SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

SISSA Digital Library

Lectures on Nonsmooth Differential Geometry

Original
Lectures on Nonsmooth Differential Geometry / Gigli, Nicola; Pasqualetto, Enrico. - 2:(2020), pp. 1-204.
[10.1007/978-3-030-38613-9]

Availability:
This version is available at: 20.500.11767/111334 since: 2020-04-30T17:38:527

Publisher:
Springer

Published
DOI:10.1007/978-3-030-38613-9

Terms of use:

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Publisher copyright
Springer

This version is available for education and non-commercial purposes.

note finali coverpage

(Article begins on next page)

21 May 2024



Lectures on Nonsmooth Differential

Geometry

Nicola Gigli and Enrico Pasqualetto

October 16, 2019






Preface

These are the lecture notes of the Ph.D. level course ‘Nonsmooth Differential Geometry’ given
by the first author at SISSA (Trieste, Italy) from October 2017 to March 2018. The material
discussed in the classroom has been collected and reorganised by the second author.

The course was intended for students with no prior exposure to non-smooth calculus and
aimed at giving a rather complete picture of first-order Sobolev calculus on general metric
measure spaces and a glimpse at second order calculus on RCD spaces.

For this reason the first lectures covered basic material like the concept of absolutely
continuous curve or Bochner integration. This material is collected in Chapter 1.

A great deal of time has been spent at introducing the by-now classical concept of real
valued Sobolev function on a metric measure space. Out of the several equivalent definitions,
the approach chosen in the course has been the one based on the concept of ‘test plan’
introduced in [5] as it better fits what comes next. The original approach by relaxation due
to Cheeger [14] and the one by Shanmugalingam [29] based on the concept of ‘modulus of a
family of curves’ are presented, but for time constraint the equivalence of these notions with
the one related to test plans has not been proved. These topics are covered in Chapter 2.

The definition of Sobolev map on a metric measure space does not come with a notion of
differential, as it happens in the Euclidean setting, but rather with an object, called minimal
weak upper gradient, which plays the role of ‘modulus of the distributional differential’. One
of the recent achievements of the theory, obtained in [18], has been to show that actually
a well-defined notion of differential exists also in this setting: its introduction is based on
the concept of L /L%normed module. Chapter 3 investigates these structures from a rather
abstract perspective without insisting on their use in non-smooth analysis.

The core of the course is then covered in Chapter 4, where first-order calculus is studied
in great detail and the key notions of tangent/cotangent modules are introduced. Beside
the notion of differential of a Sobolev map, other topics discussed are the dual concept of
divergence of a vector field and how these behave under transformation of the metric measure
structures. For simplicity, some of the constructions, like the one of speed of a test plan, are
presented only in the technically convenient case of infinitesimally Hilbertian metric measure
spaces, i.e. those for which the corresponding Sobolev space W2 is Hilbert.

A basic need in most branches of mathematical analysis is that of a regularisation proce-
dure. In working on a non-smooth environment this is true more than ever and classical tools

like covering arguments are typically unavailable if one does not assume at least a doubling
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property at the metric level. Instead the key, and often only, tool one has at disposal is
that of regularisation via the heat flow (which behaves particularly well under a lower Ricci
curvature bound, a situation which the theory presented here aims to cover). Such flow can
be introduced in a purely variational way as gradient flow of the ‘Dirichlet energy’ (in this
setting called Cheeger energy) in the Hilbert space L?, and thus can be defined in general
metric measure spaces. In Chapter 5 we present a quick overview of the general theory of
gradient flows in Hilbert spaces and then we discuss its application to the study of the heat
flow in the ‘linear’ case of infinitesimally Hilbertian spaces.

Finally, the last lessons aimed at a quick guided tour in the world of RCD spaces and
second order calculus on them. This material is collected in Chapter 6, where:

- We define RCD(K, o) spaces.
- Prove some better estimates for the heat flow on them.

- Introduce the algebra of ‘test functions’ on RCD spaces, which is the ‘largest algebra of
smooth functions’ that we have at disposal in this environment, in a sense.

- Quickly develop the second-order differential calculus on RCD spaces, by building on top
of the first-order one. Meaningful and ‘operative’ definitions (among others) of Hessian,
covariant derivative, exterior derivative and Hodge Laplacian are discussed.

These lecture notes are mostly self-contained and should be accessible to any Ph.D. student
with a standard background in analysis and geometry: having basic notions of measure theory,
functional analysis and Riemannian geometry suffices to navigate this text. Hopefully, this
should provide a hands-on guide to recent mathematical theories accessible to the widest
possible audience.

The most recent research-level material contained here comes, to a big extent, from the
paper [18], see also the survey [20]. With respect to these presentations, the current text
offers a gentler introduction to all the topics, paying little in terms of generality: as such it
is the most suitable source for the young researcher who is willing to learn about this fast
growing research direction. The presentation is also complemented by a collection of exercises
scattered through the text; since these are at times essential for the results presented, their
solutions are reported (or, sometimes, just sketched) in Appendix B.

We wish to thank Emanuele Caputo, Francesco Nobili, Francesco Sapio and Ivan Yuri
Violo for their careful reading of a preliminary version of this manuscript.

Trieste, Italy Nicola Gigli
Jyvaskyléd, Finland Enrico Pasqualetto
January 2019
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Notation

R"™: n-dimensional Euclidean space.

Q: set of rational numbers.

N: set of natural numbers.

L™ n-dimensional Lebesgue measure.

Ly:  1-dimensional Lebesgue measure restricted to the interval [0, 1].
fVg: maximum between two real-valued functions f and g.
fAg: minimum between two real-valued functions f and g.
fT: positive part of a real-valued function f.

f7: negative part of a real-valued function f.

lim: limsup.

lim: liminf.

Xg: characteristic function of a set E.

V’:  dual of a normed space V.

£%°:  space of bounded sequences in R.

Graph(T'): graph of a map T

(X,d): metric space (typically complete and separable).
P (X): space of Borel probability measures on X.
C(X): space of real-valued continuous functions on X.
Cy(X): space of bounded continuous functions on X.
B, (z): open ball of center z € X and radius r > 0.
B,(x): closed ball of center x € X and radius r > 0.
clx(E): closure of a set E in X.

dist(F, F'): distance between two sets E, F' C X.

d,: Dirac delta measure at a point z € X.

|| - |l+y: total variation norm.

M(X): space of signed Radon measures on X.

pt

1~ negative part of a measure pu.

positive part of a measure pu.

spt(p): support of a measure p.
i—’;: Radon-Nikodym derivative of p with respect to v.

Typ: pushforward of a measure p under the map 7.
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spt(f): support of a real-valued Lipschitz function f on X.
LIP(X): space of real-valued Lipschitz functions on X.

LIPps(X): elements of LIP(X) having bounded support.

Lip(f): (global) Lipschitz constant of a function f € LIP(X).
lip(f): local Lipschitz constant of a function f € LIP(X).

lip,(f): asymptotic Lipschitz constant of a function f € LIP(X).
d: sup distance on the space C(]0, 1], X) of continuous curves in X.
|¥]:  metric speed of an absolutely continuous curve v : [0,1] — X.
KE: kinetic energy functional on C([0, 1], X).

Geo(X): space of (constant speed) geodesics of X.

(X,d,m): metric measure space.

m’:  Borel probability measure on X having the same null sets as m.
LP(m): space of p-integrable functions on X, with p € [1, o0].

LT (m): space of locally p-integrable functions on X.

L°%(m): space of Borel functions on X (modulo m-a.e. equality).

e;:  evaluation map at time ¢ € [0, 1].

m: test plan.

Comp(7r): compression constant of a test plan 7r.
Restry: restriction operator between ¢t and s.
S2(X): Sobolev class over (X,d, m).

S? (X): local Sobolev class over (X,d,m).

Wh2(X): Sobolev space over (X,d, m).

|Df|: minimal weak upper gradient of a Sobolev function f.

Derr(f): derivative of a Sobolev function f in the direction of a test plan .
Esa, Ex, Ecn:  Cheeger energies.

W*laz(X), Wi2(X), WéhZ(X) Sobolev spaces associated to the Cheeger energies.
I'(X): space of absolutely continuous curves in X.

Dom(v): interval of definition of a curve v € I'(X).

Mody(T"):  2-modulus of a curve family T

Wsl]f (X): Sobolev space obtained via the 2-modulus.

A L?(m)-normed L°(m)-module.

|v|:  pointwise norm of an element v € ..

.///|E: restriction of .# to a Borel set £ C X.

A (S): submodule generated by a set S C .Z.

A0 LY (m)-normed L°(m)-module.

A*:  dual of A (in the sense of modules).

|L|s«: (dual) pointwise norm of an element L € .Z*.

Int_,: natural map from .#* to .#" obtained by integration.
I . canonical embedding .# — .#** in the (module) bidual.
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¢ Hilbert module.

(-,-): pointwise scalar product on a Hilbert module .77

JA @ I tensor product of two Hilbert modules 74 and J43.

v ®w: tensor product between v € 4 and w € 4.

|Alns: pointwise Hilbert-Schmidt norm of a tensor A € 74 ® 5.

t: transposition operator from J4 ® 5 to 74 Q 4.

AF#0:  k-th exterior product of a Hilbert L-module 7.

v Aw: wedge product between v, w € 0.

Comp(p): compression constant of a map of bounded compression.

p*A: pullback module of .Z under the map .

©*, [¢*]:  pullback map.

L?(T*X): cotangent module associated to a metric measure space (X,d, m).
df: differential (as an element of the cotangent module) of a Sobolev function f € S?(X).
L?(TX): tangent module associated to (X,d, m).

Grad(f): set of gradients of an element f € S?(X).

Vf: the only element of Grad(f) when (X,d, m) is infinitesimally Hilbertian.
div: divergence operator.

7’: speed of a test plan .

0~ E: subdifferential of an operator E.

|0~ E|: slope of an operator E.

D(E): domain of an operator E.

A: Laplacian operator.

(ht)i>0: heat flow (for functions).

hy:  ‘mollified” heat flow.

Test™(X) :  space of test functions on an RCD(K, o0) space (X, d, m).
Test3°(X) :  space of non-negative test functions on X.
L?((T*)®?X):  the tensor product L*(T*X) ® L*(T*X).
L?(T®?X): the tensor product L?(TX) ® L?(TX).

W22(X), H>?*(X): second-order Sobolev spaces over X.

Hf: Hessian of a function f € W22(X).

A: measure-valued Laplacian operator.

Iy: Bakry—Emery curvature operator.

essint(E): essential interior of a Borel set E C X.

Wé’2 (TX), H 5’2(TX): spaces of Sobolev vector fields on X.

VX: covariant derivative of a Sobolev vector field X € Wé’Q (TX).
VzX: covariant derivative of X in direction Z.

§:  Riesz (musical) isomorphism from L*((T*)®?X) to L*(T®*X).
[X,Y]: Lie brackets between X and Y.

TestV(X): space of test vector fields on X.
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AFLO(T*X):  k-th exterior power of the cotangent L°-module LO(T*X):

dw: exterior differential of a k-form w.

W& 2(AFT*X), H, é’Q(AkT *X): spaces of k-forms admitting an exterior differential.
TestFormy (X): space of test k-forms on X.

HSR(X): k-th de Rham-cohomology group of X.

Ap: Hodge Laplacian operator.

V[/'PlI’Q(A”“T*X)7 H;I’Q(AkT*X): spaces of k-forms admitting a Hodge Laplacian.
Ac:  connection Laplacian operator.

dw: codifferential of a k-form w.

Harmy (X): space of harmonic k-forms on X.

(hit)e>0:  heat flow (for k-forms).

(hct)t>0: heat flow (for vector fields).

Ric: Ricci curvature operator.



Chapter 1

Preliminaries

In this chapter we introduce several classic notions that will be needed in the sequel. Namely,
in Section 1.1 we review the basics of measure theory, with a particular accent on the space
L°(m) of Borel functions considered up to m-almost everywhere equality (see Subsection 1.1.2);
in Section 1.2 we discuss about continuous, absolutely continuous and geodesic curves on
metric spaces; in Section 1.3 we collect the most important results about Bochner integration.
Some functional analytic tools will be treated in Appendix A.

1.1 General measure theory

1.1.1 Borel probability measures
Given a complete and separable metric space (X, d), let us denote

P (X) := {Borel probability measures on (X,d)},
Cy(X) := {bounded continuous functions f: X — R}.

We can define a topology on & (X)), called weak topology, as follows:

Definition 1.1.1 (Weak topology) The weak topology on Z(X) is defined as the coarsest
topology on P (X) such that:

the function 2(X) > p+— /fdu is continuous,  for every f € Cy(X). (1.2)

Remark 1.1.2 If a sequence of measures (u, ), weakly converges to a limit measure p, then

w(Q) < lim p,(Q2)  for every Q C X open. (1.3)

n—o0

Indeed, let fi := kd(-, X\ Q) A1 € Cp(X) for k € N. Hence fi(z) / Xao(z) for all z € X, so
that (2) = supy, [ f du by monotone convergence theorem. Since v — [ fi dv is continuous
for any k, we deduce that the function v — () is lower semicontinuous as supremum of
continuous functions, thus yielding (1.3).

11
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In particular, if a sequence (), € P (X) weakly converges to some p € Z(X), then

u(C) > h?n pn(C)  for every C' C X closed. (1.4)
To prove it, just apply (1.3) to Q := X\ C. |

Remark 1.1.3 We claim that if [ fdu = [ fdv for every f € Cy(X), then p=v.
Indeed, pu(C) = v(C) for any C' C X closed as a consequence of (1.4), whence p = v by the
monotone class theorem. |

Remark 1.1.4 Given any Banach space V, we denote by V' its dual Banach space. Then
P(X) is continuously embedded into Cp(X)". (1.5)

Such embedding is given by the operator sending 1 € Z(X) to the map Cyp(X) > f — [ fdp,
which is injective by Remark 1.1.3 and linear by definition. Finally, continuity stems from
the inequality | [ fdu| < £l (x)» which holds for any f € Cy(X). [

Fix a countable dense subset (x,), of X. Let us define

A= {(a—bd(-,xn))\/c : a,b,cEQ,nEN},

_ (1.6)
Aiz{fl\/...\/fnZnEN,fl,...,fnGA}.
Observe that A and A are countable subsets of Cy(X). We claim that:
f(x) =sup {g(l‘) cg€eA g< f} for every f € Cp(X) and x € X. (1.7)

Indeed, the inequality > is trivial, while to prove < fix x € X and € > 0. The function f being
continuous, there is a neighbourhood U of x such that f(y) > f(z) — e for all y € U. Then
we can easily build a function g € A such that g < f and g(x) > f(x) — 2¢e. By arbitrariness
of x € X and € > 0, we thus proved the validity of (1.7).

Exercise 1.1.5 Suppose that X is compact. Prove that if a sequence (f,), C C(X) satisfies
fn(x) N\, 0 for every z € X, then f,, — 0 uniformly on X. |

Corollary 1.1.6 Suppose that X is compact. Then A is dense in C(X) = Cyp(X). In partic-
ular, the space C(X) is separable.

Proof. Fix f € C(X). Enumerate {g € A : ¢ < f} as (gn)n. Call hyy :=q1 V... Vg, € A for
each n € N, thus h,(x) / f(z) for all z € X by (1.7). Hence (f — hy,)(x) \( 0 for all x € X
and accordingly f — h, — 0 in C(X) by Exercise 1.1.5, proving the statement. O

The converse implication holds true as well:

Exercise 1.1.7 Let (X,d) be a complete and separable metric space. Prove that if Cy(X) is
separable, then the space X is compact. |



1.1. General measure theory 13

Corollary 1.1.8 It holds that

/fd,u = sup { /gd,u ‘ gE ff, g < f} for every p € Z(X) and f € Cp(X). (1.8)

Proof. Call (gn)n = {g cA:g< f} and put hp, == ¢1 V... Vg, € A, thus hn(x) 2 f(x) for
all z € X and accordingly [ fdu = lim,, [ hy, du, proving (1.8). O

We endow #(X) with a distance 6. Enumerate {g € AU (—A~) gl x) < 1} as (fi)i-
Then for any u,v € 2(X) we define
[ =)

1
6(/1’7 V) = Z 5
i=0
Proposition 1.1.9 The weak topology on P (X) is induced by the distance §.

(1.9)

Proof. To prove one implication, we want to show that for any f € Cy(X) the map p— [ fdu
is d-continuous. Fix p,v € Z(X). Given any € > 0, there exists a map g € A such that g < f
and [gdp > [ fdu — e, by Corollary 1.1.8. Let i € N be such that f; = 9/ll9ll¢,x)- Then

/fdv—/fdu> Hg\cb(X)/fz'd(V—u)—é‘> ~lglleyx) 270 (v, 1) — €,

whence lims, )0 J fd(v — p) > 0 by arbitrariness of ¢, i.e. the map p+— [ fdu is é-lower
semicontinuous. Its §-upper semicontinuity can be proved in an analogous way.

Conversely, fix 4 € Z(X) and € > 0. Choose N € N such that 27V < £/2. Then there is
a weak neighbourhood W of i such that ‘ [ fid(p— 1/)‘ <egfdforalli=0,...,Nandv e W.

Therefore
aly] <1 e 1
5(u,y)§Z§ /fid(u—y) —l—'z §§§+2W<5 for every v € W,
=0 i=N+1
proving that W is contained in the open d-ball of radius ¢ centered at u. ]

Remark 1.1.10 Suppose that X is compact. Then C(X) = Cy(X), thus accordingly £ (X) is
weakly compact by (1.5) and Banach-Alaoglu theorem. Conversely, for X non-compact this is
in general no longer true. For instance, take X := R and p, := §,. Suppose by contradiction
that a subsequence (i, ), weakly converges to some limit u € £(R). For any k € N we
have that pu((—k, k)) <lim,, 6, ((—k, k)) = 0, so that p(R) = limp_00 u((—k, k)) = 0, which
leads to a contradiction. This proves that Z(R) is not weakly compact. |

Definition 1.1.11 (Tightness) A set KX C Z(X) is said to be tight provided for everye > 0
there exists a compact set K. C X such that u(K;) > 1 —¢ for every p € X.

Theorem 1.1.12 (Prokhorov) Let X C Z(X) be fixred. Then K is weakly relatively com-
pact if and only if K is tight.
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Proof. In light of Proposition 1.1.9, compactness and sequential compactness are equivalent.
We separately prove the two implications:

SUFFICIENCY. Fix KX C Z(X) tight. Without loss of generality, suppose that K = (;)ien-
For any n € N, choose a compact set K, C X such that p;(K,) > 1—1/n for all i. By a

diagonalization argument we see that, up to a not relabeled subsequence, p; converges to

| K,
some measure v, in duality with Cy(K,,) for all n € N, as a consequence of Remark 1.1.10.

We now claim that:

Vp — v in total variation norm, for some measure v, (1.10)
w; — v in duality with Cp(X). .

To prove the former, recall (cf. Remark 1.1.15 below) that for any m > n > 1 one has

[vn = vinlry = sup { /fd(’/n — Um) ‘ f € Gy(X), Hf”C’b(X) < 1}.

Then fix f € Cy(X) with [|f||¢,x) < 1. We can assume without loss of generality that (Ky)n

is increasing. We deduce from (1.3) that vy, (K, \ K,) < lim, i g (X\ K,,) < 1/n. Therefore

1 1 1 1
[ 7t = vm) < Jim (/fdui—/fdui> FRESE
1—00 n m n m

proving that (v,), is Cauchy with respect to || - ||t and accordingly the first in (1.10). For
the latter, notice that for any f € Cy(X) it holds that

‘/fd(,ui_’/) fd(V—vn)+/X\K fdﬂi_/X\K fdv
21 flleyx)

_ ] F (s — vn) —
Kn

Kn

<| [ 7ats =) [+ 1,0 I = vl +
By first letting i — oo and then n — oo, we obtain that lim; | [ f d(u; — v)| = 0, showing the
second in (1.10). Hence sufficiency is proved.
NEcEessITY. Fix K C Z(X) weakly relatively sequentially compact. Choose € > 0 and a
sequence (), that is dense in X. Arguing by contradiction, we aim to prove that

N; -

j=1
If not, there exist i9p € N and (um,)m C XK such that ,um(L_J;”:1 By iy () < 1 —e holds for
every m € N. Up to a not relabeled subsequence p,, = p € Z(X) and accordingly

n (1.3) mo
u(UBl/io(xj)> < lim Nm(UBl/io(%‘)> <1l-—¢ foranyneN,
j=1

which contradicts the fact that limy, e u( Uj=1 Biyi (z;)) = w(X) = 1. This proves (1.11).
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Now define K := [y Ujv:ll By j;i(25). Such set is compact, as it is closed and totally
bounded by construction. Moreover, for any p € X one has that

N;
W\ K) < (X0 Bt )

i j=1

(1.11)

= 6222 &

thus proving also necessity. O

Remark 1.1.13 We have that a set X C Z(X) is tight if and only if

¥ : X — [0, +o0], with compact sublevels, such that s := sup / Udu < +o0. (1.12)
pneX

To prove sufficiency, first notice that W is Borel as its sublevels are closed sets. Now fix € > 0
and choose C' > 0 such that s/C < e. Moreover, by applying Cebysév’s inequality we obtain
that C p{¥ > C} < [Wdp < s for all p € K, whence u({¥ <C}) >1-5/C>1—c.

To prove necessity, suppose X tight and choose a sequence (Kj), of compact sets such
that (X \ K,) < 1/n® for all n € N and p € K. Define ¥(z) :=inf{n € N : z € K,,} for
every x € X. Clearly ¥ has compact sublevels by construction. Moreover, it holds that

1
sup/\I/du—supZ/ \I/dugzng < 400,
HeX peX "7 JKnt1\Kn n n

as required. [

Remark 1.1.14 Let p > 0 be a finite non-negative Borel measure on X. Then for any Borel
set &£ C X one has

n(E) =sup {pu(C) : C C E closed} = inf {u() : Q2 E open}. (1.13)

To prove it, it suffices to show that the family of all Borel sets E satisfying (1.13), which we
shall denote by &, forms a o-algebra containing all open subsets of X. Then fix 2 C X open.
Call Cy, := {z € Q : d(z,X\Q) > 1/n} for all n € N, whence (Cy,),, is an increasing sequence
of closed sets and p(€2) = lim,, u(C),) by continuity from below of p. This grants that 2 € £.

It only remains to show that & is a o-algebra. It is obvious that () € € and that € is stable
by complements. Now fix (E,), C € and € > 0. There exist (C), closed and (£2,), open
such that C,, C E, C Q, and u(Q,) — 27" < u(E,) < u(Cp) + 27" for every n € N. Let
us denote Q := [, €2,. Moreover, continuity from above of p yields the existence of N € N
such that F‘(UneN Cn \ C) < g, where we put C := U7]-LV:1 C,. Notice that Q is open, C is
closed and C C {J,, B, C Q. Finally, it holds that

M(plEn\c>giu(En\cn>+ggi;+s:2s
N<Q\Q1En> ZMQ \ E,) gi;

n=1

This grants that | J,, En € €, concluding the proof. |
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Remark 1.1.15 (Total variation norm) During the proof of Theorem 1.1.12, we needed

the following two properties of the total variation norm:

for any signed Borel

[ sup{/fdu ’ f€Co(X), [[flleyx) < 1}

(2(X),] - l+v) is complete.

measure j, on X, (1.14)

In order to prove them, we proceed as follows. Given a signed measure p, let us consider its
Hahn-Jordan decomposition p = pu+—p~, where u* are non-negative measures with u* L p~,
which satisfy p(P) = p*(X) and u(P°¢) = —u~(X) for a suitable Borel set P C X. Hence by
definition the total variation norm is defined as

elly = 1 (X) + ™ (X). (1.15)

Such definition is well-posed, since the Hahn-Jordan decomposition (™, ™) of p is unique.

To prove the first in (1.14), we start by noticing that [ fdu < [|f|d(p™ + ™) < |pllty
holds for any f € Cy(X) with | f[|c,x) < 1, proving one inequality. To show the converse
one, let ¢ > 0 be fixed. By Remark 1.1.14, we can choose two closed sets C' C P and C’ C P¢
such that gt (P\ C), = (P\ C') <e. Call f, := (1 —nd(, C’))Jr and g, == (1 —nd(, C’))+,
so that f, "\ X¢ and g, \( X¢v as n — oo. Now define h,, := f,, — gp. Since |hy| < 1, we have
that (hn)n € Cp(X) and [|hnl|¢,(x) < 1 for every n € N. Moreover, it holds that

lim [ hpdp = lim [/fndﬂ+—/fndu_ —/gndu++/gndlf]
n—o0 n—oo
= u(C) + u(C) = p (P) + ™ (PF) = 2 = [lulry — 22

By arbitrariness of ¢ > 0, we conclude that lim,, [ hy, dy > |||/t proving the first in (1.14).
To show the second, fix a sequence (i), € Z(X) that is || - ||,-Cauchy. Notice that

\1(E)| < ||lull+y  for every signed measure p and Borel set E C X.
Indeed, |u(E)| < u*(B) + p~(B) < i+ (X) + p~(X) = |ulry- Therefore
|pin(E) — ,um(E)‘ < |\|ptn — ptm |7y for every n,m € N and E C X Borel. (1.16)

In particular, (un(E))n is Cauchy for any E C X Borel, so that lim,, u,(E) = L(E) for some
limit L(E) € [0,1]. We thus deduce from (1.16) that

Ve>0 3n.€N: |L(E)—pn(E)|<e VYn>n. VECX Borel. (1.17)
We claim that L is a probability measure. Clearly, L()) = 0 and L(X) = 1. For any E, F Borel

with ENF = (), we have L(EUF') = limy, i, (EUF) = limy, pu, (E) +1limy, g, (F) = L(E)+L(F),
which grants that L is finitely additive. To show that it is also o-additive, fix a sequence (E;);
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of pairwise disjoint Borel sets. Let us call Uy := Uf\il E; for all N € N and U := |J;2, E;.

Given any ¢ > 0, we infer from (1.17) that for any n > n. one has

T [L(U7) — LON)| < [LO) = pn@)] + T Jpin () = pin ()| + T (U) = L(OW)|

N—o0

<2e+ Tm |pn(U) — pa(Un)| = 26,
N—oo

where the last equality follows from the continuity from below of u,. By letting € — 0 in the
previous formula, we thus obtain that L(U) = limy L(Un) = > .2, L(E;), so that L € 2(X).
Finally, we aim to prove that lim, ||L — ||ty = 0. For any n € N, choose a Borel set P, C X
satisfying (L — pn)(Pn) = (L — pn)T(X) and (L — pp)(PS) = —(L — pp,) " (X). Now fix & > 0.
Hence (1.17) guarantees that for every n > 7. it holds that

IL = pnllry = (L= ) (Pr) = (L= ) (P) = [(L = pa) (Po) | + |(L = pin) (P)] < 2.

Therefore (1, converges to L in the [ - |[q-norm. Since L > 0 by construction, the proof of
(1.14) is achieved. [

We now present some consequences of Theorem 1.1.12:

Corollary 1.1.16 (Ulam’s theorem) Any € & (X) is concentrated on a o-compact set.

Proof. Clearly the singleton {u} is weakly relatively compact, so it is tight by Theorem 1.1.12.
Thus for any n € N we can choose a compact set K, C X such that (X \ K,) < 1/n. In
particular, 4 is concentrated on | J,, Ky, yielding the statement. O

Corollary 1.1.17 Let p € Z(X) be given. Then p is inner regular, i.e.
w(E) = sup {u(K) : K C E compact}  for every E C X Borel. (1.18)

In particular, p is a Radon measure.

Proof. By Corollary 1.1.16, there exists an increasing sequence (K, ), of compact sets such
that lim, ,u(X \ Kn) = 0. Any closed subset C of X that is contained in some K, is clearly
compact, whence

w(E) = lim p(ENKy,) = li_>m sup {u(C) : C C ENK, closed}

n—o0

< sup {M(K) : KCFE compact} for every E C X Borel,

proving (1.18), as required. O
Given any function f: X — R, let us define
Lip(f) := sup

z,yeX d(1:7 y)
T#y

€ [0, 40c]. (1.19)
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We say that f is Lipschitz provided Lip(f) < +oo and we define

LIP(X) := {f: X = R : Lip(f) < +oo},

(1.20)
LIPys(X) := {f € LIP(X) : spt(f) is bounded} C Cy(X).

We point out that continuous maps having bounded support are not necessarily bounded.

Proposition 1.1.18 (Separability of LP(u) for p < o0) Let p € Z(X) and p € [1,00).
Then the space LIPys(X) is dense in LP(u). In particular, the space LP(u) is separable.

Proof. First, notice that LIPys(X) C L>°(u) C LP(u). Call € the LP(u)-closure of LIPs(X).
STEP 1. We claim that {XC : C C X closed bounded} is contained in the set €. Indeed,
called f, = (1 — nd(-,C’))Jr € LIPys(X) for any n € N, one has f, — X¢ in LP(u) by
dominated convergence theorem.

STEP 2. We also have that {XE : FECX Borel} C %. Indeed, we can pick an increasing
sequence (Cy,), of closed subsets of E such that pu(E) = lim, u(C,,), as seen in (1.13). Then
one has that |[Xg — Xc, || 1p() = #(E\ Cp)Y? 0, whence Xg € € by STEP 1.

STEP 3. To prove that LP(u) C €, fix f € LP(u), without loss of generality say f > 0. Given
any n,i € N, let us define Ep; := f~'([i/2", (i + 1)/2"[). Observe that (Ey;); is a Borel
partition of X, thus it makes sense to define f, := > ..yi27" Xg,, € LP(n). Given that we
have f,(x) / f(x) for p-a.e. x € X, it holds f, — f in LP(u) by dominated convergence
theorem. We aim to prove that (f,), € %, which would immediately imply that f € %.
Then fix n € N. Notice that f, is the LP(u)-limit of f := Zfil 27" Xg,, as N — oo, again
by dominated convergence theorem. Given that each fY € ¢ by STEP 2, we get that f, is
in ¢ as well. Hence LIPs(X) is dense in LP(u).

STEP 4. Finally, we prove separability of LP(u). We can take an increasing sequence (K ),
of compact subsets of X such that the measure p is concentrated on |J,, K, by Corollary
1.1.16. Since Xk, f — f in LP(u) for any f € LP(u), we see that

U {felP(u) : f=0 prae in X\ K,} isdensein LP(u).
neN

=:S,

To conclude, it is sufficient to show that each S, is separable. Observe that C(K,) is sep-
arable by Corollary 1.1.6, thus accordingly its subset LIP;s(K,,) is separable with respect

to || ll¢,(x,)- In particular, LIPys(Ky) is separable with respect to |- [|;,(,). Moreover,
LIPys(K,,) is dense in LP (,u| X ) = S, by the first part of the statement, therefore each S, is
separable. ]

1.1.2 The space L°(m)

By metric measure space we mean a triple (X, d, m), where

(X,d) is a complete and separable metric space, (1.21)
m # 0 is a non-negative Borel measure on (X, d), which is finite on balls. '



1.1. General measure theory 19

Let us denote by L°(m) the vector space of all Borel functions f : X — R, which are
considered modulo m-a.e. equality. Then L°(m) becomes a topological vector space when
endowed with the following distance: choose any Borel probability measure m’ € 4(X) such
that m < m’ < m (for instance, pick any Borel partition (E,), made of sets having finite
positive m-measure and set m’ := 3" 23<E7("E)) and define

dro(f,9) = / |f —g|Aldm’ for every f,g € L°(m). (1.22)

Such distance may depend on the choice of m’, but its induced topology does not, as we are

going to show in the next result:
Proposition 1.1.19 A sequence (fn)n € L%(m) is do-Cauchy if and only if

for everye >0 and E C X

fim m(Eﬂ {Ufn = fml > 6}) =0 Borel with m(E) < +o0.

n,m—0o0

(1.23)

Proof. We separately prove the two implications:

NECESSITY. Suppose that (1.23) holds. Fix e > 0. Choose any point z € X, then there
exists R > 0 such that m'(Bg(Z)) > 1 —e. Recall that m is finite on bounded sets by
hypothesis, so that m(B R(i)) < 4o00. Moreover, since m’ is a finite measure, we clearly have
that Xp, ) ‘é—";: € L'(m). Now let us call Appm(e) the set Br(Z) N {|fn — fm| > €}. Then
property (1.23) grants that X4, () — 0 in L'(m) as n,m — oo, Whence an application of the
dominated convergence theorem yields

o . dm/
i (Aun()) = T [ X0 Xpg(a) g dm = 0. (1.24)

n,Mm—00 n,Mm—00

Therefore we deduce that

/|fnfm|/\1dm’:/ |fnfmyA1dm’+/ |fr — fm] A 1dm/
X\Br(Z) Br(Z)

§6+/ |fnfm|/\1dm/+/ ]fn—fm|/\1dm’
@)N{|fn—fml<e} Anm ()

< 2e+m'(Apm(e)),

from which we see that limy, , dro(fn, fn) < 2¢ by (1.24). By arbitrariness of ¢ > 0, we
conclude that lim,, ,,, djo(fn, fm) = 0, which shows that the sequence (fy,),, is djo-Cauchy.
SUFFICIENCY. Suppose that (f,)n is dro-Cauchy. Fix any € € (0,1) and a Borel set E C X
with m(E) < +oo. Hence the Cebysév inequality yields

W ({lfo = Sl > D) = 0 ({1 = Sl A1 > e}) < 2 [ 1o = Sl a1 amy = G2tloeln)

3

dm

so that lim,, m m’({|fn fml| > 5}) = 0. Finally,

(m’), whence

dm
m(Em{‘fn_fm’ >5}> :/ d /X{|fn fm|>€}dm —>0

by dominated convergence theorem. Therefore (1.23) is proved. U
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Remark 1.1.20 Recall that two metrizable spaces with the same Cauchy sequences have the
same topology, while the converse implication does not hold in general. For instance, consider

the real line R endowed with the following two distances:

dl(l',y) = |1: - y|7

for every z,y € R.
dy(,y) = |arctan(z) — arctan(y)

Y

Then d; and dy induce the same topology on R, but the do-Cauchy sequence (z,), C R
defined by x,, := n is not di-Cauchy. |

We now show that the distance djo metrizes the ‘local convergence in measure’:
Proposition 1.1.21 Let f € L°(m) and (f)n C L°(m). Then the following are equivalent:
i) It holds that dyo(fn, f) = 0 as n — oo.

ii) Given any subsequence (N )m, there exists a further subsequence (N, )i such that the
limit limy, fp,, (z) = f(x) is verified for m-a.e. x € X.

iii) We have that lim, m(E N {|f, — f| > €}) = 0 is satisfied for every e > 0 and E C X
Borel with m(E) < +o00.

iv) We have that lim, w'({|f, — f| > €}) =0 for every e > 0.

Proof. The proof goes as follows:

i) = ii) Since |fn,, — fI A1 — 0in L'(m’), there is (ny, )i such that |fn,, — f[(z) A1 =0
for m’-a.e. z € X, or equivalently f,,, (z)— f(x) for m-a.e. v € X.

i) = iii) Fix (ny)m, € > 0 and E C X Borel with m(E) < 4o00. Since X{|farmy ~f1>e} = 0
pointwise m-a.e. for some (my)r and Xg € L'(m), we apply the dominated convergence
theorem to deduce that limy, [ Xp XY fapn,, —f1><} dm =0, ie limym(EN{|fn— f| >¢}) =0.
iii) = iv) Fix § > 0 and Z € X, then there is R > 0 such that m’(X \ Bg(z)) < §. Exactly
as we did in (1.24), we can prove that lim, m(Bg(z) N {|fn — f| > €}) = 0 implies that the
limit lim, m'(Bgr(z) N {|fn — f| > €}) = 0 holds as well. Therefore

A ({[fn = f1> e}) < 0+ lim w'(Br(@) O {Ifa = f1 > e}) =0

By letting 6 N\, 0, we thus conclude that lim, w’({|f, — f| > €}) = 0, as required.
iv) = i) Take any ¢ € (0,1). Notice that

dro(fn, f) —/’fn_f’Aldm _/{Ifnf|<6}

<e+w'({|fa—fI>¢}),

\fn—f/\ldm’Jr/ |fn — f| A 1dm’
{Ifn—fI>¢}

whence lim,, d;o(fy,, f) < €, thus accordingly lim,, d;o(f,, f) = 0 by arbitrariness of ¢. O
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In particular, Proposition 1.1.21 grants that the completeness of L°(m) does not depend

on the particular choice of the measure m'.

Remark 1.1.22 The inclusion map LP(m) < L%(m) is continuous for every p € [1, 00].

Indeed, choose any m" € 2 (X) with m < m’ < m and define d;o as in (1.22). Now take
any sequence (fn)n in LP(m) that LP(m)-converges to some limit f € LP(m). In particular,
we have that f, — f in LP(m'), so that

oo ) = [ 1= 1AL < [ 1fo = 1A < 10 = Tlgpiy 2 0

which proves the claim. [
Exercise 1.1.23 Prove that LP(m) is dense in L%(m) for every p € [1, 00]. [ ]

Proposition 1.1.24 The space (L°(m),do0) is complete and separable.

Proof. The proof goes as follows:

COMPLETENESS. Fix a djo-Cauchy sequence (f,), € L°(m) and some ¢ > 0. Then there
exists a subsequence (ny)y, such that m'({|fn,., — fae| > 1/2%}) < &/2F holds for all k. Let
us call Ay = {|frpyy — [l > 1/2F} and A = |J,, Ay, so that m'(A) < e. Given z € X\ 4,
it holds that | fn, (%) — fa, (x)’ < 1/2% for all k, in other words (fn, (x))k C R is a Cauchy
(thus also converging) sequence, say fy,(z) — f(z) for some f(x) € R. Up to performing
a diagonalisation argument, we have that f,, — f pointwise m’-a.e. for some f € L%(m).
Therefore Proposition 1.1.21 grants that d;o(fn, f) — 0, as required.

SEPARABILITY. Fix f € L%(m). Take any increasing sequence (E,), of Borel subsets of X
having finite m-measure and such that X = (J,, E,. Denote f, := ((Xg, f) An) V (—n) for
every n € N. By dominated convergence theorem, we have that f,, — f in L%(m). Moreover,
it holds that (f,), € L'(m). Hence we get the statement by recalling Remark 1.1.22 and the
fact that L'(m) is separable. O

Remark 1.1.25 Notice that djo(f,g) = dpo(f+h,g+h) for every f,g,h € L°(m). However,
the distance djo is not induced by any norm, as shown by the fact that do(\ f,0) differs
from |A|dzo(f,0) for some A € R and f € L(m). [

Exercise 1.1.26 Suppose that the measure m has no atoms. Let L : L°(m) — R be linear
and continuous. Then L = 0. |

Exercise 1.1.27 Let (X,d,m) be any metric measure space. Then the topology of L(m)

comes from a norm if and only if m has finite support. |
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1.1.3 Pushforward of measures

Consider two complete separable metric spaces (X,dx), (Y,dy) and a Borel map 7" : X — Y.
Given a Borel measure 1 > 0 on X, we define the pushforward measure Ty as

T.u(E) = ,u(T_l(E)) for every E C X Borel. (1.25)
It can be readily checked that T,p is a Borel measure on Y.

Remark 1.1.28 In general, if y is a Radon measure then T,u is not necessarily Radon.
However, if u is a finite Radon measure then T, is Radon by Corollary 1.1.17. |

Example 1.1.29 Let us consider the projection map R? > (x,y) — 7!(z,y) := z € R. Given
any Borel subset E of R, it clearly holds that 71 £2(FE) = 0 if L1(E) = 0 and 7} £%(F) = +0
if LY(E) > 0. [
Proposition 1.1.30 Let v > 0 be a Borel measure on Y. Then v = Ty if and only if

/fdu = /f oTdu  for every f: X — [0,+0c]| Borel. (1.26)

We shall call (1.26) the change-of-variable formula.

Proof. Given E C'Y Borel and supposing the validity of (1.26), we have that
W) = [xpdv = [ xuoTdu= [ Xgs) du=p(T7(E) = Tu(E),
proving sufficiency. On the other hand, by Cavalieri’s principle we see that

+00 +oo
[azu= [ rarzmya= [ alrerz0)a= [rora
0 0
is satisfied for any Borel map f: X — [0, +00], granting also necessity. O
Remark 1.1.31 Observe that

(1.27)

Moreover, if v > 0 is a Borel measure on Y satisfying T, < C'v for some C' > 0 and p € [1, o0],
then the operator LP(v) 5 f — foT € LP(u) is well-defined, linear and continuous. Indeed,
we have for any f € LP(v) that

[irerrau= [iroran 2 [israp<c [ |57

In particular, the operator LP(T,u) > f — foT € LP(u) is an isometry. [
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1.2 Spaces of curves
We equip the space C([0, 1], X) of all continuous curves in X with the sup distance:

d(7.7) = max d(3.50) for every 7.5 € C([0.1].X). (1.28)
S )

Proposition 1.2.1 Let (X,d) be a complete (resp. separable) metric space. Then the metric
space (C’([O, 1],X),g) is complete (resp. separable).

Proof. The proof goes as follows:

COMPLETENESS. Take a d-Cauchy sequence (v"),, € C(]0,1],X). Hence for any € > 0 there
exists n. € N such that d(y",~™) < ¢ for all n,m > n.. In particular, (7{), is d-Cauchy for
each t € [0,1], so that lim, v} = ~; with respect to d for a suitable v; € X, by completeness
of (X,d). Given any £ > 0 and n > n., we have sup, d(~*,v) < sup, lim,, d(7/*,7;") < € and

T <-7 n n .n n < s noAmy _
}g{%d(%,%) — EE)I% [d(q/sa’}/s) +d(737/yt ) +d(7t a’Yt)] — 28+£1£>I%d(7577t) 2¢ Wt € [O’ ”7

proving that ~ is continuous and lim,, d(y",v) = 0. Then (C([O, 1], X),g) is complete.
SEPARABILITY. Fix (z,), C X dense. Given k,n € Nand f: {0,...,n —1} — N, we let

A = {7 € CU01LX) | dl,mp) < 1/2° Vim0, =1, t € [i/n, i+ 1)/n] }.
We then claim that

U Akvnvf - C([()? ]‘]7 X) for eVery k S N,
" 1 (1.29)
d(7,9) < Sh=T for every 7,7 € Apn.f-

To prove the first in (1.29), fix k¥ € N and v € C([0,1],X). Since v is uniformly continuous,
there exists § > 0 such that d(v;,vs) < 1/2F+! provided t, s € [0, 1] satisfy |t —s| < 6. Choose
any n € N such that 1/n < §. Since (x,), is dense in X, for every i = 0,...,n — 1 we can
choose f(i) € N such that d(xfx), Vi/n) < 1/2F+1, Hence for any i = 0,...,n — 1 it holds that

1 1 1+1
d(ve 2 )) < (v, vign) +d(ign, 250 < 5 for every t € Lj - }

proving that v € Ay, ,, r and accordingly the first in (1.29). To prove the second, simply notice
that d(ve, %) < d(ve, ) +d (@ 55y, Fe) < 1/2k=foralli =1,...,n—1and t € [i/n, (i+1)/n].

In order to conclude, pick any v%™f ¢ Apn, g for every k,n, f. The family (7k7”7f)k7n7f,
which is clearly countable, is d-dense in C([0, 1], X) by (1.29), giving the statement. O

We say that C([0,1],X) is a Polish space, i.e. a topological space whose topology comes
from a complete and separable distance.

Exercise 1.2.2 Any open subset of a Polish space is a Polish space. |
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Definition 1.2.3 (Absolutely continuous curves) We say that a curve v : [0,1] — X is
absolutely continuous, briefly AC, provided there exists a map f € L1(0,1) such that

t
d(ye,7s) < / fr)ydr  for everyt,s € [0,1] with s < t. (1.30)
S
Clearly, all absolutely continuous curves are continuous.
Remark 1.2.4 If X = R then this notion of AC curve coincides with the classical one. B

Theorem 1.2.5 (Metric speed) Let v be an absolutely continuous curve in X. Then

d ('7t+h7 ’Yt)

] for a.e. t €0,1]. (1.31)

|| =1
|| h,li%
Moreover, the function ||, which is called metric speed of 7y, belongs to L'(0,1) and is the
minimal function (in the a.e. sense) that can be chosen as f in (1.30).

Proof. Fix (xy,)n, C X dense. We define g, (t) := d(v¢, xy,) for all ¢ € [0,1]. Then

t
|gn () = gn(s)| < d(7e,7s) < / f(r)dr for every t,s € [0, 1] with s < ¢, (1.32)

showing that each g, : [0,1] — R is AC. Hence g, is differentiable a.e. and by applying the
Lebesgue differentiation theorem to (1.32) we get that |g],(¢)| < f(t) for a.e. t € [0,1]. Let us
call g := sup,, ¢, so that g € L1(0,1) with |g| < f a.e.. Moreover, one has that

d(ve,vs) = SuII\)I [gn(t) — gn(s)] for every t,s € [0, 1]. (1.33)
ne
Indeed, d(v¢,7s) > [gn(t) — gn(s)] for all n by triangle inequality. On the other hand, given
any € > 0 we can choose n € N such that d(x,,7s) < €, whence g, (t) — gn(s) > d(y,7s) —2¢€.
We thus deduce from (1.33) that g can substitute the function f in (1.30), because

t t
d(y,7s) = sup/ g (r)dr < / g(r)dr for every t,s € [0,1] with s < t. (1.34)
neNJ s s
In order to conclude, it only remains to prove that g is actually the metric speed. By applying
Lebesgue differentiation theorem to (1.34), we see that lims_; d(vs,7s)/|t — s| < g(t) holds
for almost every t € [0,1]. Conversely, d(v¢,7s) > gn(t) — gn(s) = fst gn(r) dr is satisfied for
every s < t and n € N by triangle inequality, so lim_ ., d(v:,7s)/|t — s| > ¢/,(t) is satisfied for
a.e. t € [0,1] and for every n € N by Lebesgue differentiation theorem. This implies that
7= A %) d(31,7s)

g(t) > lim ——2>"% > lim ——"2 > supg. (t) = g(t) for a.e. t € [0,1],
(1 = T 100 >t S0 > sup gl (1) = o) 0,1

thus concluding the proof. O



1.2. Spaces of curves 25

Remark 1.2.6 Let us define the function ms: C([0, 1], X) x [0,1] — [0, +0o0] as

(7.1) 19| = limp—0 d(Vetn, )/ | R if such limit exists finite,
s(y,t) :== .
K +00 otherwise.

We claim that ms is Borel. To prove it, consider an enumeration (r,), of QN (0, +00). Given
any €,h > 0 and n € N, we define the Borel sets A(e,n,h) and B(e,n) as follows:

<s}, - U N AEnh.

d(~ ¥,
A(e,n, h) = {(’y,t) : ‘( th ) — Ty
0<6€Q he(0,6)NQ

|1

Hence limy, 0 d(Ve+r,71)/|h| exists finite if and only if (v,7) € ey Unen B(277,n). Now let
us call C(j,n) :== B(279,n)\ U,,, B(277,1) for every j,n € N. Then the map f;, defined as

, B D if (v,t) € C(j,n) for some n € N,
B0 { oo if (v,1) ¢ U, C(j,n),

is Borel by construction. Given that f;(v,t) EN ms(~,t) for every (v,t), we finally conclude
that the function ms is Borel. |

We define the kinetic energy functional KE : C([0,1],X) — [0, +0o0] as follows:

[l el?dt if v is AC,

1.35
400 if v is not AC. ( )

KE(y) := {

Proposition 1.2.7 The functional KE is d-lower semicontinuous.

Proof. Fix a sequence (7"), C C([0,1],X) that d-converges to some v € C([0,1],X). We
can take a subsequence (") satisfying lim; KE(7™) = lim,, KE(7"). Our aim is to prove
the inequality KE(vy) < limy KE(y™). The case in which lim; KE(7y™) = 400 is trivial, so

nE?

suppose that such limit is finite. In particular, up to discarding finitely many ~™*’s, we have

that all curves v are absolutely continuous with (|5"#[), € L?(0,1) bounded. Therefore, up
to a not relabeled subsequence, |4 | converges to some limit function G € L?(0,1) C L'(0,1)
weakly in L2(0,1). Given any t¢,s € [0, 1] with s < ¢, we thus have that

t t
d(’Yta'Ys) - kli{god<7tnk77?k) < hm ‘Vnk‘ dT - hm <‘Fy ‘ X[S t]>L2 0 1) / G(T) dr

k—o0

which grants that v is absolutely continuous with |4| < G a.e. by Theorem 1.2.5. Hence

1 1
KE(7) =/ Fel? dt < [|GI72 (0,0 < lim / [9¢*[?dt = lim KE(y"),
0 k—00 J0 k—oo

proving the statement. U
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Exercise 1.2.8 Prove that

n—1 2
d(ve, .
KE(’Y) _ sup M holds for every v € C([O’ ]_]7X) (136)

O=to<..<t,=1 {5 li+1 — b
[ |
Definition 1.2.9 (Geodesic curve) A curve~: [0,1] — X is said to be a geodesic provided
d(v,7vs) < |t — s|d(h0,71)  holds for every t,s € [0,1]. (1.37)
Clearly, any geodesic curve is continuous.

Proposition 1.2.10 Let v € C([0,1],X) be fizred. Then the following are equivalent:
i) The curve v is a geodesic.
ii) It holds that d(yi,7s) = |t — s|d(y0,71) for every t,s € [0, 1].
iii) The curve vy is AC, its metric speed || is a.e. constant and d(yo,v1) = fol |9 | dt.

iv) It holds that KE(v) = d(y0,71)%

Proof. The proof goes as follows:
i) = ii) Suppose that d(y¢,vs) < (¢t —s) d(y0,71) for some 0 < s < ¢ <1, then

d(70,7) < d(70,7s) +d(7s,71) +d(y,71) < [t+ (£ = 5) + (1 = )] d(70,71) = d(70, M),

which leads to a contradiction. Hence d(y¢,7s) = |t — s| d(y0,71) for every ¢,s € [0, 1].

ii) = iii) Observe that d(y,7s) = (t—s) d(y0,71) = fst d(7y0,71) dt holds for every ¢, s € [0, 1]
with s < t, whence the curve 7 is AC. Moreover, || = limp 0 d(7Ve+n, ) /|h| = d(70,71) holds
for a.e. t € [0,1], thus accordingly fol |9¢| dt = d(y0,71)-

iii) = iv) Clearly |§¢| = d(y0,71) for a.e. t € [0,1], hence KE(vy) = fol |42 dt = d(v0,71)2.
iv) = i) Notice that the function (0,+00)? > (a,b) — a?/b is convex and 1-homogeneous,
therefore subadditive. Also, v is AC since KE(y) < oo. Then for all t,s € (0,1) with s < ¢
one has

s t 1
ammf:/Wﬁw+/www+/wﬁw
0 s t
2

1 s 2 1 t 1 1 2
> = 5 d — 5 d — vl d
_5</0 || 7’) +t—s</3 | 7’) +1_t</t | T)

S d(70,7s)* n d(vs, 70)? N d(ye,71)?
- S t—s 1—t¢

[d(70,%s) + d(v5, %) + (e 1))
= s+ (t—s)+(1—1)

Z d(70771)27

where the last line follows from the subadditivity of the function (0, +00)? > (a,b) — a?/b.
Hence all inequalities are actually equalities, which forces d(v¢,7s) = (t — s) d(v0, 71)- O
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Let us define
Geo(X) := {7 € C([0,1],X) : ~ is a geodesic}. (1.38)

Since uniform limits of geodesic curves are geodesic, we have that Geo(X) is d-closed.

