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1 Introduction
1.1 Motivations and Outline
These lectures are addressed to an audience of graduate students in experimental particle physics. So the
first question usually is:

“Why should a particle physicist care about Cosmology”?

There are at least three main reasons to attend an introductory course on cosmology such as this one.

1. Cosmology provides insights on particle physics at energy scales which are impossible to probe
on Earth. In the very early moments after the Big Bang the universe had a temperature (or energy)
which would never be reachable again. So the by-products of the early universe dynamics we can
measure today give us information about the physics at incredibly high energies.

2. Cosmology provides alternative (sometimes competitive) constraints on particle physics properties
(e.g. neutrino physics, dark matter, etc.)

3. Cosmology provides motivations for (or completions of) particle physics models beyond the Stan-
dard Model. The need to solve cosmological issues like inflation, baryogenesis, dark matter calls
for new particle physics which is able to model them and make predictions.

In these lectures I will give an overview of the Standard Model of Cosmology, its main successes and its
drawbacks, with particular focus on the particle physics side.

In Lecture 1, I will describe the universe around us, its dynamics, the energy budget (Section 2),
and provide introductory information about the 3 pillars constituting the Standard Model of Cosmology:
Expansion, Big Bang Nucleosynthesis, Cosmic Microwave Background (Sections 2, 3, 4).

In Lecture 2, I will discuss the problem of Dark Matter (Section 5).

In Lecture 3, the main pitfalls of Standard Big Bang Cosmology and their possible resolution with
the inflationary paradigm are described in Section 6, and then I conclude the course by mentioning the
problem of the Baryon Asymmetry of the universe and some models of Baryogenesis in Section 7.

1.2 Warm-up
Throughout the course we will adopt the so-called “natural units”, where the dimensions of basic physical
quantities are related as

[Energy] = [Mass] = [Temperature] = [Length]−1 = [Time]−1 , (1)
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Fig. 1: Expansion of physical distances.

and the main physical constants are set as

~ = c = kB = 1 , (2)

from which it follows that

1 = ~ · c ' 197.33 MeV · fm = 1.9733× 10−14 GeV · cm , (3)

so
1 GeV−1 = 1.9733× 10−14 cm = 1.9733× 10−14 cm

c
= 6.5822× 10−25 s (4)

The fundamental mass scale of gravitational interactions is the Planck mass MP = 1.22 × 1019 GeV,
while astronomical distances often appear in units of 1 pc = 3.08× 1018 cm.

2 The universe around us
2.1 Kinematics of the universe
2.1.1 Expansion
From observations of the universe around us we can draw the conclusion that the universe is expanding. If
you look at any two points in space, their relative distance was smaller in the past. In fact, the observation
of red-shifted spectra of distant galaxies firmly supports the idea that the universe is expanding.

In an expanding universe, the physical distances between two points get larger and larger. They
are proportional to a factor measuring the expansion of the universe: the scale factor a(t) (Fig. 1). The
velocity v at which a galaxy at distance d is going away from us is governed by the Hubble law

v = H0d , (5)

where the velocity v is related to the wavelengths of the photon emitted and observed

v =
λobservation − λemission

λemission
≡ z , (6)

with z being the redshift of the emission time te with respect to the present time t0

1 + z ≡ λobservation

λemission
=
a(t0)

a(te)
, (7)

measuring how much the universe has expanded since the emission of that photon. By Taylor-expanding
the ratio of scale factors around the present time t0

a(t)

a(t0)
= 1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2 + · · · (8)

2

A. DE SIMONE

146



where the local expansion rate today (‘Hubble constant’) is

H0 ≡
ȧ

a

∣∣∣∣
t0

. (9)

The linear term in Eq. (8) gives the Hubble law Eq. (5), while the quadratic term depends on the decel-
eration parameter q

q0 ≡ −
ä

aH2
0

∣∣∣∣
t0

= − äa

ȧ2

∣∣∣∣
t0

, (10)

and it encodes the deviations from the Hubble law. The latest measurement [1] give

1/H0 ' 1.4× 1010 yrs ' 4.3 Gpc ' 1.3× 1026 m , (11)

for the ‘Hubble time’, or ‘Hubble length’, and it is customary to define

h ≡ H0

100 km s−1 Mpc−1 ' 0.67 . (12)

When observed on very large scales (> 100 Mpc), the universe around us appears to be

– homogenous: the distribution of matter in the universe has a roughly constant density, or in other
words the 2-point function of galaxies and galaxy clusters is much smaller than the Hubble length
1/H0;

– isotropic: if the expansion of the universe were not isotropic, we would observe large temperature
anisotropies in the Cosmic Microwave Background.

The invariance under rotations is around any point of the Unvierse, so it is isotropic.

These observations lead us to consider that no observer is special and there are no preferred direc-
tions, so the universe is homogenous and isotropic (Cosmological Principle).

2.1.2 Friedmann-Robertson-Walker metric
We now want to build a metric describing a homogeneous and isotropic universe. The Friedmann-
Robertson Walker metric is

ds2 = dt2 − a(t)2

[
dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
, (13)

where the parameter k can take three values

k =





+1 positive spatial curvature
0 zero spatial curvature
-1 negative spatial curvature

(14)

The scalar curvature of 3-dimensional spatial slices is

|3R| = 6|k|
a2 ≡

6

R2
curv

, (15)

where Rcurv is a sort of curvature radius of the universe.
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2.2 Dynamics of the universe
2.2.1 Einstein equations
The laws of gravity are the Einstein Equations, where the spacetime metric gµν and its correspond-
ing Ricci tensor Rµν and Ricci scalar R are related to energy content expressed through the energy-
momentum tensor Tµν

Rµν −
1

2
gµνR = 8πGNTµν + Λgµν , (16)

where GN is the Newton constant and we also included the cosmological constant term Λ.

The energy-momentum tensor for a perfect fluid with pressure p, energy density ρ and 4-velocity
uµ is

Tµν = (p+ ρ)uµuν − pgµν , (17)

which assumes a diagonal form in the reference frame of the fluid (comoving frame) where uµ =
(1, 0, 0, 0)

Tµν =




ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p


 . (18)

The energy-momentum conservation law is simply expressed as the vanishing of the covariant derivative
of the energy-momentum tensor:

∇µTµν = 0 , (19)

whose ν = 0 component in an expanding universe reads

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 , (20)

which is also known as “continuity equation”. Alternatively, from the first law of thermodynamics dU +
pdV = TdS, together with entropy conservation dS = 0, one gets

dU + pdV = 0 =⇒ d(a3ρ) + pd(a3) = 0 , (21)

which is the same as Eq. (20).

2.2.2 Fluids
The perfect fluids are characterized by a proportionality relation between energy density and pressure

p = wρ (22)

where w is constant in time. In this case, the continuity equation in Eq. (20) becomes
ρ̇

ρ
= −3(1 + w)

ȧ

a
=⇒ ρ ∝ a−3(1+w) . (23)

This means that the energy density of different kinds of fluids scales down with the expansion of the
universe with different powers of the scale factor:

radiation: w = 1/3 =⇒ ρ ∝ a−4

dust: w = 0 =⇒ ρ ∝ a−3

vacuum energy: w = −1 =⇒ ρ ∝ const.

The phases of the universe where the radiation/matter/vacuum energy are the dominant components are
called radiation domination (RD), matter domination (MD) and vacuum energy domination, respectively.

Another argument to reach the same conclusions is to consider that the rest-mass energy must be
a constant quantity unaffected by the expansion; the volume scales like a3 in the expanding universe. So
the energy density (energy per unit volume) of matter should scale like a−3. For radiation, the energy
density has a further 1/a factor due to the redshift, so a−4.
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2.2.3 Friedmann Equation
The (00) component of the Einstein equations for the FRW metric with parameter k gives the Friedmann
Equation

H2 =
8πGN

3
ρ− k

a2 +
Λ

3
, (24)

where the Hubble parameter H ≡ ȧ/a is not a constant. The (ii) component of the Einstein equations

ä

a
= −4πGN

3
(ρ+ 3p) +

Λ

3
(25)

does not add anything new with respect to the combination of the Friedmann Equation (24) and the
conservation law (20).

So, the system of equations

H2 =
8πGN

3
ρtot −

k

a2 , (26)

ρ̇+ 3H(ρ+ p) = 0 , (27)

where
ρΛ ≡

Λ

8πGN
, (28)

is the cosmological constant energy density and

ρtot ≡ ρ+ ρΛ , (29)

is the total energy density, encodes the evolution of the universe and its constituents. The so-called
“curvature energy density”, encoded in the term proportional to k is also sometimes indicated as ρk =
−3k/(8πGNa

2).

2.2.4 Cosmological Dynamics
Let us first introduce a notation which is often used in cosmology. The “critical” energy density is defined
as

ρc ≡
3H2

8πGN
, (30)

which today is ρc ' 1.88×10−29h2g cm−3 or ρc ' 1.05×10−5h2 GeV cm−3. The energy density today
of each component is normalized to the critical density to provide the corresponding “Omega parameter”
for matter, radiation, curvature and cosmological constant

Ωm ≡ ρm
ρc

, (31)

Ωr ≡
ρr
ρc
, (32)

Ωk ≡ ρk
ρc

= − k

a2H2 , (33)

ΩΛ ≡ ρΛ

ρc
=

Λ

3H2 . (34)

In terms of the Omega parameters, the Friedmann equation (26) can be simply written as a sum rule

Ωm + Ωr + ΩΛ + Ωk = 1 . (35)
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Now we have all the tools to study the time evolution of the scale factor of the universe. Let us carry out
the case where the universe is filled by a single fluid, either matter dust (w = 0), radiation (w = 1/3) or
vacuum energy (w = −1). The Friedmann Equation can be written as

(
ȧ

a

)2

= H2
0

(
ȧ

a0

)−3(1+w)

, (36)

where 0 subscripts indicate present-time quantities. By introducing the new variable y ≡ a/a0, a simple
manipulation gives

ẏ = H0y
1− 3(1+w)

2 =⇒ y
1
2

+ 3
2
wdy = H0dt , (37)

which in turns leads to

a(t) ∝ t
2

3(1+w) (w 6= −1) , (38)

a(t) ∝ eH0t (w = −1) , (39)

So in a vacuum-dominated universe the scale factor expands exponentially, while in a radiation-dominated
(RD) or matter-dominated (MD) phase the expansion is power-law, with exponents

a(t) ∝ t2/3 (w = 0,MD) , (40)

a(t) ∝ t1/2 (w = 1/3,RD) . (41)

From the Friedmann equation it follows that the total energy density of the universe equals the critical
energy density if and only if the FRW parameter k = 0, which means the universe is flat

ρtot = ρc ⇐⇒ k = 0⇐⇒ Flat universe . (42)

2.2.5 Energy Budget
The picture emerging from Cosmic Microwave Background (CMB) measurements performed by PLANCK
in 2018 [1] is

h = 0.6736± 0.0054 (43)

Ωmh
2 = 0.1430± 0.0011

{
Ωbh

2 = 0.02237± 0.00015

ΩCDMh
2 = 0.1200± 0.0012

(44)

Ωkh
2 = 0.0007± 0.0019 (45)

ΩΛ = 0.6847± 0.0073 (46)

So the curvature term is consistent with 0% of the energy budget (our Unvierse is flat!), while non-
relativistic matter contributes to about 32% of the budget (split into 5% of ordinary baryonic matter and
27% of unknown dark matter), while the remaining 68% of the energy density of the present universe
is in the form of unknown vacuum energy. In summary, we only know the nature of the 5% of what
surrounds us.

