us call ψn := n d(·,K) ∧ 1. Since the L1-measure of the ε-neighbourhood

of K converges to 0 as ε↘ 0, we deduce that L1
(
{ψn < 1}

)
→ 0 as n→∞. Now call ϕn the

primitive of ψn equal to 0 in 0. Given that ψn is continuous and bounded, we have that ϕn is

C1 and Lipschitz. Moreover, it holds that ϕn uniformly converges to idR as n→∞, because∣∣ϕn(t)− t
∣∣ ≤ ˆ t

0

∣∣ψn(s)− 1
∣∣ ds ≤ L1

(
{ψn < 1}

) n−→ 0.

In particular ϕn ◦ f → f pointwise m-a.e., whence Proposition 2.1.19 gives

ˆ
|Df |2 dm ≤ lim

n→∞

ˆ
|D(ϕn ◦ f)|2 dm

(2.19)

≤ lim
n→∞

ˆ
|ϕ′n|2 ◦ f |Df |2 dm ≤

ˆ
X\f−1(K)

|Df |2 dm,

where in the last inequality we used the facts that |ϕ′n| ≤ ‖ψn‖L∞(R) = 1 and that ϕ′n = ψn = 0

on K. This forces |Df | to be m-a.e. null in the set f−1(K), obtaining (2.20).

Step 5. We now use Step 4 to prove B1). Take f ∈ S2(X) and N ⊆ R Borel with L1(N) = 0.

There exists a measure m̃ ∈P(X) such that m� m̃� m, in other words having exactly the

same negligible sets as m. For instance, choose any Borel partition (Bn)n≥1 of the space X

such that 0 < m(Bn) < +∞ for every n ∈ N and define

m̃ :=

∞∑
n=1

1

2nm(Bn)
m|Bn .

Now let us call µ := f∗m̃. Since m̃ is finite, we have that µ is a Radon measure on R, in

particular µ is inner regular. Then there exists a sequence (Kn)n of compact subsets of N

such that µ
(
N \

⋃
nKn

)
= 0, or equivalently m

(
f−1

(
N \

⋃
nKn

))
= 0. Given that |Df | = 0 is

verified m-a.e. in
⋃
n f
−1(Kn) = f−1

(⋃
nKn

)
by (2.20), we thus conclude that B1) is satisfied.

Step 6. We claim that

f ∈ S2(X), ϕ ∈ LIP(R) =⇒ |D(ϕ ◦ f)| ≤ |ϕ′| ◦ f |Df | m-a.e.. (2.21)
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To prove it, call ϕn := ϕ ∗ ρ1/n. Up to a not relabeled subsequence, we have that ϕn → ϕ

pointwise and ϕ′n → ϕ′ L1-a.e.. Let us denote by N the (L1-negligible) set of t ∈ R such that

either ϕ is not differentiable at t, or limn ϕ
′
n(t) does not exist, or ϕ′(t) and limn ϕ

′
n(t) exist but

are different. We know that |D(ϕn ◦ f)| ≤ |ϕ′n| ◦ f |Df | holds m-a.e. for all n ∈ N by (2.19).

Given that the inequality |ϕ′n| ◦ f |Df | ≤ Lip(ϕ)|Df | is satisfied m-a.e. for all n, we can thus

deduce that |ϕ′n|◦f |Df | → |ϕ′|◦f |Df | in L2(m) by B1) and dominated convergence theorem.

Moreover, one has that ϕn ◦ f → ϕ ◦ f in the m-a.e. sense, whence |D(ϕ ◦ f)| ≤ |ϕ′| ◦ f |Df |
holds m-a.e. by Proposition 2.1.13 and Corollary 2.1.24. This proves the claim (2.21).

Step 7. We now deduce property B2) from (2.21). Suppose wlog that Lip(ϕ) = 1. Let us

define ψ±(t) := ±t− ϕ(t) for every t ∈ R. Then m-a.e. in the set f−1
(
{±ϕ′ ≥ 0}

)
we have

|Df | =
∣∣D(±f)

∣∣ ≤ ∣∣D(ϕ ◦ f)
∣∣+
∣∣D(ψ± ◦ f

)
| ≤

(
|ϕ′| ◦ f + |(ψ±)′| ◦ f

)
|Df | = |Df |,

which forces |D(ϕ ◦ f)| = ±ϕ′ ◦ f |Df | to hold m-a.e. in f−1
(
{±ϕ′ ≥ 0}

)
, which is B2).

Step 8. Property A) readily follows from B1): if h := f − g then
∣∣|Df | − |Dg|∣∣ ≤ |Dh| = 0

holds m-a.e. in h−1({0}) = {f = g} by B1).

Step 9. We conclude by proving item C). Given two functions h1, h2 ∈ W 1,1(0, 1), we have

that h1h2 ∈W 1,1(0, 1) and (h1h2)′ = h′1h2 + h1h
′
2. Now fix f, g ∈ S2(X)∩L∞(m). Given any

test plan π, we have for π-a.e. γ that f ◦ γ, g ◦ γ ∈W 1,1(0, 1), so that (fg) ◦ γ ∈W 1,1(0, 1) as

well. Further,
∣∣(f ◦ γ)′t

∣∣ ≤ |Df |(γt)|γ̇t| and
∣∣(g ◦ γ)′t

∣∣ ≤ |Dg|(γt)|γ̇t| for a.e. t ∈ [0, 1], whence∣∣((fg) ◦ γ
)′
t

∣∣ ≤ |f |(γt) ∣∣(g ◦ γ)′t
∣∣+ |g|(γt)

∣∣(f ◦ γ)′t
∣∣ ≤ [|f ||Dg|+ |g||Df |]︸ ︷︷ ︸

∈L2(m)

(γt) |γ̇t|

is satisfied for a.e. t ∈ [0, 1]. Therefore fg ∈ S2(X) and |f ||Dg| + |g||Df | is a weak upper

gradient of fg by Theorem 2.1.21, thus proving C). �

Remark 2.1.29 We present an alternative proof of property C) of Theorem 2.1.28:

First of all, suppose that f, g ≥ c for some constant c > 1. Note that the function log is

Lipschitz in [c,+∞), then choose any Lipschitz function ϕ : R → R that coincides with log

in [c,+∞). Now call C := log
(
‖fg‖L∞(m)

)
and choose a Lipschitz function ψ : R → R such

that ψ = exp in the interval
[

log(c2), C
]
. By applying property B2) of Theorem 2.1.28, we

see that ϕ ◦ (fg) = log(fg) = log(f) + log(g) = ϕ ◦ f +ϕ ◦ g belongs to S2(X) and accordingly

that fg = exp
(

log(fg)
)

= ψ ◦ ϕ ◦ (fg) ∈ S2(X). Furthermore, again by B2) we deduce that

|D(fg)| = |ψ′| ◦ ϕ ◦ (fg)
∣∣D(ϕ ◦ (fg)

)∣∣ ≤ |fg| [∣∣D log(f)
∣∣+
∣∣D log(g)

∣∣]
= |fg|

[
|Df |
|f |

+
|Dg|
|g|

]
= |f ||Dg|+ |g||Df | m-a.e. in X.

Now consider the case of general f, g ∈ S2(X) ∩ L∞(m). For any n ∈ N and i ∈ Z, let

us denote Ini :=
[
i
n ,

i+1
n

[
. Call ϕni the continuous function that is the identity on Ini and

constant elsewhere. Let us define

fni := f − i− 1

n
, f̃ni := ϕni ◦ f −

i− 1

n
,

gnj := g − j − 1

n
, g̃nj := ϕnj ◦ g −

j − 1

n
.
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Notice that fni = f̃ni and gnj = g̃nj hold m-a.e. in f−1(Ini) and g−1(Inj), respectively. Then

the equalities |Dfni| = |Df̃ni| = |Df | and |Dgnj | = |Dg̃nj | = |Dg| hold m-a.e. in f−1(Ini)

and in g−1(Inj), respectively. We also have that
∣∣D(fni gnj)

∣∣ =
∣∣D(f̃ni g̃nj)

∣∣ is verified m-a.e.

in f−1(Ini) ∩ g−1(Inj). Moreover, we have that 1/n ≤ f̃ni, g̃nj ≤ 2/n hold m-a.e.. Therefore

∣∣D(fg)
∣∣ ≤ ∣∣D(fni gnj)

∣∣+
|i− 1|
n
|Dgnj |+

|j − 1|
n
|Dfni|

≤ |g̃nj ||Df̃ni|+ |f̃ni||Dg̃nj |+
|i− 1|
n
|Dgnj |+

|j − 1|
n
|Dfni|

≤ |Df |
(
|g|+ 4

n

)
+ |Dg|

(
|f |+ 4

n

)
m-a.e. in f−1(Ini) ∩ g−1(Inj),

where the second inequality follows from the case f, g ≥ c > 0 treated above. This implies

that the inequality
∣∣D(fg)

∣∣ ≤ |f ||Dg|+ |g||Df |+ 4
(
|Df |+ |Dg|

)
/n holds m-a.e. in X. Given

that n ∈ N is arbitrary, the Leibniz rule follows. �

Remark 2.1.30 Property C) of Theorem 2.1.28 can be easily seen to hold for every f ∈
W 1,2(X) and g ∈ LIPb(X). �

2.1.4 Local Sobolev space

We can now introduce the local Sobolev class associated to (X, d,m):

Definition 2.1.31 We define S2
loc(X) as the set of all Borel functions f : X → R with the

following property: for any bounded Borel set B ⊆ X, there exists a function fB ∈ S2(X) such

that fB = f holds m-a.e. in B. Given any f ∈ S2
loc(X), we define the function |Df | as

|Df | := |DfB| m-a.e. in B,
for any bounded Borel set B ⊆ X and for

any fB ∈ S2(X) with fB = f m-a.e. in B.
(2.22)

The well-posedness of definition (2.22) stems from the locality property of minimal weak

upper gradients, which has been proved in Theorem 2.1.28.

We define L2
loc(X) as the space of all Borel functions g : X→ R such that g|B ∈ L

2(m) for

every bounded Borel subset B of X. It is then clear that |Df | ∈ L2
loc(X) for any f ∈ S2

loc(X).

Proposition 2.1.32 (Alternative characterisation of S2
loc(X), pt. 1) Let f ∈ S2

loc(X)

be given. Then it holds that

ˆ ∣∣f(γ1)− f(γ0)
∣∣dπ(γ) ≤

ˆˆ 1

0
|Df |(γt)|γ̇t|dt dπ(γ) for every π test plan. (2.23)

Proof. Fix a test plan π and a point x̄ ∈ X. For any n ∈ N, let us define

Γn :=

{
γ : [0, 1]→ X AC

∣∣∣∣ d(γ0, x̄) ≤ n and

ˆ 1

0
|γ̇t|2 dt ≤ n

}
,
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which turns out to be a closed subset of C([0, 1],X). It is clear that π
(⋃

n Γn
)

= 1. Now let

us call πn := π(Γn)−1 π|Γn for every n ∈ N such that π(Γn) > 0. For πn-a.e. γ it holds that

d(γt, x̄) ≤
ˆ t

0
|γ̇s| ds+ d(γ0, x̄) ≤

(ˆ 1

0
|γ̇s|2 ds

)1/2

+ n ≤
√
n+ n for every t ∈ [0, 1].

Denote by Bn the open ball of radius
√
n+n+1 centered at x̄ and take any function fn ∈ S2(X)

such that fn = f holds m-a.e. in Bn. Therefore for πn-a.e. curve γ one has that∣∣f(γ1)− f(γ0)
∣∣ =

∣∣fn(γ1)− fn(γ0)
∣∣ ≤ ˆ 1

0
|Dfn|(γt)|γ̇t|dt =

ˆ 1

0
|Df |(γt)|γ̇t| dt,

whence (2.23) follows by arbitrariness of n. �

Let us fix some notation: given a Polish space X and a (signed) Borel measure µ on X,

we define the support of µ as

spt(µ) :=
⋂{

C ⊆ X closed : µ+(X \ C) = µ−(X \ C) = 0
}
. (2.24)

Clearly spt(µ) is a closed subset of X by construction.

Remark 2.1.33 We point out that

µ|X\spt(µ)
= 0. (2.25)

Indeed, since X is a Lindelöf space (as it is separable), we can choose a sequence (Un)n of

open sets such that
⋃
n Un =

⋃{
X \ C : C closed, |µ|(X \ C) = 0

}
, whence

|µ|
(
X \ spt(µ)

)
= |µ|

(⋃
n

Un

)
≤
∑
n

|µ|(Un) = 0,

which is equivalent to (2.25). �

We can now prove the converse of Proposition 2.1.32 under the additional assumption

that the function f belongs to the space L2
loc(X):

Proposition 2.1.34 (Alternative characterisation of S2
loc(X), pt. 2) Let f ∈ L2

loc(X)

be a given function. Suppose that G ∈ L2
loc(X) is a non-negative function satisfying

ˆ ∣∣f(γ1)− f(γ0)
∣∣ dπ(γ) ≤

ˆˆ 1

0
G(γt)|γ̇t| dt dπ(γ) for every π test plan. (2.26)

Then f ∈ S2
loc(X) and |Df | ≤ G holds m-a.e. in X.

Proof. We divide the proof into three steps:

Step 1. We say that a test plan π is bounded provided
{
γt : γ ∈ spt(π), t ∈ [0, 1]

}
is

bounded. By arguing as in the proof of Theorem 2.1.21, one can prove the following claim:

Fix f : X→ R Borel, π bounded test plan and G ∈ L2
loc(X) with G ≥ 0. Then

the following are equivalent:

A) (2.26) holds for every test plan π′ of the form (Restrts)∗
(
π(Γ)−1 π|Γ

)
,

B) for π-a.e. γ we have f ◦ γ ∈W 1,1(0, 1) and
∣∣(f ◦ γ)′t

∣∣ ≤ G(γt)|γ̇t| for a.e. t.

(2.27)
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Step 2. Fix a function f ∈ L2
loc(X) satisfying (2.26), a test plan π on X and a Lipschitz

function g ∈ LIPbs(X). Given x̄ ∈ X and n ∈ N, let us define

Γn :=

{
γ : [0, 1]→ X AC

∣∣∣∣ d(γ0, x̄) ≤ n and

ˆ 1

0
|γ̇t|2 dt ≤ n

}
,

so that each Γn is a Borel set and π
(⋃

n Γn
)

= 1, as in the proof of Proposition 2.1.32. Let

us fix n ∈ N sufficiently big and define πn := π(Γn)−1 π|Γn , so that πn is a bounded test

plan on X. Now choose any open bounded set Ω containing spt(g), whence we have that the

inequality
∣∣(g ◦ γ)′t

∣∣ ≤ |Dg| |γ̇t|χΩ(γt) holds for (πn × L1)-a.e. (γ, t). Thus B) of (2.27) gives∣∣((fg) ◦ γ
)′
t

∣∣ ≤ |f |(γt) ∣∣(g ◦ γ)′t
∣∣+ |g|(γt)

∣∣(f ◦ γ)′t
∣∣ ≤ (χΩ |g|G+ χΩ |f | |Dg|

)
(γt) |γ̇t|

for (πn×L1)-a.e. (γ, t), so also for (π×L1)-a.e. (γ, t). Note that χΩ

(
|g|G+ |f ||Dg|

)
∈ L2(m).

Therefore Theorem 2.1.21 grants that fg ∈ S2(X) and |D(fg)| ≤ χΩ

(
|g|G+ |f ||Dg|

)
.

Step 3. To conclude, fix f ∈ L2
loc(X) satisfying (2.26). Given a bounded Borel set B ⊆ X,

pick a function g ∈ LIPbs(X) with g = 1 on B, thus |Dg| = 0 holds m-a.e. in B by locality.

Hence Step 2 implies that |Df | = |D(fg)| ≤ G m-a.e. in B, yielding the statement. �

Corollary 2.1.35 Let f : X→ R be a Borel map. Then f ∈ S2(X) if and only if f ∈ S2
loc(X)

and |Df | ∈ L2(m).

Proof. Immediate consequence of Definition 2.1.31 and Proposition 2.1.32. �

2.1.5 Consistency with the classical Sobolev space on Rn

In this subsection we aim to prove that the definition of Sobolev space for abstract metric

measure spaces is consistent with the classical one when we work in the Euclidean setting,

namely if we consider (X, d,m) = (Rn, dEucl,L
n). To this purpose, let us fix some notation:

W 1,2(Rn) = the classical Sobolev space on Rn,

|Df | = the minimal weak upper gradient of f ∈ S2
loc(Rn),

df = the distributional differential of f ∈W 1,2
loc (Rn),

∇f = the ‘true’ gradient of f ∈ C∞(Rn).

The above-mentioned consistency can be readily got as a consequence of the following facts:

Proposition 2.1.36 The following properties hold:

A) If f ∈ C∞(Rn) ⊆W 1,2
loc (Rn), then the function f belongs to the space S2

loc∩L2
loc(Rn) and

the equalities |∇f | = |df | = |Df | hold Ln-a.e. in Rn.

B) If f ∈ W 1,2(Rn) and ρ ∈ C∞c (Rn) is a convolution kernel, then f ∗ ρ ∈ W 1,2(Rn) and

the inequality
∣∣d(f ∗ ρ)

∣∣ ≤ |df | ∗ ρ holds Ln-a.e. in Rn.
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C) If f ∈ S2 ∩ L2(Rn) and ρ ∈ C∞c (Rn) is a convolution kernel, then f ∗ ρ ∈ S2 ∩ L2(Rn)

and the inequality
∣∣D(f ∗ ρ)

∣∣ ≤ |Df | ∗ ρ holds Ln-a.e. in Rn.

Proof. The proof goes as follows:

A) It is well-known that |∇f | = |df | holds Ln-a.e.. Moreover, |Df | ≤ lip(f) = |∇f | is satisfied

Ln-a.e., thus to conclude it suffices to show that
´
|Df |dLn ≥

´
|∇f |dLn. By monotone

convergence theorem, it is enough to prove that
´
K |Df |dL

n ≥
´
K |∇f |dL

n is satisfied for

any compact subset K of the open set
{
|∇f | > 0

}
. Then let us fix such a compact set K

and some ε > 0. Call λ := minK |∇f | > 0. We can take a Borel partition (Ui)
k
i=1 of K and

vectors (vi)
k
i=1 ⊆ Rn such that Ln(Ui) > 0, |vi| ≥ λ and

∣∣∇f(x) − vi
∣∣ < ε for every x ∈ Ui.

Fix i = 1, . . . , k. Call µ := Ln(Ui)
−1 Ln|Ui and π := F∗µ, where F : Rn → C([0, 1],Rn) is

given by x 7→
(
t 7→ x+ tvi

)
, so that (et)∗π ≤ Ln(Ui)

−1 (·+ tvi)∗L
n ≤ Ln(Ui)

−1 Ln holds for

every t ∈ [0, 1] and
´´ 1

0 |γ̇t|
2 dtdπ(γ) = |vi|2 < +∞, which means that π is a test plan on Rn.

It is clear that f ∈ S2
loc ∩ L2

loc(Rn), whence for any t ∈ [0, 1] one has

ˆ ∣∣f(γt)− f(γ0)
∣∣ dπ(γ) ≤

ˆˆ t

0
|Df |(γs)|γ̇s| ds dπ(γ) = |vi|

ˆˆ t

0
|Df |(γs) ds dπ(γ)

= |vi|
ˆ t

0

ˆ
|Df |d(es)∗π ds = |vi|

ˆ t

0

ˆ
|Df |d(·+ svi)∗µ ds

=
|vi|

Ln(Ui)

ˆ t

0

ˆ
χUi+svi |Df | dLn ds.

Since χUi+svi converges to χUi in L2(Rn) as s→ 0, if we divide the previous formula by t and

we let t↘ 0, then we obtain that

|vi|
 
Ui

|Df |dLn ≥
ˆ ∣∣〈∇f(γ0), γ′0

〉∣∣ dπ(γ) =

ˆ ∣∣〈∇f, vi〉∣∣ d(e0)∗π =

 
Ui

∣∣〈∇f, vi〉∣∣dLn
≥
(
|vi| − 2 ε

)  
Ui

|∇f |dLn,

where the last inequality follows from
∣∣〈∇f, vi〉∣∣ ≥ |∇f ||vi| − 2 |∇f ||∇f − vi|. Therefore

ˆ
K
|Df |dLn =

k∑
i=1

Ln(Ui)

 
Ui

|Df |dLn ≥
k∑
i=1

Ln(Ui)

[ 
Ui

|∇f |dLn − 2 ε

|vi|

 
Ui

|∇f | dLn
]

≥
ˆ
K
|∇f |dLn − 2 ε

λ

ˆ
K
|∇f | dLn.

By letting ε↘ 0 we thus conclude that
´
K |Df |dL

n ≥
´
K |∇f |dL

n, as required.

B) It is well-known that f ∗ρ ∈W 1,2(Rn) and d(f ∗ρ) = (df)∗ρ. To conclude, it only remains

to observe that
∣∣(df) ∗ ρ

∣∣ ≤ |df | ∗ ρ by Jensen’s inequality. Hence property B) is achieved.

C) Given any x ∈ Rn, let us define the translation operator Trx : C([0, 1],Rn)→ C([0, 1],Rn)

as Trx(γ)t := γt − x. If γ is absolutely continuous, then γ and Trx(γ) have the same metric
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speed. Now fix a test plan π. Clearly (Trx)∗π is a test plan as well. Thereforeˆ ∣∣(f ∗ ρ)(γ1)− (f ∗ ρ)(γ0)
∣∣ dπ(γ) ≤

ˆ
ρ(x)

ˆ ∣∣f(γ1 − x)− f(γ0 − x)
∣∣ dπ(γ) dx

=

ˆ
ρ(x)

ˆ ∣∣f(σ1)− f(σ0)
∣∣ d(Trx)∗π(σ) dx

≤
ˆ
ρ(x)

ˆˆ 1

0
|Df |(σt) |σ̇t| dt d(Trx)∗π(σ) dx

=

ˆˆˆ 1

0
ρ(x) |Df |(γt − x) |γ̇t|dtdπ(γ) dx

=

ˆˆ 1

0

( ˆ
|Df |(γt − x) ρ(x) dx

)
|γ̇t| dt dπ(γ)

=

ˆˆ 1

0

(
|Df | ∗ ρ

)
(γt) |γ̇t|dtdπ(γ),

which grants that f ∗ ρ ∈ S2 ∩ L2(Rn) and
∣∣D(f ∗ ρ)

∣∣ ≤ |Df | ∗ ρ holds Ln-a.e. in Rn. �

With this said, we are in a position to prove the main result:

Theorem 2.1.37 Let f : Rn → R be a given Borel function. Then f ∈ S2 ∩ L2(Rn) if and

only if f ∈W 1,2(Rn). In this case, the equality |Df | = |df | holds Ln-a.e. in Rn.

Proof. Let us fix a family of convolution kernels (ρε)ε>0. Given any f ∈W 1,2(Rn), we deduce

from properties A) and B) of Proposition 2.1.36 that f ∗ ρε ∈ S2 ∩ L2(Rn) and that∣∣D(f ∗ ρε)
∣∣ =

∣∣d(f ∗ ρε)
∣∣ ≤ |df | ∗ ρε −→ |df | in L2(Rn) as ε↘ 0.

Since also f ∗ ρε → f in L2(Rn) as ε↘ 0, we have that f ∈ S2 ∩L2(Rn) and that |Df | ≤ |df |
holds Ln-a.e. in Rn, as a consequence of Proposition 2.1.13.

On the other hand, given any function f ∈ S2∩L2(Rn), we have that f ∗ρε ∈ S2∩L2(Rn)

and that
∣∣d(f ∗ ρε)

∣∣ =
∣∣D(f ∗ ρε)

∣∣ ≤ |Df | ∗ ρε holds Ln-a.e. by properties A) and C) of

Proposition 2.1.36. Since |Df | ∗ ρε → |Df | in L2(Rn) as ε↘ 0, there exist a sequence εk ↘ 0

and w ∈ L2(Rn) such that d(f ∗ ρεk) ⇀ w weakly in L2(Rn), thus necessarily w = df . In

particular, it holds that
´
|df |2 dLn ≤ limk

´ ∣∣d(f ∗ ρεk)
∣∣2 dLn =

´
|Df |2 dLn, which forces

the Ln-a.e. equality |Df | = |df |, proving the statement. �

2.2 Alternative notions of Sobolev space

We now introduce some alternative definitions of Sobolev space on a general metric measure

space (X, d,m), which a posteriori turn out to be equivalent to the one (via weak upper

gradients) we gave in Definition 2.1.15.

2.2.1 Approach à la Cheeger

The rough idea behind this approach is the following; we need an L2(m)-lower semicontinuous

energy functional of the form 1
2

´
|df |2 dm, where the function |df | is an object which is
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‘local’ and satisfies some sort of chain rule. Given any Lipschitz function f ∈ LIP(X), some

(seemingly) good candidates for |df | could be given by

lip(f)(x) := lim
y→x

∣∣f(y)− f(x)
∣∣

d(y, x)
(local Lipschitz constant),

lipa(f)(x) := lim
y,z→x

∣∣f(y)− f(z)
∣∣

d(y, z)
(asymptotic Lipschitz constant),

for x ∈ X accumulation point and lip(f)(x), lipa(f)(x) := 0 otherwise. The local Lipschitz

constant has been previously introduced in (2.16). Observe that lip(f) ≤ lipa(f) ≤ Lip(f)

and that the equalities lipa(f)(x) = limr↘0 Lip
(
f |Br(x)

)
= infr>0 Lip

(
f |Br(x)

)
hold for every

accumulation point x ∈ X. Moreover, we shall make use of the following property of lipa:

lipa(fg) ≤ |f | lipa(g) + |g| lipa(f) for every f, g ∈ LIP(X), (2.28)

which is the Leibniz rule for the asymptotic Lipschitz constant.

Exercise 2.2.1 Prove that lipa(f) is an upper semicontinuous function. �

Another ingredient we need is the notion of upper gradient:

Definition 2.2.2 (Upper gradient) Consider two functions f, g : X → R, with g ≥ 0.

Then we say that g is an upper gradient of f provided for any AC curve γ : [0, 1] → X one

has that the curve f ◦ γ is AC and satisfies
∣∣(f ◦ γ)′t

∣∣ ≤ g(γt)|γ̇t| for a.e. t ∈ [0, 1].

Notice that lip(f) – thus accordingly also lipa(f) – is an upper gradient of f for any

Lipschitz function f ∈ LIP(X), as already shown in Remark 2.1.25. Given that, in general,

the functionals f 7→ 1
2

´
lip2(f) dm and f 7→ 1

2

´
lip2

a(f) dm are not lower semicontinuous, we

introduce our energy functionals by means of a relaxation procedure:

Definition 2.2.3 Let us give the following definitions:

i) The functional E∗,a : L2(m)→ [0,+∞] is given by

E∗,a(f) := inf lim
n→∞

1

2

ˆ
lip2

a(fn) dm,

where the infimum is taken among all sequences (fn)n ⊆ LIP(X) with fn → f in L2(m).

ii) The functional E∗ : L2(m)→ [0,+∞] is given by

E∗(f) := inf lim
n→∞

1

2

ˆ
lip2(fn) dm,

where the infimum is taken among all sequences (fn)n ⊆ LIP(X) with fn → f in L2(m).

iii) The functional ECh : L2(m)→ [0,+∞] is given by

ECh(f) := inf lim
n→∞

1

2

ˆ
G2
n dm,

where the infimum is taken among all sequences (fn)n ⊆ C(X) and (Gn)n such that Gn

is an upper gradient of fn for every n ∈ N and fn → f in L2(m).



54 Chapter 2 • Sobolev calculus on metric measure spaces

Exercise 2.2.4 Prove that E∗,a is L2(m)-lower semicontinuous and is the maximal L2(m)-

lower semicontinuous functional E such that E(f) ≤ 1
2

´
lip2

a(f) dm holds for every f ∈ LIP(X).

Actually, the same properties are verified by E∗ if we replace lipa(f) with lip(f). �

Definition 2.2.5 We define the Banach spaces W 1,2
∗,a (X), W 1,2

∗ (X) and W 1,2
Ch (X) as follows:

W 1,2
∗,a (X) :=

{
f ∈ L2(m) : E∗,a(f) < +∞

}
,

W 1,2
∗ (X) :=

{
f ∈ L2(m) : E∗(f) < +∞

}
,

W 1,2
Ch (X) :=

{
f ∈ L2(m) : ECh(f) < +∞

}
.

(2.29)

Any upper gradient is a weak upper gradient, so W 1,2
∗,a (X) ⊆W 1,2

∗ (X) ⊆W 1,2
Ch (X) ⊆W 1,2(X).

Hereafter, we shall mainly focus our attention on the space W 1,2
∗,a (X). Analogous state-

ments for the other two spaces in (2.29) can be shown to hold.

Remark 2.2.6 The fact that the set W 1,2
∗,a (X) is a vector space follows from this observation:

the asymptotic Lipschitz constant satisfies lipa(f+g) ≤ lipa(f)+lipa(g) for all f, g ∈ LIP(X).

Given any f, g ∈ W 1,2
∗,a (X) and α, β ∈ R, we can choose two sequences (fn)n, (gn)n ⊆ LIP(X)

such that limn ‖fn − f‖L2(m) = limn ‖gn − g‖L2(m) = 0 and limn

´
lip2

a(fn) + lip2
a(gn) dm is

finite. Since αfn + βgn → αf + βg in L2(m), we thus deduce that

2E∗,a(αf + βg) ≤ lim
n

ˆ
lip2

a(αfn + βgn) dm ≤ 2 lim
n

ˆ
α2 lip2

a(fn) + β2 lip2
a(gn) dm < +∞,

which shows that αf + βg ∈W 1,2
∗,a (X), as required. �

Definition 2.2.7 (Asymptotic relaxed slope) Let f ∈ W 1,2
∗,a (X) be a given function.

Then an element G ∈ L2(m) with G ≥ 0 is said to be an asymptotic relaxed slope for f

provided there exists a sequence (fn)n ⊆ LIP(X) such that fn → f strongly in L2(m) and

lipa(fn) ⇀ G′ weakly in L2(m), for some G′ ∈ L2(m) with G′ ≤ G.

Proposition 2.2.8 Let f ∈ W 1,2
∗,a (X) be given. Then the set of all asymptotic relaxed slopes

for f is a non-empty closed convex subset of L2(m). Its element of minimal L2(m)-norm,

denoted by |Df |∗,a and called minimal asymptotic relaxed slope, satisfies the equality

E∗,a(f) =
1

2

ˆ
|Df |2∗,a dm. (2.30)

Proof. The proof goes as follows:

Existence of asymptotic relaxed slopes. Given that E∗,a(f) < +∞, we can find a

sequence (fn)n ⊆ LIP(X) such that fn → f strongly in L2(m) and supn
´

lip2
a(fn) dm < +∞.

Then (up to a not relabeled subsequence) we have that lipa(fn) ⇀ G weakly in L2(m) for

some G ∈ L2(m), whence G is an asymptotic relaxed slope for f .

Convexity. Let us fix two asymptotic relaxed slopes G1, G2 for f and a constant α ∈ [0, 1].

For i = 1, 2, choose (f in)n ⊆ LIP(X) such that f in → f and lipa(f
i
n) ⇀ G′i ≤ Gi. We then
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claim that αG1 + (1− α)G2 is an asymptotic relaxed slope for f . In order to prove it, notice

that αf1
n + (1− α)f2

n → f in L2(m) and that

lipa
(
αf1

n + (1−α)f2
n

)
≤ α lipa(f

1
n) + (1−α) lipa(f

2
n) ⇀ αG′1 + (1−α)G′2 ≤ αG1 + (1−α)G2.

Up to subsequence, we thus have that lipa
(
αf1

n + (1− α)f2
n

)
weakly converges to some limit

function G̃ ≤ αG1 + (1− α)G2, proving the claim.

Closedness. Fix a sequence (Gn)n ⊆ L2(m) of asymptotic relaxed slopes for f that strongly

converges to some G ∈ L2(m). Given any n ∈ N, we can pick a sequence (fn,m)m ⊆ LIP(X)

with fn,m
m→ f and lipa(fn,m)

m
⇀ G′n ≤ Gn. Up to subsequence, we have that G′n ⇀ G′ for

some G′ ∈ L2(m) with G′ ≤ G. Then we can assume without loss of generality that the

sequence
(
lipa(fn,m)

)
n,m

is bounded in the space L2(m). Since the restriction of the weak

topology to any closed ball of L2(m) is metrizable, by a diagonalisation argument we can

extract a subsequence (mn)n for which we have fn,mn
n→ f and lipa(fn,mn)

n
⇀ G′ ≤ G, i.e. G

is an asymptotic relaxed slope for f .

Formula (2.30). Call |Df |∗,a the asymptotic relaxed slope for f of minimal L2(m)-norm.

By a diagonalisation argument, there exists some (hn)n ⊆ LIP(X) such that hn → f in L2(m)

and E∗,a(f) = limn
1
2

´
lip2

a(hn) dm. Up to subsequence, it holds that lipa(hn) ⇀ H weakly

for some H ∈ L2(m), thus H is an asymptotic relaxed slope for f and accordingly

1

2

ˆ
|Df |2∗,a dm ≤ 1

2

ˆ
H2 dm = E∗,a(f). (2.31)

Now choose any sequence (f̃n)n ⊆ LIP(X) such that f̃n → f in L2(m) and lipa(f̃n) ⇀ |Df |∗,a
weakly in L2(m). By Theorem A.2, for any n ∈ N there exist Nn ≥ n and (αn,i)

Nn
i=n ⊆ [0, 1] in

such a way that
∑Nn

i=n αn,i = 1 and
∑Nn

i=n αn,i lipa(f̃i)
n→ |Df |∗,a in L2(m). Let us now define

fn :=

Nn∑
i=n

αn,i f̃i for every n ∈ N.

It is clear that fn → f in L2(m): given any ε > 0, there is n̄ ∈ N such that ‖f̃n − f‖L2(m) ≤ ε
for all n ≥ n̄, so that accordingly one has

‖fn − f‖L2(m) ≤
Nn∑
i=n

αn,i ‖f̃i − f‖L2(m) ≤ ε
Nn∑
i=n

αn,i = ε for every n ≥ n̄.

Note that one has lipa(fn) ≤
∑Nn

i=n αn,i lipa(f̃i) → |Df |∗,a in L2(m), whence (up to a not

relabeled subsequence) it holds that lipa(fn) ⇀ G weakly in L2(m) for some G ≤ |Df |∗,a.
Therefore G is an asymptotic relaxed slope for f , so that

´
|Df |2∗,a dm ≤

´
G2 dm, which

forces the m-a.e. equality G = |Df |∗,a. Moreover, it holds that

E∗,a(f) ≤ lim
n→∞

1

2

ˆ
lip2

a(fn) dm ≤ lim
n→∞

1

2

ˆ
lip2

a(fn) dm

≤ lim
n→∞

1

2

ˆ (∑Nn

i=n
αn,i lipa(f̃i)

)2
dm =

1

2

ˆ
|Df |2∗,a dm

(2.31)

≤ E∗,a(f).

This ensures that 1
2

´
|Df |2∗,a dm = E∗,a(f), thus proving (2.30). �
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Proposition 2.2.9 (Cheeger) Let f ∈W 1,2
∗,a (X) be given. Let G1, G2 be asymptotic relaxed

slopes for f . Then G1 ∧G2 is an asymptotic relaxed slope for f as well.

Proof. Notice that G1∧G2 = χE G1 +χEc G2, where E := {G1 < G2}. By inner regularity of

the measure m, it thus suffices to show that χK G1 + χKc G2 is an asymptotic relaxed slope

for f , for any compact K ⊆ X. Fix any r > 0. Let us define the cut-off function ηr ∈ L2(m)

as ηr :=
(
1− d(·,K)/r

)+
. For any i = 1, 2, we can choose (f in)n ⊆ LIP(X) such that f in → f

and lipa(f
i
n) ⇀ G′i ≤ Gi. Now call hrn := ηrf

1
n + (1 − ηr)f2

n ∈ LIP(X) for every n ∈ N. One

clearly has that hrn
n→ f strongly in L2(m). Moreover, given that

hrn = f1
n + (1− ηr)(f2

n − f1
n) = f2

n + ηr(f
1
n − f2

n),

we infer from the Leibniz rule (2.28) that

lipa(h
r
n) ≤ lipa(f

1
n) + (1− ηr)

(
lipa(f

1
n) + lipa(f

2
n)
)

+ |f1
n − f2

n| lipa(1− ηr),
lipa(h

r
n) ≤ lipa(f

2
n) + ηr

(
lipa(f

1
n) + lipa(f

2
n)
)

+ |f1
n − f2

n| lipa(ηr).
(2.32)

Up to subsequence, we obtain from (2.32) that lipa(h
r
n)

n
⇀ Gr for some Gr ∈ L2(m) with

Gr ≤ min
{
G′1 + (1− ηr)(G′1 +G′2), G′2 + ηr(G

′
1 +G′2)

}
. (2.33)

Since ηr = 1 on K and ηr = 0 on X \Kr, where Kr :=
{
x ∈ X : d(x,K) < r

}
, we deduce

from the inequality (2.33) that

Gr ≤ χK G′1 + χX\Kr G′2 + 2χKr\K (G′1 +G′2). (2.34)

The right hand side in (2.34) converges in L2(m) to the function χK G
′
1 + χKc G′2 as r ↘ 0,

which grants that χK G1 + χKc G2 is an asymptotic relaxed slope for f , as required. �

It immediately follows from Proposition 2.2.9 that:

Corollary 2.2.10 Let f ∈ W 1,2
∗,a (X). Take any asymptotic relaxed slope G for f . Then the

inequality |Df |∗,a ≤ G holds m-a.e. in X.

Proof. We argue by contradiction: suppose that there exists a Borel set P ⊆ X with m(P ) > 0

such that G < |Df |∗,a holds m-a.e. on P . Then the function G′ := G∧|Df |∗,a ∈ L2(m) satisfies

the inequality
´

(G′)2 dm <
´
|Df |2∗,a dm. This contradicts the minimality of |Df |∗,a, as G′ is

an asymptotic relaxed slope for f by Proposition 2.2.9. �

Proposition 2.2.11 (Chain rule) Let f ∈ W 1,2
∗,a (X) be fixed. Let ϕ ∈ C1(R) ∩ LIP(R) be

such that ϕ(0) = 0, which grants that ϕ ◦ f ∈ L2(m). Then ϕ ◦ f ∈W 1,2
∗,a (X) and∣∣D(ϕ ◦ f)

∣∣
∗,a ≤ |ϕ

′| ◦ f |Df |∗,a holds m-a.e. in X. (2.35)

Proof. Pick (fn)n ⊆ LIP(X) such that fn → f and lipa(fn)→ |Df |∗,a in L2(m). It holds that

lipa(ϕ ◦ fn) ≤ |ϕ′| ◦ fn lipa(fn) −→ |ϕ′| ◦ f |Df |∗,a strongly in L2(m). (2.36)

Then there exists G ∈ L2(m) such that, possibly passing to a subsequence, lipa(ϕ ◦ fn) ⇀ G.

In particular G ≤ |ϕ′| ◦ f |Df |∗,a by (2.36), while the inequality
∣∣D(ϕ ◦ f)

∣∣
∗,a ≤ G is granted

by the minimality of
∣∣D(ϕ ◦ f)

∣∣
∗,a. This proves the statement. �
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Remark 2.2.12 Analogous properties to the ones described in Theorem 2.1.28 can be shown

to hold for the minimal asymptotic relaxed slope |Df |∗,a. This follows from Proposition 2.2.9

and Proposition 2.2.11 by suitably adapting the proof of Theorem 2.1.28. �

The vector space W 1,2
∗,a (X) can be endowed with the norm

‖f‖2
W 1,2
∗,a (X)

:= ‖f‖2L2(m) +
∥∥|Df |∗,a∥∥2

L2(m)
for every f ∈W 1,2

∗,a (X). (2.37)

Then
(
W 1,2
∗,a (X), ‖ · ‖

W 1,2
∗,a (X)

)
turns out to be a Banach space. Completeness stems from the

lower semicontinuity of the energy functional E∗,a.

Remark 2.2.13 Similarly to what done so far, one can define the objects |Df |∗ and |Df |Ch

associated to the energies E∗ and ECh, respectively. It can be readily checked that

|Df | ≤ |Df |Ch ≤ |Df |∗ ≤ |Df |∗,a in the m-a.e. sense

for every f ∈W 1,2
∗,a (X). �

Besides the fact of granting completeness of W 1,2
∗,a (X), the relaxation procedure we used

to define the energy functional E∗,a is also motivated by the following observation:

Remark 2.2.14 Suppose that X is compact. Define

‖f‖2
W̃

:= ‖f‖2L2(m) +
∥∥lipa(f)

∥∥2

L2(m)
for every f ∈ LIP(X).

Hence ‖ · ‖
W̃

is a seminorm on the vector space LIP(X). Now let us denote by W̃ the

completion of the quotient space of
(
LIP(X), ‖ · ‖

W̃

)
. The problem is that in general the

elements of W̃ ‘are not functions’, in the sense that we are going to explain. The natural

inclusion i : LIP(X) → L2(m) uniquely extends to a linear continuous map i : W̃ → L2(m),

but such map is not necessarily injective, as shown by the following example. �

Example 2.2.15 Take X := [−1, 1] with the Euclidean distance and m := δ0. Consider the

functions f1, f2 ∈ LIP(X) given by f1(x) := 0 and f2(x) := x, respectively. Then f1 and f2

coincide as elements of L2(m), but ‖f1 − f2‖W̃ = ‖f2‖W̃ = 1. �

2.2.2 Approach à la Shanmugalingam

Here we present a further notion of Sobolev space on metric measure spaces, which will turn

out to be equivalent to all of the other ones discussed so far.

Given a metric measure space (X, d,m), let us define

Γ(X) :=
{
γ : J → X

∣∣ J ⊆ R non-trivial interval, γ is AC
}
. (2.38)

Given any curve γ ∈ Γ(X), we will denote by Dom(γ) the interval where γ is defined and we

will typically call I ∈ R and F ∈ R the infimum and the supremum of Dom(γ), respectively.
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If G : X→ [0,+∞] is a Borel function and γ ∈ Γ(X), then we define

ˆ
γ
G :=

ˆ F

I
G(γt)|γ̇t| dt, (2.39)

with the convention that
´
γ G := +∞ in the case in which

{
t ∈ Dom(γ) : G(γt) = +∞

}
has

positive L1-measure. We call
´
γ G the line integral of G along the curve γ.

Definition 2.2.16 (2-modulus of a curve family) Let Γ be any subset of Γ(X). Then we

define the quantity Mod2(Γ) ∈ [0,+∞] as

Mod2(Γ) := inf

{ˆ
ρ2 dm

∣∣∣∣ ρ : X→ [0,+∞] Borel,

ˆ
γ
ρ ≥ 1 for all γ ∈ Γ

}
. (2.40)

We call Mod2(Γ) the 2-modulus of Γ. Moreover, a property is said to hold 2-a.e. provided it

is satisfied for every γ belonging to some set Γ ⊆ Γ(X) such that Mod2(Γc) = 0.

The 2-modulus Mod2 is an outer measure on Γ(X), in particular it holds that

Γ ⊆ Γ′ ⊆ Γ(X) =⇒ Mod2(Γ) ≤ Mod2(Γ′),

Γn ⊆ Γ(X), Mod2(Γn) = 0 for all n ∈ N =⇒ Mod2(Γ) = 0, where Γ :=
⋃
n∈N

Γn.

To prove the above claim, fix a sequence (Γn)n of subsets of Γ(X) and some constant ε > 0.

For any n ∈ N, choose a function ρn that is admissible for Γn in the definition of Mod2(Γn)

and such that
´
ρ2
n dm ≤ Mod2(Γn) + ε/2n. Now call ρ := supn ρn. Clearly ρ is admissible

for Γ :=
⋃
n Γn and it holds that

Mod2(Γ) ≤
ˆ
ρ2 dm ≤

∑
n∈N

ˆ
ρ2
n dm ≤

∑
n∈N

Mod2(Γn) + 2 ε,

whence Mod2(Γ) ≤
∑

n∈N Mod2(Γn) by arbitrariness of ε. Hence Mod2 is an outer measure.

Remark 2.2.17 Let us fix a Borel function G : X → [0,+∞) such that G ∈ L2(m). We

stress that G is everywhere defined, not an equivalence class. Then
´
γ G < +∞ for 2-a.e. γ.

Indeed, call Γ :=
{
γ ∈ Γ(X) :

´
γ G = +∞

}
. Given any ε > 0, we have that ρ := εG is

admissible for Γ, so that Mod2(Γ) ≤ ε2
´
G2 dm. By letting ε ↘ 0, we thus finally conclude

that Mod2(Γ) = 0, as required. �

Definition 2.2.18 (2-weak upper gradient) Let f : X → R ∪ {±∞} and G : X →
[0,+∞] be Borel functions, with G ∈ L2(m). Then we say that G is a 2-weak upper gra-

dient for f if ∣∣f(γF )− f(γI)
∣∣ ≤ ˆ

γ
G holds for 2-a.e. γ, (2.41)

meaning also that
´
γ G must equal +∞ as soon as either

∣∣f(γI)
∣∣ = +∞ or

∣∣f(γF )
∣∣ = +∞.
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Remark 2.2.19 Consider two sets Γ,Γ′ ⊆ Γ(X) with the following property: for every γ ∈ Γ,

there exists a subcurve of γ that belongs to Γ′. Then Mod2(Γ) ≤ Mod2(Γ′).

The validity of such fact easily follows from the observation that any function ρ that is

admissible for Γ′ is admissible even for Γ. �

Lemma 2.2.20 Let G be a 2-weak upper gradient for f . Then for 2-a.e. curve γ ∈ Γ(X) it

holds that Dom(γ) 3 t 7→ f(γt) is AC and
∣∣∂t(f ◦ γ)t

∣∣ ≤ G(γt)|γ̇t| for a.e. t ∈ Dom(γ).

Proof. Let us denote by Γ the set of curves γ for which the statement fails. Moreover, call

Γ′ :=

{
γ ∈ Γ(X)

∣∣∣∣ ∣∣f(γF )− f(γI)
∣∣ > ˆ

γ
G

}
,

Γ̃ :=

{
γ ∈ Γ(X)

∣∣∣∣ ˆ
γ
G = +∞

}
.

Notice that Mod2(Γ′) = 0 because G is a 2-weak upper gradient for f , while Mod2(Γ̃) = 0 by

Remark 2.2.17. Now fix γ ∈ Γ\ Γ̃, in particular t 7→ G(γt)|γ̇t| belongs to L1(I, F ). Then there

exists t, s ∈ Dom(γ), s < t such that
∣∣f(γt) − f(γs)

∣∣ > ´ t
s G(γr)|γ̇r|dr: if not, then γ would

satisfy the statement of the lemma. Therefore γ|[s,t] ∈ Γ′, whence Mod2(Γ \ Γ̃) ≤ Mod2(Γ′)

by Remark 2.2.19. This yields Mod2(Γ) ≤ Mod2(Γ′) + Mod2(Γ ∩ Γ̃) = 0, as desired. �

We thus deduce from the previous lemma the following locality property:

Proposition 2.2.21 Let G1, G2 be 2-weak upper gradients of f . Then min{G1, G2} is a

2-weak upper gradient of f as well.