Definition 1.2.11 (Geodesic space) We say (X,d) is a geodesic space provided for any
pair of points x,y € X there exists a curve v € Geo(X) such that v = x and v1 = y.

Proposition 1.2.12 (Kuratowski embedding) Let (X,d) be a complete and separable
metric space. Then there exists a complete, separable and geodesic metric space (X,a) such
that X is isometrically embedded into X.

Proof. Fix (x,)n, C X dense. Let us define the map ¢ : X — £°° as follows:
v(x) == (d(z, ) — d(20,2,)),  for every z € X,

Since |d(z, zn) — d(xo, 2n)| < d(x,20) for any n € N, we see that «(x) actually belongs to the
space £ for every x € X. By arguing as in the proof of Theorem 1.2.5, precisely when we
showed (1.33), we deduce from the density of (z,), in X that

HL(.T) - L(y)HEoo = sup }d(x, xn) —d(y,zn)| =d(z,y) holds for every z,y € X,
neN

which proves that ¢ is an isometry. The Banach space £*° is clearly geodesic, but it is not
separable, so that we cannot just take X = ¢°°. We thus proceed as follows: call Xq := 1(X)
and recursively define X, 11 := {Az+ (1 =Xy : A€ [0,1], z,y € X} for every n € N.
Finally, let us denote X := clyeo (U, Xy, which is the closed convex hull of X¢. Note that X is
separable, so that Xy and accordingly X are separable, and that ¢ : X — X is an isometry.
Since X is also complete and geodesic, we get the statement. O

1.3 Bochner integral

Fix a Banach space B and a metric measure space (X, d, u) with u € 2(X).

A map f: X — B is said to be simple provided it can be written as f =Y " | Xg, v;, for
some v, ...,v, € B and some Borel partition E1,..., F, of X.

Definition 1.3.1 (Strongly Borel) 4 map f: X — B is said to be strongly Borel (resp.
strongly u-measurable) provided it is Borel (resp. u-measurable) and there exists a separable
subset V' of B such that f(x) € V for p-a.e. x € X. This last condition can be briefly expressed
by saying that f is essentially separably valued.

Lemma 1.3.2 Let f: X — B be any given map. Then [ is strongly Borel if and only if it is
Borel and there exists a sequence (fy)n of simple maps such that lim,, an(:n) - f(:z:)H]B =01s
satisfied for p-a.e. x € X.
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Proof. We separately prove the two implications:

SUFFICIENCY. Choose any V;, C B separable such that f,(x) € V,, for p-a.e. z € X. Then
the set V := (J,, Vy is separable and f(x) € V for p-a.e. v € X, whence f is strongly Borel.
NECESSITY. We can assume without loss of generality that f(z) € V for every 2z € X. Choose
a dense countable subset (vy), of V and notice that V' C J,, B-(v,) for every ¢ > 0. We
define P. : V — (v,)y as follows:

P. .= ZXC(Evn) Un,  where C(g,n) := (VN B(vy)) \ U Be(v;). (1.39)

neN i<n

Let us call f. := P.of. Since || P-(v) — UHB < eforallv € V, we have that || f(z) — :E)HB <e
for all x € X, so that f can be pointwise approximated by maps taking countably many values.

With a cut-off argument, we can then approximate f by simple maps, as required. O

Given a simple map f: X — B and a Borel set £ C X, we define

/ fdu 1:ZM(EiﬂE)Ui €B iff:ZXEi (I (1.40)
E i=1 i=1

Exercise 1.3.3 Show that the integral in (1.40) is well-posed, i.e. it does not depend on the
particular way of writing f, and that it is linear. |

Definition 1.3.4 (Bochner integral) A map f: X — B is said to be Bochner integrable

provided there exists a sequence (fn)n of simple maps such that each x +— an(x) l’)HB is
a p-measurable function and limy, [ ||f, — f|ly du = 0. In this case, we define
/ fdp:= lim / fndu  for every E C X Borel. (1.41)
E n—oo E
Remark 1.3.5 It follows from the very definition that the inequality
H [ ran| < [ sz an (1.42)
E B E

holds for every f simple. Now fix a Bochner integrable map f and a sequence (fy,),, of simple
maps that converge to f as in Definition 1.3.4. Hence we have that

s,

proving that ( J5 fn du)n is Cauchy in B and accordingly the limit in (1.41) exists. Further,

(1.42) nm
< /E!fn—fllgdu+/E||f—fmll]Bdu—>07

take another sequence (g, ), of simple maps converging to f in the sense of Definition 1.3.4.
Therefore one has that

| [ an
E B
which implies lim,, [ g fndp = lim, i) 5 9n dp. This grants that / g Jdp is well-defined. |

(1.42) .
< [ = S+ [ 1 = gullsdu 20,
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Proposition 1.3.6 Let f : X — B be a given map. Then f is Bochner integrable if and only
if it is strongly p-measurable and [ || f||p dp < +oo.

Proof. Necessity is trivial. To prove sufficiency, consider the maps P defined in (1.39) and
call f, := P. o f. Hence we have [ ||f. — f|lzdp < e for all € > 0. Recall that the projection
maps P. are written in the form .y Xc(e,n) Vn, 80 that fo = >y Xf-1(0(e,n)) Vn- Now let
us define gF := > n<k Xf=1(C(e,n)) Un for all k € N. Given that Sonen #(f7HC(e,n))) lvnllg is
equal to [ || fz||g du, which is smaller than [ ||f|| dp + € and accordingly finite, we see that

o0
k — k
188 = fllsdi= 32 w5 m) lenlls 0.
n=k+1
Since the maps gf are simple, we can thus conclude by a diagonalisation argument. O

Example 1.3.7 Denote by M([0, 1]) the Banach space of all signed Radon measures on [0, 1],
endowed with the total variation norm. Then the map [0, 1] — M([0, 1]), which sends ¢ € [0, 1]
to & € Z([0,1]), is not strongly Borel (thus also not Borel).

Indeed, notice that ||6; — ds||1\, = 2 for every ¢,s € [0,1] with ¢ # s. Now suppose that
there exists a Borel set N C [0, 1] with £!(N) = 0 such that {6; : ¢ € [0,1]\ N'} is separable.
Take a countable dense subset (pn,)n of such set. Hence for every ¢ € [0,1] \ N we can choose
an index n(t) € N such that [|0¢ — iy [l;,, < 1. Clearly the function n : [0,1] \ N — N must
be injective, which contradicts the fact that [0,1] \ IV is not countable. [ ]

Let us define the space L'(u;B) as follows:
LY(;B) = {f: X — B Bochner integrable}/(u-a.e. equality). (1.43)

Then L'(u;B) is a Banach space if endowed with the norm ||f||L1(u]B% =/ Hf H]B ().

Remark 1.3.8 Given two metric spaces X,Y and a continuous map f : X — Y, we have
that the image f(X) is separable whenever X is separable.
Indeed, if (zy,), is dense in X, then (f(xn))n is dense in f(X) by continuity of f. [

Proposition 1.3.9 Let E C X be Borel. Let V be another Banach space. Then:

i) For every f € L'(u;B), it holds that

| rl,

In particular, the map L'(u;B) — B sending f to [ fdp is linear and continuous.

< [ 11 d (1.44)

ii) The space Cy(X,B) is (contained and) dense in L'(u;B).

iii) If £ : B — V is linear continuous and f € L'(u;B), one has that £o f € L' (u; V) and

ﬁ(/Efdu> :/Eﬁofdu. (1.45)
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Proof. The proof goes as follows:
i) As already mentioned in (1.42), we have that the inequality (1.44) is satisfied whenever the
map f is simple, because if f =37 | X, v; then

| 7ael,

For f generic, choose a sequence (f,), of simple maps that converge to f in L!(x;B). Then

sl [0,

thus proving the validity of (1.44).

ii) The elements of C(X,B), which are clearly Borel, are (essentially) separably valued by
Remark 1.3.8, in other words they are strongly Borel. This grants that Cy(X,B) C L(u; B).
To prove its density, it suffices to approximate just the maps of the form Xgv. First choose
any sequence (Cy,), of closed subsets of E with p(E \ Cy) N\ 0, so that X¢,v — Xgv with
respect to the L'(p;B)-norm, then for each n € N notice that the maps (1 — kd(., Cn))+v
belong to Cy(X,B) and L' (u; B)-converge to X¢, v as k — 0o. So Cy(X, B) is dense in L*(u; B).
iii) In the case in which f is simple, say f = >_." | X, v;, one has that

€</Efdu> :gu(EiﬁE)é(vi):/Eéofdu.

For a general f, choose a sequence (f,), of simple maps that L!(u;B)-converge to f. We
note that the inequality [ Hﬁ(f - fn)HV(x) dp(z) < ||| [N f = fullg dp is satisfied, where [|£]|
stands for the operator norm of ¢. In particular [ glofndu— I} gl o fdu. Therefore

E(/Efdu> :T}Ln;o€</]5fndu> :nlln;ofjgéofndy:/Jgéofdu,

proving (1.45) as required. O

/XEZﬂE v dp

=S W(EiN B) filly = / 1l g
B = E

< fim / 1l dpe = / 17 lls i

Definition 1.3.10 (Closed operator) A closed operator T : B — V is a couple (D(T),T),
where D(T ) is a linear subspace of B and T : D(T) — V is a linear map whose graph, defined
as Graph(T') := { (v,Tv) : v € D(T)}, s a closed subspace of the product space B x V.

Closedness of Graph(T') can be equivalently stated as follows: if a sequence (vy,), C D(T)
satisfy lim,, [[v, — ||z = 0 and lim,, || Tv, — w||y, = 0 for some vectors v € B and w € V, then

necessarily v € D(T') and w = Tv.
Example 1.3.11 (of closed operators) We provide three examples of closed operators:
i) Let B=V = C([0,1]). Then take D(T}) = C([0,1]) and Ty (f) = f".

ii) Let B =V = L?(0,1). Then take D(T3) = W2(0,1) and Ty(f) = f'.
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iii) Let B = L?*(R") and V = [L*(R")]". Then take D(T3) = WH*(R") and T5(f) equal to
the n-tuple (Og, f, ..., 0z, f)- [

Example 1.3.12 (of non-closed operator) Consider B = V = L?(R"), with n > 1. We
define D(Ty) = WH2(R") and T4 (f) = 0y, f. Then (D(Ty),Ty) is not a closed operator. M

Exercise 1.3.13 Prove Example 1.3.11 and Example 1.3.12. |

Remark 1.3.14 Let f € L'(u;B) be given. Suppose there exists a closed subspace V of B
such that f(x) € V holds for p-a.e. x € X. Then [, fdu € V for every E C X Borel.

We argue by contradiction: suppose [, fdu ¢ V, then we can choose ¢ € B’ with £ =0
on V and ¢( [, fdu) = 1 by Hahn-Banach theorem. But the fact that (o f)(z) = 0 holds
for p-a.e. x € X implies E( Iz fdu) = [plo fdu=0by (1.45), giving a contradiction. |

Theorem 1.3.15 (Hille) Let T : B — V be a closed operator. Consider a map f € L'(u; B)
that satisfies f(x) € D(T) for p-a.e. x € X and T o f € L'(u; V). Then for every E C X
Borel it holds that [ f du € D(T) and that

T(/Efd,u> —/ETofdu. (1.46)

Proof. Define the map ® : X — BxV as ®(z) := (f(x), (T o f)(z)) for p-a.e. z € X. One can
readily check that ® € L!(y; B x V). Moreover, ®(z) € Graph(T) for p-a.e. z € X, whence

(/ fd,u,/ Tofd,u) —/ ®(x)du(z) € Graph(T')
E E E
by Remark 1.3.14. This means that [y, fdu € D(T) and that T'( [ fdu) = [T o fdpu.

O
Let us now concentrate our attention on the case in which X = [0,1] and p = Ll‘[o I
Proposition 1.3.16 Let v: [0,1] — B be an absolutely continuous curve. Suppose that
v} := lim Urh Z T B egists for a.e. t €0,1]. (1.47)
h—0 h
Then the map v’ : [0,1] — B is Bochner integrable and satisfies
t
Vg — Vg = / v.dr  for every t,s € [0,1] with s < t. (1.48)
S

Proof. First of all, by arguing as in Remark 1.2.6, we see that v’ is Borel. Moreover, if V' is a
closed separable subspace of B such that v, € V for a.e. t € [0, 1], then v; € V for a.e. t € [0, 1]
as well, i.e. v/ is essentially separably valued. Hence v’ is a strongly Borel map. Since the
function [|v'[|5 coincides a.e. with the metric speed |9, which belongs to L'(0,1), we conclude
that v’ is Bochner integrable by Proposition 1.3.6. Finally, to prove (1.48) it is enough to
show that vy = vy + fot vl ds for any ¢ € [0,1]. For every ¢ € B it holds that ¢ — £(v¢) € R is
absolutely continuous, with £6(v;) = £(v]) for a.e. t € [0,1]. Therefore

((vr) = £(wo) +/0t <i€(v5)>ds — (o) + /Ote(vg)ds (1.29) £<u0 +/0t v ds>,

which implies that v; = vg + fg vl ds by arbitrariness of £ € B'. Thus (1.48) is proved. O
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Example 1.3.17 Let us define the map v : [0,1] — L'(0,1) as v; := X4 for every t € [0,1].
Then v is 1-Lipschitz (so also absolutely continuous), because ||v; — ’USHL1(O71) =t — s holds
for every t,s € [0,1] with s < ¢, but v is not differentiable at any ¢ € [0, 1]: the incremental
ratios h =1 (veyp — vp) = h_lx(t’ﬂ_m pointwise converge to 0 as h \, 0 and have L!(0,1)-norm
equal to 1. Notice that the probability measures h_1X(t7t+h] L' weakly converges to d;. |

Proposition 1.3.18 (Lebesgue points) Let v : [0,1] — B be Bochner integrable. Then

t+h
li — ds=0 .e. t € 1(0,1]. 1.49
h{% o |vs UtH]B S for a.e. t €[0,1] ( )

Proof. Choose a separable set V' C B such that v; € V for a.e. t € [0, 1] and a sequence (wy, )
that is dense in V. For any n € N, the map t — |lvy — wy ||z € R belongs to L(0,1), hence
there exists a Borel set N,, C [0,1], with £!(N,,) = 0, such that

t+h
|vg — wp||p = lim ][ |luvs — wy|lgds  holds for every t € [0,1] \ Ny,
hNO Ji—p

by Lebesgue differentiation theorem. Call N := |J,, N,,, which is an £!-negligible Borel subset
of [0,1]. Therefore for every t € [0,1] \ N one has that

_ t+h L t+h
li — ds < inf li — d —
T f o= s < inf T | o= wnllds 4 ol

= inf 2o, — wyllp =0
inf 2|lvr — wnllg

by density of (wy,), in V. Hence (1.49) is proved, getting the statement. O

Fix two metric measure spaces (X,dx.u), (Y, dy,v), with x4 and v finite measures. In the
following three results we will distinguish real-valued functions from their equivalence classes
up to a.e. equality: namely, we will denote by f: Y — R the v-measurable maps and by [f]
the elements of L'(v).

Proposition 1.3.19 Let X > z + [f,] € L' (v) be any pu-measurable map. Then there exists
a choice (z,y) — f(x,y) of representatives, i.e. [f(:c, )] = [fs] holds for p-a.e. x € X, which

is Borel measurable. Moreover, any two such choices agree (u x v)-a.e. in X x Y.

Proof. The statement is clearly verified when x +— [f,] is a simple map. For x — [f,] generic,
define [f¥] := X, (2) [fs] for pra.e. x € X, where we set Ay, := {z € X : H[fl”]HLl(u) < k}.
Now let k € N be fixed. Given that [f*] belongs to L! (u; Ll(u)), we can choose a sequence of
simple maps [¢g"] : X — L!'(v) such that H[g"] - [fk]HLl(,u;Ll(l/)) < 272" for every n € N. As
observed in the first part of the proof, we can choose a Borel representative g" : X x Y —» R

of [¢"] for every n € N. By using Cebysév’s inequality, we obtain that
X : ||[g® k 27"MY) < = holds N
p({zreX: H[gw]_[fw]HLl(u)> } < g  holds for every n € N.
Therefore we have that

’M<UnoeN {x eX : ||lgn] - [ff;]HLl(V) < 27" for all n > n0}> = u(X). (1.50)
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Then the functions " converge (u X v)-a.e. to some limit function 5 X x Y — R, which is

accordingly a Borel representative of [f*]. To conclude, let us define

) = Z XA\U;p, Ai (z) fE(z,y) for every (z,y) € X x Y.
keN

Therefore f is the desired representative of  — [f;], whence the statement is proved. O

Proposition 1.3.20 Consider the operator ® : L*(p; L'(v)) — L'(u x v) sending x + [f]
to (the equivalence class of) one of its Borel representatives f found in Proposition 1.3.19.

Then the map ® is (well-defined and) an isometric isomorphism.

Proof. Well-posedness of ® follows from Proposition 1.3.19 and from the fact that

sz = [ 110 a0t o) = [ [ 171G awto) ) = [ 11

where the last equality is a consequence of Fubini theorem. The same equalities also guarantee
that ® is an isometry. Moreover, the map ® is linear, continuous and injective. In order to
conclude, it suffices to show that the image of ® is dense. Given any f € Ch(X xY), we
have that lim,/_,, [ ‘f(x’, y) — f(x, y)‘ dv(y) = 0 for every z € X by dominated convergence
theorem, so that x — f(z,-) € L'(v) is continuous and accordingly in L' (13 L*(v)). In other
words, we proved that any f € Cy(X x Y) belongs to the image of ®. Since Cp(X X Y) is
dense in L'(u x v) by Proposition 1.1.18, we thus obtained the statement. O

Proposition 1.3.21 Let (z + [f,]) € L' (u; LY (v)) and call [f] its image under ®. Then

(/[f:v] dp(x ) /f z,y)du(z holds for v-a.e. y €Y. (1.51)

Proof. First of all, we define the linear and continuous operator T; : L! (,u; Ll(y)) — L'(v)
as T1(f) == [[fz)du(z) € L'(v) for every f € L'(u; L'(v)). On the other hand, by Fubini
theorem it makes sense to define 75(f) := (y = [ f(z,y) du(x)) € L'(v) for all f € L' (uxv),
so that Ty : L'(u x v) — L'(v) is a linear and continuous operator. Therefore the diagram

LY (s LM (v)) —2— L'(n x v)

e I

L'(v)

is commutative, because 17 and T o ¢ clearly agree on simple maps f : X — Ll(u). Hence
formula (1.51) is proved, as required. O

Lemma 1.3.22 (Easy version of Dunford-Pettis) Let (f,), C L'(v) be a sequence with
the following property: there exists g € L'(v) such that | f,| < g holds v-a.e. for every n € N.

Then there exists a subsequence (ny,)x and some function f € L'(v) such that f,, — f weakly
in L*(v) and |f| < g holds v-a.e. in Y.
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Proof. For any k € N, denote f¥ := min { max{ f,,, —k}, k:} and g := min { max{g, —k:},k:}.
The sequence (f*),, is bounded in L?(v) for any fixed k € N, thus a diagonalisation argument
shows the existence of (n;); and (hy); € L?(v) such that f¥ — hy, weakly in L?(v) for all k.
In particular, f]ji — hy, weakly in L!(v) for all k. Moreover, one can readily check that

E_fF < g — gi| holds v-a.e. for every i, k, k' € N. 1.52
n; n;

By using (1.52), the lower semicontinuity of || - ||L1(V) with respect to the weak topology and
the dominated convergence theorem, we then deduce that

/]hk—hk/\dug lim ]fffi—f,’f;dug/]gk—gk/\duk’—k;O, (1.53)
1—00

which grants that the sequence (hy)r € L'(v) is Cauchy. Call f € L'(v) its limit. To prove
that f,, — f weakly in L!(v) as i — oo, observe that for any ¢ € L>(v) it holds that

+/\hk iy wldv}

1—00

i | [ = £ aw

< i | [ 1o = 2w+ | [ = ) aw
71— 00

< (g = 9ell ) + N = Fllzr) 1wy

k
<2l = gkllpry 1l ooy — O,

where the second inequality stems from (1.52) and the third one from (1.53).

Finally, in order to prove the v-a.e. inequality |f| < g it is clearly sufficient to show that

’/fﬁdu

Property (1.54) can be proved by noticing that for any non-negative £ € L (v) one has

< /gédl/ for every ¢ € L*>(v) with £ > 0. (1.54)

‘/f@dl/ zllim‘/fniﬁdy < lim ]fni\ﬁdug/gﬁdl/.
1—00 i—00
Therefore the statement is achieved. OJ

Hereafter, we shall make use of the following shorthand notation:
Ly = [/1’[0’1] and A= {(t,s) €[0,1]* : s <t}. (1.55)
Proposition 1.3.23 Let f: [0,1] — L*(v) and g € L*(£1; L*(v)) be given. Suppose that

¢
|fe(y) — fs(y)| < / gr(y)dr holds for v-a.e.y €Y,  for every (t,s) € A. (1.56)
Then f is absolutely continuous and L1-a.e. differentiable. Moreover, its derivative satisfies

[fil(W) < gily)  for (L1 xv)-a.e. (t,y) €[0,1] x Y. (1.57)
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Proof. By integrating (1.56), we get that [|f; — fs|l11(,) < f; g7l 1y dr for every (¢, s) € A.
This proves that ¢ — f; € L'(v) is AC, but in general this does not grant that ¢ — f; is a.e.
differentiable cf. for instance Example 1.3.17. We thus proceed in the following way: let us
HE grdr for every ¢ > 0 and t € [0, 1]. Observe that

t+e
197 Lz, ) = //’gt ) dv(y dt<//][ lgr|(y) dr dv(y) dt
/ / 1901 dv(3) dr = 19 12, 00

is satisfied for every ¢ > 0. Given any map h € C([0,1],L!(v)), it clearly holds that hS — h.
in LY(£1 x v) as € \, 0. Therefore for any such h one has that

define g; := =

(1.58)

E) 195 = 9l L1 gy 5wy < E [H(g - h>EHL1(L1><V) + A"~ hHL1(£1XV)] P =gl e,
< 2[lg = hllprg,xn) + E 1h* =Dl gx)

=2 ||g - h’HLl(ley)v
where the second inequality follows from (1.58) and the third one from continuity of h. Given
that C([0,1], L*(v)) is dense in L*(£1; L' (v)), we conclude that lim.\ g [|g° — L1z %) = 0.
In particular, there exists a sequence &, \, 0 and a function G' € L!(£; x v) such that the
inequality ¢g°» < G holds (£1 x v)-a.e. for every n € N. This grants that

ft+€n - ft

€n

1 t4en
< / grdr = g;™ < G; holds v-a.e. for a.e. t €[0,1]. (1.59)
t

€n

The bound in (1.59) allows us to apply Lemma 1.3.22: up to a not relabeled subsequence, we
have that (f.., — f.)/en weakly converges in L'(£q x v) to some function f € L'(L; x v).
Moreover, simple computations yield

t fr+s _ fr tten sten
/ ;7 dr = ][ frdr— ][ frdr for every (t,s) € A. (1.60)
s n t s

The continuity of r +— f, € L'(v) grants that the right hand side in (1.60) converges to f; — fs
in L'(v) as n — oo. On the other hand, for every £ € L>°(v) it holds that

/E(y)</st fr+e;n— fr dr) /5 ¥) Xo. fr—l—En(yE)n_ fr(y) (L1 x v)(r,y),

€ Lo° Ll ><l/)

which in turn converges to [ £(y ( f 1l dr) )dr(y) as n — oo. In other words, we showed
that fst(fr%n — fr)/endr — fs fLdr weakly in L'(v). So by letting n — oo in (1.60) we get

t
/ frdr=f,— fs forevery (t,s) € A.

Therefore Proposition 1.3.18 implies that f; is the strong derivative in L'(v) of the map
t — f; for a.e. t € [0,1]. Finally, by recalling (1.56) we also conclude that (1.57) is verified.
[l
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Lemma 1.3.24 Let h € L'(0,1) be given. Then h € WH1(0,1) if and only if there exists a
function g € L'(0,1) such that

t
hy — hg —/ grdr  holds for £2-a.e. (t,s) € A. (1.61)

Moreover, in such case it holds that h' = g.

Proof. NECESSITY. Fix any family of convolution kernels p. € C(R), i.e. [ p.(z)dz = 1,
the support of p. is contained in (—e&,¢) and p. > 0. Let us define h® := h * p. for all ¢ > 0.
Recall that h® € C°(R) and that (k%) = (h') x p.. Choose a sequence &, \, 0 and a negligible
Borel set N C [0, 1] such that h{™ — hy as n — oo for every ¢ € [0,1]\ N. Given that we have
the equality h;™ — hS" = f;(han); dr for every n € N and (¢,s) € A, we can finally conclude
that hy — hs = fst Rl dr for L%-a.e. (t,s) € A, proving (1.61) with g = h'.

SUFFICIENCY. By Fubini theorem, we see that for a.e. ¢ > 0 it holds that hyy.—hy = ftt+e grdr
t+en

¢ grdr

for a.e. t € [0,1]. In particular, there is a sequence &, \, 0 such that hyyc, — hy =
for every n € N and for a.e. ¢t € [0,1]. Now fix ¢ € C2°(0,1). Then

_ . t+en
/Whtdt:/w@tdt:/<][ 9rd7n>§0tdt‘ (1.62)
n n t

By applying the dominated convergence theorem, we finally deduce by letting n — oo in the
equation (1.62) that — [ ¢} h¢dt = [ g ¢ dt. Hence h € W1(0,1) and b’ = g. O

Bibliographical remarks

Much of the material of Section 1.1 can be found e.g. in the authoritative monograph [12].
The definitions and results about (absolutely) continuous curves presented in Section 1.2
are mostly taken from the book [13]; the above proof of Theorem 1.2.5 can be found in [3].

The results in Section 1.3 about the Bochner integral are taken from [15].



Chapter 2

Sobolev calculus on metric measure

spaces

Several different approaches to the theory of weakly differentiable functions over abstract
metric measure spaces made their appearance in the literature throughout the last twenty
years. Amongst them, we shall mainly follow the one (based upon the concept of test plan)
that has been proposed by Ambrosio, Gigli and Savaré. The whole Section 2.1 is devoted to
the definition of such notion of Sobolev space W12(X) and to its most important properties.

Furthermore, in Section 2.2 we describe two alternative definitions of Sobolev space, which
are both completely equivalent to the previous one: the approach of Cheeger and that of
Shanmugalingam, discussed in Subsections 2.2.1 and 2.2.2 respectively. The former is obtained
via relaxation of the local Lipschitz constant, while the latter relies upon the potential-

theoretic notion of 2-modulus of curves.

2.1 Sobolev space via test plans

2.1.1 Test plans
Let (X,d,m) be a fixed metric measure space.
For every t € [0, 1], we define the evaluation map at time ¢ as follows:

e O([0,1],X) — X,

Y Yt

(2.1)

It is clear that each map e; is 1-Lipschitz.

In Subsection 2.1.2, a special role will be played by the class of Borel probability measures

that we are now going to describe: the so-called ‘test plans’.

Definition 2.1.1 (Test plan) A probability measure w € 2(C([0,1],X)) is said to be a
test plan on X provided the following two properties are satisfied:

37
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i) There exists a constant C > 0 such that (e;)sm < Cm for every t € [0,1].
ii) It holds that [ KE(y)dw(y) = folf |4¢]2 d7r () dt < +o0.

The least constant C > 0 that can be chosen in i) is called compression constant of 7w and is
denoted by Comp(m).

It follows from ii) that test plans must be concentrated on absolutely continuous curves.

Example 2.1.2 Let us fix a measure p € Z(X) with u < Cm for some C > 0. Let us denote
by Const : X — C([0,1],X) the function sending any point z € X to the curve identically
equal to x. Then Const,u turns out to be a test plan on X. |

Example 2.1.3 Suppose to have a Borel map F : X x [0,1] — X, called flow, with the
following properties: there exist two constants L, C' > 0 such that
F(x): tw Fi(x) 1is L-Lipschitz for every z € X,

(2.2)
(Fy)sm < Cm  for every t € [0, 1].

The second requirement means, in a sense, that the mass is well-distributed by the flow F'.
Now consider any measure p € &?(X) such that g < e¢m for some ¢ > 0. Then

7 := (F).p s a test plan on X. (2.3)

Its verification is straightforward: (e;)«m = (€1)«(F)spt = (Fy)spp < ¢ (F)em < cCm shows
the first property of test plans, while the fact that ’Ft(m)‘ < L holds for every z € X and
almost every ¢ € [0, 1] grants the second one. Therefore (2.3) is proved. [

Proposition 2.1.4 Let 7 be a test plan on X and p € [1,00). Then for every f € LP(m) the
map [0,1] 2t +— foe € LP(m) is continuous.
Proof. First of all, one has that [ |foe;[P dm < Comp(wr) [ |f|P dm for every f € LP(m). Given
any g € Cyp(X) N LP(m), it holds that |g(vs) — g(w)|” — 0 as s — t for every v € C([0,1], X)
and [goes —goelP <2 HgH%b(X) € L>°(m), so that limy_; [ [goe, —go et’pdﬂ = 0 by the
dominated convergence theorem. This guarantees that

|| o ey — f ol ) < Tm [ £ 0 05— g0 ullpnm + lg o e = f ol g

< 2C0mp<77)1/pr_gHLP(m)’

whence [|f oes — foetl| iz — 0 as s — ¢ by density of C(X) N LP(m) in LP(m), which can
be proved by suitably adapting the proof of Proposition 1.1.18. O

Let t,s € [0, 1] be fixed. Then we define the map Restr; : C([0,1],X) — C([0, 1], X) as
Restr{(7), = Y(1—rytrs for every v € C([0,1],X) and r € [0,1]. (2.4)

We call Restr] the restriction operator between the times ¢ and s.
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Exercise 2.1.5 Prove that the map Restr; is continuous. |

Lemma 2.1.6 Let w be a test plan on X. Then:
i) For any T' C C([0,1],X) Borel with w(T') > 0, it holds that 7w(T')~* | is a test plan.

ii) For any t,s € [0,1], the measure (Restr{),m is a test plan on X.

Proof. In order to prove i), just observe that

<q»<wa»*1who<<wan (o) < Comp(m) w(T) ' m,

/ol/m'Qd(“(F)_l“Ir)( dt = (T //I%|2d7r ) dt < +o00.

To prove ii), notice that if v € C([0, 1],X) is absolutely continuous, then o := Restr{(y) is
absolutely continuous as well and satisfies |0 = |s — t[|¥(1—p)¢4rs| for a.e. 7 € [0,1]. Hence

(er)«(Restr}).m = (e, o Restry)«m = (e(1—p)t4rs )™ < Comp(m) m,

/01/ |67|* d((Restrf) m) (o) dr < |s — ¢t /01/ (4|2 dre () dr < +00,

which concludes the proof of the statement. O

2.1.2 Definition of Sobolev space

The definition of Sobolev function (via test plans) is strongly inspired by the following fact:

Remark 2.1.7 Consider f € C1(R") and G € C(R"). Then G > |df| if and only if

1
UM%%WMSAGWMWﬁfNWMWGﬁ@MRW (2.5)

This means that the map |df| can be characterised, in a purely variational way, as the least
continuous function G : R™ — R for which (2.5) is satisfied. [

With the previous observation in mind, we can provide the following definition of Sobolev
function for general metric measure spaces (by relying upon the notion of test plan):

Definition 2.1.8 (Sobolev class) The Sobolev class S?(X) is defined as the space of all
Borel functions f : X — R that satisfy the following property: there exists a function G €
L%(m) with G > 0 such that

1
/ ‘f(%) - f(’Yo)‘ dm(y) < /0 /G(%)|"Yt| dm(y)dt  for every test plan w on X.  (2.6)

Any such G is said to be a weak upper gradient for f.
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Remark 2.1.9 In giving Definition 2.1.8 we implicitly used the fact that
C([0,1],X) x [0,1] (77, t) — G(v)|¥| is Borel. (2.7)

The map e : C(]0,1],X) x [0,1] — X sending (v,t) to y; can be easily seen to be continuous,
whence G o e is Borel. Since the map in (2.7) is nothing but G o ems — where ms is has been
defined and proven to be Borel in Remark 1.2.6 — we conclude that (2.7) is satisfied. |

Remark 2.1.10 We claim that
foel— foeye LY (w) for every f € S*(X). (2.8)

In order to prove (2.8), by (2.6) it suffices to notice that the Holder inequality gives

(AVG@MMWWNQ23(AI<ﬂowmdﬁ<47ﬁ#ﬁwmﬁ
g&mﬂﬂwmamAV“w%ﬂww<+w.

In particular,

1
the map L*(m) > G / /G(%)|"yt| dm(y)dt is linear and continuous. (2.9)
0

Proposition 2.1.11 Let f € S*(X) be fized. Then the set of all weak upper gradients of f
is closed and convex in L?(m). In particular, there exists a unique weak upper gradient of f
having minimal L*(m)-norm.

Proof. Convexity is trivial. To prove closedness, fix a sequence (Gy,), € L?(m) of weak upper
gradients of f that L?(m)-converges to some G € L?(m). Hence (2.9) grants that

1 1
/mm—mmmmsA/@mmmwww%A/QWMMM%

proving that G is a weak upper gradient of f. Hence the set of weak upper gradients of f is
closed. Since L?(m) is Hilbert, even the last statement follows. O

Definition 2.1.12 (Minimal weak upper gradient) Let f € S?(X). Then the unique
weak upper gradient of f having minimal norm is called minimal weak upper gradient of f
and is denoted by |Df| € L?*(m).

An important property of weak upper gradients is given by their lower semicontinuity:

Proposition 2.1.13 Let the sequence (fn)n C S?(X) satisfy fn(x) — f(x) for a.e. z € X,
for some Borel map f : X — R. Let G, € L?>(m) be a weak upper gradient of f, for every
n € N. Suppose that G, — G weakly in L*(m), for some G € L?(m). Then f € S*(X) and G
s a weak upper gradient of f.
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Proof. First of all, it holds that f,(71) — fu(70) — f(m1) — f(70) for m-a.e. 7. Moreover,
the map sending H € L?(m) to folf H ()| d () dt is strongly continuous and linear by
Remark 2.1.10, thus it is also weakly continuous. Hence Fatou’s lemma yields

1
[ 1760 = el an() < tim [ 5,600 = fen)|dn) < tim [ [ Gulid am(a) a
1
= | [ covriant)a,

which shows that f € S?(X) and that G is a weak upper gradient for f. O

Exercise 2.1.14 Given a metric space (X,d) and « € (0,1), we set the distance d, on X as
do(z,y) :=d(z,y)* for every z,y € X.

Prove that the metric space (X, d), which is called the snowflaking of (X, d), has the following
property: if a curve « is d,-absolutely continuous, then it is constant.

Now consider any Borel measure m on (X, d). Since d and d, induce the same topology
on X, we have that m is also a Borel measure on (X,d,). Prove that any Borel map on X
belongs to S?(X, dq, m) and has null minimal weak upper gradient. [

Those elements of the Sobolev class S?(X) that are also 2-integrable constitute the Sobolev
space W2(X), which comes with a natural Banach space structure:

Definition 2.1.15 (Sobolev space) We define the Sobolev space W12(X) associated to
the metric measure space (X,d,m) as WH2(X) := L?(m) N S%(X). Moreover, we define

2
1wz = \/Hf”%?(m) H{[IDfI oy for every f € WHA(X). (2.10)
Remark 2.1.16 It is trivial to check that
ID(Af)| = |N|Df|  for every f € S*(X) and A € R,

2.11
|D(f +9)| < |IDf|+|Dg| for every f,g € S*(X). 240

In particular, S?(X) is a vector space, so accordingly W12(X) is a vector space as well. W

Theorem 2.1.17 The space (W'?*(X), || - HWl,z(X)) is a Banach space.

Proof. First of all, we claim that S*(X) 3 f — ||[Df]|| L2(m) € R is a seminorm: this follows
by taking the L?(m)-norm in (2.11). Then also || - lwi2(x) is a seminorm. Actually, it is a
norm because || f{|y12x) = 0 implies || f| 12, = 0 and accordingly f = 0. It thus remains
to show that W12(X) is complete. To this aim, fix a Cauchy sequence (f,,), € W13(X). In
particular, such sequence is L?(m)-Cauchy, so that it has an L?(m)-limit f. Moreover, the
sequence (| D fy|), is bounded in L?(m). Hence there exists a subsequence (fy, )x such that

|D fpn,| = G  weakly in LQ(m), for some G € LZ(m)7 ( )
2.12
Jre () LN f(z) for m-a.e. x € X,
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Then Proposition 2.1.13 grants that f € W2(X) and that G is a weak upper gradient for f.
Finally, with a similar argument we get H|D(fnk - f)|HL2(m) < lim,, H|D(fnk — fnm)|HL2(m)
for every k € N. By recalling that (f,), is W1?(X)-Cauchy, we thus conclude that

k@o H|D(fnk - f)HlLQ(m) < k@Omhjmoo H|D(fnk - fnm)H|L2(m) = Ov

proving that f,, — f in W1?(X), which in turn grants that f, — f in WH3(X). O

Remark 2.1.18 In general, W'?(X) is not a Hilbert space. For instance, W2(R",d, £") is
not Hilbert for any distance d induced by a norm not coming from a scalar product. |

Proposition 2.1.19 Let (f,), C S?*(X) be given. Suppose that there exists f : X — R Borel
such that f(x) = lim, f,(z) for m-a.e. x € X. Then H\Df|HL2(m) <lim, H‘Df”’HLQ(m)’ where
we adopt the convention that H|Df]HL2(m) := +o00 whenever f ¢ S?(X).

In particular, if a sequence (gn)n € WH2(X) is L?(m)-converging to some limit g € L*(m),

then it holds that |HDg|HL2 (m) <lim, WDQ”|HL2(m)'

Proof. The case lim,, H |D f] H L2(m) = 400 is trivial, then assume that such liminf is finite. Up
to subsequence, we can also assume that such liminf is actually a limit. This grants that the
sequence (|D f“Dn is bounded in L?(m), thus (up to subsequence) we have that |Df,| — G
weakly in L?(m) for some G € L?(m). Hence Proposition 2.1.13 grants that f € S?(X) and G
is a weak upper gradient for f, so that H|Df|HL2(m) <Gl 2y < lim, H|Dfn|”L2(m)

For the last assertion, first take a subsequence such that lim H |Dgn| H L2(m) is actually a
limit and then note that there is a further subsequence (g, )r such that g(x) = limy gy, (x)
holds for m-a.e. z € X. To conclude, apply the first part of the statement. O

Proposition 2.1.20 Let f € S?(X) be given. Consider a weak upper gradient G € L?(m) of
f. Then for every test plan ™ on X and for every t,s € [0,1] with s < t it holds that

|f(w) = f(s)] < /tG(%)\%!dT‘ for w-a.e. v € C([0,1], X). (2.13)

Proof. We argue by contradiction: suppose the existence of t,s € [0,1] with s < ¢ and of a
Borel set I' € C([0,1], X) with m(I') > 0 such that | f(y) vs)| > fs G(vr)|Ar| dr holds for

every v € I'. Lemma 2.1.6 grants that the measure 7 := (Restr )« (7 ()~ F‘F) is a test plan
on X, thus accordingly

1
*A}f(%)—f(%)}dﬂ('y)Z/\f(ffl)—f(ao)\dff(ff) < G(or)|or| d7 (o) dr

0

2 [ [etomanar

which leads to a contradiction. Therefore the statement is achieved. O
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We are in a position to prove some alternative characterisations of weak upper gradients:

Theorem 2.1.21 Let (X,d,m) be a metric measure space as in (1.21). Let us fiz a Borel
function f: X — R. Let G € L*(m) satisfy G > 0 m-a.e.. Then the following are equivalent:

i) f€S%X) and G is a weak upper gradient of f.

ii) For any test plan 7, we have that t — foe, — foeg € L'(m) is AC. For a.e. t € [0,1],
there exists the strong L'(m)-limit of (foe;rn — foes)/h as h — 0. Such limit, denoted
by Derx(f), € L1 (m), satisfies |Derx(/),](1) < (o) il for (7 x £1)-a.e. (3,0)

iii) For every test plan , we have for w-a.e. 7y that f o~y belongs to WH1(0,1) and that the
inequality |(f o 7);| < G(w)|5e| holds for a.e. t € [0,1].

If the above hold, then the equality Dery(f),(v) = (f ov); is verified for (w x L1)-a.e. (7,1).

Proof. The proof goes as follows:

i) = ii) We have that |f(y) — f(7s)| < fst G(vr)|9r| dr is satisfied for every (¢,s) € A and
for m-a.e. v by Proposition 2.1.20. Since the map (v,t) — G(v:)|%| belongs to L'(mw x £1)
by Remark 2.1.10 and Remark 1.2.6, we obtain ii) by applying Proposition 1.3.23.

ii) = iii) By Fubini’s theorem, one has for m-a.e. v that f(y) — f(7s) = f; Dery(f),(y)dr
holds for £2%-a.e. (t,s) € A, whence iii) stems from Lemma 1.3.24. Further, for m-a.e. v we

have

[ Foridr =00~ £ = [ Dera(),()dr tor Lac. (t,5) € A

which in turn implies the last statement of the theorem.
iii) = 1) Fix a test plan 7w on X. Choose a point £ € X and a sequence of 1-Lipschitz
functions (ny,)n C Cp(X) such that 7, = 1 on B, (Z) and spt(n,) € Bp12(Z). Let us define

™ =, min { max{f, —m},m} for every m,n € N.

Fix m,n € N. Notice that f™ o~y € WH1(0,1) for m-a.e. v, so that Lemma 1.3.24 implies
that

/‘fm"(’yt) — fmn('ys)‘ dm(v) < // |(fm" Ofy);,‘ drdmw(y) for L2 ae. (t,s) € A. (2.14)

The right hand side in (2.14) is clearly continuous in (¢, s). Since f™" € L!'(m), we deduce
from Proposition 2.1.4 that also the left hand side is continuous in (¢, s), thus in particular

1
/ |77 (1) — £ (70)| de () < / /0 [(f™ 0 )| dt dm (). (2.15)
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Moreover, ‘(fm" o 7);’ < m | X, z)e () + }(f 0 )}| is satisfied for (7 x L1)-a.e. (7,t) as a
consequence of the Leibniz rule, whence

/If(vl)—f(%)!dﬂ(’Y)S lim lim [ [f™"(y1) — f™"(v0)|d7(7)

m—r00 N—00

< im i [ [k, + |70 fJacanty

mM—>00 N—00

= i ([ [(romtlarint < [[ Gtolslatanty),

m—0o0

where the first line follows from Fatou lemma, the second one from (2.15) and the third one

from the dominated convergence theorem. Therefore i) is proved. O

Remark 2.1.22 To be more precise, the last statement in Theorem 2.1.21 should be stated
as follows: we can choose a Borel representative F' € L'(£1 x 7) of t — Der(f), € L!(m) in
the sense of Proposition 1.3.19, since such map belongs to L' (Ll; L1(7r)) by ii). Analogously,
we can choose a Borel representative F € L(m x £1) of v — (t— (fo); € L*(0,1)), which
belongs to L*(7r; L*(£1)) by iii). Then F(t,v) = F(7,t) holds for (7 x L£1)-a.e. (v,1). [

We point out some consequences of Theorem 2.1.21:

Proposition 2.1.23 Let f € S*(X) be given. Consider two weak upper gradients G1,Ga €
L?(m) of f. Then G1 A Gy is a weak upper gradient of f.

Proof. By point ii) of Theorem 2.1.21 we have |Derx(f),|(v) < Gi()|3| for i = 1,2 and
for (w x Lq)-a.e. (7,t), thus also ‘Derﬂ.(f)t‘('y) < (G1 A G2)(v) || for (7 x Lq)-a.e. (,1).
Therefore G1 A G2 is a weak upper gradient of f, again by Theorem 2.1.21. U

Corollary 2.1.24 Let f € S*(X) be given. Let G € L%*(m) be a weak upper gradient of f.
Then it m-a.e. holds that |Df| < G. In other words, |D f| is minimal also in the m-a.e. sense.

Proof. We argue by contradiction: suppose that there exists a weak upper gradient G of f
such that m({G < |Df|}) > 0. Hence the function G A |Df|, which has an L?*(m)-norm that
is strictly smaller than H |Df H L2(m)? is a weak upper gradient of f by Proposition 2.1.23. This
leads to a contradiction, thus proving the statement. ]

Given any f € LIP(X), we define the local Lipschitz constant lip(f) : X — [0, +00) as

lip(f)(z) := 7}1_)71; W if x € X is an accumulation point (2.16)
and lip(f)(z) := 0 otherwise.

Remark 2.1.25 Given a Lipschitz function f € LIP(X) and an AC curve v : [0,1] — X, it
holds that ¢t — f(v:) € R is AC and satisfies

[(fo)i] <lp()(3) el for ave. ¢ € [0, 1. (2.17)
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Indeed, to check that f o~ is AC simply notice that |f(%) - f(%)’ < Lip(f) f; |3| dr holds
for any ¢, s € [0,1] with s <t. Now fix ¢ € [0,1] such that both (f o~); and || exist (which
holds for a.e. t). If v is constant in some neighbourhood of ¢, then (2.17) is trivially verified
(since the left hand side is null). In the remaining case, we have that

|(f 0 Y)e4n — (f o Y)i]

T - d
(for); = Jim " < o 00 = J00] - dn )

T h=0  d(Vern, 1) h—0 |h|

< lip(f)(ve) [l
thus obtaining (2.17). [ |

Proposition 2.1.26 Let f € LIP,,(X) be given. Then f € S*>(X) and |Df| <lip(f) < Lip(f)
holds m-a.e. in X.

Proof. For any AC curve -, we have that ‘f('yl) — f('yo)} < fol Lip(f)(v¢) |3 dt by (2.17). By
integrating such inequality with respect to any test plan 7w, we get the statement. O

We conclude the present subsection by proving that the Sobolev space W12(X) is separable

whenever it is reflexive:

Theorem 2.1.27 Let (X,d, m) be a metric measure space. Suppose that W2(X) is reflexive.
Then WH2(X) is separable.

Proof. Apply Lemma A.1 to E; = W12(X), E; = L?(m) and 4 the inclusion E; < Es. O

2.1.3 Calculus rules

Minimal weak upper gradients satisfy the following calculus rules:

Theorem 2.1.28 The following properties hold:
A) LocALiTy. Let f,g € S?(X) be given. Then |Df| = |Dg| holds m-a.e. in {f = g}.
B) CHAIN RULE. Let f € S*(X) be given.

B1) If a Borel set N C R is Ll-negligible, then |Df| = 0 holds m-a.e. in f~1(N).
B2) If¢: R — R is a Lipschitz function, then pof € S2(X) and |D(pof)| = |¢'|of |Df|
holds m-a.e., where |¢'| o f is arbitrarily defined on f~'({t € R : $/(t)}).
C) LEIBNIZ RULE. Let f,g € S?>(X) N L>®(m) be given. Then fg € S*(X) N L>®(m) and the
inequality |D(fg)| <|f||Dg|+ |g||Df| holds m-a.e. in X.
Proof. We divide the proof into several steps:
STEP 1. First of all, we claim that

fes)X), p e LIP(R) = o feS*X), |D(pof)| <Lip(p)|Df| mae. (2.18)

Indeed, the inequality [ |(¢ o f)(v1) = (¢ o £)(70)| dm(y) < Lip(p) [y [DfI()]3] dt dm(v)
holds for any test plan 7, thus proving (2.18).
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STEP 2. Given h € WH1(0,1) and ¢ € C'(R) N LIP(R), we have that ¢ o h € W1(0,1) and
that (poh) = ¢’ ohh' holds a.e. in (0,1). In order to prove it, call h. := h* p, for all € > 0,
notice that (¢ o h.) = ¢’ o he h. because he is smooth and finally pass to the limit as £ \, 0.
STEP 3. We now claim that

feS?(X), p e C'(R)NLIP(R) = [D(po f)| <|¢|o fIDf| m-ae.. (2.19)

To prove it: fix a test plan 7. For mr-a.e. v, it holds that ¢ — f(y;) belongs to W11(0,1) and
that |(fo7);| < [Df|(v)|%] for a.e. t € [0,1], by Theorem 2.1.21. Hence STEP 2 grants that
the function ¢ — (o f)(y;) is in W1(0,1) and satisfies

(o fori| < (10 f) ) [(f ol < (I¢'10f) () IDFI(w) el for ae. t € [0,1],

whence |D(p o f)| < |¢/| o f|Df] holds m-a.e. by Theorem 2.1.21, thus proving (2.19).
STEP 4. We want to show that

f e Ss?(X), K CR compact with L}(K) =0 = |Df| =0 m-a.e. in f~1(K). (2.20)

For any n € N, let us call 9, := nd(-, K) A 1. Since the £!-measure of the e-neighbourhood
of K converges to 0 as € \, 0, we deduce that £' ({I,Z)n < 1}) — 0 asn — o0o. Now call ¢, the
primitive of v, equal to 0 in 0. Given that v, is continuous and bounded, we have that ¢,, is

C' and Lipschitz. Moreover, it holds that ¢,, uniformly converges to idg as n — oo, because

lon(t) —t] < /0 [ (s) — 1| ds < £ ({y, < 1}) 0.