2.2.6 Age of the universe
Very early (uncertain) times give an almost irrelevant contribution to the age of the universe, so we can
compute the age of the universe form when it started RD or MD eras. Start with the definition of the
Hubble parameter

da
dt

= Ha , (47)
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and the Friedmann equations written in terms of Ω’s

H(a)2 = H2
0

[
Ωr

(a0

a

)4
+ Ωm

(a0

a

)3
+ Ωk

(a0

a

)2
+ ΩΛ

]
. (48)

From the two equations above it follows that

dt =
da
aH0

1
[
Ωr

(a0
a

)4
+ Ωm

(a0
a

)3
+ Ωk

(a0
a

)2
+ ΩΛ

]1/2
. (49)

The estimate of the age of the universe is t ' 13 Gyrs = 1.3× 1010 yrs.

In an MD universe (Ωr = Ωk = ΩΛ = 0,Ωm = 1) Eq. (49) gives

t0 =
2

3

1

H0
' 9× 109 yrs , (50)

which is too young. By allowing a 70% contribution from vacuum energy, as suggested by Eq. (46):
Ωr = Ωk = 0,Ωm = 1− ΩΛ = 0.3, Eq. (49) can be integrated as

t =
2

3

1

H0

√
ΩΛ

sinh−1

√
ΩΛ

1− ΩΛ

(
a

a0

)3

, (51)

so the present age of the universe would be

t0 =
2

3

1

H0

√
ΩΛ

sinh−1

√
ΩΛ

1− ΩΛ
' 1.3× 1010 yrs , (52)

in perfect agreement with the estimate. The contribution of Λ makes the universe older.

2.2.7 Distance-Redshift Relation
The light rays travel along geodesics defined by ds = 0, so in the FRW metric (13) with k = 0 the
trajectory of light rays is θ =const., φ =const. and dr = dt/a. Using dt from the definition of H =
(1/a)da/dt, we get

dr =
da

a2H
, (53)

which combined with Eq. (48) gives

r(a) =
1

H0

∫ a0

a

da′

a′2
[
Ωr

(
a0
a
′

)4
+ Ωm

(
a0
a
′

)3
+ Ωk

(
a0
a
′

)2
+ ΩΛ

]1/2
. (54)

This equation is immediately rewritten in terms of the redshift 1 + z = a0/a, to get the distance-redshift
relation

r(z) =
1

H0

∫ z

0

dz′
[
Ωr

(
1 + z′

)4
+ Ωm

(
1 + z′

)3
+ Ωk

(
1 + z′

)2
+ ΩΛ

]1/2
, (55)

which allows to infer the distance of an object of known redshift z, depending on the energy content of
the universe.

It is convenient also to introduce the luminosity distance dL of an object of given luminosity, from
the definition of the flux of photons received from the object

Flux =
Luminosity

4πr(z)2(1 + z)2 ≡
Luminosity

4πd2
L

(56)

so dL ≡ (1 + z)r(z), which again depends on the universe content. The two powers of (1 + z) in the
denominator are originated from the redshift of the energy and the relativistic dilation of time.
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> Particle Horizon 
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dH(t) = a(t)

Z t

0

dt0

a(t0)

the boundary between the visible universe 
and the part of the universe from which 

light signals have not reached us

dH(t) =
a(t)

H0

Z a(t)

0

da0

a02
h
⌦0

r

�
a0

a

�4
+ ⌦0

m

�
a0

a

�3
+ ⌦0

k

�
a0

a

�2
+ ⌦0

⇤

i1/2

dH(t) =1dH(t) = 3t =
2

H(t)
/ a3/2 dH(t) = 2t =

1

H(t)
/ a2

measure the portion of the 
Universe in causal contact 

(no horizon!) 

x

today
t

vacuum energydust radiation

Fig. 2: Particle horizon.

2.2.8 Particle Horizon
A very important concept in cosmology is the notion of particle horizon. It is defined as the boundary
between the visible universe and the part of the universe from which light signals have not reached us

dH(t) = a(t)

∫ t

0

dt′

a(t′)
. (57)

So the particle horizon measures the portion of the universe in causal contact with us (see Fig. 2). Eq. (57)
can be re-written using dt = da/(aH) and the expression for H as in Eq. (48), so

dH(t) =
a(t)

H0

∫ a(t)

0

da′

a′2
[
Ωr

(
a0
a
′

)4
+ Ωm

(
a0
a
′

)3
+ Ωk

(
a0
a
′

)2
+ ΩΛ

]1/2
, (58)

The special cases of matter-, radiation- and vacuum-domination are particularly interesting

dH(t) = 3t =
2

H(t)
∝ a3/2 (MD) , (59)

dH(t) = 2t =
1

H(t)
∝ a2 (RD) , (60)

dH(t) = ∞ , (61)

so particle horizon is growing with powers of the scale factors in MD and RD universes while there is no
horizon in a universe dominated by vacuum energy.

2.2.9 Equilibrium Thermodynamics
It is useful for future developments to collect some formulae related to the equilibrium thermodynamics
of the universe. Let us consider a particle species A with gA degrees of freedom and chemical potential
µA, and characterized by a phase space distribution function fa(p) in momentum space, and energy
E(p). The distribution function of a species A takes the form

fA(p) =
1

e(E(p)−µA)/T ∓ 1
, E(p) =

√
|p|2 +m2

A (62)

with −(+) for Bose-Einstein (Fermi-Dirac) statistics, respectively. The equilibrium number density and
energy density are given by

neq
A =

gA

(2π)3

∫
f(p)d3p , (63)
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ρeq
A =

gA

(2π)3

∫
E(p)f(p)d3p . (64)

In extreme cases these integrals can be solved analytically.

For non-relativistic species (whose mass is much greater than the temperature T � mA), the
above expressions simplify to

neq
A = gA

(
mAT

2π

)3/2

e−(mA−µA)/T (65)

ρeq
A = neq

A ·mA . (66)

Notice that these quantities are exponentially suppressed by the large mass of the species.

In the opposite regime of ultra-relativistic species (T � mA, µA), the expressions depend on the
statistics. The number density (at equilibrium) is

neq
A =

ζ(3)

π2 gAT
3





1 (bosons)

3
4 (fermions)

. (67)

The Riemann zeta function of 3 is ζ(3) ≡∑∞n=1(1/n3) ' 1.20206. The energy density (at equililbrium)
is

ρeq
A =

π2

30
gAT

4





1 (bosons)

7
8 (fermions)

. (68)

Because of the suppression in the non-relativistic regime, the energy density at given temperatures is
exponentially dominated by the degrees of freedom which are ultra-relativistic at that temperature. For
a collection of several particle species in equilibrium where the species i has thermal distribution with
temperature Ti, to a very good approximation the total energy density is

ρtot =
π2

30
g∗(T )T 4 , (69)

where g∗(T ) is the total number of relativistic (massless) degrees of freedom at temperature T given by

g∗(T ) =
∑

b∈bosons

gb

(
Tb
T

)4

+
7

8

∑

f∈fermions

gf

(
Tf
T

)4

. (70)

The Hubble rate in the RD era (where a(t) ∝
√
t so H = 1/(2t)) can thus be written as

H2 =
8πGN

3
ρtot =

8πGN
3

π2

30
g∗(T )T 4 ' 1.66

√
g∗(T )

T 2

MP
, (71)

hence, we obtain the time-temperature relation

t ' 0.30√
g∗(T )

MP

T 2 '
2.41√
g∗(T )

(
MeV

T

)2

s . (72)

2.2.10 Temperature-Expansion Relation
The 1st law of thermodynamics relates the change in the energy dU to the change of entropy dS as

dU + pdV = TdS (73)

9
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The entropy density s is therefore

s(T ) ≡ S(V, T )

V
=
ρ(T ) + p(T )

T
=

4

3

ρ(T )

T
=

2π2

45
g∗,s(T )T 3 (74)

where we have used that p = 1/3ρ for RD and defined the quantity

g∗,s(T ) =
∑

b∈bosons

gb

(
Tb
T

)3

+
7

8

∑

f∈fermions

gf

(
Tf
T

)3

, (75)

which is similar to g∗(T ) in Eq. (70) but with the different temperature dependence. Since the energy
density scales like ρ(T ) ∝ T 4, the entropy density scales like

s(T ) ∝ g∗,sT 3 , (76)

and therefore the conservation of the entropy within a comoving volume V in thermal equilibrium gives

S(V, T ) = s(T )V = const. =⇒ g∗,sT
3a3 = const. =⇒ T ∝ 1

g1/3
∗,s a

. (77)

In periods where g∗,s is also a constant, the temperature simply scales as the inverse of the scale fatctor
T ∝ 1/a.

3 Big Bang Nucleosynthesis
Big Bang Nucleosynthesis (BBN) occurs at times 1 s . t . 103 s or equivalently at temperatures of
the universe 1 MeV & T & 10 keV. Before BBN, the photons have sufficiently high energy to prevent
the formation of nuclei by dissociating them. As the universe cools down, the nuclei of light elements
H, D, 3He, 4He, 7Li, get produced with predicted abundances in a remarkably good agreement with the
observed ones. All elements heavier than 7Li are produced later in the history of the universe by nuclear
reactions in stars or by other astrophysical processes like supernovae.

BBN is the earliest probe of the universe. Before BBN, we do not know anything about the
universe. We are not even sure that the universe existed with temperatures above the MeV.

BBN is one of the main successes of standard cosmology. This success has 3 important conse-
quences:

1. it confirms the theory of the early universe;
2. it provides a determination of the baryon-to-photon ratio η;
3. to avoid spoiling its success, particle physics theories beyond the Standard Model are constrained.

The predictions for abundances of light elements span 9 orders of magnitude and are all well fitted by
a single parameter: the baryon-to-photon ratio η ≡ nB/nγ (see Figure 3). This is one of the greatest
successes of Standard Cosmology.

The measurement of light element abundances implies a measurement of η and hence a measure-
ment for Ωb today. In fact, the energy density in baryons (non-relativistic particles with mass equal to
the nucleon mass mN ) can be written as

Ωbh
2 =

mNnB

ρc/h
2 = η

mNnγ

ρc/h
2 =

η

2.74× 10−8 . (78)

From BBN 0.019 ≤ Ωbh
2 ≤ 0.024, in good agreement with the independent measurement from CMB

(see Eq. (44)). These values are consistent with η ' 6× 10−10.