Proof. For i = 1, 2, call Γi the set of γ ∈ Γ(X) such that f ◦γ is AC and
∣∣∂t(f ◦γ)

∣∣ ≤ Gi(γt)|γ̇t|
holds for a.e. t ∈ Dom(γ). Then for every curve γ ∈ Γ1 ∩ Γ2 we have that f ◦ γ is AC and

that
∣∣∂t(f ◦ γ)

∣∣ ≤ min
{
G1(γt), G2(γt)

}
|γ̇t| holds for a.e. t ∈ Dom(γ). By integrating such

inequality over Dom(γ) we get∣∣f(γF )− f(γI)
∣∣ ≤ ˆ

γ
min{G1, G2} for every γ ∈ Γ1 ∩ Γ2.

Then the claim follows by simply noticing that Mod2

(
Γ(X) \ (Γ1 ∩ Γ2)

)
= 0. �

Theorem 2.2.22 (Fuglede’s lemma) Let G,Gn : X → [0,+∞], n ∈ N be Borel functions

that belong to L2(m) and satisfy limn ‖Gn −G‖L2(m) = 0. Then there is a subsequence (nk)k

such that
´
γ |Gnk −G|

k→ 0 holds for 2-a.e. γ. In particular,
´
γ Gnk

k→
´
γ G for 2-a.e. γ.

Proof. Up to subsequence, assume that ‖Gn −G‖L2(m) ≤ 1/2n for every n ∈ N. Let us define

Γk :=

{
γ ∈ Γ(X)

∣∣∣∣ lim
n→∞

ˆ
γ
|Gn −G| >

1

k

}
for every k ∈ N \ {0}.

Observe that
´
γ |Gn − G| → 0 as n → ∞ for every γ /∈

⋃
k Γk, thus to prove the statement

it is sufficient to show that Mod2(Γk) = 0 holds for any k ≥ 1. Let k ≥ 1 be fixed. For
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any m ∈ N we define ρm := k
∑

n≥m |Gn − G|. For every curve γ ∈ Γk there is n ≥ m

such that
´
γ |Gn − G| ≥ 1/k, whence

´
γ ρm ≥ 1, in other words ρm is admissible for Γk.

Moreover, one has that ‖ρm‖L2(m) ≤ k
∑

n≥m ‖Gn −G‖L2(m) ≤ k/2m−1 for every m ∈ N.

Hence Mod2(Γk) ≤ ‖ρm‖2L2(m)
m→ 0, getting the statement. �

Theorem 2.2.23 Given any n ∈ N, let Gn be a 2-weak upper gradient for some function fn.

Suppose further that Gn → G and fn → f in L2(m), for suitable Borel functions f : X → R
and G : X→ [0,+∞]. Then there is a Borel function f̄ : X→ R such that f̄(x) = f(x) holds

for m-a.e. x ∈ X and G is a 2-weak upper gradient for f̄ .

Proof. Possibly passing to a not relabeled subsequence, we can assume without loss of gene-

rality that fn → f in the m-a.e. sense. In addition, we can also suppose that
´
γ |Gn−G| → 0

holds for 2-a.e. γ by Theorem 2.2.22. Call f̃(x) := limn fn(x) for every x ∈ X. Then f̃ = f

holds m-a.e. in X, thus accordingly f̃ ∈ L2(m). Let us define

Γ :=

{
γ ∈ Γ(X)

∣∣∣∣ ˆ
γ
|Gn −G|

n→ 0, fn ◦ γ is AC,
∣∣(fn ◦ γ)′

∣∣ ≤ Gn ◦ γ |γ̇| for all n ∈ N
}
,

Γ′ :=
{
γ ∈ Γ(X)

∣∣∣ either
∣∣f̃(γI)

∣∣ < +∞ or
∣∣f̃(γF )

∣∣ < +∞
}
,

N :=
{
γ ∈ Γ(X)

∣∣∣ ∣∣f̃(γt)
∣∣ = +∞ for every t ∈ Dom(γ)

}
.

Note that Mod2(Γc) = 0 because Gn is a 2-weak upper gradient of fn for any n ∈ N.

Furthermore, we have that Mod2(N) = 0: indeed, for every ε > 0 the function ρ := ε|f̃ | is

admissible for N and ‖ρ‖L2(m) ≤ ε‖f‖L2(m). We now claim that

∣∣f̃(γF )− f̃(γI)
∣∣ ≤ ˆ

γ
G for every γ ∈ Γ ∩ Γ′. (2.42)

To prove it, just observe that
∣∣f̃(γF ) − f̃(γI)

∣∣ ≤ limn

∣∣fn(γF ) − fn(γI)
∣∣ ≤ limn

´
γ Gn =

´
γ G

for every γ ∈ Γ ∩ Γ′. We can use (2.42) to prove that

∣∣f̃(γF )− f̃(γI)
∣∣ ≤ ˆ

γ
G for every γ ∈ Γ \N. (2.43)

Indeed: fix γ ∈ Γ \N. There exists t0 ∈ Dom(γ) such that
∣∣f̃(γt0)

∣∣ < +∞. Call γ1 := γ|[I,t0]

and γ2 := γ|[t0,F ]
. We have that γ1, γ2 ∈ Γ ∩ Γ′, so that (2.42) yields

∣∣f̃(γF )− f̃(γI)
∣∣ ≤ ∣∣f̃(γF )− f̃(γt0)

∣∣+
∣∣f̃(γt0)− f̃(γt0)

∣∣ ≤ ˆ
γ1
G+

ˆ
γ2
G =

ˆ
γ
G.

Since Mod2

(
Γ(X) \ (Γ \N)

)
= 0, we deduce from (2.43) that G is a 2-weak upper gradient of

the function f̄ : X→ R, defined by f̄ := χ{f̃<+∞} f̃ , which m-a.e. coincides with f . �

We now define the Sobolev space W 1,2
Sh (X), where ‘Sh’ stays for Shanmugalingam, who

first introduced such object.
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Definition 2.2.24 We define the Sobolev space W 1,2
Sh (X) as the set of all f ∈ L2(m) such

that there exist two Borel functions f̄ : X → R and G : X → [0,+∞] in L2(m) satisfying

these properties: f̄(x) = f(x) for m-a.e. x ∈ X and G is a 2-weak upper gradient for f̄ .

We endow the vector space W 1,2
Sh (X) with the norm given by

‖f‖2
W 1,2

Sh (X)
:= ‖f‖2L2(m) + inf ‖G‖2L2(m) for every f ∈W 1,2

Sh (X), (2.44)

where the infimum is taken among all Borel functions G : X→ [0,+∞] that are 2-weak upper

gradients of some Borel representative of f .

Remark 2.2.25 (Minimal 2-weak upper gradient) Given any f ∈W 1,2
Sh (X), there exists

a minimal 2-weak upper gradient |Df |Sh, where minimality has to be intended in the m-a.e.

sense. In other words, if f̄ is a Borel representative of f and G is a 2-weak upper gradient

for f̄ , then |Df |Sh ≤ G holds m-a.e. in X. It thus holds that

‖f‖2
W 1,2

Sh (X)
= ‖f‖2L2(m) +

∥∥|Df |Sh

∥∥2

L2(m)
for every f ∈W 1,2

Sh (X). (2.45)

These statements follow from Proposition 2.2.21 and Theorem 2.2.23. �

Lemma 2.2.26 Let Γ be a subset of AC([0, 1],X) such that Mod2(Γ) = 0. Then π∗(Γ) = 0

for every test plan π on X, where π∗ denotes the outer measure induced by π.

Proof. Take ρ admissible for Γ. The function (γ, t) 7→ ρ(γt)|γ̇t| is Borel, hence
{
γ :

´
γ ρ ≥ 1

}
is a π-measurable set by Fubini theorem. Observe that such set contains Γ, so that

π∗(Γ) ≤
ˆˆ

γ
ρdπ(γ) =

ˆ 1

0

ˆ
ρ(γt)|γ̇t| dπ(γ) dt

≤
(ˆ 1

0

ˆ
ρ2(γt) dπ(γ) dt

)1/2( ˆ 1

0

ˆ
|γ̇t|2 dπ(γ) dt

)1/2

≤
√

Comp(π)

( ˆ 1

0

ˆ
|γ̇t|2 dπ(γ) dt

)1/2( ˆ
ρ2 dm

)1/2

.

By arbitrariness of ρ, we conclude that π∗(Γ) = 0. �

Remark 2.2.27 It holds that

|Df |∗,a ≥ |Df |∗ ≥ |Df |Ch ≥ |Df |Sh ≥ |Df |,
W 1,2
∗,a (X) ⊆W 1,2

∗ (X) ⊆W 1,2
Ch (X) ⊆W 1,2

Sh (X) ⊆W 1,2(X).
(2.46)

To prove |Df |Ch ≥ |Df |Sh, observe that any upper gradient is a 2-weak upper gradient. On

the other hand, to show |Df |Sh ≥ |Df | it suffices to apply Lemma 2.2.26. �

To prove the equivalence of all the notions of Sobolev function on metric measure spaces

described so far, we need the following deep approximation result, whose proof we omit:
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Theorem 2.2.28 (Ambrosio-Gigli-Savaré) Let (X, d,m) be any metric measure space.

Then Lipschitz functions in X are dense in energy in W 1,2(X), namely for every f ∈W 1,2(X)

there exists a sequence (fn)n ⊆ LIP(X) ∩ L2(m) such that fn → f and lipa(fn) → |Df | in

L2(m), thus accordingly also lip(fn)→ |Df | and |Dfn| → |Df | in L2(m).

In particular, we have that W 1,2
∗,a (X) = W 1,2(X) and that the equality |Df |∗,a = |Df | is

satisfied m-a.e. for every f ∈W 1,2(X).

We directly deduce from Theorem 2.2.28 that all inequalities and inclusions in (2.46) are

actually equalities. In other words, all the several approaches we saw are in fact equivalent.

Remark 2.2.29 In order to prove that |Df |Ch = |Df |Sh, the following fact is sufficient:

Let G be a 2-weak upper gradient for f and let ε > 0. Then there exists

an upper gradient G̃ for f such that ‖G̃‖L2(m) ≤ ‖G‖L2(m) + ε.
(2.47)

To prove it: call Γ the set of γ ∈ Γ(X) such that
∣∣f(γF )−f(γI)

∣∣ > ´
γ G, so that Mod2(Γ) = 0.

We first claim that

∃ ρ : X→ [0,+∞] Borel such that

ˆ
γ
ρ = +∞ for all γ ∈ Γ and ‖ρ‖L2(m) ≤ ε. (2.48)

Indeed, there is (ρn)n such that
´
γ ρn ≥ 1 and ‖ρn‖L2(m) ≤ ε/2n for all n ∈ N and γ ∈ Γ. Thus

it can be easily seen that the function ρ :=
∑

n≥1 ρn satisfies (2.48): for every γ ∈ Γ we have

that
´
γ ρ = limm→∞

∑m
n=1

´
γ ρn ≥ limm→∞m = +∞, while ‖ρ‖L2(m) ≤

∑
n≥1 ‖ρn‖L2(m) ≤ ε.

Finally, let us call G̃ := G+ ρ. Clearly G̃ satisfies (2.47): if γ ∈ Γ then
´
γ G̃ = +∞, while

if γ /∈ Γ then
∣∣f(γF )− f(γI)

∣∣ ≤ ´
γ G ≤

´
γ G̃, i.e. G̃ is an upper gradient of f ; moreover, one

has ‖G̃‖L2(m) ≤ ‖G‖L2(m) + ‖ρ‖L2(m) ≤ ‖G‖L2(m) + ε. This concludes the proof. �

Bibliographical remarks

The first definition of Sobolev space on a metric measure space has been proposed by Haj lasz

in [22]. The notion that in [22] is analogous to that of minimal weak upper gradient discussed

here is non-local in nature; as such, the definition in [22] lacks one of the key properties that

Sobolev functions have in the classical smooth setting and is not suitable to the discussion we

intend to pursue here, where locality of minimal weak upper gradients plays a pivotal role.

The paper which introduced the by-now most widely used notion of Sobolev spaces on

metric measure spaces is the seminal work of Cheeger [14], of which we gave an account in

Subsection 2.2.1. Cheeger’s approach was at least in part inspired by Koskela and MacManus,

who in [23] introduced the notion of upper gradient in a metric setting.

Soon after Cheeger’s contribution, Shanmugalingam proposed in [29] the alternative def-

inition we recalled in Subsection 2.2.2, and proved the equivalence with Cheeger’s one: her

theory is an adaptation to the metric setting of the results contained in [17], which are in

turn inspired by the ideas of [24].
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Finally, the approach to Sobolev functions by duality with the concept of test plan has been

proposed in [5], where also the equivalence with Cheeger’s and Shanmugalingam’s approach

has been proved. The presentation we gave here also takes into account some ideas contained

in [19]. Theorem 2.1.21, constitutes a (partially) new result, inspired by the study of test

plans carried out in [18]. The formulation of the density in energy of Lipschitz functions given

here, namely Theorem 2.2.28, comes from [4], but the argument was in fact mostly contained

in [5].
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Chapter 3

The theory of normed modules

This chapter is devoted to the study of the so-called normed modules over metric measure

spaces. These represent a tool that has been introduced by Gigli in order to build up a

differential structure on nonsmooth spaces. In a few words, an L2(m)-normed L∞(m)-module

is a generalisation of the concept of ‘space of 2-integrable sections of some measurable bundle’;

it is an algebraic module over the commutative ring L∞(m) that is additionally endowed with

a pointwise norm operator. This notion, its basic properties and some of its technical variants

constitute the topics of Section 3.1.

Many constructions are available in the framework of normed modules. For instance, it

is possible to take duals, tensor products and pullbacks of normed modules. Furthermore,

there is a special class of normed modules, called Hilbert modules, which have nicer functional

analytic properties. All these objects are described in detail in Section 3.2.

3.1 Definition of normed module and basic properties

3.1.1 L2-normed L∞-modules

Let (X, d,m) be a fixed metric measure space.

Definition 3.1.1 (L2-normed L∞-module) We define an L2(m)-normed L∞(m)-module,

or briefly module, as a quadruplet
(
M , ‖ · ‖M , · , | · |

)
with the following properties:

i)
(
M , ‖ · ‖M

)
is a Banach space.

ii) The multiplication by L∞-functions · : L∞(m)×M →M is a bilinear map satisfying

f · (g · v) = (fg) · v for every f, g ∈ L∞(m) and v ∈M ,

1̂ · v = v for every v ∈M ,
(3.1)

where 1̂ denotes the (equivalence class of the) function on X identically equal to 1.

65
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iii) The pointwise norm | · | : M → L2(m) satisfies

|v| ≥ 0 m-a.e. for every v ∈M ,

|f · v| = |f ||v| m-a.e. for every f ∈ L∞(m) and v ∈M ,

‖v‖M =
∥∥|v|∥∥

L2(m)
for every v ∈M .

(3.2)

For the sake of brevity, we shall often write fv instead of f · v.

Proposition 3.1.2 Let M be a module. Then:

i) ‖fv‖M ≤ ‖f‖L∞(m)‖v‖M for every f ∈ L∞(m) and v ∈M .

ii) λv = λ̂v for every λ ∈ R, where λ̂ denotes the (equivalence class of the) function on X

identically equal to λ.

iii) It holds that

|v + w| ≤ |v|+ |w|
|λv| = |λ||v|

m-a.e. for every v, w ∈M and λ ∈ R. (3.3)

Proof. The proof goes as follows:

i) Simply notice that

‖fv‖M =
∥∥|f ||v|∥∥

L2(m)
≤ ‖f‖L∞(m)

∥∥|v|∥∥
L2(m)

= ‖f‖L∞(m)‖v‖M

is verified for every f ∈ L∞(m) and v ∈M by (3.2) and by Hölder inequality.

ii) Given any λ ∈ R and v ∈ M , we have that λ̂v = (λ1̂)v = λ(1̂v) = λv by (3.1) and by

bilinearity of the multiplication by L∞-functions.

iii) Fix λ ∈ R and v, w ∈ M . Clearly |λv| = |λ̂v| = |λ̂||v| = |λ||v| holds m-a.e. in X as a

consequence of ii). On the other hand, in order to prove that |v +w| ≤ |v|+ |w| holds m-a.e.

we argue by contradiction: suppose the contrary, thus there exist a, b, c ∈ R with a + b < c

and E ⊆ X Borel with m(E) > 0 such that
|v| ≤ a
|w| ≤ b
|v + w| ≥ c

holds m-a.e. in E. (3.4)

Hence we deduce from (3.4) that

∥∥χE(v + w)
∥∥

M
=

(ˆ
E
|v + w|2 dm

)1/2

≥ cm(E)1/2 > (a+ b)m(E)1/2

≥
(ˆ

E
|v|2 dm

)1/2

+

(ˆ
E
|w|2 dm

)1/2

= ‖χE v‖M + ‖χE w‖M ,

which contradicts the fact the ‖ · ‖M is a norm. Therefore (3.3) is proved. �
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Exercise 3.1.3 Let V,W,Z be normed spaces. Let B : V ×W → Z be a bilinear operator.

i) Suppose V is Banach. Show that B is continuous if and only if both B(v, ·) and B(·, w)

are continuous for every v ∈ V and w ∈W .

ii) Prove that B is continuous if and only if there exists a constant C > 0 such that the

inequality
∥∥B(v, w)

∥∥
Z
≤ C ‖v‖V ‖w‖W holds for every (v, w) ∈ V ×W . �

Remark 3.1.4 It directly follows from property i) of Proposition 3.1.2 and from Exercise

3.1.3 that the multiplication by L∞-functions is a continuous operator. �

Example 3.1.5 We provide some examples of L2(m)-normed L∞(m)-modules:

i) The space L2(m) itself can be viewed as a module.

ii) More in general, the space L2(X,B) is a module for every Banach space B. (In the case

in which m is a finite measure, the space L2(X,B) is defined as the set of all elements v

of L1(X,B) for which the quantity
´ ∥∥v(x)

∥∥2

B dm(x) is finite.)

iii) The space of L2-vector fields on a Riemannian manifold is a module with respect to the

pointwise operations. Actually, the same holds true even for a Finsler manifold (i.e.,

roughly speaking, a manifold endowed with a norm on each tangent space).

iv) The space of L2-sections of a ‘measurable bundle’ over X (whose fibers are Banach

spaces) has a natural structure of L2-normed L∞-module. For instance, consider the

spaces of covector fields or higher dimensional tensors with pointwise norm in L2. �

Remark 3.1.6 One can imagine a module M , in a sense, as the space of L2-sections of some

measurable Banach bundle over X; cf. the Serre-Swan theorem. �

Definition 3.1.7 Let M be a module and v ∈M . Then let us define

{v = 0} :=
{
|v| = 0

}
. (3.5)

Notice that {v = 0} is a Borel set in X, defined up to m-a.e. equality. Similarly, one can

define {v 6= 0}, {v = w} for w ∈M and so on.

It is trivial to check that for any E ⊆ X Borel one has

χE v = 0 ⇐⇒ |v| = 0 m-a.e. in E. (3.6)

Indeed, χE v = 0 if and only if ‖χE v‖M = 0 if and only if
´
E |v|

2 dm = 0 if and only if |v| = 0

holds m-a.e. in E. If the two conditions in (3.6) hold, we say that v is m-a.e. null in E.

Remark 3.1.8 Let M be a module. Let v ∈M . Suppose to have a sequence (En)n of Borel

subsets of X such that χEnv = 0 for every n ∈ N. Then v is m-a.e. null in
⋃
nEn, as one can

readily deduce from the characterisation (3.6). �
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Proposition 3.1.9 (m-essential union) Let {Ei}i∈I be a (not necessarily countable) family

of Borel subsets of X. Then there exists a Borel set E ⊆ X such that:

i) m(Ei \ E) = 0 for every i ∈ I.

ii) If F ⊆ X Borel satisfies m(Ei \ F ) = 0 for all i ∈ I, then m(E \ F ) = 0.

Such set E, which is called the m-essential union of {Ei}i∈I , is m-a.e. unique, in the sense

that any other Borel set Ẽ with the same properties must satisfy m(E∆Ẽ) = 0.

Proof. Uniqueness follows from condition ii). To prove existence, assume without loss of

generality that m ∈P(X) (otherwise, we can replace m with a Borel probability measure m̃

such that m̃� m� m̃, which can be built as in the proof of Step 5 of Theorem 2.1.28). Let

us denote by A the family of all finite unions of the Ei’s and call S := sup
{
m(A) : A ∈ A

}
.

Hence there is an increasing sequence of sets (An)n ⊆ A with m(An)↗ S. Define E :=
⋃
nAn.

Clearly E satisfies i): if not, there exists some i ∈ I such that m(Ei \ E) > 0, whence

S = m(E) < m(E ∪ Ei) = lim
n→∞

m(An ∪ Ei) ≤ S,

which leads to a contradiction. Moreover, the set E can be clearly written as countable union

of elements in {Ei}i∈I , say E =
⋃
j∈J Ej for some J ⊆ I countable. Hence for any F ⊆ X

Borel with m(Ei \ F ) = 0 for each i ∈ I, it holds that

m(E \ F ) ≤
∑
j∈J

m(Ej \ F ) = 0,

proving ii) and accordingly the existence part of the statement. �

Given any v ∈ M , it holds that {v = 0} can equivalently described as the m-essential

union of all Borel sets E ⊆ X such that χE v = 0.

Example 3.1.10 Define Ei := {i} for every i ∈ R. Then the set-theoretic union of {Ei}i∈R
is the whole real line R, while its L1-essential union is given by the empty set. �

Definition 3.1.11 (Localisation of a module) Let M be a module. Let E be any Borel

subset of X. Then we define

M |E :=
{
χE v : v ∈M

}
⊆M . (3.7)

It turns out that the space M |E is stable under all module operations and is complete,

thus it is a submodule of M .

Proposition 3.1.12 Let S be any subset of M . Let us define

M (S) := M -closure of S :=

{ n∑
i=1

fi vi

∣∣∣∣ n ∈ N, (fi)
n
i=1 ⊆ L∞(m), (vi)

n
i=1 ⊆ S

}
. (3.8)

Then M (S) is the smallest submodule of M containing S.

Proof. We omit the simple proof of the fact that M (S) inherits from M a module structure.

Moreover, any module containing the set S must contain also S and must be closed, whence

the required minimality. �
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Definition 3.1.13 (Generators) The module M (S) that we defined in Proposition 3.1.12

is called the module generated by S. Moreover, if E ⊆ X is Borel and M (S)|E = M |E, then

we say that S generates M on E.

Remark 3.1.14 The space L2(m), viewed as a module, can be generated by a single element,

namely by any L2(m)-function which is m-a.e. different from 0. �

Proposition 3.1.15 Let V be a vector subspace of M . Then M (V ) is the M -closure of

V :=

{ n∑
i=1

χEivi

∣∣∣∣ n ∈ N, (Ei)
n
i=1 Borel partition of X, (vi)

n
i=1 ⊆ V

}
. (3.9)

Proof. The inclusion clM (V) ⊆M (V ) is trivial. To prove the converse inclusion, since V and

accordingly also clM (V) are vector spaces, it suffices to show that f v ∈ clM (V) whenever we

have f ∈ L∞(m) and v ∈ V \ {0}. Given any ε > 0, pick a simple function g =
∑n

i=1 αi χEi
such that ‖f − g‖L∞(m) ≤ ε/‖v‖M . Then ‖f v − g v‖M ≤ ε and g v =

∑n
i=1

χEi(αi v) ∈ V, as

required. Hence the statement is achieved. �

Remark 3.1.16 Let M be a module. Then the pointwise norm | · | : M → L2(m) is

continuous.

Indeed, since
∣∣|v| − |w|∣∣ ≤ |v − w| holds m-a.e. for any v, w ∈ M by (3.3), one immediately

deduces that
∥∥|v| − |w|∥∥

L2(m)
≤ ‖v − w‖M for every v, w ∈M . �

Lemma 3.1.17 Let S ⊆ M be a separable subset with the following property: the L∞(m)-

linear combinations of elements of S are dense in M . Then the space M is separable.

Proof. Pick a countable dense subset (vn)n of S. It is then clear that the L∞(m)-linear

combinations of the vn’s are dense in M . It only remains to show that the family of such

combinations is separable. Now fix a Borel probability measure m′ on X with m � m′ � m.

Then there exists a countable family A of Borel subsets of X such that for any E ⊆ X Borel

there is a sequence (Ei)i ⊆ A with m′(Ei∆E) → 0. For instance, define A as the set of all

open balls with rational radii that are centered at some fixed countable dense subset of X.

Hence let us define the separable set D as

D :=

{ N∑
n=0

αn χEnvn

∣∣∣∣ N ∈ N, (αn)Nn=0 ⊆ Q, (En)Nn=0 ⊆ A

}
.

It can be readily proved that the set of all L∞(m)-linear combinations of the vn’s is contained

in the closure of D. Therefore the statement is achieved. �

3.1.2 L0-normed L0-modules

We introduce an alternative notion of normed module over (X, d,m), for which no integrability

assumption is required:
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Definition 3.1.18 (L0-normed L0-module) Let (X, d,m) be a metric measure space. We

define an L0(m)-normed L0(m)-module as any quadruple
(
M 0, τ, · , | · |

)
, where:

i) (M 0, τ) is a topological vector space.

ii) The bilinear map · : L0(m)×M 0 →M 0 satisfies f · (g · v) = (fg) · v and 1̂ · v = v for

every f, g ∈ L0(m) and v ∈M 0.

iii) The map | · | : M 0 → L0(m), which satisfies both |v| ≥ 0 and |f · v| = |f ||v| m-a.e. for

every v ∈ M 0 and f ∈ L0(m), is such that the function dM 0 : M 0 ×M 0 → [0,+∞),

defined by

dM 0(v, w) :=

ˆ
|v − w| ∧ 1 dm′ for some m′ ∈P(X) with m� m′ � m, (3.10)

is a complete distance on M 0 that induces the topology τ .

Remark 3.1.19 The topology τ in the definition of an L0-normed module does not depend

on the particular choice of the measure m′. Indeed, it holds that a given sequence (vn)n ⊆M 0

is dM 0-Cauchy if and only if

lim
n,m→∞

m
(
E ∩

{
|vn − vm| > ε

})
= 0

for every ε > 0 and E ⊆ X

Borel with m(E) < +∞.

Such statement can be achieved by arguing as in the proof of Proposition 1.1.19. �

Definition 3.1.20 (L0-completion) Let M be an L2(m)-normed module. Then we define

an L0(m)-completion of M as any couple (M 0, i), where M 0 is an L0(m)-normed module

and the map i : M →M 0 is a linear operator with dense image that preserves the pointwise

norm, i.e. such that the equality
∣∣i(v)

∣∣ = |v| holds m-a.e. for every v ∈M .

Remark 3.1.21 Let M 0 be an L0(m)-normed module. Then

| · | : M 0 → L0(m) is continuous,

· : L0(m)×M 0 →M 0 is continuous.
(3.11)

To prove the first in (3.11), we begin by observing that |v + w| ≤ |v| + |w| holds m-a.e. for

any v, w ∈M 0: if not, we can find constants a, b, c > 0 with a+ b < c and a Borel set P ⊆ X

with m(P ) > 0 such that |v| < a, |w| < b and |v + w| > c hold m-a.e. on P , so that

dM 0

(
c−1 χP v, 0

)
+ dM 0

(
c−1 χP w, 0

)
=

ˆ
P

|v|
c
∧ 1 dm′ +

ˆ
P

|w|
c
∧ 1 dm′ =

ˆ
P

|v|+ |w|
c

dm′

<

ˆ
P

a+ b

c
dm′ <

ˆ
P

|v + w|
c

dm′

= dM 0

(
c−1 χP (v + w), 0

)
,
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which contradicts the fact that dM 0 is a distance. Therefore

dL0

(
|v|, |w|

)
=

ˆ ∣∣|v| − |w|∣∣ ∧ 1 dm′ ≤
ˆ
|v − w| ∧ 1 dm′ = dM 0(v, w).

To prove the second in (3.11), suppose that fn → f and vn → v in L0(m) and M 0, respectively.

We aim to show that fnvn → fv in M 0. First of all, observe that

|fnvn − fv| ≤ |fn||vn − v|+ |v||fn − f | holds m-a.e. in X. (3.12)

We claim that

∀δ > 0 ∃M > 0 : lim
n→∞

m′
({
|fn| > M

})
< δ. (3.13)

Clearly, given any δ > 0 there exists M > 1 such that m′
({
|f | > M − 1

})
< δ. Hence

lim
n→∞

m′
({
|fn| > M

})
≤ m′

({
|f | > M − 1

})
+ lim
n→∞

m′
({
|fn − f | > 1

})
< δ,

which proves (3.13). Now let ε > 0 be fixed. Given any δ > 0, take M > 0 as in (3.13), so

lim
n

m′
({
|fn||vn − v| > ε/2

})
≤ lim

n
m′
({
|fn| > M

})
+ lim

n
m′
({
|vn − v| > ε/(2M)

})
< δ.

Hence limnm
′({|fn||vn − v| > ε/2

})
= 0 by letting δ ↘ 0. In an analogous way, we can see

that also limnm
′({|v||fn − f | > ε/2

})
= 0. Therefore (3.12) yields

lim
n

m′
({
|fnvn − fv| > ε

})
≤ lim

n
m′
({
|fn||vn − v| > ε/2

})
+ lim

n
m′
({
|v||fn − f | > ε/2

})
= 0,

which proves that fnvn → fv in M 0, as desired. �

Proposition 3.1.22 (Existence and uniqueness of the L0-completion) Let M be any

given L2(m)-normed module. Then there exists a unique L0(m)-completion (M 0, i) of M .

Uniqueness has to be intended up to unique isomorphism, in the following sense: given any

other L0(m)-completion (M̃ 0, ĩ ) of M , there is a unique module isomorphism Ψ : M 0 → M̃ 0

such that

M M 0

M̃ 0

i

ĩ
Ψ (3.14)

is a commutative diagram. Moreover, it holds that:

i) The map i : M →M 0 is continuous and i(fv) = f i(v) for all f ∈ L∞(m) and v ∈M .

ii) i(M ) coincides with the set of all v ∈M 0 such that |v| ∈ L2(m).

Proof. The proof goes as follows:

i) Since
∣∣i(v)

∣∣ = |v| holds m-a.e. for every v ∈ M , we deduce that
∥∥|i(v)|

∥∥
L2(m)

= ‖v‖M for

every v ∈M . Hence if (vn)n ⊆M converges to v ∈M then
∥∥|i(vn − v)|

∥∥
L2(m)

→ 0, so that

we have dM 0

(
i(vn), i(v)

)
= dL0

(
|i(vn − v)|, 0

)
→ 0 by Remark 1.1.22.
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Moreover, we have that χE i(v) = i(χE v) for every E ⊆ X Borel, indeed

∣∣χE i(v)− i(χE v)
∣∣ =

{ ∣∣i(v)− i(χE v)
∣∣ =

∣∣i((1− χE)v)
∣∣ = χEc |v| = 0∣∣i(χE v)

∣∣ = |χE v| = χE |v| = 0

m-a.e. on E,

m-a.e. on Ec.

By linearity of i, we immediately see that f i(v) = i(fv) for any simple function f : X→ R,

thus also for every f ∈ L∞(m) by continuity of i and Remark 3.1.21.

Uniqueness. The choice Ψ
(
i(v)

)
:= ĩ(v) for every v ∈M is obliged. Moreover, we have that

the equalities
∣∣i(v)

∣∣ = |v| =
∣∣ ĩ(v)

∣∣ hold m-a.e. in X for every v ∈M . Hence

d
M̃ 0

(
Ψ
(
i(v)

)
,Ψ
(
i(w)

))
=

ˆ ∣∣ ĩ(v)− ĩ(w)
∣∣ ∧ 1 dm′ =

ˆ
|v − w| ∧ 1 dm′

=

ˆ ∣∣i(v)− i(w)
∣∣ ∧ 1 dm′ = dM 0

(
i(v), i(w)

)
is satisfied for every v, w ∈ M , which shows that Ψ : i(M ) → ĩ(M ) is an isometry, in

particular it is continuous. Since i(M ) is dense in M 0, we can uniquely extend Ψ to some

map Ψ : M 0 → M̃ 0, which is a linear isometry. Furthermore, Ψ preserves the pointwise norm

and the multiplication by L0(m)-functions by i) and Remark 3.1.21, while it is surjective by

density of ĩ(M ) in M̃ 0. Therefore this (uniquely determined) map Ψ is a module isomorphism

satisfying property (3.14).

Existence. Define the distance d0 on M as d0(v, w) :=
´
|v−w| ∧ 1 dm′ and denote by M 0

the completion of (M , d0). It can be readily proved that

d0(v1 + w1, v2 + w2) ≤ d0(v1, v2) + d0(w1, w2),

d0(λ v, λw) ≤
(
|λ| ∨ 1

)
d0(v, w),

dL0

(
|v|, |w|

)
≤ d0(v, w),

(fn)n L
0(m)-Cauchy, (vn)n d0-Cauchy =⇒ (fnvn)n d0-Cauchy.

(3.15)

The first two properties in (3.15) grant that the vector space structure of M can be carried

over to M 0, while the third one and the fourth one show that we can extend to M 0 the

pointwise norm and the multiplication by L0(m)-functions, respectively.

ii) It clearly suffices to prove that i(M ) ⊇
{
v ∈ M 0 : |v| ∈ L2(m)

}
. To this aim, let us fix

any v ∈M 0 with |v| ∈ L2(m). There exists (vn)n ⊆M such that i(vn)→ v in M 0. Define

wn := χ{|i(vn)|>0}
|v|∣∣i(vn)

∣∣ i(vn) ∈M 0 for every n ∈ N.

Notice that |wn| = χ{|i(vn)|>0} |v| ∈ L2(m) for every n ∈ N. Moreover, one can easily prove

that (wn)n ⊆ i(M ). Since |wn − v| → 0 in L2(m) by dominated convergence theorem, we

thus conclude that v ∈ i(M ) as well. �
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3.2 Operations on normed modules

3.2.1 Dual normed module

In order to define the dual of a normed module, we need to introduce the following concept:

Lemma 3.2.1 (Essential supremum) Let fi : X → R ∪ {±∞} be given Borel functions,

with i ∈ I. Then there is a unique (up to equality m-a.e.) Borel function g : X→ R ∪ {±∞}
such that the following conditions holds:

i) g ≥ fi holds m-a.e. for every i ∈ I.

ii) If h ≥ fi holds m-a.e. for every i ∈ I, then h ≥ g in the m-a.e. sense.

Moreover, there exists an at most countable subfamily (fin)n of (fi)i∈I such that g = supn fin.

Such function g is called essential supremum of the family (fi)i∈I .

Proof. The m-a.e. uniqueness of g follows trivially from ii), so we pass to existence. Replacing

if necessary the fi’s with ϕ ◦ fi – where ϕ : R ∪ {±∞} → [0, 1] is monotone and injective

– we can assume that the given functions are bounded. Similarly, replacing m with a Borel

probability measure with the same negligible sets we can assume that m is a probability

measure. Now let

A :=
{
fi1 ∨ . . . ∨ fin : n ∈ N, ij ∈ I for all j = 1, . . . , n

}
,

set S := supf̃∈A
´
f̃ dm and notice that – since the fi’s are uniformly bounded and m(X) <∞

– we have S < +∞. Let (f̃n)n ⊆ A be such that S = supn
´
f̃n dm. Let us set g := supn f̃n,

so that by construction we have S =
´
g dm and by definition there must exist a countable

family (fin)n, with in ∈ I, such that g = supn∈N fin . We claim that g satisfies i) and ii).

Indeed, suppose i) does not hold, i.e. for some ī ∈ I it holds that fī > g on a set of positive

m-measure. Then

S =

ˆ
g dm <

ˆ
g ∨ fī dm = lim

n→∞

ˆ
fi1 ∨ . . . ∨ fin ∨ fī dm,

contradicting the definition of S. To get ii), simply notice that if h ≥ fin holds m-a.e. for

every n, then h ≥ g is verified in the m-a.e. sense. �

We are ready to define the concept of dual M ∗ of an L2(m)-normed L∞(m)-module M .

As a set we define

M ∗ :=
{
L : M → L1(m)

∣∣∣ L linear continuous, L(fv) = fL(v) for all v ∈M , f ∈ L∞(m)
}

and we endow it with the operator norm, i.e. ‖L‖∗ := sup‖v‖≤1 ‖L(v)‖L1(m). The product

between a function f ∈ L∞(m) and an element L ∈M ∗ is defined as

(fL)(v) := fL(v) for every v ∈M ,
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while the pointwise norm of L is given by

|L|∗ := ess sup
v∈M , |v|≤1 m−a.e.

L(v).

Proposition 3.2.2 The space M ∗ is an L2(m)-normed L∞(m)-module. Moreover, it holds

|L|∗ = ess sup
v∈M , |v|≤1 m−a.e.

∣∣L(v)
∣∣ for every L ∈M ∗, (3.16a)∣∣L(v)

∣∣ ≤ |v||L|∗ m-a.e. for every v ∈M and L ∈M ∗. (3.16b)

Proof. The fact that
(
M ∗, ‖ · ‖∗

)
is a Banach space is obvious. The fact that fL ∈M ∗ for

any f ∈ L∞(m) and L ∈M ∗ follows from the commutativity of L∞(m): indeed, the fact that

the operator fL is linear continuous is obvious and moreover we have

(fL)(gv) = fL(gv) = fgL(v) = gfL(v) = g(fL)(v).

The required properties of the multiplication by L∞-functions are easily derived, as for v ∈M

we have that (
f(gL)

)
(v) = f

(
(gL)(v)

)
= f

(
gL(v)

)
= fgL(v) = (fgL)(v)

and (1̂L)(v) = L(1̂v) = L(v). We come to the pointwise norm. To check that |L|∗ ≥ 0, let us

pick v = 0 in the definition. Inequality ≤ in (3.16a) is obvious, for the converse let v ∈M be

with |v| ≤ 1 m-a.e. and set ṽ := χ{L(v)≥0}v − χ{L(v)<0}v, so that |ṽ| = |v| and L(ṽ) = |L(v)|.
Then it holds that |L|∗ ≥ L(ṽ) =

∣∣L(v)
∣∣, thus getting (3.16a).

We pass to (3.16b) and observe that χ{v=0}L(v) = L(χ{v=0}v) = 0, so that (3.16b) holds

m-a.e. on {v = 0}. Hence it is sufficient to prove that for any c ∈ (0, 1) the same inequality

holds m-a.e. on Sc := {c ≤ |v| ≤ c−1}. To see this, notice that on Sc the functions |v|, |v|−1

are in L∞(m), hence we can write χScv = χSc |v| v|v| and since
∣∣χSc v|v| ∣∣ ≤ 1 m-a.e. we obtain

χSc
∣∣L(v)

∣∣ = χSc

∣∣∣L(|v| v|v|)∣∣∣ = χSc |v|
∣∣∣L( v|v|)∣∣∣ ≤ χSc |v| |L|∗.

We now observe that for every f ∈ L∞(m) and L ∈M ∗ we have

|fL|∗ = ess sup
∣∣fL(v)

∣∣ = ess sup |f |
∣∣L(v)

∣∣ = |f | ess sup
∣∣L(v)

∣∣ = |f ||L|∗,

where each essential supremum is taken among all v ∈ M with |v| ≤ 1 m-a.e.. Hence to

conclude we need to prove that

‖L‖∗ =

√ˆ
|L|2∗ dm. (3.17)

The inequality

ˆ ∣∣L(v)
∣∣dm ≤ ˆ

|v||L|∗ dm ≤

√ˆ
|v|2 dm

√ˆ
|L|2∗ dm = ‖v‖M

√ˆ
|L|2∗ dm,
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valid for any v ∈M and L ∈M ∗, shows that ≤ holds in (3.17). For the converse inequality,

recall that the properties of the essential supremum ensure that there is a sequence (vn)n ⊆M

with |vn| ≤ 1 m-a.e. for every n ∈ N such that |L|∗ = supn L(vn). Define recursively the

sequence (ṽn)n ⊆M by setting ṽ0 := v0 and

ṽn+1 := χ{L(vn+1)≥L(ṽn)}vn+1 + χ{L(vn+1)<L(ṽn)}ṽn.

Notice that L(ṽn) = supi≤n L(vi), so that L(ṽn) increases monotonically to |L|∗. Moreover,

we have |ṽn| ≤ 1 m-a.e. for every n ∈ N. Given any funciton f ∈ L∞(m) ∩ L2(m) with f ≥ 0,

we also have that ‖fṽn‖M =
∥∥|fṽn|∥∥L2(m)

≤ ‖f‖L2(m) and thus

ˆ
fL(vn) dm =

ˆ
L(fvn) dm ≤ ‖L‖M ∗‖fṽn‖M ≤ ‖L‖M ∗‖f‖L2(m),

so that – by letting n→∞ and using the monotone convergence theorem to pass to the limit

in the left hand side – we obtainˆ
f |L|∗ dm ≤ ‖L‖M ∗‖f‖L2(m).

By arbitrariness of f , we thus get (3.17). �

Proposition 3.2.3 Let L : M → L1(m) be linear, continuous and satisfying

L(χEv) = χEL(v)

for every v ∈M and E ⊆ X Borel. Then L ∈M ∗.

Proof. We need to prove that

L(fv) = fL(v) for every v ∈M and f ∈ L∞(m). (3.18)

By assumption and taking into account the linearity of L, we see that (3.18) is true for every

simple function f . The claim then follows by continuity of both sides of (3.18) with respect

to f ∈ L∞(m). �

Exercise 3.2.4 Assume that m has no atoms and let L : M → L∞(m) be linear, continuous

and satisfying L(fv) = fL(v) for every v ∈M and f ∈ L∞(m). Prove that L = 0. �

We now study the relation between the dual module and the dual in the sense of Banach

spaces. Thus let M ′ be the dual of M seen as a Banach space. Integration provides a natural

map IntM : M ∗ →M ′, sending L ∈M ∗ to the operator IntM (L) ∈M ′ defined as

IntM (L)(v) :=

ˆ
L(v) dm for every v ∈M .
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Proposition 3.2.5 The map IntM is a bijective isometry, i.e. it holds that

‖L‖M ∗ =
∥∥IntM (L)

∥∥
M ′ for every L ∈M ∗.

Proof. From the inequality

∣∣IntM (L)(v)
∣∣ =

∣∣∣∣ˆ L(v) dm

∣∣∣∣ ≤ ∥∥L(v)
∥∥
L1(m)

≤ ‖v‖M ‖L‖M ∗

we see that
∥∥IntM (L)

∥∥
M ′ ≤ ‖L‖M ∗ . For the converse inequality, let L ∈M ∗, fix ε > 0 and

find v ∈ M such that
∥∥L(v)

∥∥
L1(m)

≥ ‖v‖M
(
‖L‖M ∗ − ε

)
. Set ṽ := χ{L(v)≥0}v − χ{L(v)<0}v,

notice that |ṽ| = |v| and L(ṽ) =
∣∣L(v)

∣∣ m-a.e. and conclude by

∥∥IntM (L)
∥∥

M ′‖ṽ‖M ≥
∣∣IntM (L)(ṽ)

∣∣ =

∣∣∣∣ˆ L(ṽ) dm

∣∣∣∣ =
∥∥L(v)

∥∥
L1(m)

≥ ‖v‖M
(
‖L‖M ∗ − ε

)
= ‖ṽ‖M

(
‖L‖M ∗ − ε

)
and the arbitrariness of ε > 0. It remains to prove that IntM is surjective. Fix ` ∈M ′ and

for any v ∈ M consider the function sending a Borel set E ⊆ X to µv(E) := `(χE v) ∈ R.

Clearly µv is additive and – given a disjoint sequence (Ei)i of Borel sets – we have that

∣∣∣µv(⋃
n

En

)
− µv

( N⋃
n=1

En

)∣∣∣ =
∣∣∣µv( ⋃

n>N

En

)∣∣∣ =
∣∣∣`(χ∪n>NEnv)∣∣∣ ≤ ‖`‖M ′

∥∥χ⋃
n>N Env

∥∥
M
.

Since
∥∥χ⋃

n>N Env
∥∥2

M
=
´⋃

n>N En
|v|2 dm→ 0 by the dominated convergence theorem, we see

that µv is a Borel measure. By construction, it is also absolutely continuous with respect to

the measure m and thus it has a Radon-Nikodým derivative: call it L(v) ∈ L1(m).

By construction we clearly have that the mapping v 7→ L(v) is linear. Moreover, since for

every E,F ⊆ X Borel the identities µχEv(F ) = `(χFχEv) = `(χE∩F v) = µv(E ∩ F ) grant

that the equality
´
F L(χEv) dm =

´
E∩F L(v) dm is satisfied, we see that

L(χEv) = χEL(v) for every v ∈M and E ⊆ X Borel. (3.19)

Now let us prove that the map v 7→ L(v) ∈ L1(m) is continuous. For a given v ∈M , let us

set ṽ := χ{L(v)≥0}v − χ{L(v)<0}v, so that |ṽ| = |v| and – by (3.19) and the linearity of L – we

have
∣∣L(v)

∣∣ = L(ṽ) in the m-a.e. sense. Then

∥∥L(v)
∥∥
L1(m)

=

ˆ
L(ṽ) dm = µṽ(X) = `(ṽ) ≤ ‖`‖M ′‖ṽ‖M = ‖`‖M ′‖v‖M ,

which was the claim. The fact that L ∈M ∗ follows from (3.19) and Proposition 3.2.3. �

Remark 3.2.6 We point out that the map

IM : M ↪→M ∗∗, M 3 v 7→
(
IM (v) : M ∗ 3 L 7→ L(v) ∈ L1(m)

)
∈M ∗∗ (3.20)
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is an isometric embedding. Indeed, its L∞(m)-linearity can be easily proved, while to prove

that it preserves the pointwise norm observe that∣∣IM (v)
∣∣ = ess sup

|L|∗≤1

∣∣IM (v)(L)
∣∣ = ess sup

|L|∗≤1

∣∣L(v)
∣∣ ≤ |v| m-a.e. for every v ∈M

and that for any v ∈ M there exists L ∈ M ∗ such that L(v) = |v|2 = |L|2∗ holds m-a.e.,

namely choose ` ∈M ′ such that `(v) = ‖v‖2M = ‖`‖2M ′ and set L := Int−1
M (`). Then one has

that
∣∣IM (v)

∣∣ = |v| holds m-a.e. for all v ∈M , whence IM is an isometric embedding. �

Definition 3.2.7 The L2(m)-normed module M is said to be reflexive as module provided

the embedding IM is surjective.

Proposition 3.2.8 The L2(m)-normed module M is reflexive as module if and only if it is

reflexive as Banach space.