In particular ¢, o f — f pointwise m-a.e., whence Proposition 2.1.19 gives

n—o0 n—o0

(2.19)
[1psfam < im [ DG pPan < im [iglFe intans [ s,

where in the last inequality we used the facts that [¢],| < [|[¥n| () = 1 and that ¢}, = ¢, =0
on K. This forces |Df| to be m-a.e. null in the set f~!(K), obtaining (2.20).

STEP 5. We now use STEP 4 to prove B1). Take f € S?(X) and N C R Borel with £}(N) = 0.
There exists a measure m € #(X) such that m < m < m, in other words having exactly the
same negligible sets as m. For instance, choose any Borel partition (By,),>1 of the space X
such that 0 < m(B,) < 400 for every n € N and define

> 1
=D 7 m(B,) B
n=1

Now let us call p := f.m. Since m is finite, we have that u is a Radon measure on R, in
particular p is inner regular. Then there exists a sequence (K,), of compact subsets of N
such that u(N\U,, K,) = 0, or equivalently m(f~*(N\U,, K»)) = 0. Given that |Df| =0 is
verified m-a.e. in {J,, f~1(K,) = f~1(U, Kn) by (2.20), we thus conclude that B1) is satisfied.
STEP 6. We claim that

fesS}(X), p e LIP(R) = |D(pof)|<|¢|of|Df| m-ae.. (2.21)
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To prove it, call ¢, := ¢ * p;/,. Up to a not relabeled subsequence, we have that ¢, — ¢
pointwise and ¢/, — ¢’ Ll-a.e.. Let us denote by N the (£!-negligible) set of t € R such that
either ¢ is not differentiable at ¢, or lim,, ¢/ () does not exist, or ¢’(t) and lim,, ¢/, () exist but
are different. We know that |D (¢, o f)| < |¢),| o f|Df| holds m-a.e. for all n € N by (2.19).
Given that the inequality |¢),| o f |Df| < Lip(y)|Df] is satisfied m-a.e. for all n, we can thus
deduce that |/ |of|Df| — |¢'|of |Df| in L?(m) by B1) and dominated convergence theorem.
Moreover, one has that ¢, o f — @ o f in the m-a.e. sense, whence |D(p o f)| < |¢'| o f|Df|
holds m-a.e. by Proposition 2.1.13 and Corollary 2.1.24. This proves the claim (2.21).
STEP 7. We now deduce property B2) from (2.21). Suppose wlog that Lip(¢) = 1. Let us
define ¢*(t) := £t — ¢(t) for every t € R. Then m-a.e. in the set f~({£¢’ > 0}) we have
IDf| = [DES)| < [D(o N +[DWF o )] < (1] o f+ (T o f) IDfI = [Df],
which forces |D(p o f)| = £¢' o f|Df| to hold m-a.e. in f~!({£¢’ > 0}), which is B2).
STEP 8. Property A) readily follows from B1): if h := f — g then ||Df| — |Dg|| < |Dh| =0
holds m-a.e. in h=1({0}) = {f = g} by B1).
STEP 9. We conclude by proving item C). Given two functions hy, he € WH1(0,1), we have
that hihe € WH1(0,1) and (hihe) = hjhe + hihl. Now fix f,g € S*(X) N L>®(m). Given any
test plan 7r, we have for m-a.e. vy that fo~v,goy € W11(0,1), so that (fg)oy € WH1(0,1) as
well. Further, |(f oy);| < [Df|(v)|%| and |(g o v);| < [Dg|(7:)|7| for a.e. ¢ € [0,1], whence

1((f9) 2 7)3] < 1£10ve) [(g 0 v)i] + 1gl(e) | (F o W)i| < [I£11Dgl + lalIDFI] (ve) |3

/

g

€ L2(m)
is satisfied for a.e. t € [0,1]. Therefore fg € S*(X) and |f||Dg| + |g||Df] is a weak upper
gradient of fg by Theorem 2.1.21, thus proving C). 0

Remark 2.1.29 We present an alternative proof of property C) of Theorem 2.1.28:

First of all, suppose that f,g > ¢ for some constant ¢ > 1. Note that the function log is
Lipschitz in [¢,+00), then choose any Lipschitz function ¢ : R — R that coincides with log
in [¢,+00). Now call C' := log (Hfg||Loo(m)) and choose a Lipschitz function ¢ : R — R such
that ¢ = exp in the interval [log(cQ), C’]. By applying property B2) of Theorem 2.1.28, we
see that po (fg) =log(fg) = log(f) +1log(g) = wo f +@og belongs to S?(X) and accordingly
that fg = exp (log(fg)) =1 opo(fg) € S*(X). Furthermore, again by B2) we deduce that

D(fg)l = [¥/| o9 o (9) |D(¢ 0 (f9))] < gl [|Dlog()] + | Dlog (o)

Df| | |Dg :
—1fal |'TA 4 D) < 17100l + lglDf weae. in
| f] lg]

Now consider the case of general f,g € S%(X) N L>®(m). For any n € N and i € Z, let
us denote I,,; := [%, % [ Call ¢,; the continuous function that is the identity on I,; and
constant elsewhere. Let us define

1—1 ~ 1—1
Jni = f— ) Jni == nio f — )
n n
J—1 . J—1
9nj ‘=g — ) gnj = Pnj 09 — .

n n
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Notice that fn; = fni and Gnj = Gnj hold m-a.e. in f~1(I,;) and g~'(I,;), respectively. Then
the equalities |Dfyi| = |Dfni| = |Df| and |Dgnj| = |Dgnj| = |Dg| hold m-a.e. in f~'(I)
and in g~1(I,;), respectively. We also have that !D(fm gnj)| = ’D(f’m gnj)] is verified m-a.e.
in f~Y(I;) N g~ (I,,;). Moreover, we have that 1/n < fui, gnj < 2/n hold m-a.e.. Therefore

i — 1]

1 lj —1f
|Dgnj|Jr ‘Dfm|
n n

T A | j—1
< 19| IDFoi] + 1 il | Diing] + =2 D]+ =1

n n

‘D(fg)‘ < ’D(fmgn])’ +

’Dfm|

<Df(lol+ 2 ) +10al (114 1) e in £ 0 N7 (),

where the second inequality follows from the case f,g > ¢ > 0 treated above. This implies
that the inequality |D(fg)| < |f||Dg|+ |gl|Df| +4(IDf| + |Dg|)/n holds m-a.e. in X. Given
that n € N is arbitrary, the Leibniz rule follows. |

Remark 2.1.30 Property C) of Theorem 2.1.28 can be easily seen to hold for every f €
Wh2(X) and g € LIPy(X). [ |

2.1.4 Local Sobolev space

We can now introduce the local Sobolev class associated to (X,d, m):

Definition 2.1.31 We define S (X) as the set of all Borel functions f : X — R with the
following property: for any bounded Borel set B C X, there exists a function fp € S?(X) such
that fp = f holds m-a.e. in B. Given any f € S (X), we define the function |Df| as

loc

for any bounded Borel set B C X and for

D = |D m-a.e. ¢ 37
| f| | fB| a.e. any fB c SZ(X) with fB :f m-a.e. in B.

(2.22)

The well-posedness of definition (2.22) stems from the locality property of minimal weak

upper gradients, which has been proved in Theorem 2.1.28.

We define L? (X) as the space of all Borel functions g : X — R such that 9|p € L?(m) for
every bounded Borel subset B of X. It is then clear that |[Df| € L? (X) for any f € S2 _(X).

loc loc

Proposition 2.1.32 (Alternative characterisation of S} (X), pt. 1) Let f € S2_.(X)
be given. Then it holds that

1
/ £ (1) — )| dme(n) < //0 IDF|()lel dtdme(y)  for every  test plan.  (2.23)

Proof. Fix a test plan 7 and a point z € X. For any n € N, let us define

1
r,:= {fy: [0,1] = X AC’d(VO,x)Snand/ \f'yt\thSn},
0
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which turns out to be a closed subset of C([0,1],X). It is clear that m(|J,I'») = 1. Now let

us call 7, := mw(T,)"! | for every n € N such that = (I';,) > 0. For mp-a.e. v it holds that

1/2
d(y¢, ) / |9s| ds + d(vy0, T </ |78]2d8) +n<yn+n foreveryt € [0,1].

Denote by B,, the open ball of radius y/n+n+1 centered at Z and take any function f,, € S?(X)
such that f,, = f holds m-a.e. in B,,. Therefore for m,-a.e. curve v one has that

1 1
(1) = F(0)] = | fa(r1) — Falr0)| < / D fal ()30 dt = / D fI(vo)lel dt,
0 0

whence (2.23) follows by arbitrariness of n. O

Let us fix some notation: given a Polish space X and a (signed) Borel measure p on X,
we define the support of u as

spt(p) == 1{C € X closed : p"(X\ C) =p"(X\C)=0}. (2.24)
Clearly spt(u) is a closed subset of X by construction.
Remark 2.1.33 We point out that
Flxt\ept() = 0. (2.25)

Indeed, since X is a Lindelof space (as it is separable), we can choose a sequence (U,), of
open sets such that J, U, = J{X\ C : C closed, |u[(X\ C) =0}, whence

O\ 1) = sl () < 3 1m0 =

which is equivalent to (2.25). [ |

We can now prove the converse of Proposition 2.1.32 under the additional assumption
that the function f belongs to the space L7 (X):

Proposition 2.1.34 (Alternative characterisation of S} (X), pt. 2) Let f € L (X)
be a given function. Suppose that G € Lloc(X) is a non-negative function satisfying
/ }f(’yl) — f(’yo)| dm(y) < / G(ve)| | dtdm(y)  for every m test plan. (2.26)
0

Then f € S? .(X) and |Df| < G holds m-a.e. in X.

Proof. We divide the proof into three steps:
STEP 1. We say that a test plan 7 is bounded provided {’yt : vy € spt(m), t € [0, 1]} is
bounded. By arguing as in the proof of Theorem 2.1.21, one can prove the following claim:
Fix f: X — R Borel, m bounded test plan and G € L}, .(X) with G > 0. Then
the following are equivalent:

, . » (2.27)
A) (2.26) holds for every test plan 7’ of the form (Restr}), (w(T') 7r|F),

B) for m-a.e. v we have f o~y € WH(0,1) and |(f o7)i| < G()|5e| for ace. t.
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STEP 2. Fix a function f € L? (X) satisfying (2.26), a test plan 7 on X and a Lipschitz

loc

function g € LIPs(X). Given z € X and n € N, let us define

1
r,:= {'y : [0,1] = X AC | d(y0,%) <n and / |72 dt < n},
0

so that each I'), is a Borel set and 7r( U, Fn) = 1, as in the proof of Proposition 2.1.32. Let
us fix n € N sufficiently big and define 7, := w(I',,) ™" T|p 5 SO that m,, is a bounded test
plan on X. Now choose any open bounded set €2 containing spt(g), whence we have that the
inequality |(g o'y)H < |Dg||%| Xa(y¢) holds for (7, x £1)-a.e. (,t). Thus B) of (2.27) gives

1((f9) 2 7)3] < 1£1(ve) [(g o v)i] + 1gl(v) | (F o v)i] < (X lgl G + Xa | [Dgl) () ]

for (7, x L1)-a.e. (7,t), so also for (m x L1)-a.e. (v,t). Note that Xo(|lg|G+|f]|Dgl|) € L*(m).
Therefore Theorem 2.1.21 grants that fg € S?(X) and |D(fg)| < Xa(|g|G + |f||Dg]).
STEP 3. To conclude, fix f € L} (X) satisfying (2.26). Given a bounded Borel set B C X,

pick a function g € LIPys(X) with ¢ = 1 on B, thus |Dg| = 0 holds m-a.e. in B by locality.
Hence STEP 2 implies that |Df| = |D(fg)| < G m-a.e. in B, yielding the statement. O

Corollary 2.1.35 Let f: X — R be a Borel map. Then f € S*(X) if and only if f € S2,.(X)
and |Df| € L?(m).

Proof. Immediate consequence of Definition 2.1.31 and Proposition 2.1.32. O

2.1.5 Consistency with the classical Sobolev space on R”

In this subsection we aim to prove that the definition of Sobolev space for abstract metric
measure spaces is consistent with the classical one when we work in the Euclidean setting,

namely if we consider (X, d,m) = (R", dgyq, £™). To this purpose, let us fix some notation:

W12(R™) = the classical Sobolev space on R”,
|Df| = the minimal weak upper gradient of f € S2,_.(R"),

df = the distributional differential of f € W,12(R™),
Vf = the ‘true’ gradient of f € C*°(R").

The above-mentioned consistency can be readily got as a consequence of the following facts:
Proposition 2.1.36 The following properties hold:

A) If fe C®R") C Wli’f(R”), then the function f belongs to the space S2, N L?

loc loc(Rn) and
the equalities |V f| = |df| = |Df| hold £L™-a.e. in R™.

B) If f € WL2(R™) and p € C°(R") is a convolution kernel, then f * p € WH2(R™) and
the inequality ’d(f * p)‘ < |df| * p holds L™-a.e. in R™.
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C) If f € 2N L2(R") and p € CX(R™) is a convolution kernel, then f x p € S2 N L2(R")
and the inequality ‘D(f * p)‘ < |Df|*p holds L™-a.e. in R™.

Proof. The proof goes as follows:

A) Tt is well-known that |V f| = |df| holds £™-a.e.. Moreover, |D f| < lip(f) = |V f| is satisfied
L™-a.e., thus to conclude it suffices to show that [|Df|dL™ > [|Vf|dL™. By monotone
convergence theorem, it is enough to prove that [} [Df[dL"™ > [, |V f|dL" is satisfied for
any compact subset K of the open set {|V fl > 0}. Then let us fix such a compact set K
and some ¢ > 0. Call A := ming [Vf| > 0. We can take a Borel partition (U;)%_; of K and
vectors (vl)f 1 € R™ such that £™(U;) > 0, |v;| > X and |V f(z) — v;| < € for every z € U.
Fix : =1,...,k. Call p:= L™U;)” IE"’ p, and = Fu, where ' : R" — C([0,1],R™) is
given by = (t — &+ tv;), so that (ep).m < L™(U;) 7 (- + tv;) L™ < L™(U;) 1 £™ holds for
every t € [0,1] and ffol |42 dt dm(v) = |vi|? < 400, which means that 7 is a test plan on R”.
It is clear that f € S2 N L2 (R™), whence for any t € [0, 1] one has

loc loc

[ 1760 = 560 dm(3) /er\ 7)ol ds dre () = [ui // IDf]() ds dm(~)

= !vi\//\Df!d(es)mds: ]w\//\Df]d(-—i—svi)*p,ds

|vl| //XUﬂrsvz | D f]dL™ ds.

Since Xy, sv; converges to Xy, in L?(R") as s — 0, if we divide the previous formula by ¢ and
we let ¢t 0, then we obtain that

il ][U Ipsac > / (V£ (10),70)] de() = / (9 £, 03)] d(eo)urr = fU (0] ac”

> (jui] — 2¢) ]{] V£ de,

where the last inequality follows from |[(Vf,v;)| > |V fl|vi| — 2|V f||Vf — vi|. Therefore

k k 2
Df|dL" = LM(U; Df|dL" > LM(U; VfldL" — — VfldLn
[ ipniasr =S erwy f psiaer =S| f 1enac o5 f 9sae]

2
> [ vsiaen =22 [ wsacn
K A K

By letting € \, 0 we thus conclude that [, |Df|dL" > [ [V f|dL", as required.

B) It is well-known that f*p € WH2(R™) and d(f*p) = (df)*p. To conclude, it only remains
to observe that ‘(d f) = ,o} < |df|* p by Jensen’s inequality. Hence property B) is achieved.
C) Given any = € R", let us define the translation operator Tr, : C([0, 1], R™) — C([0,1],R")
as Try(y), := v — . If v is absolutely continuous, then v and Tr;() have the same metric
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speed. Now fix a test plan 7. Clearly (Tr,).7 is a test plan as well. Therefore

/\(f*p)(%)(f*p)('yo)!dﬂ(v)é/p(x)/\f('h:L‘)f(%x)\dﬂ(v)dx

= [ ota) [ It = flov)] a(Tes).m(0) ds

</ / IDf|(0) |67 dt d(Try ) (o) da

/// 2) [Df (v — @) [3e| dt dme(7) da
// (/‘Dﬂ (e — ) (x)dip)’;Yt’dthr(fy)

_ / /0 (1D p) (w) 3¢l dt dme (),

which grants that f * p € S2 N L2(R") and ‘D(f * p)‘ < |Df| * p holds L£L"-a.e. in R™. O
With this said, we are in a position to prove the main result:

Theorem 2.1.37 Let f : R® — R be a given Borel function. Then f € S? N L2(R™) if and
only if f € WL2(R™). In this case, the equality |Df| = |df| holds £L™-a.e. in R™.

Proof. Let us fix a family of convolution kernels (p;)e>o. Given any f € WH2(R"), we deduce
from properties A) and B) of Proposition 2.1.36 that f * p. € SN L?(R™) and that

|D(f * pe)| = [d(f * pe)| < |df] % p- — |df| in L*(R™) as e \,0.

Since also f* p. — f in L2(R™) as € \, 0, we have that f € S2N L?(R") and that |Df| < |df]
holds £™-a.e. in R™, as a consequence of Proposition 2.1.13.

On the other hand, given any function f € S>N L?(R"), we have that f*p. € SN L?(R")
and that |d(f = p5)| = |D(f % pz)| < |Df] * p- holds L™-a.e. by properties A) and C) of
Proposition 2.1.36. Since |Df|* p. — |Df|in L?(R") as € \, 0, there exist a sequence &3, \, 0
and w € L*(R") such that d(f * p.,) — w weakly in L?(R"), thus necessarily w = df. In
particular, it holds that [ |df[>d£™ < lim, [|d(f psk)‘QdL” = [|Df|?dL", which forces
the L™-a.e. equality | D f| = |df|, proving the statement. O

2.2 Alternative notions of Sobolev space

We now introduce some alternative definitions of Sobolev space on a general metric measure
space (X,d,m), which a posteriori turn out to be equivalent to the one (via weak upper
gradients) we gave in Definition 2.1.15.

2.2.1 Approach a la Cheeger

The rough idea behind this approach is the following; we need an L?(m)-lower semicontinuous
energy functional of the form % [ |df]? dm, where the function |df| is an object which is
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‘local’” and satisfies some sort of chain rule. Given any Lipschitz function f € LIP(X), some
(seemingly) good candidates for |df| could be given by

_ = ) — @)
yor d(y, )
— [f) = f(2)]

lipy(f)(@) := lim =305

lip(f)(x) :

(local Lipschitz constant),

(asymptotic Lipschitz constant),

for x € X accumulation point and lip(f)(z),lip,(f)(z) := 0 otherwise. The local Lipschitz
constant has been previously introduced in (2.16). Observe that lip(f) < lip,(f) < Lip(f)
and that the equalities lip, (f)(x) = lim,~ Lip(f|BT(x)) = inf,~o Lip (f|B,~(J:)) hold for every
accumulation point z € X. Moreover, we shall make use of the following property of lip,:

lip,(fg) < [f[lip,(9) + lgl1ip,(f) ~ for every f,g € LIP(X), (2.28)
which is the Leibniz rule for the asymptotic Lipschitz constant.
Exercise 2.2.1 Prove that lip,(f) is an upper semicontinuous function. |
Another ingredient we need is the notion of upper gradient:

Definition 2.2.2 (Upper gradient) Consider two functions f,g : X — R, with g > 0.
Then we say that g is an upper gradient of f provided for any AC curve v : [0,1] — X one
has that the curve f o~ is AC and satisfies ‘(f O’y)ﬂ < g(ve)|¥e| for a.e. t €[0,1].

Notice that lip(f) — thus accordingly also lip,(f) — is an upper gradient of f for any
Lipschitz function f € LIP(X), as already shown in Remark 2.1.25. Given that, in general,
the functionals f — 1 [lip*(f)dm and f + % [lipZ(f)dm are not lower semicontinuous, we
introduce our energy functionals by means of a relaxation procedure:

Definition 2.2.3 Let us give the following definitions:

i) The functional E., : L*(m) — [0, +00] is given by

1
E*,a(f) = inf lim 5 hpg(fn) dm,

n—oo

where the infimum is taken among all sequences (fp)n C LIP(X) with f, — f in L*(m).
ii) The functional E, : L*(m) — [0, +00] is given by

E.(f) := inf lim % lip?(f,) dm,

n—0o0

where the infimum is taken among all sequences (fp)n C LIP(X) with f, — f in L*(m).
iii) The functional Ecy, : L*(m) — [0, +00] is given by

1
Ecn(f) = inf lim o G2 dm,

n—oo

where the infimum is taken among all sequences (fn)n € C(X) and (Gy)n such that Gy,
is an upper gradient of f, for everyn € N and f, — f in L*(m).
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Exercise 2.2.4 Prove that E,, is L?(m)-lower semicontinuous and is the maximal L?(m)-
lower semicontinuous functional E such that E(f) < 3 [ lipZ(f) dm holds for every f € LIP(X).
Actually, the same properties are verified by E, if we replace lip,(f) with lip(f). |

Definition 2.2.5 We define the Banach spaces W*lf(X), WH(X) and Wé’hZ(X) as follows:

Wid(X) == {f € L*(m) : Eval(f) < +o0},
WhHA(X) == {f € L*(m) : E.(f) < +oo}, (2.29)
WA(X) == {f € L*(m) : Ecn(f) < +o0}.

Any upper gradient is a weak upper gradient, so W*IGQ(X) - W*I’Q(X) - Wéh2(X) C Wh2(X).

Hereafter, we shall mainly focus our attention on the space W*laz(X) Analogous state-
ments for the other two spaces in (2.29) can be shown to hold.

Remark 2.2.6 The fact that the set Wi’f(X) is a vector space follows from this observation:
the asymptotic Lipschitz constant satisfies lip,(f+g) < lip,(f)+lip,(g) for all f, g € LIP(X).
Given any f,g € W*lf(X) and a, € R, we can choose two sequences (fp)n, (gn)n € LIP(X)
such that Ty [|fo — £l 2y = limn g0 — 9l 2y = 0 and T, [ Tip2(f) + lip2(ga) dm is
finite. Since af, + Bgn — af + Bg in L?(m), we thus deduce that

2E, q(af + Bg) < lim / lip2(aufy, + Bgn) dm < 2 Tim / a?1ip2(fn) + B%1ip2(gn) dm < +o0,
which shows that af + 8g € W*lf (X), as required. |

Definition 2.2.7 (Asymptotic relaxed slope) Let f € W*lf(X) be a given function.
Then an element G € L?*(m) with G > 0 is said to be an asymptotic relaxed slope for f
provided there exists a sequence (fn)n C LIP(X) such that f, — f strongly in L?(m) and
lip,(fn) = G’ weakly in L*(m), for some G' € L*(m) with G' < G.

Proposition 2.2.8 Let f € W*lﬁ(X) be given. Then the set of all asymptotic relazed slopes
for f is a non-empty closed convexr subset of L?>(m). Its element of minimal L?(m)-norm,

denoted by |Dfl. . and called minimal asymptotic relaxed slope, satisfies the equality

Eeulf) = 5 [ 1DIE  dm. (2:30)

Proof. The proof goes as follows:

EXISTENCE OF ASYMPTOTIC RELAXED SLOPES. Given that E, ,(f) < +oo, we can find a
sequence (f,), C LIP(X) such that f,, — f strongly in L?(m) and sup,, [ lipZ(f,)dm < +oc.
Then (up to a not relabeled subsequence) we have that lip,(f,) — G weakly in L?(m) for
some G € L?(m), whence G is an asymptotic relaxed slope for f.

CONVEXITY. Let us fix two asymptotic relaxed slopes G1, G for f and a constant « € [0, 1].
For i = 1,2, choose (f%), C LIP(X) such that f{ — f and lip,(f.) — G% < G;. We then
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claim that Gy + (1 — a)G2 is an asymptotic relaxed slope for f. In order to prove it, notice
that af! + (1 —a)f? — f in L?(m) and that

lip, (afr + (1 —a)f2) < alip,(fr) + (1 — a)lip,(f2) = oG} + (1 — @)Gh < aGy + (1 — a)Gs.

Up to subsequence, we thus have that lip, (a A4 (1—a) fn2) weakly converges to some limit
function G < aG; + (1 — &)Gs, proving the claim.

CLOSEDNESS. Fix a sequence (G,,), C L?(m) of asymptotic relaxed slopes for f that strongly
converges to some G' € L?(m). Given any n € N, we can pick a sequence (fym)m C LIP(X)
with fom = f and lip,(fom) =X G7, < Gy. Up to subsequence, we have that G/, — G’ for
some G’ € L?(m) with G’ < G. Then we can assume without loss of generality that the
sequence (lipg( fnm))nm is bounded in the space L?(m). Since the restriction of the weak
topology to any closed ball of L?(m) is metrizable, by a diagonalisation argument we can
extract a subsequence (my,), for which we have f, ., — f and lip,(frm,) — G' < G, ie. G
is an asymptotic relaxed slope for f.

ForRMULA (2.30). Call |Df|,, the asymptotic relaxed slope for f of minimal L?(m)-norm.
By a diagonalisation argument, there exists some (hy,), C LIP(X) such that h,, — f in L?(m)
and E, ,(f) = lim, % flipz(hn) dm. Up to subsequence, it holds that lip,(h,) — H weakly
for some H € L?(m), thus H is an asymptotic relaxed slope for f and accordingly

1 1
2/]Df|ia dm < 2/H2 dm = E, (f). (2.31)

Now choose any sequence (f,), € LIP(X) such that f, — f in L?(m) and lip,(f,) — |Df]«.a
weakly in L?(m). By Theorem A.2, for any n € N there exist N,, > n and (v, ;) C [0,1] in
such a way that S0 a,; =1 and 330" o, lip, (fi) = |Df

+a in L2(m). Let us now define
Ny, )

fn = Z an; fi  for every n € N.
i=n

It is clear that f, — f in L?(m): given any ¢ > 0, there is 7 € N such that || f, — fllzm <€
for all n > 7, so that accordingly one has

N, Np,
1= Fllre) <D anilfi= fllom S €Y ani=¢ for every n > n.
i=n i=n

Note that one has lip,(fn) < Zf\[:"n nilipy(fi)) = |Dflsa in L?(m), whence (up to a not
relabeled subsequence) it holds that lip,(f,) — G weakly in L?(m) for some G < |Dfl.q.
Therefore G is an asymptotic relaxed slope for f, so that [|Df Ea dm < [ G? dm, which
forces the m-a.e. equality G = |D f| . Moreover, it holds that

Eelf) <t 5 [1ipE(f)dm < Ton 5 [ tipd(f,) dm

n—oo

— 1 Ny, . x0\2 1 5 (2.31)
< _ . . = — < .
< lim ( E Z,:nom,zhpa(f})) dm 2/|Df*7adm < Euo(f)

n—o0 2

This ensures that % [ IDf!ia dm = E, ,(f), thus proving (2.30). O
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Proposition 2.2.9 (Cheeger) Let f € W*IC?(X) be given. Let G1,G9 be asymptotic relaxed
slopes for f. Then Gi A\ Ga is an asymptotic relaxed slope for f as well.

Proof. Notice that Gy A Gy = Xg G1+ Xpge G2, where E := {G1 < G2}. By inner regularity of
the measure m, it thus suffices to show that Xx G1 + Xx< G2 is an asymptotic relaxed slope
for f, for any compact K C X. Fix any r > 0. Let us define the cut-off function 1, € L?(m)
as = (1— d(-,K)/r)+. For any i = 1,2, we can choose (f%), C LIP(X) such that fi — f
and lip,(f2) — G < G;. Now call !, := 5, f} + (1 — n,) f? € LIP(X) for every n € N. One
clearly has that k! = f strongly in L?(m). Moreover, given that
hy = fo+ (=0 (7= f2) = fr+ (o — f2),
we infer from the Leibniz rule (2.28) that

lip, (hy,) <1ipg(f2) + (1 —1r) (lipa(fa) +1ipa (£7)) + |4 — £21lipe (1 = ny),
lip (hy,) < 1ipg (£3) + 1 (1ipa (fa) +1iDa (£7)) + |fa — £ 1iDa (01)-
Up to subsequence, we obtain from (2.32) that lip,(h?) = G, for some G, € L*(m) with
Gy <min {G} + (1 = 7:) (G + G3), Gy +n(G + G) }. (2.33)

Since n, = 1 on K and n, = 0 on X \ K", where K" := {x eX :d(z,K) < r}, we deduce
from the inequality (2.33) that

(2.32)

Gr < Xk G + Xx\kr G + 2 Xgr\ i (G + GY). (2.34)

The right hand side in (2.34) converges in L?(m) to the function X5 G} + X G as 7\, 0,
which grants that Xx G1 + Xk G2 is an asymptotic relaxed slope for f, as required. U

It immediately follows from Proposition 2.2.9 that:
Corollary 2.2.10 Let f € W*l’f(X) Take any asymptotic relaxed slope G for f. Then the
inequality |Dfly o < G holds m-a.e. in X.

Proof. We argue by contradiction: suppose that there exists a Borel set P C X with m(P) > 0
such that G < |Df|. , holds m-a.e. on P. Then the function G’ := GA|Df|., € L?(m) satisfies
the inequality [(G’)*dm < [|Df[?,dm. This contradicts the minimality of |Df|. 4, as G’ is
an asymptotic relaxed slope for f by Proposition 2.2.9. O

Proposition 2.2.11 (Chain rule) Let f € W*lf(X) be fired. Let ¢ € C*(R) N LIP(R) be
such that p(0) = 0, which grants that ¢ o f € L*(m). Then po f € Wf}}?(X) and

|D(¢o f)|,, <I|lo fIDflsa  holds m-a.e. in X. (2.35)
Proof. Pick (fn)n C LIP(X) such that f, — f and lip,(f,) = |Df|sq in L?(m). It holds that
lipa(p 0 f) < |¢'] © fuling(fu) — |¢| 0 fIDflia  strongly in L*(m). (2.36)

Then there exists G € L?(m) such that, possibly passing to a subsequence, lip,(¢ o f,) — G.
In particular G < [¢'| o f|D flsq by (2.36), while the inequality [D(¢o f)|, . < G is granted
by the minimality of ‘D(cp o f) ‘* .- This proves the statement. O
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Remark 2.2.12 Analogous properties to the ones described in Theorem 2.1.28 can be shown
to hold for the minimal asymptotic relaxed slope | D f|. 4. This follows from Proposition 2.2.9
and Proposition 2.2.11 by suitably adapting the proof of Theorem 2.1.28. |

The vector space W*lf (X) can be endowed with the norm
2 = || £} : f Wh(X 2.37
17120200 = 1122 + (1Dl for every f € WIZ(X).  (237)

Then (W*laz(X), [ Al (X)) turns out to be a Banach space. Completeness stems from the
lower semicontinuity of the energy functional E, ,.

Remark 2.2.13 Similarly to what done so far, one can define the objects |Df|. and |D f|cn
associated to the energies E, and Ecy, respectively. It can be readily checked that

|IDf| < |Dflch < |[Df]« <|Dflsa in the m-a.e. sense
for every f € W*lf(X) [

Besides the fact of granting completeness of W*lg(X), the relaxation procedure we used
to define the energy functional E, , is also motivated by the following observation:

Remark 2.2.14 Suppose that X is compact. Define
. 2
15 = 112y + e (H)]| 72— for every f € LIP(X).

Hence || - [l is a seminorm on the vector space LIP(X). Now let us denote by W the
completion of the quotient space of (LIP(X), || - ”W) The problem is that in general the
elements of W ‘are not functions’, in the sense that we are going to explain. The natural
inclusion i : LIP(X) — L?(m) uniquely extends to a linear continuous map 1 : W — L2 (m),
but such map is not necessarily injective, as shown by the following example. |

Example 2.2.15 Take X := [—1, 1] with the Euclidean distance and m := dy. Consider the
functions fi, fo € LIP(X) given by fi(z) := 0 and fa(x) := z, respectively. Then f; and fo
coincide as elements of L*(m), but || f1 — follz = I f2lli7 = 1. [ |

2.2.2 Approach a la Shanmugalingam

Here we present a further notion of Sobolev space on metric measure spaces, which will turn
out to be equivalent to all of the other ones discussed so far.

Given a metric measure space (X,d, m), let us define
I(X):={y: J>X ’ J C R non-trivial interval, v is AC}. (2.38)

Given any curve v € I'(X), we will denote by Dom(7) the interval where 7 is defined and we
will typically call I € R and F' € R the infimum and the supremum of Dom(+y), respectively.
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If G: X — [0, +00] is a Borel function and v € I'(X), then we define

F
/y G = /I G () el i, (2.39)

with the convention that fv G := 400 in the case in which {¢ € Dom(y) : G(v) = +oo} has
positive £!-measure. We call f,y G the line integral of G along the curve ~.

Definition 2.2.16 (2-modulus of a curve family) LetT' be any subset of I'(X). Then we
define the quantity Mods(T') € [0, +00] as

Mody(T") := inf { /p2 dm ‘ p: X = [0,+o0] Borel, /p > 1 for all vy € F}. (2.40)
g

We call Moda(T") the 2-modulus of I'. Moreover, a property is said to hold 2-a.e. provided it
is satisfied for every ~ belonging to some set I' C I'(X) such that Mods(I'®) = 0.

The 2-modulus Mods is an outer measure on I'(X), in particular it holds that

FCI'Cr(X) = Mody(I') < Mody(T"),
T, CT(X), Moda(T') =0 forallm € N = Mody(I') =0, where I':= | | .

neN

To prove the above claim, fix a sequence (I'),, of subsets of I'(X) and some constant & > 0.
For any n € N, choose a function p,, that is admissible for I',, in the definition of Mods(T';,)
and such that [ p2 dm < Mody(I',) + /2" Now call p := sup,, p,. Clearly p is admissible
for I := | J,, I'n and it holds that

Mody(T) < /p2 dm < Z/pidm <> Mody(Ty) + 25,

neN neN

whence Modz(I") < " -y Moda(T',) by arbitrariness of . Hence Mods is an outer measure.

Remark 2.2.17 Let us fix a Borel function G : X — [0, 4+00) such that G € L?(m). We
stress that G is everywhere defined, not an equivalence class. Then fv G < 400 for 2-a.e. 7.

Indeed, call T := {’y eI'X) : fﬁ/G = +oo}. Given any € > 0, we have that p := G is
admissible for T', so that Moda(I') < €2 [ G? dm. By letting £ \, 0, we thus finally conclude
that Mods(T") = 0, as required. [

Definition 2.2.18 (2-weak upper gradient) Let f : X — RU {+oo} and G : X —
[0, 4+00] be Borel functions, with G € L*(m). Then we say that G is a 2-weak upper gra-
dient for f if

’f(’YF) _ f(’YI)’ < /G holds for 2-a.e. 7, (2.41)
v

meaning also that f7 G must equal +00 as soon as either ‘f(’yj)‘ = +00 or ’f('yp)‘ = +o0.
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Remark 2.2.19 Consider two sets I', " C T'(X) with the following property: for every v € T,
there exists a subcurve of v that belongs to I". Then Modz(T") < Moda(I”).

The validity of such fact easily follows from the observation that any function p that is
admissible for IV is admissible even for T'. |

Lemma 2.2.20 Let G be a 2-weak upper gradient for f. Then for 2-a.e. curve v € T'(X) it
holds that Dom(vy) > t — f(v) is AC and ‘@(f O’y)t| < G()|3t| for a.e. t € Dom(7).

Proof. Let us denote by I' the set of curves v for which the statement fails. Moreover, call

r'={yere \ e = 1600 > [ ¢}

f::{’yeF(X)‘ /WG:JFoo}.

Notice that Mody(I”) = 0 because G is a 2-weak upper gradient for f, while Mody(I') = 0 by
Remark 2.2.17. Now fix v € T'\ T, in particular t — G(v;)|5:| belongs to L*(I, F). Then there
exists t,s € Dom(v), s < t such that |f(v) — f(7s)| > fStG(fyr)|"yT| dr: if not, then v would
satisfy the statement of the lemma. Therefore Moy € I, whence Moda(I'\ T') < Mody(I)

by Remark 2.2.19. This yields Mods(I') < Mods(I”) + Mody (D N T) = 0, as desired. O

We thus deduce from the previous lemma the following locality property:

Proposition 2.2.21 Let G1,Gy be 2-weak upper gradients of f. Then min{Gi,Ga} is a
2-weak upper gradient of f as well.

Proof. For i = 1,2, call T; the set of v € I'(X) such that foyis AC and |9¢(fov)| < Gi(y)||
holds for a.e. ¢ € Dom(vy). Then for every curve v € I'y N Ty we have that f o~y is AC and
that |9;(f o )| < min {G1(7), G2(7)} |4/ holds for a.e. t € Dom(y). By integrating such
inequality over Dom(v) we get

|f(’YF) - f(71)| < /min{Gl, Gy} for every v € 'y NTs.
gl

Then the claim follows by simply noticing that Mods (I'(X) \ (I't N T)) = 0. O

Theorem 2.2.22 (Fuglede’s lemma) Let G,G,, : X — [0,+00], n € N be Borel functions
that belong to L?(m) and satisfy lim,, |G, — Gllz2(m) = 0. Then there is a subsequence (ny)y

such that f7 |G, — G %0 holds for 2-a.e. . In particular, fv G, LA wa for 2-a.e. .

Proof. Up to subsequence, assume that [|Gr, — G| 2y < 1/2" for every n € N. Let us define

1
Iy := {fyeF(X) ‘ ILm /|Gn—G| > k} for every k € N\ {0}.
n oo ~

Observe that fﬁ/ |Gp — G| — 0 as n — oo for every v ¢ |J, 'k, thus to prove the statement
it is sufficient to show that Moda(I'y) = 0 holds for any £ > 1. Let & > 1 be fixed. For
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any m € N we define p,, := k) -, |Gn — G|. For every curve v € I'y there is n > m
such that f7 |G, — G| > 1/k, whence f,y pm > 1, in other words py, is admissible for I'j.
Moreover, one has that [|pml|p2m) < kD05 1Gn = Gll2m) < k/2mt for every m € N.
Hence Mody(T'y) < HpmH%Q(m) ™0, getting the statement. O

Theorem 2.2.23 Given anyn € N, let G, be a 2-weak upper gradient for some function fy.
Suppose further that G, — G and f, — f in L?(m), for suitable Borel functions f : X — R
and G : X — [0, +00]. Then there is a Borel function f: X — R such that f(x) = f(zx) holds
for m-a.e. x € X and G is a 2-weak upper gradient for f.

Proof. Possibly passing to a not relabeled subsequence, we can assume without loss of gene-
rality that f,, — f in the m-a.e. sense. In addition, we can also suppose that f7 |G, — G| — 0
holds for 2-a.e. v by Theorem 2.2.22. Call f(z) := lim, f,(x) for every x € X. Then f = f
holds m-a.e. in X, thus accordingly f € L?(m). Let us define

I:= {VEF(X)’ /|Gn—G|ﬂ>0, fnovyis AC, ‘(fnoq/)"ano'yM forallnEN},
2l

I’ = {7 el either ’f(w)‘ < 400 or ‘JE(’YF)‘ < +OO}7

() |
N:= {7 e I'(X) ‘ ‘f('yt)‘ = +oo for every t € Dom(y)}.

Note that Moda(I') = 0 because G, is a 2-weak upper gradient of f, for any n € N.
Furthermore, we have that Mody(N) = 0: indeed, for every € > 0 the function p := &|f| is
admissible for N and ||pl| j2(m) < €[l f[l2(m)- We now claim that

‘f('YF) - Jg(w)‘ < /G for every y e I N T, (2.42)
g

To prove it, just observe that ‘f(vp) - f(’y[)‘ < limy, | fu(vr) = fu(yr)| < lim, f7 G, = wa
for every v € T NTY. We can use (2.42) to prove that

‘f(’YF) — f(fyl)‘ < /G for every v € I' \ N. (2.43)
.

Indeed: fix v € '\ N. There exists ¢ty € Dom() such that ‘f('}/to)‘ < 4o00. Call 4! := Y|
We have that v!,7? € T NIV, so that (2.42) yields

[I,to]

2 ._
and y* = 7|[t0,F]‘

\ﬂwwfmnsmwwfmm+m%wfmms/p+/§=/c.

Since Mods (I'(X) \ (I'\ N)) = 0, we deduce from (2.43) that G is a 2-weak upper gradient of
the function f: X — R, defined by f := X{f<too} f, which m-a.e. coincides with f. ([l

We now define the Sobolev space WSl}’lz(X), where ‘Sh’ stays for Shanmugalingam, who
first introduced such object.
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Definition 2.2.24 We define the Sobolev space Wsll’f(X) as the set of all f € L*(m) such
that there exist two Borel functions f : X — R and G : X — [0,400] in L?(m) satisfying
these properties: f(z) = f(x) for m-a.e. x € X and G is a 2-weak upper gradient for f.

We endow the vector space WS}}’IZ(X) with the norm given by

Hf\livslﬁz(x) = £ Z2gmy + i0E [GllF2y  for every f € Wei(X), (2.44)

where the infimum is taken among all Borel functions G : X — [0,400] that are 2-weak upper

gradients of some Borel representative of f.

Remark 2.2.25 (Minimal 2-weak upper gradient) Given any f € I/Vsll’lQ(X)7 there exists
a minimal 2-weak upper gradient |D f|gn, where minimality has to be intended in the m-a.e.
sense. In other words, if f is a Borel representative of f and G is a 2-weak upper gradient
for f, then |Df|s, < G holds m-a.e. in X. It thus holds that

2 1,2
1152200 = IF I L2y + 1D flsnll oy for every f € Wgi(X). (2.45)
These statements follow from Proposition 2.2.21 and Theorem 2.2.23. |

Lemma 2.2.26 Let I" be a subset of AC([0,1],X) such that Mod2(I') = 0. Then ©*(I') =0

for every test plan 7 on X, where w* denotes the outer measure induced by 7.

Proof. Take p admissible for I'. The function (v,t) — p(v)|%| is Borel, hence {7 : f7 p>1}
is a w-measurable set by Fubini theorem. Observe that such set contains I', so that

m*(T) < //vpdn-(fy) _ /Ol/p(%)\%\dﬂ-(y) .
: </01/'02(’Yt)d71'(7) dt)m(/ol/ 502 de() dt>1/2

< \/Comp(m) ( / 1/ 2 d () dt) 1/2( 7 dm) "

By arbitrariness of p, we conclude that =*(T") = 0. O

Remark 2.2.27 It holds that

|Dflsa > |Df]« > |Dflch > |Dflsh > |Df],

2.46
WEA(X) € WHH(X) € W (X) € Wit (X) € WHA(X). (240)

To prove |Df|cn > |Dfl|sh, observe that any upper gradient is a 2-weak upper gradient. On
the other hand, to show |D f|sy > |Df| it suffices to apply Lemma 2.2.26. |

To prove the equivalence of all the notions of Sobolev function on metric measure spaces

described so far, we need the following deep approximation result, whose proof we omit:
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Theorem 2.2.28 (Ambrosio-Gigli-Savaré) Let (X,d,m) be any metric measure space.
Then Lipschitz functions in X are dense in energy in W12(X), namely for every f € W1H2(X)
there exists a sequence (fn), C LIP(X) N L?(m) such that f, — f and lip,(f.) — |Df| in
L?(m), thus accordingly also lip(f,) — |Df| and |Df,| — |Df| in L?(m).

In particular, we have that W*I(?(X) = W12(X) and that the equality |Df
satisfied m-a.e. for every f € WH2(X).

wa = |Df] is

We directly deduce from Theorem 2.2.28 that all inequalities and inclusions in (2.46) are
actually equalities. In other words, all the several approaches we saw are in fact equivalent.

Remark 2.2.29 In order to prove that |D f|cn, = | D fl|sh, the following fact is sufficient:

Let G be a 2-weak upper gradient for f and let € > 0. Then there exists (2.47)
an upper gradient G for f such that H(N}’HLg(m) <Gl 2 +& '

To prove it: call I" the set of v € I'(X) such that }f(’yp) —f(w)’ > fv G, so that Moda(I') = 0.
We first claim that

Jp: X — [0, +00] Borel such that /p = +oo for all y € I' and [|p|| f2(y) < €. (2.48)
v
Indeed, there is (py,), such that f,y pn = 1and |pnllp2(y) < €/2" foralln € Nand v € T. Thus
it can be easily seen that the function p:= 3, -, py, satisfies (2.48): for every v € I' we have
that [[ p=limm o0 3 -5tq [, pn 2 limpoe m = +00, while [|p]| p2(m) < st [1onllp20m) < €

Finally, let us call G := G + p. Clearly G satisfies (2.47): if v € T" then fv G = +o00, while
if v ¢ T then |f(yr) — f(71)] < fv G < f7 G, i.e. G is an upper gradient of f; moreover, one
has (|Gl 2wy < |1Gll L2y + 1Pl L2m) < Gl L2(m) + €. This concludes the proof. [ |

Bibliographical remarks

The first definition of Sobolev space on a metric measure space has been proposed by Hajtasz
in [22]. The notion that in [22] is analogous to that of minimal weak upper gradient discussed
here is non-local in nature; as such, the definition in [22] lacks one of the key properties that
Sobolev functions have in the classical smooth setting and is not suitable to the discussion we
intend to pursue here, where locality of minimal weak upper gradients plays a pivotal role.

The paper which introduced the by-now most widely used notion of Sobolev spaces on
metric measure spaces is the seminal work of Cheeger [11], of which we gave an account in
Subsection 2.2.1. Cheeger’s approach was at least in part inspired by Koskela and MacManus,
who in [23] introduced the notion of upper gradient in a metric setting.

Soon after Cheeger’s contribution, Shanmugalingam proposed in [29] the alternative def-
inition we recalled in Subsection 2.2.2, and proved the equivalence with Cheeger’s one: her
theory is an adaptation to the metric setting of the results contained in [17], which are in
turn inspired by the ideas of [24].
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Finally, the approach to Sobolev functions by duality with the concept of test plan has been
proposed in [5], where also the equivalence with Cheeger’s and Shanmugalingam’s approach
has been proved. The presentation we gave here also takes into account some ideas contained
in [19]. Theorem 2.1.21, constitutes a (partially) new result, inspired by the study of test
plans carried out in [18]. The formulation of the density in energy of Lipschitz functions given
here, namely Theorem 2.2.28, comes from [1], but the argument was in fact mostly contained
in [5].
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Chapter 3

The theory of normed modules

This chapter is devoted to the study of the so-called normed modules over metric measure
spaces. These represent a tool that has been introduced by Gigli in order to build up a
differential structure on nonsmooth spaces. In a few words, an L?(m)-normed L>(m)-module
is a generalisation of the concept of ‘space of 2-integrable sections of some measurable bundle’;
it is an algebraic module over the commutative ring L (m) that is additionally endowed with
a pointwise norm operator. This notion, its basic properties and some of its technical variants
constitute the topics of Section 3.1.

Many constructions are available in the framework of normed modules. For instance, it
is possible to take duals, tensor products and pullbacks of normed modules. Furthermore,
there is a special class of normed modules, called Hilbert modules, which have nicer functional

analytic properties. All these objects are described in detail in Section 3.2.

3.1 Definition of normed module and basic properties

3.1.1 L?-normed L>*®-modules

Let (X,d,m) be a fixed metric measure space.

Definition 3.1.1 (L?-normed L*°-module) We define an L?(m)-normed L (m)-module,

or briefly module, as a quadruplet (///, (RPN \) with the following properties:
i) (A,|-1.4) is a Banach space.
ii) The multiplication by L®-functions - : L*°(m) X .# — . is a bilinear map satisfying

f(g-v)=(fg)-v forevery f,g € L®(m) and v € A,

(3.1)
l-v=v foreveryv e 4,

where 1 denotes the (equivalence class of the) function on X identically equal to 1.

65
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iii) The pointwise norm |-|: .# — L*(m) satisfies

|| >0 m-a.e. for everyv e A,
|f-v] =|fllv] m-a.e. for every f € L°(m) and v € A, (3.2)

vl 4 = H‘U‘HL%m) for every v € A .
For the sake of brevity, we shall often write fv instead of f - v.
Proposition 3.1.2 Let .# be a module. Then:
) fvllg < Ifll oo myllvll.z for every f € L>(m) and v € A .

i) Av= v for every A € R, where X denotes the (equivalence class of the) function on X
identically equal to \.

iii) It holds that

v+ w| < v 4 w]
m-a.e.  for every v,w € A and \ € R. (3.3)
[Av] = [AlJv]

Proof. The proof goes as follows:
i) Simply notice that

170l = 1100 oy < 1 2ol 2y = 1 zoem 0]

is verified for every f € L*>°(m) and v € .# by (3.2) and by Holder inequality.

ii) Given any A € R and v € ., we have that v = (A1)v = A(1v) = Av by (3.1) and by
bilinearity of the multiplication by L°°-functions.

i) Fix A € R and v,w € .#. Clearly [\v| = |Mv| = |A|[v| = |A||v] holds m-a.e. in X as a
consequence of ii). On the other hand, in order to prove that |v + w| < |v| + |w| holds m-a.e.
we argue by contradiction: suppose the contrary, thus there exist a,b,c € R with a +b < ¢
and E C X Borel with m(FE) > 0 such that

lv| <a
lw| <b holds m-a.e. in E. (3.4)
lv+w| > ¢

Hence we deduce from (3.4) that

1/2
IXE(v+ w)H% = (/ v —i—w[zdm) > cem(BE)Y? > (a4 b)m(E)Y/?
E

1/2 1/2
> ( / |v|2dm) +( / |w|2dm) = Ixe vl + IXewll .
E E

which contradicts the fact the || - || , is a norm. Therefore (3.3) is proved. O
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Exercise 3.1.3 Let V, W, Z be normed spaces. Let B: V x W — Z be a bilinear operator.

i) Suppose V is Banach. Show that B is continuous if and only if both B(v,-) and B(-, w)
are continuous for every v € V and w € W.

ii) Prove that B is continuous if and only if there exists a constant C > 0 such that the
inequality || B(v, w)||, < C'|Jvlly |lwlly, holds for every (v,w) € V x W. [ ]

Remark 3.1.4 It directly follows from property i) of Proposition 3.1.2 and from Exercise
3.1.3 that the multiplication by L°°-functions is a continuous operator. |

Example 3.1.5 We provide some examples of L?(m)-normed L (m)-modules:
i) The space L?(m) itself can be viewed as a module.

ii) More in general, the space L?(X,B) is a module for every Banach space B. (In the case
in which m is a finite measure, the space L?(X,B) is defined as the set of all elements v
of L'(X,B) for which the quantity [ [|v(z)||3 dm(z) is finite.)

iii) The space of L?-vector fields on a Riemannian manifold is a module with respect to the
pointwise operations. Actually, the same holds true even for a Finsler manifold (i.e.,
roughly speaking, a manifold endowed with a norm on each tangent space).

iv) The space of L2-sections of a ‘measurable bundle’ over X (whose fibers are Banach
spaces) has a natural structure of L2-normed L>-module. For instance, consider the
spaces of covector fields or higher dimensional tensors with pointwise norm in L?. W

Remark 3.1.6 One can imagine a module .#, in a sense, as the space of L2-sections of some
measurable Banach bundle over X; cf. the Serre-Swan theorem. |

Definition 3.1.7 Let .# be a module and v € .# . Then let us define

{v=0}:={Jv| = 0}. (3.5)

Notice that {v = 0} is a Borel set in X, defined up to m-a.e. equality. Similarly, one can
define {v # 0}, {v =w} for w e A and so on.