Therefore, together with the measurement of Ωm from CMB, BBN predicts that Ωb < Ωm, thus
providing a compelling argument for the existence of a non-baryonic matter component of the universe,
called Dark Matter (DM).
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> Big Bang Nucleosynthesis 

predictions for abundances (spanning 9 orders of 
magnitude) well fitted by a single parameter: 

FIG. 1. Primordial abundances of the light nuclides as a function of cosmic baryon content, as

predicted by SBBN (“Schramm plot”). These results assume N� = 3 and the current measurement

of the neutron lifetime ⇥n = 880.3± 1.1 s. Curve widths show 1� � errors.

D

H
= 2.579⇥10�5

⇤
1010⇥

6.10

⌅�1.60�
N�

3.0

⇥0.395
⇤

GN

GN,0

⌅0.95�
⇤n

880.3s

⇥0.41

⇥ [p(n, �)d]�0.19 [d(d, n)3He]
�0.53

[d(d, p)t]�0.47

⇥ [d(p, �)3He]
�0.31

[3He(n, p)t]
0.023

[3He(d, p)4He]
�0.012

(14)

3He

H
= 9.996⇥10�6

⇤
1010⇥

6.10

⌅�0.59�
N�

3.0

⇥0.14
⇤

GN

GN,0

⌅0.34�
⇤n

880.3s

⇥0.15

⇥ [p(n, �)d]0.088 [d(d, n)3He]
0.21

[d(d, p)t]�0.27

⇥ [d(p, �)3He]
0.38

[3He(n, p)t]
�0.17

[3He(d, p)4He]
�0.76

[t(d, n)4He]
�0.009

(15)

7Li

H
= 4.648⇥10�10

⇤
1010⇥

6.10

⌅2.11�
N�

3.0

⇥�0.284
⇤

GN

GN,0

⌅�0.73�
⇤n

880.3s

⇥0.43

20

[arXiv:1505.01076]

scaling  a -3  and nγ are known, so measure 
light element abundances  
 
            measure η  

            measure Ωb  today 

BBN provides a compelling argument 
for non-baryonic DM

baryon-to-photon ratio η = nb/nγ ~ 10-10

Great Success of 
Standard Cosmology!

Fig. 3: BBN predictions for light elements abundances. (adapted from Ref. [2])

3.1 Helium fraction
As an example, let us see how much Helium-4 is produced during BBN. We will be deliberately oversim-
plifying the discussion, for simplicity. For a more general and complete treatment of the BBN dynamics
see e.g. the excellent textbooks in Refs. [3–5].

Observations of metal-poor stars and gas clouds provide an experimental determination of the
abundance of 4He nuclei with respect to the total number of baryons (protons + neutrons) as

Y ≡ 4nHe
nn + np

' 0.24 . (79)

So, in order to compute Y we need to compute nn/np and nHe/np.

At very early times (T � 1 MeV, t� 1 s), there are only protons and neutrons which are kept in
equilibrium by the reactions

n+ νe ↔ p+ e− (80)

n+ e+ ↔ p+ ν̄e (81)

n ↔ p+ e− + ν̄e (82)

so nn = np. When these reactions are in equilibrium, they enforce the balance of chemical potentials as

µn + µνe = µp + µe . (83)

Since the chemical potentials of electrons and neutrinos are negligibly small, we can conclude that µn =
µp. At MeV temperatures neutrons and protons are non-relativistic, and their mass difference starts to be
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important. So, recalling the equilibrium number densities for non-relativistic species Eq. (65) we obtain
the neutron-to-proton ratio (in equilibrium) as

neq
n

neq
p

=
gn
gp

(
mn

mp

)3/2

e−Q/T e(µn−µp)/T ' e−Q/T , (84)

where the neutron-proton mass difference is

Q = mn −mp ' 1.29 MeV . (85)

and we have used that mn ' mp, µn = µp and gn = gp = 2. The equilibrium is broken by expansion as
temperature goes down. The total scattering rate of the reactions involving neutrons and protons is

Γ = Γ(n+ νe ↔ p+ e−) + Γ(n+ e+ ↔ p+ ν̄e) ' 0.96

(
T

MeV

)5

s−1 , (86)

while the Hubble parameter during radiation domination at T . 1 MeV is

H ' 1.66
√

10.75
T 2

MP
' 0.68

(
T

MeV

)2

s−1 . (87)

Therefore, the comparison of the scattering rate with the expansion rate gives

Γ

H
'
(

T

0.8 MeV

)3

. (88)

So at T & 0.8 MeV, the neutron-to-proton ratio follows its equilibrium value, while at T . 0.8 MeV it
decouples and freezes out at a value

nn
np

(T . 0.8 MeV) =
neq
n

neq
p

(T = 0.8 MeV) = e−1.29/0.8 ' 0.2 (89)

and correspondingly the neutron fraction is

Xn(T . 0.8 MeV)|before decay ≡
nn

nn + np
=

nn
np

1 + nn
np

' e−1.29/0.8

1 + e−1.29/0.8
' 0.17 . (90)

After that time, some neutrons decay (τn ' 886 s) and at later time, at the onset of BBN, TD ' 70 keV
(the temperature at which deuterium production becomes thermodynamically favoured), there are slightly
fewer neutrons. The time-temperature relation in the temperature regime T < TD is obtained from
Eq. (72), with g∗ = 3.36 (after e± annihilations),

t(T ) ' 1.32

(
1 MeV

T

)2

s , (91)

and therefore the neutron fraction at late times is

Xn(T < TD) = Xn|before decay × e−t(TD)/τn ' 0.12 , (92)

leading to the neutron-to-proton ratio

nn
np

(T < TD) ' 0.14 . (93)

Next, we need the number density of Helium nuclei nHe. Helium-4 is not produced by direct synthesis
of 2n and 2p, as the corresponding reaction rates are highly suppressed in the dilute (high entropy) limit,
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but rather by burning of deterium 2H = D. So, in order to produce 4He one needs to “wait” until the
D is produced, which occurs relatively late, because of the small binding energy of D (the so-called
“deuterium bottleneck”). Only after D is formed, it can be burnt by the reactions

D +D → 3He+ n , (94)

D +D → 3H + p , (95)

and then provide the fuel for Helium-4 production

3He+D → 4He+ p , (96)
3H +D → 4He+ n . (97)

Deuterium is formed by the direct synthesis of one neutron and one proton in the reaction

p+ n→ D + γ . (98)

The D production becomes efficient at temperatures T . TD ' 70 keV, and nearly all free neutrons get
bound into Helium-4 nuclei, so

n4
He
' nn/2 , (99)

since each Helium-4 nucleus contains two neutrons. Now we have all the ingredients to estimate the 4He
abundance produced by BBN, by combining Eqs. (93) and (99)

Y =
4n4

He

nn + np
=

4nn/2

nn + np
=

2nn/np
1 + nn/np

' 0.24 , (100)

in very good agreement with the observed value.

4 Cosmic Microwave Background
In 1965 Arno Penzias and Robert Wilson published a paper where they admitted to have failed to elimi-
nate a background noise coming from all directions, corresponding to a residual photon background with
temperature of about 3 K. Ten years later they shared the Nobel prize in physics for the discovery of the
Cosmic Microwave Background (CMB) radiation!

What was that noise?

At temperatures above the electron mass me (T > me) the electrons/positrons and radiation were
in thermal equilibrium. When the temperature of the universe goes down to a fraction of the electron
mass (T . me), electrons and positrons become non-relativistic and their equilibrium number densities
become exponentially suppressed compared to the number density of photons, so the reaction

e+e− ←→ γγ (101)

goes out of equilibrium and chemical equilibrium is broken. However, matter (residual electrons) and
radiation are still in kinetic equilibrium, through the elastic reaction (Compton scattering)

e−γ ←→ e−γ , (102)

whose cross section for non-relativistic electrons reduces to the Thomson scattering cross section (in
classical electrodynamics)

σT '
8π

3

(
α

me

)2

' 6.7× 10−25 cm2 . (103)

Notice that the analogous Compton scattering of photons off protons pγ ↔ pγ is irrelevant since the
corresponding cross section is suppressed by (me/mp)

2 ∼ 10−6. The Compton scattering keeps the
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photons coupled to matter until a much later time (photon decoupling) than when T ' me. Until then,
kinetic equilibrium is attained and photons are continuously scattering off electrons. The universe was
filled with an almost perfect black-body radiation.

When Compton scatterings start becoming ineffective with respect to the expansion rate of the
universe, the photons “decouple” from matter and then propagate freely until today. They just cooled
with expansion down to a temperature T0 = 2.7 K = 2.3 × 10−4 eV. This radiation is the residual
electromagnetic radiation from the Big Bang, observed as a highly isotropic “noise”. The CMB can
therefore be interpreted as a snapshot of the universe when it was very young (about 300,000 yrs old, as
we will see later). The CMB provides a huge deal of information about our universe, and it is the most
powerful cosmological probe available today.

4.1 Photon energy density
The energy distribution of thermal photons follows the Planck distribution (let us restore the units of
c, ~, kB in this subsection)

n(ω, T )dω =
1

c3

1

e~ω/(kBT ) − 1

2d3ω

(2π)3 =
1

π2c3

ω2dω

e~ω/(kBT ) − 1
(104)

the differential energy spectrum

u(ω, T )dω = (~ω)n(ω, T )dω =
~

π2c3

ω3dω

e~ω/(kBT ) − 1
(105)

is the usual one for a black body. Therefore the total energy density in radiation is given by the integral

ργ =

∫ ∞

0
u(ω, T )dω =

~
π2c3

(
kBT

~

)4 ∫ ∞

0

ξ3dξ

eξ − 1
=

π2k4
B

15~3c3T
4 ≡ σT 4 (106)

with σ = 4.72 × 10−3 eV cm−3K−4 being the Stefan-Boltzmann constant. This energy density today
(T=2.7 K) is ργ ' 0.26 eV cm−3, which translates into

Ωrh
2 =

ργ

ρc/h
2 ' 4× 10−5 , (107)

so the present radiation energy density is neglible.

4.2 Photon decoupling
Let us compute the time when the CMB formed (or equivalently the redshift of photon decoupling zdec).
We will work under the simplifying approximation that the plasma is in chemical and thermal equilibrium
among all its components, aiming at providing the reader with the basic elements. For more exhaustive
discussions please refer e.g. to Refs. [4, 5].