Proof. The map IntM : M ∗ → M ′ induces an isomorphism Inttr
M : M ′′ → (M ∗)′. Let us

denote by J : M ↪→M ′′ the canonical embedding. We have that

IntM ∗
(
IM (v)

)
(L) =

ˆ
IM (v)(L) dm =

ˆ
L(v) dm,

Inttr
M

(
J(v)

)
(L) = J(v)

(
IntM (L)

)
= IntM (L)(v) =

ˆ
L(v) dm

for every v ∈M and L ∈M ∗, whence we deduce that the diagram

M M ∗∗

M ′′ (M ∗)′

IM

J IntM∗

InttrM

commutes. Since IM , J are injective and Inttr
M , IntM ∗ are bijective, we thus conclude that

IM is surjective if and only if J is surjective. �

Proposition 3.2.9 Let V be a generating linear subspace of M . Suppose that L : V → L1(m)

is a linear map such that for some g ∈ L2(m) it holds∣∣L(v)
∣∣ ≤ g |v| m-a.e. for every v ∈ V. (3.21)

Then there exists a unique L̃ ∈ M ∗ such that L̃|V = L Moreover, the inequality |L|∗ ≤ g

holds m-a.e. in X.

Proof. We claim that for any v, w ∈ V and E ⊆ X Borel we have that

v = w m-a.e. on E =⇒ L(v) = L(w) m-a.e. on E. (3.22)

Indeed, note that (3.21) yields
∣∣L(v)−L(w)

∣∣ =
∣∣L(v −w)

∣∣ ≤ g |v −w| = 0 m-a.e. on E. Now

call Ṽ the set of all elements
∑n

i=1
χEivi, with (Ei)

n
i=1 Borel partition of X and v1, . . . , vn ∈ V .
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The vector space Ṽ is dense in M by hypothesis. We are forced to define L̃ : Ṽ → L1(m) as

follows: L̃(ṽ) :=
∑n

i=1
χEiL(vi) for every ṽ =

∑n
i=1

χEivi ∈ Ṽ , which is well-posed by (3.22)

and linear by construction. Given that for every ṽ =
∑n

i=1
χEivi ∈ Ṽ we have

∣∣L̃(ṽ)
∣∣ =

n∑
i=1

χEi
∣∣L(vi)

∣∣ ≤ g n∑
i=1

χEi |vi| = g |ṽ| m-a.e., (3.23)

we deduce that
∥∥L̃(ṽ)

∥∥
L1(m)

≤ ‖g‖L2(m) ‖ṽ‖M for every ṽ ∈ Ṽ . In particular L̃ is continuous,

whence it can be uniquely extended to a linear and continuous map L̃ : M → L1(m). It is

easy to see that L̃ is L∞(m)-linear, so that L̃ ∈ M ∗. To conclude, the fact that the m-a.e.

inequality
∣∣L̃(v)

∣∣ ≤ g |v| holds for every v ∈ M follows from (3.23) via an approximation

argument. Hence |L|∗ ≤ g holds m-a.e., as required. �

3.2.2 Hilbert modules and tensor products

We now focus our attention on a special class of normed modules:

Definition 3.2.10 (Hilbert module) An L2(m)-normed L∞(m)-module H is said to be a

Hilbert module provided
(
H , ‖ · ‖H

)
is a Hilbert space.

Proposition 3.2.11 Every Hilbert module is reflexive.

Proof. Any Hilbert module is clearly reflexive when viewed as a Banach space, thus also in

the sense of modules by Proposition 3.2.8. �

Proposition 3.2.12 Let H be a Hilbert module. Then the formula

〈v, w〉 :=
1

2

(
|v + w|2 − |v|2 − |w|2

)
∈ L1(m) (3.24)

defines an L∞(m)-bilinear map 〈·, ·〉 : H ×H → L1(m), called pointwise scalar product,

which satisfies

〈v, w〉 = 〈w, v〉∣∣〈v, w〉∣∣ ≤ |v||w|
〈v, v〉 = |v|2

in the m-a.e. sense for every v, w ∈H . (3.25)

Moreover, the pointwise parallelogram rule is satisfied, i.e.

2
(
|v|2 + |w|2

)
= |v + w|2 + |v − w|2 m-a.e. for every v, w ∈H . (3.26)

Proof. We only prove the validity of formula (3.26). The other properties can be obtained

by suitably adapting the proof of the analogous statements for Hilbert spaces, apart from

the L∞(m)-bilinearity of 〈·, ·〉, which can be shown by using the fact that 〈·, ·〉 is local and

continuous with respect to both entries by its very construction. Then let v, w ∈H be fixed.
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Since the norm ‖ · ‖H satisfies the parallelogram rule, we have that for any Borel set E ⊆ X

it holds

2

ˆ
E
|v|2 + |w|2 dm = 2 ‖χE v‖2H + 2 ‖χE w‖2H = ‖χE v + χE w‖2H + ‖χE v − χE w‖2H

=

ˆ
E
|v + w|2 + |v − w|2 dm,

which yields (3.26) by arbitrariness of E. �

Given any Hilbert module H , it holds that

ˆ
〈v, w〉 dm = 〈v, w〉H for every v, w ∈H , (3.27)

as one can immediately see by recalling that
´
|v|2 dm = ‖v‖2H .

Remark 3.2.13 Actually the pointwise parallelogram rule characterises the Hilbert modules:

any L2(m)-normed module is a Hilbert module if and only if (3.26) is satisfied. �

Theorem 3.2.14 (Riesz) Let H be a Hilbert module. Then for every L ∈H ∗ there exists

a unique element v ∈H such that

L(w) = 〈v, w〉 for every w ∈H . (3.28)

Moreover, the equality |v| = |L|∗ holds m-a.e. in X.

Proof. Consider IntH (L) ∈ H ′. By the classical Riesz theorem, there is (a unique) v ∈ H

such that 〈v, w〉H = IntH (L)(w) for every w ∈H . Hence for any w ∈H we have that

ˆ
E
〈v, w〉 dm = 〈v, χE w〉H = IntH (L)(χE w) =

ˆ
E
L(w) dm for every E ⊆ X Borel,

so that (3.28) is satisfied. Finally, it is easy to show that |v| = ess sup|w|≤1〈v, w〉. Recall that

also |L|∗ = ess sup|w|≤1L(w), therefore the m-a.e. equality |v| = |L|∗ follows. �

It immediately follows from Theorem 3.2.14 that the map H 3 v 7→ 〈v, ·〉 ∈ H ∗ is an

isometric isomorphism of modules.

Example 3.2.15 We compare the Riesz theorem for Hilbert spaces and Theorem 3.2.14 in

the special case in which H = L2(m).

The former grants that for any linear and continuous map ` : L2(m) → R there exists a

unique g in L2(m) such that `(f) =
´
fg dm for every f ∈ L2(m), thus ‖g‖L2(m) = ‖`‖L2(m)′ .

The latter grants that for any L∞(m)-linear and continuous map L : L2(m) → L1(m)

there exists a unique g in L2(m) such that L(f) = fg holds m-a.e. for every f ∈ L2(m), thus

accordingly |g| = |L|∗ holds m-a.e. in X. �
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In order to introduce the notion of tensor product of Hilbert modules, we first recall what

is the tensor product of two Hilbert spaces. Fix H1, H2 Hilbert spaces. We call H1 ⊗Alg H2

their tensor product as vector spaces, namely the space of formal finite sums
∑n

i=1 vi ⊗ wi,
with (v, w) 7→ v⊗w bilinear. The space H1⊗AlgH2 satisfies the following universal property:

given any vector space V and any bilinear map B : H1×H2 → V , there exists a unique linear

map T : H1 ⊗Alg H2 → V such that the diagram

H1 ×H2 H1 ⊗Alg H2

V

⊗

B
T

(3.29)

commutes, where ⊗ : H1 × H2 ↪→ H1 ⊗Alg H2 denotes the map (v, w) 7→ v ⊗ w. Hence we

can define a scalar product on H1 ⊗Alg H2 in the following way: first we declare

〈v ⊗ w, v′ ⊗ w′〉 := 〈v, v′〉H1
〈w,w′〉H2

for every v, v′ ∈ H1 and w,w′ ∈ H2,

then we can uniquely extend it to a bilinear operator 〈·, ·〉 :
[
H1 ⊗Alg H2

]2 → R, which is a

scalar product as a consequence of the lemma below.

Lemma 3.2.16 Let v1, . . . , vn ∈ H1 and w1, . . . , wn ∈ H2 be given. Then〈 n∑
i=1

vi ⊗ wi,
n∑
i=1

vi ⊗ wi
〉
≥ 0,

with equality if and only if
∑n

i=1 vi ⊗ wi = 0.

Proof. We can suppose with no loss of generality that H1 and H2 are finite-dimensional.

Choose orthonormal bases e1, . . . , ek and f1, . . . , fh of H1 and H2, respectively. Therefore a

basis of H1 ⊗Alg H2 is given by (ei ⊗ fj)i,j . Now notice that for any (aij)i,j ⊆ R it holds〈∑
i,j

aij ei ⊗ fj ,
∑
i,j

aij ei ⊗ fj
〉

=
∑
i,i′,j,j′

aij ai′j′ 〈ei ⊗ fj , ei′ ⊗ fj′〉︸ ︷︷ ︸
=δ(i,j)(i′,j′)

=
∑
i,j

a2
ij ,

whence the statement follows. �

Then we define the tensor product H1⊗H2 of Hilbert spaces as the completion of H1⊗AlgH2

with the respect to the distance coming from 〈·, ·〉.

Now consider two Hilbert modules H1,H2 over a metric measure space (X, d,m). De-

note by H 0
1 ,H

0
2 the L0-completions of H1,H2, respectively. Since H 0

1 ,H
0

2 are (algebraic)

modules over the ring L0(m), it makes sense to consider their tensor product H 0
1 ⊗Alg H 0

2 ,

which is the space of formal finite sums of objects of the form v ⊗ w, with (v, w) 7→ v ⊗ w
being L0(m)-bilinear. We endow it with a pointwise scalar product in the following way: first

we declare

〈v ⊗ v′, w ⊗ w′〉 := 〈v, v′〉〈w,w′〉 ∈ L0(m) for every v, v′ ∈H 0
1 and w,w′ ∈H 0

2 ,

then we can uniquely extend it to an L0(m)-bilinear operator 〈·, ·〉 :
[
H 0

1 ⊗AlgH 0
2

]2 → L0(m).

It turns out that such operator is a pointwise scalar product, as we are now going to prove.
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Lemma 3.2.17 Let H 0 be the L0-completion of a normed module H . Let v1, . . . , vn ∈H 0

be given. Then there exist e1, . . . , en ∈H 0 with the following properties:

i) 〈ei, ej〉 = 0 holds m-a.e. for every i 6= j.

ii) |ei| = χ{|ei|>0} holds m-a.e. for every i = 1, . . . , n.

iii) For all i = 1, . . . , n there exist (aij)
n
j=1 ⊆ L0(m) such that vi =

∑n
j=1 aij ej.

Proof. We explicitly build the desired e1, . . . , en by means of a ‘Gram-Schmidt orthogonali-

sation’ procedure: we recursively define the ei’s as e1 := χ{|v1|>0} v1/|v1| and

wk := vk −
k−1∑
i=1

〈vk, ei〉 ei, ek := χ{|wk|>0}
wk
|wk|

for every k = 2, . . . , n.

It can be readily checked that e1, . . . , en satisfy the required properties. �

Remark 3.2.18 Let (ei)
n
i=1 ⊆ H 0 satisfy items i), ii) of Lemma 3.2.17. Let v ∈ H 0 be an

element of the form v =
∑n

i=1 ai ei, for some (ai)
n
i=1 ⊆ L0(m). Then it is easy to check that

there is a unique choice of (bi)
n
i=1 ⊆ L0(m) such that:

a) v =
∑n

i=1 bi ei.

b) bi = 0 holds m-a.e. on {ei = 0} for all i = 1, . . . , n.

Moreover, we have that |v|2 =
∑n

i=1 |bi|2 is satisfied m-a.e. on X. �

Lemma 3.2.19 Let A ∈H 0
1 ⊗Alg H 0

2 be given. Then 〈A,A〉 ≥ 0 holds m-a.e. on X. More-

over, we have that 〈A,A〉 = 0 holds m-a.e. on some Borel set E ⊆ X if and only if χE A = 0.

Proof. Say A =
∑n

i=1 vi ⊗ wi. Associate e1, . . . , en ∈ H 0
1 and f1, . . . , fn ∈ H 0

2 to v1, . . . , vn

and w1, . . . , wn, respectively, as in Lemma 3.2.17. Let bij , cik ∈ L0(m) be as in Remark 3.2.18,

with vi =
∑n

j=1 bij ej and wi =
∑n

k=1 cik fk for all i = 1, . . . , n. If ajk :=
∑n

i=1 bij cik then

〈A,A〉 =
n∑

j,k=1

|ajk|2 |ej |2 |fk|2 holds m-a.e. on X,

whence the statement easily follows. �

Accordingly, it makes sense to define the pointwise Hilbert-Schmidt norm as

|A|HS :=
√
〈A,A〉 ∈ L0(m)+ for every A ∈H 0

1 ⊗Alg H 0
2 .

It immediately stems from Lemma 3.2.19 that |A|HS = 0 holds m-a.e. on a Borel set E ⊆ X

if and only if χEA = 0.
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Definition 3.2.20 (Tensor product of Hilbert modules) We define H1 ⊗ H2 as the

completion of the space {
A ∈H 0

1 ⊗Alg H 0
2 : |A|HS ∈ L2(m)

}
with respect to the norm A 7→

√´
|A|2HS dm. It turns out that H1 ⊗H2 is a Hilbert module.

Moreover, we denote by H 0
1 ⊗H 0

2 the L0-completion of H1 ⊗H2.

It can be readily checked that (H 0
1 ⊗H 0

2 )⊗H 0
3 and H 0

1 ⊗ (H 0
2 ⊗H 0

3 ) are isomorphic,

in other words the operation ⊗ is associative. Then for any k ∈ N it makes sense to define

(H 0)⊗k := H 0 ⊗ . . .⊗H 0︸ ︷︷ ︸
k-times

for every L0(m)-normed Hilbert module H 0.

Lemma 3.2.21 Let D1 ⊆ H1 and D2 ⊆ H2 be dense subsets such that |v|, |w| ∈ L∞(m) for

every v ∈ D1 and w ∈ D2. Then the set

D̃ :=

{ n∑
i=1

vi ⊗ wi : vi ∈ D1, wi ∈ D2

}
is dense in H1 ⊗H2. In particular, H1 ⊗H2 is separable as soon as H1,H2 are separable.

Proof. To prove the first part of the statement, it is clearly sufficient to show that

v ⊗ w is in the closure of D̃ for all v ∈H1, w ∈H2 with v ⊗ w ∈H1 ⊗H2. (3.30)

First of all, the closure of D̃ contains
{
v ⊗ w : v ∈ H1, w ∈ D2

}
: chosen any (vn)n ⊆ D1

converging to v, we have that |vn⊗w−v⊗w|HS =
∣∣(vn−v)⊗w

∣∣
HS

= |vn−v||w| → 0 in L2(m). In

a symmetric way, one can prove that the closure of D̃ contains also
{
v⊗w : v ∈ D1, w ∈H2

}
.

Therefore
{
v ⊗ w : v ∈ H1, w ∈ H2, |w| ∈ L∞(m)

}
is contained in the closure of D̃: given

any v ∈H1, w ∈H2 with |w| ∈ L∞(m) and a sequence (vn)n ⊆ D1 with vn → v, we have

|vn ⊗ w − v ⊗ w|HS ≤ |vn − v||w| → 0 in L2(m).

Finally, take any v ∈H1, w ∈H2 such that v⊗w ∈H1⊗H2 and define wn := χ{|w|≤n}w ∈H2

for all n ∈ N. Given that |v⊗wn−v⊗w|HS = |v||wn−w| = χ{|w|>n}|v||w| holds m-a.e. on X for

any n ∈ N, by applying the dominated convergence theorem we conclude that v⊗wn → v⊗w.

Therefore the claim (3.30) is proved, thus showing the first part of the statement.

The last part of the statement follows by noticing that any separable Hilbert module

admits a countable dense subset made of bounded elements. �

Remark 3.2.22 Given any Hilbert module H , we obtain the transposition operator

t : H ⊗H →H ⊗H
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by first declaring that t(v ⊗ w) := w ⊗ v ∈ H 0
2 ⊗Alg H 0

1 for all v ∈ H 0
1 , w ∈ H 0

2 and then

extending it by linearity and continuity (notice that it preserves the pointwise norm). It turns

out that t is an isometric L∞(m)-linear map. Since it is also an involution, i.e. t◦ t = idH ⊗H ,

we also see that it is an isomorphism of modules. We shall say that A ∈H ⊗H is symmetric

provided At := t(A) = A. �

Given any L0(m)-normed Hilbert module H 0 and some number k ∈ N, we define the

exterior power ΛkH 0 as follows: we set Λ0H 0 := L0(m) and Λ1H 0 := H 0, while for k ≥ 2

ΛkH 0 := (H 0)⊗k/Vk,

where we call Vk the closed subspace generated by

the elements v1 ⊗ . . .⊗ vk, with v1, . . . , vk ∈H 0

and vi = vj for some i 6= j.

(3.31)

The equivalence class of an element v1 ⊗ . . . ⊗ vk is denoted by v1 ∧ . . . ∧ vk. The pointwise

scalar product between any two such elements is given by

〈v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk〉(x) = det
(
〈vi, wj〉(x)

)
i,j

for m-a.e. x ∈ X, (3.32)

up to a factor k!.

3.2.3 Pullback of normed modules

We now introduce the notion of ‘pullback module’. In order to explain the ideas underlying

its construction, we first see in an example in the classical case of smooth manifolds how such

notion pops out and why it is relevant.

Let ϕ : M → N be a smooth map between two smooth manifolds M and N . Given a

point x ∈ M and a tangent vector v ∈ TxM , we have that dϕx(v) ∈ Tϕ(x)N is the unique

element for which dϕx(v)(f) = d(f ◦ϕ)x(v) holds for any smooth function f on N . However,

in our framework vector fields are not pointwise defined, so we are rather interested in giving a

meaning to the object dϕ(X), where X is a vector field on M . Unless ϕ is a diffeomorphism,

we cannot hope to define dϕ(X) as a vector field on N . What we need is the notion of

‘pullback bundle’: informally speaking, given a bundle E over N , we define ϕ∗E as that

bundle over M such that the fiber at a point x ∈M is exactly the fiber of E at ϕ(x). Hence

the object dϕ(X) can be defined as the section of ϕ∗TN satisfying dϕ(X)(x) = dϕx
(
X(x)

)
for every x ∈M .

Definition 3.2.23 (Maps of bounded compression) Let (X, dX,mX) and (Y, dY,mY) be

metric measure spaces. Then a map ϕ : Y → X is said to be of bounded compression provided

it is Borel and there exists a constant C > 0 such that ϕ∗mY ≤ CmX. The least such constant

C > 0 will be denoted by Comp(ϕ) and called compression constant of ϕ.

We introduce the notion of ‘pullback module’:
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Theorem 3.2.24 (Pullback module) Let (X, dX,mX) and (Y, dY,mY) be metric measure

spaces. Let M be an L2(mX)-normed module. Let ϕ : Y → X be a map of bounded com-

pression. Then there exists a unique couple (ϕ∗M , ϕ∗), where ϕ∗M is an L2(mY)-normed

module and ϕ∗ : M → ϕ∗M is a linear continuous operator, such that

i) |ϕ∗v| = |v| ◦ ϕ holds mY-a.e. for every v ∈M ,

ii) the set {ϕ∗v : v ∈M } generates ϕ∗M as a module.

Uniqueness is up to unique isomorphism: given another couple (ϕ̃∗M , ϕ̃∗) with the same

properties, there is a unique module isomorphism Φ : ϕ∗M → ϕ̃∗M such that Φ ◦ ϕ∗ = ϕ̃∗.

Proof. The proof goes as follows:

Uniqueness. We define the space V ⊆ ϕ∗M of simple elements as

V :=

{ n∑
i=1

χAiϕ
∗vi

∣∣∣∣ (Ai)i Borel partition of Y, (vi)i ⊆M

}
.

We are obliged to define Φ
(∑

i
χAi ϕ

∗vi
)

:=
∑

i
χAi ϕ̃

∗vi for any
∑

i
χAi ϕ

∗vi ∈ V . Since∣∣∣∣∑
i

χAi ϕ̃
∗vi

∣∣∣∣ =
∑
i

χAi |ϕ̃∗vi| =
∑
i

χAi |vi| ◦ ϕ =
∑
i

χAi |ϕ∗vi| =
∣∣∣∣∑

i

χAi ϕ
∗vi

∣∣∣∣ m.a.e.,

we see that such Φ is well-defined. Moreover, it is also linear and continuous, whence it can

be uniquely extended to a map Φ : ϕ∗M → ϕ̃∗M . It can be readily proven that Φ is a

module isomorphism satisfying Φ ◦ ϕ∗ = ϕ̃∗, thus showing uniqueness.

Existence. We define the ‘pre-pullback module’ Ppb as

Ppb :=
{

(Ai, vi)
n
i=1

∣∣ n ∈ N, (Ai)
n
i=1 Borel partition of Y, (vi)

n
i=1 ⊆M

}
.

We consider the following equivalence relation on Ppb: we declare (Ai, vi)i ∼ (Bj , wj)j pro-

vided |vi−wj | ◦ϕ = 0 holds mY-a.e. on Ai ∩Bj for every i, j. We shall denote by [Ai, vi]i the

equivalence class of (Ai, vi)i. Hence we introduce some operations on Ppb/ ∼:

[Ai, vi]i + [Bj , wj ]j := [Ai ∩Bj , vi + wj ]i,j ,

λ [Ai, vi]i := [Ai, λ vi]i,(∑
j

αj χBj

)
· [Ai, vi]i := [Ai ∩Bj , αj vi]i,j ,∣∣[Ai, vi]i∣∣ :=

∑
i

χAi |vi| ◦ ϕ ∈ L2(mY),

∥∥[Ai, vi]i
∥∥ :=

(ˆ ∣∣[Ai, vi]i∣∣2 dmY

)1/2

.

One can prove that
(
Ppb/ ∼, ‖ · ‖

)
is a normed space, then we define ϕ∗M as its completion

and we call ϕ∗ : M → ϕ∗M the map sending any v ∈M to [Y, v]. It can be seen that the

above operations can be uniquely extended by continuity to ϕ∗M , thus endowing it with the

structure of an L2(mY)-normed module, and that (ϕ∗M , ϕ∗) satisfies the required properties.

This concludes the proof of the statement. �
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Example 3.2.25 Consider M := L2(mX). Then ϕ∗M = L2(mY) and ϕ∗f = f ◦ ϕ holds for

every f ∈ L2(mX). �

Example 3.2.26 Suppose that we have Y = X×Z, for some metric measure space (Z, dZ,mZ)

such that mZ(Z) < +∞. Let us define dY

(
(x1, z1), (x2, z2)

)2
:= dX(x1, x2)2 + dZ(z1, z2)2 for

every pair (x1, z1), (x2, z2) ∈ X×Z and mY := mX⊗mZ. Denote by ϕ : Y → X the canonical

projection, which has bounded compression as ϕ∗mY = mZ(Z)mX.

Now fix an L2(mX)-normed module M and consider the space L2(Z,M ), which can be

naturally endowed with the structure of an L2(mY)-normed module. For any f ∈ L∞(mY)

and V· ∈ L2(Z,M ), we have that f · V· ∈ L2(Z,M ) is defined as z 7→ f(·, z)Vz ∈M . Given

any element V· of L2(Z,M ), say z 7→ Vz, we have that the pointwise norm |V·| is (mY-a.e.)

given by the function (x, z) 7→ |Vz|(x). Moreover, consider the operator ·̂ : M → L2(Z,M )

sending any v ∈M to the function v̂ : Z→M that is identically equal to v. We claim that(
ϕ∗M , ϕ∗

)
∼
(
L2(Z,M ), ·̂

)
. (3.33)

To prove property i) of Theorem 3.2.24 observe that

|v̂·|(x, z) = |Vz|(x) = |v|(x) =
(
|v| ◦ ϕ

)
(x, z) for mY-a.e. (x, z),

while ii) follows from density of the simple functions in L2(Z,M ). �

Remark 3.2.27 Suppose that mX is a Dirac delta. Hence any Banach space B can be viewed

as an L2(mX)-normed module (since L∞(mX) ∼ R). Then it holds that

(ϕ∗B, ϕ∗) ∼
(
L2(Z,B), ·̂

)
(3.34)

as a consequence of the previous example. �

Example 3.2.28 Fix an L2(mX)-normed module M . Suppose that the space Y is a subset

of X with mX(Y) > 0. Call ϕ : Y → X the inclusion map, which has bounded compression

provided Y is equipped with the measure mY := mX|Y. Consider the quotient L2(mY)-normed

module M / ∼, where v ∼ w if and only if |v − w| = 0 holds mX-a.e. on Y. Then

(ϕ∗M , ϕ∗) ∼
(
M / ∼, π

)
, (3.35)

where π : M →M / ∼ is the canonical projection. �

Proposition 3.2.29 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces. Let ϕ : Y → X

be a map of bounded compression and M an L2(mX)-normed module. Consider a generating

linear subspace V of M . Let N be an L2(mY)-normed module and T : V → N a linear map

satisfying the inequality∣∣T (v)
∣∣ ≤ C |v| ◦ ϕ mY-a.e. for every v ∈ V, (3.36)

for some constant C > 0. Then there is a unique linear continuous extension T̂ : M → N

of T such that
∣∣T̂ (v)

∣∣ ≤ C |v| ◦ ϕ holds mY-a.e. for every v ∈M .
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Proof. First of all, we claim that any extension T̂ as in the statement must satisfy

T̂ (χA v) = χA ◦ ϕT (v) for every v ∈ V and A ⊆ X Borel. (3.37)

To prove the claim, observe that

T̂ (χA v) + T̂ (χAc v) = T (v) = χA ◦ ϕT (v) + χAc ◦ ϕT (v). (3.38)

Moreover, we have that χA ◦ϕ
∣∣T̂ (χAc v)

∣∣ ≤ C χA ◦ϕ |χAc v| ◦ϕ = 0, i.e. χA ◦ϕ T̂ (χAc v) = 0.

Similarly, one has that χAc ◦ϕ T̂ (χA v) = 0. Hence by multiplying both sides of (3.38) by the

function χA ◦ ϕ we get χA ◦ ϕ T̂ (χA v) = χA ◦ ϕT (v) and accordingly

T̂ (χA v) = χA ◦ ϕ T̂ (χA v) + χAc ◦ ϕ T̂ (χA v) = χA ◦ ϕ T̂ (χA v) = χA ◦ ϕT (v),

thus proving the validity of (3.37).

In light of (3.37), we necessarily have to define T̂
(∑

i
χAi vi

)
:=
∑

i
χAi ◦ ϕT (vi) for any

finite Borel partition (Ai)i of X and for any (vi)i ⊆ V . Well-posedness of such definition

stems from the mY-a.e. inequality∣∣∣∣∑
i

χAi ◦ ϕT (vi)

∣∣∣∣ =
∑
i

χϕ−1(Ai)

∣∣T (vi)
∣∣ ≤ C∑

i

(
χAi |vi|

)
◦ ϕ = C

∣∣∣∣∑
i

χAi vi

∣∣∣∣ ◦ ϕ,
which also grants (linearity and) continuity of T̂ . Therefore the operator T̂ admits a unique

extension T̂ : M → N with the required properties. �

Remark 3.2.30 The operator T̂ in Proposition 3.2.29 also satisfies

T̂ (f v) = f ◦ ϕ T̂ (v) for every f ∈ L∞(mX) and v ∈M . (3.39)

Such property can be easily obtained by means of an approximation argument. �

The ideas contained in the proof of Proposition 3.2.29 can be adapted to show the following

result, whose proof will be omitted.

Proposition 3.2.31 Let (X, d,m) be a metric measure space. Let M1, M2 be L2(m)-normed

modules and T : M1 →M2 a linear map such that∣∣T (v)
∣∣ ≤ C |v| m-a.e. for every v ∈M1, (3.40)

for some constant C > 0. Then T is L∞(m)-linear and continuous.

Exercise 3.2.32 Let T : L2(m) → L2(m) be an L∞(m)-linear and continuous operator.

Prove that there exists a unique g ∈ L∞(m) such that T (f) = gf for every f ∈ L2(m). �
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Theorem 3.2.33 (Universal property) Let (X, dX,mX), (Y, dY,mY) be two metric mea-

sure spaces. Let ϕ : Y → X be a map of bounded compression. Consider an L2(mX)-normed

module M , an L2(mY)-normed module N and a linear map T : M → N . Suppose that

there exists a constant C > 0 such that∣∣T (v)
∣∣ ≤ C |v| ◦ ϕ mY-a.e. for every v ∈M . (3.41)

Then there exists a unique L∞(mY )-linear continuous operator T̂ : ϕ∗M → N , called lifting

of T , such that
∣∣T̂ (w)

∣∣ ≤ C |w| holds mY-a.e. for any w ∈ ϕ∗M and such that

M ϕ∗M

N

ϕ∗

T T̂
(3.42)

is a commutative diagram.

Proof. Call V := {ϕ∗v : v ∈M }, then V is a generating linear subspace of ϕ∗M . We define

the map S : V → N as S(ϕ∗v) := T (v) for every v ∈M . The mY-a.e. inequality∣∣T (v)
∣∣ ≤ C |v| ◦ ϕ = C |ϕ∗v|

grants that S is well-defined. Hence Proposition 3.2.31 guarantees that S admits a unique

extension T̂ : ϕ∗M → N with the required properties. �

Theorem 3.2.34 (Functoriality) Let (X, dX,mX), (Y, dY,mY) and (Z, dZ,mZ) be metric

measure spaces. Let ϕ : Y → X and ψ : Z → Y be maps of bounded compression. Fix an

L2(mX)-normed module M . Then the map ϕ ◦ ψ has bounded compression and(
ψ∗(ϕ∗M ), ψ∗ ◦ ϕ∗

)
∼
(
(ϕ ◦ ψ)∗M , (ϕ ◦ ψ)∗

)
. (3.43)

Proof. It is trivial to check that ϕ◦ψ has bounded compression. It only remains to show that∣∣ψ∗(ϕ∗v)
∣∣ = |v| ◦ ϕ ◦ ψ mZ-a.e. for every v ∈M ,{

ψ∗(ϕ∗v) : v ∈M
}

generates ψ∗(ϕ∗M ) as a module.

To prove the former, just notice that
∣∣ψ∗(ϕ∗v)

∣∣ = |ϕ∗v| ◦ ψ = |v| ◦ ϕ ◦ ψ. For the latter,

notice that the set V of all finite sums of the form
∑

i
χAi ϕ

∗vi, with (Ai)i Borel partition

of Y and (vi)i ⊆M , is a dense vector subspace of ϕ∗M . Hence the set of all finite sums of

the form
∑

j
χBj ψ

∗wj , with (Bj)j Borel partition of Z and (wj)j ⊆ V , is dense in ψ∗(ϕ∗M ),

thus proving that
{
ψ∗(ϕ∗v) : v ∈M

}
generates ψ∗(ϕ∗M ). �

Remark 3.2.35 Suppose that the map ϕ : Y → X is invertible and that both ϕ, ϕ−1

have bounded compression. Then Theorem 3.2.34 grants that (ϕ−1)∗(ϕ∗M ) ∼ M , thus in

particular one has that ϕ∗ : M → ϕ∗M is bijective. Hence, morally speaking, M and ϕ∗M

are the same module, up to identifying the spaces L∞(mX) and L∞(mY) via the invertible

map f 7→ f ◦ ϕ. �
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We now investigate the relation between (ϕ∗M )∗ and ϕ∗M ∗. Under suitable assumptions,

it will turn out that the operations of taking the dual and passing to the pullback commute.

Proposition 3.2.36 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces and ϕ : Y → X

a map of bounded compression. Then there exists a unique L∞(mY)-bilinear and continuous

map B : ϕ∗M × ϕ∗M ∗ → L1(mY) such that B(ϕ∗v, ϕ∗L) = L(v) ◦ ϕ is satisfied mY-a.e. for

every v ∈M and L ∈M ∗.

Proof. We are forced to declare B
(∑

i
χEi ϕ

∗vi,
∑

j
χFj ϕ

∗Lj
)

:=
∑

i,j
χEi∩Fj Lj(vi)◦ϕ. Since∣∣∣∣∑

i,j

χEi∩Fj Lj(vi) ◦ ϕ
∣∣∣∣ =

∑
i,j

χEi∩Fj
∣∣Lj(vi)∣∣ ◦ ϕ ≤∑

i,j

χEi∩Fj |Lj | ◦ ϕ |vi| ◦ ϕ

=

(∑
i

χEi |vi| ◦ ϕ
)(∑

j

χFj |Lj | ◦ ϕ
)

=

∣∣∣∣∑
i

χEi ϕ
∗vi

∣∣∣∣∣∣∣∣∑
j

χFj ϕ
∗Lj

∣∣∣∣,
we see that B is (well-defined and) continuous, whence it can be uniquely extended to an

operator B : ϕ∗M × ϕ∗M ∗ → L1(mY) satisfying all of the required properties. �

Proposition 3.2.37 Under the assumptions of Proposition 3.2.36, the map

I : ϕ∗M ∗ −→ (ϕ∗M )∗, W 7−→ B(·,W ) (3.44)

is well-defined, L∞(mY)-linear continuous and preserving the pointwise norm, i.e. the mY-a.e.

equality
∣∣I(W )

∣∣ = |W | holds for every W ∈ ϕ∗M ∗.

Proof. The map I(W ) : ϕ∗M → L1(mY) is L∞(mY)-linear continuous by Proposition 3.2.36,

in other words I(W ) ∈ (ϕ∗M )∗, which shows that I is well-posed. Moreover, notice that∣∣I(W )
∣∣ = ess sup

V ∈ϕ∗M ,
|V |≤1 mY-a.e.

∣∣B(V,W )
∣∣ ≤ ess sup

V ∈ϕ∗M ,
|V |≤1 mY-a.e.

|V ||W | ≤ |W | mY-a.e.,

whence I can be easily proven to be L∞(mY)-linear and continuous. Finally, to conclude it

suffices to prove that also
∣∣I(W )

∣∣ ≥ |W | holds mY-a.e. in Y. By density, it is actually enough

to obtain it for W of the form
∑n

j=1
χFj ϕ

∗Lj . Then observe that

∣∣I(W )
∣∣ ≥ ess sup

v1,...,vn∈M ,
|v1|,...,|vn|≤1 mX-a.e.

I(W )

( n∑
j=1

χFj ϕ
∗vj

)
=

n∑
j=1

χFj ess sup
vj∈M ,

|vj |≤1 mX-a.e.

Lj(vj) ◦ ϕ

=

n∑
j=1

χFj |Lj | ◦ ϕ =

n∑
j=1

χFj |ϕ∗Lj | = |W |

holds mY-a.e. in Y. Therefore the statement is achieved. �
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Remark 3.2.38 In particular, Proposition 3.2.37 shows that the map I is an isometric em-

bedding of ϕ∗M ∗ into (ϕ∗M )∗. However – as we are going to show in the next example –

the operator I needs not be surjective. �

Example 3.2.39 Suppose that X := {x̄} and mX := δx̄. Moreover, let Y := [0, 1] be endowed

with the Lebesgue measure and denote by ϕ the unique map from Y to X, which is clearly

of bounded compression. Given that L∞(mX) ∼ R, we can view any Banach space B as an

L2(mX)-normed module, so that Remark 3.2.27 yields

(ϕ∗B)∗ ∼
(
L2([0, 1],B)

)′
,

ϕ∗B∗ ∼ L2([0, 1],B′).

In general, L2([0, 1],B′) is only embedded into
(
L2([0, 1],B)

)′
, via the map that sends any

element `· ∈ L2([0, 1],B′) to L2([0, 1],B) 3 v· 7→
´ 1

0 `t(vt) dt, which clearly belongs to the

space
(
L2([0, 1],B)

)′
. Now consider e.g. the case in which B := L1(0, 1). Let us define the

map T : L2
(
[0, 1], L1(0, 1)

)
→ R as

T (f) :=

ˆ 1

0

ˆ 1

0
ft(x) gt(x) dx dt for every f ∈ L2

(
[0, 1], L1(0, 1)

)
,

where gt := χ[0,t]. Hence T does not come from any element of L2
(
[0, 1], L∞(0, 1)

)
: it should

come from the map t 7→ gt ∈ L∞(0, 1), which is not Borel (and not essentially separably

valued). This shows that the space L2
(
[0, 1], L∞(0, 1)

)
and the dual of L2

(
[0, 1], L1(0, 1)

)
are

different. �

Lemma 3.2.40 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces and ϕ : Y → X a

map of bounded compression. Let H be a Hilbert module on X. Then ϕ∗H is a Hilbert

module.

Proof. Notice that

2
(
|ϕ∗v|2 + |ϕ∗w|2

)
= 2
(
|v|2 + |w|2

)
◦ ϕ = |v + w|2 ◦ ϕ+ |v − w|2 ◦ ϕ

= |ϕ∗v + ϕ∗w|2 + |ϕ∗v − ϕ∗w|2

is satisfied mY-a.e. for any v, w ∈H . Then the pointwise parallelogram identity can be shown

to hold for elements of the form
∑

i
χEi ϕ

∗vi, thus accordingly for all elements of ϕ∗H by an

approximation argument. This proves that ϕ∗H is a Hilbert module, as required. �

Proposition 3.2.41 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces and ϕ : Y → X

a map of bounded compression. Let H be a Hilbert module on X. Then

ϕ∗H ∗ ∼ (ϕ∗H )∗. (3.45)

Proof. Consider the map I : ϕ∗H ∗ → (ϕ∗H )∗ of Proposition 3.2.37. We aim to prove that

I is surjective. Denote by R : H →H ∗ and R̂ : ϕ∗H → (ϕ∗H )∗ the Riesz isomorphisms,
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as in Theorem 3.2.14. Note that ϕ∗ ◦R : H → ϕ∗H ∗ satisfies
∣∣(ϕ∗ ◦R)(v)

∣∣ = |v| ◦ϕ mY-a.e.

for any v ∈ H , whence Theorem 3.2.33 grants that there exists a unique L∞(mY)-linear

continuous operator ϕ̂∗ ◦R : ϕ∗H → ϕ∗H ∗ such that ϕ̂∗ ◦R(ϕ∗v) = (ϕ∗ ◦R)(v) holds for

every v ∈H . Now let us define J := ϕ̂∗ ◦R ◦ R̂−1 : (ϕ∗H )∗ → ϕ∗H ∗. We claim that

I ◦ J = id(ϕ∗H )∗ . (3.46)

Given that I ◦ J is L∞(mY)-linear continuous by construction, it suffices to check that I ◦ J
is the identity on the subspace

{
R̂(ϕ∗v) : v ∈ H

}
, which generates (ϕ∗H )∗ as a module.

Observe that for any v, w ∈H it holds that

R̂(ϕ∗v)(ϕ∗w) = 〈ϕ∗v, ϕ∗w〉 = 〈v, w〉 ◦ ϕ,

(I ◦ J)
(
R̂(ϕ∗v)

)
(ϕ∗w) = I

(
ϕ̂∗ ◦R(ϕ∗v)

)
(ϕ∗w) = I

(
(ϕ∗ ◦R)(v)

)
(ϕ∗w) =

(
R(v)(w)

)
◦ ϕ

= 〈v, w〉 ◦ ϕ,

whence (3.46) follows. This grants that I is surjective, thus concluding the proof. �
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Almost all the material contained in this chapter has been introduced by N. Gigli in [18]. The

notion of L2(m)-normed L∞(m)-module is a variant of a similar concept that was investigated

by N. Weaver [34,35], who was in turn inspired by the papers [26,27] of J.-L. Sauvageot.
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Chapter 4

First-order calculus on metric

measure spaces

In this chapter we develop a first-order differential structure on general metric measure spaces.

First of all, the key notion of cotangent module is obtained by combining the Sobolev calculus

(discussed in Chapter 2) with the theory of normed modules (described in Chapter 3). The

elements of the cotangent module L2(T ∗X), which are defined and studied in Section 4.1,

provide a convenient abstraction of the concept of ‘1-form on a Riemannian manifold’.

By duality one can introduce the so-called tangent module, which is denoted by L2(TX).

Another strictly related notion is that of divergence operator. Both these objects are treated

in Section 4.2. The fundamental class of infinitesimally Hilbertian metric measure spaces,

namely those metric measure spaces whose associated tangent/cotangent modules are Hilbert

modules, is studied in detail in Section 4.3.

Finally, Section 4.4 is devoted to the ‘transformations’ of metric measure spaces, called

maps of bounded deformation. Any such map is associated with a natural notion of differential,

which is a linear and continuous operator between suitable normed modules.

4.1 Cotangent module

4.1.1 Definition and basic properties

In the next result we introduce the important notion of cotangent module, which will play

a crucial role in the following discussion. It also motivates our interest toward the theory of

L2(m)-normed L∞(m)-modules developed in Chapter 3.

Theorem 4.1.1 (Cotangent module) Let (X, d,m) be a fixed metric measure space. Then

there exists a unique couple
(
L2(T ∗X), d

)
, where L2(T ∗X) is an L2(m)-normed L∞(m)-module

and d : S2(X)→ L2(T ∗X) is a linear operator, such that

i) |df | = |Df | holds m-a.e. for every f ∈ S2(X).

91
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ii) L2(T ∗X) is generated by
{

df : f ∈ S2(X)
}

.

Uniqueness is intended up to unique isomorphism: if another couple (M̃ , d̃) satisfies the same

properties, then there is a unique module isomorphism Φ : L2(T ∗X)→ M̃ such that Φ◦d = d̃.

We shall refer to L2(T ∗X) as cotangent module and to d as differential.

Proof. The proof goes as follows:

Uniqueness. Fix any couple (M̃ , d̃) that satisfies both conditions i) and ii). We claim that

for every f, g ∈ S2(X) and E ⊆ X Borel it holds that

df = dg m-a.e. on E ⇐⇒ d̃f = d̃g m-a.e. on E. (4.1)

Indeed, df = dg m-a.e. on E if and only if |d(f − g)| = |D(f − g)| = |d̃(f − g)| m-a.e. on E if

and only if d̃f = d̃g m-a.e. on E. Now let us define

V :=

{ n∑
i=1

χEidfi

∣∣∣∣ n ∈ N, (Ei)
n
i=1 Borel partition of X, (fi)

n
i=1 ⊆ S2(X)

}
,

Ṽ :=

{ n∑
i=1

χEi d̃fi

∣∣∣∣ n ∈ N, (Ei)
n
i=1 Borel partition of X, (fi)

n
i=1 ⊆ S2(X)

}
,

which are vector subspaces of L2(T ∗X) and M̃ , respectively. Note that any module isomor-

phism Φ : L2(T ∗X)→ M̃ satisfying Φ◦d = d̃ must necessarily restrict to the map Φ : V → Ṽ

given by

Φ

( n∑
i=1

χEidfi

)
:=

n∑
i=1

χEi d̃fi for every
n∑
i=1

χEidfi ∈ V. (4.2)

Well-posedness of (4.2) stems from (4.1). Moreover, the m-a.e. equalities∣∣∣∣ n∑
i=1

χEi d̃fi

∣∣∣∣ =
n∑
i=1

χEi |d̃fi| =
n∑
i=1

χEi |Dfi| =
n∑
i=1

χEi |dfi| =
∣∣∣∣ n∑
i=1

χEidfi

∣∣∣∣
grant that Φ preserves the pointwise norm, whence also the norm. Since V is dense in L2(T ∗X)

by property ii) for
(
L2(T ∗X),d

)
, the linear continuous map Φ : V → M̃ can be uniquely

extended to an operator Φ : L2(T ∗X) → M̃ , which is linear continuous and preserves the

pointwise norm by Remark 3.1.16. In particular, it is an isometry, whence it is injective and it

has closed image. Given that Φ(V ) = Ṽ is dense in M̃ by property ii) for (M̃ , d̃), we deduce

that Φ is also surjective. In order to conclude, it only remains to show that Φ is L∞(m)-linear.

To do so, first notice that Φ(χE v) = χE Φ(v) is satisfied for every E ⊆ X Borel and v ∈ V .

Since Φ and the multiplication by L∞-functions are continuous, the same property holds for

every v ∈ L2(T ∗X), whence Φ(f v) = f Φ(v) for all f : X → R simple and v ∈ L2(T ∗X) by

linearity of Φ. Finally, the same is true also for every f ∈ L∞(m) by density of the simple

functions in L∞(m). This completes the proof of the uniqueness part of the statement.

Existence. Let us define the pre-cotangent module as the set

Pcm :=
{{

(Ei, fi)
}n
i=1

∣∣∣ n ∈ N, (Ei)
n
i=1 Borel partition of X, (fi)

n
i=1 ⊆ S2(X)

}
.
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For simplicity, we shall write (Ei, fi)i instead of
{

(Ei, fi)
}n
i=1

. We introduce an equivalence

relation on Pcm: we say (Ei, fi)i ∼ (Fj , gj)j if and only if |D(fi − gj)| = 0 m-a.e. in Ei ∩ Fj
for every i, j. Let us denote by [Ei, fi]i ∈ Pcm/ ∼ the equivalence class of (Ei, fi)i ∈ Pcm.

We now define some operations on the quotient Pcm/ ∼, which are well-defined by locality

of minimal weak upper gradients (recall Theorem 2.1.28):

[Ei, fi]i + [Fj , gj ]j := [Ei ∩ Fj , fi + gj ]i,j ,

α [Ei, fi]i := [Ei, α fi]i,(∑
j

αj χFj

)
· [Ei, fi]i := [Ei ∩ Fj , αj fi]i,j ,∣∣[Ei, fi]i∣∣ :=

∑
i

χEi |Dfi| m-a.e. in X,

∥∥[Ei, fi]i
∥∥ :=

∥∥∣∣[Ei, fi]i∣∣∥∥L2(m)
=

(∑
i

ˆ
Ei

|Dfi|2 dm

)1/2

.

(4.3)

The first two operations in (4.3) give Pcm/ ∼ a vector space structure, the third one is the

multiplication by simple functions · : Sf(m) × (Pcm/ ∼) → (Pcm/ ∼) (where Sf(m) denotes

the space of all simple functions on X modulo m-a.e. equality), the fourth one is the pointwise

norm | · | : (Pcm/ ∼)→ L2(m) and the fifth one is a norm on Pcm/ ∼.

We only prove that ‖ · ‖ is actually a norm on Pcm/ ∼: if
∥∥[Ei, fi]i

∥∥ = 0 then |Dfi| = 0

holds m-a.e. on Ei for every i, so that (Ei, fi)i ∼ (X, 0). Moreover, it directly follows from

the definitions in (4.3) that
∥∥α [Ei, fi]i

∥∥ = |α|
∥∥[Ei, fi]i

∥∥. Finally, one has

∥∥[Ei, fi]i + [Fj , gj ]j
∥∥ =

∥∥[Ei ∩ Fj , fi + gj ]i,j
∥∥ =

∥∥∥∥∑
i,j

χEi∩Fj
∣∣D(fi + gj)

∣∣∥∥∥∥
L2(m)

≤
∥∥∥∥∑

i,j

χEi∩Fj |Dfi|
∥∥∥∥
L2(m)

+

∥∥∥∥∑
i,j

χEi∩Fj |Dgj |
∥∥∥∥
L2(m)

=

∥∥∥∥∑
i

χEi |Dfi|
∥∥∥∥
L2(m)

+

∥∥∥∥∑
j

χFj |Dgj |
∥∥∥∥
L2(m)

=
∥∥[Ei, fi]i

∥∥+
∥∥[Fj , gj ]j

∥∥,
which is the triangle inequality for ‖ · ‖. Hence ‖ · ‖ is a norm on Pcm/ ∼.