It is trivial to check that for any £ C X Borel one has
Xpv=0 <= |v|=0 m-ae. in E. (3.6)

Indeed, Xg v = 0 if and only if || Xgv|| , = 0 if and only if [}, [v|* dm = 0 if and only if [v] =0
holds m-a.e. in E. If the two conditions in (3.6) hold, we say that v is m-a.e. null in E.

Remark 3.1.8 Let .# be a module. Let v € .Z. Suppose to have a sequence (E,,), of Borel
subsets of X such that Xg,v = 0 for every n € N. Then v is m-a.e. null in |J,, B, as one can
readily deduce from the characterisation (3.6). [
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Proposition 3.1.9 (m-essential union) Let {E;}ics be a (not necessarily countable) family
of Borel subsets of X. Then there exists a Borel set E C X such that:

i) m(E; \ E) =0 for every i € 1.

ii) If F C X Borel satisfies m(E; \ F') =0 for alli € I, then m(E \ F) = 0.
Such set E, which is called the m-essential union of {E;}icr, is m-a.e. unique, in the sense
that any other Borel set E with the same properties must satisfy m(EAE) = 0.

Proof. Uniqueness follows from condition ii). To prove existence, assume without loss of
generality that m € Z2(X) (otherwise, we can replace m with a Borel probability measure m
such that m < m < m, which can be built as in the proof of STEP 5 of Theorem 2.1.28). Let
us denote by A the family of all finite unions of the E;’s and call S := sup {m(A) tAe A}.
Hence there is an increasing sequence of sets (A,), C A with m(4,) » S. Define £ := | J,, 4.
Clearly E satisfies 1): if not, there exists some i € I such that m(E; \ E) > 0, whence

S=m(F)<m(FUE;) = li_)m m(A, UE;) <S8,

which leads to a contradiction. Moreover, the set F can be clearly written as countable union
of elements in {E;}icr, say E = J;c; Ej for some J C I countable. Hence for any F' C X
Borel with m(E; \ F') = 0 for each i € I, it holds that

m(E\F) <) m(E;\F)=0,
jeJ
proving ii) and accordingly the existence part of the statement. O

Given any v € ., it holds that {v = 0} can equivalently described as the m-essential
union of all Borel sets £ C X such that Xgv = 0.

Example 3.1.10 Define E; := {i} for every i € R. Then the set-theoretic union of {E;}icr
is the whole real line R, while its £!-essential union is given by the empty set. |

Definition 3.1.11 (Localisation of a module) Let .# be a module. Let E be any Borel
subset of X. Then we define

%‘EI:{XEU cveM} C M. (3.7)

It turns out that the space .# E is stable under all module operations and is complete,
thus it is a submodule of .Z.

Proposition 3.1.12 Let S be any subset of # . Let us define
AM(S) := M -closure of 8 := {ZfZ v;

i=1
Then 4 (S) is the smallest submodule of A containing S.

n N, (s © L(m), (0 C s}. (3.8)

Proof. We omit the simple proof of the fact that .#(S) inherits from .# a module structure.
Moreover, any module containing the set .S must contain also & and must be closed, whence
the required minimality. U
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Definition 3.1.13 (Generators) The module #(S) that we defined in Proposition 3.1.12
is called the module generated by S. Moreover, if E C X is Borel and .#(S5)|,, = ///’E’ then
we say that S generates .# on E.

|E

Remark 3.1.14 The space L?(m), viewed as a module, can be generated by a single element,
namely by any L?(m)-function which is m-a.e. different from 0. |

Proposition 3.1.15 Let V be a vector subspace of 4. Then # (V) is the M -closure of

V.= {ZXEW@'

i=1

n €N, (E;)i~, Borel partition of X, (v;)i_y C V}. (3.9)

Proof. The inclusion cl 4 (V) C .# (V) is trivial. To prove the converse inclusion, since V and
accordingly also cl 4 (V) are vector spaces, it suffices to show that fv € cl 4(V) whenever we
have f € L*(m) and v € V' \ {0}. Given any £ > 0, pick a simple function g = > ;" | & Xg,
such that [|f — gl pec(m) < €/ll0]l 4~ Then [[fv—gv[| , <eand gv =737, Xg,(a;v) €V, as

required. Hence the statement is achieved. ]
Remark 3.1.16 Let .# be a module. Then the pointwise norm |- | : .# — L*(m) is
continuous.

Indeed, since ||v| — |w|| < |v — w]| holds m-a.e. for any v,w € .# by (3.3), one immediately
deduces that |||v] — \w|HL2(m) < v —w| , for every v,w € 4. [

Lemma 3.1.17 Let S C .# be a separable subset with the following property: the L*°(m)-
linear combinations of elements of S are dense in M . Then the space M is separable.

Proof. Pick a countable dense subset (vy,), of S. It is then clear that the L°(m)-linear
combinations of the v,’s are dense in .#. It only remains to show that the family of such
combinations is separable. Now fix a Borel probability measure m’ on X with m < m’ < m.
Then there exists a countable family A of Borel subsets of X such that for any £ C X Borel
there is a sequence (E;); C A with m'(E;AFE) — 0. For instance, define A as the set of all
open balls with rational radii that are centered at some fixed countable dense subset of X.
Hence let us define the separable set D as

N
D= { Z on XE, Un

n=0

NeN, (a)) CQ, (BN, C A}.

It can be readily proved that the set of all L°°(m)-linear combinations of the v,,’s is contained
in the closure of D. Therefore the statement is achieved. O

3.1.2 L-normed L°-modules

We introduce an alternative notion of normed module over (X, d, m), for which no integrability

assumption is required:
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Definition 3.1.18 (L°-normed L°-module) Let (X,d,m) be a metric measure space. We
define an L°(m)-normed L°(m)-module as any quadruple (///0,7', - |), where:

i) (.#°,7) is a topological vector space.

ii) The bilinear map -: LO(m) x .4° — .#° satisfies f-(g-v) = (fg)-v and 1-v=1v for
every f,g € L%(m) and v € .#°.

iti) The map |-|: #° — L°(m), which satisfies both |v| > 0 and |f - v| = |f||v] m-a.e. for
every v € A#° and f € L°(m), is such that the function d_yo : A° x #° — [0,+00),
defined by

d_yo(v,w) == / v —w| Aldm’'  for some m' € 2(X) withm < m' <m, (3.10)
is a complete distance on .#° that induces the topology T.

Remark 3.1.19 The topology 7 in the definition of an L-normed module does not depend
on the particular choice of the measure m’. Indeed, it holds that a given sequence (v,), C .#°

is d_,0-Cauchy if and only if

for every e >0 and £ C X

Tm m(Eﬁ Uy — U >5):0
{| n m| } Borel with m(E) < +o0.

7n,M—00

Such statement can be achieved by arguing as in the proof of Proposition 1.1.19. |

Definition 3.1.20 (L°-completion) Let .# be an L?(m)-normed module. Then we define
an LY(m)-completion of .# as any couple (.#°,i), where .#° is an L°(m)-normed module
and the map i : M — MO is a linear operator with dense image that preserves the pointwise
norm, i.e. such that the equality |i(v)| = |v| holds m-a.e. for every v € /.

Remark 3.1.21 Let .#° be an L°(m)-normed module. Then

|-|:.#° — L°(m) is continuous,

3.11
: LO%(m) x .#° — .#° s continuous. (3.11)

To prove the first in (3.11), we begin by observing that |v + w| < |v| + |w| holds m-a.e. for
any v, w € .#°: if not, we can find constants a,b,c > 0 with a +b < ¢ and a Borel set P C X
with m(P) > 0 such that |v| < a, |w| < b and |v+ w| > ¢ hold m-a.e. on P, so that

[l

dgo(c ™t xpv,0) +d po(c Xpw,0) = [ = Aldm'+ |w‘/\1dm’:/|v+yu’|dm/
p C p C P C

b
</a+dm/</!v+wdmf
p C P c

=d (¢ Xp (v+w),0),
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which contradicts the fact that d ,o0 is a distance. Therefore
dpo (|0, lw]) = / o] — feol| A 1dm’ < /\v Cwl At = d_yo(v, w).

To prove the second in (3.11), suppose that f,, — f and v, — vin L°(m) and .#Z°, respectively.
We aim to show that f,v, — fv in .#°. First of all, observe that

| fovn — fo] <|fullon — v+ |v||fn — f] holds m-a.e. in X. (3.12)
We claim that
C Tm
¥6>0 3IM>0: Tim w'({|fa] > M}) <4 (3.13)

Clearly, given any 6 > 0 there exists M > 1 such that m’({]f] > M — 1}) < 0. Hence
T / / T /
nh—>n<§om({|f”’ >M}) <w'({|f] > M —1}) +nh_>rrolom ({Ifn = fI>1}) <,
which proves (3.13). Now let £ > 0 be fixed. Given any 6 > 0, take M > 0 as in (3.13), so
@m’({]anvn —v|>¢/2}) < @m’({\fnl > M}) —i—@m’({\vn —v| >¢e/(2M)}) < 4.

Hence lim, m’({|fy||vn — v| > £/2}) = 0 by letting 6 \, 0. In an analogous way, we can see
that also lim, w’({|v||f, — f| > /2}) = 0. Therefore (3.12) yields

@m’(ﬂfnvn — fv|>e}) < @m’(ﬂanvn —v| >¢/2}) —i—@m’({]v“fn — fl>¢/2}) =0,
which proves that f,v, — fv in .#°, as desired. |

Proposition 3.1.22 (Existence and uniqueness of the L'-completion) Let.# be any

given L*(m)-normed module. Then there exists a unique L°(m)-completion (#°,i) of M .
Uniqueness has to be intended up to unique isomorphism, in the following sense: given any

other L°(m)-completion (//7),;) of M , there is a unique module isomorphism V : .#° — MO

such that
\ l\y (3.14)

is a commutative diagram. Moreover, it holds that:
i) The mapi: M — #° is continuous and i(fv) = fi(v) for all f € L®(m) andv € A .

ii) i(.#) coincides with the set of all v € .#° such that |v| € L?(m).

Proof. The proof goes as follows:

i) Since ‘z(v)’ = |v| holds m-a.e. for every v € .#, we deduce that H|z’(v)|HL2(m) = |jv|| , for
every v € . Hence if (vy)n, C .4 converges to v € .4 then |Hz(vn -
we have d_yo (i(vy),i(v)) = dpo([i(vn — v)|,0) — 0 by Remark 1.1.22.

v)|HL2(m) — 0, so that
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Moreover, we have that Xgi(v) = i(Xgv) for every E C X Borel, indeed

i) — i )] = { ‘z:(v) —i(xp )| = i((1 = Xg)v)| = Xgelo| =0 m-a.e. on E,
li(Xgv)| = [Xgv| = Xglv| =0 m-a.e. on E°.

By linearity of i, we immediately see that fi(v) = i(fv) for any simple function f: X — R,

thus also for every f € L°(m) by continuity of i and Remark 3.1.21.

UNIQUENESS. The choice ¥ (i(v)) := i(v) for every v € . is obliged. Moreover, we have that

the equalities |i(v)| = |v] = |;(v)‘ hold m-a.e. in X for every v € .#. Hence

0 (2(i(0), ¥ (i(w))) :/}7<v)—7(w)\Aldm’:/\v—wmmm'
_ / [i(v) — i(w)| A Ldm’ = d_yo (i(v), i(w))

is satisfied for every v,w € .#, which shows that U : i(.#) — i(.#) is an isometry, in
particular it is continuous. Since i(.#) is dense in .#", we can uniquely extend ¥ to some
map ¥ : .Z° — .//?6, which is a linear isometry. Furthermore, ¥ preserves the pointwise norm
and the multiplication by L°(m)-functions by i) and Remark 3.1.21, while it is surjective by
density of i(.#) in O Therefore this (uniquely determined) map ¥ is a module isomorphism
satisfying property (3.14).

EXISTENCE. Define the distance dy on .# as do(v,w) := [ |v —w| A 1dm’ and denote by .#°
the completion of (.#Z,dy). It can be readily proved that

do(v1 + wi,v2 + wa) < do(vr, v2) + do(wr, we),
do(Av, Aw) < (|)\|\/1) do(v, w),
dLO(‘v’7’w|) d
(fn)n Lo(m)'cauChY7 (Un)n do-Cauchy = (fnvn) do-Cauchy.

(3.15)

The first two properties in (3.15) grant that the vector space structure of .# can be carried
over to .#°, while the third one and the fourth one show that we can extend to .#° the
pointwise norm and the multiplication by L°(m)-functions, respectively.

i) It clearly suffices to prove that i(.#) 2 {v € .#° : |v| € L*(m)}. To this aim, let us fix
any v € .#° with |v| € L?(m). There exists (v,), C .# such that i(v,) — v in .#°. Define

v .
Wn, 2= X{|i(vn)|>0} ’z(’vl)| i(vn) € #°  for every n € N.

Notice that [wn| = X{ji(,) >0} [v] € L*(m) for every n € N. Moreover, one can easily prove
that (wy), C i(4#). Since |w, —v| — 0 in L?(m) by dominated convergence theorem, we
thus conclude that v € i(.#) as well. O
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3.2 Operations on normed modules

3.2.1 Dual normed module

In order to define the dual of a normed module, we need to introduce the following concept:

Lemma 3.2.1 (Essential supremum) Let f; : X — R U {£o00} be given Borel functions,
with i € I. Then there is a unique (up to equality m-a.e.) Borel function g : X — RU {£o0}
such that the following conditions holds:

i) g > fi holds m-a.e. for every i € I.
it) If h > f; holds m-a.e. for every i € I, then h > g in the m-a.e. sense.

Moreover, there exists an at most countable subfamily (fi, )n of (fi)ier such that g = sup,, fi,-
Such function g is called essential supremum of the family (f;)icr-

Proof. The m-a.e. uniqueness of g follows trivially from ii), so we pass to existence. Replacing
if necessary the f;’s with ¢ o f; — where ¢ : RU {£oo} — [0,1] is monotone and injective
— we can assume that the given functions are bounded. Similarly, replacing m with a Borel
probability measure with the same negligible sets we can assume that m is a probability

measure. Now let
.A::{fil\/...\/fin : nEN,ijEIforalljzl,...,n},

set S := sup fea i f dm and notice that — since the f;’s are uniformly bounded and m(X) < oo
— we have S < 4o00. Let (fn)n C A be such that S = sup,, [ fndm. Let us set g := sup,, fn,
so that by construction we have S = [ gdm and by definition there must exist a countable
family (f;,)n, with i, € I, such that g = sup,ey fi,. We claim that g satisfies i) and ii).
Indeed, suppose i) does not hold, i.e. for some i € I it holds that f; > g on a set of positive
m-measure. Then

S:/gdm</gvfidm: ILm /fil\/...\/finvfidm,

contradicting the definition of S. To get ii), simply notice that if h > f; holds m-a.e. for
every n, then h > g is verified in the m-a.e. sense. ]

We are ready to define the concept of dual .#* of an L?(m)-normed L°(m)-module ./ .
As a set we define

M= {L M — L'(m) | L linear continuous, L(fv) = fL(v) for allv € .4, f € Loo(m)}

and we endow it with the operator norm, i.e. ||L[[« := supj,j<1 [L(v)|11(m)- The product
between a function f € L°(m) and an element L € .Z* is defined as

(fL)(v) := fL(v) for every v € A,
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while the pointwise norm of L is given by

|L|« := ess sup L(v).
veM, |v|<1 m—a.e.

Proposition 3.2.2 The space #* is an L*(m)-normed L>(m)-module. Moreover, it holds

|L|« = ess sup |L(v)|  for every L € .4, (3.16a)
veM,|v|<1 m—a.e.
|L(v)| < ||L|s m-a.e.  for everyv € 4 and L € .A*. (3.16Db)

Proof. The fact that (.#*,|| - ||s) is a Banach space is obvious. The fact that fL € .#* for
any f € L*°(m) and L € .#* follows from the commutativity of L°°(m): indeed, the fact that
the operator fL is linear continuous is obvious and moreover we have

(fL)(gv) = fL(gv) = fgL(v) = gfL(v) = g(fL)(v).

The required properties of the multiplication by L°°-functions are easily derived, as for v € .#
we have that

(f(gL))(v) = f((gL)(v)) = f(9L(v)) = fgL(v) = (fgL)(v)

and (1L)(v) = L(iv) = L(v). We come to the pointwise norm. To check that |L|, > 0, let us
pick v = 0 in the definition. Inequality < in (3.16a) is obvious, for the converse let v € .# be
with |v| < 1 m-a.e. and set 17 = X{L(v)>0}V — X{L(v)<0}V; 50 that |8] = |v] and L(?) = |L(v)|.
Then it holds that |L|. > L( ’L )|, thus getting (3.16a).

We pass to (3.16b) and observe that X(,—0y L(v) = L(X{y=0yv) = 0, so that (3.16b) holds
m-a.e. on {v = 0}. Hence it is sufficient to prove that for any ¢ € (0,1) the same inequality
holds m-a.e. on S, := {c < |v| < ¢71}. To see this, notice that on S, the functions |v|,|v|~!
are in L>°(m), hence we can write Xg,v = Xsc|v|‘%| and since ‘Xscﬁ‘ <1 m-a.e. we obtain

Xs.,

L(v)| = Xxs,

v
L(Jolgyp)| = xselel| (77| < xselel 1L
We now observe that for every f € L>(m) and L € .#* we have
LI, = esssup | fL(v)| = esssup | fI|L(v)] = |flesssup |L(v)] = [fI[L1.,

where each essential supremum is taken among all v € .Z with |v] < 1 m-a.e.. Hence to

Ll =/ [ 1Ei2m, (3.17)
The inequality
[ 12 dn < [loljzi. am < \/ [ 1ol am \/ [ 1LEdn = ol o/ [ izzam,

conclude we need to prove that
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valid for any v € .# and L € .#*, shows that < holds in (3.17). For the converse inequality,
recall that the properties of the essential supremum ensure that there is a sequence (vy,), C A#
with |v,| < 1 m-a.e. for every n € N such that |L|. = sup,, L(vy). Define recursively the
sequence (0p), C .# by setting 0y := vy and

Unt1 1= X{L(vp41)> L)} Vnt1 + X{L(vn11) <L ()} On-

Notice that L(9,) = sup;<,, L(v;), so that L(?,) increases monotonically to |L|.. Moreover,
we have |9,| < 1 m-a.e. for every n € N. Given any funciton f € L*>(m) N L?(m) with f > 0,
we also have that || fo,] , = H\f@nmp(m) < || fllp2(m) and thus

/#u%mm:/unMMwwawwﬁmﬁsMmmmmmy

so that — by letting n — oo and using the monotone convergence theorem to pass to the limit
in the left hand side — we obtain

/ﬂUﬂmSHW%Wﬂpmy

By arbitrariness of f, we thus get (3.17). O

Proposition 3.2.3 Let L: .# — L'(m) be linear, continuous and satisfying
L(xgv) = XgL(v)
for everyv € A4 and E C X Borel. Then L € #*.
Proof. We need to prove that
L(fv) = fL(v) forevery v € # and f € L>(m). (3.18)

By assumption and taking into account the linearity of L, we see that (3.18) is true for every
simple function f. The claim then follows by continuity of both sides of (3.18) with respect
to f € L®(m). O

Exercise 3.2.4 Assume that m has no atoms and let L : .# — L°°(m) be linear, continuous
and satisfying L(fv) = fL(v) for every v € .# and f € L°°(m). Prove that L = 0. |

We now study the relation between the dual module and the dual in the sense of Banach
spaces. Thus let .#’ be the dual of .# seen as a Banach space. Integration provides a natural
map Int_, : A#* — #', sending L € A * to the operator Int_, (L) € .4’ defined as

Int_y(L)(v) := /L(v) dm for every v € /.



76 CHAPTER 3 e The theory of normed modules

Proposition 3.2.5 The map Int 4 is a bijective isometry, i.e. it holds that

ILNl. .z = Hlntk///(L)H//ﬂ for every L € A *.

Proof. From the inequality
it (0] = | [ 20)dn] < 20|y < Il allEl

we see that HInt(//[(L)H//Z, <||L|| 4+- For the converse inequality, let L € .Z*, fix e > 0 and
find v € # such that HL HL1 > ||7)H///(HL||///* — E). Set ¥ = X{L(v)zo}v — X{L(v)<0}v’
notice that |9| = |v| and L(v ‘L )| m-a.e. and conclude by

1ot ) g ol = 1t (2)0) = | [ 200) ] = 20y = e (D )

= 1ol (L] - — )

and the arbitrariness of ¢ > 0. It remains to prove that Int_, is surjective. Fix £ € .#' and
for any v € .4 consider the function sending a Borel set E C X to puy(E) := ¢(Xgv) € R.
Clearly p, is additive and — given a disjoint sequence (E;); of Borel sets — we have that

() -0 8] = i U 52 = ) <

n>N

XUn>N H///

Since HXUn>NE”VLvH;

that u, is a Borel measure. By construction, it is also absolutely continuous with respect to
the measure m and thus it has a Radon-Nikodym derivative: call it L(v) € L!(m).

By construction we clearly have that the mapping v — L(v) is linear. Moreover, since for
every I/, C X Borel the identities iy ,,(F) = {(XpXgv) = {(XEnFv) = po(E N F) grant
that the equality [, L(Xgv)dm = [ . L(v) dm is satisfied, we see that

= fU B |v|?2dm — 0 by the dominated convergence theorem, we see
n>N —n

L(Xgv) = XgL(v) for every v € # and E C X Borel. (3.19)
Now let us prove that the map v +— L(v) € L!(m) is continuous. For a given v € ., let us

set U := X{L(v)>0}v — X{L(v)<0}V; S0 that |0 = |v] and — by (3.19) and the linearity of L — we
have ‘L ‘ = L(?) in the m-a.e. sense. Then

|WMMM=/Mmm=mmﬁa>ﬂwwww el ool

which was the claim. The fact that L € .#Z™* follows from (3.19) and Proposition 3.2.3. u

Remark 3.2.6 We point out that the map

Lyt M M7, M0 (Iﬂ(v) M5 L L(v) € Ll(m)) e .M (3.20)
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is an isometric embedding. Indeed, its L°°(m)-linearity can be easily proved, while to prove

that it preserves the pointwise norm observe that

|1y (v)| = esssup |L4(v)(L)| = esssup|L(v)| < |v| m-ae. for every v € 4
|L].<1 [L]«<1

and that for any v € . there exists L € .#* such that L(v) = |[v|?> = |L|? holds m-a.e.,
namely choose £ € .4 such that £(v) = |Jv||°, = |||, and set L := Int ", (¢). Then one has
that |I/[(’U)‘ = |v| holds m-a.e. for all v € .#, whence I 4 is an isometric embedding. |

Definition 3.2.7 The L*(m)-normed module ./ is said to be reflexive as module provided
the embedding I 5 is surjective.

Proposition 3.2.8 The L?(m)-normed module .# is reflexive as module if and only if it is
reflexive as Banach space.

Proof. The map Int 4 : .#* — .#' induces an isomorphism Int", : .#" — (#*)'. Let us
denote by J : .4 < .#" the canonical embedding. We have that

Int - (L4 (v))(L) = /I//[(v)(L) dm = /L(v) dm,
Int", (J(v))(L) = J(v)(Int 4 (L)) = Int 4 (L)(v) = /L(v) dm
for every v € A4 and L € .#*, whence we deduce that the diagram

% c La M

Jj lhlt‘//l*

%// (%*)I

Intf/rﬂ
commutes. Since [ 4, J are injective and Int(“r , Int_y~ are bijective, we thus conclude that

I 4 is surjective if and only if J is surjective. g

Proposition 3.2.9 LetV be a generating linear subspace of 4 . Suppose that L : V — L'(m)
is a linear map such that for some g € L*(m) it holds

’L(v)’ <glv| m-a.e. for everyveV. (3.21)

Then there exists a unique L € .4* such that E|V = L Moreover, the inequality |L|, < g
holds m-a.e. in X.

Proof. We claim that for any v,w € V and E C X Borel we have that
v=w m-a.e.on £ = L(v)=L(w) m-a.e. on E. (3.22)

Indeed, note that (3.21) yields ’L(v) - L(w)| = ‘L(v —w)| < glv—w|=0m-ae. on E. Now
call V the set of all elements > i1 Xg,vi, with (E;)?_, Borel partition of X and vy,...,v, € V.
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The vector space V is dense in .# by hypothesis. We are forced to define L:V— L'(m) as
follows: L() := 327", Xz, L(v;) for every & = S\ Xpg,v; € V, which is well-posed by (3.22)
and linear by construction. Given that for every v = >""" | Xp,v; € V we have

n n
IL@)| =Y X |Lw)] < g Xglvil =gt m-ae, (3.23)
i=1 i=1

we deduce that HE@)HLl(m) < N9/l p2m) 191l 7 for every v € V. In particular L is continuous,

whence it can be uniquely extended to a linear and continuous map L : .# — Li(m). Tt is
casy to see that L is L°°(m)-linear, so that L € .#*. To conclude, the fact that the m-a.e.
inequality ‘E(v)} < g|v| holds for every v € .# follows from (3.23) via an approximation
argument. Hence |L|. < g holds m-a.e., as required. O

3.2.2 Hilbert modules and tensor products

We now focus our attention on a special class of normed modules:

Definition 3.2.10 (Hilbert module) An L?(m)-normed L™ (m)-module S is said to be a
Hilbert module provided (J, | - | ,,) is a Hilbert space.
Proposition 3.2.11 Every Hilbert module is reflexive.

Proof. Any Hilbert module is clearly reflexive when viewed as a Banach space, thus also in
the sense of modules by Proposition 3.2.8. O

Proposition 3.2.12 Let ¢ be a Hilbert module. Then the formula
1
(v, w) = 5(!1} +w|? — |v]? - \w[Q) € L'(m) (3.24)

defines an L*°(m)-bilinear map (-,-) : S x # — L'(m), called pointwise scalar product,
which satisfies

(v, w) = (w,v)
[(v,w)| < |v||w| in the m-a.e. sense  for every v,w € H . (3.25)

(v, v) = |v]®

Moreover, the pointwise parallelogram rule is satisfied, i.e.

2(Jo? + [w|?) = v+ wf* + v —w|* m-a.e. for every v,w € H. (3.26)

Proof. We only prove the validity of formula (3.26). The other properties can be obtained
by suitably adapting the proof of the analogous statements for Hilbert spaces, apart from
the L°°(m)-bilinearity of (-,-), which can be shown by using the fact that (-,-) is local and
continuous with respect to both entries by its very construction. Then let v, w € S be fixed.
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Since the norm || - || ,, satisfies the parallelogram rule, we have that for any Borel set £ C X
it holds

2 [ 1ol? 4+l dm = 2 X vl + 2 Xl = X5+ Xl + e v = xsull,
E
:/|v+w|2+|v—w|2dm,
E

which yields (3.26) by arbitrariness of E. O

Given any Hilbert module 57, it holds that

/ (v,w)ydm = (v,w), for every v,w € I, (3.27)

as one can immediately see by recalling that [ |v]|?dm = HUH;&

Remark 3.2.13 Actually the pointwise parallelogram rule characterises the Hilbert modules:
any L?(m)-normed module is a Hilbert module if and only if (3.26) is satisfied. [

Theorem 3.2.14 (Riesz) Let 7 be a Hilbert module. Then for every L € F* there exists

a unique element v € F€ such that
L(w) = (v,w)  for every w € . (3.28)

Moreover, the equality |v| = |L|« holds m-a.e. in X.

Proof. Consider Int (L) € 7. By the classical Riesz theorem, there is (a unique) v € #
such that (v,w) , = Int 4 (L)(w) for every w € . Hence for any w € ¢ we have that

/ (v,w)ydm = (v, Xpw) ,, = Int (L) (Xgw) = / L(w)dm for every E C X Borel,
E E

so that (3.28) is satisfied. Finally, it is easy to show that |v] = esssupj,<; (v, w). Recall that
also |L|« = esssupy, <1 L(w), therefore the m-a.e. equality |v| = [L|« follows. O

It immediately follows from Theorem 3.2.14 that the map J > v — (v,:) € " is an

isometric isomorphism of modules.

Example 3.2.15 We compare the Riesz theorem for Hilbert spaces and Theorem 3.2.14 in
the special case in which # = L?(m).
The former grants that for any linear and continuous map ¢ : L?(m) — R there exists a
unique g in L?*(m) such that ¢(f) = [ fgdm for every f € L?(m), thus 1911 £2my = 1121l 22 (-
The latter grants that for any L°(m)-linear and continuous map L : L?(m) — L'(m)
there exists a unique g in L?(m) such that L(f) = fg holds m-a.e. for every f € L?(m), thus
accordingly |g| = |L|« holds m-a.e. in X. [
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In order to introduce the notion of tensor product of Hilbert modules, we first recall what
is the tensor product of two Hilbert spaces. Fix H;, Hy Hilbert spaces. We call Hy ®a1, Ha
their tensor product as vector spaces, namely the space of formal finite sums » ;" | v; ® wj,
with (v,w) — v®w bilinear. The space Hi ®a1; Ha satisfies the following universal property:
given any vector space V and any bilinear map B : H; x Ho — V, there exists a unique linear
map 1': Hy ®a1g H2 — V such that the diagram

Hy x Hy =2 H, ®alg Ho

X iT (3.29)
1%

commutes, where ® : Hy x Hy — Hy ®a1g Ho denotes the map (v,w) — v ® w. Hence we
can define a scalar product on Hy ®aj; Hz in the following way: first we declare

(v@w, v @w') = (v,0)y (w,w)y, forevery v,v' € Hy and w,w’ € Hy,

then we can uniquely extend it to a bilinear operator (-, ) : [H 1 ®Alg H2]2 — R, which is a
scalar product as a consequence of the lemma below.
Lemma 3.2.16 Let vy,...,v, € Hy and wy,...,w, € Ha be given. Then

n n

<Zvi ®wi, Y v ®wi> =0,

i=1 i=1

with equality if and only if Y7 | v; ® w; = 0.

Proof. We can suppose with no loss of generality that H; and Hs are finite-dimensional.
Choose orthonormal bases eq,...,e; and f1,...,f, of H; and Hs, respectively. Therefore a
basis of Hi ®a1g Ho is given by (e; ® f;); ;. Now notice that for any (a;;);; C R it holds

<Za¢j €; ®fj,Zaij e ® fj> = Z Qij Q4§ (ei & fj,el-/ (029 fj/> = Za?j,
4. 4,J e i,J

P il gl
Z7Z 7‘77‘7

=061, 1)1’ ,3")
whence the statement follows. OJ

Then we define the tensor product H; ® Hy of Hilbert spaces as the completion of Hy ® 41, Ha
with the respect to the distance coming from (-, -).

Now consider two Hilbert modules .74, .7% over a metric measure space (X,d, m). De-
note by 4", 7 the L°-completions of 4, 7, respectively. Since 4", 7 are (algebraic)
modules over the ring L%(m), it makes sense to consider their tensor product 4 ® a1z 3,
which is the space of formal finite sums of objects of the form v ® w, with (v,w) — v ®@ w
being L°(m)-bilinear. We endow it with a pointwise scalar product in the following way: first

we declare
(@, wew) = (v,v)(w,w) € L°%m) for every v,v" € 4 and w,w' € A,

then we can uniquely extend it to an L°(m)-bilinear operator (-, ) : [ @a1g 5] i (m).

It turns out that such operator is a pointwise scalar product, as we are now going to prove.
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Lemma 3.2.17 Let 5° be the L°-completion of a normed module 7. Let vy,. .., v, € H°
be given. Then there exist ey, ..., e, € #° with the following properties:

i) (ei,ej) =0 holds m-a.e. for every i # j.
ii) |ei] = X{je,|>0) holds m-a.e. for everyi=1,...,n.
iii) For alli=1,...,n there exist (a;;)7_; L°(m) such that v; = D ij &

Proof. We explicitly build the desired eq,...,e, by means of a ‘Gram-Schmidt orthogonali-
sation’ procedure: we recursively define the e;’s as e := X{y,|>0} v1/|v1] and

k-1
wy,
Wy 1= Vg — Z (K, &) e, €k 1= X{|wy|>0} W for every k = 2,...,n.
i=1
It can be readily checked that eq,...,e, satisfy the required properties. [l

Remark 3.2.18 Let (e;)"; C 7Y satisfy items i), ii) of Lemma 3.2.17. Let v € 5 be an
element of the form v = Y"1 | a;e;, for some (a;)?_; C L%(m). Then it is easy to check that
there is a unique choice of (b;)7_; C L°(m) such that:

a) V= Z?:l b; &;.
b) b; = 0 holds m-a.e. on {e; =0} foralli =1,...,n.

Moreover, we have that [v]? = > | |b;|? is satisfied m-a.e. on X. [ ]
Lemma 3.2.19 Let A € L ®a1g # be given. Then (A, A) > 0 holds m-a.e. on X. More-
over, we have that (A, A) = 0 holds m-a.e. on some Borel set E C X if and only if Xg A = 0.

Proof. Say A =", v; ® w;. Associate eq,...,e, € AP and fy, ..., f, € AP tovi,..., v
and wi, ..., wy, respectively, as in Lemma 3.2.17. Let b;;, ci, € L°(m) be as in Remark 3.2.18,
with V; = Z?:l bij €; and w; = 2221 Cik fk for all i = 1, ey n. If Qi = Z?:l bij Cik then

(A, A) = laj|*ej* Ifel>  holds m-a.e. on X,
k=1

whence the statement easily follows. ([l

Accordingly, it makes sense to define the pointwise Hilbert-Schmidt norm as
|Alns := (A, A) € Lo%(m)T  for every A € JA° ®@a1, 5.

It immediately stems from Lemma 3.2.19 that |A|ys = 0 holds m-a.e. on a Borel set £ C X
if and only if XpA = 0.
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Definition 3.2.20 (Tensor product of Hilbert modules) We define 54 ® 4 as the

completion of the space

{A € RAlg Ay : | Alps € L2(m)}
with respect to the norm A 1/ [ |Al}gdm. It turns out that 64 ® A3 is a Hilbert module.
Moreover, we denote by H° @ 5 the L°-completion of 74 @ 5.

It can be readily checked that (/] @ #3) ® 5 and A @ (A © ;) are isomorphic,
in other words the operation ® is associative. Then for any k € N it makes sense to define

(AN = ... oA

k-times

for every L°(m)-normed Hilbert module .

Lemma 3.2.21 Let Dy C 74 and Dy C 5 be dense subsets such that |vl|, |w| € L (m) for
every v € Dy and w € Dy. Then the set

n
D:: {Zw@wi : ’UiEDl,’LUiEDQ}
=1

is dense in JO4 Q . In particular, 76 ® 56 is separable as soon as 4, .76 are separable.

Proof. To prove the first part of the statement, it is clearly sufficient to show that
v®@w is in the closure of D for all v € J4, w € 4% with v @ w € J4 @ 4. (3.30)

First of all, the closure of D contains {U Qw : v E I, wE Dg}: chosen any (v,), C D
converging to v, we have that |v, @w—v@w|us = |(vn—v)®w’HS = |vp—o||w| — 0in L?(m). In
a symmetric way, one can prove that the closure of D contains also { vRwW v € D, weE %’é}
Therefore {v@w : v € H4, w € H5, |lw| € L™(m)} is contained in the closure of D: given
any v € JA4, w € 4 with |w| € L*°(m) and a sequence (vy,), € D; with v, — v, we have

[vp @ w — v @ wlps < |vp —v|Jw] =0 in L*(m).

Finally, take any v € 7, w € /3 such that v@w € 1 ®75 and define wy, := X{jy|<nyw € H2
for all n € N. Given that [v@w, —v@w|ns = |v||wn—w| = X{jw|>n}|v||w] holds m-a.e. on X for
any n € N, by applying the dominated convergence theorem we conclude that v®w,, - v®w.
Therefore the claim (3.30) is proved, thus showing the first part of the statement.

The last part of the statement follows by noticing that any separable Hilbert module
admits a countable dense subset made of bounded elements. g

Remark 3.2.22 Given any Hilbert module JZ, we obtain the transposition operator

t: QI — HRQH
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by first declaring that t(v ® w) := w ® v € 4 @1, L for all v € H°, w € H# and then
extending it by linearity and continuity (notice that it preserves the pointwise norm). It turns
out that t is an isometric L>°(m)-linear map. Since it is also an involution, i.e. tot = id g7,

we also see that it is an isomorphism of modules. We shall say that A € /7 ® S is symmetric
provided A':=t(A) = A. [ ]

Given any L°(m)-normed Hilbert module ##° and some number k € N, we define the
exterior power AF 0 as follows: we set A0 := L0(m) and A7 .= J#°, while for k > 2

where we call Vi the closed subspace generated by
A0 = ()% )V, the elements v1 ® ... ® vy, with vi,..., v, € 0 (3.31)

and v; = v; for some i # j.

The equivalence class of an element v; ® ... ® v, is denoted by v A ... Avg. The pointwise
scalar product between any two such elements is given by

(Vi A Ao, wr AL A wg) (@) = det((v;, wﬁ(m))m for m-a.e. x € X, (3.32)

up to a factor k!.

3.2.3 Pullback of normed modules

We now introduce the notion of ‘pullback module’. In order to explain the ideas underlying
its construction, we first see in an example in the classical case of smooth manifolds how such
notion pops out and why it is relevant.

Let ¢ : M — N be a smooth map between two smooth manifolds M and N. Given a
point z € M and a tangent vector v € T, M, we have that dp,(v) € T )N is the unique
element for which dg,(v)(f) = d(f o ¢)z(v) holds for any smooth function f on N. However,
in our framework vector fields are not pointwise defined, so we are rather interested in giving a
meaning to the object dp(X), where X is a vector field on M. Unless ¢ is a diffeomorphism,
we cannot hope to define dp(X) as a vector field on N. What we need is the notion of
‘pullback bundle’: informally speaking, given a bundle E over N, we define ¢*F as that
bundle over M such that the fiber at a point x € M is exactly the fiber of E at ¢(z). Hence
the object dy(X) can be defined as the section of p*T'N satisfying dp(X)(z) = dy, (X (z))
for every x € M.

Definition 3.2.23 (Maps of bounded compression) Let (X,dx, mx) and (Y,dy, my) be
metric measure spaces. Then a map ¢ : Y — X is said to be of bounded compression provided
it is Borel and there exists a constant C > 0 such that p,my < Cmx. The least such constant
C > 0 will be denoted by Comp(yp) and called compression constant of .

We introduce the notion of ‘pullback module’:
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Theorem 3.2.24 (Pullback module) Let (X,dx,mx) and (Y,dy,my) be metric measure
spaces. Let .4 be an L?(mx)-normed module. Let ¢ : Y — X be a map of bounded com-
pression. Then there exists a unique couple (¢* M ,¢*), where *. A is an L*(my)-normed

module and ©* : M — ©* M is a linear continuous operator, such that
i) |¢*v| = |v| o ¢ holds my-a.e. for everyv € A,
ii) the set {¢*v : v € A} generates p*. M as a module.

Uniqueness is up to unique isomorphism: given another couple (g?/;/, g;;) with the same

—~—

properties, there is a unique module isomorphism ® : o* # — o* M such that ® o p* = o*.

Proof. The proof goes as follows:
UNIQUENESS. We define the space V' C ¢* . of simple elements as

n
V= { ZXAM*%‘
i=1
We are obliged to define ®( Y, X4, ¢*vi) := >, Xa, ©*v; for any > Xa, ¢*v; € V. Since

‘ZXAi il =Y xXa, letoil =) xa, lvil oo = Xa, @il = | D Xa, 0"

we see that such ® is well-defined. Moreover, it is also linear and continuous, whence it can

(A;); Borel partition of Y, (v;); C //l}

m.a.e.,

be uniquely extended to a map ® : "4 — cﬁ/ . It can be readily proven that @ is a
module isomorphism satisfying ® o p* = QF, thus showing uniqueness.
EXISTENCE. We define the ‘pre-pullback module’ Ppb as

Ppb := {(4;,v:)i_; | n € N, (A;)j~; Borel partition of Y, (v;)j~; C .#}.

We consider the following equivalence relation on Ppb: we declare (A4;,v;); ~ (Bj,w;); pro-
vided |v; —wj| o ¢ = 0 holds my-a.e. on A; N B; for every i, j. We shall denote by [A;, v;]; the
equivalence class of (A;, v;);. Hence we introduce some operations on Ppb/ ~:
[Ai, vili + [Bj, wj == [4i N By, vi + wylij,
AAi, vili = [As, Mg,

<Zaj X3j> - [Ag,vi]i = [Ai 0 By, a5 vili g,
J

(A, vili] ==Y Xa, [vil o9 € L?(my),

1A4s, il = </\[Ai,vi]i\2dmy)”2.

One can prove that (Ppb / ~ - H) is a normed space, then we define ©*.# as its completion
and we call ¢* : A — @*.# the map sending any v € .# to [Y,v]. It can be seen that the
above operations can be uniquely extended by continuity to ¢*.#, thus endowing it with the
structure of an L?(my )-normed module, and that (p*.#, ¢*) satisfies the required properties.
This concludes the proof of the statement. U
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Example 3.2.25 Consider .# := L?*(mx). Then ¢*.# = L*(my) and ¢*f = f o ¢ holds for
every f € L?(mx). [

Example 3.2.26 Suppose that we have Y = X xZ, for some metric measure space (Z, dz, my)
such that my(Z) < +oo. Let us define dy((asl,zl), (372,22))2 = dx (w1, 22)% + dz (21, 22)? for
every pair (x1,21), (22, 22) € X x Z and my := mx ® myz. Denote by ¢ : Y — X the canonical
projection, which has bounded compression as p,my = myz(Z) mx.

Now fix an L?(mx)-normed module .# and consider the space L?(Z,.#), which can be
naturally endowed with the structure of an L?(my)-normed module. For any f € L*(my)
and V. € L*(Z, . #), we have that f-V. € L*(Z, .#) is defined as z — f(-,2)V. € 4. Given
any element V. of L*(Z,.#), say z + V,, we have that the pointwise norm |V| is (my-a.e.)
given by the function (x,z) — |V,|(x). Moreover, consider the operator - : .# — L*(Z,.#)
sending any v € . to the function ¥ : Z — .4 that is identically equal to v. We claim that

(", o*) ~ (L*(Z,.4), ). (3.33)
To prove property i) of Theorem 3.2.24 observe that

|0.1(2, 2) = |Vz

(z) = |v|(x) = (|v| o ap) (z,z) for my-a.e. (z,2),
while ii) follows from density of the simple functions in L?(Z,.#). [

Remark 3.2.27 Suppose that mx is a Dirac delta. Hence any Banach space B can be viewed
as an L?(myx)-normed module (since L>°(mx) ~ R). Then it holds that

(¢*'B,¢*) ~ (L*(Z,B), 7) (3.34)
as a consequence of the previous example. [

Example 3.2.28 Fix an L?(my)-normed module .#. Suppose that the space Y is a subset
of X with mx(Y) > 0. Call ¢ : Y — X the inclusion map, which has bounded compression
provided Y is equipped with the measure my := mx|y - Consider the quotient L?(my)-normed
module .# / ~, where v ~ w if and only if |[v — w| = 0 holds mx-a.e. on Y. Then

(" A, ™) ~ (//// ~,7T), (3.35)
where 7 : .# — M | ~ is the canonical projection. [

Proposition 3.2.29 Let (X,dx,mx), (Y,dy,my) be metric measure spaces. Let ¢ : Y — X
be a map of bounded compression and .4 an L*(mx)-normed module. Consider a generating
linear subspace V. of M . Let A be an L?(my)-normed module and T : V — A a linear map
satisfying the inequality

|T(v)| < Clv|og wmy-a.e.  for everyv eV, (3.36)

for some constant C' > 0. Then there is a unique linear continuous extension T: M4 — N
of T such that ‘T(v)‘ < C'|v| o ¢ holds my-a.e. for everyv € M .
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Proof. First of all, we claim that any extension 7' as in the statement must satisfy
T(Xav) =Xao0@T(v) foreveryveV and A C X Borel. (3.37)
To prove the claim, observe that
T(Xav) +T(Xaev) =T(v) = Xa 09T (V) + Xae 0 0T (v). (3.38)

Moreover, we have that X4 0 ¢ ‘T(XAC V)| < CXa0p|Xacv]op=0,ie Xa0 0T (Xacv) = 0.
Similarly, one has that X c o0 T(XA v) = 0. Hence by multiplying both sides of (3.38) by the
function X4 0 ¢ we get X4 0 @ T(XAv) = Xa 0 ¢ T(v) and accordingly

T(Xav) =Xa00T(Xav) +Xac 0T (Xav) =Xa0pT(Xav) =Xa0pT(v),

thus proving the validity of (3.37).

In light of (3.37), we necessarily have to define T(Z X4, i) = >_; Xa, 0 ¢ T(v;) for any
finite Borel partition (4;); of X and for any (v;); C V.
stems from the my-a.e. inequality

3 a0 = 3% [T00] < €3 (o b 20 = €| T

Well-posedness of such definition

© ¥,

which also grants (linearity and) continuity of T. Therefore the operator T admits a unique
extension T': .# — A with the required properties. O

Remark 3.2.30 The operator T in Proposition 3.2.29 also satisfies
T(fv)=fopT(v) forevery f e L®(mx) and v € .. (3.39)
Such property can be easily obtained by means of an approximation argument. |

The ideas contained in the proof of Proposition 3.2.29 can be adapted to show the following
result, whose proof will be omitted.

Proposition 3.2.31 Let (X,d, m) be a metric measure space. Let M1, M be L*(m)-normed
modules and T : M\ — M5 a linear map such that

|T(v)| < Clv| m-a.e.  for everyv € 4, (3.40)
for some constant C > 0. Then T is L*(m)-linear and continuous.

Exercise 3.2.32 Let 7' : L?(m) — L?(m) be an L*(m)-linear and continuous operator.
Prove that there exists a unique g € L>(m) such that T(f) = gf for every f € L?(m). [
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Theorem 3.2.33 (Universal property) Let (X,dx,mx), (Y,dy,my) be two metric mea-
sure spaces. Let o : Y — X be a map of bounded compression. Consider an L?(mx)-normed
module . , an L?(my)-normed module A and a linear map T : .# — A . Suppose that

there exists a constant C > 0 such that
IT(v)| <Cv|oy my-ae.  foreveryve 4. (3.41)

Then there exists a unique L>(my)-linear continuous operator T oM — N, called lifting
of T, such that ‘T(w)‘ < C'|w| holds my-a.e. for any w € p*.# and such that

s o
7

N

(3.42)

N

is a commutative diagram.

Proof. Call V :={¢*v : v € .4}, then V is a generating linear subspace of p*.#. We define
the map S: V. — A as S(¢*v) :=T'(v) for every v € .#. The my-a.e. inequality

| T(v)| < Clofop=Clp™]

grants that S is well-defined. Hence Proposition 3.2.31 guarantees that S admits a unique
extension 7' @ M — A with the required properties. d

Theorem 3.2.34 (Functoriality) Let (X,dx,mx), (Y,dy,my) and (Z,dz, mz) be metric
measure spaces. Let p : Y — X and v : Z — Y be maps of bounded compression. Fiz an
L?(mx)-normed module .#. Then the map ¢ o) has bounded compression and

(W (@), p* 0 0™) ~ ((p o)A, (0 o). (3.43)

Proof. 1t is trivial to check that ¢ o1 has bounded compression. It only remains to show that

0" (¢*v)| = [v]opotp my-ae.  forevery v € A,
{v*(p*v) : v e M} generates Y*(p*.A) as a module.

To prove the former, just notice that !1#*(@*1))‘ = |¢*v| 0t = |v| o p 0o 1p. For the latter,
notice that the set V' of all finite sums of the form ) . X4, ¢*v;, with (A4;); Borel partition
of Y and (v;); € .4, is a dense vector subspace of p*.#. Hence the set of all finite sums of
the form X p; ¢"w;, with (B;); Borel partition of Z and (w;); C V, is dense in ¢*(¢*.#),
thus proving that {¢*(¢*v) : v € A} generates *(* ). O

Remark 3.2.35 Suppose that the map ¢ : Y — X is invertible and that both ¢, ¢!
have bounded compression. Then Theorem 3.2.34 grants that (o~ 1)*(p*.#) ~ .4, thus in
particular one has that * : . # — ¢*.# is bijective. Hence, morally speaking, .# and ¢*.#
are the same module, up to identifying the spaces L>°(mx) and L°°(my) via the invertible
map f— foe. |
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We now investigate the relation between (¢*.#)* and p*.#*. Under suitable assumptions,

it will turn out that the operations of taking the dual and passing to the pullback commute.

Proposition 3.2.36 Let (X,dx, mx), (Y,dy,my) be metric measure spaces and ¢ : Y — X
a map of bounded compression. Then there exists a unique L (my)-bilinear and continuous
map B : p* M x o* M* — L' (my) such that B(¢*v,p*L) = L(v) o ¢ is satisfied my-a.e. for
every v € M and L € MH*.

Proof. We are forced to declare B( > i XE; ©*vi, Zj XF; go*Lj) = Z” XEinF; Lj(vi)op. Since

> Xmnr, Li(vi) o 90‘ = X |Lijw)] o0 <Y Xenr, |Ljl o ¢ lvil o ¢
i,9 i,j i,J
- (Sxeduloe) (S i)

i i

i J

we see that B is (well-defined and) continuous, whence it can be uniquely extended to an

Y

operator B : ¢*.# x p*.#* — L'(my) satisfying all of the required properties. O

Proposition 3.2.37 Under the assumptions of Proposition 3.2.56, the map

I: o — ("), W+— B(-,W) (3.44)
is well-defined, L (my)-linear continuous and preserving the pointwise norm, i.e. the my-a.e.
equality ‘I(W)| = |W| holds for every W € o*.4*.