The goal is to estimate the time of photon decoupling, namely when the photons stop interacting
with matter and propagate through the universe along geodesics. We first need to find the number density
of free electons, or equivalently the free electron fraction (or ionization fraction)

Xe ≡
ne

np + nH
. (108)

Free electrons get bound to protons to form neutral H atoms through the capture reaction

p+ e− ←→ H + γ , (109)
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and the binding energy of H is

BH ≡ me +mp −mH = 13.6 eV . (110)

When T � me, electrons, protons and Hydrogen atoms are non-relativistic and their equilibrium number
densities are given by Eq. (65)

neq
i = gi

(
miT

2π

)3/2

e−(mi−µi)/T , (i = e, p,H), (111)

and recall that gp = ge = 2. The first type of Hydrogen involved in the electron capture in Eq. (109)
is H1s, i.e. the ground state (with 2 hyperfine states, one with spin 0 and one with spin 1, so gH1s

=
1 + 3 = 4). By adding to the 3 conditions for neq

i the 3 relations following from the equilirium reaction
in Eq. (109)





µp + µe = µH (chemical equilibrium)
ne = np (charge neutrality)

np + nH = 0.76nB = 0.76 ηnγ (tot. number of baryons without He)
(112)

(recall that after BBN about 24% of the baryons consists of 4He) we have 6 equations for the 6 unknowns
np,e,H , µp,e,H . We can then compute, in the equilibrium approximation, the quantity

X2
e

1−Xe

∣∣∣∣∣
eq

=
neq
e + neq

H

neq
H

neq
e n

eq
p

(neq
e + neq

H )2 =
neq
e n

eq
p

neq
H (neq

e + neq
H )

=
1

0.76 · ηnγ
neq
e n

eq
p

neq
H

=
1

0.76 · ηnγ
gegp
gH

(
meT

2π

)3/2

e(µe+µp−µH)/T e−(me+mp−mH)/T

=
1

0.76 · ηnγ

(
meT

2π

)3/2

e−BH/T . (113)

Inserting neq
γ = (2/π2)ζ(3)T 3, we get the Saha equation for the equilibrium ionization fraction of

electrons
X2
e

1−Xe

∣∣∣∣∣
eq

=

√
π

0.76 · 4
√

2ζ(3)

1

η

(me

T

)3/2
e−BH/T . (114)

The latter equation can be solved in the two temperature regimes

T & BH =⇒ X2
e

1−Xe

∣∣∣∣∣
eq

' 109
(me

T

)3/2
' 105 =⇒ Xe ' 1 (all H ionized) (115)

T < BH =⇒ Xeq
e � 1 =⇒ Xeq

e (T ) '
[ √

π

0.76 · 4
√

2ζ(3)

1

η

(me

T

)3/2
e−BH/T

]1/2

. (116)

Now that we have an expression for the free electron fraction at late times, we can proceed to compute
the time of photon decoupling.

Photon decoupling occurs when the rate of photon-electron (Compton) scattering is less than the
expansion rate: Γe ' neσT . H . Assume for simplicity a matter-dominated universe with Ωm = 1 (but
generalizations are straightforward), so

H(T ) ' H0a
−3/2 = H0

(
T

T0

)3/2

. (117)
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Then

ne = XenB , (118)

nB =
Ωbρc
mp

(a0

a

)3
=

Ωbρc
mp

(
T

T0

)3

' 2.2× 10−7 cm−3

(
T

T0

)3

, (119)

from which it follows that the rate for electron Compton scatterings is

Γe(T ) = neσT ' Xe 1.5× 10−31 cm−1

(
T

T0

)3

. (120)

Then compare Γe with H from Eq. (117), to get the temperature Tdec at which they are equal (recall
H−1

0 = 9.3× 1027 · h−1 cm, h ' 0.7)

Γe(Tdec) = H(Tdec) =⇒
(
Tdec

T0

)3/2

' 1

2× 10−3Xe(Tdec)
, (121)

and then solve numerically the implicit equation for Tdec, where Xe(T ) is given by the Saha equation in
Eq. (116), arriving at

Tdec ' 1000T0 ' 0.2 eV =⇒ 1 + zdec =
Tdec

T0
' 1000

=⇒ tdec =
2

3H0(1 + zdec)
3/2
' 300 000 yrs. (122)

This is the time of photon decoupling (last scattering), when the CMB is formed. Before photon decou-
pling the plasma is opaque, because of photons scattering off free electrons. After decoupling, photons
do not scatter anymore and the universe becomes transparent to radiation.

If instead of the Hubble parameter given by Eq. (117) for Ωm = 1 one considers a more realistic
ΛCDM model where Ωm = 0.27,ΩΛ = 1− Ωm, one gets zdec ' 1089, so Tdec ' 0.26 eV.

4.3 Concluding remarks
The CMB is actually not perfectly isotropic. There are temperature anisotropies of the order of

∆T

T
∼ 10−5 . (123)

Indeed, these anisotropies carry a great deal of cosmological information. For example, the two-point
correlation functions of the temperature maps crucially depend on the cosmological paramters like
H0,Ωb,Ωtot etc. By a careful analysis of these anisotropies, satellite experiments like COBE, WMAP
and lately PLANCK were able to determine the cosmological parameters with greater and greater accu-
racy. The CMB anisotropies in the CMB are well described by acoustic oscillations in the photon-baryon
plasma. Both ordinary baryonic and dark matter interact gravitationally with radiation, but only ordinary
matter interacts also electromagnetically. So baryonic and dark matter affect the CMB differently. From
the peaks of the CMB it is possible to determine the density of baryonic and dark matter. The resulting
best-fit ‘concordance’ cosmological model is known as ΛCDM (cosmological constant plus cold dark
matter), where roughly

Ωtot ∼ 1.0 , Ωmatter ∼ 0.3 , Ωradiation ∼ 0.0 , ΩΛ ∼ 0.7 (124)

The accurate determination of the energy content of the universe was another great triumph of standard
cosmology!

So, although standard cosmology is very successful at providing a picture of the universe from
BBN to today, there are several questions still lacking an answer, for instance: what is the dark matter
made of? why there is a matter-antimatter asymmetry? what happened in the first three minutes of the
universe (before BBN)? We will discuss some possible answers to these (and other) questions in the
remainder of the course.
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5 Dark Matter
5.1 Evidences for dark matter
We already discussed that both BBN and CMB observations (see Section 2.2.5) provide compelling ar-
guments in favour of the existence of an unknown component of the universe consisting of non-baryonic
matter, dubbed Dark Matter (DM). The existence of DM is by now firmly established also by other types
of observational evidences.

5.1.1 Galaxy clusters
– Coma cluster. In 1933, F. Zwicky measured the proper motion of galaxies in the Coma galaxy

cluster (a group of ∼ 1000 galaxies, within a radius of ∼ 1 Mpc).
The mass M and the size R of the cluster of N galaxies can be related to the velocity dispersion
of galaxies (the velocities are projected along the line of sight) according to the virial theorem:

〈V 〉+ 2〈K〉 = 0 ,

〈V 〉 = −N
2

2
GN
〈m2〉
R

(average pot energy due to N2/2 pairs of galaxies) ,

〈K〉 = N
〈mv2〉

2
(average kin energy due to N galaxies) . (125)

The total mass M is

M = N〈m〉 ∼ 2R〈v2〉
GN

, (126)

from which it was computed the mass-to-luminosity ratio to be much larger than the one for an
average star like the Sun

M

L
∼ 300h

M�
L�

. (127)

So the value obtained is about 300 times greater than expected from their luminosity, which means
that most of the matter is not luminous, so it is dark.

– X-ray observations. The gravitational potential (and hence the total mass) of galaxy clusters can
also be measured by X-ray observations. In fact, most of the ordinary mass in cluster is in the form
of hot gas, emitting X-ray frequencies. The X-rays are produced by electrons.
It is possible to measure the spatial distributions of the electron number density ne(r) and of the
electron temperature Te(r). The number density of baryons nb(r) will be proportional to ne up to
a factor µ depending on the chemical composition: nb(r) = µne(r). The pressure is mostly due
to electrons, so P (r) = ne(r)Te(r).
The hydrostatic equilibrium relates the pressure P to the radius R through the mass m which in
turn depends on the energy density in baryons ρb

dP = −dm
acceleration

Area
= −ρb(R)

dV
Area

GNM(R)

R2 = −ρb(R)
GNM(R)

R2 dR , (128)

where the total mass enclosed in a sphere of radius R is

M(R) = 4π

∫ R

0
ρ(r)r2dr . (129)

This leads to
dP
dR

= −nb(r)mb
GNM(R)

R2 . (130)

In this equation, the left-hand side is measured from temperature maps from X-ray spectra, the
term nb(r) is obtained from X-ray luminosity and spatial distributions of electrons, so only M(R)

17

INTRODUCTION TO COSMOLOGY AND DARK MATTER

161



Fig. 4: The gravitational lensing from Abell NGC2218.

Fig. 5: The “Bullet cluster” 1E0657-558. The image shows two colliding clusters of galaxies. The green lines
show the gravitational equipotential surfaces, measured by gravitational lensing. Brighter regions are the hot
baryonic gas, observed in X-ray by Chandra. Figure taken from Ref. [6].

is uknown and can be determined. The result for M is again that M should be more than the
contribution of just visible (baryonic) matter Mb.

– Gravitational lensing. Gravitational lensing techniques use the gravitational distortion of images
of distant galaxies due to a gravitational mass (e.g. a cluster) along the line of sight (see Fig. 4).
This way, it is possible to reconstruct the gravitational potential, and hence the total mass dis-
tribution of the cluster. The result is that more matter than the visible one is required, and also
differently distributed.

– Bullet cluster. The so-called “bullet cluster” (see Fig. 5) is a recent merging of galaxy clusters.
The gravitational potential is not produced by baryons, but by DM. In the collision, the hot gas is
collisional and loses energy, so it slows down and lags behind DM; the DM clusters are collision-
less and passed through each other.

5.1.2 Galaxies
The dependence of the velocity v(R) of stars in a galaxy, as a function of the distanceR from the galactic
center (rotation curves), is given by Newton’s law (assuming circular motion)

v(R) =

√
GNM(R)

R
, M(R) = 4π

∫ R

0
ρ(r)r2dr , (131)

wnere ρ(r) is the mass density. The contribution to ρ from luminous matter would lead to v(r) ∝ R−1/2

at large R. But observationally, one has v(R) ' constant, see Fig. 6. Explaining the observed rotation
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Fig. 6: The rotation curve of galaxy NGC 6503. The different curves show the contribution of the three major
components of matter to the gravitational potential (from top to bottom): halo, disk, gas. Figure taken from
Ref. [7].

curves requires more matter abundance, and differently distributed, than the visible one: a constant
rotation curve requires MDM ∝ R, which is attained for a DM density distribution ρDM(r) ∝ 1/r2.

There exists several other dynamical constraints from studying the motion of stars in the Milky
Way. They are then compared to a mass model for the galaxy and allow a determination of the local DM
density (at the location of the Sun)

ρ(r�) ' 0.01M� pc−3 ' 0.4 GeVcm−3 (132)

(recall 1 pc = 3.08× 1018 cm, and 1M� = 1.12× 1057 GeV).

5.1.3 Large-scale structures
Without DM, density perturbations would start to grow only after recombination, so today there would
not be structures yet. Different DM types lead to different scenarios for the formation of structures: in
the so-called Hot Dark Matter scenario large structures are formed first and then fragment into smaller
pieces (“top-down”), while in the Cold Dark Matter scenario smaller objects merge into bigger structures
hierarchically (“bottom-up”). Cosmological observations and numerical simulations exclude the Hot DM
case.