Let us denote by
(
L2(T ∗X), ‖ · ‖L2(T ∗X)

)
the completion of

(
Pcm/ ∼, ‖ · ‖

)
. One has that

the operations | · | : (Pcm/ ∼) → L2(m) and · : Sf(m) × (Pcm/ ∼) → (Pcm/ ∼), which can

be readily proved to be continuous, uniquely extend to suitable

| · | : L2(T ∗X)→ L2(m),

· : L∞(m)× L2(T ∗X)→ L2(T ∗X),

which endow L2(T ∗X) with the structure of an L2(m)-normed L∞(m)-module.
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Finally, let us define the differential operator d : S2(X) → L2(T ∗X) as df := [X, f ] for

every f ∈ S2(X), where we think of Pcm/ ∼ as a subset of L2(T ∗X). Note that

d(α f + β g) = [X, α f + β g] = α [X, f ] + β [X, g] = α df + β dg ∀f, g ∈ S2(X), α, β ∈ R,

proving that d is a linear map. Also |df | =
∣∣[X, f ]

∣∣ = |Df | holds m-a.e. for any f ∈ S2(X),

which shows the validity of i). To conclude, observe that the family of all finite sums of the

form
∑n

i=1
χEidfi, with (Ei)

n
i=1 Borel partition of X and (fi)

n
i=1 ⊆ S2(X), coincides with the

space Pcm/ ∼, thus it is dense in L2(T ∗X) by the very definition of L2(T ∗X), proving ii) and

accordingly the statement. �

Theorem 4.1.2 (Closure of the differential) Let (fn)n ⊆ S2(X) be a given sequence that

pointwise converges m-a.e. to some limit function f . Suppose that dfn ⇀ ω weakly in L2(T ∗X)

for some ω ∈ L2(T ∗X). Then f ∈ S2(X) and df = ω.

Moreover, the same conclusion holds if (fn)n ⊆ W 1,2(X) satisfies fn ⇀ f and dfn ⇀ ω

weakly in L2(m) and L2(T ∗X), respectively.

Proof. By Mazur’s lemma (recall Theorem A.2) we can assume without loss of generality

that we have dfn → ω in the strong topology of L2(T ∗X). In particular, |Dfn| = |dfn| → |ω|
strongly in L2(m) as n→∞, whence we have that f ∈ S2(X) by Proposition 2.1.13. Moreover,

it holds that

lim
n→∞

∥∥df − dfn
∥∥
L2(T ∗X)

≤ lim
n→∞

lim
k→∞

∥∥d(fk − fn)
∥∥
L2(T ∗X)

= lim
n→∞

lim
k→∞

∥∥∣∣d(fk − fn)
∣∣∥∥
L2(m)

= 0,

so that df = ω as required. Finally, the last statement follows from the first one by applying

twice Mazur’s lemma and by recalling that any strongly converging sequence in L2(m) has a

subsequence that is m-a.e. convergent to the same limit. �

Remark 4.1.3 We point out that the map

W 1,2(X) −→ L2(m)× L2(T ∗X),

f 7−→ (f,df),
(4.4)

is a linear isometry, as soon as the target space L2(m)×L2(T ∗X) is endowed with the product

norm
∥∥(f, ω)

∥∥2
:= ‖f‖2L2(m) + ‖ω‖2L2(T ∗X). �

4.1.2 Calculus rules and their consequences

Theorem 4.1.4 (Calculus rules for the differential) The following properties hold:

A) Locality. Let f, g ∈ S2(X) be given. Then df = dg holds m-a.e. in {f = g}.

B) Chain rule. Let f ∈ S2(X) be given. Then:



4.1. Cotangent module 95

B1) If a Borel set N ⊆ R is L1-negligible, then df = 0 holds m-a.e. in f−1(N).

B2) If I ⊆ R is an interval satisfying (f∗m)(R \ I) = 0 and ϕ : I → R is a Lipschitz

function, then ϕ ◦ f ∈ S2(X) and d(ϕ ◦ f) = ϕ′ ◦ f df . The expression ϕ′ ◦ f df is

a well-defined element of L2(T ∗X) by B1).

C) Leibniz rule. Let f, g ∈ S2(X) ∩ L∞(m) be given. Then fg ∈ S2(X) ∩ L∞(m) and it

holds that d(fg) = f dg + g df .

Proof. The proof goes as follows:

A) Note that |df − dg| = |D(f − g)| = 0 holds m-a.e. in {f − g = 0} by Theorem 2.1.28,

whence we have that df = dg holds m-a.e. in {f = g}, as required.

B1) We have that |df | = |Df | = 0 holds m-a.e. on f−1(N) by Theorem 2.1.28, so that df = 0

holds m-a.e. on f−1(N).

B2) The Lipschitz function ϕ : I → R can be extended to a Lipschitz function ϕ : R → R
and the precise choice of such extension is irrelevant for the statement to hold, because the

set f−1(R \ I) has null m-measure. Then assume without loss of generality that I = R. We

know that ϕ ◦ f ∈ S2(X) by Theorem 2.1.28.

If ϕ is a linear function, then the chain rule just reduces to the linearity of the differential.

If ϕ is an affine function, say that ϕ(t) = at+ b, then d(ϕ ◦ f) = d(af + b) = a df = ϕ′ ◦ f df .

Now suppose that ϕ is a piecewise affine function. Say that (In)n is a sequence of intervals

whose union covers the whole real line R and that (ψn)n is a sequence of affine functions such

that ϕ|In = ψn holds for every n ∈ N. Since ϕ′ and ψ′n coincide L1-a.e. in the interior of In,

we have that d(ϕ ◦ f) = d(ψn ◦ f) = ψ′n ◦ f df = ϕ′ ◦ f df holds m-a.e. on f−1(In) for all n,

so that d(ϕ ◦ f) = ϕ′ ◦ f df is verified m-a.e. on
⋃
n f
−1(In) = X, as required.

To prove the case of a general Lipschitz function ϕ : R → R, we want to approximate ϕ

with a sequence of functions ϕn satisfying the following properties:

(ϕn)n ⊆ LIP(R) are piecewise affine functions with sup
n∈N

Lip(ϕn) ≤ Lip(ϕ),

ϕn(t)→ ϕ(t) for every t ∈ R and ϕ′n(t)→ ϕ′(t) for L1-a.e. t ∈ R.
(4.5)

First of all, denote by ϕn the function that coincides with ϕ at {i/n : i ∈ Z} and is affine

in the interval
[
i/n, (i+ 1)/n

]
for every i ∈ Z. One can readily prove that Lip(ϕn) ≤ Lip(ϕ)

for all n. Given any i ∈ Z, we deduce from the fact that the identity ϕ′n(t) =
ffl (i+1)/n
i/n ϕ′ dL1

holds for all t ∈
[
i/n, (i+ 1)/n

]
and from an application of Jensen’s inequality that

ˆ (i+1)/n

i/n
|ϕ′n|2 dL1 =

1

n

∣∣∣∣  (i+1)/n

i/n
ϕ′ dL1

∣∣∣∣2 ≤ 1

n

 (i+1)/n

i/n
|ϕ′|2 dL1

=

ˆ (i+1)/n

i/n
|ϕ′|2 dL1.

(4.6)

Now fix m ∈ N. It can be readily checked that ϕn → ϕ strongly in L2(−m,m), while (4.6)

grants that
´m
−m |ϕ

′
n|2 dL1 ≤

´m
−m |ϕ

′|2 dL1 for every n, whence there is a subsequence (nk)k

such that ϕ′nk ⇀ g weakly in L2(−m,m) for some g ∈ L2(−m,m). This forces g = ϕ′|(−m,m)
,
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so that the original sequence (ϕ′n)n satisfies ϕ′n ⇀ ϕ′ weakly in L2(−m,m). Moreover, it holds

that
´m
−m |ϕ

′|2 dL1 ≤ limn

´m
−m |ϕ

′
n|2 dL1 ≤

´m
−m |ϕ

′|2 dL1, thus necessarily ϕ′n → ϕ′ strongly

in L2(−m,m). In particular, there exists a subsequence (nk)k such that ϕ′nk(t) → ϕ′(t) for

a.e. t ∈ (−m,m). Up to performing a diagonalisation argument, we can therefore build a

sequence (ϕn)n that satisfies (4.5), as required.

Now notice that
´
|ϕ′n−ϕ′|2 ◦f |df |2 dm→ 0 by (4.5), by B1) and by an application of the

dominated convergence theorem, in other words ϕ′n ◦ f df → ϕ′ ◦ f df in the strong topology

of L2(T ∗X). Since (4.5) also grants that ϕn ◦ f → ϕ ◦ f pointwise m-a.e. in X and since we

have d(ϕn ◦ f) = ϕ′n ◦ f df by the previous part of the proof, we deduce from Theorem 4.1.2

that d(ϕn ◦ f)→ ϕ′ ◦ f df in L2(T ∗X), thus accordingly d(ϕ ◦ f) = ϕ′ ◦ f df .

C) We already know that fg ∈ S2(X) ∩ L∞(m) by Theorem 2.1.28. In the case in which

f, g ≥ 1, we deduce from property B2) that

d(fg)

fg
= d log(fg) = d

(
log(f) + log(g)

)
= d log(f) + d log(g) =

df

f
+

dg

g
,

whence we get d(fg) = f dg + g df by multiplying both sides by fg.

In the general case f, g ∈ L∞(m), choose a constant C > 0 so big that f + C, g + C ≥ 1.

By the previous case, we know that

d
(
(f + C)(g + C)

)
= (f + C) d(g + C) + (g + C) d(f + C)

= (f + C) dg + (g + C) df

= f dg + g df + C d(f + g),

(4.7)

while a direct computation yields

d
(
(f + C)(g + C)

)
= d

(
fg + C(f + g) + C2

)
= d(fg) + C d(f + g). (4.8)

By subtracting (4.8) from (4.7), we finally get that d(fg) = f dg + g df , as required. Hence

the statement is achieved. �

Proposition 4.1.5 The set
{

df : f ∈W 1,2(X)
}

generates the tangent module L2(T ∗X).

Proof. Denote by M the module generated by
{

df : f ∈ W 1,2(X)
}

. It clearly suffices to

prove that df ∈M whenever f ∈ S2(X). Fix any x̄ ∈ X. For any n,m ∈ N, let us call

fn := (f ∨ n) ∧ (−n) ∈ L∞(m),

ηm :=
(
1− d

(
·, Bm(x̄)

))+
,

fnm := ηm fn ∈ L2(m).

Since the function fn can be written as ϕn ◦ f , where ϕn is the 1-Lipschitz function defined

by ϕn(t) := (t ∨ n) ∧ (−n), we have that fn ∈ S2(X) by property B2) of Theorem 4.1.4, thus

accordingly fnm ∈W 1,2(X) by property C) of Theorem 4.1.4. More precisely, it holds that

dfn = ϕ′n ◦ f df = χ{|f |≤n} df,

χBm(x̄) dfnm = χBm(x̄)

(
ηm dfn + fn dηm

)
= χBm(x̄) dfn,
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so that df = dfnm holds m-a.e. in Anm := f−1
(
[−n, n]

)
∩Bm(x̄). Given that m(X\Anm)↘ 0

as n,m → ∞, we deduce from the dominated convergence theorem that χAnm dfnm → df

in the strong topology of L2(T ∗X) as n,m → ∞. Since each χAnm dfnm belongs to M , we

conclude that df ∈M as well. This proves the statement. �

The ensuing result consists of an equivalent definition of cotangent module/differential:

Proposition 4.1.6 There exists a unique (up to unique isomorphism) couple (M , d̃), where

the space M is a module and d̃ : W 1,2(X)→M is a linear map, such that |d̃f | = |Df | holds

m-a.e. for every f ∈ W 1,2(X) and M is generated by
{

df : f ∈ W 1,2(X)
}

. Moreover, given

any such couple there exists a unique module isomorphism Ψ : M → L2(T ∗X) such that

W 1,2(X) M

S2(X) L2(T ∗X)

d̃

Ψ

d

(4.9)

is a commutative diagram.

Proof. The proof goes as follows:

Existence. One can repeat verbatim the proof of the existence part of Theorem 4.1.1.

Alternatively, let us call M the submodule of L2(T ∗X) that is generated by
{

df : f ∈
W 1,2(X)

}
and define d̃ := d|W 1,2(X)

. It can be easily seen that (M , d̃) satisfies the required

properties.

Uniqueness. In order to get uniqueness, it is clearly enough to prove the last part of the

statement. By the very same arguments that had been used in the proof of the uniqueness

part of Theorem 4.1.1, one can see that the requirement that Ψ is an L∞(m)-linear operator

satisfying Ψ(d̃f) = df for any f ∈ W 1,2(X) forces a unique choice of Ψ : M → L2(T ∗X).

The surjectivity of Ψ stems from Proposition 4.1.5. �

The abstract theory of cotangent modules presented above is consistent with the classical

one, as shown by the following result:

Proposition 4.1.7 Fix d ∈ N\{0}. Let L2
(
Rd, (Rd)∗,Ld

)
denote the space of all the L2(Ld)

1-forms in Rd. Let d̄ : W 1,2(Rd) → L2
(
Rd, (Rd)∗,Ld

)
be the map assigning to each Sobolev

function f ∈W 1,2(Rd) its distributional differential. Then(
L2
(
Rd, (Rd)∗,Ld

)
, d̄
)
∼
(
L2(T ∗Rd), d

)
, (4.10)

in the sense that there exists a unique module isomorphism Φ : L2(T ∗Rd)→ L2
(
Rd, (Rd)∗,Ld

)
such that Φ ◦ d = d̄.

Proof. We know by Theorem 2.1.37 that |d̄f | = |Df | holds Ld-a.e. for every f ∈ W 1,2(Rd).
Moreover, for any bounded Borel subset B of X and any ω ∈ (Rd)∗, there exists (by a cut-off

argument) a function f ∈ W 1,2(Rd) such that d̄f = ω holds Ld-a.e. in B. Hence the normed

module L2
(
Rd, (Rd)∗,Ld

)
is generated by the elements of the form χB ω. We thus conclude

by applying Proposition 4.1.6. �
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We conclude the section with an alternative approach: it is possible to define a notion of

cotangent module whose elements do not satisfy any integrability requirement.

Proposition 4.1.8 There exists a unique (up to unique isomorphism) couple (M 0, d0), where

the space M 0 is an L0-normed module and d0 : S2
loc(X)→M 0 is a linear map, such that the

equality |d0f | = |Df | holds m-a.e. for every f ∈ S2
loc(X) and such that L0-linear combinations

of elements in
{

d0f : f ∈ S2
loc(X)

}
are dense in M 0. Given any such couple, there exists a

unique map ι : L2(T ∗X)→M 0 – which is L∞-linear, continuous and preserving the pointwise

norm – such that

W 1,2(X) L2(T ∗X)

S2
loc(X) M 0

d

ι

d0

(4.11)

is a commutative diagram. Moreover, the image of L2(T ∗X) in M 0 via ι is dense.

Proof. Uniqueness follows along the same lines of Theorem 4.1.1. For existence, we consider

the L0-completion (M 0, ι) of L2(T ∗X). For any f ∈ S2
loc(X) there is a partition (En)n of X

and functions fn ∈ W 1,2(X) such that f = fn m-a.e. on En for every n ∈ N. It is clear that

the series
∑

n
χEn ι(dfn) converges in M 0 and the locality of the differential grants that its

limit which we shall call d0f , does not depend on the particular choice of (En)n, (fn)n.

Then the identity |d0f | = |Df | follows from the construction and the analogous property

of the differential. Also, we know that L∞-linear combinations of
{

df : f ∈ W 1,2(X)
}

are

dense in L2(T ∗X) and that ι
(
L2(T ∗X)

)
is dense in M 0. Thus L∞-linear combinations of

elements in
{
ι(df) = d0f : f ∈W 1,2(X)

}
are dense in M 0. This construction also shows the

existence and uniqueness of ι as in (4.11). �

4.2 Tangent module

4.2.1 Definition and basic properties

Definition 4.2.1 (Tangent module) We define the tangent module L2(TX) as the module

dual of L2(T ∗X). Its elements are called vector fields.

We can introduce the notion of vector field in an alternative way, which is not based upon

the theory of normed modules. Namely, we can define a suitable notion of derivation:

Definition 4.2.2 (L2-derivations) A linear map L : S2(X) → L1(m) is an L2-derivation

provided there exists ` ∈ L2(m) such that∣∣L(f)
∣∣ ≤ ` |Df | m-a.e. for every f ∈ S2(X). (4.12)

The relation between vector fields and derivations is described by the following result:



4.2. Tangent module 99

Proposition 4.2.3 Given any v ∈ L2(TX), the map S2(X) 3 f 7→ df(v) is a derivation.

Conversely, for any derivation L : S2(X)→ L1(m) there exists a unique v ∈ L2(TX) such

that L(f) = df(v), and |v| is the least function ` (in the m-a.e. sense) for which (4.12) holds.

Proof. Given any v ∈ L2(TX), let us define L := v ◦ d. Since
∣∣L(f)

∣∣ =
∣∣df(v)

∣∣ ≤ |Df ||v|
holds m-a.e., we have that L is the required derivation.

On the other hand, fix a derivation L and set V :=
{

df : f ∈ S2(X)
}

. By arguing as in

the proof of Proposition 3.2.9 one can see that for any f1, f2 ∈ S2(X) we have

df1 = df2 m-a.e. on X =⇒ L(f1) = L(f2) m-a.e. on X. (4.13)

Then the map T : V → L1(m), given by T (df) := L(f), is well-defined. Moreover, one has

that
∣∣T (df)

∣∣ ≤ ` |Df | for each f ∈ S2(X), whence Proposition 3.2.9 grants the existence of

a unique vector field v ∈ L2(TX) such that ω(v) = T (ω) for all ω ∈ V . In other words, we

have that df(v) = L(f) for every f ∈ S2(X). Now observe that
∣∣L(f)

∣∣ =
∣∣df(v)

∣∣ ≤ |v||Df |
holds m-a.e. for every f ∈ S2(X), which shows that |v| satisfies (4.12). Finally, let us take any

function ` ∈ L2(m) for which (4.12) holds. It can be readily checked that the m-a.e. equality

|v| = ess sup
ω∈L2(T ∗X)

χ{|ω|>0}

∣∣ω(v)
∣∣

|ω|
= ess sup

f∈S2(X)

χ{|Df |>0}

∣∣df(v)
∣∣

|Df |
(4.12)

≤ `

is verified, thus proving the required minimality of |v|. This completes the proof. �

Corollary 4.2.4 Let L : S2(X)→ L1(m) be a derivation. Then

L(fg) = f L(g) + g L(f) for every f, g ∈ S2(X) ∩ L∞(m). (4.14)

Proof. Direct consequence of Proposition 4.2.3 and of the Leibniz rule for the differential (see

item C) of Theorem 4.1.4). �

4.2.2 Divergence operator and gradients

The adjoint d∗ : L2(TX) → L2(m) of the unbounded operator d : L2(m) → L2(T ∗X) is (up

to a sign) what we call ‘divergence operator’. More explicitly:

Definition 4.2.5 (Divergence) We call D(div) the space of all vector fields v ∈ L2(TX)

for which there exists h ∈ L2(m) satisfying

−
ˆ
f h dm =

ˆ
df(v) dm for every f ∈W 1,2(X). (4.15)

The function h, which is unique by density of W 1,2(X) in L2(m), will be unambiguosly denoted

by div(v). Moreover, D(div) is a vector subspace of L2(TX) and div : D(div) → L2(m) is a

linear operator.

We show some properties of the divergence operator:
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Proposition 4.2.6 Let v, w ∈ D(div) be given. Suppose that v = w holds m-a.e. on some

open set Ω ⊆ X. Then div(v) = div(w) is satisfied m-a.e. on Ω.

Proof. By linearity of the divergence, it clearly suffices to prove that div(v) = 0 m-a.e. on Ω

whenever v = 0 m-a.e. on Ω. In order to prove it, notice that a simple cut-off argument gives

A :=
{
f ∈W 1,2(X) : f = 0 on Ωc

}
is dense in B :=

{
g ∈ L2(m) : g = 0 on Ωc

}
. (4.16)

Moreover, −
´
f div(v) dm =

´
df(v) dm = 0 holds for every f ∈ A, whence property (4.16)

ensures that
´
g div(v) dm = 0 for all g ∈ B, i.e. div(v) vanishes m-a.e. on Ω. �

Proposition 4.2.7 Let v ∈ D(div) be given. Let f : X→ R be a bounded Lipschitz function.

Then fv ∈ D(div) and

div(fv) = df(v) + f div(v) holds m-a.e. in X. (4.17)

Proof. Observe that the right hand side in (4.17) belongs to L2(m). Then pick g ∈W 1,2(X).

By the Leibniz rule for the differential, we have that

−
ˆ
g
(
df(v) + f div(v)

)
dm = −

ˆ
g df(v) + fg div(v) dm =

ˆ
d(fg)(v)− g df(v) dm

=

ˆ
f dg(v) dm.

Therefore the statement is achieved. �

To be precise, in the proof of the previous result we made use of this variant of the Leibniz

rule for the differential:

Proposition 4.2.8 Let f ∈W 1,2(X) and g ∈ LIP(X)∩L∞(m) be given. Then fg ∈W 1,2(X)

and d(fg) = f dg + g df .

Proof. Fix x̄ ∈ X and for any m ∈ N pick a 1-Lipschitz function χm : X→ [0, 1] with bounded

support such that χm = 1 on Bm(x̄). Then define fn := (f ∧ n) ∨ (−n) and gm := χm g for

every n,m ∈ N. Hence fn gm ∈ W 1,2(X) ∩ L∞(m) and d(fn gm) = fn dgm + gm dfn. Given

that
∣∣d(fn gm)

∣∣ ≤ (‖g‖L∞(m) +Lip(g)
)
|f |+‖g‖L∞(m)|df | ∈ L2(m) holds m-a.e. for every choice

of n,m ∈ N and fn gm → fg pointwise m-a.e. as n,m → ∞, we deduce that fg ∈ S2(X) by

the closure of the differential. Now observe that for any n ∈ N we have

χBm(x̄) d(fn g) = χBm(x̄) d(fn gm) = χBm(x̄)

(
fn dg + g dfn

)
for every m ∈ N,

whence d(fn g) = fn dg + g dfn is satisfied for every n ∈ N. Given that fn g → fg in L2(m)

and fn dg + g dfn → f dg + g df in L2(T ∗X), we conclude that d(fg) = f dg + g df by the

closure of d. �

We now introduce a special class of vector fields: that of gradients of Sobolev functions.

Definition 4.2.9 Let f ∈ S2(X). Then we call Grad(f) the set of all v ∈ L2(TX) such that

df(v) = |df |2 = |v|2 holds m-a.e. in X. (4.18)
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Remark 4.2.10 As observed in Remark 3.2.6, it holds that Grad(f) 6= ∅ for every f ∈ S2(X).

However, it can happen that Grad(f) is not a singleton. Furthermore, even if each Grad(f) is

a singleton, its unique element does not necessarily depend linearly on f . �

Given any Banach space B, we can define the multi-valued map Dual : B � B′ as

B 3 v 7−→
{
L ∈ B′ : L(v) = ‖L‖2B′ = ‖v‖2B

}
. (4.19)

The Hahn-Banach theorem grants that Dual(v) 6= ∅ for every v ∈ B.

Exercise 4.2.11 Prove that Dual is single-valued and linear if and only if B is a Hilbert

space. In this case, Dual is the Riesz isomorphism. �

Coming back to the gradients, we point out that

IntL2(T ∗X)

(
Grad(f)

)
= Dual(df) for every f ∈ S2(X), (4.20)

where the map Dual is associated to B := L2(T ∗X).

Example 4.2.12 Consider the space
(
R2, ‖ · ‖∞

)
, where

∥∥(x, y)
∥∥
∞ = max

{
|x|, |y|

}
. Define

the map f : R2 → R as f(x, y) := x. Then Grad(f) =
{

(x, y) ∈ R2 : x = 1, |y| ≤ 1
}

. �

Exercise 4.2.13 Prove that the multi-valued map Dual on
(
Rn, ‖ · ‖

)
is single-valued at any

point if and only if the norm ‖ · ‖ is differentiable. �

Remark 4.2.14 The inequality df(v) ≤ 1
2 |df |

2 + 1
2 |v|

2 holds m-a.e. in X for every f ∈ S2(X)

and v ∈ L2(TX) (by Young inequality). It can be readily proved that the opposite inequality

is satisfied m-a.e. if and only if v ∈ Grad(f). �

Theorem 4.2.15 The following properties hold:

A) Locality. Let f, g ∈ S2(X). Suppose that f = g holds m-a.e. on some Borel set E ⊆ X.

Then for any v ∈ Grad(f) there exists w ∈ Grad(g) such that v = w m-a.e. on E.

B) Chain rule. Let f ∈ S2(X) and v ∈ Grad(f) be given. Then:

B1) If a Borel set N ⊆ R is L1-negligible, then v = 0 holds m-a.e. on f−1(N).

B2) If ϕ : R → R is Lipschitz then ϕ′ ◦ f v ∈ Grad(ϕ ◦ f), where ϕ′ ◦ f is arbitrarily

defined on f−1
{

non-differentiability points of ϕ
}

.

Proof. To prove A), choose any w̃ ∈ Grad(g) and define w := χE v+χEc w̃. Then w ∈ Grad(g)

and v = w holds m-a.e. on E by locality of the differential, as required.

Property B1) directly follows from the analogous one for differentials (see Theorem 4.1.4),

while to show B2) notice that

d(ϕ ◦ f)(ϕ′ ◦ f v) = ϕ′ ◦ f d(ϕ ◦ f)(v) = |ϕ′ ◦ f |2 df(v) = |ϕ′ ◦ f |2 |df |2 = |ϕ′ ◦ f |2 |v|2

=
∣∣d(ϕ ◦ f)

∣∣2
is verified m-a.e. on X. �
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Given any two Sobolev functions f, g ∈ S2(X), let us define

Hf,g(ε) :=
1

2

∣∣D(g + ε f)
∣∣2 ∈ L1(m) for every ε ∈ R. (4.21)

Then the map Hf,g : R→ L1(m) can be easily proven to be convex, meaning that

H
(
(1−λ)ε0+λε1

)
≤ (1−λ)H(ε0)+λH(ε1) m-a.e. for all ε0, ε1 ∈ R and λ ∈ [0, 1]. (4.22)

Therefore the monotonicity of the difference quotients of Hf,g grants that

∃L1(m)- lim
ε↘0

Hf,g(ε)−Hf,g(0)

ε
= ess inf

ε>0

Hf,g(ε)−Hf,g(0)

ε
(4.23)

and an analogous statement holds for ε↗ 0.

Remark 4.2.16 The object in (4.23) could be morally denoted by df(∇g), for the reasons

we are now going to explain. Given a Banach space B, we have that the map Dual defined

in (4.19) is (formally) the differential of ‖ · ‖2B/2. Since TvB ≈ B and T‖v‖2B/2
R ≈ R for any

vector v ∈ B, we can actually view d
(
‖ · ‖2B/2

)
(v) : TvB → T‖v‖2B/2

R as an element of B′. In

our case, if we let B = L2(T ∗X) then we have that

lim
ε→0

‖dg + εdf‖2B − ‖dg‖
2
B

2 ε
= d

(
‖ · ‖2B

2

)
(dg)(df) = Dual(dg)(df) = df(∇g),

which leads to our interpretation. �

Proposition 4.2.17 Let f, g ∈ S2(X). Then the following properties hold:

i) For any v ∈ Grad(g) we have that ess infε>0
Hf,g(ε)−Hf,g(0)

ε ≥ df(v) holds m-a.e. in X.

ii) There is vf,+ ∈ Grad(g) such that ess infε>0
Hf,g(ε)−Hf,g(0)

ε = df(vf,+) m-a.e. in X.

i′) For any v ∈ Grad(g) we have that ess supε<0
Hf,g(ε)−Hf,g(0)

ε ≤ df(v) holds m-a.e. in X.

ii′) There is vf,− ∈ Grad(g) such that ess supε<0
Hf,g(ε)−Hf,g(0)

ε = df(vf,−) m-a.e. in X.

Proof. The proof goes as follows:

i), i′) Take v ∈ Grad(g). By Remark 4.2.14 we have that

dg(v) ≥ 1

2
|dg|2 +

1

2
|v|2 holds m-a.e. in X. (4.24)

Moreover, an application of Young’s inequality yields

d(g + ε f)(v) ≤ 1

2

∣∣d(g + ε f)
∣∣2 +

1

2
|v|2 m-a.e. in X. (4.25)

By subtracting (4.24) from (4.25) we thus obtain

εdf(v) ≤
∣∣d(g + ε f)

∣∣2 − |dg|2
2

m-a.e. in X. (4.26)
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Dividing both sides of (4.26) by ε > 0 (resp. ε < 0) and letting ε→ 0, we get i) (resp. i′)).

ii), ii′) We shall only prove ii), since the proof of ii′) is analogous. For any ε ∈ (0, 1), let us

pick some vε ∈ Grad(g + ε f). Notice that

‖vε‖L2(TX) =
∥∥d(g + ε f)

∥∥
L2(T ∗X)

≤ ‖dg‖L2(T ∗X) + ‖df‖L2(T ∗X) for every ε ∈ (0, 1),

whence the intersection among all 0 < ε′ < 1 of the weak∗-closure of
{
vε : ε ∈ (0, ε′)

}
is

non-empty by Banach-Alaoglu theorem. Then call vf,+ one of its elements. By expanding

the formula d(g + ε f)(vε) ≥ 1
2

∣∣d(g + ε f)
∣∣2 + 1

2 |vε|
2, which holds m-a.e. for every ε ∈ (0, 1),

we see that
1

2
|vε|2 +

1

2
|dg|2 − dg(vε) ≤ Gε holds m-a.e. in X, (4.27)

for a suitable Gε ∈ L1(m) that L1(m)-converges to 0 as ε ↘ 0. Observe that for any E ⊆ X

Borel we have that

FE : L2(TX)→ R, v 7−→
ˆ
E

1

2
|v|2 +

1

2
|dg|2 − dg(v) dm (4.28)

is a weakly∗-lower semicontinuous operator. Hence (4.27) grants that FE(vf,+) ≤ 0 for every

Borel set E ⊆ X, or equivalently 1
2 |vf,+|

2 + 1
2 |dg|

2 − dg(vf,+) ≤ 0 m-a.e. in X. Therefore

Remark 4.2.14 gives vf,+ ∈ Grad(g). Finally, observe that it m-a.e. holds that

d(g + ε f)(vε) =
1

2

∣∣D(g + ε f)
∣∣2 +

1

2
|vε|2,

dg(vε) ≤
1

2
|Dg|2 +

1

2
|vε|2.

(The first line is due to the fact that vε ∈ Grad(g + ε f), while the second one follows from

Young’s inequality, as seen above.) By subtracting the second line from the first one, we

obtain the m-a.e. inequality

df(vε) ≥
Hf,g(ε)−Hf,g(0)

ε
≥ ess inf

ε′>0

Hf,g(ε
′)−Hf,g(0)

ε′
=: Θ for every ε ∈ (0, 1). (4.29)

Recall that L2(TX) 3 v 7→
´
ω(v) dm is weakly∗-continuous for any ω ∈ L2(T ∗X). By

applying this fact with ω := χE df , where E ⊆ X is any Borel set, we deduce from (4.29) that

ˆ
E

df(vf,+) dm ≥
ˆ
E

Θ dm for every E ⊆ X Borel.

This grants that df(vf,+) ≥ Θ holds m-a.e. in X, which together with i) imply ii). �

Exercise 4.2.18 Prove that the norm of a finite-dimensional Banach space is differentiable

if and only if its dual norm is strictly convex. �
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4.3 Infinitesimal Hilbertianity

Proposition 4.3.1 Let (X, d,m) be a metric measure space. Then the following conditions

are equivalent:

i) For every f, g ∈ S2(X) it holds that

ess inf
ε>0

Hf,g(ε)−Hf,g(0)

ε
= ess sup

ε<0

Hf,g(ε)−Hf,g(0)

ε
. (4.30)

ii) For every g ∈ S2(X) the set Grad(g) is a singleton.

Proof. The proof goes as follows:

ii) =⇒ i) It trivially follows from items ii) and ii′) of Proposition 4.2.17.

i) =⇒ ii) Our aim is to show that if v, w ∈ Grad(g) then v = w. We claim that it is enough

to prove that

df(v) = df(w) for every f ∈ S2(X). (4.31)

Indeed, if (4.31) holds true then the operator df 7→ df(v − w) from the generating linear

subspace V :=
{

df : f ∈ S2(X)
}

of L2(T ∗X) to L1(m) is identically null, whence accordingly

we have that v − w = 0 by Proposition 3.2.9. This shows that it suffices to prove (4.31).

Take any f ∈ S2(X). Suppose that (4.31) fails, then (possibly interchanging v and w)

there exists a Borel set E ⊆ X with m(E) > 0 such that df(v) < df(w) holds m-a.e. in E.

Therefore we have that

ess sup
ε<0

Hf,g(ε)−Hf,g(0)

ε
≤ df(v) < df(w) ≤ ess inf

ε>0

Hf,g(ε)−Hf,g(0)

ε
m-a.e. in E,

which contradicts (4.30) This shows (4.31), as required. �

Definition 4.3.2 (Infinitesimal strict convexity) We say that (X, d,m) is infinitesimally

strictly convex provided the two conditions of Proposition 4.3.1 hold true. For any g ∈ S2(X),

we shall denote by ∇g the only element of Grad(g).

Theorem 4.3.3 The following conditions are equivalent:

i) W 1,2(X) is a Hilbert space.

ii) 2
(
|df |2 + |dg|2

)
=
∣∣d(f + g)

∣∣2 +
∣∣d(f − g)

∣∣2 holds m-a.e. for every f, g ∈W 1,2(X).

iii) (X, d,m) is infinitesimally strictly convex and df(∇g) = dg(∇f) holds m-a.e. in X for

every f, g ∈W 1,2(X).

iv) L2(T ∗X) and L2(TX) are Hilbert modules.

v) (X, d,m) is infinitesimally strictly convex and ∇(f + g) = ∇f +∇g holds m-a.e. in X

for every f, g ∈W 1,2(X).
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vi) (X, d,m) is infinitesimally strictly convex and ∇(fg) = f ∇g + g∇f holds m-a.e. in X

for every f, g ∈W 1,2(X) ∩ L∞(m).

Proof. The proof goes as follows:

i) =⇒ ii) First of all, observe that W 1,2(X) is a Hilbert space if and only if

W 1,2(X) 3 f 7−→ E(f) :=
1

2

ˆ
|df |2 dm satisfies the parallelogram rule. (4.32)

Now suppose that i) holds, then E(f+ε g)+E(f−ε g) = 2E(f)+2 ε2 E(g) for all f, g ∈W 1,2(X)

and ε 6= 0, or equivalently

E(f + ε g)− E(f)

ε
− E(f − ε g)− E(f)

ε
= 2 εE(g). (4.33)

Hence (4.33) and Proposition 4.2.17 grant that

ˆ
ess sup
v∈Grad(f)

dg(v) dm = lim
ε↘0

E(f + ε g)− E(f)

ε
= lim

ε↗0

E(f + ε g)− E(f)

ε

=

ˆ
ess inf
v∈Grad(f)

dg(v) dm,

thus accordingly ess infv∈Grad(f)dg(v) = ess supv∈Grad(f)dg(v) holds m-a.e. in X. This guaran-

tees that Grad(f) is a singleton for every f ∈W 1,2(X), i.e. (X, d,m) is infinitesimally strictly

convex. We now claim thatˆ
df(∇g) dm =

ˆ
dg(∇f) dm for every f, g ∈W 1,2(X). (4.34)

Given f, g ∈ W 1,2(X), denote by Q : R2 → R the function (t, s) 7→ E(t f + s g). Since Q is a

quadratic polynomial, in particular smooth, we have d
dt |t=0

d
ds |s=0

Q(t, s) = d
ds |s=0

d
dt |t=0

Q(t, s).

The left-hand side of the previous equation can be rewritten as

d

dt

∣∣∣∣
t=0

(
lim
h→0

E(t f + h g)− E(t f)

h

)
=

d

dt

∣∣∣∣
t=0

(ˆ
dg
(
∇(t f)

)
dm

)
=

d

dt

∣∣∣∣
t=0

(
t

ˆ
dg(∇f) dm

)
=

ˆ
dg(∇f) dm

and analogously the right-hand side equals
´

df(∇g) dm, proving (4.34).

Fix any function h ∈ LIP(X) ∩ L∞(m). We want to prove that

W 1,2(X) ∩ L∞(m) 3 f 7−→
ˆ
h |df |2 dm satisfies the parallelogram rule. (4.35)

To this aim, notice that the Leibniz rule and the chain rule for differentials yield

ˆ
h |df |2 dm =

ˆ
hdf(∇f) dm =

ˆ
d(fh)(∇f)− f dh(∇f) dm

=

ˆ
d(fh)(∇f)− dh

(
∇(f2/2)

)
dm

(4.34)
=

ˆ
d(fh)(∇f)− d(f2/2)(∇h) dm.
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Both the addenda
´

d(fh)(∇f) dm and −
´

d(f2/2)(∇h) dm are quadratic forms, the former

because (f, g) 7→
´

d(fh)(∇g) dm =
´

dg
(
∇(fh)

)
dm is bilinear, whence (4.35). Given that

the set LIP(X) ∩ L∞(m) is weakly∗ dense in L∞(m), we finally deduce from (4.35) that

2

ˆ
h |df |2 + h |dg|2 dm =

ˆ
h |d(f + g)

∣∣2 + h
∣∣d(f − g)

∣∣2 dm

holds for every f, g ∈W 1,2(X) and h ∈ L∞(m). Therefore ii) follows.

ii) =⇒ i) By integrating the pointwise parallelogram rule over X, we get the parallelogram

rule for ‖ · ‖W 1,2(X), so that W 1,2(X) is a Hilbert space.

i) =⇒ iii) By arguing exactly as in the first implication, we see that (X, d,m) is infinitesimally

strictly convex and that (4.35) holds true. By following the argument we used to prove (4.34),

we deduce that

ˆ
hdf(∇g) dm =

ˆ
hdg(∇f) dm

for every f, g ∈W 1,2(X) ∩ L∞(m)

and h ∈ LIP(X) ∩ L∞(m).
(4.36)

Given that the set LIP(X) ∩L∞(m) is weakly∗ dense in L∞(m), we conclude from (4.36) (by

applying a truncation and localisation argument) that df(∇g) = dg(∇f) holds m-a.e. for

every f, g ∈W 1,2(X). This shows that iii) is verified.

iii) =⇒ i) It suffices to prove that E satisfies the parallelogram rule. Fix f, g ∈W 1,2(X). Note

that the function [0, 1] 3 t 7→ E(f + t g) is Lipschitz and that its derivative is given by

d

dt
E(f + t g) = lim

h→0

E
(
(f + t g) + h g

)
− E(f + t g)

h
=

ˆ
dg
(
∇(f + t g)

)
dm

=

ˆ
d(f + t g)(∇g) dm =

ˆ
df(∇g) dm + t

ˆ
|dg|2 dm,

whence by integrating on [0, 1] we get E(f + g) − E(f) =
´

df(∇g) dm +
´
|dg|2/2 dm. If

we replace g with −g, we also obtain that E(f − g)− E(f) = −
´

df(∇g) dm +
´
|dg|2/2 dm,

whence by summing these two equalities we conclude that E(f+g)+E(f−g) = 2E(f)+2E(g).

ii) =⇒ iv) Consider two 1-forms ω and η in L2(T ∗X), say ω =
∑

i
χEidfi and η =

∑
j
χFjdgj .

By locality we see that |ω + η|2 + |ω − η|2 = 2 |ω|2 + 2 |η|2 holds m-a.e. in X, whence by

integrating we get ‖ω + η‖2L2(T ∗X) +‖ω − η‖2L2(T ∗X) = 2 ‖ω‖2L2(T ∗X) +2 ‖η‖2L2(T ∗X). By density

of the simple 1-forms in L2(T ∗X), we conclude that L2(T ∗X) (and accordingly also L2(TX))

is a Hilbert module, thus proving iv).

iv) =⇒ ii) It trivially follows from Proposition 3.2.12.

iv) =⇒ v) Let f ∈ W 1,2(X) and v ∈ Grad(f). By Theorem 3.2.14 applied to L2(TX) there

exists a unique 1-form ω ∈ L2(T ∗X) such that 〈ω, η〉 = η(v) for every η ∈ L2(T ∗X). Moreover,

it holds that |ω|∗ = |v| = |df |∗ m-a.e. in X. Hence by taking η := df we see that

|ω − df |2∗ = |ω|2∗ + |df |2∗ − 2 〈ω,df〉 = 2 |df |2∗ − 2 df(v) = 0 m-a.e.,

which grants that ω = df . Again by Theorem 3.2.14, we deduce that (X, d,m) is infinitesi-

mally strictly convex and that f 7→ ∇f is linear, as required.
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v) =⇒ ii) For any f, g ∈W 1,2(X), it m-a.e. holds that∣∣d(f + g)
∣∣2 = d(f + g)

(
∇(f + g)

)
= df(∇f) + df(∇g) + dg(∇f) + dg(∇g),∣∣d(f − g)

∣∣2 = d(f − g)
(
∇(f − g)

)
= df(∇f)− df(∇g)− dg(∇f) + dg(∇g),

hence by summing them we get the m-a.e. equality
∣∣d(f+g)

∣∣2 +
∣∣d(f−g)

∣∣2 = 2 |df |2 +2 |dg|2,

proving the validity of ii).

v) ⇐⇒ vi) By applying the chain rule for gradients, we see that if f, g ∈ W 1,2(X) ∩ L∞(m)

and f ′ := exp(f), g′ := exp(g), then we have

f ′g′∇(f + g) = f ′g′∇
(

log(f ′g′)
)

= ∇(f ′g′),

f ′g′
(
∇f +∇g

)
= f ′g′∇

(
log(f ′)

)
+ f ′g′∇

(
log(g′)

)
= g′∇f ′ + f ′∇g′.

Therefore we conclude that v) is equivalent to vi), thus concluding the proof. �

Definition 4.3.4 (Infinitesimal Hilbertianity) We say that (X, d,m) is infinitesimally

Hilbertian provided the six conditions of Theorem 4.3.3 hold true.

Proposition 4.3.5 Let (X, d,m) be an infinitesimally Hilbertian metric measure space. Then

the spaces W 1,2(X), L2(T ∗X) and L2(TX) are separable.

Proof. The space W 1,2(X), being reflexive by hypothesis, is separable by Theorem 2.1.27.

Given that the differentials of the functions in W 1,2(X) generate the cotangent module, we

deduce from Lemma 3.1.17 that even L2(T ∗X) is separable. Finally, Theorem 3.2.14 grants

that L2(TX) is separable as well. �

4.4 Maps of bounded deformation

Definition 4.4.1 (Maps of bounded deformation) Let (X, dX,mX) and (Y, dY,mY) be

given metric measure spaces. Then a map ϕ : Y → X is said to be of bounded deformation

provided it is Lipschitz and of bounded compression (recall Definition 3.2.23).

A map of bounded deformation ϕ : Y → X naturally induces a mapping

ϕ : C
(
[0, 1],Y

)
−→ C

(
[0, 1],X

)
,

γ 7−→ ϕ ◦ γ.
(4.37)

It is then easy to prove that

γ is an AC curve in Y =⇒ ϕ(γ) is an AC curve in X and∣∣ ˙ϕ(γ)t
∣∣ ≤ Lip(ϕ) |γ̇t| for a.e. t.

(4.38)

Indeed, we have dX

(
ϕ(γt), ϕ(γs)

)
≤ Lip(ϕ) dY(γt, γs) ≤ Lip(ϕ)

´ t
s |γ̇r|df for all s < t.



108 Chapter 4 • First-order calculus on metric measure spaces

Lemma 4.4.2 Let π be a test plan on Y and ϕ : Y → X a map of bounded deformation.

Then ϕ∗π is a test plan on X.

Proof. Observe that

(et)∗ϕ∗π = ϕ∗(et)∗π ≤ ϕ∗(C mY) ≤ Comp(ϕ)C mX for every t ∈ [0, 1],ˆ 1

0

ˆ
|γ̇t|2 dϕ∗π(γ) dt =

ˆ 1

0

ˆ ∣∣ ˙ϕ(γ)t
∣∣2 dπ(γ) dt ≤ Lip(ϕ)2

ˆ 1

0

ˆ
|γ̇t|2 dπ(γ) dt < +∞,

whence the statement follows. �

By duality with Lemma 4.4.2, we can thus obtain the following result:

Proposition 4.4.3 Let ϕ : Y → X be a map of bounded deformation and f ∈ S2(X). Then

it holds that f ◦ ϕ ∈ S2(Y) and∣∣D(f ◦ ϕ)
∣∣ ≤ Lip(ϕ) |Df | ◦ ϕ holds mY-a.e. in Y. (4.39)

Proof. Since |Df | ◦ϕ ∈ L2(mY), it only suffices to prove that Lip(ϕ) |Df | ◦ϕ is a weak upper

gradient for f . Then fix any test plan π on Y. We have that
ˆ ∣∣f ◦ ϕ ◦ e1 − f ◦ ϕ ◦ e0

∣∣ dπ =

ˆ
|f ◦ e1 − f ◦ e0|dϕ∗π ≤

ˆ 1

0

ˆ
|Df |(γt) |γ̇t|dϕ∗π(γ) dt

=

ˆ 1

0

ˆ
|Df |

(
ϕ(γ)t

) ∣∣ ˙ϕ(γ)t
∣∣dπ(γ) dt

≤ Lip(ϕ)

ˆ 1

0

ˆ (
|Df | ◦ ϕ

)
(γt) |γ̇t|dπ(γ) dt,

proving that Lip(ϕ) |Df | ◦ ϕ is a weak upper gradient, as required. �

Theorem 4.4.4 (Pullback of 1-forms) Let (X, dX,mX), (Y, dY,mY) be metric measure

spaces and ϕ : Y → X a map of bounded deformation. Then there exists a unique linear

and continuous operator ϕ∗ : L2(T ∗X)→ L2(T ∗Y) such that

ϕ∗df = d(f ◦ ϕ) for every f ∈ S2(X),

ϕ∗(g ω) = g ◦ ϕϕ∗ω for every g ∈ L∞(mX) and ω ∈ L2(T ∗X).
(4.40)

Moreover, it holds that

|ϕ∗ω| ≤ Lip(ϕ) |ω| ◦ ϕ mY-a.e. for every ω ∈ L2(T ∗X). (4.41)

Proof. We are obliged to define ϕ∗
(∑

i
χEi dfi

)
:=
∑

i
χEi ◦ ϕd(fi ◦ ϕ). Given that∣∣∣∑

i

χEi ◦ ϕd(fi ◦ ϕ)
∣∣∣ =

∑
i

χϕ−1(Ei)

∣∣d(fi ◦ ϕ)
∣∣ (4.39)

≤ Lip(ϕ)
∑
i

χϕ−1(Ei) |dfi| ◦ ϕ

= Lip(ϕ)
∣∣∣∑

i

χEi dfi

∣∣∣,
we see that ϕ∗ is well-defined, linear and continuous. Then it can be uniquely extended to an

operator ϕ∗ : L2(T ∗X)→ L2(T ∗Y) having all the required properties. �
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We have introduced two different notions of pullback for the cotangent module L2(T ∗X).