Proof. The map I(W) : p*.# — L'(my) is L (my)-linear continuous by Proposition 3.2.36,
in other words I(W) € (¢*.#)*, which shows that I is well-posed. Moreover, notice that

’I(W)‘ = esssup |B(V, W)’ < esssup |V||[W|<|W| my-ae.,
Vep* H, Vep* 4,
[V]<1 my-a.e. V<1 my-a.e.
whence I can be easily proven to be L*°(my)-linear and continuous. Finally, to conclude it
suffices to prove that also [I(W)| > |[W| holds my-a.e. in Y. By density, it is actually enough
to obtain it for W of the form 2?21 Xr; ¢*Lj. Then observe that

n n
[T(W)| > ess sup I(W)(ZXFJ go*vj> = ZXFJ esssup Lj(vj)ogp
V1o EM , j=1 j=1 ”U]'G.///,
[v1]5ees|on| <1 mx-a.e. [vj|<1 mx-a.e.

n n
=D Xr|Ljlow =2 Xple Ll = W]
j=1 i=1

holds my-a.e. in Y. Therefore the statement is achieved. ]
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Remark 3.2.38 In particular, Proposition 3.2.37 shows that the map I is an isometric em-
bedding of p*.Z* into (¢*.#)*. However — as we are going to show in the next example —
the operator I needs not be surjective. |

Example 3.2.39 Suppose that X := {Z} and mx := dz. Moreover, let Y := [0, 1] be endowed
with the Lebesgue measure and denote by ¢ the unique map from Y to X, which is clearly
of bounded compression. Given that L>®(mx) ~ R, we can view any Banach space B as an
L?(mx)-normed module, so that Remark 3.2.27 yields

(¢*B)* ~ (L*([0,1],B))’,
©*B* ~ L?([0,1],B').

In general, L*([0,1],B’) is only embedded into (L?([0, 1],]8))’, via the map that sends any
element ¢. € L%([0,1],B") to L*([0,1],B) > v. fol l¢(ve) dt, which clearly belongs to the
space (L%([0, 1],183))/. Now consider e.g. the case in which B := L'(0,1). Let us define the
map T : L?([0,1],L(0,1)) — R as

1,1
T(f):= /0/0 fi(x) gi(x)dxdt  for every f € L2([O, 1],L1(0,1)),

where g; := X[,4. Hence T does not come from any element of L?([0, 1], L>(0,1)): it should
come from the map t — g € L°(0,1), which is not Borel (and not essentially separably
valued). This shows that the space L?([0,1], L>(0,1)) and the dual of L?([0,1], L'(0,1)) are
different. [

Lemma 3.2.40 Let (X,dx,mx), (Y,dy,my) be metric measure spaces and ¢ : Y — X a
map of bounded compression. Let F€ be a Hilbert module on X. Then ¢*J¢ is a Hilbert
module.

Proof. Notice that
2(l¢" 0 + o wl?) = 2(Jo]? + [w]*) o = v+ wl? o + v —w|* o
= v+ wf’ +|p*v — g wl?
is satisfied my-a.e. for any v, w € . Then the pointwise parallelogram identity can be shown

to hold for elements of the form ), X, ¢p*v;, thus accordingly for all elements of ¢*.# by an
approximation argument. This proves that *J5# is a Hilbert module, as required. U

Proposition 3.2.41 Let (X, dx, mx), (Y,dy,my) be metric measure spaces and ¢ : Y — X
a map of bounded compression. Let 7 be a Hilbert module on X. Then

O ~ ()" (3.45)

Proof. Consider the map I : ¢*#* — (¢*°)* of Proposition 3.2.37. We aim to prove that
I is surjective. Denote by Z : A — A and Z : * H — (¢*H)* the Riesz isomorphisms,
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as in Theorem 3.2.14. Note that ¢* o Z : & — @* H* satisfies ‘(gp* o%)(vﬂ = |v| o my-a.e.
for any v € #, whence Theorem 3.2.33 grants that there exists a unique L°°(my)-linear
continuous operator @ D r A — ©*F* such that m(@*v) = (¢* o Z)(v) holds for
every v € . Now let us define J := m o XL (* ) — p*7*. We claim that

IoJ =id(y ) (3.46)

Given that I o J is L*(my)-linear continuous by construction, it suffices to check that I o .J
is the identity on the subspace {Z(¢*v) : v € S}, which generates (p*#')* as a module.
Observe that for any v, w € 4 it holds that

~

A (") (e w) = (¢"v, ¢"w) = (v, w) o @,
(I 0 J)(2(9*0)) (¢"w) = I(p* 0 Z(¢*v)) (¢"w) = I((* 0 B)(v)) (¢*w) = (% (v)(w)) 0 ¢
= <Ua w> o @,

whence (3.46) follows. This grants that I is surjective, thus concluding the proof. O

Bibliographical remarks

Almost all the material contained in this chapter has been introduced by N. Gigli in [18]. The
notion of L?(m)-normed L (m)-module is a variant of a similar concept that was investigated
by N. Weaver [34,35], who was in turn inspired by the papers [26,27] of J.-L. Sauvageot.

Furthermore, the above presentation of the notion of L°(m)-normed L°(m)-module fol-
lows closely the axiomatisation that can be found in the lecture notes [20], wherefrom even
Proposition 3.2.41 is taken.



Chapter 4

First-order calculus on metric

measure spaces

In this chapter we develop a first-order differential structure on general metric measure spaces.
First of all, the key notion of cotangent module is obtained by combining the Sobolev calculus
(discussed in Chapter 2) with the theory of normed modules (described in Chapter 3). The
elements of the cotangent module L?(T*X), which are defined and studied in Section 4.1,
provide a convenient abstraction of the concept of ‘1-form on a Riemannian manifold’.

By duality one can introduce the so-called tangent module, which is denoted by L?(TX).
Another strictly related notion is that of divergence operator. Both these objects are treated
in Section 4.2. The fundamental class of infinitesimally Hilbertian metric measure spaces,
namely those metric measure spaces whose associated tangent/cotangent modules are Hilbert
modules, is studied in detail in Section 4.3.

Finally, Section 4.4 is devoted to the ‘transformations’ of metric measure spaces, called
maps of bounded deformation. Any such map is associated with a natural notion of differential,

which is a linear and continuous operator between suitable normed modules.

4.1 Cotangent module

4.1.1 Definition and basic properties

In the next result we introduce the important notion of cotangent module, which will play
a crucial role in the following discussion. It also motivates our interest toward the theory of
L?(m)-normed L (m)-modules developed in Chapter 3.

Theorem 4.1.1 (Cotangent module) Let (X,d, m) be a fired metric measure space. Then
there exists a unique couple (L?(T*X),d), where L*(T*X) is an L*(m)-normed L™ (m)-module
and d : S*(X) — L?(T*X) is a linear operator, such that

i) |df| = |Df| holds m-a.e. for every f € S*(X).

91
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ii) L*(T*X) is generated by {df : f € S*(X)}.

Uniqueness is intended up to unique isomorphism: if another couple (/// d) satisfies the same
properties, then there is a unique module isomorphism ® : L*(T*X) — M such that Dod = d.
We shall refer to L?(T*X) as cotangent module and to d as differential.

Proof. The proof goes as follows:
UNIQUENESS. Fix any couple (., d) that satisfies both conditions i) and ii). We claim that
for every f,g € S?(X) and FE C X Borel it holds that

df =dg m-ae on E <= df=dg mae. onE. (4.1)

Indeed, df = dg m-a.e. on E if and only if |d(f — ¢)| = |D(f — ¢)| = |d(f — ¢)| m-a.e. on E if
and only if af = ag m-a.e. on E. Now let us define

v :{ ZXEidfz’
=1
‘7 _{ ZXEZHJ‘;

i=1

n € N, (E;)i; Borel partition of X, (f;)ie; C SQ(X)},

n € N, (E;)i-; Borel partition of X, (fi)ie; C SQ(X)},

which are vector subspaces of L?(T*X) and /// respectively. Note that any module isomor-
phism & : L?(T*X) — M satisfying ®od = d must necessarily restrict to the map ¢ : V — 1%
given by
n n n
(I)<ZXEidfi> = Zina'fi for every ZXEidfi eV (4.2)
i=1 i=1 i=1

Well-posedness of (4.2) stems from (4.1). Moreover, the m-a.e. equalities

> xgdfi| =D xgldfil =Y xg|Dfil = ZXE df;| = ZXE df;
i=1 =1 =1

grant that ® preserves the pointwise norm, whence also the norm. Since V' is dense in L?(T*X)
by property ii) for (LZ(T*X),d), the linear continuous map ® : V — .# can be uniquely

extended to an operator ® : L?*(T*X) — //7, which is linear continuous and preserves the

pointwise norm by Remark 3.1.16. In particular, it is an isometry, whence it is injective and it
has closed image. Given that ®(V) = V is dense in . by property ii) for (//Al: d), we deduce
that ® is also surjective. In order to conclude, it only remains to show that ® is L°°(m)-linear.
To do so, first notice that ®(Xgv) = Xg ®(v) is satisfied for every E C X Borel and v € V.
Since ® and the multiplication by L°°-functions are continuous, the same property holds for
every v € L?(T*X), whence ®(fv) = f®(v) for all f: X — R simple and v € L?(T*X) by
linearity of ®. Finally, the same is true also for every f € L°°(m) by density of the simple
functions in L°°(m). This completes the proof of the uniqueness part of the statement.
EXISTENCE. Let us define the pre-cotangent module as the set

Pcm = {{(El,fz)}?:1 ’ n € N, (E;)i-, Borel partition of X, (f;)i=; C SQ(X)}-
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For simplicity, we shall write (E;, f;); instead of {(Ez, fi)}?:l' We introduce an equivalence
relation on Pcm: we say (E;, fi)i ~ (F}, g;); if and only if |D(f; — gj)| = 0 m-a.e. in E; N Fj
for every i, 7. Let us denote by [E;, fi]i € Pcm/ ~ the equivalence class of (E;, f;); € Pcm.

We now define some operations on the quotient Pcm/ ~, which are well-defined by locality
of minimal weak upper gradients (recall Theorem 2.1.28):

[Ei, fili + [F}, 9515 = [Ei N Fy, fi + gjligo
aE;, fili = [Ei, o fils,

<Zaj XFj) (B, fili := [Ei 0 Fj, a5 fili
’ (4.3)
\[Ei, fili] == ZXEi’Dfi’ m-a.e. in X,

1/2
|(E:, fili| = HHEi,fi]imLz(m) = (Z/E \Dfi|2dm> :

The first two operations in (4.3) give Pcm/ ~ a vector space structure, the third one is the
multiplication by simple functions - : Sf(m) x (Pcm/ ~) — (Pcm/ ~) (where Sf(m) denotes
the space of all simple functions on X modulo m-a.e. equality), the fourth one is the pointwise
norm |- |: (Pecm/ ~) — L?(m) and the fifth one is a norm on Pcm/ ~.

We only prove that || - || is actually a norm on Pem/ ~: if ||[E;, fili|| = 0 then |Df;] =0
holds m-a.e. on E; for every i, so that (E;, f;); ~ (X,0). Moreover, it directly follows from
the definitions in (4.3) that ||« [Es, fili|| = | ||[E;, fi]]|- Finally, one has

B, fili + [Fy, 95051 = [[1B: 0V Fy, fi 4 g3l = || D Xy [D(fi + 97))
o L2 (m)
<D xenr, Dl + D Xzinr, | Dgjl
I L2m) L2(m)
- HZX& IDfil +' > xr |Dgj|
i L2(m) J L2(m)
= || (&, Silil] + 115 915 1,
which is the triangle inequality for || - ||. Hence || - || is a norm on Pcm/ ~.
Let us denote by (L*(T*X),]| - HL2(T*X)) the completion of (Pem/ ~, | - ||). One has that
the operations |- | : (Pcm/ ~) — L?(m) and - : Sf(m) x (Pcm/ ~) — (Pcm/ ~), which can

be readily proved to be continuous, uniquely extend to suitable

|- LX(T"X) — L*(m),
-0 L®(m) x L}(T*X) — L*(T*X),

which endow L?(T*X) with the structure of an L?(m)-normed L°°(m)-module.
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Finally, let us define the differential operator d : S*(X) — L?(T*X) as df := [X, f] for
every f € S?(X), where we think of Pcm/ ~ as a subset of L?(T*X). Note that

dlaf+B8g9)=X,af+Bgl=a[X, fl+BX,gl=adf +8dg VfgeS*X), a,BER,

proving that d is a linear map. Also |df| = |[X, f]| = |Df| holds m-a.e. for any f € S*(X),
which shows the validity of i). To conclude, observe that the family of all finite sums of the
form Y | Xg,df;, with (E;)I; Borel partition of X and (f;); C S2(X), coincides with the
space Pcm/ ~ thus it is dense in L?(T*X) by the very definition of L?(T*X), proving ii) and
accordingly the statement. ]

Theorem 4.1.2 (Closure of the differential) Let (f,,), C S*(X) be a given sequence that
pointwise converges m-a.e. to some limit function f. Suppose that df, — w weakly in L*(T*X)
for some w € L*(T*X). Then f € S*(X) and df = w.

Moreover, the same conclusion holds if (fn)n € W12(X) satisfies f, — f and df, — w
weakly in L?(m) and L*(T*X), respectively.

Proof. By Mazur’s lemma (recall Theorem A.2) we can assume without loss of generality
that we have df, — w in the strong topology of L?(T*X). In particular, |Df,| = |df.| = |w|
strongly in L?(m) as n — oo, whence we have that f € S?(X) by Proposition 2.1.13. Moreover,
it holds that

k—o0

n—oo n—o0

= T lim [|[d(fx = fo)| [l 2y = O

n—o0 k—00

so that df = w as required. Finally, the last statement follows from the first one by applying
twice Mazur’s lemma and by recalling that any strongly converging sequence in L?(m) has a
subsequence that is m-a.e. convergent to the same limit. O

Remark 4.1.3 We point out that the map

Wh2(X) — L*(m) x L}(T*X), »
fr—(£.df), 4

is a linear isometry, as soon as the target space L?(m) x L?(T*X) is endowed with the product

2
norm | (f,w)||” = [1f72m) + lwllZ2(zex)- u
4.1.2 Calculus rules and their consequences
Theorem 4.1.4 (Calculus rules for the differential) The following properties hold:
A) LocALiTy. Let f,g € S?(X) be given. Then df = dg holds m-a.e. in {f = g}.

B) CHAIN RULE. Let f € S?(X) be given. Then:
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B1) If a Borel set N C R is L'-negligible, then df = 0 holds m-a.e. in f~1(N).

B2) If I C R is an interval satisfying (fxm)(R\ 1) =0 and ¢ : I — R is a Lipschitz
function, then po f € S>(X) and d(po f) = @' o fdf. The expression @' o fdf is
a well-defined element of L*>(T*X) by B1).

C) LEIBNIZ RULE. Let f,g € S%(X) N L*(m) be given. Then fg € S*(X) N L>(m) and it
holds that d(fg) = fdg+ gdf.

Proof. The proof goes as follows:
A) Note that |df —dg| = |[D(f — ¢)| = 0 holds m-a.e. in {f — ¢ = 0} by Theorem 2.1.28,
whence we have that df = dg holds m-a.e. in {f = g}, as required.
B1) We have that |[df| = |Df| = 0 holds m-a.e. on f~(IN) by Theorem 2.1.28, so that df = 0
holds m-a.e. on f~1(N).
B2) The Lipschitz function ¢ : I — R can be extended to a Lipschitz function  : R — R
and the precise choice of such extension is irrelevant for the statement to hold, because the
set f~1(R\ I) has null m-measure. Then assume without loss of generality that I = R. We
know that ¢ o f € S?(X) by Theorem 2.1.28.

If ¢ is a linear function, then the chain rule just reduces to the linearity of the differential.
If ¢ is an affine function, say that ¢(t) = at + b, then d(¢po f) =d(af +b) =adf = ¢ o fdf.
Now suppose that ¢ is a piecewise affine function. Say that (I,), is a sequence of intervals
whose union covers the whole real line R and that (¢,,), is a sequence of affine functions such
that Pl = 1y, holds for every n € N. Since ¢’ and ¢!/, coincide £!-a.e. in the interior of I,,,
we have that d(po f) = d(¢n 0 f) = ¢/, o fdf = ¢ o fdf holds m-a.e. on f~1(I,) for all n,
so that d(p o f) = ¢’ o fdf is verified m-a.e. on |J,, f~1(I,) = X, as required.

To prove the case of a general Lipschitz function ¢ : R — R, we want to approximate ¢

with a sequence of functions ¢, satisfying the following properties:

(¢on)n € LIP(R) are piecewise affine functions with sup Lip(¢,) < Lip(¢),
neN (4.5)
on(t) — o(t) for every t € R and ¢/, (t) — ¢/(t) for L'-a.e. t € R.

First of all, denote by ¢, the function that coincides with ¢ at {i/n : i € Z} and is affine
in the interval [i/n, (i + 1)/n] for every i € Z. One can readily prove that Lip(¢,) < Lip(y)
for all n. Given any i € Z, we deduce from the fact that the identity ¢/, (t) = fi(/irjl)/ "pdot
holds for all ¢ € [i/n, (i 4+ 1)/n] and from an application of Jensen’s inequality that

(i+1)/n 1] G+D/n 2 prD)/n
[ et = T | <o f T g ae!
% n.J;

(i+1)/n
:/ o'[7dct.

n

(4.6)

Now fix m € N. It can be readily checked that o, — ¢ strongly in L?(—m,m), while (4.6)
grants that [ |¢}|2dL! < [ |¢/|2dLT for every n, whence there is a subsequence (ng)y
such that ¢}, — g weakly in L?(—m, m) for some g € L*(—m,m). This forces g = cp’|(

—m,m)’
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so that the original sequence (¢, ), satisfies ¢!, — ¢ weakly in L?(—m,m). Moreover, it holds
that [ |¢'[2dLt < lim, [ [pf[2dLt < [ /|2 ALY, thus necessarily o], — ¢/ strongly
in L?(—m,m). In particular, there exists a subsequence (ny) such that ¢, (t) — ¢'(t) for
a.e. t € (—m,m). Up to performing a diagonalisation argument, we can therefore build a
sequence (¢p)n that satisfies (4.5), as required.

Now notice that [ |p!, —¢'|?o f |df|*dm — 0 by (4.5), by B1) and by an application of the
dominated convergence theorem, in other words ¢}, o fdf — ¢’ o fdf in the strong topology
of L?(T*X). Since (4.5) also grants that ¢, o f — ¢ o f pointwise m-a.e. in X and since we
have d(pp o f) = ¢!, o fdf by the previous part of the proof, we deduce from Theorem 4.1.2
that d(pp o f) — ¢’ o fdf in L2(T*X), thus accordingly d(¢ o f) = ¢’ o fdf.

C) We already know that fg € S?(X) N L*°(m) by Theorem 2.1.28. In the case in which
fyg > 1, we deduce from property B2) that

d(fgg) = dlog(fg) = d(log(f) +log(g)) = dlog(f) + dlog(g) = df T

whence we get d(fg) = fdg + gdf by multiplying both sides by fg.
In the general case f,g € L*°(m), choose a constant C' > 0 so big that f + C,g+ C > 1.
By the previous case, we know that

Ad((f+C)g+0C) =(f+C)d(g+C)+ (g+C)d(f +O)

=(f+C)dg+ (¢ +C)df (4.7)
= fdg+gdf +Cd(f +y9),
while a direct computation yields
A(f+C)g+0C) =d(fg+C(f +9)+C?) =d(fg) + Cd(f + g). (4.8)

By subtracting (4.8) from (4.7), we finally get that d(fg) = fdg + gdf, as required. Hence
the statement is achieved. g

Proposition 4.1.5 The set {df : fe WLQ(X)} generates the tangent module L?(T*X).
Proof. Denote by .# the module generated by {d f:fe WLQ(X)}. It clearly suffices to
prove that df € .# whenever f € S?>(X). Fix any # € X. For any n,m € N, let us call

fa = (fVn)A(=n) e L*(m),

- +
Nm 1= (1 — d(',Bm(x))) ,
Jnm = Nm fn € LQ(m)-
Since the function f,, can be written as ¢, o f, where @, is the 1-Lipschitz function defined
by ©n(t) := (t Vn) A (—n), we have that f, € S?(X) by property B2) of Theorem 4.1.4, thus
accordingly fnm € WH2(X) by property C) of Theorem 4.1.4. More precisely, it holds that
dfn = ¢y, 0 fdf = Xqf1<ny Af,
XB(z) dfpm = XBu(z) (nm dfn + fn d77m) = XB,.(2) dfn,



4.1. Cotangent module 97

so that df = dfnm holds m-a.e. in Ay = 71 ([—n,n]) N By (Z). Given that m(X\ App) N\ 0
as n,m — oo, we deduce from the dominated convergence theorem that Xa,, dfpm — df
in the strong topology of L?(T*X) as n,m — oco. Since each X4, dfnm belongs to .4, we
conclude that df € .# as well. This proves the statement. O

The ensuing result consists of an equivalent definition of cotangent module/differential:

Proposition 4.1.6 There exists a unique (up to unique isomorphism) couple (///,a), where
the space A is a module and d : W'2(X) — ./ is a linear map, such that |df| = |Df| holds
m-a.e. for every f € WH2(X) and .4 is generated by {df s fe Wl’Q(X)}. Moreover, given
any such couple there exists a unique module isomorphism ¥ : .# — L*(T*X) such that

wh2(X) —4—

j LI' (4.9)

$*(X) —5— L*(T"X)
is a commutative diagram.

Proof. The proof goes as follows:

EXISTENCE. One can repeat verbatim the proof of the existence part of Theorem 4.1.1.
Alternatively, let us call .# the submodule of L*(T*X) that is generated by {df : f €
W2(X)} and define d:= d|W1,2(X). It can be easily seen that (.#,d) satisfies the required
properties.

UNIQUENESS. In order to get uniqueness, it is clearly enough to prove the last part of the
statement. By the very same arguments that had been used in the proof of the uniqueness
part of Theorem 4.1.1, one can see that the requirement that ¥ is an L°°(m)-linear operator
satisfying \ll(af) = df for any f € W12(X) forces a unique choice of ¥ : .# — L?(T*X).
The surjectivity of ¥ stems from Proposition 4.1.5. g

The abstract theory of cotangent modules presented above is consistent with the classical

one, as shown by the following result:

Proposition 4.1.7 Fizd € N\{0}. Let L*>(R%, (R%)*, £%) denote the space of all the L*(£%)
1-forms in R:. Let d : WH2(RY) — L2 (Rd, (Rd)*,ild) be the map assigning to each Sobolev
function f € WH2(RY) its distributional differential. Then

<L2 (RY, (R, £%), a) ~ (LA(T*RY), d), (4.10)

in the sense that there exists a unique module isomorphism ® : L*(T*RY) — L? (Rd, (RY)*, £7)
such that ® od = d.

Proof. We know by Theorem 2.1.37 that |df| = |Df| holds L%a.e. for every f € W12(R?).
Moreover, for any bounded Borel subset B of X and any w € (R%)*, there exists (by a cut-off
argument) a function f € WH2(R9) such that df = w holds £%a.e. in B. Hence the normed
module L? (Rd, (RY)*, Ld) is generated by the elements of the form Xpw. We thus conclude
by applying Proposition 4.1.6. O
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We conclude the section with an alternative approach: it is possible to define a notion of

cotangent module whose elements do not satisfy any integrability requirement.

Proposition 4.1.8 There exists a unique (up to unique isomorphism) couple (#°,d°), where
the space #° is an L°-normed module and d° : S?OC(X) — #° is a linear map, such that the
equality |d° f| = | D f| holds m-a.e. for every f € S (X) and such that L°-linear combinations

of elements in {dof : fe S%OC(X)} are dense in #°. Given any such couple, there exists a
unique map v : L?(T*X) — .#° — which is L™ -linear, continuous and preserving the pointwise
norm — such that

wi2(x) — L2(T*X)

j L (4.11)

2 (X) —— 4"
4o

loc
is a commutative diagram. Moreover, the image of L*>(T*X) in .#° via v is dense.

Proof. Uniqueness follows along the same lines of Theorem 4.1.1. For existence, we consider
the LO-completion (.#°, 1) of L?(T*X). For any f € S?, (X) there is a partition (E,), of X
and functions f, € W12(X) such that f = f, m-a.e. on E, for every n € N. It is clear that
the series Y., Xp, t(df,) converges in .#° and the locality of the differential grants that its
limit which we shall call d°f, does not depend on the particular choice of (Ep)n, (fn)n-
Then the identity |d°f| = |Df| follows from the construction and the analogous property
of the differential. Also, we know that L*-linear combinations of {df : f € W'%(X)} are
dense in L*(T*X) and that «(L*(T*X)) is dense in .#°. Thus L>-linear combinations of
elements in {t(df) =d°f : f € WH*(X)} are dense in .#Z°. This construction also shows the

existence and uniqueness of ¢ as in (4.11). O

4.2 Tangent module

4.2.1 Definition and basic properties

Definition 4.2.1 (Tangent module) We define the tangent module L?(TX) as the module
dual of L*(T*X). Its elements are called vector fields.

We can introduce the notion of vector field in an alternative way, which is not based upon
the theory of normed modules. Namely, we can define a suitable notion of derivation:

Definition 4.2.2 (L?-derivations) A linear map L : S*(X) — L'(m) is an L2-derivation
provided there exists £ € L?(m) such that

|L(f)| < €|Df| m-a.e. for every f € S%(X). (4.12)

The relation between vector fields and derivations is described by the following result:
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Proposition 4.2.3 Given any v € L*(TX), the map S*(X) > f + df(v) is a derivation.
Conversely, for any derivation L : S*(X) — L'(m) there exists a unique v € L?(TX) such
that L(f) = df(v), and |v| is the least function ¢ (in the m-a.e. sense) for which (4.12) holds.

Proof. Given any v € L*(TX), let us define L := vod. Since |L(f)| = |df(v)| < [Df|v|
holds m-a.e., we have that L is the required derivation.

On the other hand, fix a derivation L and set V := {df : f € S*(X)}. By arguing as in
the proof of Proposition 3.2.9 one can see that for any f1, fo € S?(X) we have

dfi =dfs mae.on X = L(f1)=L(f2) m-ae. onX. (4.13)

Then the map T': V — L'(m), given by T(df) := L(f), is well-defined. Moreover, one has
that ’T(df)| < ¢|Df]| for each f € S%(X), whence Proposition 3.2.9 grants the existence of
a unique vector field v € L?(TX) such that w(v) = T(w) for all w € V. In other words, we
have that df(v) = L(f) for every f € S*(X). Now observe that |L(f)| = |df(v)| < [v]|Df|
holds m-a.e. for every f € S?(X), which shows that |v| satisfies (4.12). Finally, let us take any
function ¢ € L?(m) for which (4.12) holds. It can be readily checked that the m-a.e. equality

’w(v)’ ‘df(v)’ (422)

[v| = esssup X{ju|>01———— = €sSSUPX(|pf>ot e <
wera(rex) O] resex) UPIEOY D]
is verified, thus proving the required minimality of |v|. This completes the proof. O

Corollary 4.2.4 Let L: S*(X) — L'(m) be a derivation. Then

L(fg) = [ L(g) + g L(f)  for every f,g € S*(X) N L*(m). (4.14)
Proof. Direct consequence of Proposition 4.2.3 and of the Leibniz rule for the differential (see
item C) of Theorem 4.1.4). O

4.2.2 Divergence operator and gradients

The adjoint d* : L?(TX) — L?(m) of the unbounded operator d : L?*(m) — L?(T*X) is (up
to a sign) what we call ‘divergence operator’. More explicitly:

Definition 4.2.5 (Divergence) We call D(div) the space of all vector fields v € L*(TX)
for which there exists h € L?(m) satisfying

- /fhdm: /df(v) dm  for every f € WH3(X). (4.15)

The function h, which is unique by density of W2(X) in L?(m), will be unambiguosly denoted
by div(v). Moreover, D(div) is a vector subspace of L*>(TX) and div : D(div) — L?(m) is a

linear operator.

We show some properties of the divergence operator:
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Proposition 4.2.6 Let v,w € D(div) be given. Suppose that v = w holds m-a.e. on some
open set 2 C X. Then div(v) = div(w) is satisfied m-a.e. on .

Proof. By linearity of the divergence, it clearly suffices to prove that div(v) = 0 m-a.e. on 2
whenever v = 0 m-a.e. on 2. In order to prove it, notice that a simple cut-off argument gives

A={feW"X) : f=00nQ isdensein B:= {g€ L*(m) : g=0o0nQ°}. (4.16)

Moreover, — [ fdiv(v)dm = [df(v)dm = 0 holds for every f € A, whence property (4.16)
ensures that [ gdiv(v)dm =0 for all g € B, i.e. div(v) vanishes m-a.e. on €. O

Proposition 4.2.7 Let v € D(div) be given. Let f : X — R be a bounded Lipschitz function.
Then fv € D(div) and
div(fv) =df(v) + fdiv(v)  holds m-a.e. in X. (4.17)

Proof. Observe that the right hand side in (4.17) belongs to L?(m). Then pick g € W12(X).
By the Leibniz rule for the differential, we have that

- / g(df () + £ div(v)) dm = / gdf(v) + fgdiv(v) dm = / A(f9)(v) — g df(v) dm
= /fdg(v) dm.

Therefore the statement is achieved. OJ

To be precise, in the proof of the previous result we made use of this variant of the Leibniz
rule for the differential:

Proposition 4.2.8 Let f € WH2(X) and g € LIP(X)NL>(m) be given. Then fg € WH2(X)
and d(fg) = fdg+gdf.

Proof. Fix & € X and for any m € N pick a 1-Lipschitz function X, : X — [0, 1] with bounded
support such that X,;, = 1 on B,,(Z). Then define f,, := (f An)V (—n) and g, := X, g for
every n,m € N. Hence f,, g, € WH3(X) N L®(m) and d(fn gm) = fndgm + gm dfn. Given
that |d(fn gm)| < (HgHLOO(m) +Lip(9))|f]+ 191l oo (my ILf| € L?(m) holds m-a.e. for every choice

of n,m € N and f, g, — fg pointwise m-a.e. as n,m — oo, we deduce that fg € S?(X) by
the closure of the differential. Now observe that for any n € N we have

X,z 4(fn 9) = X5, () A(fn 9m) = XB,,z)(fndg + gdfn)  for every m € N,

whence d(f, g) = fndg + gdf, is satisfied for every n € N. Given that f, g — fg in L?*(m)
and f,dg + gdf, — fdg+ gdf in L?>(T*X), we conclude that d(fg) = fdg + gdf by the
closure of d. O

We now introduce a special class of vector fields: that of gradients of Sobolev functions.

Definition 4.2.9 Let f € S*(X). Then we call Grad(f) the set of all v € L*(TX) such that

df(v) = |df|*> = |v|* holds m-a.e. in X. (4.18)
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Remark 4.2.10 As observed in Remark 3.2.6, it holds that Grad(f) # 0 for every f € S*(X).
However, it can happen that Grad(f) is not a singleton. Furthermore, even if each Grad(f) is
a singleton, its unique element does not necessarily depend linearly on f. |

Given any Banach space B, we can define the multi-valued map Dual : B — B’ as
B>v—s {LEIB%’ L L(v) = | LI = Hvuﬁg}. (4.19)
The Hahn-Banach theorem grants that Dual(v) # () for every v € B.

Exercise 4.2.11 Prove that Dual is single-valued and linear if and only if B is a Hilbert
space. In this case, Dual is the Riesz isomorphism. [

Coming back to the gradients, we point out that
Inth(T*X)(Grad(f)) = Dual(df) for every f € S*(X), (4.20)
where the map Dual is associated to B := L?(T*X).

Example 4.2.12 Consider the space (R?,|| - || ), where H(a;,y)”oo = max {|z],|y|}. Define

the map f: R* - R as f(z,y) :=z. Then Grad(f) = {(z,y) e R? : z =1, |y| < 1}. [
Exercise 4.2.13 Prove that the multi-valued map Dual on (R",|| - [|) is single-valued at any
point if and only if the norm || - || is differentiable. |

Remark 4.2.14 The inequality df(v) < 3|df|*+3|v|? holds m-a.e. in X for every f € S?(X)
and v € L2(TX) (by Young inequality). It can be readily proved that the opposite inequality
is satisfied m-a.e. if and only if v € Grad(f). [

Theorem 4.2.15 The following properties hold:

A) LocALiTy. Let f,g € S?(X). Suppose that f = g holds m-a.e. on some Borel set E C X.
Then for any v € Grad(f) there exists w € Grad(g) such that v =w m-a.e. on E.

B) CHAIN RULE. Let f € S*(X) and v € Grad(f) be given. Then:

B1) If a Borel set N C R is Ll-negligible, then v = 0 holds m-a.e. on f~1(N).

B2) If p : R — R is Lipschitz then ¢’ o fv € Grad(p o f), where ¢’ o f is arbitrarily
defined on f *1{non—differentiabﬂity points of (p}.

Proof. To prove A), choose any w € Grad(g) and define w := Xg v+ Xpge w. Then w € Grad(g)
and v = w holds m-a.e. on E by locality of the differential, as required.

Property B1) directly follows from the analogous one for differentials (see Theorem 4.1.4),
while to show B2) notice that

dpo f)¢ o fv)=¢ o fdlpo f)v) =g o fIPdf(w) = ¢ o f21Af2 = |¢ o fI? |v]?
— |d(po f)[?

is verified m-a.e. on X. O
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Given any two Sobolev functions f, g € S%(X), let us define
1
Hy4(e) := §‘D(g +5f)}2 e L'(m) for every ¢ € R. (4.21)
Then the map Hy,: R — L' (m) can be easily proven to be convez, meaning that
H((1=X)eo+Ae1) < (1-A)H(eo)+AH (e1) m-a.e. for all eg,e1 € R and X € [0,1]. (4.22)
Therefore the monotonicity of the difference quotients of Hy , grants that

H —H H - H
3 Ll (m)- lim f7g(€) f’g(o) = ess inf /-9 (8) £, (O)
N0 9 e>0 £

(4.23)

and an analogous statement holds for ¢ 0.

Remark 4.2.16 The object in (4.23) could be morally denoted by df(Vg), for the reasons
we are now going to explain. Given a Banach space B, we have that the map Dual defined
in (4.19) is (formally) the differential of || - |[3/2. Since T,B ~ B and Tyop22R = R for any

vector v € B, we can actually view d(]| - H%B/Q) (v): T,B — T2 /2R as an element of B'. In
our case, if we let B = L?(T*X) then we have that

i 19+ € dF 15 — gl
e—0 2¢e

12
—a (155 ) o) = dusi(ag)a) = af(v),
which leads to our interpretation. [

Proposition 4.2.17 Let f,g € S%(X). Then the following properties hold:

i) For any v € Grad(g) we have that ess infg>ow > df(v) holds m-a.e. in X.

Hypg(e)=Hyg(0)
1.9 ~ f.9 _df

ii) There is vy € Grad(g) such that ess inf.~q (vf4) m-a.e. in X.

i') For any v € Grad(g) we have that ess supKOM < df(v) holds m-a.e. in X.

£

ii") There is vy _ € Grad(g) such that ess Sup€<0M =df(vf—) m-a.e. in X,

£

Proof. The proof goes as follows:
i), i) Take v € Grad(g). By Remark 4.2.14 we have that

1 1
dg(v) > B |dg|* + 3 ]2 holds m-a.e. in X. (4.24)

Moreover, an application of Young’s inequality yields

d(g+ef)(v) < 5 |d(g+ 5f)\2 + % lv]> m-a.e. in X. (4.25)

1
2
By subtracting (4.24) from (4.25) we thus obtain

d(g + ¢ f)|* - |dg|?
2

edf(v) < m-a.e. in X. (4.26)
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Dividing both sides of (4.26) by € > 0 (resp. € < 0) and letting € — 0, we get i) (resp. i')).
ii), ii") We shall only prove ii), since the proof of ii’) is analogous. For any € € (0,1), let us
pick some v, € Grad(g + € f). Notice that

HUEHL2(TX) = Hd(g + Ef)HL2(T*X) < HdQHLZ(T*X) + de”LQ(T*X) for every e € (0,1),

whence the intersection among all 0 < &’ < 1 of the weak*-closure of {UE c e e (0,¢ )} is
non-empty by Banach-Alaoglu theorem. Then call vy one of its elements. By expanding
the formula d(g + € f)(v:) > %’d(g + z—:f)‘2 + 3|ve|?, which holds m-a.e. for every € € (0, 1),
we see that

1 1
3 |ve|? + 3 |dg|*> — dg(ve) < G holds m-a.e. in X, (4.27)

for a suitable G. € L!(m) that L!(m)-converges to 0 as € \, 0. Observe that for any E C X
Borel we have that

1 1
Fp: L*(TX) > R, v+— / 3 lv|? + 5 |dg|* — dg(v) dm (4.28)
E

is a weakly*-lower semicontinuous operator. Hence (4.27) grants that Fr(vs4) < 0 for every
Borel set E C X, or equivalently 3 |vs4|*> + 3 |dg|> — dg(vs+) < 0 m-a.e. in X. Therefore
Remark 4.2.14 gives vy, € Grad(g). Finally, observe that it m-a.e. holds that

1 2 1
dlg+¢ F)(ve) = 5 Dlg +2 I + S el
1 1
dg(v.) < 5|Dgl? + S vl

(The first line is due to the fact that v. € Grad(g + ¢ f), while the second one follows from
Young’s inequality, as seen above.) By subtracting the second line from the first one, we
obtain the m-a.e. inequality

Ju— / —
(8) vag(o) Z ess inf vag(g) vag(o) = @

€ e'>0 g’

H
df(ve) > 19 for every € € (0,1). (4.29)

Recall that L*(TX) 3 v — [w(v)dm is weakly*-continuous for any w € L*(T*X). By
applying this fact with w := Xg df, where E C X is any Borel set, we deduce from (4.29) that

/ df(vfy)dm > / ©dm for every F C X Borel.
E E

This grants that df(vs ) > © holds m-a.e. in X, which together with i) imply ii). O

Exercise 4.2.18 Prove that the norm of a finite-dimensional Banach space is differentiable

if and only if its dual norm is strictly convex. |
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4.3 Infinitesimal Hilbertianity

Proposition 4.3.1 Let (X,d, m) be a metric measure space. Then the following conditions
are equivalent:

i) For every f,g € S*(X) it holds that

H — Hy 4(0 H — H¢ (0
e>0 e e<0 9

ii) For every g € S?(X) the set Grad(g) is a singleton.

Proof. The proof goes as follows:
ii) = i) It trivially follows from items ii) and ii’) of Proposition 4.2.17.
i) = ii) Our aim is to show that if v,w € Grad(g) then v = w. We claim that it is enough
to prove that
df(v) = df(w) for every f € S*(X). (4.31)

Indeed, if (4.31) holds true then the operator df +— df(v — w) from the generating linear
subspace V := {df : f € S*(X)} of L*(T*X) to L'(m) is identically null, whence accordingly
we have that v — w = 0 by Proposition 3.2.9. This shows that it suffices to prove (4.31).

Take any f € S%(X). Suppose that (4.31) fails, then (possibly interchanging v and w)
there exists a Borel set £ C X with m(£) > 0 such that df(v) < df(w) holds m-a.e. in E.
Therefore we have that

H - H H
ess sup £9(6) 19(0) <df(v) <df(w) < ess>ionf 1o
3

<0 3

(e) — Hy,y4(0)
€

m-a.e. in F,

which contradicts (4.30) This shows (4.31), as required. O

Definition 4.3.2 (Infinitesimal strict convexity) We say that (X,d, m) is infinitesimally
strictly convex provided the two conditions of Proposition 4.3.1 hold true. For any g € S%(X),
we shall denote by Vg the only element of Grad(g).

Theorem 4.3.3 The following conditions are equivalent:
i) Wh2(X) is a Hilbert space.
ii) 2(|df|2 + |dg|2) = ‘d(f +g)‘2 + }d(f — g)‘2 holds m-a.e. for every f,g € Wh2(X).

iii) (X,d, m) is infinitesimally strictly convex and df(Vg) = dg(Vf) holds m-a.e. in X for
every f,g € WH2(X).

iv) L2(T*X) and L*(TX) are Hilbert modules.

v) (X,d,m) is infinitesimally strictly conver and V(f + g) = Vf + Vg holds m-a.e. in X
for every f,g € WH2(X).
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vi) (X,d,m) is infinitesimally strictly convex and V(fg) = fVg+ gV f holds m-a.e. in X
for every f,g € WH2(X) N L*®(m).

Proof. The proof goes as follows:
i) == ii) First of all, observe that W1?(X) is a Hilbert space if and only if

1
WHE(X) 5 f — E(f) := 5 / |df|>dm satisfies the parallelogram rule. (4.32)

Now suppose that i) holds, then E(f+¢ g)+E(f—cg) = 2E(f)+2%E(g) for all f,g € WH2?(X)
and € # 0, or equivalently

E(f +e9) —E(f)  E(f —eg) —E(f)

- =2¢E(9g). 4.33
- - eE(g) (4.33)
Hence (4.33) and Proposition 4.2.17 grant that
E —E E —E
/ esssup dg(v)dm = lim (f+eg) (f) — lim (f+eg) (f)
veGrad(f) eN\o 3 e 0 €

- inf dg(v) dm,
[ essint dgto) dm

thus accordingly essinf,egrad(r)dg(v) = €88 SUPyegrad(r)dg(v) holds m-a.e. in X. This guaran-
tees that Grad(f) is a singleton for every f € W2(X), i.e. (X,d, m) is infinitesimally strictly

convex. We now claim that

/df(Vg) dm = /dg(Vf) dm for every f,g € WH*(X). (4.34)
Given f,g € WH2(X), denote by Q : R? — R the function (t,s) — E(t f + sg). Since Q is a
quadratic polynomial, in particular smooth, we have %|t:0%\5:og(t’ s) = %‘8:0%’]5:09(15, s).

The left-hand side of the previous equation can be rewritten as

3y (}% E(tf+hz) — E(tf)) _ % y (/dg(V(tf)) dm)
g (t / dg(V 1) dm> _ / dg(V f) dm

_ 4
Codt

and analogously the right-hand side equals [ df(Vg)dm, proving (4.34).

Fix any function h € LIP(X) N L*(m). We want to prove that

d
dt

W (X)NL®(m) > f — /h |df|>dm satisfies the parallelogram rule. (4.35)
To this aim, notice that the Leibniz rule and the chain rule for differentials yield
[ riasPan= [nasepam = [ - Fan(vs) dm
= [t - an(v(r/2)am = [anvs) - (/2 vn dm,
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Both the addenda [ d(fh)(Vf)dm and — [ d(f?/2)(Vh)dm are quadratic forms, the former
because (f,g) — [d(fh)(Vg)dm = [dg(V(fh))dm is bilinear, whence (4.35). Given that
the set LIP(X) N L*°(m) is weakly™ dense in L>(m), we finally deduce from (4.35) that

2/hydfy2+h|dg\2dm=/h|d(f+g)}2+h|d(f—g)}2dm

holds for every f,g € WH2(X) and h € L°(m). Therefore ii) follows.

ii) = i) By integrating the pointwise parallelogram rule over X, we get the parallelogram
rule for | - [[yy1.2(x), so that Wh2(X) is a Hilbert space.

i) = iii) By arguing exactly as in the first implication, we see that (X, d, m) is infinitesimally
strictly convex and that (4.35) holds true. By following the argument we used to prove (4.34),
we deduce that

for every f,g € WH2(X) N L>®(m)

and h € LIP(X) N L>®(m). (4.36)

/hdf(Vg) dm — /hdg(Vf) dm
Given that the set LIP(X) N L% (m) is weakly* dense in L*°(m), we conclude from (4.36) (by
applying a truncation and localisation argument) that df(Vg) = dg(Vf) holds m-a.e. for
every f,g € WH2(X). This shows that iii) is verified.
iii) = 1) It suffices to prove that E satisfies the parallelogram rule. Fix f,g € W2(X). Note
that the function [0,1] > t — E(f 4 tg) is Lipschitz and that its derivative is given by

gE(ertg) = lim E((f+tg)+hhg) miSthaZ) =/dg(V(f+tg)) dm

dt
:/d(f+tg)(vg)dm=/df(vg)dm+t/|dg\2dm,

whence by integrating on [0,1] we get E(f + g) — E(f) = [df(Vg)dm + [|dg|?/2dm. If
we replace g with —g, we also obtain that E(f — g) — E(f) = — [ df(Vg)dm + [ |dg|>/2dm,
whence by summing these two equalities we conclude that E(f+¢)+E(f—g) = 2E(f)+2E(g).
ii) = iv) Consider two 1-forms w and 7 in L*(T*X), say w = >, X, df; and n = > XF;dg;.
By locality we see that |w + n]? + |w — n]?> = 2|w|? + 2|n|? holds m-a.e. in X, whence by
integrating we get ||w + HH%Q(T*X) +|lw — 77”%2(T*X) =2 ”WH%%T*X) +2 H77H%2(T*X)- By density
of the simple 1-forms in L?(T*X), we conclude that L?(T*X) (and accordingly also L?(TX))
is a Hilbert module, thus proving iv).

iv) = ii) It trivially follows from Proposition 3.2.12.

iv) = v) Let f € WY3(X) and v € Grad(f). By Theorem 3.2.14 applied to L?(TX) there
exists a unique 1-form w € L?(T*X) such that (w,n) = n(v) for every n € L?(T*X). Moreover,
it holds that |w|, = |v| = |df|« m-a.e. in X. Hence by taking n := df we see that

w—dfff = [wfZ +|df] - 2(w,df) = 2|df[ - 2df(v) =0 m-ae.,

which grants that w = df. Again by Theorem 3.2.14, we deduce that (X,d, m) is infinitesi-
mally strictly convex and that f +— V f is linear, as required.
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v) == ii) For any f,g € W'?(X), it m-a.e. holds that

|d(f +9)|
|d(f - 9)|

hence by summing them we get the m-a.e. equality ‘d(f+g)|2 + |d(f—g)‘2 =2|df|?+2]|dg|?
proving the validity of ii).

v) <= vi) By applying the chain rule for gradients, we see that if f,g € W12(X) N L>(m)
and f':=exp(f), ¢ := exp(g), then we have

2= d(f+9)(V(f +9) = df(VF) +df(Vg) +dg(Vf) +dg(Vg),
P=d(f - 9)(V(f —9)) = df(Vf) — df(Vg) — dg(V f) +dg(Vg),

P9V (f+g9) =rfdV(og(fg)) =V(fd),
F'g (Vf+Vg) = f'gd V(log(f)) + f'g V(log(g")) =g Vf + f V.

Therefore we conclude that v) is equivalent to vi), thus concluding the proof. O

Definition 4.3.4 (Infinitesimal Hilbertianity) We say that (X,d,m) is infinitesimally
Hilbertian provided the six conditions of Theorem 4.3.3 hold true.

Proposition 4.3.5 Let (X,d, m) be an infinitesimally Hilbertian metric measure space. Then
the spaces WH2(X), L*(T*X) and L*(TX) are separable.

Proof. The space W12(X), being reflexive by hypothesis, is separable by Theorem 2.1.27.
Given that the differentials of the functions in W1?(X) generate the cotangent module, we
deduce from Lemma 3.1.17 that even L?(T*X) is separable. Finally, Theorem 3.2.14 grants
that L?(TX) is separable as well. O

4.4 Maps of bounded deformation

Definition 4.4.1 (Maps of bounded deformation) Let (X,dx,mx) and (Y,dy,my) be
given metric measure spaces. Then a map ¢ : Y — X is said to be of bounded deformation
provided it is Lipschitz and of bounded compression (recall Definition 3.2.23).

A map of bounded deformation ¢ : Y — X naturally induces a mapping

@ : C([0,1],Y) — C([0,1],X),
Y poy.

(4.37)

It is then easy to prove that

() is an AC curve in X and

visan AC curvein Y = ! . ‘
l(7),] < Lip(g) |5 for a.e. t.

(4.38)

Indeed, we have dx (#(1), #(7s)) < Lip(¢) dy (3,7s) < Lip(p) [ [4| df for all s < .
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Lemma 4.4.2 Let w be a test plan on Y and ¢ : Y — X a map of bounded deformation.
Then @, is a test plan on X.

Proof. Observe that

(e1) s+ = pu(er)sm < e (Cmy) < Comp(p) Cmx  for every ¢ € [0,1],

1
//\"yt\Qdcp* )dt = //|<p ‘ dm(vy)dt < Lip(¢ //|'yt|2d7r ) dt < 400,
0

whence the statement follows. OJ

By duality with Lemma 4.4.2, we can thus obtain the following result:

Proposition 4.4.3 Let ¢ : Y — X be a map of bounded deformation and f € S*(X). Then
it holds that f o o € S*(Y) and

‘D(f o go)} < Lip(p)|Df|oy  holds my-a.e. inY. (4.39)

Proof. Since |Df| o € L?(my), it only suffices to prove that Lip(¢) |Df|o ¢ is a weak upper
gradient for f. Then fix any test plan @ on Y. We have that

1
/\fowoe1—fowoeo\dﬂ=/\foe1—f060!d90*7fé/0/IDf!(%) 5¢] dep () dlt

1
= [ [ st ey amta) at
1
< Lip(p) / / (IDf] 0 @) () Fiel dme () dt

proving that Lip(y) |Df] o ¢ is a weak upper gradient, as required. O

Theorem 4.4.4 (Pullback of 1-forms) Let (X,dx,mx), (Y,dy,my) be metric measure
spaces and ¢ : Y — X a map of bounded deformation. Then there exists a unique linear
and continuous operator ¢* : L*(T*X) — L*(T*Y) such that

o'df =d(fop) forevery f € SQ(X),

) (4.40)
P (gw) =gope*w  for every g € L (mx) and w € L*(T*X).
Moreover, it holds that
lo*w| < Lip(@) |w|o¢ my-a.e.  for every w € L*(T*X). (4.41)

Proof. We are obliged to define ¢* (3", Xg, dfi) :=>; X, o ¢ d(fi o ¢). Given that
(4.39)
’ > Xg opd(fiop) ) => Xp-1(my |d(fiop)| < Lib(e) > Xp-1(my) ldfil o ¢

9

= Lip(¢) | 3 X, A

we see that ¢* is well-defined, linear and continuous. Then it can be uniquely extended to an
operator ¢* : L*(T*X) — L?(T*Y) having all the required properties. O
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We have introduced two different notions of pullback for the cotangent module L?(T*X).
We shall make use of the notation ¢* : L?(T*X) — L?(T*Y) for the pullback described in
Theorem 4.4.4, while we write [¢*] : L?(T*X) — ¢*L?(T*X) for the one of Theorem 3.2.24.