5.2 Key Properties of Particle DM
A particle candidate for DM must satisfy at least the following fundamental properties:

1. stable, or at least with a lifetime longer than the age of the universe;
2. no electric charge, no color charge;
3. non-collisional, or at least much less collisional than baryons: self-annihilation cross sections must

be smaller than QCD σDM DM � 1/m2
p, and weak cross sections σDM DM � 1/m2

Z ;
4. not “hot”, as it would be excluded by large-scale structure formation;
5. in the fluid limit, not in the form of a collection of discrete compact objects. We have not seen any

discreteness effects in DM halos. Granularities would affect the stability of astrophysical systems.
MAssive Compact Halo Objects (MACHOs) are astrophysical objects with macroscopic mass,
such as large planets or small dead stars. Searches for MACHOs (EROS+MACHO results) exclude
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the range
10−7M� .M . 10M� , (133)

using gravitational microlensing. Several other constraints also apply, due to e.g. non-observation
of lensing effects in the direction of Gamma-Ray Bursts (GRBs) or towards compact radio sources.
However, it is natural to expect these objects to be baryonic and created in the late universe. So this
would upset predictions for BBN and CMB and they are excluded. A small window for primordial
black holes (PBH) is actually still open;

6. non-relativistic (classical) today, in order to be confined on galactic scales (1 kpc or so), for densi-
ties ∼ GeV cm−3, and velocities ∼ 100 km s−1. This leads to lower limits on its mass, depending
on whether DM is made out of bosons or fermions.

– For bosons, the De Broglie wavelength λ = h/p (h is the Planck’s constant, restored in this
section) must be less than 1 kpc, so

m & h

1kpc · v ' 10−22eV , (134)

where v ' 100 km/s has been used.
– For fermions, because of Pauli exclusion principle, the DM quantum occupation number must

be smaller than one, so

ρ(r�) . m

λ3 =⇒ m &
[
h3ρ(r�)

v3

]1/4

' 1 keV , (135)

where ρ(r�) = 0.4 GeV cm−3 ' (0.04 eV)4 has been used (Gunn-Tremaine bound)

None of the SM particles satisfies the above requirements. Therefore the quest for a viable particle
candidate for DM needs to be carried out in the realm of physics beyond the SM.

5.3 Weakly Interacting Massive Particles
There is a really wide landscape of DM models, where the DM mass spans several orders of magnitude,
from ultra-light scalars at about 10−22 eV to primordial black holes at 1020 kg. There is no a priori
preferred mass scale, so we are not sure where to look for DM.

Among the many possible categorizations of the DM models, one that is particularly useful is to
divide the DM candidates into whether or not they are Weakly Interacting Massive Particles (WIMPs).
The advantage is that all WIMPs share pretty much the same production mechanism in the early universe,
through the so-called thermal freeze-out, which we will describe later, while each of the other non-WIMP
DM candidates are produced in peculiar ways to be studied case-by-case.

Just to mention a few out of the many realizations of each category, the WIMPs can be the su-
persymmetric neutralino, minimal DM, Higgs-portal scalar, heavy neutrino, inert Higgs doublet, lightest
Kaluza-Klein particle, etc. Some notable non-WIMP candidates are axions, sterile neutrinos, gravitinos,
asymmetric DM, techni-baryons, Q-balls, primordial black holes, dark photons, topogical defects, etc.

For simplificy, from now on we will only focus on WIMPs. The basic ingredients for a WIMP
model are:

– a massive particle in the ∼ 1 GeV – ∼ 100 TeV range;
– weak interactions with the SM;
– production via thermal freeze-out in the early universe.

20

A. DE SIMONE

164



5.4 Freeze-out of Thermal Relics
In this section we want to compute the thermal relic abundance of a particle whose interactions “freeze-
out” in the early universe. We will first do a simple estimate, in order to highlight the important quantities
into play, then we will describe a more formal calculation using the Boltzmann equations.

Let us start by assuming the Standard Model of particle physics is augmented with the inclusion
of a particle χ (the DM) of mass mχ such that

– χ is a stable;
– χ is coupled to lighter SM species;
– χ is in thermal equilibrium in the early universe at temperature T � mχ.

The DM particle χ is kept in equilibrium by number-changing annihilation processes of the kind

χ χ↔ SM SM , (136)

where SM is any SM particle. This follows from the assumptions 1. and 2. above.

At temperatures much bigger than mχ, these processes are fast and the DM is in equilibrium with
the rest of the plasma. But as the unvierse expands, the rate for the processes (136) becomes slower than
the expansion rate of the universe, and such reactions go out of equilibrium. This happens when the
annihilation rate Γ . H . From this point on, the DM decouples from the plasma and its number density
does not change anymore, it “freezes out”.

Let us find the freeze-out temperature Tf , defined by the condition

neq
χ (Tf )σ = H(Tf ) . (137)

Let us assume for simplicity here that the annihilation cross section of the process (136) does not depend
on the relative velocity: σ = σ0 (the so-called s-wave annihilation). Now, during radiation domination:

H(Tf ) =
√

(4π3/45)g∗(Tf )T 2
f /MP . The equilibrium number density, for mχ � Tf is

neq
χ (Tf ) = gχ

(
mχTf

2π

)3/2

e−mχ/Tf . (138)

Eq. (137) can be then manipulated to arrive at an implicit equation for Tf which does not admit closed-
form solution, but it can be solved iteratively, giving at leading order

Tf '
mχ

lnK
, (139)

where

K ≡ 3
√

5

4
√

2π3

gχ√
g∗
σ0mXMP . (140)

For reference values mX = 100 GeV, gX = 2, g∗ = 100 and σ0 = 1 pb = 10−36 cm2 ' 2.6 ×
10−9 GeV−2, we get

K = 2.4× 1010
(gχ

2

)(100

g∗

)1/2( σ0

1 pb

)( mX

100 GeV

)
(141)

so lnK ' 24, and therefore typically Tf ∼ mχ/20÷mχ/30.

Then it follows that the number density of χ at freeze-out is

nχ(Tf ) =
H(Tf )

σ0
=

√
4π3

45
g∗(Tf )

T 2
f

MP
(142)
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which is roughly constant until today, up to a redhift dilution of non-relativistic matter

nχ(T0) =

(
T0

Tf

)3

nχ(Tf ) ∝ 1

Tf
∝ 1

mχ
. (143)

So the energy density today of χ particles is ρχ(T0) = nχ(T0)mχ does not depend on mχ! Actually,
there is still a mild (logarithmic) residual dependence on mχ in K.

Ωχh
2 =

ρχ(T0)

ρc/h
2 =

nχ(T0)mχ

ρc/h
2 ' 0.1

3× 10−26cm3/ sec

σ0
' 0.1

1 pb
σ0

(144)

The present relic abundance of χ is mostly driven by its cross section. Notice that a pb cross section is
the typical cross section of weak interactions.

Recall from Eq. (44) that the present energy density of DM is observed to be ΩDMh
2 ' 0.12.

Therefore, the relic density today of a cold relic produced by the freeze-out mechanism in the early
universe can explain the observed value of the DM energy density, as shown by Eq. (144). If σ0 is bigger
than about 10−26 cm3/s, the relic abundance is too big and would overclose the universe.

A cold relic with weak-scale interactions is a DM candidate. A typical annihilation cross section
for a particle with couplings g is σ ∼ g4/M2, so a pb cross section is realized by

M/g2 ∼ TeV (145)

so the weak scale! A particle of weak-scale mass and couplings gives rise to a relic abundance in the
right ballpark of the observed DM abundance. This remarkable coincidence is also known as the “WIMP
miracle”.

So there are several reasons why the WIMPs are so appealing as as DM candidates:

– the WIMP “miracle” (which may just be a numerical coincidence);
– a common production mechanism (freeze-out);
– the link with beyond-the-SM physics at the weak scale, possible related to the solution of the

hierarchy problem (e.g. Supersymmetry)
– the possibility to perform multi-sided searches: the three pillars of WIMP searches are the so-

called direct detection, indirect detection and collider searches; they may be interpreted as the
searches for signatures due to three different realizations of the same WIMP-quark interactions:
WIMP-quark scattering, WIMP self-annihilations and WIMP pair production from quarks. In the
next subsections we will discuss each of them.

5.5 Direct Detection
Direct Detection (DD) of DM consists of looking for the scatterings of galactic halo DM on heavy nuclei
in underground laboratories. Suppose a halo particle χ with mass mχ and velocity v scatters from a
target nucleus at rest of atomic mass number A and mass MA with an angle θ (in the c.o.m. frame). The
c.o.m. recoil momentum, or momentum transfer, is

|~q|2 = 2µ2
χAv

2(1− cos θ) , µχA = mχMA/(mχ +MA) . (146)

The recoil energy imprinted on the nucleus is then

ER =
|~q|2

2MA
. (147)
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which is maximum for θ = π (|~qmax| = 2µv), so

Emax
R = 2v2 m2

χMA

(mχ +MA)2 = 2
µ2
χAv

2

MA
. (148)

Such a recoil energy of the scattered nucelus can be measured and can signal the occurrence of a DM
particle scattering by.

As an examples to get an idea of the orders of magnitude involved: for a DM particle with mass
mχ = 100 GeV scattering off a 131Xe nucleus, we get

Emax
R = 2

( v

200 km/s

)2
(

2

3
10−3

)2 1002 · 131

2312 106 keV ' 22 keV
( v

200 km/s

)2
(149)

so the recoil energies are typically in theO(1÷10) keV range. The experiments are able to tag the event
and measure ER by directly observing one or two of the following 3 end-products: 1) heat; 2) ionization;
3) scintillation.

Let us make a back-of-the-envelope estimate of the expected number of events per unit of time.
Consider a detector consisting of NT nuclei with mass number A and mass MA ' A ·mp ' A GeV.
The total target mass of the detector is MT = NTMA (alternatively, the number density of target nuclei
is NT = NAvogadro/A ). Let σχA be the nucleus-DM cross section, so

# events
time

= (# targets)× (WIMP flux on Earth)× (cross section) = NT

(
ρ⊕
Mχ

v

)
σχA

' 1 event
yr

× MT /A

kg
× σ

10−39cm2 ×
ρ⊕

0.3 GeVcm−3 ×
v

200 km/s
× 100 GeV

mχ
.

More precisely, the spectrum of events per recoil energies is given by

dR
dER

= NT

∫

|~v|>vmin

|~v|dσχA
dER

dnDM = NT
ρ⊕
mχ

∫

|~v|>vmin

d3v|~v|f(~v, t)
dσχA
dER

(150)

where we inserted the differential particle density

dnDM =
ρ⊕
mχ

f(v)d3v (151)

with f(v) being the velocity distribution and vmin =
√
MAE

th
R /(2µ

2
χA) is the minimal DM velocity

needed to transfer a threshold kinetic energy Eth
R to the nucleus.