We shall make use of the notation ϕ∗ : L2(T ∗X) → L2(T ∗Y) for the pullback described in

Theorem 4.4.4, while we write [ϕ∗] : L2(T ∗X)→ ϕ∗L2(T ∗X) for the one of Theorem 3.2.24.

Theorem 4.4.5 (Differential of a map of bounded deformation) Let us consider two

metric measure spaces (X, dX,mX) and (Y, dY,mY). Suppose (X, dX,mX) is infinitesimally

Hilbertian. Let ϕ : Y → X be a map of bounded deformation. Then there exists a unique

L∞(mY)-linear continuous map dϕ : L2(TY)→ ϕ∗L2(TX), called differential of ϕ, such that

[ϕ∗ω]
(
dϕ(v)

)
= ϕ∗ω(v) for every v ∈ L2(TY) and ω ∈ L2(T ∗X). (4.42)

Moreover, it holds that∣∣dϕ(v)
∣∣ ≤ Lip(ϕ) |v| mY-a.e. for every v ∈ L2(TY). (4.43)

Proof. Denote by V the generating linear subspace
{

[ϕ∗ω] : ω ∈ L2(T ∗X)
}

of ϕ∗L2(T ∗X).

Fix v ∈ L2(TY) and define Lv : V → L1(mY) as Lv[ϕ
∗ω] := ϕ∗ω(v). The mY-a.e. inequality

∣∣ϕ∗ω(v)
∣∣ ≤ |ϕ∗ω| |v| (4.41)

≤ Lip(ϕ) |ω| ◦ ϕ |v| = Lip(ϕ) |v|
∣∣[ϕ∗ω]

∣∣ (4.44)

grants that Lv is a well-defined, linear and continuous operator. Hence we know from Proposi-

tions 3.2.9 and 3.2.41 that there exists a unique element dϕ(v) ∈
(
ϕ∗L2(T ∗X)

)∗ ∼ ϕ∗L2(TX)

such that [ϕ∗ω]
(
dϕ(v)

)
= ϕ∗ω(v). Moreover, such element necessarily satisfies∣∣dϕ(v)

∣∣ ≤ Lip(ϕ) |v| mY-a.e. in Y,

again by Proposition 3.2.9. Thus to conclude it only remains to show that the assignment

L2(TY) 3 v 7→ dϕ(v) ∈ ϕ∗L2(TX) is L∞(mY)-linear. This follows from the chain of equalities

[ϕ∗ω]
(
dϕ(f v)

)
= ϕ∗ω(f v) = f ϕ∗ω(v) = f [ϕ∗ω]

(
dϕ(v)

)
,

which holds mY-a.e. for every choice of f ∈ L∞(mY) and v ∈ L2(TY). �

In the case in which ϕ is invertible and its inverse is a map of bounded compression,

the differential of ϕ can be equivalently expressed in the following fashion (based upon what

previously discussed in Remark 3.2.35):

Theorem 4.4.6 Let (X, dX,mX), (Y, dY,mY) be metric measure spaces and let ϕ : Y → X

be a map of bounded deformation. Suppose that ϕ is invertible and that ϕ−1 has bounded

compression. Then there exists a unique linear continuous operator dϕ : L2(TY)→ L2(TX)

such that

ω
(
dϕ(v)

)
=
(
ϕ∗ω(v)

)
◦ ϕ−1 mX-a.e. for every v ∈ L2(TY) and ω ∈ L2(T ∗X). (4.45)

Moreover, it holds that∣∣dϕ(v)
∣∣ ≤ Lip(ϕ) |v| ◦ ϕ−1 mX-a.e. for every v ∈ L2(TY). (4.46)
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Proof. Fix v ∈ L2(TY). Denote by dϕ(v) the map L2(T ∗X) 3 ω 7→
(
ϕ∗ω(v)

)
◦ϕ−1 ∈ L1(mX).

Given that
∣∣ω(dϕ(v)

)∣∣ ≤ Lip(ϕ) |ω| |v| ◦ ϕ−1, we know that dϕ(v) is (linear and) continuous.

Moreover, for any f ∈ L∞(mX) it holds(
ϕ∗(f ω)(v)

)
◦ ϕ−1 =

(
f ◦ ϕϕ∗ω(v)

)
◦ ϕ−1 = f

(
ϕ∗ω(v)

)
◦ ϕ−1,

thus proving the L∞(mX)-linearity of dϕ(v). Hence we have a map dϕ : L2(TY)→ L2(TX),

which can be easily seen to satisfy all the required properties. �

In the following result, the function (γ, t) 7→ |γ̇t| is defined everywhere, as in Remark 1.2.6.

Theorem 4.4.7 (Speed of a test plan) Let (X, d,m) be an infinitesimally Hilbertian me-

tric measure space. Let π be a test plan on X. Then for almost every t ∈ [0, 1] there exists

an element π′t ∈ e∗tL
2(TX) such that

L1(π)- lim
h→0

f ◦ et+h − f ◦ et
h

= [e∗tdf ](π′t) for every f ∈W 1,2(X). (4.47)

Moreover, the following hold:

i) the element of e∗tL
2(TX) satisfying (4.47) is unique,

ii) we have that |π′t|(γ) = |γ̇t| for (π × L1)-a.e. (γ, t).

Proof. We divide the proof into several steps:

Step 1. Notice that Proposition 4.3.5 grants that W 1,2(X) is separable, thus there exists a

countable dense Q-linear subspace D of W 1,2(X). By applying Theorem 2.1.21 we see that

for any function f ∈ D it holds that (f ◦et+h−f ◦et)/h admits a strong L1(π)-limit as h→ 0

for a.e. t. Moreover, the function M : [0, 1] → R, M(t) :=
´
|γ̇t|2 dπ(γ) belongs to L1(0, 1)

and the function (γ, t) 7→ |γ̇t| belongs to L2(π × L1). Hence we can pick a Borel negligible

subset N ⊆ [0, 1] such that for every t ∈ [0, 1] \N the following hold:

• Dert(f) := limh→0

(
f ◦ et+h − f ◦ et

)
/h ∈ L1(π) exists for every f ∈ D,

• the inequality ∣∣Dert(f)
∣∣(γ) ≤ |Df |(γt) |γ̇t| for π-a.e. γ (4.48)

is satisfied for every f ∈ D,

• t is a Lebesgue point for M , so that in particular there exists a constant Ct > 0 with

 t+h

t
M(s) ds ≤ Ct for every h 6= 0 such that t+ h ∈ [0, 1], (4.49)

• the function γ 7→ |γ̇t| belongs to L2(π).

Since for any t ∈ [0, 1] \N we have that Dert : D → L1(π) is a Q-linear operator satisfying

(4.48) for every f ∈ D, it uniquely extends to a linear continuous Dert : W 1,2(X) → L1(π)
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satisfying the inequality (4.48) for all f ∈W 1,2(X).

Step 2. Observe that for any t ∈ [0, 1] \N and g ∈W 1,2(X) we have that∥∥∥∥g ◦ et+h − g ◦ et
h

∥∥∥∥
L1(π)

≤
ˆ t+h

t
|Dg|(γs) |γ̇s| ds dπ(γ)

≤
( ˆ t+h

t
|Dg|2(γs) ds dπ(γ)

)1/2( t+h

t
M(s) ds

)1/2

≤
√
C
∥∥|Dg|∥∥

L2(m)

√
Ct

(4.50)

(where C := Comp(π) stands for the compression constant of π) holds for every h 6= 0 such

that t + h ∈ [0, 1]. Now fix t ∈ [0, 1] \N and f ∈ W 1,2(X). Choose any sequence (fn)n ⊆ D

that converges to f in W 1,2(X). Therefore one has that∥∥∥∥f ◦ et+h − f ◦ et
h

− Dert(f)

∥∥∥∥
L1(π)

≤
√
C Ct

∥∥|D(f − fn)|
∥∥
L2(m)

+

∥∥∥∥fn ◦ et+h − fn ◦ et
h

− Dert(fn)

∥∥∥∥
L1(π)

+
∥∥Dert(fn − f)

∥∥
L1(π)

,

so by first letting h→ 0 and then n→∞ we conclude that Dert(f) is the strong L1(π)-limit

of (f ◦ et+h − f ◦ et)/h as h→ 0.

Step 3. Call Vt :=
{

[e∗tdf ] : f ∈ W 1,2(X)
}

for every t ∈ [0, 1] \N . Define Lt : Vt → L1(π)

as Lt[e
∗
tdf ] := Dert(f). Given that for any f ∈W 1,2(X) property (4.48) yields∣∣Lt[e∗tdf ]

∣∣(γ) ≤
∣∣[e∗tdf ]

∣∣(γ) |γ̇t| for π-a.e. γ,

we see that the operator Lt (is well-defined, linear, continuous and) can be uniquely extended

– by Propositions 3.2.9 and 3.2.41 – to an element π′t ∈ e∗tL
2(TX) ∼

(
e∗tL

2(T ∗X)
)∗

. Therefore

one has Dert(f) = [e∗tdf ](π′t) for every f ∈W 1,2(X) and |π′t|(γ) ≤ |γ̇t| for π-a.e. γ.

Step 4. Given any f ∈ LIPbs(X) and γ : [0, 1]→ X AC, it holds that f ◦ γ is AC as well and

that for π-a.e. γ we have
(
f(γt+h)− f(γt)

)
/h→ d

dtf(γt) as h→ 0 for a.e. t. Then

[e∗tdf ](π′t)(γ) =
d

dt
f(γt) for (π × L1)-a.e. (γ, t).

Since [e∗tdf ](π′t)(γ) ≤
∣∣[e∗tdf ]

∣∣(γ) |π′t|(γ) ≤ Lip(f) |π′t|(γ) holds for π-a.e. γ, we deduce from

the previous formula that d
dtf(γt) ≤ Lip(f) |π′t|(γ) for π-a.e. γ. In order to conclude, it is

thus sufficient to provide the existence of a countable family D′ ⊆ LIPbs(X) of 1-Lipschitz

functions such that for every AC curve γ : [0, 1]→ X it holds

|γ̇t| = sup
f∈D′

d

dt
f(γt) for a.e. t ∈ [0, 1]. (4.51)

To do so, fix a countable dense subset (xn)n of X and let us define fn,m :=
(
m−d(·, xn)

)+
for

every n,m ∈ N. Then the family D′ := (fn,m)n,m does the job: given any x, y ∈ X it clearly

holds that d(x, y) = supn,m
[
fn,m(x)− fn,m(y)

]
, whence for all 0 ≤ s < t ≤ 1 we have

d(γt, γs) = sup
n,m

[
fn,m(γt)− fn,m(γs)

]
= sup

n,m

ˆ t

s

d

dr
fn,m(γr) dr ≤

ˆ t

s
sup
n,m

d

dr
fn,m(γr) dr.

Therefore the statement is achieved. �
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Chapter 5

Heat flow on metric measure spaces

In order to develop a second-order differential calculus on spaces with curvature bounds we

need to make use of the regularising effects of the heat flow, to which this chapter is dedicated.

In Section 5.1 we establish the general theory of gradient flows on Hilbert spaces. More

precisely, we prove existence, uniqueness and several properties of the gradient flow associated

to any convex and lower semicontinuous functional defined on a Hilbert space.

In Section 5.2 we concentrate our attention on the heat flow over metric measure spaces

that are infinitesimally Hilbertian. In Subsection 5.2.1 we introduce the Laplace operator,

while in Subsection 5.2.2 we define the heat flow as the gradient flow in L2(m) of the Cheeger

energy f 7→ 1
2

´
|Df |2 dm and we show its basic features.

5.1 Gradient flows on Hilbert spaces

5.1.1 Set-up of the theory

Let H be a Hilbert space. Let E : H → [0,+∞] be a convex lower semicontinuous functional.

Given any point x ∈ H such that E(x) <∞, we define the subdifferential of E at x as

∂−E(x) :=
{
v ∈ H : E(x) + 〈v, y − x〉 ≤ E(y) for every y ∈ H

}
. (5.1)

It trivially holds that 0 ∈ ∂−E(x) if and only if x is a minimum point of E.

Exercise 5.1.1 Consider H := R and E(x) := |x| for every x ∈ R. Then

∂−E(x) :=


{1}
[−1, 1]

{−1}

if x > 0,

if x = 0,

if x < 0.

(5.2)

�

Proposition 5.1.2 The following properties hold:

113
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i) The multivalued map ∂−E : H → 2H is a monotone operator, i.e.

〈x− y, v − w〉 ≥ 0 for every x, y ∈ H, v ∈ ∂−E(x) and w ∈ ∂−E(y). (5.3)

ii) The set
{

(x, v) ∈ H ×H : v ∈ ∂−E(x)
}

is strongly-weakly closed in H ×H, i.e.

xn → x strongly in H,

vn ⇀ v weakly in H,

vn ∈ ∂−E(xn) for all n

 =⇒ v ∈ ∂−E(x). (5.4)

Proof. The proof goes as follows:

i) From v ∈ ∂−E(x) and w ∈ ∂−E(y) we deduce that

E(x) + 〈v, y − x〉 ≤ E(y),

E(y) + 〈w, x− y〉 ≤ E(x),
(5.5)

respectively. By summing the two in (5.5) we obtain 〈v − w, y − x〉 ≤ 0, proving (5.3).

ii) Fix two sequences (xn)n, (vn)n ⊆ H such that xn → x, vn → v and vn ∈ ∂−E(xn). Hence

for any y ∈ H it holds that

E(x) + 〈v, y − x〉 ≤ lim
n→∞

E(xn) + lim
n→∞

〈vn, y − xn〉 ≤ E(y),

thus showing that v ∈ ∂−E(x). This proves the statement. �

Lemma 5.1.3 Let H be a Hilbert space. Let [0, 1] 3 t 7→ vt ∈ H be an AC curve. Then

∃ lim
h→0

vt+h − vt
h

=: v′t ∈ H for a.e. t ∈ [0, 1]. (5.6)

Moreover, the map t 7→ v′t belongs to L1
(
[0, 1], H

)
and satisfies

vt − vs =

ˆ t

s
v′r dr for every s, t ∈ [0, 1] with s < t. (5.7)

Proof. Since v is essentially separably valued (as it is continuous), we assume with no loss of

generality that H is separable. Fix an orthonormal basis (en)n of H. Given any n ∈ N, we

have that t 7→ vt · en ∈ R is AC and accordingly a.e. differentiable. Hence there exists a Borel

negligible set N ⊆ [0, 1] such that

∃ `n(t) := lim
h→0

vt+h · en − vt · en
h

∈ R for every n ∈ N and t ∈ [0, 1] \N.

For any k ∈ N, call Lk(t) :=
∑k

n=0 `n(t) en ∈ H if t ∈ [0, 1] \N and Lk(t) := 0 ∈ H if t ∈ N .

Clearly the map Lk : [0, 1]→ H is strongly Borel. Moreover, for any k ∈ N it holds that

∞∑
n=0

∣∣`n(t)
∣∣2 = lim

k→∞

k∑
n=0

∣∣`n(t)
∣∣2 = lim

k→∞
lim
h→0

k∑
n=0

∣∣∣∣vt+h − vth
· en
∣∣∣∣2

≤ lim
h→0

∥∥∥∥vt+h − vth

∥∥∥∥2

H

= |v̇t|2 < +∞ for a.e. t ∈ [0, 1] \N.

(5.8)



5.1. Gradient flows on Hilbert spaces 115

In particular, for a.e. t ∈ [0, 1] \N there exists L(t) ∈ H such that limk

∥∥Lk(t)− L(t)
∥∥
H

= 0.

We also deduce from (5.8) that
∥∥L(t)

∥∥
H
≤ |v̇t| for a.e. t ∈ [0, 1], whence L : [0, 1] → H is

Bochner integrable by Proposition 1.3.6. By applying the dominated convergence theorem,

we see that
´ t
s L(r) dr = limk

´ t
s Lk(r) dr for every t, s ∈ [0, 1] with s ≤ t, so that

vt − vs = lim
k→∞

k∑
n=0

[
(vt − vs) · en

]
en = lim

k→∞

k∑
n=0

(ˆ t

s
`n(r) dr

)
en

(1.45)
= lim

k→∞

ˆ t

s
Lk(r) dr

=

ˆ t

s
L(r) dr.

Hence v is a.e. differentiable, with derivative v′ := L, proving the statement. �

Let us now define

D(E) :=
{
x ∈ H : E(x) < +∞

}
,

D(∂−E) :=
{
x ∈ H : ∂−E(x) 6= ∅

}
⊆ D(E).

The slope of E is the functional |∂−E| : H → [0,+∞] given by

|∂−E|(x) :=

{
supy 6=x

(
E(y)− E(x)

)−
/|x− y|

+∞
if x ∈ D(E),

otherwise.
(5.9)

Observe that |∂−E|(x) = 0 if and only if x is a minimum point of E.

Remark 5.1.4 In general, the slope |∂−E| is defined as

|∂−E|(x) :=

{
limy→x

(
E(y)− E(x)

)−
/|x− y|

+∞
if x ∈ D(E),

otherwise.

In this case, this definition is equivalent to (5.9) thanks to the convexity of E. �

Remark 5.1.5 We claim that

|∂−E|(x) ≤ |v| for every v ∈ ∂−E(x). (5.10)

Indeed, we know that E(x)+〈v, y−x〉 ≤ E(y) for any y ∈ H, so that E(x)−E(y) ≤ |v| |x−y|
and accordingly

(
E(x)− E(y)

)+ ≤ |v| |x− y| for any y ∈ H, which gives (5.10). �

Exercise 5.1.6 Let H be a Hilbert space. Given any x ∈ H and τ > 0, let us define

Fx,τ (·) := E(·) +
| · −x|2

2 τ
. (5.11)

Then it holds that ∂−Fx,τ (y) = ∂−E(y) + y−x
τ for every y ∈ H. �

Proposition 5.1.7 Let x ∈ H and τ > 0. Then there exists a unique minimiser xτ ∈ H of

the functional Fx,τ defined in (5.11). Moreover, it holds that xτ−x
τ ∈ −∂−E(xτ ).
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Proof. Since E is convex lower semicontinuous and |·−x|2/(2 τ) is strictly convex and continu-

ous, we get that the functional Fx,τ is strictly convex and lower semicontinuous. This grants

that the sublevels of Fx,τ are convex and strongly closed, so that they are also weakly closed

by Hahn-Banach theorem, in other words Fx,τ is weakly lower semicontinuous. Moreover, the

sublevels of | ·−x|2/(2 τ) are bounded, whence those of Fx,τ are bounded as well, thus in par-

ticular they are weakly compact. Then the Bolzano-Weierstrass theorem yields existence of a

minimum point xτ ∈ H of Fx,τ , which is unique by strict convexity of Fx,τ . Finally, since xτ

is a minimiser for Fx,τ , we know from Exercise 5.1.6 that 0 ∈ ∂−Fx,τ (xτ ) = ∂−E(xτ ) + xτ−x
τ ,

or equivalently xτ−x
τ ∈ −∂−E(xτ ), which gives the last statement. �

Corollary 5.1.8 It holds that D(∂−E) is dense in D(E) and that

|∂−E|(xτ ) ≤ |xτ − x|
τ

≤ |∂−E|(x) for every x ∈ H and τ > 0. (5.12)

Proof. Given any x ∈ D(E), we deduce from the very definition of xτ that

lim
τ↘0
|xτ − x|2 ≤ lim

τ↘0
2 τ

(
E(xτ ) +

|xτ − x|2

2 τ

)
≤ lim

τ↘0
2 τ E(x) = 0,

whence the first statement follows. Moreover, since x−xτ
τ ∈ ∂−E(xτ ) by Proposition 5.1.7, we

infer from (5.10) that |xτ − x|/τ ≥ |∂−E|(xτ ). To conclude, define zλ := (1− λ)x+ λxτ for

every λ ∈ [0, 1]. The minimality of xτ and the convexity of E give

E(xτ ) +
|xτ − x|2

2 τ
≤ E(zλ) +

|zλ − x|2

2 τ
≤ (1− λ)E(x) + λE(xτ ) + λ2 |xτ − x|2

2 τ

for every λ ∈ [0, 1], which can be rewritten as

(1− λ)
(
E(x)− E(xτ )

)
≥ (1− λ2)

|xτ − x|2

2 τ
for every λ ∈ [0, 1],

so that E(x)−E(xτ )
|xτ−x| ≥ (1 + λ) |xτ−x|2 τ for all λ ∈ [0, 1]. By letting λ ↗ 1 in such inequality, we

conclude that |∂−E|(x) ≥ E(x)−E(xτ )
|xτ−x| ≥ |xτ−x|τ . Hence the statement is achieved. �

Remark 5.1.9 We claim that the functional |∂−E| : H → [0,+∞] is lower semicontinuous.

In order to prove it, for any y ∈ H we define Gy : H → [0,+∞] as

Gy(x) :=

{ (
E(y)− E(x)

)−
/|x− y|

0

if x 6= y,

if x = y,

with the convention that
(
E(y)−E(x)

)−
:= +∞ when E(x) = E(y) = +∞. It can be readily

checked that |∂−E|(x) = supy∈H Gy(x) for every x ∈ H. Given that each Gy is a lower

semicontinuous functional by construction, we conclude that |∂−E| is lower semicontinuous

as well. �
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Lemma 5.1.10 It holds that

|∂−E|(x) = min
v∈∂−E(x)

|v| for every x ∈ D(∂−E). (5.13)

Proof. The inequality ≤ is granted by (5.10). To prove ≥, notice that |∂−E|(x) ≥ |x− xτ |/τ
for all τ > 0 by (5.12). Then there exists a sequence (τn)n ↘ 0 such that x−xτn

τn
⇀ v weakly

in H as n → ∞, for some v ∈ H. Since we have that x−xτn
τn

∈ ∂−E(xτn) for all n ∈ N, we

conclude that v ∈ ∂−E(x) by item ii) of Proposition 5.1.2. Given that

|v| ≤ lim
n
|xτn − x|/τn ≤ |∂−E|(x),

we proved (5.13). �

Remark 5.1.11 It is clear that the set ∂−E(x) is closed and convex for every x ∈ H.

In particular, if x belongs to D(∂−E), then the set ∂−E(x) admits a unique element of

minimal norm. �

5.1.2 Existence and uniqueness of the gradient flow

We are now ready to state and prove – by using the language and the results that have

been introduced in the previous subsection – the main result of this chapter, which concerns

existence and uniqueness of gradient flows:

Theorem 5.1.12 (Gradient flow) Let H be a Hilbert space. Let E : H → [0,+∞] be a

convex lower semicontinuous functional. Let x ∈ D(E) be fixed. Then there exists a unique

continuous curve [0,+∞) 3 t 7→ xt ∈ H starting from x, called gradient flow trajectory,

which is locally AC on (0,+∞) and satisfies x′t ∈ −∂−E(xt) for a.e. t ∈ [0,+∞). Moreover,

the following hold:

1) (Contraction property) Given two gradient flow trajectories (xt) and (yt), we have

|xt − yt| ≤ |x0 − y0| for every t ≥ 0. (5.14)

2) The maps t 7→ xt and t 7→ E(xt) are locally Lipschitz on (0,+∞).

3) The functions t 7→ E(xt) and t 7→ |∂−E|(xt) are non increasing on [0,+∞).

4) For any y ∈ H, we have that E(xt) + 〈x′t, xt − y〉 ≤ E(y) holds for a.e. t ∈ (0,+∞).

5) We have that − d
dt E(xt) = |ẋt|2 = |∂−E|2(xt) for a.e. t ∈ [0,+∞).

6) The following inequalities are satisfied:

6a) E(xt) ≤ E(y) + |x0−y|2
2 t for every y ∈ H and t ≥ 0.

6b) |∂−E|2(xt) ≤ |∂−E|2(y) + |x0−y|2
t2

for every y ∈ H and t ≥ 0.
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7) For any t > 0, we have that the difference quotients
xt+h−xt

h converge to the element of

minimal norm of ∂−E(xt) as h↘ 0. The same holds for t = 0 provided ∂−E(x0) 6= ∅.

Proof. We divide the proof into several steps:

Step 1. We start by proving existence in the case x ∈ D(E). Fix τ > 0. We recursively

define the sequence (xτ(n))n ⊆ H as xτ(0) := x and

xτ(n+1) := argmin
H

(
E(·) +

| · −xτ(n)|
2

2 τ

)
for every n ∈ N.

Then define (xτt ) as the unique curve in H such that xτnτ = xτ(n) for all n ∈ N and that is

affine on each interval [nτ, (n+ 1)τ ]. For any n ∈ N, we clearly have that

(xτt )′ =
xτ(n+1) − x

τ
(n)

τ
for every t ∈ (nτ, (n+ 1)τ). (5.15)

Since E(xτ(n+1)) +
∣∣xτ(n+1) − x

τ
(n)

∣∣2/(2 τ) ≤ E(xτ(n)) for all n ∈ N, we infer from (5.15) that

1

2

ˆ +∞

0
|ẋτt |2 dt =

∞∑
n=0

∣∣xτ(n+1) − x
τ
(n)

∣∣2
2 τ

≤ E(x) < +∞. (5.16)

Given τ, η > 0 and k, k′ ∈ N such that t ∈ ((k − 1)τ, kτ ] ∩ ((k′ − 1)η, k′η], it holds that

d

dt

|xτt − x
η
t |2

2
=
〈
(xτt )′ − (xηt )

′, xτkτ − x
η
k′η

〉︸ ︷︷ ︸
≤0 by (5.3)

+
〈
(xτt )′ − (xηt )

′, (xτt − xτkτ )− (xηt − x
η
k′η)
〉

≤
(
|(xτt )′|+ |(xηt )′|

)(
τ |(xτt )′|+ η |(xηt )′|

)
≤ |(xτt )′|2

(
τ +

τ + η

2

)
+ |(xηt )′|2

(
η +

τ + η

2

)
.

By integrating over the interval [0, T ], we thus deduce from (5.16) that

|xτT − x
η
T |2

2
≤ 2E(x) (τ + η) for every τ, η > 0. (5.17)

This grants that supt≥0 |xτt − x
η
t | → 0 as τ, η ↘ 0, so there exists a continuous curve (xt),

with x0 = x, which is the uniform limit of (xτt ) as τ ↘ 0.

Notice that
{

(xτ· )
′ ∈ L2

(
[0,+∞), H

) ∣∣ τ > 0
}

is norm bounded by (5.16), so that there

exists (τn)n ↘ 0 such that (xτn· )′ ⇀ v· weakly in L2
(
[0,+∞), H

)
as n → ∞, for a suitable

limit v· ∈ L2
(
[0,+∞), H

)
. Given any t > s > 0, we know that

ˆ t

s
(xτnr )′ dr = xτnt − xτns

n−→ xt − xs in the strong topology of H.

Moreover, for any w ∈ H it holds that the map r 7→ χ[s,t](r)w belongs to L2
(
[0,+∞), H

)
,

thus the fact that (xτn· )′ ⇀ v· ensures that〈
w,

ˆ t

s
(xτnr )′ dr

〉
(1.45)

=

ˆ t

s

〈
w, (xτnr )′

〉
dr

n−→
ˆ t

s
〈w, vr〉dr

(1.45)
=

〈
w,

ˆ t

s
vr dr

〉
.
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Therefore we deduce that xt−xs =
´ t
s vr dr is satisfied for every t > s > 0. This ensures that

the curve (xt) is locally AC on (0,+∞) and its derivative is given by (vt). Now fix y ∈ H.

We claim that

ˆ t1

t0

E(xt) + 〈x′t, xt − y〉dt ≤ (t1 − t0)E(y) for every 0 ≤ t0 ≤ t1 < +∞. (5.18)

Recall that −(xτ(n+1) − x
τ
(n))/τ ∈ ∂

−E(xτ(n+1)) for all n ∈ N. Moreover, it holds that

ˆ τ

0
E(xτt ) dt ≤

ˆ τ

0

(
1− t

τ

)
E(x0) +

t

τ
E(xτ(1)) dt =

τ

2
E(x0) +

τ

2
E(xτ(1)).

Therefore we deduce from Proposition 5.1.7 that

ˆ t1

t0

E(xt) + 〈x′t, xt − y〉dt ≤ lim
τ↘0

ˆ t1

t0

E(xτt ) +
〈
(xτt )′, xτt − y

〉
dt

≤ lim
τ↘0

ˆ t1

t0

E(xτ[t/τ+1]τ ) +
〈
(xτt )′, xτ[t/τ+1]τ − y

〉
dt

≤ lim
τ↘0

ˆ t1

t0

E(y) dt = (t1 − t0)E(y),

which proves the validity of our claim (5.18). Finally, take t > 0 that is both a Lebesgue point

for E(x·) and a differentiability point for x· (almost every t > 0 has this property). Then

it follows from (5.18) that the formula in item 4) is verified at such t, proving that (xt) is a

gradient flow starting from x. Hence existence and item 4) are proven for x ∈ D(E). Note

that item 4) is trivially satisfied if y ∈ H \D(E).

Step 2. Suppose that (xt), (yt) are gradient flows starting from points in D(E). Then

the function t 7→ |xt−yt|2
2 is continuous on [0,+∞) and locally AC on (0,+∞). Item i) of

Proposition 5.1.2 yields

d

dt

|xt − yt|2

2
= 〈x′t − y′t, xt − yt〉 ≤ 0 for a.e. t > 0.

Hence |xt − yt| ≤ |x0 − y0| for every t ≥ 0, proving 1) and uniqueness of the gradient flow.

Step 3. We aim to prove 3). Fix 0 ≤ t0 ≤ t1 < +∞. Call (xt) the gradient flow starting

from some point x ∈ D(E), then (yt) the gradient flow starting from xt0 . By uniqueness,

we have that xt1 = yt1−t0 . Furthermore, one has E(xt1) = E(yt1−t0) ≤ E(y0) = E(xt0) by

construction. This shows that t 7→ E(xt) is a non increasing function. A similar argument

based on (5.12) and on Remark 5.1.9 grants that t 7→ |∂−E|(xt) is non increasing as well.

Then item 3) is proven.

Step 4. We want to prove 6a). Fix x ∈ D(E) and call (xt) the gradient flow with x0 = x.

Let y ∈ H and t ≥ 0. By integrating the inequality in 4) on [0, t] and by recalling 3), we get

t E(xt) ≤
ˆ t

0
E(xs) ds ≤ t E(y)− |xt − y|

2

2
+
|x− y|2

2
≤ t E(y) +

|x− y|2

2
,
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whence 6a) immediately follows.

Step 5. We aim to prove existence of the gradient flow and item 4) for any x ∈ D(E).

Choose a sequence (xn)n ⊆ D(E) such that xn → x. Call (xnt ) the gradient flow with initial

datum xn. We know from the contraction property 1) that

sup
t≥0
|xnt − xmt | ≤ |xn − xm| → 0 as n,m→∞,

so there is a continuous curve (xt) that is uniform limit of (xnt ) and such curve starts from x.

Given y ∈ D(E) and t0 > 0, we know from item 6a) that there exists a constant C(t0) > 0

such that

E(xnt0) ≤ E(y) +
|xn − y|2

2 t0
≤ C(t0) for every n ∈ N,

whence from (5.16) it follows that 1
2

´ +∞
t0
|ẋnt |2 dt ≤ C(t0) holds for every n ∈ N. In other

words, (xn· ) are uniformly AC on [t0,+∞). Hence (xn· )
′ ⇀ x′· weakly in L2

(
[t0,+∞), H

)
,

which is enough to conclude by passing to the limit in the inequality

ˆ t

s
E(xnr ) +

〈
(xnr )′, xnr − y

〉
dr ≤ (t− s)E(y) for all t0 ≤ s < t < +∞ and y ∈ H

(that is granted by (5.18)) and arguing as in the last part of Step 1.

Step 6. Fix ε > 0. Since the curve (xt) is locally AC on (0, ε), there exists t0 ∈ (0, ε) such

that x′t0 exists. Moreover, for any s ≥ 0 it holds that t 7→ xt+s is the gradient flow starting

from xs. Therefore we have that

|ẋt0+s| = lim
t↘t0

|xt+s − xt0+s|
|t− t0|

1)

≤ lim
t↘t0

|xt − xt0 |
|t− t0|

= |ẋt0 | holds for a.e. s ≥ 0,

which grants that the metric speed |ẋ| is bounded in [ε,∞). This means that (xt) is Lipschitz

on [ε,+∞). Now call Lε its Lipschitz constant. Item 4) ensures that for any y ∈ H one has

E(xt)− Lε |xt − x| ≤ E(xt)− |ẋt| |xt − y| ≤ E(xt)− 〈x′t, xt − y〉 ≤ E(y)

for a.e. t ∈ (ε,+∞), thus also for every t > ε by lower semicontinuity of E. By choosing

y = xs, we see that the inequality E(xt) − E(xs) ≤ Lε|xt − xs| holds for all s, t > ε. This

shows that t 7→ E(xt) is locally Lipschitz, thus concluding the proof of 2).

Step 7. We now prove item 5). Since E(xt)−E(y)
|xt−y| ≤ |ẋt| holds for every y ∈ H and a.e. t by

property 4), we deduce that

|∂−E|(xt) = sup
y 6=xt

(
E(xt)− E(y)

)+
|xt − y|

≤ |ẋt| for a.e. t ≥ 0. (5.19)

Moreover, observe that for a.e. t ≥ 0 it holds that

− d

dt
E(xt) = lim

h→0

E(xt)− E(xt+h)

h
≤ |∂−E|(xt) lim

h→0

|xt+h − xt|
|h|

= |∂−E|(xt) |ẋt|

≤ 1

2
|∂−E|2(xt) +

1

2
|ẋt|2.

(5.20)
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By integrating the inequality in item 4) over the interval [t, t+ h], we obtain that

|xt+h − y|2

2
− |xt − y|

2

2
+

ˆ t+h

t
E(xs) ds ≤ hE(y) for every y ∈ H and t, h ≥ 0.

By using such inequality with y = xt and the dominated convergence theorem, we get

|ẋt|2

2
= lim

h↘0

|xt+h − xt|2

2h2
≤ lim

h↘0

 t+h

t

E(xt)− E(xs)

h
ds

= lim
h↘0

ˆ 1

0

E(xt)− E(xt+hr)

h r
r dr = − d

dt
E(xt)

ˆ 1

0
r dr

= −1

2

d

dt
E(xt) for a.e. t > 0.

(5.21)

Finally, we obtain 5) by putting together (5.19), (5.20) and (5.21).

Step 8. We want to prove 6b). Since the slope |∂−E| is lower semicontinuous (cf. Remark

5.1.9), it suffices to prove it for x0 ∈ D(E). Notice that the Young’s inequality yields

t
(
E(y)− E(xt)

)
≤ t |∂−E|(y) |y − xt| ≤

t2 |∂−E|2(y)

2
+
|xt − y|2

2
. (5.22)

By using (5.22) and items 3), 4), 5), we see that

t2 |∂−E|2(xt)

2
≤
ˆ t

0
s |∂−E|2(xs) ds = −

ˆ t

0
s

d

ds
E(xs) ds =

ˆ t

0
E(xs) ds− t E(xt)

≤ t E(y) +
|x0 − y|2

2
− |xt − y|

2

2
− t E(xt) ≤

t2 |∂−E|2(y)

2
+
|x0 − y|2

2
,

which proves 6b).

Step 9. It only remains to prove 7). It is enough to prove it for t = 0 and |∂−E|(x0) < +∞.

Observe that
∣∣xh−x

h

∣∣ ≤ ffl h
0 |ẋt| dt ≤ |∂

−E|(x0) for all h > 0 by 3) and 5). Hence there exists

a sequence (hn)n ↘ 0 such that
xhn−x0
hn

⇀ v ∈ H. Clearly |v| ≤ |∂−E|(x0). By recalling

Lemma 5.1.10, we thus see that it just remains to show that v ∈ ∂−E(x0). Notice that

 hn

0
〈x′t, xt − y〉 dt =

〈  hn

0
x′t dt, x0 − y

〉
+

 hn

0
〈x′t, xt − x0〉dt

n→∞−→ 〈v, x0 − y〉.

Therefore we finally conclude that

E(x0) + 〈v, x0 − y〉 ≤ lim
n→∞

 hn

0
E(xt) + 〈x′t, xt − y〉 dt ≤ E(y),

which proves that v ∈ ∂−E(x0), as required. �

5.2 Heat flow on infinitesimally Hilbertian spaces

5.2.1 Laplace operator

Given an infinitesimally Hilbertian space (X, d,m) and any two vector fields v, w ∈ L2(TX),

we shall often use the shorthand notation v · w in place of 〈v, w〉.
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Definition 5.2.1 (Laplacian) Let (X, d,m) be an infinitesimally Hilbertian metric measure

space. Then a function f ∈W 1,2(X) is in D(∆) provided there exists g ∈ L2(m) such thatˆ
g hdm = −

ˆ
∇f · ∇hdm for every h ∈W 1,2(X). (5.23)

In this case the function g, which is uniquely determined by density of W 1,2(X) in L2(m), will

be denoted by ∆f .

Remark 5.2.2 One has f ∈ D(∆) if and only if ∇f ∈ D(div). In this case, ∆f = div(∇f).

In order to prove it, just observe thatˆ
dh(∇f) dm =

ˆ
∇f · ∇hdm holds for every h ∈W 1,2(X).

In particular, D(∆) is a vector space and the map ∆ : D(∆)→ L2(m) is linear. �

Proposition 5.2.3 Let (X, d,m) be infinitesimally Hilbertian. Then the following hold:

i) ∆ is a closed operator from L2(m) to itself.

ii) If f ∈ LIP(X) ∩D(∆) and ϕ ∈ C2(R) satisfies ϕ′′ ∈ L∞(R), then ϕ ◦ f ∈ D(∆) and

∆(ϕ ◦ f) = ϕ′ ◦ f ∆f + ϕ′′ ◦ f |∇f |2. (5.24)

iii) If f, g ∈ LIPb(X) ∩D(∆), then fg ∈ D(∆) and

∆(fg) = f ∆g + g∆f + 2∇f · ∇g. (5.25)

Proof. The proof goes as follows:

i) We aim to show that if fn → f and ∆fn → g in L2(m), then f ∈ D(∆) and ∆f = g. There

exists a constant C > 0 such that ‖fn‖L2(m), ‖∆fn‖L2(m) ≤ C for any n ∈ N, so that

ˆ
|∇fn|2 dm ≤ −

ˆ
fn ∆fn dm ≤ C for every n ∈ N.

This grants that (fn)n is bounded in the reflexive space W 1,2(X), whence there exists a

subsequence (ni)i such that fni ⇀ f̃ weakly in W 1,2(X), for some f̃ ∈ W 1,2(X). We already

know that fni → f in L2(m), then f̃ = f and accordingly the original sequence (fn)n is

weakly converging in W 1,2(X) to f . Since the differential operator d : W 1,2(X) → L2(T ∗X)

is linear continuous, we infer that dfn ⇀ df weakly in L2(T ∗X). By the Riesz isomorphism,

this is equivalent to saying that ∇fn ⇀ ∇f weakly in L2(TX). Therefore

−
ˆ
h g dm = − lim

n→∞

ˆ
h∆fn dm = lim

n→∞

ˆ
∇fn · ∇hdm =

ˆ
∇f · ∇hdm

is satisfied for every h ∈W 1,2(X), thus proving that f ∈ D(∆) and ∆f = g.

ii) Note that ϕ ◦ f ∈ S2(X) and ∇(ϕ ◦ f) = ϕ′ ◦ f ∇f . Since ∇f ∈ D(div) by Remark 5.2.2

and ϕ′ ◦ f ∈ LIPb(X), we deduce from Proposition 4.2.7 that ∇(ϕ ◦ f) ∈ D(div) and

∆(ϕ ◦ f) = div
(
ϕ′ ◦ f ∇f

)
= d(ϕ′ ◦ f)(∇f) + ϕ′ ◦ f div(∇f) = ϕ′′ ◦ f |∇f |2 + ϕ′ ◦ f ∆f,
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which proves (5.24).

iii) Note that fg ∈ S2(X) and ∇(fg) = f ∇g + g∇f . By applying again Proposition 4.2.7,

we deduce that ∇(fg) ∈ D(div) and

∆(fg) = div
(
f ∇g + g∇f

)
= df(∇g) + f div(∇g) + dg(∇f) + g div(∇f)

= f ∆g + g∆f + 2∇f · ∇g,

which proves (5.25). �

Given an infinitesimally Hilbertian space (X, d,m), we denote by E : L2(m)→ [0,+∞] the

associated Cheeger’s energy (recall Definition 2.2.3), which is the convex lower semicontinuous

functional

E(f) :=

{
1
2

´
|∇f |2 dm

+∞
if f ∈W 1,2(X),

otherwise.
(5.26)

We can now provide an alternative characterisation of the Laplace operator.

Proposition 5.2.4 Let (X, d,m) be infinitesimally Hilbertian. Then a function f ∈W 1,2(X)

belongs to D(∆) if and only if ∂−E(f) 6= ∅. In this case, it holds that ∂−E(f) = {−∆f}.

Proof. First of all, observe that for any f, g ∈W 1,2(X) we have that

R 3 ε 7→ E(f + ε g) is convex and lim
ε→0

E(f + ε g)− E(f)

ε
=

ˆ
∇f · ∇g dm, (5.27)

as one can readily deduce from the fact that E(f+ε g) = 1
2

´
|∇f |2 +2 ε∇f ·∇g+ε2 |∇g|2 dm.

Let f ∈ D(∆). We want to show that E(f)−
´
g∆f dm ≤ E(f+g) for every g ∈W 1,2(X).

In order to prove it, just notice that (5.27) yields

E(f + g)− E(f) ≥ lim
ε↘0

E(f + ε g)− E(f)

ε
=

ˆ
∇f · ∇g dm = −

ˆ
g∆f dm,

which grants that −∆f ∈ ∂−E(f).

Conversely, let v ∈ ∂−E(f). Then ε
´
v g dm ≤ E(f + ε g) − E(f) holds for every ε ∈ R

and g ∈W 1,2(X). Therefore we have that

ˆ
∇f ·∇g dm = lim

ε↘0

E(f − ε g)− E(f)

−ε
≤
ˆ
v g dm ≤ lim

ε↘0

E(f + ε g)− E(f)

ε
=

ˆ
∇f ·∇g dm

for every g ∈W 1,2(X). This says that f ∈ D(∆) and ∆f = −v. �

5.2.2 Heat flow and its properties

Definition 5.2.5 (Heat flow) Let (X, d,m) be an infinitesimally Hilbertian metric measure

space. Then for any f ∈ L2(m) and t ≥ 0, we denote by htf the gradient flow of the Cheeger

energy E (defined in (5.26)) on L2(m), starting from f (at time t). We shall call it heat flow.

This defines a family (ht)t≥0 of operators ht : L2(m)→ L2(m).



124 Chapter 5 • Heat flow on metric measure spaces

Proposition 5.2.6 Let (X, d,m) be infinitesimally Hilbertian. Then the following hold:

i) The operator ht : L2(m)→ L2(m) is linear for every t ≥ 0.

ii) For every f ∈ L2(m) and t > 0, it holds that htf ∈ D(∆) and

ht+εf − htf

ε
−→ ∆htf in L2(m) as ε→ 0. (5.28)

The same holds also at t = 0 provided f ∈ D(∆).

Proof. The proof goes as follows:

i) It directly follows from Theorem 5.1.12, Proposition 5.2.4 and the linearity of ∆.

ii) Proposition 5.2.4 and Theorem 5.1.12 grant that htf ∈ D(∂−E) = D(∆) for every t > 0,

thus it is sufficient to prove the claim for the case t = 0 and f ∈ D(∆). In this case, we have

that ∂−E(f) = {−∆f} and thus the conclusion follows from 7) of Theorem 5.1.12. �

Proposition 5.2.7 (∆ and ht commute) Let f ∈ D(∆). Then ht∆f = ∆htf for all t ≥ 0.

Proof. Notice that

∆htf = lim
ε↘0

ht(hεf)− htf

ε
= ht

(
lim
ε↘0

hεf − f
ε

)
= ht∆f,

which proves the statement. �

Proposition 5.2.8 (∆ is symmetric) Let f, g ∈ D(∆). Then

ˆ
g∆f dm =

ˆ
f ∆g dm. (5.29)

Proof. Just notice that
´
g∆f dm =

´
∇f · ∇g dm =

´
f ∆g dm. �

Corollary 5.2.9 (ht is self-adjoint) Let f, g ∈ L2(m) and t ≥ 0. Then

ˆ
g htf dm =

ˆ
f htg dm. (5.30)

Proof. Define F (s) :=
´
hsf ht−sg dm for every s ∈ [0, t]. Then the function F is AC and

F ′(s) =

ˆ
∆hsf ht−sg − hsf ∆ht−sg dm

(5.29)
= 0 for a.e. s ∈ [0, t],

whence accordingly
´
g htf dm = F (t) = F (0) =

´
f htg dm. �

Proposition 5.2.10 Let f ∈ L2(m). Then we have f ∈ D(∆) if and only if htf−f
t admits a

strong limit g ∈ L2(m) as t↘ 0. In this case, it holds that g = ∆f .
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Proof. We separately prove the two implications:

Necessity. Already established in point ii) of Proposition 5.2.6.

Sufficiency. Suppose that htf−f
t → g in L2(m) as t↘ 0. We first claim that f ∈W 1,2(X).

To prove it, notice that for every ε > 0 we have – because of our assumption and the self-

adjointness of hε – that

ˆ
hεfg dm = lim

t↓0

ˆ
hεf

htf − f
t

dm = lim
t↓0

ˆ
f
hthεf − hεf

t
dm

Hence the fact that hεf ∈ D(∆), the ‘necessity’ proved before and Proposition 5.2.7 give

ˆ
hεf g dm =

ˆ
f ∆hεf dm =

ˆ
hε/2f ∆hε/2f dm = −

ˆ
|∇hε/2f |2 dm.

Since f ∈ L2(m), the (absolute value of the) leftmost side of this last identity remains bounded

as ε↘ 0, hence the same holds for the rightmost one. Hence the lower semicontinuity of the

Cheeger energy E gives

E(f) ≤ lim
ε↓0

E(hεf) = lim
ε↓0

1

2

ˆ
|∇hεf |2 dm <∞,

thus giving our claim f ∈ W 1,2(X). Now observe that the inequality E(hsf) ≤ E(f), valid

for all s ≥ 0, ensures that (hεf)ε is bounded in W 1,2(X) and thus weakly relatively compact.