Theorem 4.4.5 (Differential of a map of bounded deformation) Let us consider two
metric measure spaces (X,dx,mx) and (Y,dy,my). Suppose (X,dx,mx) is infinitesimally
Hilbertian. Let o : Y — X be a map of bounded deformation. Then there exists a unique
Lo (my)-linear continuous map dy : L*(TY) — ¢*L?(TX), called differential of o, such that

[p*w](dp(v)) = p*w(v)  for every v € L*(TY) and w € L*(T*X). (4.42)
Moreover, it holds that
|dp(v)| < Lip(p) [v] my-a.e.  for every v € L*(TY). (4.43)
Proof. Denote by V' the generating linear subspace {[¢*w] : w € L*(T*X)} of ¢*L*(T*X).
Fix v € L?(TY) and define L, : V — L'(my) as L,[¢*w] := ¢*w(v). The my-a.e. inequality
) . (441) . .
" w(v)| < |¢*wlfv] < Lip(p) lw] o @lv] = Lip(y) [v] |[¢*w]] (4.44)

grants that L, is a well-defined, linear and continuous operator. Hence we know from Proposi-
tions 3.2.9 and 3.2.41 that there exists a unique element dp(v) € (¢*L*(T*X))" ~ ¢*L*(TX)
such that [p*w](d¢(v)) = ¢*w(v). Moreover, such element necessarily satisfies

|de(v)| < Lip(¢) [v| my-a.e.inY,

again by Proposition 3.2.9. Thus to conclude it only remains to show that the assignment
L3(TY) 3 v+ dp(v) € *L?(TX) is L>(my)-linear. This follows from the chain of equalities

lo*w](de(f v)) = ¢"w(fv) = f "w(v) = f[¢"w](de(v)),
which holds my-a.e. for every choice of f € L%®(my) and v € L*(TY). O

In the case in which ¢ is invertible and its inverse is a map of bounded compression,
the differential of ¢ can be equivalently expressed in the following fashion (based upon what
previously discussed in Remark 3.2.35):

Theorem 4.4.6 Let (X,dx,mx), (Y,dy,my) be metric measure spaces and let ¢ : Y — X
be a map of bounded deformation. Suppose that ¢ is invertible and that ¢~' has bounded
compression. Then there exists a unique linear continuous operator dyp : L*(TY) — L*(TX)
such that

w(dp(v)) = (p*wv)) o™ mx-a.e. for everyv € L*(TY) and w € L*(T*X).  (4.45)
Moreover, it holds that

{dgp(v)’ < Lip(¢) [v] o ™! mx-a.e. for every v € L*(TY). (4.46)
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Proof. Fix v € L*(TY). Denote by dp(v) the map L*(T*X) 2 w — (¢*w(v)) o' € L!(mx).
Given that ‘w(dcp ’

< Lip(¢) |w| |v] 0 971, we know that dep(v) is (linear and) continuous.
Moreover, for any f € L% (mx) it holds

(@ (fw)(@) o™ = (forp'w) o™ = f(p'w(v) o™,
thus proving the L>(mx)-linearity of dp(v). Hence we have a map dy : L2(TY) — L?(TX),
which can be easily seen to satisfy all the required properties. ]
In the following result, the function (v, %) — || is defined everywhere, as in Remark 1.2.6.
Theorem 4.4.7 (Speed of a test plan) Let (X,d, m) be an infinitesimally Hilbertian me-

tric measure space. Let w be a test plan on X. Then for almost every t € [0, 1] there exists
an element 7, € ef L?(TX) such that

LY (m)- lim fo et*’lh* Foo _terafi(nl)  for every f € WE(X). (4.47)

Moreover, the following hold:
i) the element of ef L*(TX) satisfying (4.47) is unique,

ii) we have that |w}|(y) = || for (w x L1)-a.e. (7,t).

Proof. We divide the proof into several steps:

STEP 1. Notice that Proposition 4.3.5 grants that W2(X) is separable, thus there exists a
countable dense Q-linear subspace D of W2(X). By applying Theorem 2.1.21 we see that
for any function f € D it holds that (foeprp, — foe)/h admits a strong L!(7)-limit as h — 0
for a.e. t. Moreover, the function M : [0,1] — R, M(t) := [ |%|>dn(y) belongs to L'(0,1)
and the function (v,t) ~— |%| belongs to L?(mw x £1). Hence we can pick a Borel negligible
subset N C [0, 1] such that for every ¢ € [0,1] \ N the following hold:

e Der(f) :=limp0 (f 0 € — foer)/h € L () exists for every f € D,

e the inequality
|Dere(£)|(7) < [DfI(w) el for m-ae. y (4.48)

is satisfied for every f € D,

e tis a Lebesgue point for M, so that in particular there exists a constant C; > 0 with

t+h
M(s)ds < Cy  for every h # 0 such that t + h € [0, 1], (4.49)
t

e the function v — || belongs to L?(r).

Since for any ¢ € [0,1] \ N we have that Der; : D — L!(7) is a Q-linear operator satisfying
(4.48) for every f € D, it uniquely extends to a linear continuous Der; : W12(X) — Ll(w)
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satisfying the inequality (4.48) for all f € W12(X).
STEP 2. Observe that for any ¢ € [0,1]\ N and g € W2(X) we have that

t+h
/][ IDgl(vs) 156 ds dre ()

t+h 2/ rtth Y2 (450
< ([} popaasanty) (f areas) T
t t
< mH’Dg‘Hp(m) vV Ct
(where C := Comp(w) stands for the compression constant of 7r) holds for every h # 0 such

that t + h € [0,1]. Now fix t € [0,1] \ N and f € W12(X). Choose any sequence (f,), C D
that converges to f in W12(X). Therefore one has that

go€ith —goe
h

fo et+hh— foet _ Dert(f)

Lt (m)

fnoet+h — fnoe
h

— Der(fn) + HDert(f

Lt ()

VO CHID( = fallll oy +

so by first letting h — 0 and then n — oo we conclude that Der;(f) is the strong L!(7r)-limit
of (foewp— foer)/hash— 0.

STEP 3. Call V; := {[ejdf] : f € W'*(X)} for every ¢t € [0,1] \ N. Define L, : V; — L*(m)
as Lilefdf] := Dery(f). Given that for any f € W2(X) property (4.48) yields

| Lelerdf]| () < [[eFdfl](v) 5] for m-ace. v,
we see that the operator L; (is well-defined, linear, continuous and) can be uniquely extended
— by Propositions 3.2.9 and 3.2.41 — to an element 7} € e L2(TX) ~ (ef L*(T*X))". Therefore
one has Der;(f) = [efdf](m}) for every f € WH2(X) and |m}|(y) < || for m-a.e. 7.
STEP 4. Given any f € LIPy(X) and 7 : [0,1] — X AC, it holds that fo~ is AC as well and
that for m-a.e. v we have (f(vi4n) — f(11))/h — %f('yt) as h — 0 for a.e. t. Then

. d

[etdf)(mt)(v) = L () for (m x La)-ae. (7,1).

Since [e;df](w})(v) < |[efdf]|(7) |7} (v) < Lip(f) |m}|(y) holds for m-a.e. v, we deduce from
the previous formula that & f(v:) < Lip(f)|m}|(y) for m-a.e. 7. In order to conclude, it is

f)HLl(w)7

thus sufficient to provide the existence of a countable family D’ C LIPs(X) of 1-Lipschitz
functions such that for every AC curve ~ : [0,1] — X it holds

d
|| = sup dtf(%) for a.e. t € [0,1]. (4.51)

To do so, fix a countable dense subset (2y,), of X and let us define fp, m, := (m—d(:, :En))+ for
every n,m € N. Then the family D’ := (fy, m)n,m does the job: given any z,y € X it clearly
holds that d(x,y) = sup, ,, [fam(2) — frm(y)], whence for all 0 < s < ¢ < 1 we have

tq t d
d(7t775) = sup [fn,m(’}’t) - fn,m(’}’s)] = Sup/ @fn,m(Vr) dr < / sup gfn,m(’}’r) dr.

n,m nm Js n,m

Therefore the statement is achieved. O
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Chapter 5

Heat flow on metric measure spaces

In order to develop a second-order differential calculus on spaces with curvature bounds we
need to make use of the regularising effects of the heat flow, to which this chapter is dedicated.

In Section 5.1 we establish the general theory of gradient flows on Hilbert spaces. More
precisely, we prove existence, uniqueness and several properties of the gradient flow associated
to any convex and lower semicontinuous functional defined on a Hilbert space.

In Section 5.2 we concentrate our attention on the heat flow over metric measure spaces
that are infinitesimally Hilbertian. In Subsection 5.2.1 we introduce the Laplace operator,
while in Subsection 5.2.2 we define the heat flow as the gradient flow in L?(m) of the Cheeger
energy f +— %f |Df|? dm and we show its basic features.

5.1 Gradient flows on Hilbert spaces

5.1.1 Set-up of the theory

Let H be a Hilbert space. Let £ : H — [0, +00] be a convex lower semicontinuous functional.
Given any point € H such that E(z) < oo, we define the subdifferential of E at x as

O E(x):={veH : E(x)+ (v,y—x) < E(y) for every y € H}. (5.1)
It trivially holds that 0 € 9~ E(x) if and only if z is a minimum point of E.

Exercise 5.1.1 Consider H := R and E(z) := |z| for every z € R. Then

{1} if x >0,
0" E(x):=1< [-1,1] ifx=0, (5.2)
{-1} if z <0.

Proposition 5.1.2 The following properties hold:

113
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i) The multivalued map 0~ E : H — 2" is a monotone operator, i.e.

(x—y,v—w) >0 foreveryx,y€ H,ved E(x) andw € 0~ E(y). (5.3)

ii) The set {(z,v) € Hx H : v € 0 E(x)} is strongly-weakly closed in H x H, i.e.
Tn — x strongly in H,
Up, — v weakly in H, = ved Ex). (5.4)
vy, € 07 E(xy,) for alln

Proof. The proof goes as follows:
i) From v € 0" E(z) and w € 0~ E(y) we deduce that

E(x) + (v,y — z) < E(y),

(5.5)
E(y) + (w,x —y) < E(z),

respectively. By summing the two in (5.5) we obtain (v — w,y — x) < 0, proving (5.3).
ii) Fix two sequences (2, )n, (vn)n C H such that x,, — z, v, — v and v, € 0~ E(x,). Hence
for any y € H it holds that

E($)+<U7y_$> < lim E(xn)'{' h_>m <Umy—$n> éE(y),

n—oo

thus showing that v € 9~ E(z). This proves the statement. O

Lemma 5.1.3 Let H be a Hilbert space. Let [0,1] 3t +— v, € H be an AC curve. Then

3 Jim 20 v € H forae. tel0,1]. (5.6)
h—0 h

Moreover, the map t — v} belongs to L'([0,1], H) and satisfies
t
Vg — Vg = / v.dr  for every s,t € [0,1] with s < t. (5.7)
S

Proof. Since v is essentially separably valued (as it is continuous), we assume with no loss of
generality that H is separable. Fix an orthonormal basis (e,), of H. Given any n € N, we
have that t — v; - e, € R is AC and accordingly a.e. differentiable. Hence there exists a Borel
negligible set N C [0, 1] such that

J0,(t) = lim JHh & T 0 En

€R foreveryneNandtel[0,1]\N.
h—0 h

For any k € N, call Ly(t) := >F_ 0,(t)e, € Hif t € [0,1]\ N and Ly(t) :=0 € Hif t € N.
Clearly the map Ly : [0,1] — H is strongly Borel. Moreover, for any k € N it holds that

k
Ut+h — Ut )

h n
n=0 (5.8)

= 0> < +o0 for a.e. t € [0,1] \ N.

k—o0 k—o0 h—0

00 k
Z !En(t)‘Q = lim Z }Kn(t)F = lim lim
n=0 n=0

2
Ut+h — Ut

< lim
- h

1
h—0

H
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In particular, for a.e. t € [0,1] \ N there exists L(t) € H such that limy HLk(t) - L(t)HH =0.
We also deduce from (5.8) that HL(t)HH < |04 for a.e. t € [0,1], whence L : [0,1] — H is
Bochner integrable by Proposition 1.3.6. By applying the dominated convergence theorem,
we see that [* L(r)dr = limg [T Ly(r) dr for every t,s € [0,1] with s < ¢, so that

t

k k '
L L (1L15) .
Vp — Vg = khﬁrgozzo [(vt — vg) - en] e, = klggoz) </S ln (1) dr) e, = klirgo i Li(r)dr
t
—/ L(r)dr.

Hence v is a.e. differentiable, with derivative v’ := L, proving the statement. ]

Let us now define

DE):={ze€H : E(z) < +oco},
DO E):={z€H : 9 E(z)#0} C D(E).

The slope of E is the functional |0~ E|: H — [0,400] given by

Observe that |07 E|(z) = 0 if and only if = is a minimum point of E.
Remark 5.1.4 In general, the slope |07 E| is defined as
0 El(e) = { ﬁéﬁ (E(y) - E(x)) /| —y| OftieeWDS(em
In this case, this definition is equivalent to (5.9) thanks to the convexity of E. |
Remark 5.1.5 We claim that
|0 El(x) < |v| for every v € 07 E(x). (5.10)

Indeed, we know that E(x)+ (v,y—z) < E(y) for any y € H, so that E(z)— E(y) < |v||z—y]
and accordingly (E(z) — E(y))Jr < |v||z — y| for any y € H, which gives (5.10). [
Exercise 5.1.6 Let H be a Hilbert space. Given any x € H and 7 > 0, let us define

| —ap
2T

For():=E()+ (5.11)
Then it holds that 0~ F, +(y) = 0~ E(y) + == for every y € H. [ |

Proposition 5.1.7 Let x € H and 7 > 0. Then there exists a unique minimiser x. € H of
the functional Fy . defined in (5.11). Moreover, it holds that *—* € —0~ E(z-).
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Proof. Since E is convex lower semicontinuous and |-—z|2/(2 1) is strictly convex and continu-
ous, we get that the functional Fj ; is strictly convex and lower semicontinuous. This grants
that the sublevels of F, ; are convex and strongly closed, so that they are also weakly closed
by Hahn-Banach theorem, in other words Fj ; is weakly lower semicontinuous. Moreover, the
sublevels of |- —z|?/(27) are bounded, whence those of F}, ; are bounded as well, thus in par-
ticular they are weakly compact. Then the Bolzano-Weierstrass theorem yields existence of a
minimum point z, € H of F, ;, which is unique by strict convexity of Fj ;. Finally, since x,

is a minimiser for F}; ,, we know from Exercise 5.1.6 that 0 € 07 F; - (z,) = 0~ E(x,) + =%,

or equivalently *—* € —0~ E(z,), which gives the last statement. O

Corollary 5.1.8 It holds that D(0™E) is dense in D(FE) and that

|0” El(z;) < 27 — 2] <|0"E|(x) for everyx € H and T > 0. (5.12)
T
Proof. Given any x € D(FE), we deduce from the very definition of x, that

|z _33|2

mn\xT—a:FgmnzT(E(:cT)Jr )ghszE(x):o,
T\‘O 7—\0 2T ’T\O

whence the first statement follows. Moreover, since *=*= € 0~ E(x;) by Proposition 5.1.7, we

infer from (5.10) that |z, — z|/7 > |0~ E|(x;). To conclude, define z) := (1 — A) z + Az, for
every A € [0,1]. The minimality of 2, and the convexity of E give

‘ZA x‘Q 2 ’xT x‘Q

for every A € [0, 1], which can be rewritten as

w7 — 2

(1 =N (E(z) — E(z;)) > (1 =A%) 5

for every \ € [0, 1],

so that % > (14 X) % for all A € [0,1]. By letting A 1 in such inequality, we
conclude that |0~ E|(x) > E(T:Z:_Egﬂ(r;f) > IwTT_Z|. Hence the statement is achieved. O

Remark 5.1.9 We claim that the functional |0~ E|: H — [0, +00] is lower semicontinuous.
In order to prove it, for any y € H we define G, : H — [0, +00] as

Gy (x) == { (()E(y) — E($))_/|x — ii 7: z’

with the convention that (E(y) — E(z))  := +oo when E(z) = E(y) = 4o0. It can be readily
checked that |07 E|(x) = sup,cy Gy(z) for every z € H. Given that each G, is a lower
semicontinuous functional by construction, we conclude that |0~ E| is lower semicontinuous

as well. n
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Lemma 5.1.10 It holds that

|0"E|(x) = min |v| for every x € D(0”E). (5.13)
ved~ E(x)

Proof. The inequality < is granted by (5.10). To prove >, notice that |0~ E|(z) > |x — x;|/T
for all 7 > 0 by (5.12). Then there exists a sequence (7,,), \, 0 such that % — v weakly
in H as n — oo, for some v € H. Since we have that x%’ff" € 0" E(x,,) for all n € N, we
conclude that v € 9~ E(x) by item ii) of Proposition 5.1.2. Given that

o] < lim |zr,, — |/7, < |07 E|(2),

we proved (5.13). O

Remark 5.1.11 It is clear that the set 0~ E(z) is closed and convex for every = € H.
In particular, if x belongs to D(0~ E), then the set 0~ E(z) admits a unique element of
minimal norm. |

5.1.2 Existence and uniqueness of the gradient flow

We are now ready to state and prove — by using the language and the results that have
been introduced in the previous subsection — the main result of this chapter, which concerns
existence and uniqueness of gradient flows:

Theorem 5.1.12 (Gradient flow) Let H be a Hilbert space. Let E : H — [0,4+00] be a

convex lower semicontinuous functional. Let x € D(E) be fixed. Then there exists a unique
continuous curve [0,+00) 3 t — xy € H starting from x, called gradient flow trajectory,
which is locally AC on (0,+00) and satisfies x; € —0~ E(x¢) for a.e. t € [0,+00). Moreover,
the following hold:

1) (CONTRACTION PROPERTY) Given two gradient flow trajectories (z¢) and (y;), we have

[zt — ye| < |xo —yo|  for every t > 0. (5.14)

2) The maps t — x; and t — E(x¢) are locally Lipschitz on (0,400).
3) The functions t — E(z¢) and t — |0~ E|(z¢) are non increasing on [0, +00).
4) For any y € H, we have that E(x¢) + (x},z¢ —y) < E(y) holds for a.e. t € (0,+00).
5) We have that —& E(x;) = |iy|> = |07 E|*(x¢) for a.e. t € [0, +00).
6) The following inequalities are satisfied:
6a) E(x:) < E(y) + % for everyy € H and t > 0.

6b) 0" E|*(x;) < |07 E*(y) + |x0t_2y|2 for everyy € H and t > 0.
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7) For any t > 0, we have that the difference quotients w converge to the element of

minimal norm of 0~ E(x;) as h \, 0. The same holds for t = 0 provided 0~ E(xzq) # 0.

Proof. We divide the proof into several steps:
STEP 1. We start by proving existence in the case © € D(E). Fix 7 > 0. We recursively
define the sequence (:E(n))n C H as x5, := x and

2
|- _fU(Tn)|

> for every n € N.
2T

z = argmin( E(-) +
(n+1) gH ( ()

Then define (z]) as the unique curve in H such that z]. = Tl for all n € N and that is

affine on each interval [n7, (n + 1)7]. For any n € N, we clearly have that

x7 -z
(x]) = S B COR 0 every t € (nt, (n+ 1)7). (5.15)
T
Since E(xznﬂ)) + ‘x(nﬂ) - m?n)}z/(Q T) < E(x(Tn)) for all n € N, we infer from (5.15) that
1ot ) — 2l
2/0 7 dr =3 < B(z) < +o0. (5.16)

n=0
Given 7,7 > 0 and k, &k’ € N such that ¢t € ((k — 1)7, k7] N ((K' — 1)n, k'n], it holds that
d "TT — x’]|2 T T T T T
a % = <(3Ut ) = (@), ks — 332/77> + <($t ) = (@), (2] — 23,) — (2 — 332/77»
<0 by (5.3)

< (1D T+ 1)) (7 1@+ 1))

<l (v + T 1P (4 50

2
By integrating over the interval [0, 7], we thus deduce from (5.16) that

|2f — 27
——+ < 2E(x)(t+n) forevery 7, > 0. (5.17)
This grants that sup;sq |27 — 2| = 0 as 7,17 \, 0, so there exists a continuous curve (x;),
with 29 = x, which is the uniform limit of (2]) as 7 \, 0.

Notice that {(27)" € L?([0,400),H) | 7 > 0} is norm bounded by (5.16), so that there
exists (7,)n N\ 0 such that (z7)" — v. weakly in L?([0,+00), H) as n — oo, for a suitable
limit v. € LQ([O, +00), H) Given any t > s > 0, we know that

t
z™) dr =2 — 2™ -z, —x,  in the strong topology of H.
T t S
S

Moreover, for any w € H it holds that the map r ~ X[s,(r) w belongs to Lz([O, —i—oo),H),

thus the fact that (z™)" — v. ensures that

t ot t . t
<w,/ (:UZ")’dr> (1':0)/ (w, (z7")") dri>/ <w,vr>dr(l':d) <w,/ Uy dr>.
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Therefore we deduce that z; — x5 = f; v, dr is satisfied for every ¢ > s > 0. This ensures that
the curve (x;) is locally AC on (0,+o00) and its derivative is given by (v;). Now fix y € H.
We claim that

t1
E(xy) + (wh, ¢y —y) dt < (1 — to) E(y)  for every 0 < to < t; < +00. (5.18)

to

Recall that —(:c(nﬂ) - x(Tn))/T € 8‘E(w(n+1)) for all n € N. Moreover, it holds that

T - T t t . T T -

Therefore we deduce from Proposition 5.1.7 that

t1 t1
E(wy) + (ry,x —y)dt < lim [ E(2]) + ((2])', 2] —y)dt
to 7\.0 J tg
t1
< lim E(xf;,/TJrl]T) + <(§EZ)/, xﬁ/T+1]T - y> de
7\0 J tg
t1
<lm [ E(y)dt = (t1 —to) E(y),
7N\0 Jtg

which proves the validity of our claim (5.18). Finally, take ¢ > 0 that is both a Lebesgue point
for F(z.) and a differentiability point for z. (almost every ¢ > 0 has this property). Then
it follows from (5.18) that the formula in item 4) is verified at such ¢, proving that (z;) is a
gradient flow starting from z. Hence existence and item 4) are proven for z € D(E). Note
that item 4) is trivially satisfied if y € H \ D(E).

STEP 2. Suppose that (x;), (y;) are gradient flows starting from points in D(E). Then

|zt —ye|?
2

the function ¢ — is continuous on [0, +00) and locally AC on (0,+00). Item i) of

Proposition 5.1.2 yields

d |z —wl®

dt 2 (l‘; - yllﬁal't - yt> <0 forae. t>0.

Hence |z; — yi| < |zo — yo| for every ¢t > 0, proving 1) and uniqueness of the gradient flow.
STEP 3. We aim to prove 3). Fix 0 < ¢y < t; < 4o00. Call (z;) the gradient flow starting
from some point =z € W), then (y;) the gradient flow starting from z;,. By uniqueness,
we have that x;, = yi,—¢,. Furthermore, one has E(xy,) = E(yi,—t,) < E(yo) = E(xy,) by
construction. This shows that ¢t — E(x4) is a non increasing function. A similar argument
based on (5.12) and on Remark 5.1.9 grants that ¢ — |07 E|(z;) is non increasing as well.
Then item 3) is proven.

STEP 4. We want to prove 6a). Fix x € D(E) and call (z;) the gradient flow with zo = x.
Let y € H and t > 0. By integrating the inequality in 4) on [0,¢] and by recalling 3), we get

|z —y|?
2 )

T — 2 T — 2

t B(x;) g/o E(zs)ds <t E(y)
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whence 6a) immediately follows.
STEP 5. We aim to prove existence of the gradient flow and item 4) for any = € D(E).
Choose a sequence (z"), C D(E) such that ™ — z. Call (z}') the gradient flow with initial

datum z". We know from the contraction property 1) that

sup |zy — ' < 2" — 2™ = 0 as n,m — oo,
>0

so there is a continuous curve (z;) that is uniform limit of (z}') and such curve starts from z.
Given y € D(F) and tg > 0, we know from item 6a) that there exists a constant C(tg) > 0
such that

o —yl®

21y

whence from (5.16) it follows that } tjoo |72 dt < C(to) holds for every n € N. In other
words, (z™) are uniformly AC on [tg, +00). Hence (z") — &/ weakly in L?([to, +o0),H),
which is enough to conclude by passing to the limit in the inequality

E(zy) < E(y) + < C(ty) for every n € N,

¢
/ E(z}) + {(a}) 2} —y)ydr < (t —s)E(y) foralltg <s<t<+4ooandye H

(that is granted by (5.18)) and arguing as in the last part of STEP 1.

STEP 6. Fix € > 0. Since the curve (z;) is locally AC on (0,¢), there exists tg € (0,¢) such
that xéo exists. Moreover, for any s > 0 it holds that ¢ — ;4 is the gradient flow starting
from xs. Therefore we have that

|4 s] = lim [Tets = Trgts) V. | — my
otsl —

< = |#¢,| holds for a.e. s >0,
tNto |t —to] tNto |t — o]

which grants that the metric speed |Z| is bounded in [e, 00). This means that (x;) is Lipschitz
on [e,+00). Now call L its Lipschitz constant. Item 4) ensures that for any y € H one has

BE(x¢) — Le vy — x| < E(ay) — |2 vy — y| < E(xy) — (@, 2 —y) < E(y)

for a.e. t € (e,+00), thus also for every ¢ > ¢ by lower semicontinuity of E. By choosing
y = x5, we see that the inequality F(z;) — E(zs) < Lc|xy — x| holds for all s, > . This
shows that ¢t — F(x) is locally Lipschitz, thus concluding the proof of 2).

E(Tt)—

STEP 7. We now prove item 5). Since 5‘(‘1’) < |#¢| holds for every y € H and a.e. t by

property 4), we deduce that

_ +
|0” E|(x¢) = sup (E(=e) _E(y))
YF# Tt |y —

<|#:| fora.e.t>0. (5.19)

Moreover, observe that for a.e. t > 0 it holds that

d . E(xy) — E(zegn) _ . |ween — 2] _ .
—-—F =1 < E lim ——* 70— E
p” (z¢) lim o < |07 E|(xy) P ST 07 B| () |44]

(5.20)
]. _ 2 1 -2
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By integrating the inequality in item 4) over the interval [t, ¢ + h|, we obtain that

t+h

2 2
‘$t+h2 yl” _ Jee 5 Yl + E(xs)ds < hE(y) forevery y€ H and t,h > 0.
t

By using such inequality with y = x; and the dominated convergence theorem, we get

.12 2 t+h .
|| — lim |[en — ¢l < lim][ E(zy) — E(xs) ds
2 RN\ 2 h? hNO Sy h
VE(z))— E d !
— lim/ (l‘t) (ﬂft-i-hr) rdr = _7E(xt) / rdr (5.21)
h\0 0 hr dt 0
1m0y foraet>o0
=54 Ty or a.e. .

Finally, we obtain 5) by putting together (5.19), (5.20) and (5.21).
STEP 8. We want to prove 6b). Since the slope |0~ E| is lower semicontinuous (cf. Remark
5.1.9), it suffices to prove it for xy € D(F). Notice that the Young’s inequality yields
_ 2|0 E|*(y xr — y|?
HEW) — E(e) <4107 Ely) ly - = < A7 P oyl

By using (5.22) and items 3), 4), 5), we see that

2 — 2 t t t
tmwg/ s|E)E]2(x5)ds:—/ s(fE(xs)ds:/ B(zs) ds — t B(z)
0 0 0

(5.22)

2 S

2 2 219112 2
<tE(y) | 023/’ ’ i 2y’ tE(.%t)< | 5 | (y) ‘ 023/’ ’

which proves 6b).

STEP 9. It only remains to prove 7). It is enough to prove it for t = 0 and |0~ E|(zg) < +o0.
Observe that [#4=%| < foh |z¢| dt < |07 E|(xp) for all h > 0 by 3) and 5). Hence there exists
a sequence (hy), N\ 0 such that % — v € H. Clearly |v| < |07 E|(zg). By recalling
Lemma 5.1.10, we thus see that it just remains to show that v € 9~ E(x). Notice that

h'll hn h'll
][ <$;a$t_y> dt = <][ $2dta$0—y>+][ <$;axt_$0> dt ni)o <Ua$0_y>'
0 0 0

Therefore we finally conclude that

hn

E(z0) + (v,20 —y) < lim E(zy) + (zy, 2 — y) dt < E(y),
n—oo J0O
which proves that v € 07 E(xzo), as required. O

5.2 Heat flow on infinitesimally Hilbertian spaces

5.2.1 Laplace operator

Given an infinitesimally Hilbertian space (X,d, m) and any two vector fields v, w € L?(TX),

we shall often use the shorthand notation v - w in place of (v, w).
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Definition 5.2.1 (Laplacian) Let (X,d, m) be an infinitesimally Hilbertian metric measure
space. Then a function f € WH2(X) is in D(A) provided there exists g € L?(m) such that

/ghdm =— / Vf-Vhdm  for every h € WH3(X). (5.23)

In this case the function g, which is uniquely determined by density of W12(X) in L%(m), will
be denoted by Af.

Remark 5.2.2 One has f € D(A) if and only if Vf € D(div). In this case, Af = div(Vf).
In order to prove it, just observe that

/ dh(Vf)dm = / Vf-Vhdm holds for every h € WH?*(X).

In particular, D(A) is a vector space and the map A : D(A) — L?(m) is linear. [ |
Proposition 5.2.3 Let (X,d, m) be infinitesimally Hilbertian. Then the following hold:
i) A is a closed operator from L?(m) to itself.
ii) If f € LIP(X) N D(A) and ¢ € C*(R) satisfies ¢" € L®(R), then po f € D(A) and
Alpof)=¢' o fAf+¢" o FIVI® (5.24)
iii) If f,g € LIP,(X) N D(A), then fg € D(A) and

A(fg)=fAg+gAf+2Vf-Vg. (5.25)

Proof. The proof goes as follows:
i) We aim to show that if f, — f and Af,, — g in L?(m), then f € D(A) and Af = g. There
exists a constant C' > 0 such that || full12(m): |Afnllf2(m) < C for any n € N, so that

/|an|2dm§—/anfndm§C for every n € N.

This grants that (f,), is bounded in the reflexive space W1?(X), whence there exists a
subsequence (n;); such that f,,, — f weakly in W12(X), for some f € W2(X). We already
know that f,, — f in L?(m), then f = f and accordingly the original sequence (fn)n is
weakly converging in W2(X) to f. Since the differential operator d : W12(X) — L?(T*X)
is linear continuous, we infer that df,, — df weakly in L?(7*X). By the Riesz isomorphism,
this is equivalent to saying that V f, — Vf weakly in L?(TX). Therefore

—/hgdm:— lim [ AAfydm= lim an-Vhdm:/Vf-Vhdm

is satisfied for every h € W2(X), thus proving that f € D(A) and Af = g.
ii) Note that ¢ o f € S?(X) and V(o f) = ¢’ o f Vf. Since Vf € D(div) by Remark 5.2.2
and ¢’ o f € LIPy(X), we deduce from Proposition 4.2.7 that V(¢ o f) € D(div) and

Alpo f)y=div(¢ o fVF) =d(¢ o V) +¢ o fAdiv(VI) =" o fIVIIP+¢ o fAF,
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which proves (5.24).
iii) Note that fg € S?(X) and V(fg) = f Vg + g Vf. By applying again Proposition 4.2.7,
we deduce that V(fg) € D(div) and

A(fg) =div(fVg+gVf) =df(Vg) + fdiv(Vg) +dg(Vf) + gdiv(Vf)
=fAg+gAf+2Vf Vg,
which proves (5.25). O

Given an infinitesimally Hilbertian space (X, d, m), we denote by E : L?(m) — [0, +-oc] the
associated Cheeger’s energy (recall Definition 2.2.3), which is the convex lower semicontinuous

functional
()= L B IVEPdm i f e WHAX), (5.26)
' +00 otherwise. '

We can now provide an alternative characterisation of the Laplace operator.

Proposition 5.2.4 Let (X,d, m) be infinitesimally Hilbertian. Then a function f € W2(X)
belongs to D(A) if and only if 0~ E(f) # 0. In this case, it holds that 0~ E(f) = {—Af}.

Proof. First of all, observe that for any f,g € W2?(X) we have that

E - F
R > e E(f +eg) is convex and hH(l) (F+ Ei) (7) = /Vf - Vgdm, (5.27)
E—
as one can readily deduce from the fact that E(f+¢eg) = % [IVfI?+2eVf-Vg+e? |Vg* dm.
Let f € D(A). We want to show that E(f)— [ g Afdm < E(f+g) for every g € WH?(X).
In order to prove it, just notice that (5.27) yields

E - F
B(f +9)— B() > g DD =PI [op.ggam—— [garam,
3
which grants that —Af € 07 E(f).
Conversely, let v € 9" E(f). Then ¢ [vgdm < E(f +eg) — E(f) holds for every e € R
and g € WH2(X). Therefore we have that

—& 9

for every g € W'2(X). This says that f € D(A) and Af = —w. O

5.2.2 Heat flow and its properties

Definition 5.2.5 (Heat flow) Let (X,d, m) be an infinitesimally Hilbertian metric measure
space. Then for any f € L*(m) and t > 0, we denote by hyf the gradient flow of the Cheeger
energy E (defined in (5.26)) on L%(m), starting from f (at timet). We shall call it heat flow.
This defines a family (hy);>0 of operators hy : L?(m) — L?(m).
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Proposition 5.2.6 Let (X,d, m) be infinitesimally Hilbertian. Then the following hold:
i) The operator hy : L?(m) — L?(m) is linear for every t > 0.
ii) For every f € L*(m) and t > 0, it holds that h,f € D(A) and

M — Ahyf  in L*(m)  ase — 0. (5.28)

The same holds also at t = 0 provided f € D(A).

Proof. The proof goes as follows:

i) It directly follows from Theorem 5.1.12, Proposition 5.2.4 and the linearity of A.

ii) Proposition 5.2.4 and Theorem 5.1.12 grant that h,f € D(0~E) = D(A) for every ¢t > 0,
thus it is sufficient to prove the claim for the case t = 0 and f € D(A). In this case, we have
that 0~ E(f) = {—Af} and thus the conclusion follows from 7) of Theorem 5.1.12. O

Proposition 5.2.7 (A and h; commute) Let f € D(A). Then hyAf = Ah.f for allt > 0.

Proof. Notice that

Ahf = li{r(l)ht(hgf)_htf = ht<lim th_f) =h/Af,

IS5 e\0 5

which proves the statement. O

Proposition 5.2.8 (A is symmetric) Let f,g € D(A). Then
/gAfdm = /ngdm. (5.29)

Proof. Just notice that [gAfdm= [Vf -Vgdm= [ fAgdm. O

Corollary 5.2.9 (h; is self-adjoint) Let f,g € L?>(m) and t > 0. Then

/g hyf dm = /f hyg dm. (5.30)

Proof. Define F(s) := [ hsf h_sgdm for every s € [0,t]. Then the function F' is AC and
/ (5.29)
F(s) = /Ahsf hi—sg — hsf Ahi_sgdm =70 for a.e. s € [0,1],

whence accordingly [ g h¢fdm = F(t) = F(0) = [ f hygdm. O

Proposition 5.2.10 Let f € L?(m). Then we have f € D(A) if and only if W admits a
strong limit g € L?(m) as t \ 0. In this case, it holds that g = Af.
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Proof. We separately prove the two implications:

NECESSITY. Already established in point ii) of Proposition 5.2.6.

SUFFICIENCY. Suppose that W — g in L?(m) as t \, 0. We first claim that f € W12(X).
To prove it, notice that for every € > 0 we have — because of our assumption and the self-

adjointness of h, — that
. H htf_f BT hthaf_ haf
/hsfgdmlgf(f)l/hef . dmlgjgl/ftdm

Hence the fact that h.f € D(A), the ‘necessity’ proved before and Proposition 5.2.7 give

[retgam= [ fanefam= [ Shpspam =~ [ [Vheafdm.

Since f € L?(m), the (absolute value of the) leftmost side of this last identity remains bounded
as € \( 0, hence the same holds for the rightmost one. Hence the lower semicontinuity of the

Cheeger energy E gives

1
E(f) <lmE(h.f) =lim = [ [Vh.f|*dm < oo,
el el0 2

thus giving our claim f € W12(X). Now observe that the inequality E(hsf) < E(f), valid
for all s > 0, ensures that (h.f). is bounded in W12(X) and thus weakly relatively compact.
Since h.f — f in L?(X) as € \, 0, we deduce that h.f — f weakly in W2(X). Given any
Sobolev function ¢ € W12(X), we thus have that

_ t t
/gfdmzlim/htf fﬁdm:limf/Ahsfﬁdmds:—lim][/Vhsf-Vﬁdmds
t\.0 t t\O Jo t\O Jo

:—/Vf-VBdm,

which shows that f € D(A) and Af = g. O

Remark 5.2.11 Given any f € L?(m) and ¢ > 0, it holds that

”fH2LQ(m) 2 ”f“%z(m)
E(h:f) < —yy;  and AR fl72m) < 2 (5.31)
This claim directly follows from item 6) of Theorem 5.1.12. n

Proposition 5.2.12 Let f € L?(m) be fized. Then the following hold:
i) The map (0,+00) 3t — hyf belongs to C>((0, +o0), WH%(X)).

ii) It holds that hyf € D(A™) for every n € N and t > 0.
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Proof. The proof goes as follows:

i) Fix ¢ > 0. First of all, we prove that ¢ — h;f belongs to C! ((5, +oo),W1’2(X)). Recall
that we have % hef = Ahyf for a.e. t > ¢ and that (¢, +00) >t + Ah;f = h;_.Ah.f € L?(m)
is continuous. Call g := Ah.f. Since even the map

(e,400) >t — / ]Vht_egPdm = — / hi_cg Ah;_.gdm

is continuous, we conclude that (g,+00) 3 t — S hif = hy_.g € WH(X) is continuous as
well. This grants that (¢ — hef) € C*((e,+o0), WH*(X)). We now argue by induction:
assume that for some n € N it holds that the map ¢ — h;g belongs to C’"((s, +00), Wl’Q(X))
for every g € L?(m). This means that the map ¢ % hsf = Ah.f = h_.Ah.f belongs to
the space C"((g, +00), W'?(X)), thus accordingly (¢ — hyf) € C"((e, +o0), WH?(X)).

ii) By Proposition 5.2.7 it suffices to show that Ah,f € D(A) for all f € L?(m) and ¢t > 0.
This immediately follows from the fact that Ah,f = h,pAhy o f € D(A). O

Lemma 5.2.13 Let u: R — [0, +00] be convex lower semicontinuous and u(0) = 0. Define
C:= {v € C*(R) ) v >0 is convex, v(0) = v'(0) = 0, v',v" are bounded}.

Then there exists a sequence (un)n C C such that un,(t) /' u(t) for allt € R.

Proof. Let us define 4(t) := sup {v(t) |v € €, v < u} < u(?) for all ¢ € R. It can be readily
checked that actually @ = u. Now call I := {u < +o0} and fix any compact interval K C I
such that dist(K,R\ I) > 0. Then there exists a constant C'(K,u) > 0 such that each v € €
with v < w is C(K,u)-Lipschitz in K. Moreover, for a suitable sequence (vy,), C € we have
that esssup {v eC:v< u} = sup,, v, holds a.e. in K. These two facts grant that actually
the equality @ = sup,, v, holds everywhere in K. Since int(/) can be written as countable
union of intervals K as above, we deduce that there exists (wy), C € such that @ = sup,, wp,.
Finally, we would like to define u,, := max;<, w; for all n € N, but such functions have all the
required properties apart from smoothness. Therefore the desired functions u,, can be easily
built by recalling the facts that max{w;,ws} = % (]wl —wo| + w1 + wg) and that for all t € R
one has |wy — ws|(t) = sup.~q \/|wi — wa2|2(t) + 2 — &. 0

Proposition 5.2.14 Let f € L?(m) be fized. Then the following properties hold:

i) WEAK MAXIMUM PRINCIPLE. Suppose that f < ¢ holds m-a.e. for some constant ¢ € R.
Then hy f < ¢ holds m-a.e. for every t > 0.

ii) Let u: R — [0,400] be any convex lower semicontinuous function satisfying u(0) = 0.
Then the function [0,4+00) 3 t — [u(h¢f)dm is non-increasing.

iii) Let p € [1,00] be given. Then [[hef| 1pm) < [fllLo(m) holds for every ¢t > 0.
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Proof. The proof goes as follows:

i) By recalling the ‘minimising movements’ technique that we used in STEP 1 of Theorem
5.1.12 to prove existence of the gradient flow, one can easily realise that it is enough to
show that for any 7 > 0 the minimum f; of g — E(g) + || f — gH%g(m)/(Q 7) is m-a.e. smaller
than of equal to c. We argue by contradiction: if not, then the function f := fr A ¢ would
satisfy the inequalities E(f) < E(f;) and [|f — fll2(m) < |If = frll 12(m)» thus contradicting
the minimality of f;. Hence the weak maximum principle i) is proved.

ii) First of all, we prove it for u € C*°(R) such that u(0) = «/(0) = 0 and «/, u” are bounded.
Say |u/(t)], |u”(t)] < C for all t € R. For any ¢ > s, we thus have that

‘ ) —u(s ‘—‘/ r)dr| =

<Cls|(t—s)+ // rYdr'dr < O [(t—s)* +s| (t — s)].

- ’ (t—s)u'(s) + /St (u'(r) —u'(s)) dr

(5.32)

Given that (0,400) > t + h;f € L?(m) is locally Lipschitz, we deduce from (5.32) that the
function ¢ — [ wu(hf)dm, which is continuous on [0, +00), is locally Lipschitz on (0, +00).
By passing to the limit as € N\, 0 in the equalities

/“(ht“f) = uheS) g = /][HE W (hsf) Ahyf ds dm = /1/ W (heper f) Ahyyey f dmadr,
t 0

€

we see that % u(hyf)dm = [o/(h,f) Ahyf dm for a.e. t > 0. Hence by using the chain rule
for the differential and the fact that u” > 0 we finally conclude that

d

N u(hef)dm = / (hef) Ahyf dm = — /Vu hef) - Vhyfdm

= —/u”(htf) |Vhef|?dm <0 for a.e. t >0,

which ensures that the function [0, 4+00) 3 ¢ — [wu(h:f)dm is non-increasing.
Now consider the case of a general function u. Consider an approximating sequence (uy )y,
as in Lemma 5.2.13. By monotone convergence theorem, we thus see that

/u(htf) dm = sup/un(htf) dm for every t > 0.

neN

Hence t — f h; f) dm is non-increasing as pointwise supremum of non-increasing functions.

iii) To prove the statement for p € [1,00), just apply ii) with u := |- |P. For the case p = oo,
notice that —| |l eemy < f < I/l oemy holds m-ae., whence [l < hef < Iz
holds m-a.e. for every t > 0 by i), so that ||h f[| oo () < [ f] e (m) for all £ > 0. O

Proposition 5.2.15 (Heat flow in LP(m)) Let p € [1,00) be given. Then the heat flow
uniquely extends to a family of linear contractions in LP(m).

Proof. Tt follows from Proposition 5.2.14 and the density of L?(m) N LP(m) in LP(m). O
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Definition 5.2.16 (Heat flow in L>°(m)) Let f € L*(m) be given. Then for every t > 0
we define hyf € L>(m) as the function corresponding to [Ll(m) 59— [fhgdm € ]R} €
L (m).

Notice that the previous definition is well-posed because | [ f hygdm| < £ poo (my 19N 21 m)

is verified by item iii) of Proposition 5.2.14.

Exercise 5.2.17 Given p € [1,00] and ¢ > 0, we (provisionally) denote by h! the heat flow
in LP(m) at time ¢. Prove that h? f = h{f for all p,q € [1,00] and f € LP(m) N L(m). [ |

Proposition 5.2.18 Let ¢ € C°(0,+00) and p € [1,00] be given. For any f € L*(m) N
LP(m), let us define the mollified heat flow hy,f € L*(m) N LP(m) as

+oo
he f :—/O hsf ¢(s)ds. (5.33)

Then hyf € D(A) and HAhwaLp(m) < C(@) Il Lo () for some constant C(yp) > 0.
Proof. By applying Theorem 1.3.15, we see that h,f € D(A) and that

+oo d

+00 +oo
Ao = [ Ahfp(s)ds = /0 Lo p(s)ds = - /0 hef ¢'(s) ds,

whence accordingly item iii) of Proposition 5.2.14 yields

+oo +o0
”AhSOfHLP(m) < /0 HthHLP(m) ¥'](s)ds < HfHLP(m)/O |¥'[(s) ds.

Therefore the statement is verified with C(y) := 0+°° 1’| (s) ds. O

A direct consequence of Proposition 5.2.18 is given by the next result:

Corollary 5.2.19 The family {f € L*(m) N L>®(m) | f >0, f € D(A), Af € WH(X)} is
strongly L?(m)-dense in { f € L*(m) | f > 0}.

Bibliographical remarks

For the material presented in Section 5.1 we recommend the thorough monograph [3] and
the references contained therein. On the other hand, the results of Section 5.2 constitute the
outcome of a reformulation of the achievements that have been carried out in [5].



Chapter 6

Second-order calculus on RCD spaces

In this conclusive chapter we introduce the class of those metric measure spaces that satisfy
the Riemannian curvature-dimension condition, briefly called RCD spaces, and we develop a
thorough second-order differential calculus over these structures.

In Section 6.1 we lay the groundwork for the theory of RCD spaces. An RCD(K, co) space,
where K is a given real constant, is an infinitesimally Hilbertian metric measure space having
Ricci curvature bounded from below by K (in some synthetic sense); the definition of this
concept is provided in Subsection 6.1.1. In Subsection 6.1.2 we show that the added regularity
of RCD spaces guarantees nicer properties of the heat flow. In Subsection 6.1.3 we introduce
a fundamental class of functions on RCD spaces, called test functions, which will be used as
test objects in order to give meaningful definitions of higher-order Sobolev spaces.

By building on top of the abstract first-order differential calculus that has been inves-
tigated in Chapter 4, we are thus able to define, e.g., the notions of Hessian, of covariant
derivative and of exterior derivative over any RCD(K, c0) space; these goals are achieved in
Sections 6.2, 6.3 and 6.4, respectively. We finally conclude by presenting the Ricci curvature
operator and its properties in Section 6.5. (We point out that some of the proofs in these
conclusive sections are just sketched.)

6.1 The theory of RCD spaces

6.1.1 Definition of RCD space

Consider any smooth function f : R — R. An easy computation yields the following formula:

2
AW2f|z|Hf|2HS+Vf-VAf. (6.1)

Now consider any smooth Riemannian manifold (M, g). Recall that the Riemann curvature

tensor is given by
R(X,Y,Z,W):=(VxVyZ - VyVxZ — Vixy)Z, W),

129
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while the Ricci curvature tensor is defined as

dimM
Ric(X,Y) = ) R(e;, X,Y,¢;)
i=1

where (e;); is any (local) frame, i.e., a family of vector fields that form an orthonormal basis
of the tangent space at all points.

Observe that in (6.1) three derivatives of f appear, thus an analogous formula for M
should contain a correction term due to the presence of the curvature. Indeed, it turns out
that for any f € C°°(M) we have

VI _ e _ .
A = Hffis + Vf - VAS + Rie(Vf, V). (6.2)

Formula (6.2) is called Bochner identity. In order to generalise the notion of ‘having Ricci
curvature greater than or equal to K’ to the framework of metric measure spaces, we need

the following simple result:

Proposition 6.1.1 Let (M, g) be a smooth Riemannian manifold and let K € R. Then the

following are equivalent:
i) Ricyr > Kg, i.e., for any p € M and v € T,M we have that Ric,(v,v) > K|v|>.
ii) For any f € C°°(M) it holds that

2
A'V;'zw.VAHKWfP, (6.3)

which is called Bochner inequality.

Proof. The implication i) = ii) is trivial by (6.2), then it just suffices to prove ii) = 1).

Suppose to have p € M and v € T, M such that Ric,(v,v) < K|v|?. Hence thereis f € C*(M)
2

satisfying Vf, = v and Hf, = 0. Then A%(p) < Vf, - VAf, + K|V f,|?, which is in

contradiction with (6.2). O

We are now in a position to give the definition of the RCD(K, 0o) condition:

Definition 6.1.2 (RCD(K, c0) space) Let (X,d, m) be a metric measure space and K € R.
Then we say that (X,d, m) is an RCD(K, 0o) space provided:

i) There exist C > 0 and T € X such that m(B,(z)) < exp(Cr?) for all r > 0.

i) If f e WY2(X) satisfies |Df| € L®(m), then there exists f € LIP(X) such that f = f
holds m-a.e. and Lip(f) = H|Df’”L°°(m)'

iil) (X,d, m) is infinitesimally Hilbertian.
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iv) The weak Bochner inequality is satisfied, i.e.,

/Ag |V2f]2 dmZ/g[Vf'VAJH-K\VfF] dm (6.4)

for every choice of functions f € D(A) and g € D(A) N L®(m)* with Af € WH3(X)
and Ag € L*(m).

Remark 6.1.3 Item ii) in Definition 6.1.2 is verified if and only if both these conditions hold:

a) If f € WH2(X) satisfies [Df| € L>®(m), then there exists f : X — R locally Lipschitz
such that f = f holds m-a.e. in X and lip(f) < H|Df|HL°°(m)'

b) If f: X — R is locally Lipschitz and lip(f) < L, then f is L-Lipschitz.

The role of ii) is to link the metric structure of the space with the Sobolev calculus. |

6.1.2 Heat flow on RCD spaces
From now on, (X,d, m) will always be an RCD(K, c0) space, for some K € R.

Theorem 6.1.4 (Bakry-Emery estimate) Consider f € W'2(X) and t > 0. Then

|Dhef)? < e 2KUh(|IDf?)  holds m-a.e. in X. (6.5)
Proof. Fix g € D(A) N L>®(m)" such that Ag € L>(m) and ¢ > 0. Define F : [0,¢] — R as

F(s):= /hsg |Dh;_of|*dm  for every s € [0, 1].