The most recent results for SI cross sections are from Xenon1T experiment [8] (about 2 tons of
liquid Xe) are shown in Fig. 7. The SD cross section is much less constrained, a few orders of magnitude
weaker bound than SI.

The characteristic shapes of the bounds can be understood as follows. The total event rate turns out
to be proportional to R ∝ σµ2

χA/mχ < Robserved. Therefore a bound on the total number of observed
events translates into a limit on the coupling

σ < σbound ∝
mχ

µ2
χA

∼
{
m−1
χ (mχ � mA)
mχ (mχ � mA)

(152)

This dependence explains the typical exclusion curves shown by the experimental collaborations, and
have a dip (maximal exclusion) around mχ ' mA where the reduced mass is maximal.

The vector interactions mediated by Z exchange would typically lead to a spin-independent cross
section σ ∼ α2

Wm
2
p/M

4
Z ≈ 10−39 cm2, which is already excluded by orders of magnitude.
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Fig. 7: 90% confidence level upper limit on spin-indepdenent WIMP-nucleon cross section from Xenon1T. A
comparison with previous Xenon results, LUX and PandaX experiments is also shown. Figure from Ref. [8]

5.6 Indirect Detection
The indirect searches for DM are based on identifying excesses in fluxes of gamma rays/cosmic rays
with respect to their presumed astrophysical backgrounds. These stable Standard Model particles may
be the end product of the annihilation (or decay) of DM in the galactic halo or in the Sun. The schematic
chain of processes leading from DM self-annihilations to observable fluxes at Earth is

χχ→ SM SM
hadron./decay−→ stable species

astrophys. prop.−→ fluxes at Earth . (153)

Promising sources of DM annihilations are generically the regions where DM is expected to be the
densest, such as the galactic center, the inner halo of our Galaxy, nearby galaxies dominated by DM,
the center of the Sun, the center of the Earth. However, in some of these regions it is usually very
complicated to understand the underlying astrophysics. So the best detection opportunities might come
from selecting targets which are not necessarily the richest in DM but with well-identified backgrounds
(favourable signal/background ratio). This also depends on which species of cosmic ray one is looking
for.

The first step of the chain (153) DM annihilations into primary channels (like qq̄, `+`−,W+W−,
etc.) is controlled by the DM model lagrangian describing the elementary interactions of the DM particle
with the SM. Once the primary products of annihilations are produced, they will undergo standard SM
evolution, like decay, radiation, hadronization, controlled by QED, EW and QCD interactions. The end-
product of this step is to have stable particle species (e.g. e±, γ, ν, p etc.). Such stable particles are then
travelling through the galaxy from their production point to the Earth, and they are subject to a number
of astrophysical processes. Finally, the result of the astrophysical propagation of stable particles is the
fluxes at detection (Earth) which is what can be measured.

This chain has to be reversed in order to extract information on the original DM model from
observations of the fluxes. As it is clear, in this inversion process a lot of uncertainties come into play,
especially those from the astrophysical propagation mechanisms.

The SM particles giving best information are photons, neutrinos and stable anti-particles: e.g.
positrons and anti-protons (also, maybe, anti-deuteron, anti-helium). Why anti-matter? Because there is
little anti-matter from early universe and (possibly) little anti-matter in primary cosmic rays. Observa-
tions provide a positron fraction of the order e+/(e+ + e−) ∼ 0.1 and a antiproton-to-proton ratio of the
order p̄/p ∼ 10−4. Each stable species has advantages and disadvantages to be used as a DM indirect
detection probe:

– Photons. They freely propagate, in the galactic environment. However DM is electrically neutral,
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Fig. 8: DM upper limits on DM self-annihilation cross section from Fermi-LAT observations of the Galactic Center,
as a function of the DM mass, for annihilations into bb̄ (left panel) and τ+τ− (right panel). The results are shown
at the 95% confidence level assuming the generalized NFW (black) and NFW (red) DM profiles. The upper limits
from the recent analysis of 15 dwarf spheroidal galaxies using 6 years of Fermi-LAT data are shown in blue. The
dotted line indicates the thermal relic cross section. Figures taken from Ref. [9].

so that photons can be produced only via some subdominant mechanism (e.g. loops) or as sec-
ondary radiation (synchrotron, bremsstrahlung). The spectrum is suppressed, and the astrophysical
background difficult.

– Positrons. They diffuse in the galactic magnetic fields with energy losses due to: synchrotron
emission, Coulomb scattering, ionization, bremsstrahlung and inverse Compton. The DM contri-
bution is dominated by the nearby regions of the galaxy. Below a few GeV, the effect of solar
activity is important.

– Anti-protons. They diffuse in the galactic magnetic fields with negligible energy losses, until they
scatter on matter. Therefore even far-away regions of the Galaxy can contribute to the flux col-
lected on Earth and, as a consequence, its normalization has significant astrophysical uncertainties.
Below a few GeV, the effect of solar activity is important.

– Neutrinos. TeV-scale neutrinos propagate freely in the Galaxy and can also propagate through
the dense matter of the Sun and the Earth. Neutrinos are difficult to detect, they are measured
indirectly via the detection of charged particles (e.g. muons) produced by a neutrino interaction
in the rock or water surrounding a neutrino telescope. The incoming neutrino energy can only be
partially reconstructed.

As an example, in Fig. 8 we show the upper limits on the self-annihilation cross section of DM from
gamma-ray observations, in two different annihilation channels: bb̄ and τ+τ−. The thermal relic cross
section sets the reference to exclude models giving lower cross section (that would lead to too much
DM abundance today), so one can exclude (e.g. using 6-year data on dwarf spheroidal galaxies) DM
annihilating into bb̄ or τ+τ− with masses mχ . 100 GeV.

5.7 Collider Searches
How does DM (a WIMP) show up in a collider, such as the LHC? A WIMP must be stable (over collider
scales) and very weakly interacting. So, even if a WIMP is produced in a high-energy collision, it escapes
the detectors with no interaction, thus leaving no visible tracks. The DM behaves exacly like a neutrino,
for collider purposes, so its unavoidable signal is just “missing energy”. This implies that the irreducible
background of the DM searches (and very often the dominant background) is due to Z → νν̄ (e.g. with
Z produced via Drell-Yan process).

If the DM is stabilized by an exact Z2 symmetry under which it is odd, while the SM is even, then
DM must be produced in pairs.
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Since the missing energy alone is a rather poor signal, one needs something else as a handle to
select events involving DM production. The identification of the most suitable extra handle, is a model-
dependent issue. It may be jets or other objects from initial state radiation, accompanying particles,
displaced vertices, etc.

At this point, an important caveat is in order: the LHC cannot discover the DM. It may only
discover a weakly interacting particle with lifetime larger than the size of the detecting, but there is not
way to test the stability of the escaping particles on cosmological scales.

So far, there has been no signal for DM at LHC. There may be three reasons for that:

1. DM may not interact with ordinary matter: indeed, we are only sure that DM has gravitational
interactions;

2. DM physics may not be accessible by LHC: e.g. DM may be too light/heavy or interacting too
weakly with ordinary matter;

3. we may not have explored all the possibilities: DM may be buried under large backgrounds or
hiding behind unusual/unexplored signatures.

The simplest handle to correlate with missing transverse energy (MET) is to consider the Initial State
Radiation (ISR) of some SM particle X , where X may be a quark/gluon (producing a jet in the final
state), a photon, a W/Z, or even a Higgs. This class of signatures are called mono-X searches. However,
the mono-jet is what provides the strongest limits in most situations.

Mono-X+MET searches have the virtue of being rather general, the backgrounds are relatively
well-known and they provide complementary/competitive results with direct detection. The main draw-
backs are that some background is irreducible, there is a small signal-to-background ratio and the
searches are limited by systematics.

Whether or not one chooses to explore DM at LHC using the mono-X signal, one very important
question to ask is: which DM model to test? The interaction between quarks and DM can be modelled
in many different ways. One can nonetheless divide the infinite-dimensional space of DM and Beyond-
the-Standard-Model (BSM) theories into three broad categories:

1. Complete models. These are models of BSM physics like Supersymmetry, Composite Higgs, etc.
which provide a valid description of elementary particles up to very high energies (ultraviolet
complete), typically including also a solution of the hierarchy problem.
Pros: they are ultraviolet (UV) complete, motivated by BSM issues (like the hierarchy problem).
Cons: they have many parameters, and typically include sources of fine tuning.

2. Effective operators. They are coming from integrating out whatever heavy physics is responsible
for mediating the SM-DM interactions, e.g. the heavy mediator. This approach has been often
considered as “model-independent”, but it is not, since one needs to specify up the energy cutoff
up to which the Effective Field Theory (EFT) is valid. This depends on the UV completion.
Pros: it is an economical approach (no need to specify mediators) and provide a common language
to compare results from different experiments, e.g. direct/indirect detection. Cons: they are less
complete than complete models; EFT is not always applicable, especially at very high energies
involved in LHC processes.

3. Simplified models. They are a sort of mid-way between the two extremes described above. A
heavy mediator particle, mediating the interactions between SM and DM, is exchanged in the s-
or t-channel (for a review, see e.g. Ref [10]).
If the DM sector is more complicated than just an extra particle coupled to the SM, the heavy medi-
ator approach is however a simple and good enough representation of what is going on. Simplified
models are therefore simple versions of more complicated theories but with only the minimum
amount of degrees of freedom which are necessary to model the physical process of interest.
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Fig. 9: Regions in a DM mass-mediator mass plane excluded at 95% CL by a selection of ATLAS dark matter
searches, for vector mediator (left panel) and an axial-vector mediator (right panel) mediating the interactions
between the SM and DM. Figures taken from ATLAS summary plots.

Pros: they provide a good representation of more complicated situations with minimum number of
degrees of freedom; they are theoretically consistent. Cons: they require extra propagating degrees
of freedom, beyond just the DM particle, so more parameters than EFTs; with a single simplified
model it is hard to catch all phenomenological possibilites of complete models.

The great advantage of simplified models is that one can combine the search for the DM with the search
for the mediator itself, e.g. looking for it as a di-jet resonance (see Fig. 9). As it is clear from Fig. 9, the
di-jet searches for the mediators are actually setting stronger limits than the mono-X + MET searches.

The limits in the DM mass-mediator mass plane can be recast into constraints on WIMP-nucleon
scattering cross sections, to be compared with those from direct detection experiments. The main result
is that for spin-independent couplings, the direct detection experiments set the most stringent limits (for
mχ & 5 GeV), but for spin-dependent couplings (for which direct detection is weaker) the LHC bounds
are actually stronger.

Is this the whole story? The negative results of DM searches are calling for new efforts towards
developing other tools and methodologies to increase the power of the searches. A couple of topics along
this direction which are worth mentioning are: exploring less conventional, unexplored phenomenologi-
cal signatures for DM; use data-driven approaches (e.g. machine learning) to get new and deeper views
into the available and upcoming data.