Since hεf → f in L2(X) as ε ↘ 0, we deduce that hεf ⇀ f weakly in W 1,2(X). Given any

Sobolev function ` ∈W 1,2(X), we thus have that

ˆ
g ` dm = lim

t↘0

ˆ
htf − f

t
`dm = lim

t↘0

 t

0

ˆ
∆hsf ` dmds = − lim

t↘0

 t

0

ˆ
∇hsf · ∇`dmds

= −
ˆ
∇f · ∇`dm,

which shows that f ∈ D(∆) and ∆f = g. �

Remark 5.2.11 Given any f ∈ L2(m) and t > 0, it holds that

E(htf) ≤
‖f‖2L2(m)

2 t
and ‖∆htf‖2L2(m) ≤

‖f‖2L2(m)

t2
. (5.31)

This claim directly follows from item 6) of Theorem 5.1.12. �

Proposition 5.2.12 Let f ∈ L2(m) be fixed. Then the following hold:

i) The map (0,+∞) 3 t 7→ htf belongs to C∞
(
(0,+∞),W 1,2(X)

)
.

ii) It holds that htf ∈ D(∆(n)) for every n ∈ N and t > 0.
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Proof. The proof goes as follows:

i) Fix ε > 0. First of all, we prove that t 7→ htf belongs to C1
(
(ε,+∞),W 1,2(X)

)
. Recall

that we have d
dt htf = ∆htf for a.e. t > ε and that (ε,+∞) 3 t 7→ ∆htf = ht−ε∆hεf ∈ L2(m)

is continuous. Call g := ∆hεf . Since even the map

(ε,+∞) 3 t 7−→
ˆ
|∇ht−εg|2 dm = −

ˆ
ht−εg∆ht−εg dm

is continuous, we conclude that (ε,+∞) 3 t 7→ d
dt htf = ht−εg ∈ W 1,2(X) is continuous as

well. This grants that (t 7→ htf) ∈ C1
(
(ε,+∞),W 1,2(X)

)
. We now argue by induction:

assume that for some n ∈ N it holds that the map t 7→ htg belongs to Cn
(
(ε,+∞),W 1,2(X)

)
for every g ∈ L2(m). This means that the map t 7→ d

dt htf = ∆htf = ht−ε∆hεf belongs to

the space Cn
(
(ε,+∞),W 1,2(X)

)
, thus accordingly (t 7→ htf) ∈ Cn+1

(
(ε,+∞),W 1,2(X)

)
.

ii) By Proposition 5.2.7 it suffices to show that ∆htf ∈ D(∆) for all f ∈ L2(m) and t > 0.

This immediately follows from the fact that ∆htf = ht/2∆ht/2f ∈ D(∆). �

Lemma 5.2.13 Let u : R→ [0,+∞] be convex lower semicontinuous and u(0) = 0. Define

C :=
{
v ∈ C∞(R)

∣∣∣ v ≥ 0 is convex, v(0) = v′(0) = 0, v′, v′′ are bounded
}
.

Then there exists a sequence (un)n ⊆ C such that un(t)↗ u(t) for all t ∈ R.

Proof. Let us define ũ(t) := sup
{
v(t)

∣∣ v ∈ C, v ≤ u
}
≤ u(t) for all t ∈ R. It can be readily

checked that actually ũ = u. Now call I := {u < +∞} and fix any compact interval K ⊆ I

such that dist(K,R \ I) > 0. Then there exists a constant C(K,u) > 0 such that each v ∈ C

with v ≤ u is C(K,u)-Lipschitz in K. Moreover, for a suitable sequence (vn)n ⊆ C we have

that ess sup
{
v ∈ C : v ≤ u

}
= supn vn holds a.e. in K. These two facts grant that actually

the equality ũ = supn vn holds everywhere in K. Since int(I) can be written as countable

union of intervals K as above, we deduce that there exists (wn)n ⊆ C such that ũ = supnwn.

Finally, we would like to define un := maxi≤nwi for all n ∈ N, but such functions have all the

required properties apart from smoothness. Therefore the desired functions un can be easily

built by recalling the facts that max{w1, w2} = 1
2

(
|w1−w2|+w1 +w2

)
and that for all t ∈ R

one has |w1 − w2|(t) = supε>0

√
|w1 − w2|2(t) + ε2 − ε. �

Proposition 5.2.14 Let f ∈ L2(m) be fixed. Then the following properties hold:

i) Weak maximum principle. Suppose that f ≤ c holds m-a.e. for some constant c ∈ R.

Then htf ≤ c holds m-a.e. for every t > 0.

ii) Let u : R → [0,+∞] be any convex lower semicontinuous function satisfying u(0) = 0.

Then the function [0,+∞) 3 t 7→
´
u(htf) dm is non-increasing.

iii) Let p ∈ [1,∞] be given. Then ‖htf‖Lp(m) ≤ ‖f‖Lp(m) holds for every t > 0.
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Proof. The proof goes as follows:

i) By recalling the ‘minimising movements’ technique that we used in Step 1 of Theorem

5.1.12 to prove existence of the gradient flow, one can easily realise that it is enough to

show that for any τ > 0 the minimum fτ of g 7→ E(g) + ‖f − g‖2L2(m)/(2 τ) is m-a.e. smaller

than of equal to c. We argue by contradiction: if not, then the function f̄ := fτ ∧ c would

satisfy the inequalities E(f̄) ≤ E(fτ ) and ‖f − f̄‖L2(m) < ‖f − fτ‖L2(m), thus contradicting

the minimality of fτ . Hence the weak maximum principle i) is proved.

ii) First of all, we prove it for u ∈ C∞(R) such that u(0) = u′(0) = 0 and u′, u′′ are bounded.

Say
∣∣u′(t)∣∣, ∣∣u′′(t)∣∣ ≤ C for all t ∈ R. For any t ≥ s, we thus have that

∣∣u(t)− u(s)
∣∣ =

∣∣∣∣ˆ t

s
u′(r) dr

∣∣∣∣ =

∣∣∣∣(t− s)u′(s) +

ˆ t

s

(
u′(r)− u′(s)

)
dr

∣∣∣∣
≤ C |s| (t− s) +

ˆ t

s

ˆ r

s
u′′(r′) dr′ dr ≤ C

[
(t− s)2 + |s| (t− s)

]
.

(5.32)

Given that (0,+∞) 3 t 7→ htf ∈ L2(m) is locally Lipschitz, we deduce from (5.32) that the

function t 7→
´
u(htf) dm, which is continuous on [0,+∞), is locally Lipschitz on (0,+∞).

By passing to the limit as ε↘ 0 in the equalities

ˆ
u(ht+εf)− u(htf)

ε
dm =

ˆ t+ε

t
u′(hsf) ∆hsf dsdm =

ˆ 1

0

ˆ
u′(ht+εrf) ∆ht+εrf dmdr,

we see that d
dt

´
u(htf) dm =

´
u′(htf) ∆htf dm for a.e. t > 0. Hence by using the chain rule

for the differential and the fact that u′′ ≥ 0 we finally conclude that

d

dt

ˆ
u(htf) dm =

ˆ
u′(htf) ∆htf dm = −

ˆ
∇u′(htf) · ∇htf dm

= −
ˆ
u′′(htf) |∇htf |2 dm ≤ 0 for a.e. t > 0,

which ensures that the function [0,+∞) 3 t 7→
´
u(htf) dm is non-increasing.

Now consider the case of a general function u. Consider an approximating sequence (un)n

as in Lemma 5.2.13. By monotone convergence theorem, we thus see that

ˆ
u(htf) dm = sup

n∈N

ˆ
un(htf) dm for every t ≥ 0.

Hence t 7→
´
u(htf) dm is non-increasing as pointwise supremum of non-increasing functions.

iii) To prove the statement for p ∈ [1,∞), just apply ii) with u := | · |p. For the case p =∞,

notice that −‖f‖L∞(m) ≤ f ≤ ‖f‖L∞(m) holds m-a.e., whence −‖f‖L∞(m) ≤ htf ≤ ‖f‖L∞(m)

holds m-a.e. for every t > 0 by i), so that ‖htf‖L∞(m) ≤ ‖f‖L∞(m) for all t > 0. �

Proposition 5.2.15 (Heat flow in Lp(m)) Let p ∈ [1,∞) be given. Then the heat flow

uniquely extends to a family of linear contractions in Lp(m).

Proof. It follows from Proposition 5.2.14 and the density of L2(m) ∩ Lp(m) in Lp(m). �
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Definition 5.2.16 (Heat flow in L∞(m)) Let f ∈ L∞(m) be given. Then for every t > 0

we define htf ∈ L∞(m) as the function corresponding to
[
L1(m) 3 g 7→

´
f htg dm ∈ R

]
∈

L1(m)′.

Notice that the previous definition is well-posed because
∣∣ ´ f htg dm

∣∣ ≤ ‖f‖L∞(m) ‖g‖L1(m)

is verified by item iii) of Proposition 5.2.14.

Exercise 5.2.17 Given p ∈ [1,∞] and t > 0, we (provisionally) denote by hpt the heat flow

in Lp(m) at time t. Prove that hpt f = hqtf for all p, q ∈ [1,∞] and f ∈ Lp(m) ∩ Lq(m). �

Proposition 5.2.18 Let ϕ ∈ C∞c (0,+∞) and p ∈ [1,∞] be given. For any f ∈ L2(m) ∩
Lp(m), let us define the mollified heat flow hϕf ∈ L2(m) ∩ Lp(m) as

hϕf :=

ˆ +∞

0
hsf ϕ(s) ds. (5.33)

Then hϕf ∈ D(∆) and ‖∆hϕf‖Lp(m) ≤ C(ϕ) ‖f‖Lp(m) for some constant C(ϕ) > 0.

Proof. By applying Theorem 1.3.15, we see that hϕf ∈ D(∆) and that

∆hϕf =

ˆ +∞

0
∆hsf ϕ(s) ds =

ˆ +∞

0

d

ds
hsf ϕ(s) ds = −

ˆ +∞

0
hsf ϕ

′(s) ds,

whence accordingly item iii) of Proposition 5.2.14 yields

‖∆hϕf‖Lp(m) ≤
ˆ +∞

0
‖hsf‖Lp(m) |ϕ

′|(s) ds ≤ ‖f‖Lp(m)

ˆ +∞

0
|ϕ′|(s) ds.

Therefore the statement is verified with C(ϕ) :=
´ +∞

0 |ϕ′|(s) ds. �

A direct consequence of Proposition 5.2.18 is given by the next result:

Corollary 5.2.19 The family
{
f ∈ L2(m) ∩ L∞(m)

∣∣ f ≥ 0, f ∈ D(∆), ∆f ∈ W 1,2(X)
}

is

strongly L2(m)-dense in
{
f ∈ L2(m)

∣∣ f ≥ 0
}

.

Bibliographical remarks
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the references contained therein. On the other hand, the results of Section 5.2 constitute the

outcome of a reformulation of the achievements that have been carried out in [5].



Chapter 6

Second-order calculus on RCD spaces

In this conclusive chapter we introduce the class of those metric measure spaces that satisfy

the Riemannian curvature-dimension condition, briefly called RCD spaces, and we develop a

thorough second-order differential calculus over these structures.

In Section 6.1 we lay the groundwork for the theory of RCD spaces. An RCD(K,∞) space,

where K is a given real constant, is an infinitesimally Hilbertian metric measure space having

Ricci curvature bounded from below by K (in some synthetic sense); the definition of this

concept is provided in Subsection 6.1.1. In Subsection 6.1.2 we show that the added regularity

of RCD spaces guarantees nicer properties of the heat flow. In Subsection 6.1.3 we introduce

a fundamental class of functions on RCD spaces, called test functions, which will be used as

test objects in order to give meaningful definitions of higher-order Sobolev spaces.

By building on top of the abstract first-order differential calculus that has been inves-

tigated in Chapter 4, we are thus able to define, e.g., the notions of Hessian, of covariant

derivative and of exterior derivative over any RCD(K,∞) space; these goals are achieved in

Sections 6.2, 6.3 and 6.4, respectively. We finally conclude by presenting the Ricci curvature

operator and its properties in Section 6.5. (We point out that some of the proofs in these

conclusive sections are just sketched.)

6.1 The theory of RCD spaces

6.1.1 Definition of RCD space

Consider any smooth function f : Rd → R. An easy computation yields the following formula:

∆
|∇f |2

2
= |Hf |2HS +∇f · ∇∆f. (6.1)

Now consider any smooth Riemannian manifold (M, g). Recall that the Riemann curvature

tensor is given by

R(X,Y, Z,W ) :=
〈
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W

〉
,

129
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while the Ricci curvature tensor is defined as

Ric(X,Y ) :=

dimM∑
i=1

R(ei, X, Y, ei)

where (ei)i is any (local) frame, i.e., a family of vector fields that form an orthonormal basis

of the tangent space at all points.

Observe that in (6.1) three derivatives of f appear, thus an analogous formula for M

should contain a correction term due to the presence of the curvature. Indeed, it turns out

that for any f ∈ C∞(M) we have

∆
|∇f |2

2
= |Hf |2HS +∇f · ∇∆f + Ric(∇f,∇f). (6.2)

Formula (6.2) is called Bochner identity . In order to generalise the notion of ‘having Ricci

curvature greater than or equal to K’ to the framework of metric measure spaces, we need

the following simple result:

Proposition 6.1.1 Let (M, g) be a smooth Riemannian manifold and let K ∈ R. Then the

following are equivalent:

i) RicM ≥ Kg, i.e., for any p ∈M and v ∈ TpM we have that Ricp(v, v) ≥ K|v|2.

ii) For any f ∈ C∞(M) it holds that

∆
|∇f |2

2
≥ ∇f · ∇∆f +K|∇f |2, (6.3)

which is called Bochner inequality.

Proof. The implication i) =⇒ ii) is trivial by (6.2), then it just suffices to prove ii) =⇒ i).

Suppose to have p ∈M and v ∈ TpM such that Ricp(v, v) < K|v|2. Hence there is f ∈ C∞(M)

satisfying ∇fp = v and Hfp = 0. Then ∆ |∇f |2
2 (p) < ∇fp · ∇∆fp + K|∇fp|2, which is in

contradiction with (6.2). �

We are now in a position to give the definition of the RCD(K,∞) condition:

Definition 6.1.2 (RCD(K,∞) space) Let (X, d,m) be a metric measure space and K ∈ R.

Then we say that (X, d,m) is an RCD(K,∞) space provided:

i) There exist C > 0 and x̄ ∈ X such that m
(
Br(x̄)

)
≤ exp(Cr2) for all r > 0.

ii) If f ∈ W 1,2(X) satisfies |Df | ∈ L∞(m), then there exists f̃ ∈ LIP(X) such that f̃ = f

holds m-a.e. and Lip(f̃) =
∥∥|Df |∥∥

L∞(m)
.

iii) (X, d,m) is infinitesimally Hilbertian.
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iv) The weak Bochner inequality is satisfied, i.e.,

ˆ
∆g
|∇f |2

2
dm ≥

ˆ
g
[
∇f · ∇∆f +K|∇f |2

]
dm (6.4)

for every choice of functions f ∈ D(∆) and g ∈ D(∆) ∩ L∞(m)+ with ∆f ∈ W 1,2(X)

and ∆g ∈ L∞(m).

Remark 6.1.3 Item ii) in Definition 6.1.2 is verified if and only if both these conditions hold:

a) If f ∈ W 1,2(X) satisfies |Df | ∈ L∞(m), then there exists f̃ : X → R locally Lipschitz

such that f̃ = f holds m-a.e. in X and lip(f̃) ≤
∥∥|Df |∥∥

L∞(m)
.

b) If f̃ : X→ R is locally Lipschitz and lip(f̃) ≤ L, then f̃ is L-Lipschitz.

The role of ii) is to link the metric structure of the space with the Sobolev calculus. �

6.1.2 Heat flow on RCD spaces

From now on, (X, d,m) will always be an RCD(K,∞) space, for some K ∈ R.

Theorem 6.1.4 (Bakry-Émery estimate) Consider f ∈W 1,2(X) and t ≥ 0. Then

|Dhtf |2 ≤ e−2Kt ht
(
|Df |2

)
holds m-a.e. in X. (6.5)

Proof. Fix g ∈ D(∆) ∩ L∞(m)+ such that ∆g ∈ L∞(m) and t > 0. Define F : [0, t]→ R as

F (s) :=

ˆ
hsg |Dht−sf |2 dm for every s ∈ [0, t].

Since t 7→ htf ∈ W 1,2(X) is of class C1 by Proposition 5.2.12, we know that t 7→ |Dhtf |2 ∈
L1(m) is of class C1 as well. Moreover, from the m-a.e. inequality

|htg − hsg| =
∣∣∣∣ˆ t

s

d

dr
hrg dr

∣∣∣∣ ≤ ˆ t

s
|∆hrg|dr =

ˆ t

s
|hr∆g| dr ≤ |t− s| ‖∆g‖L∞(m),

which is granted by Proposition 5.2.7 and the weak maximum principle, we immediately

deduce that ‖htg − hsg‖L∞(m) ≤ |t − s| ‖∆g‖L∞(m), in other words t 7→ htg ∈ L∞(m) is

Lipschitz. Therefore F is Lipschitz and it holds that

d

ds
F (s) =

ˆ
∆hsg |Dht−sf |2 − 2 hsg∇ht−sf · ∇∆ht−sf dm

(6.4)

≥ 2K

ˆ
hsg |Dht−sf |2 dm

= 2K F (s) for a.e. s ∈ [0, t].

Hence Gronwall lemma grants that F (t) ≥ e2KtF (0), or equivalently
ˆ
g |Dhtf |2 dm ≤ e−2Kt

ˆ
g ht
(
|Df |2

)
dm.

Since the class of functions g under consideration is weakly∗-dense in
{
g ∈ L∞(m) : g ≥ 0

}
as a consequence of Proposition 5.2.18, we finally conclude that (6.5) is satisfied. �
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Lemma 6.1.5 Let f, g ∈ D(∆) ∩ L∞(m) be given. Then

ˆ
∆g

f2

2
dm =

ˆ
g
(
f ∆f + |Df |2

)
dm. (6.6)

Proof. Since fg ∈W 1,2(X), we see that

ˆ
fg∆f dm = −

ˆ
∇(fg) · ∇f dm = −

ˆ
g |Df |2 + f ∇g · ∇f dm

= −
ˆ
g |Df |2 +∇f

2

2
· ∇g dm,

which gives the statement. �

Proposition 6.1.6 (L∞-Lip regularisation of the heat flow) Let f ∈ L∞(m) and t > 0

be given. Then |Dhtf | ∈ L∞(m) and

∥∥|Dhtf |
∥∥
L∞(m)

≤ C(K)√
t
‖f‖L∞(m) for every t ∈ (0, 1). (6.7)

In particular, the function htf admits a Lipschitz representative.

Proof. It suffices to prove the statement for f ∈ L2(m)∩L∞(m). Fix any g ∈ D(∆)∩L∞(m)+

such that ∆g ∈ L∞(m). Take t ∈ (0, 1) and define F : [0, t]→ R as

F (s) :=

ˆ
hsg |ht−sf |2 dm for every s ∈ [0, t].

We already know that F ∈ C
(
[0, t]

)
∩ C1

(
(0, t)

)
and that for a.e. s ∈ [0, t] it holds

d

ds
F (s) =

ˆ
∆hsg |ht−sf |2 − 2 hsg ht−sf ∆ht−sf dm

(6.6)
= 2

ˆ
hsg |Dht−sf |2 dm

= 2

ˆ
g hs

(
|Dht−sf |2

)
dm

(6.5)

≥ 2C(K)

ˆ
g |Dhtf |2 dm.

By integrating the previous inequality on [0, t], we obtain that

2C(K) t

ˆ
g |Dhtf |2 dm ≤ F (t)− F (0) ≤

ˆ
g ht(f

2) dm.

By the weak∗-density of such functions g, we see that the inequality 2C(K) t |Dhtf |2 ≤ ht(f
2)

holds m-a.e. in X. Therefore, the weak maximum principle grants that (6.7) is satisfied.

Finally, the last statement immediately follows from item ii) of Definition 6.1.2. �

6.1.3 Test functions

We now introduce the algebra Test∞(X) of test functions on (X, d,m). These represent the

‘smoothest possible objects’ on X and will be used (in place of C∞c ) to define several differential

operators via suitable integration-by-parts formulae.



6.1. The theory of RCD spaces 133

Definition 6.1.7 (Test function) Let us define

Test∞(X) :=
{
f ∈ LIP(X) ∩ L∞(m) ∩D(∆)

∣∣∣ ∆f ∈W 1,2(X) ∩ L∞(m)
}
,

Test∞+ (X) :=
{
f ∈ Test∞(X)

∣∣ f ≥ 0 holds m-a.e. on X
}
.

(6.8)

Proposition 6.1.8 The space Test∞+ (X) is dense in W 1,2(X)+. Moreover, the space

Test∞(X) is dense in W 1,2(X).

Proof. Let f ∈ W 1,2(X)+ be fixed. Call fn := f ∧ n ∈ W 1,2(X)+ ∩ L∞(m) for any n ∈ N, so

that fn → f in W 1,2(X). Then it suffices to prove that each fn belongs to the W 1,2(X)-closure

of Test∞+ (X). We now claim that

hϕfn ∈ Test∞+ (X) for every ϕ ∈ C∞c (0,+∞). (6.9)

We have that hϕfn ≥ 0 holds m-a.e. by the weak maximum principle. By arguing as in

Proposition 5.2.18, we also see that hϕfn ∈ D(∆) ∩ L∞(m). Choose ε ∈ (0, 1) so that the

support of ϕ is contained in [ε, ε−1], then the fact that ∆htfn = ht−ε/2∆hε/2fn for all t ≥ ε

can be used to prove that ∆hϕfn ∈W 1,2(X)∩L∞(m). Finally, hϕfn ∈ LIP(X) by Proposition

6.1.6. Hence, the claim (6.9) is proved. Now take any (ϕk)k ⊆ C∞c (0,+∞) such that ϕk ⇀ δ0.

Then hϕkfn → fn strongly in W 1,2(X), proving that each function fn is in the closure of the

space Test∞+ (X), as required.

The second statement follows from the first one by noticing that for every f ∈W 1,2(X) it

holds that f = f+ − f− and f± ∈W 1,2(X)+. �

By making use of the assumed lower Ricci curvature bounds, we can prove the following

regularity of minimal weak upper gradients of test functions:

Lemma 6.1.9 Let f ∈ Test∞(X) be given. Then |Df |2 ∈W 1,2(X).

Proof. Given any g ∈ D(∆) ∩ L∞(m)+ and any sequence (ϕk)k ⊆ C∞c (0,+∞) with ϕk ⇀ δ0,

we deduce from Proposition 5.2.18 that hϕkg ⇀ g weakly∗ in L∞(m) and L∞(m) 3 ∆hϕkg →
∆g in L2(m). Thus taking into account item iv) of Definition 6.1.2 and the fact that |∇f |2 ∈
L2(m), we see that

1

2

ˆ
∆g |∇f |2 dm ≥

ˆ
g
(
∇f · ∇∆f +K|∇f |2

)
dm for every g ∈ D(∆) ∩ L∞(m)+. (6.10)

(Notice that in (6.10), differently from item iv) of Definition 6.1.2, the function ∆g is not

required to be essentially bounded.) Now we apply (6.10) with g := ht
(
|∇f |2

)
, which satisfies
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the inequality g ≤ Lip2(f) in the m-a.e. sense by the weak maximum principle, obtaining

E
(
|∇f |2

)
≤ lim

t↘0
E
(
ht/2(|∇f |2)

)
= lim

t↘0

1

2

ˆ ∣∣∇ht/2(|∇f |2)
∣∣2 dm

= − lim
t↘0

1

2

ˆ
ht/2

(
|∇f |2

)
∆ht/2

(
|∇f |2

)
dm

= − lim
t↘0

1

2

ˆ
∆ht

(
|∇f |2

)
|∇f |2 dm

≤ − lim
t↘0

ˆ
ht
(
|∇f |2

) (
∇f · ∇∆f +K|∇f |2

)
dm

≤ Lip(f)2

ˆ ∣∣∇f · ∇∆f +K|∇f |2
∣∣dm < +∞,

whence |Df |2 ∈W 1,2(X), as required. �

Remark 6.1.10 Given any f ∈ Test∞(X), it holds that

E
(
|Df |2

)
≤ Lip(f)2 ‖f‖W 1,2(X)

(
‖∆f‖W 1,2(X) + ‖f‖W 1,2(X)

)
, (6.11)

as a consequence of the estimates in the proof of Lemma 6.1.9. �

Theorem 6.1.11 (Savaré) The space Test∞(X) is an algebra.

Proof. It is clear that Test∞(X) is a vector space. Now fix f, g ∈ Test∞(X). We aim to prove

that fg ∈ Test∞(X) as well. It is immediate to check that fg ∈ LIP(X) ∩ L∞(m). Moreover,

we already know from item iii) of Proposition 5.2.3 that fg ∈ D(∆) and

∆(fg) = f ∆g + g∆f + 2∇f · ∇g,

in particular ∆(fg) ∈ L∞(m). Finally, given that f ∆g, g∆f ∈ W 1,2(X) by the Leibniz rule

(i.e. item C) of Theorem 2.1.28), while ∇f ·∇g ∈W 1,2(X) by Lemma 6.1.9 and a polarisation

argument, we conclude that ∆(fg) ∈W 1,2(X). Hence fg ∈ Test∞(X), as required. �

6.2 Hessian

6.2.1 Definition and basic properties

We briefly recall the notion of Hessian on a smooth Riemannian manifold (M, g).

Given any two smooth vector fields X,Y on M , we consider the covariant derivative ∇YX
of X in the direction of Y , which is characterised by the following result:

Theorem 6.2.1 There exists a unique bilinear map (X,Y ) 7→ ∇YX with these properties:

1) It is an affine connection:
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1a) It is tensorial with respect to Y , i.e., ∇fYX = f ∇YX holds for all f ∈ C∞(M)

and X,Y smooth vector fields on M .

1b) It holds that ∇Y (fX) = Y (f)X + f ∇YX for all f ∈ C∞(M) and X,Y smooth

vector fields on M .

2) It is the Levi-Civita connection:

2a) It is torsion-free, i.e., ∇XY − ∇YX = [X,Y ] holds for all X,Y smooth vector

fields on M .

2b) It is compatible with the metric, i.e., X
(
〈Y,Z〉

)
= 〈∇XY,Z〉+ 〈Y,∇XZ〉 holds for

all X,Y, Z smooth vector fields on M .

Proof. Properties (1), (2) imply that Koszul’s formula

〈∇XY, Z〉 = X
(
〈Y,Z〉

)
+ Y

(
〈X,Z〉

)
− Z

(
〈X,Y 〉

)
+
〈
[X,Y ], Z

〉
−
〈
[X,Z], Y

〉
−
〈
[Y, Z], X

〉
holds for any smooth vector fields X,Y, Z. This formula characterises ∇XY in terms of scalar

product and Lie brackets only, thus showing uniqueness of the bilinear map satisfying (1),

(2). As for existence, we use again Koszul’s formula to define ∇XY as the only vector field

for which the formula is valid for any Z: it is easy to see that the definition is well-posed

and simple computations show that the resulting object satisfies (1), (2), thus concluding the

proof. �

Given a smooth vector field X on M , we define the covariant derivative ∇X of X as

∇X(Y,Z) := 〈∇YX,Z〉 for all Y,Z smooth vector fields on M. (6.12)

Then we define the Hessian Hf of a function f ∈ C∞(M) as

Hf := ∇(∇f). (6.13)

It can be readily proved that the Hessian is a symmetric tensor, i.e.,

Hf(X,Y ) = Hf(Y,X) for all f ∈ C∞(M) and X,Y smooth vector fields on M. (6.14)

In order to prove it, just observe that item 2b) of Theorem 6.2.1 yields

Hf(X,Y ) = 〈∇X∇f, Y 〉 = X
(
〈∇f, Y 〉

)
− 〈∇f,∇XY 〉 = X

(
Y (f)

)
− (∇XY )(f),

Hf(Y,X) = 〈∇Y∇f,X〉 = Y
(
〈∇f,X〉

)
− 〈∇f,∇YX〉 = Y

(
X(f)

)
− (∇YX)(f).

By subtracting the second line from the first one, we thus obtain that

Hf(X,Y )−Hf(Y,X) = (XY − Y X)(f)− (∇XY −∇YX)︸ ︷︷ ︸
=[X,Y ] by 2a)

(f) = 0,

proving the claim (6.14).
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Lemma 6.2.2 Let f ∈ C∞(M) be given. Then

∇ |∇f |
2

2
= Hf(∇f, ·). (6.15)

Proof. Just observe that for any smooth vector field X on M it holds〈
∇ |∇f |

2

2
, X
〉

=
1

2
X
(
|∇f |2

) 2b)
= 〈∇X∇f,∇f〉 = ∇(∇f)(X,∇f)

(6.14)
= Hf(∇f,X),

whence the statement follows. �

Remark 6.2.3 By polarisation, starting from (6.15) and with simple computations we get

that the identity

2 Hf(∇g1,∇g2) = ∇(∇f · ∇g1) · ∇g2 +∇(∇f · ∇g2) · ∇g1 −∇f · ∇(∇g1 · ∇g2) (6.16)

is satisfied for every f, g1, g2 ∈ C∞(M). �

Definition 6.2.4 Let (X, d,m) be an RCD(K,∞) space. Then we define

L2
(
(T ∗)⊗2X

)
:= L2(T ∗X)⊗ L2(T ∗X). (6.17)

Given any A ∈ L2
(
(T ∗)⊗2X

)
, we define

A(X,Y ) := A(X ⊗ Y ) ∈ L0(m) for every X,Y ∈ L2(TX). (6.18)

Clearly L2
(
(T ∗)⊗2X

)
can be identified with the dual of L2(T⊗2X) := L2(TX)⊗ L2(TX),

the duality mapping being given by

(ω ⊗ η)(X ⊗ Y ) := ω(X) η(Y ) m-a.e.

for all ω, η ∈ L2(T ∗X) and X,Y ∈ L2(TX), then extended by linearity and continuity. We

also point out that ∣∣A(X,Y )
∣∣ ≤ |A|HS|X||Y | holds m-a.e. on X (6.19)

for every A ∈ L2
(
(T ∗)⊗2X

)
and X,Y ∈ L2(TX).

Lemma 6.2.5 Let (X, d,m) be an RCD(K,∞) space. Then{ n∑
i=1

hi∇gi : hi, gi ∈ Test∞(X)

}
is dense in L2(TX). (6.20)

In particular, it holds that{ n∑
i=1

hi∇g1,i ⊗∇g2,i : hi, g1,i, g2,i ∈ Test∞(X)

}
is dense in L2(TX)⊗ L2(TX). (6.21)

Proof. To get (6.20), recall that Test∞(X) is dense in W 1,2(X) and weakly∗ dense in L∞(m).

To deduce (6.21) from (6.20), it suffices to apply Lemma 3.2.21 and Theorem 6.1.11. �
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Having formula (6.16) in mind, we thus give the following definition:

Definition 6.2.6 (The space W 2,2(X)) Let (X, d,m) be an RCD(K,∞) space, with K ∈ R.

Let f ∈W 1,2(X). Then we say that f ∈W 2,2(X) provided there exists A ∈ L2
(
(T ∗)⊗2X

)
such

that for every choice of h, g1, g2 ∈ Test∞(X) it holds that

2

ˆ
hA(∇g1,∇g2) dm = −

ˆ
∇f ·∇g1 div(h∇g2)+∇f ·∇g2 div(h∇g1)+h∇f ·∇(∇g1·∇g2) dm.

Such tensor A, which is uniquely determined by (6.21), will be unambiguously denoted by Hf

and called Hessian of f . Moreover, the resulting vector space W 2,2(X) is naturally endowed

with the norm ‖ · ‖W 2,2(X), defined as

‖f‖W 2,2(X) :=
√
‖f‖2

L2(m)
+ ‖df‖2L2(T ∗X) + ‖Hf‖2L2((T ∗)⊗2X) for every f ∈W 2,2(X).

Theorem 6.2.7 The space W 2,2(X) is a separable Hilbert space and the Hessian is a closed

operator, i.e.,{
(f,Hf) : f ∈W 2,2(X)

}
is closed in W 1,2(X)× L2

(
(T ∗)⊗2X

)
. (6.22)

Proof. Proving (6.22) amounts to showing that f ∈ W 2,2(X) and Hf = A whenever a given

sequence (fn)n ⊆ W 2,2(X) satisfies fn → f in W 1,2(X) and Hfn → A in L2
(
(T ∗)⊗2X

)
.

This can be achieved by writing the integral formula characterising Hfn and letting n→∞.

Completeness of W 2,2(X) is then a direct consequence of (6.22). Finally, we deduce the

separability of W 2,2(X) from the fact that the operator f 7→ (f, df,Hf) is an isometry from

the space W 2,2(X) to the separable space L2(m) × L2(T ∗X) × L2
(
(T ∗)⊗2X

)
, provided the

latter is endowed with the product norm. �

6.2.2 Measure-valued Laplacian

Definition 6.2.8 (Measure-valued Laplacian) Let (X, d,m) be an infinitesimally Hilber-

tian metric measure space. Let f ∈ W 1,2(X). Then we say that f has measure-valued

Laplacian, briefly f ∈ D(∆), provided there exists a finite (signed) Radon measure µ on X

such that ˆ
g dµ = −

ˆ
∇g · ∇f dm for every g ∈ LIPbs(X). (6.23)

The measure µ, which is uniquely determined by the density of LIPbs(X) in Cb(X), will be

unambiguously denoted by ∆f .

It holds that D(∆) is a vector space and that ∆ : D(∆)→
{

finite Radon measures on X
}

is a linear map. Both properties immediately follow from (6.23).

Remark 6.2.9 Suppose that (X, d) is bounded. Then

∆f(X) = 0 for every f ∈ D(∆). (6.24)

Indeed, g ≡ 1 trivially belongs to LIPbs(X), whence (6.23) yields ∆f(X) =
´

d∆f = 0. �



138 Chapter 6 • Second-order calculus on RCD spaces

Example 6.2.10 Let X := [0, 1] and m := L1|[0,1]
. Then the identity function f(x) := x

belongs to D(∆) and ∆f = δ0 − δ1. �

Remark 6.2.11 In this framework, the Laplacian is not necessarily the trace of the Hessian.

�

Lemma 6.2.12 Let (X, d,m) be an RCD(K,∞) space. Then LIPbs(X) is dense in W 1,2(X).

Proof. We already know that Test∞(X) is dense in W 1,2(X) (cf. Proposition 6.1.8). Then it

suffices to prove that LIPbs(X) is W 1,2(X)-dense in Test∞(X). To this aim, fix f ∈ Test∞(X)

and define χn :=
(
1− d(·, Bn(x̄))

)+
for all n ∈ N, where x̄ ∈ X is any fixed point. Now let us

call fn := χn f ∈ LIPbs(X) for every n ∈ N. Then the dominated convergence theorem gives

|fn − f | = |1− χn| |f | −→ 0,

|dfn − df | ≤ |1− χn| |df |+ |dχn| |f | −→ 0,
in L2(m),

thus proving that fn → f in W 1,2(X), as required. �

Proposition 6.2.13 (Compatibility of ∆ and ∆) The following properties hold:

i) Let f ∈ D(∆) satisfy ∆f = ρm for some ρ ∈ L2(m). Then f ∈ D(∆) and ∆f = ρ.

ii) Let f ∈ D(∆) satisfy ∆f ∈ L1(m). Then f ∈ D(∆) and ∆f = ∆f m.

Proof. i) We know that
´
g ρ dm = −

´
∇g · ∇f dm holds for every g ∈ LIPbs(X), whence also

for every g ∈W 1,2(X) by Lemma 6.2.12. This proves that f ∈ D(∆) and ∆f = ρ.

ii) Since
´
g d(∆f m) =

´
g∆f dm = −

´
∇g · ∇f dm for every g ∈ LIPbs(X) ⊆ W 1,2(X), we

see that f ∈ D(∆) and ∆f = ∆f m. �

In the sequel we shall need the following result, whose proof we omit:

Lemma 6.2.14 (Ambrosio-Mondino-Savaré) Let (X, d,m) be a given RCD(K,∞) space.

Let Ω ⊆ X be an open set and let K ⊆ Ω be a compact set such that dist(K, ∂Ω) > 0. Then

there exists h ∈ Test∞(X) with 0 ≤ h ≤ 1 such that h = 1 on K and spt(h) ⊆ Ω.

Lemma 6.2.15 (Good cut-off functions) Let (X, d,m) be a proper RCD(K,∞) space, i.e.

all bounded closed subsets of X are compact. Then there exists a sequence (χn)n ⊆ Test∞(X)

such that

i) χn(x)↗ 1 for every x ∈ spt(m),

ii) ∆χn converges to 0 in the weak∗ topology of L∞(m).

Proof. Choose any (gn)n ⊆ LIPbs(X)+ such that gn(x)↗ 1 for every x ∈ X. We claim that

htgn(x)↗ 1 as n→∞ for every x ∈ spt(m) and t > 0. (6.25)
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Since gn − gn+1 ≤ 0 holds m-a.e., we deduce from item i) of Proposition 5.2.14 that htgn ≤
htgn+1 holds m-a.e., thus also everywhere on spt(m) because each htgn is continuous (by the

Sobolev-to-Lipschitz property). Given any t > 0 and n ∈ N, it holds that the function htgn

is Lipschitz with Lip(htgn) ≤ C(K)/
√
t by Proposition 6.1.6 and item ii) of Definition 6.1.2,

whence the limit function `t := supn htgn ≤ 1 is Lipschitz as well with Lip(`t) ≤ C(K)/
√
t.

By dominated convergence theorem it is immediate to see that gn converges to 1 in the weak∗

topology of L∞(m), so for any f ∈ L1(m) we have

lim
n→∞

ˆ
f htgn dm = lim

n→∞

ˆ
htf gn dm =

ˆ
htf dm =

ˆ
f dm,

which shows that for any t > 0 the functions htgn converge to 1 with respect to the weak∗

topology of L∞(m). We can now prove (6.25) arguing by contradiction: if {`t < 1} 6= ∅
for some t > 0, then there exists a Borel set E ⊆ spt(m) with 0 < m(E) < +∞ such that

`t(x) < 1 for every x ∈ E. Then
´
E htgn dm →

´
E `t dm < m(E) by monotone convergence

theorem, which contradicts the weak∗ convergence of htgn to 1. Therefore (6.25) is achieved.

Fix any function ϕ ∈ C∞c (0, 1)+ with
´ 1

0 ϕ(t) dt = 1 and put χn :=
´ 1

0 ϕ(t) htgn dt ∈ L2(m).

By recalling Proposition 5.2.18 we see that (χn)n ⊆ Test∞(X) and that the sequence (∆χn)n

is bounded in L∞(m). Given any x ∈ spt(m), we know from (6.25) that ϕ(t) htgn(x) ↗ ϕ(t)

for all t ∈ (0, 1), thus accordingly

χn(x) =

ˆ 1

0
ϕ(t) htgn(x) dt↗

ˆ 1

0
ϕ(t) dt = 1,

which proves i). Moreover, from the bounded the sequence (∆χn)n ⊆ L∞(m) we can extract

a (not relabeled) subsequence converges to some limit function G ∈ L∞(m) in the weak∗

topology of L∞(m). In order to conclude it suffices to show that G = 0. Fix any ψ ∈ Test∞(X)

with compact support. Lemma 6.2.14 grants the existence of a function η ∈ Test∞(X) with

compact support that equals 1 on a neighbourhood of spt(ψ). Since ψ = 0 on X \ spt(ψ) we

have that ∆ψ = 0 holds m-a.e. on X \ spt(ψ), thereforeˆ
∆ψ dm =

ˆ
η∆ψ dm = −

ˆ
∇η · ∇ψ dm = 0,

where the last equality follows from the fact that χspt(ψ)∇η = 0 and χX\spt(ψ)∇ψ = 0 by

locality of ∇. By dominated convergence theorem and i) one has
´

∆ψ χn dm →
´

∆ψ dm,

thus

lim
n→∞

ˆ
ψ∆χn dm = lim

n→∞

ˆ
∆ψ χn dm =

ˆ
∆ψ dm = 0.

Since test functions having compact support are dense in L1(m) (by Lemma 6.2.14), this is

enough to conclude that G = 0. Hence also item ii) is proved. �

Proposition 6.2.16 Let (X, d,m) be a proper RCD(K,∞) space. Let f ∈ W 1,2(X) ∩ L1(m)

and let µ be a finite Radon measure on X such that

−
ˆ
∇g · ∇f dm ≥

ˆ
g dµ for every g ∈ LIPbs(X)+. (6.26)

Then f ∈ D(∆) and ∆f ≥ µ.
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Proof. Fix a sequence (χn)n as in Lemma 6.2.15. Define Vn :=
{
g ∈ LIP(X) : spt(g) ⊆ Ωn

}
for all n ∈ N, where we set Ωn := {χn > 1/2}. The elements of LIPbs(X) have compact

support (as the space is supposed to be proper), the sets Ωn are open (by continuity of χn)

and
⋃
n Ωn = X (as χn ↗ 1 by Lemma 6.2.15). Therefore LIPbs(X) =

⋃
n Vn. We define the

linear map L : LIPbs(X)→ R as

L(g) := −
ˆ
∇g · ∇f dm−

ˆ
g dµ for every g ∈ LIPbs(X).

Note that L(g) ≥ 0 whenever g ≥ 0. Given n ∈ N and g ∈ Vn, we have 2 ‖g‖L∞(m)
χn± g ≥ 0,

so that ±L(g) ≤ 2 ‖g‖L∞(m) L(χn), or equivalently
∣∣L(g)

∣∣ ≤ 2 ‖g‖L∞(m) L(χn). This grants

that L can be uniquely extended to a linear continuous map L : Cc(X)→ R by Lemma 6.2.12.

Since L is positive, by applying the Riesz representation theorem we deduce that there exists

a Radon measure ν ≥ 0 on X such that L(g) =
´
g dν for all g ∈ Cc(X), thus in particular

−
ˆ
∇f · ∇g dm =

ˆ
g d(µ+ ν) for every g ∈ LIPbs(X). (6.27)

Now fix n ∈ N and pick a sequence (ηk)k ⊆ LIPbs(X)+ of cut-off functions with Lip(ηk) ≤ 1

such that ηk ↗ 1. It holds that (ηkχn)k ⊆ LIPbs(X). Given that ηkχn → χn holds pointwise

m-a.e. and
∣∣D(ηkχn)

∣∣ ≤ |Dχn| + χn ∈ L2(m), we can extract a (not relabeled) subsequence

of (ηkχn)k for which ∇(ηkχn) ⇀ ∇χn in the weak topology of L2(TX) (as ∇ is a closed

operator). Moreover, one has that
´
ηkχn dµ→

´
χn dµ by dominated convergence theorem,

while
´
ηkχn dν →

´
χn dν by monotone convergence theorem. Hence by choosing g = ηkχn

in (6.27) and letting k →∞, we obtain that

−
ˆ
∇f · ∇χn dm =

ˆ
χn d(µ+ ν) for every n ∈ N. (6.28)

By applying (6.28) and recalling that the functions ∆χn weakly∗ converge in L∞(m) to the

null function, we see that

ˆ
χn d(µ+ ν) = −

ˆ
∇χn · ∇f dm =

ˆ
f ∆χn dm −→ 0.

We thus deduce that

ν(X) = lim
n→∞

ˆ
χn dν = − lim

n→∞

ˆ
χn dµ = −µ(X) < +∞,

whence accordingly ν is a finite measure. In particular, one has that µ+ ν is a finite measure

as well, so that (6.27) yields f ∈ D(∆) and ∆f = µ+ ν ≥ µ. �

Corollary 6.2.17 Let (X, d,m) be a proper RCD(K,∞) space. Fix f ∈ Test∞(X). Then it

holds that |∇f |2 ∈ D(∆) and

∆
|∇f |2

2
≥
(
∇f · ∇∆f +K|∇f |2

)
m. (6.29)
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Proof. Denote by µ the right hand side of (6.29). We know from (6.4) that

−
ˆ
∇g · ∇

(
|∇f |2

2

)
dm =

ˆ
∆g
|∇f |2

2
dm ≥

ˆ
g dµ for every g ∈ Test∞+ (X).

By regularisation via the mollified heat flow (cf. Proposition 5.2.18), we see that the previous

inequality is verified for every g ∈ LIPbs(X)+, so that Proposition 6.2.16 gives the thesis.

�

6.2.3 Presence of many W 2,2-functions

Given any f1, f2 ∈ Test∞(X), let us define

Γ2(f1, f2) :=
1

2

[
∆(∇f1 · ∇f2)−

(
∇f1 · ∇∆f2 +∇f2 · ∇∆f1

)
m
]
. (6.30)

Notice that Γ2(f1, f2) is a finite Radon measure on X and that Γ2 is bilinear. Then the

inequality (6.29) can be restated in the following compact form:

Γ2(f, f) ≥ K|∇f |2m for every f ∈ Test∞(X). (6.31)

Moreover, given any f, g, h ∈ Test∞(X) we define

[Hf ](g, h) :=
1

2

(
∇(∇f · ∇g) · ∇h+∇(∇f · ∇h) · ∇g −∇f · ∇(∇g · ∇h)

)
. (6.32)

Clearly (f, g, h) 7→ [Hf ](g, h) is a trilinear map.

Given two non-negative Radon measures µ, ν on X, we define the Radon measure
√
µν as

√
µν :=

√
dµ

dσ

dν

dσ
σ for any Radon measure σ ≥ 0 with µ, ν � σ. (6.33)

Its well-posedness stems from the fact that the function (a, b) 7→
√
ab is 1-homogeneous.

Lemma 6.2.18 Let µ1, µ2, µ3 be (finite) Radon measures on X. Assume λ2µ1+2λµ2+µ3 ≥ 0

for every λ ∈ R. Then µ1, µ3 ≥ 0 and µ2 ≤
√
µ1µ3.

Proof. By choosing λ = 0 we see that µ3 ≥ 0. Given any Borel set E ⊆ X and λ > 0, we have

that µ1(E)+2µ2(E)/λ+µ3(E)/λ2 ≥ 0, so that µ1(E) ≥ − limλ→+∞ 2µ2(E)/λ+µ3(E)/λ2 = 0,

which shows that µ1 ≥ 0. Now take any Radon measure ν ≥ 0 such that µ1, µ2, µ3 � ν.

Write µi = fi ν for i = 1, 2, 3. Then λ2f1 + 2λf2 + f3 ≥ 0 holds ν-a.e., whence accordingly we

have that the inequality f2 ≤
√
f1f3 holds ν-a.e. as well, concluding the proof. �

Lemma 6.2.19 Let n ∈ N and let Φ : Rn → R be a polynomial with no constant term. Let

us fix f1, . . . , fn ∈ Test∞(X), briefly f = (f1, . . . , fn). Denote by Φi the partial derivative of

Φ with respect to its ith-entry. Then Φ(f) ∈ Test∞(X) and

Γ2

(
Φ(f),Φ(f)

)
= A+ (B + C)m,

∣∣∇Φ(f)
∣∣2 = D, (6.34)
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where we set

A :=
n∑

i,j=1

Φi(f) Φj(f) Γ2(fi, fj),

B := 2
n∑

i,j,k=1

Φi(f) Φjk(f) [Hfi](fj , fk),

C :=

n∑
i,j,k,h=1

Φik(f) Φjh(f) 〈∇fi,∇fj〉 〈∇fk,∇fh〉,

D :=
n∑

i,j=1

Φi(f) Φj(f) 〈∇fi,∇fj〉.