Since t — h,f € W12(X) is of class C! by Proposition 5.2.12, we know that ¢ + |Dhf|? €
L!(m) is of class C! as well. Moreover, from the m-a.e. inequality

t d t t
\htg—hsg|=] [ heade| < [ 18hglar= [ hAgldr < It~ s/ [ gl

which is granted by Proposition 5.2.7 and the weak maximum principle, we immediately
deduce that |hig — hsgllpeo(my < [t = 5[ [|Aglfoc(m), in other words ¢ — hyg € L>(m) is
Lipschitz. Therefore F is Lipschitz and it holds that

d (6.4)
CTF(S) :/Ahsg]Dht_sf\Q—2hstht_Sf-VAht_sfdm > 2K [ hyg|Dhi_sf]* dm
S
=2K F(s) forae.s€e][0,t].

Hence Gronwall lemma grants that F(t) > e25¢F(0), or equivalently

/ g|Dhef[2dm < 2K / ghe(IDF1?) dm.

Since the class of functions g under consideration is weakly*-dense in { g€ L®m):g> O}
as a consequence of Proposition 5.2.18, we finally conclude that (6.5) is satisfied. U
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Lemma 6.1.5 Let f,g € D(A) N L (m) be given. Then

2
/Ag‘];dm:/g(fAf—i—wf]?) dm. (6.6)

Proof. Since fg € W12(X), we see that

/ngfdm— —/V(fg)-Vfdm— —/ngf!2+ng-Vfdm

f2

— [91DsP + V- Tgam,

which gives the statement. O

Proposition 6.1.6 (L°°-Lip regularisation of the heat flow) Let f € L>®(m) and t > 0
be given. Then |Dhf| € L*(m) and

C(K
1000 A1 ey < S W gy Sor cvery € 0,1) (6.7)

In particular, the function hy f admits a Lipschitz representative.

Proof. Tt suffices to prove the statement for f € L?(m)NL%>(m). Fix any g € D(A)NL>®(m)™"
such that Ag € L*>°(m). Take t € (0,1) and define F': [0,t] — R as

F(s):= /hsg\ht_SfIQdm for every s € [0, t].

We already know that F' € C([0,t]) N C*((0,t)) and that for a.e. s € [0,¢] it holds

d
= F(s) = /Ahsg\ht_sf\2 — 2hyghssf Ahy_f dm ‘2 2/hsg]Dht_Sf\2dm

6.5)

=2 [ gh(1Dh-osP)dm = 20(K) [ g1DsP dm

By integrating the previous inequality on [0, t], we obtain that
20(6)t [ g|DhufPdm < F(0) ~ F0) < [ ghi(?)dm.

By the weak*-density of such functions g, we see that the inequality 2 C(K)t|Dh;f|? < hs(f?)
holds m-a.e. in X. Therefore, the weak maximum principle grants that (6.7) is satisfied.
Finally, the last statement immediately follows from item ii) of Definition 6.1.2. O

6.1.3 Test functions

We now introduce the algebra Test™(X) of test functions on (X,d,m). These represent the
‘smoothest possible objects’ on X and will be used (in place of C2°) to define several differential

operators via suitable integration-by-parts formulae.
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Definition 6.1.7 (Test function) Let us define

Test™(X) := {f e LIP(X) N L®(m) N D(A) ) Af e WH2(X) N Loo(m)}, 65)
Test(X) 1= {f € Test>(X) | f >0 holds m-a.e. on X}. '

Proposition 6.1.8 The space Test®(X) is dense in WY3(X)T.  Moreover, the space
Test™(X) is dense in WH2(X).

Proof. Let f € WH2(X)* be fixed. Call f,, :== f An € WH2(X)T N L>®(m) for any n € N, so
that f, — f in WH2(X). Then it suffices to prove that each f,, belongs to the W2 (X)-closure
of Test3®(X). We now claim that

hofn € TestP(X)  for every ¢ € CZ°(0, +00). (6.9)

We have that h,f, > 0 holds m-a.e. by the weak maximum principle. By arguing as in
Proposition 5.2.18, we also see that h,f, € D(A) N L>®(m). Choose ¢ € (0,1) so that the
support of ¢ is contained in [e,e71], then the fact that Ah;f, = h,_.sAh, o f, for all t > ¢
can be used to prove that Ah,, f, € WH2(X)N L% (m). Finally, h,f, € LIP(X) by Proposition
6.1.6. Hence, the claim (6.9) is proved. Now take any (pr)r € C2°(0, +00) such that @ — do.
Then hy, fn, — fn strongly in W12(X), proving that each function f, is in the closure of the
space Test5°(X), as required.

The second statement follows from the first one by noticing that for every f € W2(X) it
holds that f = f+ — f~ and f* € Wh2(X)™ . O

By making use of the assumed lower Ricci curvature bounds, we can prove the following
regularity of minimal weak upper gradients of test functions:

Lemma 6.1.9 Let f € Test™(X) be given. Then |Df?> € WH2(X).

Proof. Given any g € D(A) N L>®(m)* and any sequence (¢)r € C°(0,+00) with p — do,
we deduce from Proposition 5.2.18 that h,, g — g weakly* in L>(m) and L*°(m) > Ah,, g —
Ag in L?*(m). Thus taking into account item iv) of Definition 6.1.2 and the fact that |V f|? €
L?(m), we see that

;/Ag\Vf\Qdmz/g(Vf-VAf—i—K]Vf\Q) dm  for every g € D(A)N L (m)*. (6.10)

(Notice that in (6.10), differently from item iv) of Definition 6.1.2, the function Ag is not
required to be essentially bounded.) Now we apply (6.10) with g := ht(|Vf|2), which satisfies
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the inequality g < Lip?(f) in the m-a.e. sense by the weak maximum principle, obtaining
. 1 2
E(|Vf?) < lim E(hy/o(|Vf])) = lim / [Vhe2(IVf17)] dm
N0 )
1
=~ tim [ hys(IVIP) By ((V57) dm
N0 2
T | 2 2
— —lim2 [ Ah(|VS2) VS dm
N0 2

< —lim [ h(|Vf]*) (Vf VAF + K|Vf[*) dm
N0

< Lip(f)Z/\Vf VAf + K[V f]*] dm < 400,

whence |Df|? € W12(X), as required. O

Remark 6.1.10 Given any f € Test>(X), it holds that

E(Df2) < Lin(F)? | Fllwrac (1A F Iz + 1 Iz (6.11)

as a consequence of the estimates in the proof of Lemma 6.1.9. |

Theorem 6.1.11 (Savaré) The space Test™(X) is an algebra.

Proof. Tt is clear that Test*(X) is a vector space. Now fix f, g € Test>™(X). We aim to prove
that fg € Test™(X) as well. It is immediate to check that fg € LIP(X) N L*°(m). Moreover,
we already know from item iii) of Proposition 5.2.3 that fg € D(A) and

A(fg) = fAg+gAf+2Vf-Vg,

in particular A(fg) € L>(m). Finally, given that f Ag,g Af € W12(X) by the Leibniz rule
(i.e. item C) of Theorem 2.1.28), while Vf-Vg € W12(X) by Lemma 6.1.9 and a polarisation
argument, we conclude that A(fg) € WH2?(X). Hence fg € Test™(X), as required. O

6.2 Hessian

6.2.1 Definition and basic properties
We briefly recall the notion of Hessian on a smooth Riemannian manifold (M, g).

Given any two smooth vector fields X, Y on M, we consider the covariant derivative Vy X
of X in the direction of Y, which is characterised by the following result:

Theorem 6.2.1 There exists a unique bilinear map (X,Y) — Vy X with these properties:

1) It is an affine connection:
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la) It is tensorial with respect to Y, i.e., Viy X = fVyX holds for all f € C*(M)
and X,Y smooth vector fields on M.

1b) It holds that Vy (fX) =Y (f)X + fVy X for all f € C®(M) and X,Y smooth
vector fields on M.

2) It is the Levi-Civita connection:

2a) It is torsion-free, i.e., VxY — Vy X = [X,Y] holds for all X,Y smooth vector
fields on M.

2b) It is compatible with the metric, i.e., X ((Y, Z)) = (VxY, Z)+ (Y, Vx Z) holds for
all XY, Z smooth vector fields on M.

Proof. Properties (1), (2) imply that Koszul’s formula
(VxY,Z)=X({Y,2))+Y((X,2)) - Z((X, V) + (X, Y], Z) = {[X, Z],Y) — ([Y, Z], X)

holds for any smooth vector fields X, Y, Z. This formula characterises VxY in terms of scalar
product and Lie brackets only, thus showing uniqueness of the bilinear map satisfying (1),
(2). As for existence, we use again Koszul’s formula to define VxY as the only vector field
for which the formula is valid for any Z: it is easy to see that the definition is well-posed
and simple computations show that the resulting object satisfies (1), (2), thus concluding the
proof. O

Given a smooth vector field X on M, we define the covariant derivative VX of X as
VX(Y,Z):=(VyX,Z) forall Y,Z smooth vector fields on M. (6.12)
Then we define the Hessian Hf of a function f € C*°(M) as
Hf :=V(Vf). (6.13)
It can be readily proved that the Hessian is a symmetric tensor, i.e.,
Hf(X,Y)=Hf(Y,X) forall fe C™(M)and X,Y smooth vector fields on M. (6.14)

In order to prove it, just observe that item 2b) of Theorem 6.2.1 yields

Hf(X,Y) = (VxVY) =XV, Y)) = (V[ VxY) = X(Y(f)) = (VxY)(f),
Hf(Y, X) = (VyVf, X) =Y ((Vf, X)) = (V] VyX) = Y(X(f)) = (Vv X)(f).

By subtracting the second line from the first one, we thus obtain that

Hf(X,Y) =Hf(Y, X) = (XY =Y X)(f) = (VxY = Vy X)(f) =0,

=[X,Y] by 2a)

proving the claim (6.14).
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Lemma 6.2.2 Let f € C°°(M) be given. Then

2
v 'Vg‘ —Hf(VF,-). (6.15)
Proof. Just observe that for any smooth vector field X on M it holds
vV f|? 1 2b) 6.14)
(v x) = Lx(vip) 2 (vxvr vs) = vivpx v L upvr ),
whence the statement follows. g

Remark 6.2.3 By polarisation, starting from (6.15) and with simple computations we get
that the identity

2Hf(Vg1,Vg2) =V(Vf-Vg1) - Vga +V(V[f:-Vg2) Vg —V[f-V(Vgi-Vg2)  (6.16)
is satisfied for every f, g1, g2 € C*°(M). |
Definition 6.2.4 Let (X,d, m) be an RCD(K, 00) space. Then we define
L*((T*)®*X) = L*(T*X) ® L*(T*X). (6.17)
Given any A € L*((T*)*?X), we define
AX,)Y):=AX®Y)c Lm) for every X,Y € L*(TX). (6.18)

Clearly L*((T*)®?X) can be identified with the dual of L*(T®?X) := L*(TX) ® L*(TX),
the duality mapping being given by

(wWaMXeY):=wX)nY) mae.

for all w,n € L2(T*X) and X,Y € L?(TX), then extended by linearity and continuity. We
also point out that
|A(X,Y)| < |Alus|X|]Y| holds m-a.e. on X (6.19)

for every A € L*((T*)®?X) and X,Y € L*(TX).

Lemma 6.2.5 Let (X,d,m) be an RCD(K, c0) space. Then
n
{ Z hiVgi : hi,gi € Testoo(X)} is dense in L*(TX). (6.20)
i=1
In particular, it holds that

n
{ Z hiVgii ®Vga; = hi, 914,924 € Testoo(X)} is dense in L*(TX) ® L*(TX). (6.21)
i=1
Proof. To get (6.20), recall that Test®(X) is dense in W1?(X) and weakly* dense in L>(m).
To deduce (6.21) from (6.20), it suffices to apply Lemma 3.2.21 and Theorem 6.1.11. O
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Having formula (6.16) in mind, we thus give the following definition:

Definition 6.2.6 (The space W??2(X)) Let (X,d,m) be an RCD(K, 00) space, with K € R.
Let f € WY2(X). Then we say that f € W*2(X) provided there exists A € L?((T*)®?X) such
that for every choice of h, g1, g2 € Test™(X) it holds that

2/hA(Vgl,Vgg)dm: —/Vf-Vgl div(hVg2)+V f-Vga div(hVg1)+h V-V (Vg1-Vga) dm.

Such tensor A, which is uniquely determined by (6.21), will be unambiguously denoted by H f
and called Hessian of f. Moreover, the resulting vector space W?2(X) is naturally endowed

with the norm || - HW“(X); defined as

||f”w2ﬁ2(x) = \/||f||%z(m) + de”2LQ(T*X) + ”Hf”2L2((T*)®2X) for every f e WZ’Q(X)'

Theorem 6.2.7 The space W*2(X) is a separable Hilbert space and the Hessian is a closed
operator, i.e.,

{(f.Hf) : feW*(X)} s closed in W"(X) x L?((T*)®*X). (6.22)
Proof. Proving (6.22) amounts to showing that f € W2?2(X) and Hf = A whenever a given
sequence (fy), C W2*(X) satisfies f, — f in W?(X) and Hf, — A in L*((T*)®?X).
This can be achieved by writing the integral formula characterising Hf, and letting n — oc.
Completeness of W?22(X) is then a direct consequence of (6.22). Finally, we deduce the
separability of W2?2(X) from the fact that the operator f — (f,df,Hf) is an isometry from
the space W2?(X) to the separable space L?(m) x L?(T*X) x L*((T*)®?X), provided the
latter is endowed with the product norm. O

6.2.2 Measure-valued Laplacian

Definition 6.2.8 (Measure-valued Laplacian) Let (X,d, m) be an infinitesimally Hilber-
tian metric measure space. Let f € WY2(X). Then we say that f has measure-valued
Laplacian, briefly f € D(A), provided there exists a finite (signed) Radon measure p on X
such that

/gd,u =— / Vg -Vfdm for every g € LIPs(X). (6.23)

The measure p, which is uniquely determined by the density of LIPys(X) in Cy(X), will be
unambiguously denoted by Af.

It holds that D(A) is a vector space and that A : D(A) — {finite Radon measures on X}

is a linear map. Both properties immediately follow from (6.23).

Remark 6.2.9 Suppose that (X,d) is bounded. Then
Af(X)=0 forevery f € D(A). (6.24)

Indeed, g = 1 trivially belongs to LIP;(X), whence (6.23) yields Af(X) = [dAf=0. N
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Example 6.2.10 Let X := [0,1] and m := Ll’[o I Then the identity function f(z) := z
belongs to D(A) and Af = &y — 6,. ’ |

Remark 6.2.11 In this framework, the Laplacian is not necessarily the trace of the Hessian.
|
Lemma 6.2.12 Let (X,d, m) be an RCD(K, o0) space. Then LIPy(X) is dense in W12(X).

Proof. We already know that Test™(X) is dense in W12?(X) (cf. Proposition 6.1.8). Then it
suffices to prove that LIP,(X) is W12(X)-dense in Test>(X). To this aim, fix f € Test™(X)
and define X, := (1 — d(-,JB’n(;Tc)))Jr for all n € N, where = € X is any fixed point. Now let us
call f,, := X, f € LIPys(X) for every n € N. Then the dominated convergence theorem gives

[fo = [l =11 =Xal [f| —0,

L*(m),
|dfn - df| S |1 *Xn| |df| + ‘an| ‘f| — 07

thus proving that f, — f in W2(X), as required. O

Proposition 6.2.13 (Compatibility of A and A) The following properties hold:
i) Let f € D(A) satisfy Af = pm for some p € L*>(m). Then f € D(A) and Af = p.

ii) Let f € D(A) satisfy Af € LY(m). Then f € D(A) and Af = Afm.

Proof. 1) We know that [ gpdm = — [ Vg-V fdm holds for every g € LIP,(X), whence also
for every g € W'?(X) by Lemma 6.2.12. This proves that f € D(A) and Af = p.

ii) Since [gd(Afm) = [gAfdm = — [Vg-Vfdm for every g € LIPys(X) C Wh3(X), we
see that f € D(A) and Af = Afm. O

In the sequel we shall need the following result, whose proof we omit:

Lemma 6.2.14 (Ambrosio-Mondino-Savaré) Let (X,d, m) be a given RCD(K, c0) space.
Let © C X be an open set and let K C Q be a compact set such that dist(K,0) > 0. Then
there exists h € Test®™(X) with 0 < h <1 such that h =1 on K and spt(h) C Q.

Lemma 6.2.15 (Good cut-off functions) Let (X,d, m) be a proper RCD(K, 00) space, i.e.
all bounded closed subsets of X are compact. Then there ezists a sequence (Xp)n C Test™(X)
such that

1) Xn(x) N1 for every x € spt(m),

i) AX, converges to 0 in the weak* topology of L (m).

Proof. Choose any (gy)n C LIPps(X)* such that g,(z) 1 for every z € X. We claim that

hign(x) /1 asn — oo for every x € spt(m) and ¢ > 0. (6.25)
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Since gn — gn+1 < 0 holds m-a.e., we deduce from item i) of Proposition 5.2.14 that h;g, <
htgn+1 holds m-a.e., thus also everywhere on spt(m) because each h.g, is continuous (by the
Sobolev-to-Lipschitz property). Given any ¢ > 0 and n € N, it holds that the function h;gy,
is Lipschitz with Lip(h;g,,) < C(K)/+/t by Proposition 6.1.6 and item ii) of Definition 6.1.2,
whence the limit function ¢; := sup,, h¢g, < 1 is Lipschitz as well with Lip(¢;) < C(K)/V/t.
By dominated convergence theorem it is immediate to see that g, converges to 1 in the weak*
topology of L>(m), so for any f € L'(m) we have

lim | fhig,dm= hm/ hyf g, dm = /htfdm /fdm

n—o0

which shows that for any ¢ > 0 the functions h;g,, converge to 1 with respect to the weak*
topology of L>°(m). We can now prove (6.25) arguing by contradiction: if {¢; < 1} # 0
for some ¢t > 0, then there exists a Borel set £ C spt(m) with 0 < m(E) < 400 such that
l(x) < 1 for every z € E. Then [,hyg,dm — [, ¢, dm < m(E) by monotone convergence
theorem, which contradicts the weak® convergence of h:g, to 1. Therefore (6 25) is achieved.

Fix any function ¢ € C°(0,1)" with fo p(t)dt = 1 and put X, := fo t) hyg, dt € L%(m).
By recalling Proposition 5.2.18 we see that (X n)n C Test™(X) and that the sequence (AXp)n
is bounded in L*>°(m). Given any = € spt(m), we know from (6.25) that ¢(t) hig,(x) 7 ¢(t)
for all t € (0,1), thus accordingly

1 1
Xn(:r):/o (1) htgn(x)dt//o Sty dt = 1,

which proves i). Moreover, from the bounded the sequence (AX,), € L>°(m) we can extract
a (not relabeled) subsequence converges to some limit function G € L% (m) in the weak*
topology of L>°(m). In order to conclude it suffices to show that G = 0. Fix any 1) € Test>(X)
with compact support. Lemma 6.2.14 grants the existence of a function n € Test™(X) with
compact support that equals 1 on a neighbourhood of spt(¢). Since 1» = 0 on X \ spt(¢)) we
have that Aty = 0 holds m-a.e. on X \ spt(¢), therefore

/A¢dm=/nA¢dm:—/vn~wdm:0,

where the last equality follows from the fact that Xg,iy)Vn = 0 and Xx\gpt(y) V¥ = 0 by
locality of V. By dominated convergence theorem and i) one has [ Ay X, dm — [ Ay dm,
thus

lim [ 4 AX,dm = lim /Aszndm:/Awdm:O.

Since test functions having compact support are dense in L'(m) (by Lemma 6.2.14), this is
enough to conclude that G = 0. Hence also item ii) is proved. ([l

Proposition 6.2.16 Let (X,d, m) be a proper RCD(K,00) space. Let f € WH2(X) N L (m)
and let u be a finite Radon measure on X such that

- /Vg -Vfdm > /gd,u for every g € LIPy,(X)™. (6.26)

Then f € D(A) and Af > p.



140 CHAPTER 6 e Second-order calculus on RCD spaces

Proof. Fix a sequence (Xy), as in Lemma 6.2.15. Define V;, := {g € LIP(X) : spt(g) C Qn}
for all n € N, where we set €, := {X,, > 1/2}. The elements of LIP;,(X) have compact
support (as the space is supposed to be proper), the sets €2, are open (by continuity of X,,)
and {J,, 2, = X (as X, /' 1 by Lemma 6.2.15). Therefore LIPys(X) = [J,, Vo. We define the
linear map L : LIPy(X) — R as

L(g) := —/Vg-Vfdm—/gd,u for every g € LIP(X).

Note that L(g) > 0 whenever g > 0. Given n € N and g € V,,, we have 2 ([g| .00 () Xn £ 9 = 0,
so that £L(g) < 2|9l ;00 () L(Xn), or equivalently |L(g)| <2 191l 00 (my L(Xn). This grants
that L can be uniquely extended to a linear continuous map L : C.(X) — R by Lemma 6.2.12.
Since L is positive, by applying the Riesz representation theorem we deduce that there exists
a Radon measure v > 0 on X such that L(g) = [ gdv for all g € C.(X), thus in particular

— /Vf -Vgdm = /gd(u +v) for every g € LIPys(X). (6.27)

Now fix n € N and pick a sequence (ny)r C LIPs(X)™" of cut-off functions with Lip(ng) < 1
such that 7 1. It holds that (nxX,)r € LIPps(X). Given that ngX, — X, holds pointwise
m-a.e. and |D(77an)‘ < |DXp| + Xn € L%(m), we can extract a (not relabeled) subsequence
of (MeXn)r for which V(mpX,) — VX, in the weak topology of L?(TX) (as V is a closed
operator). Moreover, one has that [ npX, du — [ X, dp by dominated convergence theorem,
while [ npX,dv — [ X, dv by monotone convergence theorem. Hence by choosing g = n;Xp
in (6.27) and letting kK — oo, we obtain that

- /Vf -VXpdm = /Xn d(p+v) for every n € N. (6.28)

By applying (6.28) and recalling that the functions AX,, weakly* converge in L°(m) to the
null function, we see that

/Xnd(u—FV) = —/Vxn-Vfdm:/fAXndm—>0.
We thus deduce that
v(X)=lim [ Xpdv=— lim [ X,dp=—pu(X) < +o0,

whence accordingly v is a finite measure. In particular, one has that u+ v is a finite measure
as well, so that (6.27) yields f € D(A) and Af =pu+v > p. O

Corollary 6.2.17 Let (X,d,m) be a proper RCD(K, 00) space. Fix f € Test™(X). Then it
holds that |V f|? € D(A) and

IV £I?
2

A > (Vf-VAf+ K|Vf[*)m. (6.29)
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Proof. Denote by u the right hand side of (6.29). We know from (6.4) that

—/vg-v<‘vzf|2> dm:/Ag

By regularisation via the mollified heat flow (cf. Proposition 5.2.18), we see that the previous

VP o
5 dm> [ gdpu  for every g € Testi(X).

inequality is verified for every g € LIPs(X)™, so that Proposition 6.2.16 gives the thesis.

]
6.2.3 Presence of many W?%2-functions
Given any fi, fo € Test™(X), let us define
1
Dofi, fo) = 5 |A(V S Vo) = (Vi VAL + Vo VAR (6.30)

Notice that T'a(f1, f2) is a finite Radon measure on X and that I'y is bilinear. Then the
inequality (6.29) can be restated in the following compact form:

To(f, f) > K|V f|*m  for every f € Test™(X). (6.31)

Moreover, given any f, g, h € Test®(X) we define

[Hf](g,h) := % (V(Vf-Vg) - Vh+V(Vf-Vh) -Vg—Vf-V(Vg-Vh)). (6.32)

Clearly (f,g,h) — [Hf](g,h) is a trilinear map.

Given two non-negative Radon measures p, v on X, we define the Radon measure ,/uv as

dp d
VI =1/ £ é o for any Radon measure ¢ > 0 with p,v < o. (6.33)

Its well-posedness stems from the fact that the function (a,b) — v ab is 1-homogeneous.

Lemma 6.2.18 Let 1, po, g be (finite) Radon measures on X. Assume N2y +2 g +pg > 0
for every X € R. Then p1,us > 0 and pe < /143

Proof. By choosing A = 0 we see that p3 > 0. Given any Borel set £ C X and A > 0, we have
that p1 (E)+2ua(E) /A +us(E) /A2 > 0, so that p1 (E) > —limy_ o0 2u2(E) /A us(E) /A2 = 0,
which shows that p; > 0. Now take any Radon measure v > 0 such that pq, po, us < v.
Write p; = fiv for i = 1,2,3. Then A2f; + 2\ fs + f3 > 0 holds v-a.e., whence accordingly we
have that the inequality fo < +/f1f3 holds v-a.e. as well, concluding the proof. ([l

Lemma 6.2.19 Letn € N and let ® : R™ — R be a polynomial with no constant term. Let
us fix fi,..., fn € Test™®(X), briefly f = (f1,..., fn). Denote by ®; the partial derivative of
® with respect to its it"-entry. Then ®(f) € Test™®(X) and

T2 (D(F),®(f)) = A+ (B+C)m, |Vo(f)|> =D, (6.34)
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where we set

ij—1
B:=2 Y ®(f) () [HLI(f o),
k=1 (6.35)
C:= Z Qi (f) @in(f) (Vi VI (Ve Vi),
i,5,k,h=1
D := Z Qi(f) 2;(f) (Vfi, V).
ii=1

Proof. The fact that ®(f) € Test™(X) follows from Theorem 6.1.11. To prove that (6.34) is
satisfied it suffices to manipulate the calculus rules described so far; for instance, it can be
readily checked that d®(f) = > "7 | ®;(f)df; as a consequence of the Leibniz rule. O

Before stating and proving Theorem 6.2.21 below in its full generality, we illustrate the
ideas by treating a simpler case (the following approach is due to Bakry):

Proposition 6.2.20 Let M be a smooth Riemannian manifold with A% >Vf-VAf for
every f € C®(M). Then A% >Vf-VAf+ |Hf|<23p
Proof. Let ®(z1,22) := Av1 + (22 — )% — ¢ for some ), ¢ € R. Then for arbitrary h € C°°(M)
Lemma 6.2.19 yields
0 <To(Af+ (h—c)*,\f + (h—¢)?)
= XTo(f, f) + 4M(h = O)Ta(f,h) + 4(h — ¢)* Ta(h, h)
+ 4ANHf(Vh,Vh) + 8(h — ¢) Hh(Vh, Vh) + 4|Vh|*.
Since ¢ is arbitrary, we can for every point x € M choose ¢ = h(z), thus getting that the

inequality A2 Ta(f, f) + 4XHf(Vh, Vh) + 4|Vh|* > 0 holds for all A € R, whence accordingly
one has }Hf(Vh, Vh)| < /Tao(f, f) [Vh|%. Since Hf is symmetric, for all z € M we have

[HJop(w) = sup { [Hf(VA, V)| : h € C=(M), |Vhl(x) = 1} < VTa(f, )(),
getting the statement. O

We now state and prove the following fundamental result:

Theorem 6.2.21 (Key lemma) Let f;, g;, hj € Test™®(X) fori=1,...,nandj=1,...,m.
We define the Radon measure p on X as
pi=>_gigy Ta(fis fir) = KV, Vz)m) + > 20 [Hf](fr,g0)m
£y (Vfi; Vfi) (Vgi, Vgir) + (V i, Vgir) (V fir, Vi)
2

(6.36)

m.

IR%
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Let us write p = pm + p®, with p* L m. Then p® > 0 and

2

2
> (Vi Vhy) (Vgi, Vhg) + gi [Hfi (B, hy)| < p > [(Vhy, Vhi)|” m-ae.  (6.37)
.3 73’
Proof. Given any A, a;,b;,c; € R, let us define
(p(.’lfl, ey Iy Yty Yns 21, - ,Zm) = Z()‘ylxl + a; Ty — bly’b) + ((ZJ - Cj)2 - C?)

i=1 j=1

Simple computations show that the only non-vanishing derivatives are

8;,31,(1) = \y; + a4, 8yiq) = Az; — b;, amiyfb =\, 82]@ = Q(Zj - Cj), azjzjq) = 2.

Let f:=(f1, s fny 915+ 9n, A1y hum) € [Testoo(X)]Qn+m, so that ®(f) € Test™(X) by

Lemma 6.2.19. Note that Iy (®(f), ®(f)) > K‘Vq)(f)‘Qm by (6.31). Moreover, in this case
the objects A, B, C, D defined in Lemma 6.2.19 read as

A()‘a a, bu C) = Z(Agl + al)()\gl’ + ai’)FQ(fi7 f’L') + O’t'a
B(\a,b,c) =4 (Agi + ai) NHF](fir, i) + 4> (Agi + ai)[Hfi] (hy, hy) + ot
0! ij
C(\a,b,¢) =2 N ((Vfi, Vi) (Vgi, Vi) + (V 1, Vi) (Vgi, V fir))
+8AD (Vi Vi) (Vgi, Vhy) + 4> [(Vhy, Vi) |[* + oit.,
1, 7'

D(\ a,b,c) = Z(Agi + a;)(Agy + ay){(V [,V fi) + o.t.,
where each o.t.=‘other terms’ contains either a factor Af; — b; or a factor h; — c¢;. Therefore
Lemma 6.2.19 grants that for any A € R, a,b € R™ and ¢ € R we have

A(X, a,b,¢) + (B(A,a,b,¢) + C(\, a,b,¢c)) m > KD(X, a,b,c)m. (6.38)

Now choose a Radon measure o > 0 such that m,Iy(f;, fir) < o for all i,i'. Write m = no.
Then property (6.38) gives the o-a.e. inequality % + (B+C)n > KDn. Now let us choose a
sequence m — (EJ), of Borel partitions of X and uniformly bounded a™, b, ang € R with

£ m Y4 m ¢ m
Za?‘ XEp — Agi, ben Xgp — Afi, chn Xgp — Iy
¢eN ¢eN ¢eN

with respect to the strong topology of L>°(c), for every i, j. Therefore we deduce that

do
teN (6.39)

>K > Xgr DO, a™, 0™, ™.
LeN

dA )\’ mé’bmé’ mil
ZXE?L |: ( a & ) + (B()\,amz’bmfvcmﬁ) + C()\, amé,bmf’cmé))n
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Since both sides of (6.39) are converging in L'(c), we conclude that A2y + 2A\F + G > 0 for
all A € R, where p is defined as in (6.36), while

F =" (Vfi, V) (Vgi, Vhj)m+ g; [Hfi](hj, hj)m, G = [(Vhy, Vhy)[’m

1] 33

Hence Lemma 6.2.18 grants that g > 0, so in particular p* > 0, and that F < /(pm)G,
which is nothing but (6.37). This proves the statement. O

Theorem 6.2.22 [t holds that Test™(X) C W22(X). Moreover, if we take f € Test™(X)
and we write To(f, f) = vam + T with T'§ L m, then I'§ > 0 and for all g1, g2 € Test™(X)
we have that
Hflks < 72— K|VFI%
Hf(Vg1,Vg2) = [Hf](g1, 92)

Proof. Apply Theorem 6.2.21 with n = 1. We thus get the m-a.e. inequality

hold m-a.e. in X. (6.40)

m 2

> (Y, Vhy) (Vg,Vhj) + g [Hf](h, h;)
= - (6.41)
< (P2 = K9S +29[H/1(£.9) Y (VA Thy)|
Gg'=1

for any choice of f,g,h1,...,hy € Test™(X). Define p as in (6.36) for this choice of test
functions; since y is the sum of g2 I'y(f, f) and a measure that is absolutely continuous with
respect to m, we see that p® = g2 I', thus accordingly the fact that p® > 0 grants that I'§ > 0
as well. Moreover, notice that both sides of (6.41) are W2(X)-continuous with respect to the
entry g with values in L' (m), so the inequality (6.41) is actually verified for any g € W12(X).
Then by choosing suitable ¢’s, namely identically equal to 1 on an arbitrarily big ball, we
deduce that

m 2 m
g; [Bf(hy,h))| < (2= KIVSP) Y 9595 (Vhy, Vi)
Jj=1 J,3'=1
= (72 - K ]Vf\Q) < Zgj th & th, Z gy’ th/ & th/> (6.42)
Jj=1 Jj'=1
m 2
= (2= KIVFI?)|D_9; Vh; ® Vhy
j=1

for all f,g1,..,9m,h1,- .., hm € Test™(X). Now note that for f,g,h,h' € Test®™(X) one has

2[Hf|(h, 1) = [Hf](h + I, h + ') = [Hf](h, h) — [Hf](R', h),
g(VR@Vh + VN @ Vh)=g(V(h+ W)@ V(h+h)—-Vhe Vh—Vh @ V).
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By combining these two identities with (6.42) and the m-a.e. inequality ‘A‘gAt ‘2HS < |Als,
which is trivially verified for any A € L?(T%?X), we obtain that

m
SV -K[VI2|Y g Vhj® Vi
j=1

Hf j? ])

(6.43)

holds m-a.e. for any f, gj, hj, h; € Test>(X). Define V C L?(T®%X) as the linear span of the

tensors of the form g Vh ® VA/, with g, h, h’ € Test>(X). Then the operator L : V — L(m),
which is given by

L(ZQJ Vh; ®Vh§-> Zgg [FLf)(hy, ;) for every Y g; Vh; @ VH €,

J=1 Jj=1

is well-defined, linear and continuous by (6.43). Since V is dense in L?*(7%2X) by Lemma
6.2.5, there exists a unique linear and continuous extension of L to the whole L?(T%?X).
Such extension is L (m)-linear by construction, whence it can be viewed as an element B of

the space L?((T*)®2X). Notice that (6.43) gives |L(A)| < /72 — K [V f[?|Alps for all A € V,

so that |L|pys < /72 — K |V f]? and accordingly |Blus < v/72 — K |V f|? as well. Finally, for

any g, h € Test®(X) we have
2/gB(Vh®Vh)dm:2/L(th®Vh)dm
:/g(2V(Vf-Vh)-Vh—Vf-V|Vh|2)dm
= —/Vf-Vhdiv(Vg-Vh)+Vf-V\Vh|2dm.

Therefore f € W22(X) and (6.40) can be easily checked to hold true; the first line of (6.40) is
a consequence of (6.43), while the second one follows from the very definition of the involved
objects. O

Corollary 6.2.23 [t holds that D(A) C W2%(X). Moreover, we have that

/|Hf|2Hs dm < /|Af|2 — K|Vf?dm  for every f € D(A). (6.44)
Proof. Formula (6.44) holds for all f € Test™(X) as a consequence of Theorem 6.2.21. The
general case f € D(A) follows by approximating f with a sequence (fy,), C Test>™(X). O

Let us define the space H%?2(X) as the W?22(X)-closure of Test>(X). An important open
problem is the following: is it true that H??(X) = W?22%(X)?

6.2.4 Calculus rules
Let us consider the functional

[1Hf[}g dm if f e W22(X),

) (6.45)
400 otherwise.

Lz(m)af%{



146 CHAPTER 6 e Second-order calculus on RCD spaces

An open problem is the following: is such functional lower semicontinuous?
It is known that such functional is convex and lower semicontinuous when its domain is

replaced by W12(X).
Proposition 6.2.24 (Leibniz rule for H) Let fi, fo € W22(X)NLIP(X)NL>(m) be given.
Then f1fo € W*2(X) and

H(fif2) = illfa+ foHfi +dfi @ dfo +dfz @ dfy. (6.46)

Proof. By polarisation, it holds that an element A € LQ((T*)®2X) coincides with H(f; f2) if
and only if A* = A and

Vg|?
F-d

- / hA(Vg,Vg) dm = / V(fif) - Vgdiv(hVa) + hV(fifa) -V (6.47)

holds for all g, h € Test>™(X). By using the Leibniz rule for gradients, we see that the right
hand side of (6.47) can be rewritten as

2 2
/f1 Vfs-Vgdiv(hVg) + foVf1 - Vgdiv(hVg) + hfi Vfa -V ’ 29‘ +hfoVfi- V’ g\
(6.48)
Moreover, since f1, fo € W22(X) N LIP(X) N L®(m), we also have that
ol Val®
/hfz Hfl(Vg, Vg) /Vfl Vg le(hfgvg) + hfz Vfl 5 dm,
|V 2 (6.49)
/hf1 Hfy(Vg, Vg)dm /Vf2 Vgdiv(hfiVg) + hfi Vs -V 29 d

Therefore (6.48) and (6.49) yield (6.47) for A := fiHfs + foHf1 + dfi ® dfs + dfe ® df.
Since such A defines a symmetric tensor, the statement is achieved. O

Proposition 6.2.25 (Chain rule for H) Let f € W2(X) N LIP(X). Suppose ¢ € C11(R)
has bounded derivative and satisfies p(0) = 0 if m(X) = co. Then po f € W*2(X) and

H(po f) =¢"ofdf @df +¢ o fHF. (6.50)

Proof. The statement can be achieved by using the chain rule for gradients, similarly to how
the Leibniz rule for gradients gives (6.46). O

Lemma 6.2.26 Let (X,d,m) be infinitesimally Hilbertian. Let f € L?>(m). Then f €
W2(X) if and only if there exists w € L*>(T*X) such that

/fdiv(X) dm = — /w(X) dm  for every X € D(div). (6.51)

In this case, it holds that w = df. Moreover, if (X,d,m) is an RCD(K, o) space for some
constant K € R, then it suffices to check this property for X = Vg with g € Test™(X).
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Proof. Sufficiency follows from the definition of divergence. To prove necessity, let X := Vhy f
for ¢ > 0. Notice that div(X) = Ah;f. Moreover, since the Cheeger energy decreases along
the heat flow, it holds that

1/2
/ Vhyaf|? dm = - / J Ah,f dm = / w(Vhf) dm < oll 2, ( / (Vhejaf]? dm) ,

whence accordingly [ |Vht/2f|2 dm < [|w|?>dm. Since the Cheeger energy is lower semicon-
tinuous, we conclude that f € W12(X) and w = df. Finally, the last statement follows from
a density argument (noticing that in the argument just given we only used X gradient). O

Proposition 6.2.27 Let (X,d,m) be an RCD(K, 00) space. Let fi, fo € H*?*(X)NLIP(X) be
given. Then (V f1,V f2) € WH2(X) and

AV, Vi) =Hf1(Vfa,) + Hfa(Vfi1,). (6.52)

Proof. By polarisation and by density of test functions in H%2(X), it is sufficient to show that
one has |Vf]?2 € WL2(X) and d|Vf|? = 2Hf(Vf,-) for every f € Test>®(X). Given that we
have 2 [ hHf(V f,Vg)dm = — [|Vf[>div(hVg) dm for all g, h € Test™(X), we know that

/Vf|2div(Vg) dm = —2/Hf(Vf, Vg)dm for every g € Test™(X),

whence Lemma 6.2.26 yields |V f|*> € W12(X) and d|Vf]? = 2Hf(Vf, "), as required. O

Corollary 6.2.28 (Locality of H) Let f,g € H>?*(X) N LIP(X) be given. Then

Hf =Hg holds m-a.e. on {f = g}. (6.53)

Proof. By linearity of H, it suffices to prove that Hf = 0 holds m-a.e. on the set {f = 0}.
Given any g € Test>(X), we know from Proposition 6.2.27 that (V f, Vg) € W2(X) and

Hf(Vyg,) = d{Vf,Vg) —Hg(V/f,). (6.54)

Since Vf = 0 holds m-a.e. on {f = 0}, we see that the right hand side of (6.54) vanishes
m-a.e. on {f = 0}. Hence Hf(Vg,-) = 0 m-a.e. on {f = 0} for all g € Test>(X), which
implies that Hf = 0 m-a.e. on {f = 0}, proving the statement. O

Given a Borel subset F of X, we define its essential interior as
essint(E) := | J{Q : © C X open, m(Q\ E) = 0}. (6.55)

By using Lemma 6.2.14, we can prove that functions in W?22(X) (but not necessarily in
H?2(X)) satisfy a weaker form of locality:

Proposition 6.2.29 Let f € W??(X). Then Hf =0 holds m-a.e. on essint({f = 0}).
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Proof. Let us denote by € the essential interior of {f = 0}. Given any g1, g2, h € Test™(X)
with spt(h) C Q, we have that [hHf(Vgi, Vgz)dm equals

- /Vf Va1 div(hVgs) + V[ - Vo div(hVg,) + hVf - V(Vgp - Vga) dm, (6.56)

which vanishes as a consequence of the fact that f = 0 m-a.e. on Q and h =0 on X\ Q. We
thus deduce that [ hHf(Vgi, Vg2) dm = 0, which grants that Hf = 0 holds m-a.e. on §, as
required. ]

6.3 Covariant derivative

On a Riemannian manifold M, we have for any vector field X and any f,g € C°°(M) that
Such formula motivates the following definition of covariant derivative on RCD spaces.

Definition 6.3.1 (Covariant derivative) Let (X,d,m) be an RCD(K,oc0) space. Then a
vector field X € L*(TX) belongs to Wé’Q(TX) provided there exists T € L*(T®?X) such that

/ hT: (V& Vg)dm = — / (X,Vg)div(hVf) + hHg(X,Vf)dm  (6.58)

holds for every f,g,h € Test>(X). The element T', which is uniquely determined by (6.58),
is called covariant derivative of X and denoted by VX. The Sobolev norm of X is defined as

X s = (1X o + IVX Bagrong) - (6.59)
It turns out that the operator V : Wé’Q(TX) — L?(T®%X) is linear.
In the sequel, we shall denote by #: L*((T*)®?X) — L*(T®?X) the Riesz isomorphism.
Theorem 6.3.2 The following hold:
i) WClJQ(TX) is a separable Hilbert space.

ii) The unbounded operator V : L*(TX) — L*(T®%X) is closed.
i) If f € H**(X) NLIP(X), then Vf € W5*(TX) and V(Vf) = (Hf)*.

Proof. The proof goes as follows:

ii) Let (Xp)n C Wé’Q(TX) satisfy X,, — X in L?(TX) and VX,, — T in L?(T®2X). Therefore
by writing equation (6.58) for X,, and letting n — oo, we conclude that X € Wé’Q(TX) and
that VX = T. This proves that V is a closed unbounded operator.

i) Separability follows from the following facts: X — (X, VX) is an isometry from Wé’Q(TX)
to L?(TX) x L?(T®?X) and the latter space is separable. Moreover, it directly stems from

the construction that the norm || - || satisfies the parallegram identity. Finally, the

WEA(TX)
completeness of Wé’2 (T'X) is an immediate consequence of ii).

iii) This can be readily checked by direct computations, by using of Proposition 6.2.27. [
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Proposition 6.3.3 (Leibniz rule) Let X € W5*(TX) N L=(TX) and f € W'(X) N
L®(m). Then fX € WH(TX) and V(fX)=Vf® X + fVX.

Proof. Direct computation. O
We define the class of test vector fields as
TestV(X) := {Z gV fi: fi,gi € Testoo(X)}. (6.60)

i=1
Then we can formulate an important consequence of Proposition 6.3.3 in the following way:

Corollary 6.3.4 It holds that TestV(X) C Wgﬂ(TX). Gwen any X = Y1, g;V fi, we have
VX =) Vg Vfi+g Hf) (6.61)
i=1
Definition 6.3.5 We define the space Hé’Q(TX) as the Wé’Q(TX)—closure of TestV(X).

Given any X € Wé’2(TX) and Z € LY(TX), we define the vector field VzX € L°(TX) as
the unique element such that

(VzX,Y)=VX(ZY) foreveryY € LY(TX). (6.62)
Observe that VzX € L?(TX) whenever Z € L>®(TX).
Proposition 6.3.6 (Compatibility with the metric) Let X,Y € Hé’Q(TX)ﬂLOO(TX) be
given. Then (X,Y) € WH2(X) and
d(X,YNZ) = (VzX,Y) +(X,VzY) for every Z € LO(TX). (6.63)

Proof. First of all, the statement can be obtained for X = ¢Vf and Y = gV [ by direct
computation. By linearity we get it for X, Y € TestV(X). Then the general case follows by
approximation. O

Given any X,Y € H5*(TX) N L™(X) and f € W3(X), we define
X(f)=Vf- X =df(X),
[X,Y]:=VxY - VyX.
We call [X,Y] the commutator, or Lie bracketsLie brackets, between X and Y.
Proposition 6.3.7 (Torsion-free identity) Let X,Y € Hé:2(TX) N L>(TX). Then
X(Y(f) =Y(X(f) =X, Y|(f) forevery f € H*?(X) N LIP(X). (6.65)
Proof. Observe that
VIVF-Y)- X=Vx(Vf)- Y+ Vf - VxY =Hf(X,Y)+Vf VxY,
VIVF-X)- Y=Vy(Vf) - X+Vf - VyX=Hf(Y, X))+ Vf- -VyX.

Since Hf is symmetric, by subtracting the second equation of (6.66) from the first one we

(6.64)

(6.66)

obtain precisely (6.65). O

Remark 6.3.8 Since {df : f € H**(X) N LIP(X)} generates the module L*(T*X), we
deduce that [X,Y] is the unique element satisfying (6.65). [
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6.4 Exterior derivative

6.4.1 Sobolev differential forms

We now want to introduce the notion of exterior differential on RCD spaces.

Given a Riemannian manifold M and a smooth k-form w, it is well-known that dw is given

by the following formula: given Xy, ..., X} smooth vector fields on M, one has
dw(Xo, ..., Xg)
k A R L . R (6.67)
= ) Xi(w( o, X))+ ) (DT (X Xl X X)),
i=0 i<j

Such formula actually defines a k4 1-form, because it is alternating, functorial and linear

in each entry.

Definition 6.4.1 Let (X,d,m) be an RCD(K, 00) space. Then we denote the k*'-exterior
power of the cotangent module L°(T*X) by

LOAFT*X) := AFLO(T*X), (6.68)
while we denote by L*(A*T*X) the subspace of LO(A*T*X) consisting of those elements having
pointwise norm in L%(m).

Then formula (6.67) suggests the following definition:

Definition 6.4.2 (Exterior derivative) Let (X,d,m) be an RCD(K, o) space and k € N.
Then we say that a k-form w € L*>(AFT*X) belongs to Wj’Q(AkT*X) provided there exists a
(k +1)-form n € L>(A*1T*X) such that for any Xo, ..., Xy € TestV(X) it holds

k

/n(xo, LX) dm =) (=) w( L, X, ) div(X) dm
i=0 (6.69)
+ Z/(—l)iJrjw([Xi,Xj], .. .,Xi, e ,Xj, e ) dm.

The element 1, which is uniquely determined, is called exterior differential of w and denoted

by dw. Its norm is defined as

1/2
||w||W;’2(AkT*X) = (HWH%Q(AkT*X) + Hde%Q(Ak“'lT*X)) . (6.70)

Much like in Theorem 6.3.2, one can prove that WC} 2(AFT*X) is a separable Hilbert space
and that the unbounded operator d : L2(A*T*X) — L2(A*+H1T*X) is closed.
Proposition 6.4.3 Let fy, ..., fr € Test™(X) be given. Then both elements fodfi A...Adf
and dfy A ... ANdfx belong to W(}’Q(AkT*X) and it holds
d(fodfi A...Adfy) =dfo ... Adfy,
d(dfi A...Adfg) =0.

Proof. Direct computation. U

(6.71)
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Definition 6.4.4 Given any k € N, we define the space of test k-forms on (X,d, m) as
TestFormy (X) := linear span of the fodfi A ... ANdfy, with fo,..., fr € Test™(X). (6.72)

It turns out that TestFormy(X) is dense in L2(AFT*X) for all k € N. We define Hég(AkT*X)
as the W;Q(AkT*X)-closure of TestFormy (X).

Proposition 6.4.5 Let w € Hcll’Q(AkT*X). Then dw € Hé’Q(Ak“T*X) and d(dw) = 0.

Proof. The statement holds for any test k-form by Proposition 6.4.3. The general case follows
from the closure of the exterior differential. 0

6.4.2 de Rham cohomology and Hodge theorem

Definition 6.4.6 (Closed/exact forms) Let w € Hé’Q(AkT*X). Then we say that w is
closed provided dw = 0, while it is said to be exact if there exists o € Hé’Q(Ak*IT*X) such
that w = da.

We point out that any exact form is also closed by Proposition 6.4.5.

By the closure of d, the space of all closed k-forms is strongly closed in L?(A*T*X).
Accordingly, the closed k-forms, endowed with the L?(A*T*X)-norm, constitute a Hilbert
space. In general, the same fails if we replace ‘closed k-forms’ with ‘exact k-forms’, but we

point out that the L?(A*T*X)-closure of the space of exact k-forms is a Hilbert space.

Definition 6.4.7 (de Rham cohomology) Let (X,d,m) be any RCD(K,c0) space. Then
the de Rham cohomology is the quotient Hilbert space defined as follows:

Lk (X) = closed k-forms .
dR L2(AFT*X)-closure of exact k-forms

(6.73)

Exercise 6.4.8 Let H;, Hy be Hilbert spaces. Let ¢ : Hy — Hjy be a linear and continuous
operator. Then there exists a unique linear and continuous operator Ay : A¥H; — AFH,
such that A¥p(vy A ... Avg) = @(v1) A ... Ap(uy) is satisfied for every vy,..., v, € Hy. Prove
that [[A%¢]lgp < [l¢]5p. "

Lemma 6.4.9 Let (X,dx, mx) and (Y,dy,my) be infinitesimally Hilbertian metric measure
spaces. Let ¢ : X = Y be a map of bounded deformation. Then there exists a unique linear
and continuous operator o* : L2(A*T*Y) — L?(A*T*X) such that

O (Wi AL Awp) = (P W) A A (@ w)  for every wa, ..., wi € LA(APT*Y).  (6.74)

Moreover, |¢*A| < Lip(¢)¥ |A| o ¢ holds mx-a.e. for every A € L2(AFT*Y).

Proof. Tt follows from Exercise 6.4.8 by making use of an ‘Hilbertian basis’ (as in the definition
of | - |ns)- O
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Proposition 6.4.10 Let (X,dx,mx) and (Y,dy,my) be RCD(K, 00) spaces. Let p : X =Y
be a map of bounded deformation and w € Hé’Z(AkT*Y). Then ¢*w € Hé’Z(AkT*X) and it
holds that *(dw) = d(¢*w).