6 Inflation
Inflation [11–13] is one of the basic ideas of modern cosmology and has become a paradigm for the
physics of the early universe. In addition to solving the shortcomings of the standard Big Bang theory,
inflation has received a great deal of experimental support, for example it provided successful predic-
tions for observables like the mass density of the universe and the fluctuations of the cosmic microwave
background radiation. Before discussing inflation in more detail, let us first review some background
material about standard cosmology, which serves also to introduce the notation, and outline its major
shortcomings.

6.1 Shortcomings of Big Bang Cosmology
Flatness problem. Recall from Eq. (45) that curvature parameter Ωk is of the order of 0.1% (10−3)
today, which means that to a very good approximation we live in a flat universe. Let us define the total
Omega parameter as

Ω ≡ ρtot

ρc
= Ωm + Ωr + ΩΛ . (154)
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From the sum rule of Omega parameters in Eq. (35) we get that

Ω− 1 =
k

a2H2 . (155)

The parameter |Ω−1| grows with time during radiation- and matter-dominated eras. In particular, during
radiation domination H2 ∝ ρradiation ∝ a−4, so

|Ω− 1| ∝ 1

a2H2 ∝
1

a2a−4 ∝ a
2 . (156)

Let us extrapolate this value back in time until the Planck time tP ∼ 10−43 s

|Ω− 1|T=TP

|Ω− 1|T=T0

≈
(
a(tP )

a(t0)

)2

≈
(
T0

TP

)2

≈ 10−64 . (157)

Since we observe today that the energy density of the universe is very close to the critical density (i.e. a
very small Ωk) the Ω parameter must have been close to unity to an extremely high accuracy (of about
one part in 1064 if we start the radiation-dominated era at the Planck time. Therefore, an extreme degree
of fine tuning is necessary to arrange such a precise initial value of the density parameter of the universe.
This is the flatness (or fine-tuning) problem.

Entropy problem. The flatness problem is also connected to the entropy problem, which is understand-
ing why the total entropy of the visible universe is incredibly large. In fact, recall that the entropy in
a comoving volume of radius a and temperature T is S ' (aT )3 = which is constant, and today the
entropy within the horizon is

S0 ∼ H−3
0 s0 ∼ H−3

0 T 3
0 ∼ 1090 , (158)

which is huge with respect to that in the early universe. During radiation domination the Hubble param-
eter is H ∼ T 2/MP , where the Planck mass is MP ≡ G−1/2 = 1.22 × 1019 GeV, so Eq. (155) can be
re-written as

|Ω− 1| ∝ 1a2H2 ∝ 1

a2T 4 ∝
1

T 2S2/3
. (159)

This relation tells us that Ω at early times is so close to 1 because the total entropy of the universe is
enormous. For example, at the Planck scale, the entropy of 1090 corresponds to Ω− 1 ∼ 10−60.

Horizon problem. As already mentioned in Section 4.3, the CMB has an amazingly high degree of
homogeneity, about one part in 105. But this poses a serious problem for cosmology. Recall from
Section 2.2.8 that the particle horizon is the distance travelled by photons. Let us consider our current
particle horizon d0 and track it back in time to the time of photon decoupling (last scattering), when
CMB formed Tdec ∼ 0.3 eV. The CMB temperature today is T0 ' 2.3× 10−4 eV, so particle horizon at
dec

λH |dec = d0
adec

a0
= d0

T0

Tdec
. (160)

From the Friedmann equation we know that during matter domination (from photon decoupling to today)
the Hubble radius, i.e. the size of the observable universe, redshifts as a−3/2 ∼ T 3/2. Therefore

(
λH |dec

H−1
dec

)3

=

(
Tdec

T0

)3/2

≈ 105 . (161)

So this result is telling us that when CMB formed, the lenght λH corresponding to our unvierse today
was much larger (by a factor 105) than the size of the causally connected universe at that time (H−1

dec). So
at photon decoupling there were 105 causally disconnected regions that now correspond to our horizon!
In other words, the photons received today were emitted from regions that were causally disconnected

28

A. DE SIMONE

172



at the time of photon decoupling, because they were out of the particle horizon. Why regions that were
not in causal contact share the same temperature to a very high precision? This is the so-called horizon
problem.

Monopole problem. Lastly, another issue that was plaguing the Standard Big Bang Cosmology in
the context of Grand Unified Theories (GUTs) is the overproduction of magnetic monopoles. Indeed,
magnetic monopoles are a generic prediction of GUTs and they are produced at a phase transition at
T = Tc, after which they behave as non-relativistic matter. To estimate the number density of monopoles,
we consider the simple argument of expecting approximately 1 monopole per correlation volume `3cor,
where the correlation length is bounded by the horizon at the critical temperature `cor . H(Tc)

−1.
Therefore, the number density of monopoles is roughly given by

nM ' `−3
cor & H(Tc)

3 '
(

1.66
√
g∗(Tc)

)3 T 6
c

M3
P

=⇒ nM
s
∼
√
g∗(Tc)

(
Tc
MP

)3

(162)

their number density behaves like nM (t) ∝ a−3(t) ∝ s(t), and therefore using (162) we can estimate
the abundance of magnetic monopoles today as

ρM (T0) = mMnM (T0) = mM
nM (Tc)

s(Tc)
s(T0) ∼ mM

√
g∗(Tc)

(
Tc
MP

)3

g∗(T0)T 3
0

∼ 1012

(
mM

1016 GeV

)(
Tc

1016 GeV

)3
√
g∗(Tc)

102 GeV cm−3 (163)

while the critical density is ρc ' 10−5 GeV cm−3, so

ρM
ρc
∼ 1017 , (164)

for monopoles with GUT-scale mass (∼ 1016 GeV). This overabundance of magnetic monopoles is
the so-called monopole problem. Therefore, one should suppose either that the universe was never at
temperatures as high as Tc ∼ 1016 GeV, or that Grand Unification is not there. The monopole problem
was the primary motivation behind the idea of inflation.

6.2 The inflationary solution
Inflation elegantly solves at once the problems associated with the standard Big Bang cosmology. The
inflationary era is defined as the epoch in the early history of the universe when it underwent a period of
accelerated expansion

ä > 0 . (165)

According to Eq. (25), this condition is equivalent to ρ+ 3p < 0 (for negligible cosmological constant).
For the sake of simplicity, we shall only consider here a more stringent condition for inflation, p = −ρ
(negative pressure!). This condition is also known as de Sitter phase, and corresponds to constant energy
density and Hubble parameter HI , and thus the scale factor grows exponentially in time

a(t) ∝ eHI t . (166)

Inflation delivers a flat universe, thus providing an explanation for the initial condition that Ω is close
to 1 to a high precision. In fact, during inflation, the Hubble rate is nearly constant and the curvature
parameter Ω− 1 is proportional to 1/a2 (see Eq. (155)), thus its final value at the end of inflation t = tf
is related to the primordial initial value at t = ti by

|Ω− 1|final

|Ω− 1|initial
=

(
a(ti)

a(tf )

)2

= e−HI(tf−ti) . (167)
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If inflation lasts for long enough, the Ω parameter will be exponentially driven to unity. Therefore, the
universe emerging at the end of inflation is spatially flat to a very high accuracy.

Furthermore, the large amount of entropy produced during the non-adiabatic phase transition from
the end of inflation and the beginning of the radiation-dominated era also produces a huge entropy

Sf
Si
∼
(
a(tf )

a(ti)

)3(Tf
Ti

)3

∼ e3HI(tf−ti)
(
Tf
Ti

)3

. (168)

Therefore, a period of exponential expantion can easily account for a large amount of entropy and it can
greatly dilute all magnetic monopoles down to an unobservable level.

If the universe underwent a period when the physical scales evolve faster than the horizon scale,
it is possible to make the CMB photons in causal contact at some primordial time before the photon
decoupling. The physical size of a perturbation grows as the scale factor: λ ∼ a, while the horizon scale
is H−1 = a/ȧ. If a period exists in the early history of the universe when

d

dt

λ

H−1 = ä > 0 , (169)

the CMB photons may have been in causal contact at that time, thus explaining the high level of homo-
geneity and isotropy observed in the CMB today. Such an epoch of accelerated expansion is precisely
the inflationary stage.

The mechanism of inflation can be simply realized by means of a scalar field φ, called the inflaton,
whose energy is dominant in the universe and with potential energy V (φ) much larger than the kinetic
energy. The generic lagrangian for the inflaton is

L =
1

2
∂µφ∂

µφ− V (φ) , (170)

while the energy-momentum tensor is

Tµν = ∂µφ∂νφ− gµνL . (171)

Neglecting the spatial gradients, the 00 and ii components of the energy-momentum tensor, correspond-
ing to the energy density and the pressure of the inflaton respectively, are given by

T 00 = ρφ =
φ̇2

2
+ V (φ) , (172)

T ii = pφ =
φ̇2

2
− V (φ) . (173)

If the kinetic energy is negligible with respect to the potential energy

V (φ)� φ̇2 , (174)

and if the energy density of the inflaton dominates over other forms of energy density (such as matter or
radiation), then we would have a de Sitter stage pφ = −ρφ and the Friedmann equation would read

H2 ' 8πGN
3

V (φ) . (175)

Thus, inflation is driven by the vacuum energy of the inflaton field.

The equation of motion of the inflaton field in an expanding universe is

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (176)
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where the prime refers to the derivative with respect to φ. When V (φ) � φ̇2 and φ̈ � 3Hφ̇, the scalar
field “slowly rolls” down its potential. Under the slow-roll conditions, the equation of motion reduces to

3Hφ̇ ' −V ′(φ) . (177)

It is straightforward to derive some important relations from the two equations in Eqs. (175) and (177)
and the slow-roll condition in Eq. (174). From Eqs. (175) and (177) one can show that

Ḣ = −4πGN φ̇ , (178)

while using Eqs. (174) and (177) one obtains

(V ′)2

V
� H2 , (179)

and finally using Eqs. (174), (175), (177) and (178) we arrive at

V ′′ � H2 . (180)

It is customary to define the “slow-roll parameters” ε, η as

ε ≡ 1

16πGN

(
V ′

V

)2

, (181)

η ≡ 1

8πGN

(
V ′′

V

)2

. (182)

in such a way that the conditions Eqs. (179)-(180) derived by the slow-roll regime can be simply recast
into ε � 1, |η| � 1. Furthermore, from the Friedmann equation (175) and Eq. (178), one can rewrite
the ε parameter as

ε = − Ḣ

H2 (183)

which allows one to express the second derivative of the scale factor in terms of ε

ä

a
= Ḣ +H2 = (1− ε)H2 > 0⇐⇒ ε < 1 . (184)

So the condition defining inflation ä > 0 is equivalent to ε < 1, and inflation ends when ε ' 1.