(6.35)

Proof. The fact that Φ(f) ∈ Test∞(X) follows from Theorem 6.1.11. To prove that (6.34) is

satisfied it suffices to manipulate the calculus rules described so far; for instance, it can be

readily checked that dΦ(f) =
∑n

i=1 Φi(f) dfi as a consequence of the Leibniz rule. �

Before stating and proving Theorem 6.2.21 below in its full generality, we illustrate the

ideas by treating a simpler case (the following approach is due to Bakry):

Proposition 6.2.20 Let M be a smooth Riemannian manifold with ∆ |∇f |
2

2 ≥ ∇f · ∇∆f for

every f ∈ C∞(M). Then ∆ |∇f |
2

2 ≥ ∇f · ∇∆f + |Hf |2op.

Proof. Let Φ(x1, x2) := λx1 +(x2−c)2−c2 for some λ, c ∈ R. Then for arbitrary h ∈ C∞(M)

Lemma 6.2.19 yields

0 ≤Γ2

(
λf + (h− c)2, λf + (h− c)2

)
=λ2 Γ2(f, f) + 4λ(h− c)Γ2(f, h) + 4(h− c)2 Γ2(h, h)

+ 4λHf(∇h,∇h) + 8(h− c) Hh(∇h,∇h) + 4|∇h|4.

Since c is arbitrary, we can for every point x ∈ M choose c = h(x), thus getting that the

inequality λ2 Γ2(f, f) + 4λHf(∇h,∇h) + 4|∇h|4 ≥ 0 holds for all λ ∈ R, whence accordingly

one has
∣∣Hf(∇h,∇h)

∣∣ ≤√Γ2(f, f) |∇h|2. Since Hf is symmetric, for all x ∈M we have

|Hf |op(x) = sup
{∣∣Hf(∇h,∇h)

∣∣ : h ∈ C∞(M), |∇h|(x) = 1
}
≤
√

Γ2(f, f)(x),

getting the statement. �

We now state and prove the following fundamental result:

Theorem 6.2.21 (Key lemma) Let fi, gi, hj ∈ Test∞(X) for i = 1, . . . , n and j = 1, . . . ,m.

We define the Radon measure µ on X as

µ :=
∑
i,i′

gi gi′
(
Γ2(fi, fi′)−K 〈∇fi,∇fi′〉m

)
+
∑
i,i′

2 gi [Hfi](fi′ , gi′)m

+
∑
i,i′

〈∇fi,∇fi′〉 〈∇gi,∇gi′〉+ 〈∇fi,∇gi′〉 〈∇fi′ ,∇gi〉
2

m.
(6.36)
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Let us write µ = ρm + µs, with µs ⊥ m. Then µs ≥ 0 and∣∣∣∣∑
i,j

〈∇fi,∇hj〉 〈∇gi,∇hj〉+ gi [Hfi](hj , hj)

∣∣∣∣2 ≤ ρ∑
j,j′

∣∣〈∇hj ,∇hj′〉∣∣2 m-a.e.. (6.37)

Proof. Given any λ, ai, bi, cj ∈ R, let us define

Φ(x1, . . . , xn, y1, . . . , yn, z1, . . . , zm) :=
n∑
i=1

(λyixi + aixi − biyi) +
m∑
j=1

(
(zj − cj)2 − c2

j

)
.

Simple computations show that the only non-vanishing derivatives are

∂xiΦ = λyi + ai, ∂yiΦ = λxi − bi, ∂xiyiΦ = λ, ∂zjΦ = 2(zj − cj), ∂zjzjΦ = 2.

Let f := (f1, . . . , fn, g1, . . . , gn, h1, . . . , hm) ∈
[
Test∞(X)

]2n+m
, so that Φ(f) ∈ Test∞(X) by

Lemma 6.2.19. Note that Γ2

(
Φ(f),Φ(f)

)
≥ K

∣∣∇Φ(f)
∣∣2m by (6.31). Moreover, in this case

the objects A,B,C,D defined in Lemma 6.2.19 read as

A(λ, a, b, c) =
∑
i,i′

(λgi + ai)(λgi′ + ai′)Γ2(fi, fi′) + o.t.,

B(λ, a, b, c) = 4
∑
i,i′

(λgi + ai)λ[Hfi](fi′ , gi′) + 4
∑
i,j

(λgi + ai)[Hfi](hj , hj) + o.t.,

C(λ, a, b, c) = 2
∑
i,i′

λ2
(
〈∇fi,∇fi′〉 〈∇gi,∇gi′〉+ 〈∇fi,∇gi′〉 〈∇gi,∇fi′〉

)
+ 8λ

∑
i,j

〈∇fi,∇hj〉 〈∇gi,∇hj〉+ 4
∑
j,j′

∣∣〈∇hj ,∇hj′〉∣∣2 + o.t.,

D(λ, a, b, c) =
∑
i,i′

(λgi + ai)(λgi′ + ai′)〈∇fi,∇fi′〉+ o.t.,

where each o.t.=‘other terms’ contains either a factor λfi − bi or a factor hj − cj . Therefore

Lemma 6.2.19 grants that for any λ ∈ R, a, b ∈ Rn and c ∈ Rm we have

A(λ, a, b, c) +
(
B(λ, a, b, c) + C(λ, a, b, c)

)
m ≥ KD(λ, a, b, c)m. (6.38)

Now choose a Radon measure σ ≥ 0 such that m,Γ2(fi, fi′) � σ for all i, i′. Write m = η σ.

Then property (6.38) gives the σ-a.e. inequality dA
dσ + (B+C)η ≥ KDη. Now let us choose a

sequence m 7→ (Em` )` of Borel partitions of X and uniformly bounded am`i , bm`i , cm`j ∈ R with∑
`∈N

am`i χEm`
m−→ λgi,

∑
`∈N

bm`i χEm`
m−→ λfi,

∑
`∈N

cm`j χEm`
m−→ hj

with respect to the strong topology of L∞(σ), for every i, j. Therefore we deduce that∑
`∈N

χEm`

[
dA(λ, am`, bm`, cm`)

dσ
+
(
B(λ, am`, bm`, cm`) + C(λ, am`, bm`, cm`)

)
η

]
≥K

∑
`∈N

χEm` D(λ, am`, bm`, cm`)η.
(6.39)
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Since both sides of (6.39) are converging in L1(σ), we conclude that λ2µ+ 2λF +G ≥ 0 for

all λ ∈ R, where µ is defined as in (6.36), while

F :=
∑
i,j

〈∇fi,∇hj〉 〈∇gi,∇hj〉m + gi [Hfi](hj , hj)m, G :=
∑
j,j′

∣∣〈∇hj ,∇hj′〉∣∣2m.
Hence Lemma 6.2.18 grants that µ ≥ 0, so in particular µs ≥ 0, and that F ≤

√
(ρm)G,

which is nothing but (6.37). This proves the statement. �

Theorem 6.2.22 It holds that Test∞(X) ⊆ W 2,2(X). Moreover, if we take f ∈ Test∞(X)

and we write Γ2(f, f) = γ2 m + Γs2 with Γs2 ⊥ m, then Γs2 ≥ 0 and for all g1, g2 ∈ Test∞(X)

we have that

|Hf |2HS ≤ γ2 −K |∇f |2,
Hf(∇g1,∇g2) = [Hf ](g1, g2)

hold m-a.e. in X. (6.40)

Proof. Apply Theorem 6.2.21 with n = 1. We thus get the m-a.e. inequality∣∣∣∣ m∑
j=1

〈∇f,∇hj〉 〈∇g,∇hj〉+ g [Hf ](hj , hj)

∣∣∣∣2
≤
(
g2(γ2 −K |∇f |2) + 2 g [Hf ](f, g)

) m∑
j,j′=1

∣∣〈∇hj ,∇hj′〉∣∣2 (6.41)

for any choice of f, g, h1, . . . , hm ∈ Test∞(X). Define µ as in (6.36) for this choice of test

functions; since µ is the sum of g2 Γ2(f, f) and a measure that is absolutely continuous with

respect to m, we see that µs = g2 Γs2, thus accordingly the fact that µs ≥ 0 grants that Γs2 ≥ 0

as well. Moreover, notice that both sides of (6.41) are W 1,2(X)-continuous with respect to the

entry g with values in L1(m), so the inequality (6.41) is actually verified for any g ∈W 1,2(X).

Then by choosing suitable g’s, namely identically equal to 1 on an arbitrarily big ball, we

deduce that∣∣∣∣ m∑
j=1

gj [Hf ](hj , hj)

∣∣∣∣2 ≤ (γ2 −K |∇f |2
) m∑
j,j′=1

gj gj′ 〈∇hj ,∇hj′〉2

=
(
γ2 −K |∇f |2

)〈 m∑
j=1

gj ∇hj ⊗∇hj ,
m∑
j′=1

gj′ ∇hj′ ⊗∇hj′
〉

=
(
γ2 −K |∇f |2

) ∣∣∣∣ m∑
j=1

gj ∇hj ⊗∇hj
∣∣∣∣2

(6.42)

for all f, g1, . . . , gm, h1, . . . , hm ∈ Test∞(X). Now note that for f, g, h, h′ ∈ Test∞(X) one has

2 [Hf ](h, h′) = [Hf ](h+ h′, h+ h′)− [Hf ](h, h)− [Hf ](h′, h′),

g (∇h⊗∇h′ +∇h′ ⊗∇h) = g
(
∇(h+ h′)⊗∇(h+ h′)−∇h⊗∇h−∇h′ ⊗∇h′

)
.
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By combining these two identities with (6.42) and the m-a.e. inequality
∣∣A+At

2

∣∣2
HS
≤ |A|2HS,

which is trivially verified for any A ∈ L2(T⊗2X), we obtain that∣∣∣∣ m∑
j=1

gj [Hf ](hj , h
′
j)

∣∣∣∣ ≤√γ2 −K |∇f |2
∣∣∣∣ m∑
j=1

gj ∇hj ⊗∇h′j
∣∣∣∣ (6.43)

holds m-a.e. for any f, gj , hj , h
′
j ∈ Test∞(X). Define V ⊆ L2(T⊗2X) as the linear span of the

tensors of the form g∇h⊗∇h′, with g, h, h′ ∈ Test∞(X). Then the operator L : V→ L1(m),

which is given by

L

( m∑
j=1

gj ∇hj ⊗∇h′j
)

:=
m∑
j=1

gj [Hf ](hj , h
′
j) for every

m∑
j=1

gj ∇hj ⊗∇h′j ∈ V,

is well-defined, linear and continuous by (6.43). Since V is dense in L2(T⊗2X) by Lemma

6.2.5, there exists a unique linear and continuous extension of L to the whole L2(T⊗2X).

Such extension is L∞(m)-linear by construction, whence it can be viewed as an element B of

the space L2
(
(T ∗)⊗2X

)
. Notice that (6.43) gives

∣∣L(A)
∣∣ ≤√γ2 −K |∇f |2 |A|HS for all A ∈ V,

so that |L|HS ≤
√
γ2 −K |∇f |2 and accordingly |B|HS ≤

√
γ2 −K |∇f |2 as well. Finally, for

any g, h ∈ Test∞(X) we have

2

ˆ
g B(∇h⊗∇h) dm = 2

ˆ
L
(
g∇h⊗∇h

)
dm

=

ˆ
g
(
2∇(∇f · ∇h) · ∇h−∇f · ∇|∇h|2

)
dm

= −
ˆ
∇f · ∇hdiv(∇g · ∇h) +∇f · ∇|∇h|2 dm.

Therefore f ∈W 2,2(X) and (6.40) can be easily checked to hold true; the first line of (6.40) is

a consequence of (6.43), while the second one follows from the very definition of the involved

objects. �

Corollary 6.2.23 It holds that D(∆) ⊆W 2,2(X). Moreover, we have that
ˆ
|Hf |2HS dm ≤

ˆ
|∆f |2 −K |∇f |2 dm for every f ∈ D(∆). (6.44)

Proof. Formula (6.44) holds for all f ∈ Test∞(X) as a consequence of Theorem 6.2.21. The

general case f ∈ D(∆) follows by approximating f with a sequence (fn)n ⊆ Test∞(X). �

Let us define the space H2,2(X) as the W 2,2(X)-closure of Test∞(X). An important open

problem is the following: is it true that H2,2(X) = W 2,2(X)?

6.2.4 Calculus rules

Let us consider the functional

L2(m) 3 f 7−→

{ ´
|Hf |2HS dm

+∞
if f ∈W 2,2(X),

otherwise.
(6.45)
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An open problem is the following: is such functional lower semicontinuous?

It is known that such functional is convex and lower semicontinuous when its domain is

replaced by W 1,2(X).

Proposition 6.2.24 (Leibniz rule for H) Let f1, f2 ∈W 2,2(X)∩LIP(X)∩L∞(m) be given.

Then f1f2 ∈W 2,2(X) and

H(f1f2) = f1 Hf2 + f2 Hf1 + df1 ⊗ df2 + df2 ⊗ df1. (6.46)

Proof. By polarisation, it holds that an element A ∈ L2
(
(T ∗)⊗2X

)
coincides with H(f1f2) if

and only if At = A and

−
ˆ
hA(∇g,∇g) dm =

ˆ
∇(f1f2) · ∇g div(h∇g) + h∇(f1f2) · ∇|∇g|

2

2
dm (6.47)

holds for all g, h ∈ Test∞(X). By using the Leibniz rule for gradients, we see that the right

hand side of (6.47) can be rewritten as

ˆ
f1∇f2 · ∇g div(h∇g) + f2∇f1 · ∇g div(h∇g) + hf1∇f2 · ∇

|∇g|2

2
+ hf2∇f1 · ∇

|∇g|2

2
dm.

(6.48)

Moreover, since f1, f2 ∈W 2,2(X) ∩ LIP(X) ∩ L∞(m), we also have that

ˆ
hf2 Hf1(∇g,∇g) dm = −

ˆ
∇f1 · ∇g div(hf2∇g) + hf2∇f1 · ∇

|∇g|2

2
dm,

ˆ
hf1 Hf2(∇g,∇g) dm = −

ˆ
∇f2 · ∇g div(hf1∇g) + hf1∇f2 · ∇

|∇g|2

2
dm.

(6.49)

Therefore (6.48) and (6.49) yield (6.47) for A := f1 Hf2 + f2 Hf1 + df1 ⊗ df2 + df2 ⊗ df1.

Since such A defines a symmetric tensor, the statement is achieved. �

Proposition 6.2.25 (Chain rule for H) Let f ∈W 2,2(X) ∩ LIP(X). Suppose ϕ ∈ C1,1(R)

has bounded derivative and satisfies ϕ(0) = 0 if m(X) =∞. Then ϕ ◦ f ∈W 2,2(X) and

H(ϕ ◦ f) = ϕ′′ ◦ f df ⊗ df + ϕ′ ◦ f Hf. (6.50)

Proof. The statement can be achieved by using the chain rule for gradients, similarly to how

the Leibniz rule for gradients gives (6.46). �

Lemma 6.2.26 Let (X, d,m) be infinitesimally Hilbertian. Let f ∈ L2(m). Then f ∈
W 1,2(X) if and only if there exists ω ∈ L2(T ∗X) such that

ˆ
f div(X) dm = −

ˆ
ω(X) dm for every X ∈ D(div). (6.51)

In this case, it holds that ω = df . Moreover, if (X, d,m) is an RCD(K,∞) space for some

constant K ∈ R, then it suffices to check this property for X = ∇g with g ∈ Test∞(X).
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Proof. Sufficiency follows from the definition of divergence. To prove necessity, let X := ∇htf
for t > 0. Notice that div(X) = ∆htf . Moreover, since the Cheeger energy decreases along

the heat flow, it holds that

ˆ
|∇ht/2f |2 dm = −

ˆ
f ∆htf dm =

ˆ
ω(∇htf) dm ≤ ‖ω‖L2(T ∗X)

( ˆ
|∇ht/2f |2 dm

)1/2

,

whence accordingly
´
|∇ht/2f |2 dm ≤

´
|ω|2 dm. Since the Cheeger energy is lower semicon-

tinuous, we conclude that f ∈ W 1,2(X) and ω = df . Finally, the last statement follows from

a density argument (noticing that in the argument just given we only used X gradient). �

Proposition 6.2.27 Let (X, d,m) be an RCD(K,∞) space. Let f1, f2 ∈ H2,2(X)∩LIP(X) be

given. Then 〈∇f1,∇f2〉 ∈W 1,2(X) and

d〈∇f1,∇f2〉 = Hf1(∇f2, ·) + Hf2(∇f1, ·). (6.52)

Proof. By polarisation and by density of test functions in H2,2(X), it is sufficient to show that

one has |∇f |2 ∈ W 1,2(X) and d|∇f |2 = 2 Hf(∇f, ·) for every f ∈ Test∞(X). Given that we

have 2
´
hHf(∇f,∇g) dm = −

´
|∇f |2 div(h∇g) dm for all g, h ∈ Test∞(X), we know that

ˆ
|∇f |2 div(∇g) dm = −2

ˆ
Hf(∇f,∇g) dm for every g ∈ Test∞(X),

whence Lemma 6.2.26 yields |∇f |2 ∈W 1,2(X) and d|∇f |2 = 2 Hf(∇f, ·), as required. �

Corollary 6.2.28 (Locality of H) Let f, g ∈ H2,2(X) ∩ LIP(X) be given. Then

Hf = Hg holds m-a.e. on {f = g}. (6.53)

Proof. By linearity of H, it suffices to prove that Hf = 0 holds m-a.e. on the set {f = 0}.
Given any g ∈ Test∞(X), we know from Proposition 6.2.27 that 〈∇f,∇g〉 ∈W 1,2(X) and

Hf(∇g, ·) = d〈∇f,∇g〉 −Hg(∇f, ·). (6.54)

Since ∇f = 0 holds m-a.e. on {f = 0}, we see that the right hand side of (6.54) vanishes

m-a.e. on {f = 0}. Hence Hf(∇g, ·) = 0 m-a.e. on {f = 0} for all g ∈ Test∞(X), which

implies that Hf = 0 m-a.e. on {f = 0}, proving the statement. �

Given a Borel subset E of X, we define its essential interior as

ess int(E) :=
⋃{

Ω : Ω ⊆ X open, m(Ω \ E) = 0
}
. (6.55)

By using Lemma 6.2.14, we can prove that functions in W 2,2(X) (but not necessarily in

H2,2(X)) satisfy a weaker form of locality:

Proposition 6.2.29 Let f ∈W 2,2(X). Then Hf = 0 holds m-a.e. on ess int
(
{f = 0}

)
.
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Proof. Let us denote by Ω the essential interior of {f = 0}. Given any g1, g2, h ∈ Test∞(X)

with spt(h) ⊆ Ω, we have that
´
hHf(∇g1,∇g2) dm equals

−
ˆ
∇f · ∇g1 div(h∇g2) +∇f · ∇g2 div(h∇g1) + h∇f · ∇(∇g1 · ∇g2) dm, (6.56)

which vanishes as a consequence of the fact that f = 0 m-a.e. on Ω and h = 0 on X \ Ω. We

thus deduce that
´
hHf(∇g1,∇g2) dm = 0, which grants that Hf = 0 holds m-a.e. on Ω, as

required. �

6.3 Covariant derivative

On a Riemannian manifold M , we have for any vector field X and any f, g ∈ C∞(M) that

〈∇∇fX,∇g〉 =
〈
∇〈X,∇g〉,∇f

〉
−Hg(X,∇f). (6.57)

Such formula motivates the following definition of covariant derivative on RCD spaces.

Definition 6.3.1 (Covariant derivative) Let (X, d,m) be an RCD(K,∞) space. Then a

vector field X ∈ L2(TX) belongs to W 1,2
C (TX) provided there exists T ∈ L2(T⊗2X) such thatˆ

hT : (∇f ⊗∇g) dm = −
ˆ
〈X,∇g〉 div(h∇f) + hHg(X,∇f) dm (6.58)

holds for every f, g, h ∈ Test∞(X). The element T , which is uniquely determined by (6.58),

is called covariant derivative of X and denoted by ∇X. The Sobolev norm of X is defined as

‖X‖
W 1,2
C (TX)

:=
(
‖X‖2L2(TX) + ‖∇X‖2L2(T⊗2X)

)1/2
. (6.59)

It turns out that the operator ∇ : W 1,2
C (TX)→ L2(T⊗2X) is linear.

In the sequel, we shall denote by ] : L2
(
(T ∗)⊗2X

)
→ L2(T⊗2X) the Riesz isomorphism.

Theorem 6.3.2 The following hold:

i) W 1,2
C (TX) is a separable Hilbert space.

ii) The unbounded operator ∇ : L2(TX)→ L2(T⊗2X) is closed.

iii) If f ∈ H2,2(X) ∩ LIP(X), then ∇f ∈W 1,2
C (TX) and ∇(∇f) = (Hf)].

Proof. The proof goes as follows:

ii) Let (Xn)n ⊆W 1,2
C (TX) satisfy Xn → X in L2(TX) and ∇Xn → T in L2(T⊗2X). Therefore

by writing equation (6.58) for Xn and letting n → ∞, we conclude that X ∈ W 1,2
C (TX) and

that ∇X = T . This proves that ∇ is a closed unbounded operator.

i) Separability follows from the following facts: X 7→ (X,∇X) is an isometry from W 1,2
C (TX)

to L2(TX) × L2(T⊗2X) and the latter space is separable. Moreover, it directly stems from

the construction that the norm ‖ · ‖
W 1,2
C (TX)

satisfies the parallegram identity. Finally, the

completeness of W 1,2
C (TX) is an immediate consequence of ii).

iii) This can be readily checked by direct computations, by using of Proposition 6.2.27. �
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Proposition 6.3.3 (Leibniz rule) Let X ∈ W 1,2
C (TX) ∩ L∞(TX) and f ∈ W 1,2(X) ∩

L∞(m). Then fX ∈W 1,2
C (TX) and ∇(fX) = ∇f ⊗X + f ∇X.

Proof. Direct computation. �

We define the class of test vector fields as

TestV(X) :=

{ n∑
i=1

gi∇fi : fi, gi ∈ Test∞(X)

}
. (6.60)

Then we can formulate an important consequence of Proposition 6.3.3 in the following way:

Corollary 6.3.4 It holds that TestV(X) ⊆W 1,2
C (TX). Given any X =

∑n
i=1 gi∇fi, we have

∇X =

n∑
i=1

∇gi ⊗∇fi + gi (Hfi)
]. (6.61)

Definition 6.3.5 We define the space H1,2
C (TX) as the W 1,2

C (TX)-closure of TestV(X).

Given any X ∈W 1,2
C (TX) and Z ∈ L0(TX), we define the vector field ∇ZX ∈ L0(TX) as

the unique element such that

〈∇ZX,Y 〉 = ∇X(Z, Y ) for every Y ∈ L0(TX). (6.62)

Observe that ∇ZX ∈ L2(TX) whenever Z ∈ L∞(TX).

Proposition 6.3.6 (Compatibility with the metric) Let X,Y ∈ H1,2
C (TX)∩L∞(TX) be

given. Then 〈X,Y 〉 ∈W 1,2(X) and

d〈X,Y 〉(Z) = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 for every Z ∈ L0(TX). (6.63)

Proof. First of all, the statement can be obtained for X = g∇f and Y = g̃∇f̃ by direct

computation. By linearity we get it for X,Y ∈ TestV(X). Then the general case follows by

approximation. �

Given any X,Y ∈ H1,2
C (TX) ∩ L∞(X) and f ∈W 1,2(X), we define

X(f) := ∇f ·X = df(X),

[X,Y ] := ∇XY −∇YX.
(6.64)

We call [X,Y ] the commutator , or Lie bracketsLie brackets, between X and Y .

Proposition 6.3.7 (Torsion-free identity) Let X,Y ∈ H1,2
C (TX) ∩ L∞(TX). Then

X
(
Y (f)

)
− Y

(
X(f)

)
= [X,Y ](f) for every f ∈ H2,2(X) ∩ LIP(X). (6.65)

Proof. Observe that

∇(∇f · Y ) ·X = ∇X(∇f) · Y +∇f · ∇XY = Hf(X,Y ) +∇f · ∇XY,
∇(∇f ·X) · Y = ∇Y (∇f) ·X +∇f · ∇YX = Hf(Y,X) +∇f · ∇YX.

(6.66)

Since Hf is symmetric, by subtracting the second equation of (6.66) from the first one we

obtain precisely (6.65). �

Remark 6.3.8 Since
{

df : f ∈ H2,2(X) ∩ LIP(X)
}

generates the module L2(T ∗X), we

deduce that [X,Y ] is the unique element satisfying (6.65). �
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6.4 Exterior derivative

6.4.1 Sobolev differential forms

We now want to introduce the notion of exterior differential on RCD spaces.

Given a Riemannian manifold M and a smooth k-form ω, it is well-known that dω is given

by the following formula: given X0, . . . , Xk smooth vector fields on M , one has

dω(X0, . . . , Xk)

=

k∑
i=0

(−1)iXi

(
ω(. . . , X̂i, . . .)

)
+
∑
i<j

(−1)i+j ω
(
[Xi, Xj ], . . . , X̂i, . . . , X̂j , . . .

)
.

(6.67)

Such formula actually defines a k+ 1-form, because it is alternating, functorial and linear

in each entry.

Definition 6.4.1 Let (X, d,m) be an RCD(K,∞) space. Then we denote the kth-exterior

power of the cotangent module L0(T ∗X) by

L0(ΛkT ∗X) := ΛkL0(T ∗X), (6.68)

while we denote by L2(ΛkT ∗X) the subspace of L0(ΛkT ∗X) consisting of those elements having

pointwise norm in L2(m).

Then formula (6.67) suggests the following definition:

Definition 6.4.2 (Exterior derivative) Let (X, d,m) be an RCD(K,∞) space and k ∈ N.

Then we say that a k-form ω ∈ L2(ΛkT ∗X) belongs to W 1,2
d (ΛkT ∗X) provided there exists a

(k + 1)-form η ∈ L2(Λk+1T ∗X) such that for any X0, . . . , Xk ∈ TestV(X) it holds

ˆ
η(X0, . . . , Xk) dm =

k∑
i=0

(−1)i+1 ω(. . . , X̂i, . . .) div(Xi) dm

+
∑
i<j

ˆ
(−1)i+j ω

(
[Xi, Xj ], . . . , X̂i, . . . , X̂j , . . .

)
dm.

(6.69)

The element η, which is uniquely determined, is called exterior differential of ω and denoted

by dω. Its norm is defined as

‖ω‖
W 1,2

d (ΛkT ∗X)
:=
(
‖ω‖2L2(ΛkT ∗X) + ‖dω‖2L2(Λk+1T ∗X)

)1/2
. (6.70)

Much like in Theorem 6.3.2, one can prove that W 1,2
d (ΛkT ∗X) is a separable Hilbert space

and that the unbounded operator d : L2(ΛkT ∗X)→ L2(Λk+1T ∗X) is closed.

Proposition 6.4.3 Let f0, . . . , fk ∈ Test∞(X) be given. Then both elements f0 df1∧ . . .∧dfk

and df1 ∧ . . . ∧ dfk belong to W 1,2
d (ΛkT ∗X) and it holds

d(f0 df1 ∧ . . . ∧ dfk) = df0 ∧ . . . ∧ dfk,

d(df1 ∧ . . . ∧ dfk) = 0.
(6.71)

Proof. Direct computation. �
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Definition 6.4.4 Given any k ∈ N, we define the space of test k-forms on (X, d,m) as

TestFormk(X) := linear span of the f0 df1 ∧ . . . ∧ dfk, with f0, . . . , fk ∈ Test∞(X). (6.72)

It turns out that TestFormk(X) is dense in L2(ΛkT ∗X) for all k ∈ N. We define H1,2
d (ΛkT ∗X)

as the W 1,2
d (ΛkT ∗X)-closure of TestFormk(X).

Proposition 6.4.5 Let ω ∈ H1,2
d (ΛkT ∗X). Then dω ∈ H1,2

d (Λk+1T ∗X) and d(dω) = 0.

Proof. The statement holds for any test k-form by Proposition 6.4.3. The general case follows

from the closure of the exterior differential. �

6.4.2 de Rham cohomology and Hodge theorem

Definition 6.4.6 (Closed/exact forms) Let ω ∈ H1,2
d (ΛkT ∗X). Then we say that ω is

closed provided dω = 0, while it is said to be exact if there exists α ∈ H1,2
d (Λk−1T ∗X) such

that ω = dα.

We point out that any exact form is also closed by Proposition 6.4.5.

By the closure of d, the space of all closed k-forms is strongly closed in L2(ΛkT ∗X).

Accordingly, the closed k-forms, endowed with the L2(ΛkT ∗X)-norm, constitute a Hilbert

space. In general, the same fails if we replace ‘closed k-forms’ with ‘exact k-forms’, but we

point out that the L2(ΛkT ∗X)-closure of the space of exact k-forms is a Hilbert space.

Definition 6.4.7 (de Rham cohomology) Let (X, d,m) be any RCD(K,∞) space. Then

the de Rham cohomology is the quotient Hilbert space defined as follows:

HkdR(X) :=
closed k-forms

L2(ΛkT ∗X)-closure of exact k-forms
. (6.73)

Exercise 6.4.8 Let H1, H2 be Hilbert spaces. Let ϕ : H1 → H2 be a linear and continuous

operator. Then there exists a unique linear and continuous operator Λkϕ : ΛkH1 → ΛkH2

such that Λkϕ(v1 ∧ . . .∧ vk) = ϕ(v1)∧ . . .∧ϕ(vk) is satisfied for every v1, . . . , vk ∈ H1. Prove

that ‖Λkϕ‖op ≤ ‖ϕ‖
k
op. �

Lemma 6.4.9 Let (X, dX,mX) and (Y, dY,mY) be infinitesimally Hilbertian metric measure

spaces. Let ϕ : X → Y be a map of bounded deformation. Then there exists a unique linear

and continuous operator ϕ∗ : L2(ΛkT ∗Y)→ L2(ΛkT ∗X) such that

ϕ∗(ω1 ∧ . . . ∧ ωk) = (ϕ∗ω1) ∧ . . . ∧ (ϕ∗ωk) for every ω1, . . . , ωk ∈ L2(ΛkT ∗Y). (6.74)

Moreover, |ϕ∗A| ≤ Lip(ϕ)k |A| ◦ ϕ holds mX-a.e. for every A ∈ L2(ΛkT ∗Y).

Proof. It follows from Exercise 6.4.8 by making use of an ‘Hilbertian basis’ (as in the definition

of | · |HS). �
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Proposition 6.4.10 Let (X, dX,mX) and (Y, dY,mY) be RCD(K,∞) spaces. Let ϕ : X→ Y

be a map of bounded deformation and ω ∈ H1,2
d (ΛkT ∗Y). Then ϕ∗ω ∈ H1,2

d (ΛkT ∗X) and it

holds that ϕ∗(dω) = d(ϕ∗ω).

Proof. For any test k-form ω = f0 df1 ∧ . . . ∧ dfk, we have that

ϕ∗ω = f0 ◦ ϕ (ϕ∗df1) ∧ . . . ∧ (ϕ∗dfk) = f0 ◦ ϕd(f1 ◦ ϕ) ∧ . . . ∧ d(fk ◦ ϕ),

whence Proposition 6.4.3 grants that ϕ∗(dω) = d(ϕ∗ω). The general case follows from the

closure of the exterior differential by an approximation argument. �

Corollary 6.4.11 Let k ∈ N be given. Then the map ϕ∗ as in Proposition 6.4.10 canonically

induces a linear and continuous operator from HkdR(Y) to HkdR(X).

Proof. Direct consequence of Proposition 6.4.10 and the closure of d. �

We briefly recall the Hodge theory for smooth Riemannian manifolds. With abuse of notation,

we will sometimes identify tangent and cotangent objects, via the musical isomorphisms.

Let (M, g) be a smooth Riemannian manifold. Then for any k ∈ N we can define the de

Rham cohomology HkdR(M) as the quotient of closed k-forms over exact k-forms. Observe

that this construction makes use only of the smooth structure of the manifold M , in other

words the metric g plays no role. For brevity, we denote by L2
k the space of all L2 k-forms on

the manifold M , which is a Hilbert space if endowed with the scalar product induced by g.

Then we define δ : L2
k+1 → L2

k as the adjoint of the unbounded operator d : L2
k → L2

k+1, i.e.

satisfying
´
〈δω, η〉k dVol =

´
〈ω,dη〉n+1 dVol. Observe that d2 = 0, whence δ2 = 0 as well.

Given any 1-form ω, it holds that δω = −div(X), where the vector field X corresponds

to ω via the musical isomorphism.

Definition 6.4.12 We define the Hodge Laplacian as the unbounded operator ∆H : L2
k →

L2
k, which is given by

∆Hω := (δd + dδ)ω = (d + δ)2ω. (6.75)

A k-form ω is said to be coexact provided there exists η ∈ L2
k+1 such that ω = δη, while it is

said to be harmonic if ∆Hω = 0.

Remark 6.4.13 Given any smooth 0-form f , i.e. any smooth function f ∈ C∞(M), it holds

that ∆f = −∆Hf . Moreover, one has that

ˆ
〈η,∆Hω〉k dVol =

ˆ
〈dη,dω〉k+1 dVol +

ˆ
〈δη, δω〉k−1 dVol (6.76)

is verified for η, ω ∈ L2
k. �

The following result is due to W. V. D. Hodge:

Theorem 6.4.14 The following properties hold:
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i) L2
k = {exact k-forms} ⊕ {coexact k-forms} ⊕ {harmonic k-forms}.

ii) For any [ω] ∈ HkdR(M) there exists a unique η ∈ [ω] such that ∆Hη = 0.

iii) One has ∆Hη = 0 if and only if dη = 0 and δη = 0.

Proof. The proof goes as follows:

iii) If dη = 0 and δη = 0, then trivially ∆Hη = 0. Conversely, suppose that ∆Hη = 0. Then

(6.76) yields 0 =
´
〈η,∆Hη〉k dVol =

´
|dη|2 + |δη|2 dVol, whence dη = 0 and δη = 0.

i) Let ω = dω′, α = δα′ and ∆Hη = 0. We have
´
〈dω′, δα′〉k dVol =

´
〈d2ω′, α′〉k−1 dVol = 0.

Moreover, it holds that ˆ
〈dω′, η〉k dVol =

ˆ
〈ω′, δη〉k−1 dVol = 0,

ˆ
〈δα′, η〉k dVol =

ˆ
〈α′, dη〉k+1 dVol = 0

by item iii). Hence exact, coexact and harmonic k-forms are in direct sum. Now let ω ∈ L2
k

be fixed. Choose ω′ ∈ L2
k−1 that minimises the quantity ‖ω − dα‖L2

k
among all α ∈ L2

k−1.

(We omit the proof of the existence of such minimiser.) Then the Euler-Lagrange equation

yields
´
〈ω − dω′,dα〉k dVol = 0 for all α ∈ L2

k−1, whence we have that δ(ω − dω′) = 0. Now

let β′ ∈ L2
k+1 be the minimiser of ‖ω − δα′‖L2

k
among all α′ ∈ L2

k+1. Then the Euler-Lagrange

equation yields
´
〈ω − δβ′, δα′〉k dVol = 0 for all α′ ∈ L2

k+1, whence we have d(ω − δβ′) = 0.

Therefore we can write ω as

ω = dω′︸︷︷︸
exact

+ δβ′︸︷︷︸
coexact

+ (ω − dω′ − δβ′)︸ ︷︷ ︸
harmonic

,

thus proving that i) holds.

ii) Let ω be a closed k-form. Since the space of closed k-forms is orthogonal to that of coexact

k-forms, there exists a unique η ∈ L2
k harmonic such that ω − η is an exact k-form. Then it

holds that [η] = [ω] ∈ HkdR(M), thus proving ii). �

In the language of Hodge theory, we can state a sharper form of the Bochner inequality:

∆
|ω|2

2
≥ −〈ω,∆Hω〉+K|ω|2 for every smooth 1-form ω. (6.77)

Actually, the Bochner identity can be written as follows:

∆
|ω|2

2
= |∇ω|2HS − 〈ω,∆Hω〉+ Ric(ω, ω) for every smooth 1-form ω. (6.78)

Moreover, we define the connection Laplacian ∆CX of a smooth vector field X asˆ
〈∆CX,Y 〉dVol = −

ˆ
∇X : ∇Y dVol for every smooth vector field Y. (6.79)

One can prove that ∆
(
|X|2/2

)
= |∇X|2HS + 〈X,∆CX〉 holds for any smooth vector field X.

We also have that

∆CX + ∆HX = Ric(X, ·) for every smooth vector field X, (6.80)

which is known as the Weitzenböck identity.
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Theorem 6.4.15 (Bochner) Suppose that RicM ≥ 0. Then

dimH1
dR(M) ≤ dimM, (6.81)

with equality if and only if M is a flat torus.

Proof. We know from Theorem 6.4.14 that the dimension of H1
dR(M) coincides with that of

the space of all harmonic 1-forms. Then fix an harmonic 1-form ω. We thus have that

0 =

ˆ
∆
|ω|2

2
dVol

(6.78)

≥
ˆ
|∇ω|2HS dVol−

ˆ
〈ω,∆Hω〉 dVol =

ˆ
|∇ω|2HS dVol.

Therefore
´
|∇ω|2HS dVol = 0, so by using the parallel transport we conclude that the dimen-

sion of the space of harmonic 1-forms is smaller than or equal to dimM , proving (6.81). We

omit the proof of the last part of the statement. �

We now introduce the Hodge theory for RCD spaces. Hereafter, the space (X, d,m) will

be a fixed RCD(K,∞) space.

Definition 6.4.16 (Codifferential) We denote by D(δ) the family of all k-forms ω ∈
L2(ΛkT ∗X) such that there exists η ∈ L2(Λk−1T ∗X) for which

ˆ
〈ω,dα〉 dm =

ˆ
〈η, α〉dm holds for every α ∈ TestFormk−1(X). (6.82)

The element η, which is uniquely determined, is denoted by δω and called codifferential of ω.

It is easy to see that δ is a closed unbounded operator.

Proposition 6.4.17 It holds that TestFormk(X) ⊆ D(δ) for all k ∈ N. More explicitly,

δ(df1 ∧ . . . ∧ dfk) =

k∑
i=1

(−1)i ∆fi df1 ∧ . . . ∧ d̂fi ∧ . . . ∧ dfk

+
∑
i<j

(−1)i+j [∇fi,∇fj ] ∧ . . . ∧ d̂fi ∧ . . . ∧ ˆdfj ∧ . . . ∧ dfk

(6.83)

is verified for every f1, . . . , fk ∈ Test∞(X).

Proof. Direct computation. �

Definition 6.4.18 Let us define W 1,2
H (ΛkT ∗X) := W 1,2

d (ΛkT ∗X)∩D(δ) for every k ∈ N. The

norm of an element ω ∈W 1,2
H (ΛkT ∗X) is given by

‖ω‖
W 1,2

H (ΛkT ∗X)
:=
(
‖ω‖2L2(ΛkT ∗X) + ‖dω‖2L2(Λk+1T ∗X) + ‖δω‖2L2(Λk−1T ∗X)

)1/2
. (6.84)

Finally, let us define H1,2
H (ΛkT ∗X) as the W 1,2

H (ΛkT ∗X)-closure of TestFormk(X).

We have that W 1,2
H (ΛkT ∗X) and H1,2

H (ΛkT ∗X) are separable Hilbert spaces.
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Definition 6.4.19 (Hodge Laplacian) Let ω ∈ H1,2
H (ΛkT ∗X) be given. Then we declare

that ω ∈ D(∆H) provided there exists η ∈ L2(ΛkT ∗X) such that
ˆ
〈η, α〉dm =

ˆ
〈dω,dα〉+ 〈δω, δα〉 dm for every α ∈ TestFormk(X). (6.85)

The element η, which is uniquely determined, is denoted by ∆Hω and called Hodge Laplacian.

Definition 6.4.20 (Harmonic k-forms) Let k ∈ N. Then we define Harmk(X) as the set

of all ω ∈ H1,2
H (ΛkT ∗X) such that ∆Hω = 0. The elements of Harmk(X) are called harmonic.

Remark 6.4.21 It holds that ∆H is a closed unbounded operator. Indeed, suppose ωn → ω

and ∆Hωn → η in L2(ΛkT ∗X). Observe that

sup
n∈N

ˆ
|dωn|2 + |δωn|2 dm = sup

n∈N

ˆ
〈ωn,∆Hωn〉dm < +∞,

whence it easily follows that ω ∈ D(∆H) and η = ∆Hω, since d and δ are closed. �

Corollary 6.4.22 The space
(
Harmk(X), ‖ · ‖L2(ΛkT ∗X)

)
is Hilbert.

Proof. Direct consequence of the closure of ∆H. �

Theorem 6.4.23 (Hodge theorem for RCD spaces) Let k ∈ N be given. Then the map

Harmk(X) 3 ω 7−→ [ω] ∈ HkdR(X) (6.86)

is an isomorphism of Hilbert spaces.

Proof. First of all, observe that any element of Harmk(X) is a closed k-form. In analogy with

item iii) of Theorem 6.4.14, we also have that for any ω ∈ H1,2
H (ΛkT ∗X) it holds

ω ∈ Harmk(X) ⇐⇒ dω = 0 and δω = 0. (6.87)

Moreover, we recall the following general functional analytic fact:

H Hilbert space, V ⊆ H linear subspace =⇒

{
V ⊥ 3 ω 7→ ω + V ∈ H/V
is an isomorphism.

(6.88)

Now let us apply (6.88) with H := {closed k-forms} and V := {exact k-forms}. Since it holds

that V ⊥ = Harmk(X) by (6.87), we get the statement. �

Remark 6.4.24 Let us define the energy functional EH : L2(ΛkT ∗X)→ [0,+∞] as follows:

EH(ω) :=

{
1
2

´
|dω|2 + |δω|2 dm

+∞
if ω ∈ H1,2

H (ΛkT ∗X),

otherwise.
(6.89)

Then EH is convex and lower semicontinuous. Moreover, we have that ω ∈ D(∆H) if and only

if ∂−EH(ω) 6= ∅. In this case, ∆Hω is the only element of ∂−EH(ω). �
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Definition 6.4.25 (Heat flow of forms) Let ω ∈ L2(ΛkT ∗X). Then we denote by t 7→
hH,tω the unique gradient flow of EH starting from ω.

Exercise 6.4.26 Prove that

hH,t(dω) = dhH,tω for every ω ∈W 1,2
d (ΛkT ∗X) and t ≥ 0. (6.90)

Moreover, an analogous property is satisfied by the codifferential δ. �

Given any closed k-form ω, its (unique) harmonic representative is limt→∞ hH,tω.

Definition 6.4.27 (Connection Laplacian) Let X ∈ H1,2
C (TX) be given. Then we declare

that X ∈ D(∆C) provided there exists Z ∈ L2(TX) such that

ˆ
〈Z,X〉 dm = −

ˆ
〈∇X,∇Y 〉dm for every Y ∈ TestV(X). (6.91)

The element Z is denoted by ∆CX and called connection Laplacian of ω.

Remark 6.4.28 We define the connection energy EC : L2(TX)→ [0,+∞] as

EC(X) :=

{
1
2

´
|∇X|2HS dm

+∞
if X ∈ H1,2

C (TX),

otherwise.
(6.92)

Then EC is a convex and lower semicontinuous functional. Moreover, we have thatX ∈ D(∆X)

if and only if ∂−EC(X) 6= ∅. In this case, −∆CX is the unique element of ∂−EC(X). �

Proposition 6.4.29 Let X ∈ D(∆C) ∩ L∞(TX) be given. Then |X|2/2 ∈ D(∆) and

∆
|X|2

2
=
(
|∇X|2HS + 〈X,∆CX〉

)
m. (6.93)

Proof. We know that |X|2 ∈W 1,2(X) and ∇|X|2 = 2∇X(·, X). Hence the equalities

ˆ
f
(
|∇X|2HS + 〈X,∆CX〉

)
dm =

ˆ
f |∇X|2HS −∇(fX) : ∇X dm

=

ˆ
f |∇X|2HS − (f ∇X +∇f ⊗∇X) : ∇X dm

= −
ˆ
∇X(∇f,X) dm

= −
ˆ
∇f · ∇|X|

2

2
dm

hold for every f ∈ LIPbs(X), thus obtaining (6.93). �

Definition 6.4.30 (Heat flow of vector fields) Let X ∈ L2(TX) be given. Then we de-

note by t 7→ hC,tX the unique gradient flow of EC starting from X.
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Proposition 6.4.31 Let X ∈ L2(TX). Then it holds that

|hC,tX|2 ≤ ht
(
|X|2

)
m-a.e. for every t ≥ 0. (6.94)

Proof. Fix t > 0 and set Fs := hs
(
|hC,t−sX|2

)
for all s ∈ [0, t]. Then for a.e. s ∈ [0, t] one has

F ′s = hs
(
∆|hC,t−sX|2 − 2 〈hC,t−sX,∆ChC,t−sX〉

)
= hs

(
|∇hC,t−sX|2

)
≥ 0,

whence (6.94) immediately follows. �

With the terminology introduced so far, we can restate Theorem 6.2.21 as follows:

|X|2

2
∈ D(∆) and ∆

|X|2

2
≥
(
|∇X|2HS − 〈X,∆HX〉+K|∇|2

)
m (6.95)

are verified for every X ∈ TestV(X).

Lemma 6.4.32 It holds that H1,2
H (TX) ⊆ H1,2

C (TX). More precisely, we have that

EC(X) ≤ EH(X)− K

2

ˆ
|X|2 dm for every X ∈ H1,2

H (TX). (6.96)

Proof. The statement can be proved by integrating the Bochner inequality (6.95). �

6.5 Ricci curvature operator

In light of the Bochner identity (6.2), it is natural to give the following definition:

Ric(X,Y ) := ∆
〈X,Y 〉

2
−
(
〈∇X,∇Y 〉 − 〈X,∆HY 〉

2
− 〈Y,∆HX〉

2

)
m (6.97)

for every X,Y ∈ TestV(X). We can thus introduce the Ricci curvature operator:

Theorem 6.5.1 (Ricci curvature) There exists a unique bilinear and continuous extension

of Ric to an operator (still denoted by Ric) from H1,2
H (TX)×H1,2

H (TX) to the space of finite

Radon measures on X. Moreover, it holds that

Ric(X,X) ≥ K|X|2m,∥∥Ric(X,Y )
∥∥
TV
≤ 2

(
EH(X) +K−‖X‖2L2(TX)

)1/2 (
EH(Y ) +K−‖Y ‖2L2(TX)

)1/2
Ric(X,Y )(X) =

ˆ
〈dX,dY 〉+ 〈δX, δY 〉 − ∇X : ∇Y dm

(6.98)

for every X,Y ∈ H1,2
H (TX).