Proof. For any test k-form w = fydfi A ... Adfr, we have that

©'w=foop(p*dfi) N...A(¢*dfx) = foowd(fiop) A... Ad(fr o),

whence Proposition 6.4.3 grants that ¢*(dw) = d(¢*w). The general case follows from the
closure of the exterior differential by an approximation argument. O

Corollary 6.4.11 Let k € N be given. Then the map ¢* as in Proposition 6.4.10 canonically
induces a linear and continuous operator from HEp (Y) to HER (X).

Proof. Direct consequence of Proposition 6.4.10 and the closure of d. O

We briefly recall the Hodge theory for smooth Riemannian manifolds. With abuse of notation,
we will sometimes identify tangent and cotangent objects, via the musical isomorphisms.
Let (M, g) be a smooth Riemannian manifold. Then for any k£ € N we can define the de
Rham cohomology HﬁR(M ) as the quotient of closed k-forms over exact k-forms. Observe
that this construction makes use only of the smooth structure of the manifold M, in other
words the metric g plays no role. For brevity, we denote by L% the space of all L? k-forms on
the manifold M, which is a Hilbert space if endowed with the scalar product induced by g.
Then we define 9 : LiH — Li as the adjoint of the unbounded operator d : Li — L%_H, i.e.
satisfying [ (6w,n), dVol = [ (w,dn), ., dVol. Observe that d* = 0, whence 6% = 0 as well.
Given any 1-form w, it holds that dw = —div(X), where the vector field X corresponds

to w via the musical isomorphism.

Definition 6.4.12 We define the Hodge Laplacian as the unbounded operator Ay : Li —
Li, which is given by
Agw = (6d + dd)w = (d + §)w. (6.75)

A k-form w is said to be coexact provided there exists n € Lz_ﬂ such that w = én, while it is
said to be harmonic if Agw = 0.

Remark 6.4.13 Given any smooth 0-form f, i.e. any smooth function f € C°°(M), it holds
that Af = —Agnf. Moreover, one has that

/(n,AHw>deol = / (dn,dw);,,; dVol + / (0, bw),,_; dVol (6.76)
is verified for n,w € Li. |

The following result is due to W. V. D. Hodge:

Theorem 6.4.14 The following properties hold:
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i) L? = {ezact k-forms} @® {coezact k-forms} & {harmonic k-forms}.
ii) For any [w] € HA, (M) there exists a unique n € [w] such that Agn = 0.
iii) One has Ayn = 0 if and only if dn =0 and én = 0.

Proof. The proof goes as follows:

iii) If dn = 0 and én = 0, then trivially Apn = 0. Conversely, suppose that Apn = 0. Then
(6.76) yields 0 = [ (n, Aun), dVol = [ |dn|* + |én|? dVol, whence dn = 0 and én = 0.

i) Let w = dw’, & = §a’ and Agn = 0. We have [ (dw’,da’), dVol = [ (d*w’, /), ,dVol = 0.
Moreover, it holds that

/ (dw’, n), dVol = / (W', 0m),_, dVol = 0,

/ (6a’, ), dVol = / (a/,dn); 1 dVol =0

by item iii). Hence exact, coexact and harmonic k-forms are in direct sum. Now let w € L%
be fixed. Choose w’ € L? | that minimises the quantity |lw — daHL% among all « € L7 .
(We omit the proof of the existence of such minimiser.) Then the Euler-Lagrange equation
yields [ (w — dw’,da), dVol = 0 for all @ € L2 |, whence we have that §(w — dw’) = 0. Now
let 8" € L7, be the minimiser of [lw — 50/||Li among all o € L7 ;. Then the Euler-Lagrange
equation yields [ (w —d64’,6a’), dVol = 0 for all o/ € Li_H, whence we have d(w — 05") = 0.
Therefore we can write w as
_ / / o sl
w=dw + 0 +(w—duw' —d8),
exact  coexact harmonic
thus proving that i) holds.

ii) Let w be a closed k-form. Since the space of closed k-forms is orthogonal to that of coexact

k-forms, there exists a unique 7 € L% harmonic such that w — 7 is an exact k-form. Then it

holds that [] = [w] € HXL (M), thus proving ii). O
In the language of Hodge theory, we can state a sharper form of the Bochner inequality:
2
A’wz‘ > —(w, Apw) + K|w|?  for every smooth 1-form w. (6.77)
Actually, the Bochner identity can be written as follows:
2
A|w2| = |Vwlfs — (w, Agw) + Ric(w,w)  for every smooth 1-form w. (6.78)

Moreover, we define the connection Laplacian AcX of a smooth vector field X as
/ (AcX,Y)dVol = — / VX : VY dVol for every smooth vector field Y. (6.79)

One can prove that A(|X[?/2) = |[VX[As + (X, AcX) holds for any smooth vector field X.
We also have that

AcX 4+ ApX = Ric(X,:) for every smooth vector field X, (6.80)

which is known as the Weitzenbdck identity.
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Theorem 6.4.15 (Bochner) Suppose that Ricpys > 0. Then

dim Hig (M) < dim M, (6.81)
with equality if and only if M is a flat torus.
Proof. We know from Theorem 6.4.14 that the dimension of Hiy (M) coincides with that of
the space of all harmonic 1-forms. Then fix an harmonic 1-form w. We thus have that

|W’2 (6.78) 2 2
O—/Adeol > /]Vw\HSdVol—/(w,AHw>dV01—/Vw|H5dVol.

Therefore [ ]Vw|2HS dVol = 0, so by using the parallel transport we conclude that the dimen-
sion of the space of harmonic 1-forms is smaller than or equal to dim M, proving (6.81). We
omit the proof of the last part of the statement. O

We now introduce the Hodge theory for RCD spaces. Hereafter, the space (X,d, m) will
be a fixed RCD(K, o0) space.

Definition 6.4.16 (Codifferential) We denote by D(0) the family of all k-forms w €
L2(A*T*X) such that there exists n € L2(A*=1T*X) for which

/ (w,da) dm = / (n,a)dm  holds for every o € TestFormy_1(X). (6.82)

The element n, which is uniquely determined, is denoted by dw and called codifferential of w.
It is easy to see that J is a closed unbounded operator.

Proposition 6.4.17 It holds that TestFormy(X) C D(0) for all k € N. More explicitly,

k
SAfy A Adf) =) (D)FAfdfy A Adfi AL AdS

i=1 (6.83)
Y (D) VEVEIA A AN A LA
1<j
is verified for every f1,..., fr € Test™(X).
Proof. Direct computation. O

Definition 6.4.18 Let us define Wég(AkT*X) = Wi’z(AkT*X)ﬂD@) for every k € N. The
norm of an element w € Wé’2(AkT*X) is given by

/
||W|IW;I=2(AICT*X) = (||WH%2(A1€T*X) + Hde%?(Ak“T*X) + H(SWH%Q(Ak—lT*X)) : (6.84)
Finally, let us define Hé’2(AkT*X) as the Wég(AkT*X)—closure of TestFormy (X).

We have that I/V}ll’2 (AFT*X) and HEI’Q(A]CT*X) are separable Hilbert spaces.
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Definition 6.4.19 (Hodge Laplacian) Let w € H11{’2(AkT*X) be given. Then we declare
that w € D(Ay) provided there exists n € L>(A*T*X) such that

/(77, a)dm = / (dw,da) + (0w, da)dm  for every o € TestFormy(X). (6.85)
The element n, which is uniquely determined, is denoted by Apw and called Hodge Laplacian.

Definition 6.4.20 (Harmonic k-forms) Let k € N. Then we define Harmy(X) as the set
of all w € H;I’2(AkT*X) such that Agw = 0. The elements of Harmy(X) are called harmonic.

Remark 6.4.21 It holds that Ag is a closed unbounded operator. Indeed, suppose w,, — w
and Agw, — n in L2(A*T*X). Observe that

sup/ |dwn|? + |6wp|? dm = sup/ (Wn, Agwy) dm < +o0,
neN neN

whence it easily follows that w € D(Ap) and n = Apw, since d and ¢ are closed. [

Corollary 6.4.22 The space (Harmy(X), || - \\Lz(AkT*X)) is Hilbert.

Proof. Direct consequence of the closure of Ap. O

Theorem 6.4.23 (Hodge theorem for RCD spaces) Let k € N be given. Then the map
Harmy,(X) 3 w — [w] € HAR (X) (6.86)

is an isomorphism of Hilbert spaces.
Proof. First of all, observe that any element of Harmy(X) is a closed k-form. In analogy with
item iii) of Theorem 6.4.14, we also have that for any w € H;I’Q(AkT*X) it holds

w € Harmg(X) <= dw =0 and éw = 0. (6.87)

Moreover, we recall the following general functional analytic fact:

Viswew+VeH/V

is an isomorphism.

H Hilbert space, V' C H linear subspace — { (6.88)

Now let us apply (6.88) with H := {closed k-forms} and V' := {exact k-forms}. Since it holds
that V+ = Harmy(X) by (6.87), we get the statement. O

Remark 6.4.24 Let us define the energy functional &g : L*(A*T*X) — [0, +00] as follows:

L[ ]dw|? + |6w|? d if we Hi?(AFT*X
eH(w);:{2f‘“|+|°"’ mo o ifwe Hy' ) (6.89)

400 otherwise.

Then €y is convex and lower semicontinuous. Moreover, we have that w € D(Ap) if and only
if 0~ E&p(w) # (. In this case, Agw is the only element of 0~ Ex(w). [ |
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Definition 6.4.25 (Heat flow of forms) Let w € L*(A*T*X). Then we denote by t
hiw the unique gradient flow of Ex starting from w.

Exercise 6.4.26 Prove that
hi(dw) = dhpw  for every w € W;’2(AkT*X) and t > 0. (6.90)
Moreover, an analogous property is satisfied by the codifferential é. |

Given any closed k-form w, its (unique) harmonic representative is lim¢ o0 h ¢ w.

Definition 6.4.27 (Connection Laplacian) Let X € Hé’Q(TX) be given. Then we declare
that X € D(Ac) provided there exists Z € L*(TX) such that

/(Z,X} dm = — / (VX,VY)dm  for every Y € TestV(X). (6.91)
The element Z is denoted by AcX and called connection Laplacian of w.

Remark 6.4.28 We define the connection energy Ec : L*(TX) — [0, +00] as

L[IVXRgdm  if X € HY*(TX),

. (6.92)
+00 otherwise.

Ec(X) = {

Then €c is a convex and lower semicontinuous functional. Moreover, we have that X € D(Ax)
if and only if 0~ E¢(X) # 0. In this case, —AcX is the unique element of 9~ E¢(X). [ |

Proposition 6.4.29 Let X € D(A¢) N L>®(TX) be given. Then |X|?/2 € D(A) and

X
2
Proof. We know that | X|? € W12(X) and V|X|? =2V X(-, X). Hence the equalities

A = (VX s + (X, AcX))m. (6.93)
/f(|VX|E.S+<X,AcX>)dm:/fWXFHS—V(fX):Vde
:/f\VX|2HS—(fVX+Vf®VX):Vde
= —/VX(Vf,X)dm

X2
:—/Vf‘v|2|dm

hold for every f € LIPy(X), thus obtaining (6.93). O

Definition 6.4.30 (Heat flow of vector fields) Let X € L?(TX) be given. Then we de-
note by t — hc X the unique gradient flow of Ec¢ starting from X.



6.5. Ricci curvature operator 157

Proposition 6.4.31 Let X € L?(TX). Then it holds that

lhc X|* < h(|X[*) m-ae.  for everyt > 0. (6.94)
Proof. Fix t > 0 and set Fy := hy(Jhc—sX|?) for all s € [0,¢]. Then for a.e. s € [0,¢] one has

Fy = hs(Alhc s X[* = 2 (he s X, Achci—sX)) = hs(|Vho s X|?) >0,
whence (6.94) immediately follows. O

With the terminology introduced so far, we can restate Theorem 6.2.21 as follows:

| X2

X 2
XE € D(A) and A—-> (IVX|is — (X, AuX) + K|V|*)m (6.95)

2
are verified for every X € TestV(X).

Lemma 6.4.32 [t holds that H11{’2(TX) C Hé’z(TX). More precisely, we have that
K
Ec(X) < &n(X) — / | X[2dm  for every X € Hy*(TX). (6.96)

Proof. The statement can be proved by integrating the Bochner inequality (6.95). ([l

6.5 Ricci curvature operator

In light of the Bochner identity (6.2), it is natural to give the following definition:

Ric(X,Y) := A<X’2Y> - <<VX, VY) — X AuY) (Y, AHX>>m (6.97)

2 2
for every X,Y € TestV(X). We can thus introduce the Ricci curvature operator:

Theorem 6.5.1 (Ricci curvature) There exists a unique bilinear and continuous extension
of Ric to an operator (still denoted by Ric) from HPIIJ(TX) X HIIJ’Q(TX) to the space of finite
Radon measures on X. Moreover, it holds that

Ric(X, X) > K|X |*m,

IRie(X, V)l <2 (Ea(X) + K71 X [720x) " (En(V) + KTV I20) " (6.98)

Ric(X,Y)(X) = / (dX,dY) + (6X,6Y) — VX : VY dm

for every XY € HIE’2(TX).

Proof. The first line and the third line in (6.98) are verified for every X € TestV(X) by (6.95)
and (6.97). In order to prove the second line (for test vector fields), we first consider the case
in which X =Y and K = 0: since Ric(X, X) > 0, we have that

|Ric(X, X = Ric(X, X)(X) =2€Ex(X) —2&c(X) < 2&u(X),

v
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which is precisely the second line in (6.98). Its polarised version — for X, Y € TestV(X) — can
be achieved by noticing that for all A € R one has

A2Ric(X, X) + 2 ARic(X,Y) + Ric(Y,Y) = RicAX + Y,AX +Y) >0,

whence |Ric(X,Y)| < (Ric(X, X) Ric(Y, Y))l/2 by Lemma 6.2.18 and accordingly

|Ric(X,Y

1/2
Ny < (HRiC(X’X)HTV [Ric(Y, Y)HTV> ’

which proves the second in (6.98) for K = 0. The general case K € R can be shown by
repeating the same argument with Ric instead of Ric, where we set

Ric(X,Y) := Ric(X,Y) — K(X,Y)m for every X,Y € TestV(X).

Finally, once (6.98) is proven for test vector fields, the full statement easily follows. O

The next result shows that the Ricci curvature is ‘tensorial’:

Proposition 6.5.2 Let X,Y € Hy*(TX) and f € Test™(X). Then fX € Hy*(TX) and

Ric(fX,Y) = fRic(X,Y). (6.99)

Proof. Immediate consequence of the defining property (6.97) of Ric and a direct computation
based on the calculus rules developed so far. ]

Proposition 6.5.3 (Refined Bakry-Emery estimate) Let w € L2(T*X). Then it holds

lhpsw|? < e 22 h(|w]?) m-a.e.  for every t > 0. (6.100)

Proof. Fix t > 0 and set Fy := hy(|hg—sw|?) for all s € [0,¢]. Then for a.e. s € [0,¢] one has
F{ = hy(Alhp—sw]? + 2 (b s, Ahizg—sw) > 2hs (K hig—sw]?).

i.e. F/ > 2KF; for a.e. s € [0,1]. Then (6.100) follows by Gronwall lemma. O

Bibliographical remarks

The original curvature-dimension condition for metric measure spaces, called CD condition,
has been independently proposed by Sturm and Lott-Villani in [30,31] and [25], respectively.
Such formulation, which is based upon an optimal transport language, is related to the con-
vexity properties of certain entropy functionals along Wasserstein geodesics. Its Riemannian
counterpart, namely the RCD condition, has been introduced one step at a time in [2, 6, 19].
The approach we adopted in these notes, that fits into the framework of the Bakry-Emery
theory [10,11], has been proposed by Ambrosio-Gigli-Savaré in [7]. As seen in Definition 6.1.2,

it consists of a weak formulation of the Bochner inequality; the proof of the equivalence of the
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resulting notion with the above-mentioned RCD condition can be found in [9, 16]. We refer
to the surveys [1,32,33] for a detailed account of the curvature-dimension conditions.

Section 6.1 is subdivided as follows: the definition of RCD(K, o) space in Subsection 6.1.1
is taken from [7], but is formulated in terms of the language proposed in [20]; the results in
Subsection 5.2.2; concerning the properties of the heat flow on RCD spaces, can be found in
the paper [0]; the material of Subsection 6.1.3 about test functions on RCD spaces is basically
extracted from [28].

The remaining part of the chapter — from Section 6.2 to Section 6.5 — is almost entirely
taken from [18] (and [20]). The only exceptions are given by Lemma 6.2.14 (that is proved
in [8, Lemma 6.7]), by Lemma 6.2.15 (that constitutes a new result) and by the equality
statement in Theorem 6.4.15 (proven in [21]).
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Appendix A

Functional analytic tools

Let us state and prove two well-known fundamental results of functional analysis:

Lemma A.1 Let E1,Es be Banach spaces. Let i : €1 — g be a linear and continuous
injection. Suppose that K1 is reflexive and that Ko is separable. Then E; is separable as well.

Proof. Recall that any continuous bijection f from a compact topological space X to a
Hausdorff topological space Y is a homeomorphism (each closed subset C' C X is compact
because X is compact, hence f(C), being compact in the Hausdorff space Y, is closed). Call

X the closed unit ball in E; endowed with the (restriction of the) weak topology of Eq,
Y the image i(X) endowed with the (restriction of the) weak topology of Eg,
f the map i‘x from X to Y.

Since X is compact (by reflexivity of E1), Y is Hausdorff and f is continuous (as 7 is linear
and continuous), we thus deduce that f is a homeomorphism. In particular, the separability
of Y grants that X is separable as well, i.e. the closed unit ball B of E; is weakly separable.
Now fix a countable weakly dense subset D of such ball. Denote by @ the set of all finite
convex combinations with coefficients in QQ of elements of D. It is clear that the set @,
which is countable by construction, is strongly dense in the convex hull C of D. Since C' is
convex, we have that the weak closure and the strong closure of C' coincide. Moreover, such
closure contains B. Hence @) is strongly dense in the set B, which accordingly turns out to
be strongly separable. Finally, we conclude that £y = [ J,,cynB is strongly separable as well,
thus achieving the statement. O

Theorem A.2 (Mazur’s lemma) Let B be a Banach space. Let (v,), C B be a sequence
that weakly converges to some limit v € B. Then there ezist (N,)n € N and (an )N, C [0,1]
such that Zf\;"n apn; =1 for alln € N and v, := ZN" Qi Vi — v in the strong topology of B.

=n
Proof. Given any n € N, let us denote by K, the strong closure of the set of all (finite) convex
combinations of the (v;);>y. Each set K,,, being strongly closed and convex, is weakly closed

by Hahn-Banach theorem. Given that v € [ K, for every n € N we can choose N, > n

neN
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and some u, p, ..., an N, € [0,1] such that Zf\ﬁ”‘n an; = 1 and ||, —v|z < 1/n, where we

put v, := i\i”n au,; v;. This proves the claim. O



Appendix B

Solutions to the exercises

Exercise 1.1.5 Suppose that X is compact. Prove that if a sequence (f,), C C(X) satisfies
fn(z) N0 for every z € X, then f,, — 0 uniformly on X.

Solution. First of all, we claim that
(fn)n € C(X) is equicontinuous. (B.1)

We argue by contradiction: if not, there exist £ € X and € > 0 such that for any § > 0 there
are n € N and y € B;(Z) satisfying |f,(y) — fn(Z)| > €. Choose 7 € N for which f5(Z) < /2,
then take any § > 0 such that |f5(y) — fﬁ(:i‘)| < g/2 for every y € B3(z). This clearly grants
that f,(y) < € for every n > n and y € B;(z), thus in particular

‘fn(y) — fn(i")’ < e for every n > n and y € Bs(Z). (B.2)

Now choose any sequence (0x)r C (0,6) such that §; \, 0. For any k € N there exist ny € N
and y; € By, () that satisfy | fn, (yx) — fn.(Z)| = . Observe that (B.2) forces ny, < @ for
every k € N. Up to passing to a not relabeled subsequence, one has that there exists n’ < n
such that ny = n’ for all £ € N. Since limy d(yg,Z) = 0 and the map f, is continuous, we
have that limy, | f,(yx) — fo(Z)| = 0, which is a contradiction. Therefore (B.1) is proved.
Take any subsequence (fp, )k of (fn)n. Given that supy, ||fn, ¢, x) < +0o0 by hypothesis
and (fy,)r is equicontinuous by (B.1), we conclude that a subsequence of (f, )r uniformly
converges to some map f € Cp(X) by Arzela-Ascoli theorem. Since f,,, ~\, 0 pointwise, we
have that f = 0. Therefore the whole sequence (fy), is uniformly converging to 0, thus

proving the statement. O

Exercise 1.1.7 Let (X,d) be a complete and separable metric space. Prove that if Cp,(X) is
separable, then the space X is compact.

Solution. Suppose that (X, d) is not compact, or equivalently that it is not totally bounded.
Then there exists » > 0 such that X cannot be covered by finitely many balls of radius 2r.

Choose any family {z;};ecs of distinct points in X such that {Br (ml)} is a maximal r-net

el
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in X — thus in particular the set I is at most countable. Since the family {Bgr(:z:l-)}i I is a

cover of X, we know that I must be infinite. For any index ¢ € I, let us pick any continuous
function g; : X — [0, 1] such that g;(z;) = 1 and spt(g;) C By(x;). Given any subset S C I,
we define the function fg € Cy(X) as fg := >, g gi- Hence {fs}scs is an uncountable family
of elements of Cy(X) such that ||fs — frllc,x) = 1 whenever S,T" C I satisfy S # T This

shows that the space C3(X) is not separable, as desired. O

Exercise 1.1.23 Prove that LP(m) is dense in L°(m) for every p € [1, 00].
Solution. Let f € L%(m) be fixed. Pick any Z € X and define

fn = XB,(z) (fAn)V(—n) € Ll(m) NL*(m) for every n € N.

Fix any Borel probability measure m’ on X with m < m’ < m. Given that the m’-measure
of {f # fu} = (X \ Bn(Z)) U{|f| > n} goes to 0 as n — oo, we see that f, — f in L°(m).
Since L'(m) N L*>®(m) = Mpeft,oo) L (m), the statement is achieved. O

Exercise 1.1.26 Suppose that the measure m has no atoms. Let L : L%(m) — R be linear
and continuous. Then L = 0.

Solution. We argue by contradiction: suppose that there exists f € L°(m) such that L(f) = 1.
Since m is atomless and outer regular, any point of X is center of some ball having arbitrarily
small m-measure. In particular, by using the Lindel6f property of (X, d) we can provide, for
any n € N, a Borel partition (A¥).cy of X such that m(AY) < 1/n for every k € N. Since the
limit f = limy_00 Z,]cvzl X x f holds in L%(m) and L is linear continuous, we see that

N N
> L0ty f) = ngnw;m%f) = L( ]&E’%@;XW> =L(f) =1

keN

whence there exists k, € N such that L(X 4. f) > 0. Now let us define
foi=f+ 2" cL%m) forevery n € N.

Since m({f # fn}) < m(Akn) — 0 as n — oo, we deduce that f, — f in L°(m). On the other
hand, one has

L(f)—L(f)—i—L(W)—Q for every n € N
n) = oeD) y :

so that L(f,) does not converge to L(f) = 1. This contradicts the continuity of L. O

Exercise 1.1.27 Let (X,d, m) be any metric measure space. Then the topology of L(m)
comes from a norm if and only if m has finite support.

Solution. If the support of m has cardinality n € N, then L°(m) can be identified with the
Euclidean space R™ (as a topological vector space), whence its topology comes from a norm.
Conversely, suppose that m does not have finite support. We distinguish two cases:
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(i) m is purely atomic,
(ii) m is not purely atomic.

In case (i), we can write m = ) A, 0z, for some constants (\,), € (0,+o0c0) and some
distinct points (7,), € X. Then L°(m) can be identified (as a vector space) with the space ¢°
of all real-valued sequences, via the map I : Y - an X{z,} = (an)n. Call (e,)n the canonical
basis of (0, i.e. e, 1= (d,1)x for all n € N. Let || - || be any norm on °. Tt can be readily
checked that 17! (e, /||e,]|) — 0 with respect to the L?(m)-topology. Since all vectors e, /||en||
have || - [|-norm equal to 1, we conclude that the L°(m)-topology does not come from a norm.

In case (ii), we can find two Radon measures pu,v > 0 on X with p L v such that u # 0
has no atoms and m = p + v. Notice that L%(u) is a vector subspace of L°(m) and that its
topology coincides with the restriction of the L?(m)-topology. We argue by contradiction:
suppose that some norm || - || on LY(m) induces its usual topology, thus in particular the
restriction of || - || to L%(u) induces the L°(u)-topology. By Hahn-Banach theorem we know
that there exists a non-null linear continuous operator L : L%(u) — R, which contradicts
Exercise 1.1.26. Hence the L°(m)-topology is not induced by any norm, as required. O

Exercise 1.2.2 Any open subset of a Polish space is a Polish space.

Solution. Let (X,d) be a complete separable metric space and () # © C X an open set. The
product space R x X is a complete separable metric space if endowed with the distance

(dEuat % d)* (A1, 21), (A2, 22)) := | A1 — Ao|? + d* (1, 22)

and the map f: R x X — R, defined as (A\,z) — Ad(z, X\ ), is continuous. This grants
that the set C' := {(A\,z) € R x X : f(\,x) = 1} is closed in R x X. Moreover, it is easy
to prove that the projection R x X 3 (A, z) — z € X is a homeomorphism between C' and 2
— here the openness of € enters into play. Therefore Q2 (with the topology induced by d) is
proven to be a Polish space, as required. ]

Exercise 1.2.8 Prove that

n—1 2
Ay
KE(y) = sup M holds for every v € C([0, 1], X). (B.3)

O=to<..<tn=1 ‘=g lit1—

Solution. Fix a partition 0 = tg < t; < ... < t, = 1. By Holder inequality, we get that

n—1 n—1 . 2 n—1 .
d(ys, +177t 1 (/tlJrl ) /tZ+1 2
RV o Sds) < 54[2 ds = KE(9),
ZZ: tiv1 —t; ;tiﬂ—tz’ t; s ; t; al )

showing that the sup in (B.3) is smaller than or equal to KE(v).
Conversely, fix any curve v € C([0,1],X). By Proposition 1.2.12, we can isometrically
embed (X,d) into a complete, separable and geodesic metric space (X,d). Denote by KE the
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kinetic energy associated to (X, d). Then 7 can be viewed as an element of C([0,1],X) and it
holds that KE(y) = KE(v). Now fix n € N. Since the curve 7 is uniformly continuous, there
exist k(n) € N and a partition 0 =t < ... < tyn) = 1 such that

1
d(yim,7s) < o for every i =1,...,k(n) and s € [t} {,t}]. (B.4)
Given that (X, d) is a geodesic space, there exists 4" € C([0,1],X) such that RestriZ_l(’y”) is
a d-geodesic joining Yer , to v for any i =1,...,k(n). Hence (B.4) gives d(y,9™) < 1/n for

every n € N. The functional KE is d-lower semicontinuous by Proposition 1.2.7, whence

== ) d(’Yt",’Yt" 1)2
KE(7) = KE(y) < lim KE( ") = lim Z —
n—00 n—oo \ 7] ti - tz’—l
which proves that (B.3) is verified, as required. O

Exercise 1.3.3 Show that the integral in (1.40) is well-posed, i.e. it does not depend on the

particular way of writing f, and that it is linear.
Solution. Say f =73, Xg, v; = Z - XF; wj. Then it holds that
ZMEQE =Y wFyNE)w; = ZMEOFOE)( —wj) =0,
J 0J

which proves that [, fdu is well-defined. Hence linearity follows by construction. 0

Exercise 1.3.13 Prove Example 1.3.11 and Example 1.3.12.

Solution. About Example 1.3.11, we prove only i): let us fix a sequence (f,,), € C([0,1])
such that f, — f and f] — g in C([0,1]), for suitable f,g € C([0,1]). Therefore

n(t) — fu(s) = /t fr(rydr for every n € N and ¢, s € [0, 1] with s < ¢. (B.5)

Then by letting n — oo in (B.5), we deduce that f(t) f g(r)dr for every t,s € [0, 1]
with s <t. Since g is continuous, we conclude that f is d1fferent1able, with derivative g. This
proves that (D(Tl)7 T1) is a closed operator, getting i).

To prove Example 1.3.12, fix any sequence (gi)r € W1?(R) that L?(R)-converges to some
limit function g € L%(R) \ W12(R). Now define f;, := (0,...,0,gx) for every k € N. Then the
sequence (fi)r € WH2(R™) converges to (0,...,0,g) in L2(R") and Ty(fx) — 0 in L?(R"),
but the function (0,...,0, g) does not belong to W?(R"), showing that (D(T}),Ty) is not a
closed operator. ]

Exercise 2.1.5 Prove that the map Restr; is continuous.

Solution. Fix v,0 € C([0,1],X) and ¢,s € [0,1]. Then

d(Restr(v), Restri(c)) —rrgg§]d( (I—r)ttrs: O(1—r)itrs) < rél[%d(%ar) d(v,0),

which shows that Restr’ is 1-Lipschitz. U
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Exercise 2.1.14 Given a metric space (X,d) and « € (0,1), we set the distance d, on X as
do(z,y) :=d(z,y)* for every z,y € X.

Prove that the metric space (X, d, ), which is called the snowflaking of (X, d), has the following
property: if a curve « is d,-absolutely continuous, then it is constant.

Now consider any Borel measure m on (X, d). Since d and d, induce the same topology
on X, we have that m is also a Borel measure on (X,d,). Prove that any Borel map on X

belongs to S?(X, d,, m) and has null minimal weak upper gradient.
Solution. Let 7 : [0,1] — X be d,-absolutely continuous, say that du (v, vs) < fst f(r)dr for

every 0 < s < t < 1, for a suitable f € L'(0,1). Define C := max{d(%,'ys) i t,s €10, 1]}
Therefore one has

t
d(’ytarys) = d(/Yta’yS)l_a da(rth/yS) < Cl_a da(%,%) < Cl_a/ f(T‘) d’l“,

which shows that ~ is d-absolutely continuous. Moreover, given that limp_,o do (Yesn,7t)/|R|
exists finite for a.e. ¢t € [0, 1], we deduce that

1/a
lim 0, 7) = lim da(erh; ) |h|d=)/e =0 for ae. t €[0,1],
h—0 |h| h—0 |h

which grants that the curve ~ is constant, as required.
To prove the last statement, simply notice that any test plan on (X,d,, m) must be
concentrated on the set of all constant curves in X. ]

Exercise 2.2.1 Prove that lip,(f) is an upper semicontinuous function.

Solution. Fix € X and a sequence (zy), C X such that x,, — x. Given any r > 0, we can
find » € N such that z,, € B,(x) for all n > n and accordingly there exists (7,)n>n C (0,1)
such that B, (z,) C B,(x) for all n > n. Therefore

lipg (f)(xn) < Lip(f|, ,.\) <Lip(f|, ) foralln>n. (B.6)

By passing to the limit as n — oo in the (B.6), we get that lim, lip,(f)(z,) < Lip(f|B (x)).

By letting 7 N\, 0, we finally conclude that lim, lip,(f)(z,) < lip,(f)(x), which shows that
the function lip,(f) is upper semicontinuous, as required. O

Exercise 2.2.4 Prove that E,, is L?*(m)-lower semicontinuous and is the maximal L?(m)-
lower semicontinuous functional E such that E(f) < 3 ['lip2(f) dm holds for every f € LIP(X).
Actually, the same properties are verified by E, if we replace lip,(f) with lip(f).

Solution. First of all, observe that E, ,(f) < %flipg(f) dm for all f € L?(m): if f is not
Lipschitz then % [ lip2(f) dm is set to be equal to +0o by convention, while if f is Lipschitz
then the choice of the sequence constantly equal to f shows the above inequality.



168 APPENDIX B e Solutions to the exercises

Now we prove that the functional E, , is L?(m)-lower semicontinuous. Fix f € L?(m) and
a sequence (f,)n, C LIP(X) N L?(m) that L?(m)-converges to f. We aim to show the validity
of the inequality E, ,(f) < lim, E, ,(f,). Possibly passing to a subsequence, we can suppose
that the liminf is actually a limit. Moreover, if lim,, E, 4(f,) = 400 then the claim is trivially
satisfied, so we can also assume that lim,, E, ,(f5) is finite and accordingly that E, ,(f,) < 400
for all n € N. Given any n € N, we can find a sequence (f¥); € LIP(X) N L?(m) such that
tim 5 [ g2 dm = tim 5 [ Hp2(E) dm < Ecah) + 1.
oo 2 k—o0 2 ’ n

A diagonalisation argument yields an increasing sequence (k,), C N such that g, := fk» — f
in L2(m) and 1 [1ip2(gs) dm < E, o(fn) + 2/n for all n € N. Therefore

Eoalf) < i [ (o) < T (Ea(h) +2) = i Ecalf)
n

n—oo n—oo n—oo

In order to conclude, suppose that E is an L?(m)-lower semicontinuous functional such
that E(f) < & [lip2(f)dm for every f € LIP(X). We claim that E < E,,. Fix f € L?(m).
Then for any sequence (f,), C LIP(X) N L?(m) that converges to f in L?(m) it holds that

E(f) < Jim E(f,) < lim o [ lip3(f) dm.

n—oo n—o0

By the arbitrariness of (fy)n, we conclude that E(f) < E, 4(f), as required. O

Exercise 3.1.3 Let V, W, Z be normed spaces. Let B: V x W — Z be a bilinear operator.

i) Suppose V is Banach. Show that B is continuous if and only if both B(v,-) and B(-,w)

are continuous for every v € V and w € W.

ii) Prove that B is continuous if and only if there exists a constant C' > 0 such that the
inequality || B(v, w)||, < C'|Jvlly [lwlly, holds for every (v,w) € V x W.

Solution. The proof goes as follows:

i) Sufficiency is obvious. To prove necessity, let us define T, € L(V, Z) as T,,(v) := B(v,w)
for all v € V; here L(V, Z) denotes the space of all linear continuous operators from V to Z.
Given any v € V, we have that B(v,-) is linear continuous, so that there exists C,, > 0 for
which HB(v,w)HZ < Cy ||wl|yy, for all w € W. This grants that

sup HTw(v)HZ < Cy < +oo foreveryveV.
l[wlly, <1

Then an application of the Banach-Steinhaus theorem yields

C:= sup HB(v,w)Hz = sup ”TwHL(V,Z) < +o0.
lvllyllwlly <1 l[wlly <1
Therefore | B(v,w)||, < C ||v]ly|lw|ly, for all v € V and w € W, whence B is continuous.
ii) Necessity is trivial. To prove sufficiency, we argue by contradiction: suppose B is continu-
ous and there exists a bounded sequence {(Un,wn)}n CV x W with HB(Un,wn)HZ — +00.
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Now call )\, := \/HB(Unvwn)Hz' Observe that (v, /Ap, wp/An) — 0in V' x W, because the

sequences (Up)n, (Wy), are bounded and A, — co. On the other hand, we clearly have that
HB(vn/)\n,wn/)\n)Hz =1 for every n € N,

thus contradicting the continuity of B. ([l

Exercise 3.2.4 Assume that m has no atoms and let L : .# — L°°(m) be linear, continuous
and satisfying L(fv) = fL(v) for every v € .# and f € L°°(m). Prove that L = 0.

Solution. We argue by contradiction: suppose that L(v) # 0 for some v € .#. Then (possibly
taking —v in place of v) we can find a Borel set A C X and some C' > 1 such that m(A) > 0
and 1/C < L(v) < C m-a.e. on A. Pick n € N with . _1/n* < m(A). We claim that:

n>n

There exists a sequence (A;,),>n of pairwise disjoint

B.7
subsets of A such that 0 < m(A4,) < 1/n? for all n > 7. (B.7)

To prove it, we use a recursive argument: suppose to have already built As,..., An_1. The
set A" := A\ (AzU...UA,_1) has positive m-measure by hypothesis on 7. Since m is atomless
and outer regular, we see that any point of A’ is center of some ball whose m-measure does
not exceed 1/n*. By the Lindeldf property, countably many of such balls cover the whole A’;
call them (B;);en. Then there exists i € N with m(A4’ N B;) > 0, otherwise the set A" would
be negligible. Hence the set A, := A’ N B; satisfies the required properties. This provides us
with a sequence (A;)n,>n as in the claim (B.7).

Now let us define wy, := ZI:L:;LHXA” v € M for every k > 7. Notice that for any k € n
and 7,7 > k it holds that

o o o
1
s = wjll 4 < Z/ n?foffdm < O nfm(An) SCY .
. A n
n=k v A4n n=k n=~k

Since >°°°, 1/n* — 0 as k — oo, we conclude that the sequence (wy)y, is Cauchy in .#, thus
it admits a limit in .#. On the other hand, for all k¥ > n we have that

k k
1
L(wy) = Z nXa, L(v) > C Z nXa, m-a.e.,

thus accordingly L(wy) cannot converge in L°°(m). This leads to a contradiction, as the
operator L is continuous. ]

Exercise 3.2.32 Let T : L?(m) — L?(m) be an L°(m)-linear and continuous operator.
Prove that there exists a unique g € L>(m) such that T(f) = gf for every f € L*(m).

Solution. First of all, we claim that:

There exists a unique g € L°(m) such that T(f) = gf for every f € L*(m). (B.8)
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To prove it, choose a Borel partition (FE),),en of X into sets of finite positive m-measure and
define the operators T}, : L?(m) — L'(m) as T,,(f) := Xg, T(f) for all f € L?(m). It is then
clear that each T;, is L°°(m)-linear and continuous, thus Riesz Theorem 3.2.14 — as already
observed in Example 3.2.15 — gives us a function g, € L?(m) such that T},(f) = g,f holds
for all f € L?(m). In particular, g, = 0 holds m-a.e. in X \ E,. Therefore it makes sense to
define the function g € L%(m) as g := Y, .y gn and it holds that

T(f) =Y Tulf)=> gnf =gf forevery f € L*(m),

neN neN

which proves the existence part of the claim (B.8). The uniqueness part is trivial.
In order to conclude, it only remains to show that:

If g € L%(m) and gf € L*(m) for every f € L*(m), then g € L>(m). (B.9)

We argue by contradiction: suppose g is not essentially bounded. Then we can find a strictly
increasing sequence (k,), € N and a countable collection (A;), of pairwise disjoint Borel
subsets of X such that k, < ¢? < kn41 m-a.e. on A, and 0 < m(A,) < +oo for all n € N.
Hence let us define

= e L%(m).

% Vnk,m(A (m)

Given that k, > n, we see that [ f2dm =Y 1/(nk,) <Y, 1/n* < +o0, i.e. f € L?(m).
On the other hand, the function gf does not belong to L?(m), indeed

/gf dm = Z/ e dm>2/ i :Z%:%@

neN neN

This leads to a contradiction, thus (B.9) and accordingly the statement follow. g

Exercise 4.2.11 Prove that Dual is single-valued and linear if and only if B is a Hilbert
space. In this case, Dual is the Riesz isomorphism.

Solution. To prove necessity, suppose B is Hilbert. We show that Dual is single-valued arguing
by contradiction: if not, there exist v € B and L, Ly € Dual(v) with L; # Ls. By Riesz
theorem we know that there exist v, vy € B such that vy # vy and L;(-) = (v;,-) for i = 1,2.
Hence ||villg = || Lillg = ||vlg and (v;,v) = Li(v) = ||v||3 for i = 1,2. This forces v, = vg = v,
thus leading to a contradiction. Moreover, this shows that Dual coincides with the Riesz
isomorphism, so in particular it is linear.

To prove sufficiency, suppose Dual is single-valued and linear. Fix any two vy, ve € B and
call L; := Dual(v;) for i = 1,2. By linearity of Dual we know that Dual(v; + vy) = Ly £ Lo,
whence

(L1 + La)(v1 + v2) = |Jo1 + val[3,

B.
(L1 — La)(v1 — v2) = |lu1 — valf3. (B.10)
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By summing the two identities in (B.10) we thus deduce that

o1 + 2|3 + [lv1 — valg = 2L (v1) + 2 La(v2) = 2 |[v1 |3 + 2 ||va |3,

which shows that B is a Hilbert space. O
Exercise 4.2.13 Prove that the multi-valued map Dual on (Rna | - H) is single-valued at any
point if and only if the norm || - || is differentiable.

Solution. It is well-known that the subdifferential of || - || at v € R" is single-valued if and

only if || - || is differentiable at v, thus it is enough to show that
Dual(v) = [[v]|(07] - [|(v))  for every v € R™. (B.11)
Let L € Dual(v). Hence for any w € R™ it holds that

L, L) L) Dw) _ L]
I+ g =2 = =T ol = ol < ol

which shows that L/|[v|]| € 07| - [|(v). This proves that Dual(v) C [[v][(07]| - [|(v)).
Conversely, let L € 97 || - ||(v). This means that ||v|| + L(w — v) < ||w]| for all w € R", or
equivalently L(w) — ||w|| < L(v) — ||v]| for all w € R™. In other words,

L
< Jlwll;
gl

-7 (L) = Sup. [L(w) = [lw]] < L(v) = [Jv]l. (B.12)
(The function || - ||* is usually called Fenchel conjugate of || - ||.) We can compute || - ||*(L):

o If||[L]] < 1then L(w)—|lw| <0 forallw € R™, so that || - [|*(L) < 0. But L(0)—||0|| = 0,
whence we conclude that || - ||*(L) = 0.

o If |[L]| > 1 then L(w) > 1 for some w € R™ with ||w| = 1. Hence
|- 11"(L) < L(tw) — ||tw]| = t(L(w) — 1) — +00 ast— +oo,
thus showing that || - [|*(L) = +oo.

Therefore we proved that

) 0 if ||L)] < 1,
|- I(z) = if|L
+00 if [|L]] > 1.

Accordingly we deduce from (B.12) that ||L|| < 1 and L(v) > ||v||, which force the validity of
the identities L(v) = ||v|| and ||L|| = 1. This implies that ||v||L € Dual(v), whence also the
inclusion |[v[[ (07| - ||(v)) € Dual(v) is proven. This gives (B.11). O
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Exercise 4.2.18 Prove that the norm of a finite-dimensional Banach space is differentiable

if and only if its dual norm is strictly convex.

Solution. Given a Banach space B, we denote by Dualg the multi-valued map defined as in
(4.19). Let us prove the following two claims: given any Banach space B, it holds that

B’ is strictly convex =  Dualp is single-valued, (B.13a)

Dualp/ is single-valued = B is strictly convex. (B.13b)

In order to prove (B.13a), let us argue by contradiction: suppose to have v € B with ||v||z =1
and Ly, Ly € Dualg(v) with Ly # Lo. For any ¢ € (0,1) we have that

1=(1—-1t)Li(v) +tLa(v) = (1 = t) L1+t La) (v) < ||(1 — t) Ly + t Lo

]B/?

while on the other hand H(l —t) Ly + tL?H]B' < (1 —t)||L1]lg +t||L2|lgr = 1. Therefore the
segment in B’ joining L1 to Lo is contained in the boundary of the unit ball of B’, contradicting
the strictly convexity of B'.

Also (B.13b) can be proven by contradiction: suppose |[2v|y = ||2w]||z = ||v + w||g = 1 for
some v,w € B with v # w. Choose any L € Dualg(v+w) and notice that ¢(v+w) € Dualg (L),

where ¢ : B — B” in the canonical embedding of B into its bidual B”. Now observe that
1 1 1
L=Lv+w) =5 L2v) + 5 L2w) < 5 IZllg (I12v]lg + 12wllg) =1,

which forces the equalities L(2v) = L(2w) = 1. This means that ¢(v), ¢(w) € Dualg/(L), thus
contradicting the hypothesis.

The statement of the exercise is a direct consequence of (B.13a) and (B.13b), because any
finite-dimensional Banach space is necessarily reflexive. O

Exercise 5.1.1 Consider H := R and E(z) := |z| for every z € R. Then

{1} it x >0,
0" E(x):=1 [-1,1] if =0,
(~1} if 2 < 0.

Solution. We first treat the case z > 0. Notice that 1 € 07 E(x) because y = z+ (y —x) < |y|
for all y € R. Now take any z € 9~ E(z), so that z(y — z) < |y| — = for all y € R. By picking
any y € (0,z) (resp. y > z) and dividing by y — x, we deduce that z > 1 (resp. z < 1). Hence
one has 07 E(z) = {1} for every « > 0. Similarly, 0~ E(x) = {—1} for every x > 0.

Now consider z = 0. We have that 9" E(0) = {z € R : zy < |y for all y € R}. Then
some z € R belongs to 9~ F(0) if and only if zy < y for all y > 0 and zy < —y for all y < 0.
This shows that 0~ E(0) = [—1, 1]. O
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Exercise 5.1.6 Let H be a Hilbert space. Given any x € H and 7 > 0, let us define

|- —a/?
2T

Fpr():=E()+

Then it holds that 0~ F, (y) = 0~ E(y) + *== for every y € H.

Solution. First of all, it is clear that D(E) = D(F;, ). Then let us fix y € D(E). Notice that
the operator | - —x|?/(27) is differentiable at y and its differential is given by (y — x,-)/7,

whence | 2
== y—x
o) = {2 B.14
5 (W) . (B.14)
Then from the very definition of subdifferential it immediately follows that
2
_ y—x _ |-z _
0"B(y)+——— =0"Ey) +9 |27|(y) C O For(y)

To prove the converse inclusion, fix any v € 07 F, ~(y). This means that

ly — x|
2T

ly — x — hz|?
2T

E(y) + —(v,hz) < E(y — hz) + for every z € H and h > 0,

which can be rewritten as

E(y) — E(y — hz)
h

+|y—ﬂ:—h2|2—ly—ﬂfl2

S<U,Z> 2Th

for every z € H and h > 0. (B.15)

Since in (B.15) the left hand side is convex with respect to h and the right hand side converges
to (v,2) — (y — x, z)/7 as h (0, we conclude that

E(y) — E(y — h?) §<U7y—:v

E(y) = E(y — 2) < lim -

. ,z> for every z € H,
N0

which shows that v — ¥=% € 97 E(y), as required. O

Exercise 5.2.17 Given p € [1,00] and ¢ > 0, we (provisionally) denote by h? the heat flow
in LP(m) at time ¢. Prove that h? f = h{f for all p,q € [1,00] and f € LP(m) N L(m).

Solution. First of all, we aim to prove that h? = h{ on LP(m)N L?(m) whenever p, q € [1,00).
To do so, fix f € LP(m) N L*®(m) and define f, = Xp,(z)n{fj<n}f for all n € N, where
the point z € X is arbitrary. Note that f, — f both in LP(m) and in L?(m) by dominated
convergence theorem. Each function f,, has bounded support and is essentially bounded, so
that (f,,)n, € L?(m). This grants that hf f = lim,, h; f,, in LP(m) and h{ f = lim,, h;f,, in LI(m),
whence necessarily h? f = h{ f.
Now we prove that h! = h® on LP(m) N L>®(m) for all p € [1,00). We begin with the
following claim:
h?f € L>®(m) for every f € LP(m) N L*®(m). (B.16)

To prove it, pick any sequence (f,)n, € L?(m) N LP(m) N L>®(m) that converges to f in LP(m)
and satisfies || fp| oo (m) < || fll oo (m) for all n € N. Hence we have that hy f,, — h? f in LP(m),
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while |h¢ fr| < [[f|| foo(m) holds m-a.e. by item iii) of Proposition 5.2.14. This implies that the
m-a.e. estimate |hY f] < 11| oo (my» thus obtaining (B.16). Now let us fix f € LP(m) N L>(m).
To prove that hY f = h$° f is clearly equivalent (by Definition 5.2.16) to the following condition:

/fh%gdm = /hffgdm for every g € L'(m). (B.17)

Call ¢ the conjugate exponent of p. Choose two sequences (f;); C L?(m) N LP(m) N L°(m)
and (g;); € LY(m) N L*(m) N L9(m) such that f; — f in LP(m) and g; — ¢ in L'(m). We
know from Corollary 5.2.9 that [ f;h.g;dm = [ h.f; g; dm. Given that g;, h,g; € LI(m), we
can let i — oo and obtain [ f h;g;dm = [hYf g; dm. Since f,h?f € L°(m) by (B.16), we can
let 7 — oo and obtain (B.17). This concludes the proof. O

Exercise 6.4.8 Let Hy, Hy be Hilbert spaces. Let ¢ : Hy — Hy be a linear and continuous
operator. Then there exists a unique linear and continuous operator Ay : A¥H; — AFH,
such that A¥p(vy A ... Awvg) = @(v1) A ... Ap(ug) is satisfied for every vy,..., v, € Hy. Prove
that [[A¥ello, < [1#llgp-

Solution. First of all, note that there is at most one linear continuous map 7' : H 1®k — AFH,
such that T(v1 ® ... Q@ wv2) = @(v1) A...p(vg) for all vy, ..., v € Hy. Such map is well-posed,

linear and continuous as a consequence of the following estimate:

k k
i) -0 Ly, = T L, < ollep [T sl (B.18)

k
= llellopllor @ @ vl yon-

Moreover, if some vy, ...,v; € Hy satisfy v; = v; for some i # j, then T'(v1 ® ... ® v;) = 0.

This shows that the operator T passes to the quotient, thus yielding a (uniquely determined)

k

linear and continuous map A¥¢ as in the claim. Finally, the estimate ||Ak<p||Op < [|eo[lop follows

from (B.18). O

Exercise 6.4.26 Prove that
hi(dw) = dhpgw  for every w € Wdl’z(AkT*X) and t > 0.

Moreover, an analogous property is satisfied by the codifferential ¢.

Solution. Let us consider the curve ¢ +— dhyw. Since d is a closed operator, we see that

d d
E thﬂgw = d<dt hH7tw> = —dAHhH,tw for a.e. t > 0. (B.lg)
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On the other hand, given any a € TestFormy(X) it holds that
/ (Andhy o, ) dm = / (d(dhg ), da) dm + / (8(dhyg ), 60y dm
_ / (8(dhgg ), ) dm = / (dhyew, d(6)) dm
= / (dhsw, d(dar)) dm + / (Ohp,w, 6(6cr) ) dm
= / (Aphpw, da) dm = / (dAghy tw, o) dm,
which shows that Agdhyw = dAghgw. By recalling (B.19) we thus see that

d
X dhgw = —Agdhgw  for a.e. t > 0.

Since the gradient flow is unique, we can conclude that hy ¢(dw) = dhy w for all ¢ > 0.
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