6.3 Consequences of inflation
Spectral Parameters. As the inflaton rolls down its potential energy, it undergoes two kind of fluctua-
tions: a classical one and a quantum one. During a Hubble time H−1, these fluctuations behave as

(δφ)cl ∼ φ̇H−1 , (185)

(δφ)qu ∼ H/(2π) . (186)

The so-called power spectrum of scalar pertubations is given by the ratio of these two kinds of fluctua-
tions at a momentum scale k equal to the horizon scale aH

P(k) =

[
(δφ)qu

(δφ)cl

]2

=

(
H

φ̇

)2(H
2π

)2
∣∣∣∣∣
k=aH

, (187)

and after some manipulations we arrive at the expression in terms of the slow-roll parameter ε

P(k) =
8G2

N

3

V

ε

∣∣∣∣∣
k=aH

(188)
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The spectral index ns is defined as

ns − 1 ≡ d lnP(k)

d ln k
(189)

which can be interpreted as the exponent of the k-dependence of the power spectrum P(k) ∝ kns−1. It
is easy to show that

d
d ln k

= − 1

8πGN

V ′

V

d
dφ

(190)

from which it follows that
dε

d ln k
= −2εη + 4ε2 (191)

and finally the spectral index in terms of the slow-roll parameters is

ns = 1− 6ε+ 4η . (192)

So, in slow-roll inflation where ε, |η| � 1, the spectral index is very close to 1, meaning that the spectrum
of scalar perturbations is nearly scale-independent.

Other kinds of perturbations are the so-scalled tensor perturbations (or gravity waves), whose
power spectrum turns out to be

Pg =
128πG2

N

3
V

∣∣∣∣∣
k=aH

, (193)

from which one can derive the important tensor-to-scalar ratio r

r =
Pg
P = 16ε� 1 , (194)

which is also predicted as very small in slow-roll inflation.

Evolution of Perturbations. The Fourier expansion of inflaton field fluctuations in k-modes can be
written as

δφ(x, t) =

∫
d3k

(2π)3 e
ik·xδφk(t) , (195)

and the k-modes obey the equation of motion

δφ̈k + 3Hδφ̇k +
k2

a2 δφk = 0 . (196)

This can be studied more easily in two extreme regimes, according to whether the modes are inside or
outside the horizong. The modes inside the horizon are characterized by a length scale λ ∝ (a/k) �
H−1, which is equivalent to the condition k � aH , so the equation of motion reads

δφ̈k +
k2

a2 δφk = 0 . (197)

This is a simple harmonic oscillator with δφk ∝ λ−1, so fluctuations are stretched during inflation.

The modes outside the horizon are characterized by a length scale λ ∝ (a/k) � H−1, which is
equivalent to k � aH , so the equation of motion reads

δφ̈k + 3Hδφ̇k = 0 . (198)

This is an oscillator with friction, and the corresponding fluctuations are constant (“frozen”).

So the fluctuations of the inflaton field grow exponentially during inflation, until their wavelength
exits the horizon; then fluctuations get frozen outside the horizon; after inflation ends, fluctuations re-
enter the horizon (see Figure 10 for a pictorial representation).
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Fig. 10: Evolution of the length scales (λ ∝ a) during and after inflation, in red. For comparison, in green it
is shown the evolution of the Hubble scale H−1, during inflation and after inflation (in the radiation-dominated
epoch).

CMB and Large-scale structures. Inflation can also be responsible for the physical processes giving
rise to the CMB anisotropies and the matter structures we observe in the universe today. In fact, pri-
mordial small quantum fluctuations of the energy density are excited during inflation and stretched to
cosmological scales; then they exit the horizon and get frozen; when they re-enter the horizon at some
matter- or radiation-dominated epoch, these fluctuations will start growing giving rise to the formation
of all the structures we observe.

Physically, the mechanism works because the fluctuations are connected to the metric perturba-
tions (gravity) via Einstein’s equations and gravity acts as a messenger: once a given wavelength re-enters
the horizon, gravity communicates the perturbations to baryons and photons. Therefore, the primordial
quantum fluctuations of the inflaton field during inflation provide the seeds of the CMB temperature
fluctuations and the large-scale strucutres observed today.

7 Baryogenesis
Our universe has a matter-antimatter asymmetry. We observe our universe to consist of matter, and
not antimatter in appreciable quantities. More precisely, the difference between the number density of
baryons and that of anti-baryons is expressed in terms of the baryon-to-photon ratio today

η ≡ nB − nB̄
nγ

∣∣∣∣
0

, (199)

(recall that the photon number density is nγ = 2ζ(3)T 3/π2). The accurate measurement of the matter-
antimatter asymmetry has been mainly provided by two independent and solid types of experiments.

– Big Bang Nucleosynthesis. We have already discussed in Section 3 that the simultaneous fit to
primordial element abundances in terms of the single free parameter η is a remarkable success of
standard cosmology and provides

5.2× 10−10 < η < 6.6× 10−10 (95% CL) . (200)

– Cosmic Microwave Background. The position and height of acoustic peaks in the power spectrum
of CMB temperature anisotropies, probing the baryon/photon fluid at the last scattering surface,
allow us to constrain the baryon energy density and therefore η [1]:

η = (6.13± 0.04)× 10−10 , (201)

The agreement of these two independent measurements is evident. Within the standard cosmological
model η is not predicted, it is a free parameter whose value is fixed by observations. Explaining this
number is challenging, and a definitive answer is still missing.
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If there was an era of cosmological inflation, any initial asymmetry would have been diluted by
the enormous entropy increase during such epoch; hence, at the end of inflation the universe looks
perfectly symmetric. Therefore, explaining the origin of the tiny (but non-zero) asymmetry we observe
today requires that some post-inflationary mechanism is at work. The mechanism by which a baryon
asymmetry is dynamically produced in the early universe is generically called baryogenesis.

In 1967 Sakharov pointed out three necessary conditions for a baryon asymmetry to be produced
in the early universe and observed today:

I. Baryon number violation.
This condition is quite obvious. Let us suppose to start from a baryon symmetric universeB(t0) =
0, at a certain t0. The quantum mechanical evolution of the operator B is B(t) ∝

∫ t
t0

[B,H]dt′,
where H is the hamiltonian of the system. If B is conserved, [B,H] = 0 and then B(t) = 0 at all
times.

II. C and CP violation.
If C were an exact symmetry, the probability of the process i → f would be equal to the one of
the conjugated process ī→ f̄ . Therefore the same amount of f and f̄ would be present in the final
state. But B is odd under C, so B(f̄) = −B(f) and so the net baryon number B would vanish.
Due to the CPT theorem, CP invariance is equivalent to T invariance and this implies that the
probability of the process i(ri,pi, si)→ f(rj ,pj , sj) is equal to that of the time-reversed process
f(rj ,−pj ,−sj)→ i(ri,−pi,−si), where ri,pi, si denote coordinate, momentum and spin of the
i-th particle, respectively. After performing an integration over all momenta and summation over
all spins, the total baryon asymmetry vanishes.

III. Departure from thermal equilibrium.
Let us consider a species ψ carrying baryon number and being in thermal equilibrium, and distin-
guish the situations when it does or does not have a chemical potential.
If ψ has zero chemical potential, the CPT invariance implies that particles and anti-particles have
the same mass and therefore nψ = nψ̄, which implies B ∝ nψ − nψ̄ = 0.
If ψ has chemical potential µψ and is in chemical and thermal equilibrium and takes part in the
B-violating process ψψ → ψ̄ψ̄ (first Sakharov condition), then the relation µψ = µψ̄ must hold.
But on the other hand it must be that µψ̄ = −µψ, implying that µψ must vanish and the previous
argument applies.

Are these conditions met in the Standard Model (SM)? No.

1. In the SM the baryon number symmetry is anomalous soB-violation is present at a quantum level.
The baryon (B) and lepton (L) numbers are exactly conserved at a classical level. But at a quantum
level, these symmetries fail to be exact, they are anomalous.

2. The only source of CP -violation within the SM is provided by the complex phase of the CKM
matrix. But it is too small to explain the observed baryon asymmetry because it is suppressed by
small quark masses.

3. The departure from thermal equilibrium could be attained during the electroweak phase transition.
Unfortunately, for the phase transition being strong enough to assure departure from equilibrium
the Higgs mass should be mh . 60 GeV, excluded by experimental data.

Therefore the baryon asymmetry is somehow linked to new physics beyond the SM, which is why it is
so interesting. Any successful model of baryogenesis needs some new ingredient to be added to the SM.
Because of our ignorance about what there is at energy scales well above TeV, one has to postulate some
physics at those scales, check that the three Sakharov conditions are fulfilled and compute the generated
baryon asymmetry.

Many models of baryogenesis have been proposed so far. Some of the most interesting and most
popular ones are
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– Out-of-equilibrium decay.
The out-of-equilibrium decay of a heavy boson provides a viable mechanism for successful baryo-
gensis. Such a heavy boson may be embedded in a Grand Unified Theory (GUT). Let us suppose
that a heavy scalar particle X of mass MX couples to the SM fermions f and has B-violating
decay modes.
At high temperatures T � MX , all particles are in thermal equilibrium and follow their equilib-
rium number densities. The reactions X(X̄) ↔ ff̄ are in equilibrium. The number density of
X, X̄ track the equilibrium number density, nX,X̄ = neq

X , so B = 0.
When the temperature lowers to T . MX , the lifetime of X is of the order of the age of the
universe Γ−1

X ∼ H−1, and the interactions mantaining the number densities of X, X̄ at their
equilibrium value are not so effective anymore, provided that the X is sufficiently heavy. So the
decays and inverse decays of X(X̄) ↔ ff̄ slow down and the X particles become overabundant
with respect to their equilibrium distribution; this is the departure from thermal equlibrium needed
for baryogenesis.
If the X decay violates baryon number B, a net baryon number is produced for each decay, which
would be erased by the opposite baryon asymmetry generated by the decay of X̄ . So we need
the condition that C, CP are violated in the decays, i.e. BR(X → ff̄) 6= BR(X̄ → ff̄). These
conditions ensure that a net baryon asymmetry is produced for each decay of X, X̄ .

– Baryogensis via Leptogenesis.
A lepton asymmetry is produced in the early universe by out-of-equilibrium decay of heavy right-
handed neutrinos. Such asymmetry is then reprocessed at the electroweak scale into a baryon
asymmetry (by sphalerons). The mechanism of producing a net lepton asymmetry is similar to the
one described for the out-of-equilibrium decay scenario. The appeal of leptogenesis is that it is
built in see-saw models motivated by explaining the light neutrino masses.

– Electroweak Baryogenesis.
It is a rather complex mechanism aiming at realizing baryogenesis at the electroweak phase transi-
tion, by adding new physics at the electroweak scauple that would allow the phase transition to be
“strong” enough to provide enough baryon asymmetry. The SM needs to be extended by new extra
bosonic degrees of freedom. The generic prediction is the presence of new CP-violating phases in
the theory, which may be probed by experiments looking for electron and neutron electric dipole
moments.

In conclusion, the cosmology/particle physics interplay has been and currently is a very successful and
fascinating liaison, which may hold for us even more exciting surprises in the near future.
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