Proof. The first line and the third line in (6.98) are verified for every X ∈ TestV(X) by (6.95)

and (6.97). In order to prove the second line (for test vector fields), we first consider the case

in which X = Y and K = 0: since Ric(X,X) ≥ 0, we have that∥∥Ric(X,X)
∥∥
TV

= Ric(X,X)(X) = 2EH(X)− 2EC(X) ≤ 2EH(X),
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which is precisely the second line in (6.98). Its polarised version – for X,Y ∈ TestV(X) – can

be achieved by noticing that for all λ ∈ R one has

λ2 Ric(X,X) + 2λRic(X,Y ) + Ric(Y, Y ) = Ric(λX + Y, λX + Y ) ≥ 0,

whence
∣∣Ric(X,Y )

∣∣ ≤ (Ric(X,X) Ric(Y, Y )
)1/2

by Lemma 6.2.18 and accordingly

∥∥Ric(X,Y )
∥∥
TV
≤
(∥∥Ric(X,X)

∥∥
TV

∥∥Ric(Y, Y )
∥∥
TV

)1/2
,

which proves the second in (6.98) for K = 0. The general case K ∈ R can be shown by

repeating the same argument with R̃ic instead of Ric, where we set

R̃ic(X,Y ) := Ric(X,Y )−K〈X,Y 〉m for every X,Y ∈ TestV(X).

Finally, once (6.98) is proven for test vector fields, the full statement easily follows. �

The next result shows that the Ricci curvature is ‘tensorial’:

Proposition 6.5.2 Let X,Y ∈ H1,2
H (TX) and f ∈ Test∞(X). Then fX ∈ H1,2

H (TX) and

Ric(fX, Y ) = f Ric(X,Y ). (6.99)

Proof. Immediate consequence of the defining property (6.97) of Ric and a direct computation

based on the calculus rules developed so far. �

Proposition 6.5.3 (Refined Bakry-Émery estimate) Let ω ∈ L2(T ∗X). Then it holds

|hH,tω|2 ≤ e−2Kt ht
(
|ω|2

)
m-a.e. for every t ≥ 0. (6.100)

Proof. Fix t > 0 and set Fs := hs
(
|hH,t−sω|2

)
for all s ∈ [0, t]. Then for a.e. s ∈ [0, t] one has

F ′s = hs
(
∆|hH,t−sω|2 + 2 〈hH,t−sω,∆HhH,t−sω〉

)
≥ 2 hs

(
K|hH,t−sω|2

)
,

i.e. F ′s ≥ 2KFs for a.e. s ∈ [0, 1]. Then (6.100) follows by Gronwall lemma. �

Bibliographical remarks

The original curvature-dimension condition for metric measure spaces, called CD condition,

has been independently proposed by Sturm and Lott-Villani in [30,31] and [25], respectively.

Such formulation, which is based upon an optimal transport language, is related to the con-

vexity properties of certain entropy functionals along Wasserstein geodesics. Its Riemannian

counterpart, namely the RCD condition, has been introduced one step at a time in [2, 6, 19].

The approach we adopted in these notes, that fits into the framework of the Bakry-Émery

theory [10,11], has been proposed by Ambrosio-Gigli-Savaré in [7]. As seen in Definition 6.1.2,

it consists of a weak formulation of the Bochner inequality; the proof of the equivalence of the
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resulting notion with the above-mentioned RCD condition can be found in [9, 16]. We refer

to the surveys [1, 32,33] for a detailed account of the curvature-dimension conditions.

Section 6.1 is subdivided as follows: the definition of RCD(K,∞) space in Subsection 6.1.1

is taken from [7], but is formulated in terms of the language proposed in [20]; the results in

Subsection 5.2.2, concerning the properties of the heat flow on RCD spaces, can be found in

the paper [6]; the material of Subsection 6.1.3 about test functions on RCD spaces is basically

extracted from [28].

The remaining part of the chapter – from Section 6.2 to Section 6.5 – is almost entirely

taken from [18] (and [20]). The only exceptions are given by Lemma 6.2.14 (that is proved

in [8, Lemma 6.7]), by Lemma 6.2.15 (that constitutes a new result) and by the equality

statement in Theorem 6.4.15 (proven in [21]).
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Appendix A

Functional analytic tools

Let us state and prove two well-known fundamental results of functional analysis:

Lemma A.1 Let E1,E2 be Banach spaces. Let i : E1 → E2 be a linear and continuous

injection. Suppose that E1 is reflexive and that E2 is separable. Then E1 is separable as well.

Proof. Recall that any continuous bijection f from a compact topological space X to a

Hausdorff topological space Y is a homeomorphism (each closed subset C ⊆ X is compact

because X is compact, hence f(C), being compact in the Hausdorff space Y, is closed). Call

X the closed unit ball in E1 endowed with the (restriction of the) weak topology of E1,

Y the image i(X) endowed with the (restriction of the) weak topology of E2,

f the map i|X from X to Y.

Since X is compact (by reflexivity of E1), Y is Hausdorff and f is continuous (as i is linear

and continuous), we thus deduce that f is a homeomorphism. In particular, the separability

of Y grants that X is separable as well, i.e. the closed unit ball B of E1 is weakly separable.

Now fix a countable weakly dense subset D of such ball. Denote by Q the set of all finite

convex combinations with coefficients in Q of elements of D. It is clear that the set Q,

which is countable by construction, is strongly dense in the convex hull C of D. Since C is

convex, we have that the weak closure and the strong closure of C coincide. Moreover, such

closure contains B. Hence Q is strongly dense in the set B, which accordingly turns out to

be strongly separable. Finally, we conclude that E1 =
⋃
n∈N nB is strongly separable as well,

thus achieving the statement. �

Theorem A.2 (Mazur’s lemma) Let B be a Banach space. Let (vn)n ⊆ B be a sequence

that weakly converges to some limit v ∈ B. Then there exist (Nn)n ⊆ N and (αn,i)
Nn
i=n ⊆ [0, 1]

such that
∑Nn

i=n αn,i = 1 for all n ∈ N and ṽn :=
∑Nn

i=n αn,i vi → v in the strong topology of B.

Proof. Given any n ∈ N, let us denote by Kn the strong closure of the set of all (finite) convex

combinations of the (vi)i≥n. Each set Kn, being strongly closed and convex, is weakly closed

by Hahn-Banach theorem. Given that v ∈
⋂
n∈NKn, for every n ∈ N we can choose Nn ≥ n

161
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and some αn,n, . . . , αn,Nn ∈ [0, 1] such that
∑Nn

i=n αn,i = 1 and ‖ṽn − v‖B < 1/n, where we

put ṽn :=
∑Nn

i=n αn,i vi. This proves the claim. �



Appendix B

Solutions to the exercises

Exercise 1.1.5 Suppose that X is compact. Prove that if a sequence (fn)n ⊆ C(X) satisfies

fn(x)↘ 0 for every x ∈ X, then fn → 0 uniformly on X.

Solution. First of all, we claim that

(fn)n ⊆ C(X) is equicontinuous. (B.1)

We argue by contradiction: if not, there exist x̄ ∈ X and ε > 0 such that for any δ > 0 there

are n ∈ N and y ∈ Bδ(x̄) satisfying
∣∣fn(y)− fn(x̄)

∣∣ ≥ ε. Choose n̄ ∈ N for which fn̄(x̄) < ε/2,

then take any δ̄ > 0 such that
∣∣fn̄(y)− fn̄(x̄)

∣∣ < ε/2 for every y ∈ Bδ̄(x̄). This clearly grants

that fn(y) < ε for every n ≥ n̄ and y ∈ Bδ̄(x̄), thus in particular∣∣fn(y)− fn(x̄)
∣∣ < ε for every n ≥ n̄ and y ∈ Bδ̄(x̄). (B.2)

Now choose any sequence (δk)k ⊆ (0, δ̄) such that δk ↘ 0. For any k ∈ N there exist nk ∈ N
and yk ∈ Bδk(x̄) that satisfy

∣∣fnk(yk) − fnk(x̄)
∣∣ ≥ ε. Observe that (B.2) forces nk < n̄ for

every k ∈ N. Up to passing to a not relabeled subsequence, one has that there exists n′ < n̄

such that nk = n′ for all k ∈ N. Since limk d(yk, x̄) = 0 and the map fn′ is continuous, we

have that limk

∣∣fn′(yk)− fn′(x̄)
∣∣ = 0, which is a contradiction. Therefore (B.1) is proved.

Take any subsequence (fnk)k of (fn)n. Given that supk ‖fnk‖Cb(X) < +∞ by hypothesis

and (fnk)k is equicontinuous by (B.1), we conclude that a subsequence of (fnk)k uniformly

converges to some map f ∈ Cb(X) by Arzelà-Ascoli theorem. Since fnk ↘ 0 pointwise, we

have that f = 0. Therefore the whole sequence (fn)n is uniformly converging to 0, thus

proving the statement. �

Exercise 1.1.7 Let (X, d) be a complete and separable metric space. Prove that if Cb(X) is

separable, then the space X is compact.

Solution. Suppose that (X, d) is not compact, or equivalently that it is not totally bounded.

Then there exists r > 0 such that X cannot be covered by finitely many balls of radius 2r.

Choose any family {xi}i∈I of distinct points in X such that
{
Br(xi)

}
i∈I is a maximal r-net
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in X – thus in particular the set I is at most countable. Since the family
{
B2r(xi)

}
i∈I is a

cover of X, we know that I must be infinite. For any index i ∈ I, let us pick any continuous

function gi : X → [0, 1] such that gi(xi) = 1 and spt(gi) ⊆ Br(xi). Given any subset S ⊆ I,

we define the function fS ∈ Cb(X) as fS :=
∑

i∈S gi. Hence {fS}S⊆I is an uncountable family

of elements of Cb(X) such that ‖fS − fT ‖Cb(X) = 1 whenever S, T ⊆ I satisfy S 6= T . This

shows that the space Cb(X) is not separable, as desired. �

Exercise 1.1.23 Prove that Lp(m) is dense in L0(m) for every p ∈ [1,∞].

Solution. Let f ∈ L0(m) be fixed. Pick any x̄ ∈ X and define

fn := χBn(x̄) (f ∧ n) ∨ (−n) ∈ L1(m) ∩ L∞(m) for every n ∈ N.

Fix any Borel probability measure m′ on X with m � m′ � m. Given that the m′-measure

of {f 6= fn} =
(
X \ Bn(x̄)

)
∪
{
|f | > n

}
goes to 0 as n → ∞, we see that fn → f in L0(m).

Since L1(m) ∩ L∞(m) =
⋂
p∈[1,∞] L

p(m), the statement is achieved. �

Exercise 1.1.26 Suppose that the measure m has no atoms. Let L : L0(m) → R be linear

and continuous. Then L = 0.

Solution. We argue by contradiction: suppose that there exists f ∈ L0(m) such that L(f) = 1.

Since m is atomless and outer regular, any point of X is center of some ball having arbitrarily

small m-measure. In particular, by using the Lindelöf property of (X, d) we can provide, for

any n ∈ N, a Borel partition (Akn)k∈N of X such that m(Akn) ≤ 1/n for every k ∈ N. Since the

limit f = limN→∞
∑N

k=1
χ
Akn
f holds in L0(m) and L is linear continuous, we see that

∑
k∈N

L(χAknf) = lim
N→∞

N∑
k=1

L(χAkmf) = L

(
lim
N→∞

N∑
k=1

χ
Akn
f

)
= L(f) = 1,

whence there exists kn ∈ N such that L(χ
Aknn

f) > 0. Now let us define

fn := f +
χ
Aknn

f

L(χ
Aknn

f)
∈ L0(m) for every n ∈ N.

Since m
(
{f 6= fn}

)
≤ m(Aknn )→ 0 as n→∞, we deduce that fn → f in L0(m). On the other

hand, one has

L(fn) = L(f) + L

( χ
Aknn

f

L(χ
Aknn

f)

)
= 2 for every n ∈ N,

so that L(fn) does not converge to L(f) = 1. This contradicts the continuity of L. �

Exercise 1.1.27 Let (X, d,m) be any metric measure space. Then the topology of L0(m)

comes from a norm if and only if m has finite support.

Solution. If the support of m has cardinality n ∈ N, then L0(m) can be identified with the

Euclidean space Rn (as a topological vector space), whence its topology comes from a norm.

Conversely, suppose that m does not have finite support. We distinguish two cases:
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(i) m is purely atomic,

(ii) m is not purely atomic.

In case (i), we can write m =
∑

n∈N λn δxn for some constants (λn)n ⊆ (0,+∞) and some

distinct points (xn)n ⊆ X. Then L0(m) can be identified (as a vector space) with the space `0

of all real-valued sequences, via the map I :
∑

n∈N an χ{xn} 7→ (an)n. Call (en)n the canonical

basis of `0, i.e. en := (δnk)k for all n ∈ N. Let ‖ · ‖ be any norm on `0. It can be readily

checked that I−1
(
en/‖en‖

)
→ 0 with respect to the L0(m)-topology. Since all vectors en/‖en‖

have ‖ · ‖-norm equal to 1, we conclude that the L0(m)-topology does not come from a norm.

In case (ii), we can find two Radon measures µ, ν ≥ 0 on X with µ ⊥ ν such that µ 6= 0

has no atoms and m = µ + ν. Notice that L0(µ) is a vector subspace of L0(m) and that its

topology coincides with the restriction of the L0(m)-topology. We argue by contradiction:

suppose that some norm ‖ · ‖ on L0(m) induces its usual topology, thus in particular the

restriction of ‖ · ‖ to L0(µ) induces the L0(µ)-topology. By Hahn-Banach theorem we know

that there exists a non-null linear continuous operator L : L0(µ) → R, which contradicts

Exercise 1.1.26. Hence the L0(m)-topology is not induced by any norm, as required. �

Exercise 1.2.2 Any open subset of a Polish space is a Polish space.

Solution. Let (X, d) be a complete separable metric space and ∅ 6= Ω ⊆ X an open set. The

product space R×X is a complete separable metric space if endowed with the distance

(dEucl × d)2
(
(λ1, x1), (λ2, x2)

)
:= |λ1 − λ2|2 + d2(x1, x2)

and the map f : R × X → R, defined as (λ, x) 7→ λ d(x,X \ Ω), is continuous. This grants

that the set C :=
{

(λ, x) ∈ R × X : f(λ, x) = 1
}

is closed in R × X. Moreover, it is easy

to prove that the projection R× X 3 (λ, x) 7→ x ∈ X is a homeomorphism between C and Ω

– here the openness of Ω enters into play. Therefore Ω (with the topology induced by d) is

proven to be a Polish space, as required. �

Exercise 1.2.8 Prove that

KE(γ) = sup
0=t0<...<tn=1

n−1∑
i=0

d(γti+1 , γti)
2

ti+1 − ti
holds for every γ ∈ C([0, 1],X). (B.3)

Solution. Fix a partition 0 = t0 < t1 < . . . < tn = 1. By Hölder inequality, we get that

n−1∑
i=0

d(γti+1 , γti)
2

ti+1 − ti
≤

n−1∑
i=0

1

ti+1 − ti

(ˆ ti+1

ti

|γ̇s|ds
)2

≤
n−1∑
i=0

ˆ ti+1

ti

|γ̇s|2 ds = KE(γ),

showing that the sup in (B.3) is smaller than or equal to KE(γ).

Conversely, fix any curve γ ∈ C([0, 1],X). By Proposition 1.2.12, we can isometrically

embed (X, d) into a complete, separable and geodesic metric space (X̃, d̃). Denote by K̃E the
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kinetic energy associated to (X̃, d̃). Then γ can be viewed as an element of C([0, 1], X̃) and it

holds that K̃E(γ) = KE(γ). Now fix n ∈ N. Since the curve γ is uniformly continuous, there

exist k(n) ∈ N and a partition 0 = tn0 < . . . < tnk(n) = 1 such that

d(γtni , γs) ≤
1

2n
for every i = 1, . . . , k(n) and s ∈ [tni−1, t

n
i ]. (B.4)

Given that (X̃, d̃) is a geodesic space, there exists γn ∈ C([0, 1], X̃) such that Restr
tni
tni−1

(γn) is

a d̃-geodesic joining γtni−1
to γtni for any i = 1, . . . , k(n). Hence (B.4) gives d̃(γ, γn) ≤ 1/n for

every n ∈ N. The functional K̃E is d̃-lower semicontinuous by Proposition 1.2.7, whence

KE(γ) = K̃E(γ) ≤ lim
n→∞

K̃E(γn) = lim
n→∞

k(n)∑
i=1

d(γtni , γtni−1
)2

tni − tni−1

,

which proves that (B.3) is verified, as required. �

Exercise 1.3.3 Show that the integral in (1.40) is well-posed, i.e. it does not depend on the

particular way of writing f , and that it is linear.

Solution. Say f =
∑

i
χEi vi =

∑
j
χFj wj . Then it holds that∑

i

µ(Ei ∩ E) vi −
∑
j

µ(Fj ∩ E)wj =
∑
i,j

µ(Ei ∩ Fj ∩ E) (vi − wj) = 0,

which proves that
´
E f dµ is well-defined. Hence linearity follows by construction. �

Exercise 1.3.13 Prove Example 1.3.11 and Example 1.3.12.

Solution. About Example 1.3.11, we prove only i): let us fix a sequence (fn)n ⊆ C1([0, 1])

such that fn → f and f ′n → g in C([0, 1]), for suitable f, g ∈ C([0, 1]). Therefore

fn(t)− fn(s) =

ˆ t

s
f ′n(r) dr for every n ∈ N and t, s ∈ [0, 1] with s ≤ t. (B.5)

Then by letting n→∞ in (B.5), we deduce that f(t)− f(s) =
´ t
s g(r) dr for every t, s ∈ [0, 1]

with s ≤ t. Since g is continuous, we conclude that f is differentiable, with derivative g. This

proves that
(
D(T1), T1

)
is a closed operator, getting i).

To prove Example 1.3.12, fix any sequence (gk)k ⊆W 1,2(R) that L2(R)-converges to some

limit function g ∈ L2(R) \W 1,2(R). Now define fk := (0, . . . , 0, gk) for every k ∈ N. Then the

sequence (fk)k ⊆ W 1,2(Rn) converges to (0, . . . , 0, g) in L2(Rn) and T4(fk) → 0 in L2(Rn),

but the function (0, . . . , 0, g) does not belong to W 1,2(Rn), showing that
(
D(T4), T4

)
is not a

closed operator. �

Exercise 2.1.5 Prove that the map Restrst is continuous.

Solution. Fix γ, σ ∈ C([0, 1],X) and t, s ∈ [0, 1]. Then

d
(
Restrts(γ),Restrts(σ)

)
= max

r∈[0,1]
d(γ(1−r)t+rs, σ(1−r)t+rs) ≤ max

r∈[0,1]
d(γr, σr) = d(γ, σ),

which shows that Restrts is 1-Lipschitz. �
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Exercise 2.1.14 Given a metric space (X, d) and α ∈ (0, 1), we set the distance dα on X as

dα(x, y) := d(x, y)α for every x, y ∈ X.

Prove that the metric space (X, dα), which is called the snowflaking of (X, d), has the following

property: if a curve γ is dα-absolutely continuous, then it is constant.

Now consider any Borel measure m on (X, d). Since d and dα induce the same topology

on X, we have that m is also a Borel measure on (X, dα). Prove that any Borel map on X

belongs to S2(X, dα,m) and has null minimal weak upper gradient.

Solution. Let γ : [0, 1]→ X be dα-absolutely continuous, say that dα(γt, γs) ≤
´ t
s f(r) dr for

every 0 ≤ s < t ≤ 1, for a suitable f ∈ L1(0, 1). Define C := max
{
d(γt, γs) : t, s ∈ [0, 1]

}
.

Therefore one has

d(γt, γs) = d(γt, γs)
1−α dα(γt, γs) ≤ C1−α dα(γt, γs) ≤ C1−α

ˆ t

s
f(r) dr,

which shows that γ is d-absolutely continuous. Moreover, given that limh→0 dα(γt+h, γt)/|h|
exists finite for a.e. t ∈ [0, 1], we deduce that

lim
h→0

d(γt+h, γt)

|h|
= lim

h→0

(
dα(γt+h, γt)

|h|

)1/α

|h|(1−α)/α = 0 for a.e. t ∈ [0, 1],

which grants that the curve γ is constant, as required.

To prove the last statement, simply notice that any test plan on (X, dα,m) must be

concentrated on the set of all constant curves in X. �

Exercise 2.2.1 Prove that lipa(f) is an upper semicontinuous function.

Solution. Fix x ∈ X and a sequence (xn)n ⊆ X such that xn → x. Given any r > 0, we can

find n̄ ∈ N such that xn ∈ Br(x) for all n ≥ n̄ and accordingly there exists (rn)n≥n̄ ⊆ (0, 1)

such that Brn(xn) ⊆ Br(x) for all n ≥ n̄. Therefore

lipa(f)(xn) ≤ Lip
(
f |Brn (xn)

)
≤ Lip

(
f |Br(x)

)
for all n ≥ n̄. (B.6)

By passing to the limit as n → ∞ in the (B.6), we get that limn lipa(f)(xn) ≤ Lip
(
f |Br(x)

)
.

By letting r ↘ 0, we finally conclude that limn lipa(f)(xn) ≤ lipa(f)(x), which shows that

the function lipa(f) is upper semicontinuous, as required. �

Exercise 2.2.4 Prove that E∗,a is L2(m)-lower semicontinuous and is the maximal L2(m)-

lower semicontinuous functional E such that E(f) ≤ 1
2

´
lip2

a(f) dm holds for every f ∈ LIP(X).

Actually, the same properties are verified by E∗ if we replace lipa(f) with lip(f).

Solution. First of all, observe that E∗,a(f) ≤ 1
2

´
lip2

a(f) dm for all f ∈ L2(m): if f is not

Lipschitz then 1
2

´
lip2

a(f) dm is set to be equal to +∞ by convention, while if f is Lipschitz

then the choice of the sequence constantly equal to f shows the above inequality.
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Now we prove that the functional E∗,a is L2(m)-lower semicontinuous. Fix f ∈ L2(m) and

a sequence (fn)n ⊆ LIP(X) ∩ L2(m) that L2(m)-converges to f . We aim to show the validity

of the inequality E∗,a(f) ≤ limn E∗,a(fn). Possibly passing to a subsequence, we can suppose

that the liminf is actually a limit. Moreover, if limn E∗,a(fn) = +∞ then the claim is trivially

satisfied, so we can also assume that limn E∗,a(fn) is finite and accordingly that E∗,a(fn) < +∞
for all n ∈ N. Given any n ∈ N, we can find a sequence (fkn)k ⊆ LIP(X) ∩ L2(m) such that

lim
k→∞

1

2

ˆ
lip2

a(f
k
n) dm = lim

k→∞

1

2

ˆ
lip2

a(f
k
n) dm ≤ E∗,a(fn) +

1

n
.

A diagonalisation argument yields an increasing sequence (kn)n ⊆ N such that gn := fknn → f

in L2(m) and 1
2

´
lip2

a(gn) dm ≤ E∗,a(fn) + 2/n for all n ∈ N. Therefore

E∗,a(f) ≤ lim
n→∞

1

2

ˆ
lip2

a(gn) dm ≤ lim
n→∞

(
E∗,a(fn) +

2

n

)
= lim

n→∞
E∗,a(fn).

In order to conclude, suppose that E is an L2(m)-lower semicontinuous functional such

that E(f) ≤ 1
2

´
lip2

a(f) dm for every f ∈ LIP(X). We claim that E ≤ E∗,a. Fix f ∈ L2(m).

Then for any sequence (fn)n ⊆ LIP(X) ∩ L2(m) that converges to f in L2(m) it holds that

E(f) ≤ lim
n→∞

E(fn) ≤ lim
n→∞

1

2

ˆ
lip2

a(fn) dm.

By the arbitrariness of (fn)n, we conclude that E(f) ≤ E∗,a(f), as required. �

Exercise 3.1.3 Let V,W,Z be normed spaces. Let B : V ×W → Z be a bilinear operator.

i) Suppose V is Banach. Show that B is continuous if and only if both B(v, ·) and B(·, w)

are continuous for every v ∈ V and w ∈W .

ii) Prove that B is continuous if and only if there exists a constant C > 0 such that the

inequality
∥∥B(v, w)

∥∥
Z
≤ C ‖v‖V ‖w‖W holds for every (v, w) ∈ V ×W .

Solution. The proof goes as follows:

i) Sufficiency is obvious. To prove necessity, let us define Tw ∈ L(V,Z) as Tw(v) := B(v, w)

for all v ∈ V ; here L(V,Z) denotes the space of all linear continuous operators from V to Z.

Given any v ∈ V , we have that B(v, ·) is linear continuous, so that there exists Cv > 0 for

which
∥∥B(v, w)

∥∥
Z
≤ Cv ‖w‖W for all w ∈W . This grants that

sup
‖w‖W≤1

∥∥Tw(v)
∥∥
Z
≤ Cv < +∞ for every v ∈ V.

Then an application of the Banach-Steinhaus theorem yields

C := sup
‖v‖V ,‖w‖W≤1

∥∥B(v, w)
∥∥
Z

= sup
‖w‖W≤1

‖Tw‖L(V,Z) < +∞.

Therefore
∥∥B(v, w)

∥∥
Z
≤ C ‖v‖V ‖w‖W for all v ∈ V and w ∈W , whence B is continuous.

ii) Necessity is trivial. To prove sufficiency, we argue by contradiction: suppose B is continu-

ous and there exists a bounded sequence
{

(vn, wn)
}
n
⊆ V ×W with

∥∥B(vn, wn)
∥∥
Z
→ +∞.
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Now call λn :=
√∥∥B(vn, wn)

∥∥
Z

. Observe that (vn/λn, wn/λn) → 0 in V ×W , because the

sequences (vn)n, (wn)n are bounded and λn →∞. On the other hand, we clearly have that∥∥B(vn/λn, wn/λn)
∥∥
Z

= 1 for every n ∈ N,

thus contradicting the continuity of B. �

Exercise 3.2.4 Assume that m has no atoms and let L : M → L∞(m) be linear, continuous

and satisfying L(fv) = fL(v) for every v ∈M and f ∈ L∞(m). Prove that L = 0.

Solution. We argue by contradiction: suppose that L(v) 6= 0 for some v ∈M . Then (possibly

taking −v in place of v) we can find a Borel set A ⊆ X and some C ≥ 1 such that m(A) > 0

and 1/C ≤ L(v) ≤ C m-a.e. on A. Pick n̄ ∈ N with
∑

n≥n̄ 1/n4 < m(A). We claim that:

There exists a sequence (An)n≥n̄ of pairwise disjoint

subsets of A such that 0 < m(An) ≤ 1/n4 for all n ≥ n̄.
(B.7)

To prove it, we use a recursive argument: suppose to have already built An̄, . . . , An−1. The

set A′ := A\(An̄∪ . . .∪An−1) has positive m-measure by hypothesis on n̄. Since m is atomless

and outer regular, we see that any point of A′ is center of some ball whose m-measure does

not exceed 1/n4. By the Lindelöf property, countably many of such balls cover the whole A′;

call them (Bi)i∈N. Then there exists i ∈ N with m(A′ ∩ Bi) > 0, otherwise the set A′ would

be negligible. Hence the set An := A′ ∩Bi satisfies the required properties. This provides us

with a sequence (An)n≥n̄ as in the claim (B.7).

Now let us define wk :=
∑k

n=n̄ nχAn v ∈ M for every k ≥ n̄. Notice that for any k ∈ n̄
and i, j ≥ k it holds that

‖wi − wj‖M ≤
∞∑
n=k

ˆ
An

n2 |v|2 dm ≤ C
∞∑
n=k

n2 m(An) ≤ C
∞∑
n=k

1

n2
.

Since
∑∞

n=k 1/n2 → 0 as k →∞, we conclude that the sequence (wk)k is Cauchy in M , thus

it admits a limit in M . On the other hand, for all k ≥ n̄ we have that

L(wk) =
k∑

n=n̄

nχAn L(v) ≥ 1

C

k∑
n=n̄

nχAn m-a.e.,

thus accordingly L(wk) cannot converge in L∞(m). This leads to a contradiction, as the

operator L is continuous. �

Exercise 3.2.32 Let T : L2(m) → L2(m) be an L∞(m)-linear and continuous operator.

Prove that there exists a unique g ∈ L∞(m) such that T (f) = gf for every f ∈ L2(m).

Solution. First of all, we claim that:

There exists a unique g ∈ L0(m) such that T (f) = gf for every f ∈ L2(m). (B.8)
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To prove it, choose a Borel partition (En)n∈N of X into sets of finite positive m-measure and

define the operators Tn : L2(m) → L1(m) as Tn(f) := χEnT (f) for all f ∈ L2(m). It is then

clear that each Tn is L∞(m)-linear and continuous, thus Riesz Theorem 3.2.14 – as already

observed in Example 3.2.15 – gives us a function gn ∈ L2(m) such that Tn(f) = gnf holds

for all f ∈ L2(m). In particular, gn = 0 holds m-a.e. in X \ En. Therefore it makes sense to

define the function g ∈ L0(m) as g :=
∑

n∈N gn and it holds that

T (f) =
∑
n∈N

Tn(f) =
∑
n∈N

gnf = gf for every f ∈ L2(m),

which proves the existence part of the claim (B.8). The uniqueness part is trivial.

In order to conclude, it only remains to show that:

If g ∈ L0(m) and gf ∈ L2(m) for every f ∈ L2(m), then g ∈ L∞(m). (B.9)

We argue by contradiction: suppose g is not essentially bounded. Then we can find a strictly

increasing sequence (kn)n ⊆ N and a countable collection (An)n of pairwise disjoint Borel

subsets of X such that kn ≤ g2 < kn+1 m-a.e. on An and 0 < m(An) < +∞ for all n ∈ N.

Hence let us define

f :=
∑
n∈N

1√
nknm(An)

χAn ∈ L0(m).

Given that kn ≥ n, we see that
´
f2 dm =

∑
n 1/(nkn) ≤

∑
n 1/n2 < +∞, i.e. f ∈ L2(m).

On the other hand, the function gf does not belong to L2(m), indeed

ˆ
(gf)2 dm =

∑
n∈N

ˆ
An

g2

nknm(An)
dm ≥

∑
n∈N

ˆ
An

1

nm(An)
dm =

∑
n∈N

1

n
= +∞.

This leads to a contradiction, thus (B.9) and accordingly the statement follow. �

Exercise 4.2.11 Prove that Dual is single-valued and linear if and only if B is a Hilbert

space. In this case, Dual is the Riesz isomorphism.

Solution. To prove necessity, suppose B is Hilbert. We show that Dual is single-valued arguing

by contradiction: if not, there exist v ∈ B and L1, L2 ∈ Dual(v) with L1 6= L2. By Riesz

theorem we know that there exist v1, v2 ∈ B such that v1 6= v2 and Li(·) = 〈vi, ·〉 for i = 1, 2.

Hence ‖vi‖B = ‖Li‖B′ = ‖v‖B and 〈vi, v〉 = Li(v) = ‖v‖2B for i = 1, 2. This forces v1 = v2 = v,

thus leading to a contradiction. Moreover, this shows that Dual coincides with the Riesz

isomorphism, so in particular it is linear.

To prove sufficiency, suppose Dual is single-valued and linear. Fix any two v1, v2 ∈ B and

call Li := Dual(vi) for i = 1, 2. By linearity of Dual we know that Dual(v1 ± v2) = L1 ± L2,

whence

(L1 + L2)(v1 + v2) = ‖v1 + v2‖2B,
(L1 − L2)(v1 − v2) = ‖v1 − v2‖2B.

(B.10)
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By summing the two identities in (B.10) we thus deduce that

‖v1 + v2‖2B + ‖v1 − v2‖2B = 2L1(v1) + 2L2(v2) = 2 ‖v1‖2B + 2 ‖v2‖2B,

which shows that B is a Hilbert space. �

Exercise 4.2.13 Prove that the multi-valued map Dual on
(
Rn, ‖ · ‖

)
is single-valued at any

point if and only if the norm ‖ · ‖ is differentiable.

Solution. It is well-known that the subdifferential of ‖ · ‖ at v ∈ Rn is single-valued if and

only if ‖ · ‖ is differentiable at v, thus it is enough to show that

Dual(v) = ‖v‖
(
∂−‖ · ‖(v)

)
for every v ∈ Rn. (B.11)

Let L ∈ Dual(v). Hence for any w ∈ Rn it holds that

‖v‖+
L

‖v‖
(w − v) = ‖v‖ − L(v)

‖v‖
+
L(w)

‖v‖
=
L(w)

‖v‖
≤ ‖L‖ ‖w‖

‖v‖
≤ ‖w‖,

which shows that L/‖v‖ ∈ ∂−‖ · ‖(v). This proves that Dual(v) ⊆ ‖v‖
(
∂−‖ · ‖(v)

)
.

Conversely, let L ∈ ∂−‖ · ‖(v). This means that ‖v‖+ L(w − v) ≤ ‖w‖ for all w ∈ Rn, or

equivalently L(w)− ‖w‖ ≤ L(v)− ‖v‖ for all w ∈ Rn. In other words,

‖ · ‖∗(L) := sup
w∈Rn

[
L(w)− ‖w‖

]
≤ L(v)− ‖v‖. (B.12)

(The function ‖ · ‖∗ is usually called Fenchel conjugate of ‖ · ‖.) We can compute ‖ · ‖∗(L):

• If ‖L‖ ≤ 1 then L(w)−‖w‖ ≤ 0 for all w ∈ Rn, so that ‖ · ‖∗(L) ≤ 0. But L(0)−‖0‖ = 0,

whence we conclude that ‖ · ‖∗(L) = 0.

• If ‖L‖ > 1 then L(w) > 1 for some w ∈ Rn with ‖w‖ = 1. Hence

‖ · ‖∗(L) ≤ L(tw)− ‖tw‖ = t
(
L(w)− 1

)
→ +∞ as t→ +∞,

thus showing that ‖ · ‖∗(L) = +∞.

Therefore we proved that

‖ · ‖∗(L) =

{
0

+∞
if ‖L‖ ≤ 1,

if ‖L‖ > 1.

Accordingly we deduce from (B.12) that ‖L‖ ≤ 1 and L(v) ≥ ‖v‖, which force the validity of

the identities L(v) = ‖v‖ and ‖L‖ = 1. This implies that ‖v‖L ∈ Dual(v), whence also the

inclusion ‖v‖
(
∂−‖ · ‖(v)

)
⊆ Dual(v) is proven. This gives (B.11). �
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Exercise 4.2.18 Prove that the norm of a finite-dimensional Banach space is differentiable

if and only if its dual norm is strictly convex.

Solution. Given a Banach space B, we denote by DualB the multi-valued map defined as in

(4.19). Let us prove the following two claims: given any Banach space B, it holds that

B′ is strictly convex =⇒ DualB is single-valued, (B.13a)

DualB′ is single-valued =⇒ B is strictly convex. (B.13b)

In order to prove (B.13a), let us argue by contradiction: suppose to have v ∈ B with ‖v‖B = 1

and L1, L2 ∈ DualB(v) with L1 6= L2. For any t ∈ (0, 1) we have that

1 = (1− t)L1(v) + t L2(v) =
(
(1− t)L1 + t L2

)
(v) ≤

∥∥(1− t)L1 + t L2

∥∥
B′ ,

while on the other hand
∥∥(1− t)L1 + t L2

∥∥
B′ ≤ (1 − t) ‖L1‖B′ + t ‖L2‖B′ = 1. Therefore the

segment in B′ joining L1 to L2 is contained in the boundary of the unit ball of B′, contradicting

the strictly convexity of B′.
Also (B.13b) can be proven by contradiction: suppose ‖2 v‖B = ‖2w‖B = ‖v + w‖B = 1 for

some v, w ∈ B with v 6= w. Choose any L ∈ DualB(v+w) and notice that ι(v+w) ∈ DualB′(L),

where ι : B→ B′′ in the canonical embedding of B into its bidual B′′. Now observe that

1 = L(v + w) =
1

2
L(2 v) +

1

2
L(2w) ≤ 1

2
‖L‖B′

(
‖2 v‖B + ‖2w‖B

)
= 1,

which forces the equalities L(2 v) = L(2w) = 1. This means that ι(v), ι(w) ∈ DualB′(L), thus

contradicting the hypothesis.

The statement of the exercise is a direct consequence of (B.13a) and (B.13b), because any

finite-dimensional Banach space is necessarily reflexive. �

Exercise 5.1.1 Consider H := R and E(x) := |x| for every x ∈ R. Then

∂−E(x) :=


{1}
[−1, 1]

{−1}

if x > 0,

if x = 0,

if x < 0.

Solution. We first treat the case x > 0. Notice that 1 ∈ ∂−E(x) because y = x+ (y−x) ≤ |y|
for all y ∈ R. Now take any z ∈ ∂−E(x), so that z(y − x) ≤ |y| − x for all y ∈ R. By picking

any y ∈ (0, x) (resp. y > x) and dividing by y− x, we deduce that z ≥ 1 (resp. z ≤ 1). Hence

one has ∂−E(x) = {1} for every x > 0. Similarly, ∂−E(x) = {−1} for every x > 0.

Now consider x = 0. We have that ∂−E(0) =
{
z ∈ R : zy ≤ |y| for all y ∈ R

}
. Then

some z ∈ R belongs to ∂−E(0) if and only if zy ≤ y for all y > 0 and zy ≤ −y for all y < 0.

This shows that ∂−E(0) = [−1, 1]. �
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Exercise 5.1.6 Let H be a Hilbert space. Given any x ∈ H and τ > 0, let us define

Fx,τ (·) := E(·) +
| · −x|2

2 τ
.

Then it holds that ∂−Fx,τ (y) = ∂−E(y) + y−x
τ for every y ∈ H.

Solution. First of all, it is clear that D(E) = D(Fx,τ ). Then let us fix y ∈ D(E). Notice that

the operator | · −x|2/(2 τ) is differentiable at y and its differential is given by 〈y − x, ·〉/τ ,

whence

∂−
| · −x|2

2 τ
(y) =

{y − x
τ

}
. (B.14)

Then from the very definition of subdifferential it immediately follows that

∂−E(y) +
y − x
τ

= ∂−E(y) + ∂−
| · −x|2

2 τ
(y) ⊆ ∂−Fx,τ (y).

To prove the converse inclusion, fix any v ∈ ∂−Fx,τ (y). This means that

E(y) +
|y − x|2

2 τ
− 〈v, hz〉 ≤ E(y − hz) +

|y − x− hz|2

2 τ
for every z ∈ H and h > 0,

which can be rewritten as

E(y)− E(y − hz)
h

≤ 〈v, z〉+
|y − x− hz|2 − |y − x|2

2 τ h
for every z ∈ H and h > 0. (B.15)

Since in (B.15) the left hand side is convex with respect to h and the right hand side converges

to 〈v, z〉 − 〈y − x, z〉/τ as h↘ 0, we conclude that

E(y)− E(y − z) ≤ lim
h↘0

E(y)− E(y − hz)
h

≤
〈
v − y − x

τ
, z
〉

for every z ∈ H,

which shows that v − y−x
τ ∈ ∂

−E(y), as required. �

Exercise 5.2.17 Given p ∈ [1,∞] and t > 0, we (provisionally) denote by hpt the heat flow

in Lp(m) at time t. Prove that hpt f = hqtf for all p, q ∈ [1,∞] and f ∈ Lp(m) ∩ Lq(m).

Solution. First of all, we aim to prove that hpt = hqt on Lp(m)∩Lq(m) whenever p, q ∈ [1,∞).

To do so, fix f ∈ Lp(m) ∩ L∞(m) and define fn := χBn(x̄)∩{|f |≤n}f for all n ∈ N, where

the point x̄ ∈ X is arbitrary. Note that fn → f both in Lp(m) and in Lq(m) by dominated

convergence theorem. Each function fn has bounded support and is essentially bounded, so

that (fn)n ⊆ L2(m). This grants that hpt f = limn htfn in Lp(m) and hqtf = limn htfn in Lq(m),

whence necessarily hpt f = hqtf .

Now we prove that hpt = h∞t on Lp(m) ∩ L∞(m) for all p ∈ [1,∞). We begin with the

following claim:

hpt f ∈ L∞(m) for every f ∈ Lp(m) ∩ L∞(m). (B.16)

To prove it, pick any sequence (fn)n ⊆ L2(m)∩Lp(m)∩L∞(m) that converges to f in Lp(m)

and satisfies ‖fn‖L∞(m) ≤ ‖f‖L∞(m) for all n ∈ N. Hence we have that htfn → hpt f in Lp(m),
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while |htfn| ≤ ‖f‖L∞(m) holds m-a.e. by item iii) of Proposition 5.2.14. This implies that the

m-a.e. estimate |hpt f | ≤ ‖f‖L∞(m), thus obtaining (B.16). Now let us fix f ∈ Lp(m) ∩ L∞(m).

To prove that hpt f = h∞t f is clearly equivalent (by Definition 5.2.16) to the following condition:

ˆ
f h1

t g dm =

ˆ
hpt f g dm for every g ∈ L1(m). (B.17)

Call q the conjugate exponent of p. Choose two sequences (fi)i ⊆ L2(m) ∩ Lp(m) ∩ L∞(m)

and (gj)j ⊆ L1(m) ∩ L2(m) ∩ Lq(m) such that fi → f in Lp(m) and gj → g in L1(m). We

know from Corollary 5.2.9 that
´
fi htgj dm =

´
htfi gj dm. Given that gj , htgj ∈ Lq(m), we

can let i→∞ and obtain
´
f htgj dm =

´
hpt f gj dm. Since f, hpt f ∈ L∞(m) by (B.16), we can

let j →∞ and obtain (B.17). This concludes the proof. �

Exercise 6.4.8 Let H1, H2 be Hilbert spaces. Let ϕ : H1 → H2 be a linear and continuous

operator. Then there exists a unique linear and continuous operator Λkϕ : ΛkH1 → ΛkH2

such that Λkϕ(v1 ∧ . . .∧ vk) = ϕ(v1)∧ . . .∧ϕ(vk) is satisfied for every v1, . . . , vk ∈ H1. Prove

that ‖Λkϕ‖op ≤ ‖ϕ‖
k
op.

Solution. First of all, note that there is at most one linear continuous map T : H⊗k1 → ΛkH2

such that T (v1⊗ . . .⊗ v2) = ϕ(v1)∧ . . . ϕ(vk) for all v1, . . . , vk ∈ H1. Such map is well-posed,

linear and continuous as a consequence of the following estimate:

∥∥ϕ(v1) ∧ . . . ϕ(vk)
∥∥

ΛkH2
=

k∏
i=1

∥∥ϕ(vi)
∥∥
H2
≤ ‖ϕ‖kop

k∏
i=1

‖vi‖H1

= ‖ϕ‖kop‖v1 ⊗ . . .⊗ vk‖H⊗k1
.

(B.18)

Moreover, if some v1, . . . , vk ∈ H1 satisfy vi = vj for some i 6= j, then T (v1 ⊗ . . . ⊗ vk) = 0.

This shows that the operator T passes to the quotient, thus yielding a (uniquely determined)

linear and continuous map Λkϕ as in the claim. Finally, the estimate ‖Λkϕ‖op ≤ ‖ϕ‖
k
op follows

from (B.18). �

Exercise 6.4.26 Prove that

hH,t(dω) = dhH,tω for every ω ∈W 1,2
d (ΛkT ∗X) and t ≥ 0.

Moreover, an analogous property is satisfied by the codifferential δ.

Solution. Let us consider the curve t 7→ dhH,tω. Since d is a closed operator, we see that

d

dt
dhH,tω = d

(
d

dt
hH,tω

)
= −d∆HhH,tω for a.e. t > 0. (B.19)
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On the other hand, given any α ∈ TestFormk(X) it holds that

ˆ
〈∆HdhH,tω, α〉dm =

ˆ 〈
d(dhH,tω),dα

〉
dm +

ˆ 〈
δ(dhH,tω), δα

〉
dm

=

ˆ 〈
δ(dhH,tω), δα

〉
dm =

ˆ 〈
dhH,tω,d(δα)

〉
dm

=

ˆ 〈
dhH,tω,d(δα)

〉
dm +

ˆ 〈
δhH,tω, δ(δα)

〉
dm

=

ˆ
〈∆HhH,tω, δα〉 dm =

ˆ
〈d∆HhH,tω, α〉dm,

which shows that ∆HdhH,tω = d∆HhH,tω. By recalling (B.19) we thus see that

d

dt
dhH,tω = −∆HdhH,tω for a.e. t > 0.

Since the gradient flow is unique, we can conclude that hH,t(dω) = dhH,tω for all t ≥ 0. �
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[3] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the

space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag,
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[7] , Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature

bounds, The Annals of Probability, 43 (2015), pp. 339–404. arXiv:1209.5786.

[8] L. Ambrosio, A. Mondino, and G. Savaré, On the Bakry-Émery condition, the gra-
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XIX, 1983/84, vol. 1123 of Lecture Notes in Math., Springer, Berlin, 1985, pp. 177–206.

177



178 BIBLIOGRAPHY

[12] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007.

[13] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, vol. 33 of Grad-

uate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.

[14] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom.

Funct. Anal., 9 (1999), pp. 428–517.

[15] J. Diestel and J. J. Uhl, Jr., Vector measures, American Mathematical Society,

Providence, R.I., 1977. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15.

[16] M. Erbar, K. Kuwada, and K.-T. Sturm, On the equivalence of the entropic

curvature-dimension condition and Bochner’s inequality on metric measure spaces, In-

ventiones mathematicae, 201 (2014), pp. 1–79. arXiv:1303.4382.

[17] B. Fuglede, Extremal length and functional completion, Acta Math., 98 (1957), pp. 171–

219.

[18] N. Gigli, Nonsmooth differential geometry - an approach tailored for spaces with Ricci

curvature bounded from below. Accepted at Mem. Amer. Math. Soc., arXiv:1407.0809,

2014.

[19] , On the differential structure of metric measure spaces and applications, Mem.

Amer. Math. Soc., 236 (2015), pp. vi+91. arXiv:1205.6622.

[20] , Lecture notes on differential calculus on RCD spaces. Preprint, arXiv:1703.06829,

2017.

[21] N. Gigli and C. Rigoni, Recognizing the flat torus among RCD∗(0, N) spaces via

the study of the first cohomology group. Calculus of Variations and Partial Differential

Equations, 57(4), (2017).

[22] P. Haj lasz, Sobolev spaces on an arbitrary metric space, Potential Analysis, 5 (1996),

pp. 403–415.

[23] P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia

Math., 131 (1998), pp. 1–17.

[24] B. Levi, Sul principio di Dirichlet, Rend. Circ. Mat. Palermo, (1906).

[25] J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J.

Funct. Anal., 245 (2007), pp. 311–333.

[26] J.-L. Sauvageot, Tangent bimodule and locality for dissipative operators on C∗-

algebras, in Quantum probability and applications, IV (Rome, 1987), vol. 1396 of Lecture

Notes in Math., Springer, Berlin, 1989, pp. 322–338.



BIBLIOGRAPHY 179

[27] J.-L. Sauvageot, Quantum Dirichlet forms, differential calculus and semigroups, in

Quantum probability and applications, V (Heidelberg, 1988), vol. 1442 of Lecture Notes

in Math., Springer, Berlin, 1990, pp. 334–346.
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