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Introduction 

Extracting information useful to guide behavior from the raw retinal input is what the visual 

system was shaped for through the scope of evolution. In the complex ecological niches 

occupied by mammals, such information can clearly be quite abstract in nature: is there a 

predator in view? Or is it a conspecific? Where is it going? Is that food in reach?  

The answers to these biologically relevant questions are clearly very far apart from 

the low-level description of the momentary visual input provided by the pattern of 

photoreceptor activations in the retina of an animal. 

As the historical struggle of computer vision to succeed in confronting these problems 

demonstrates, an impressive amount of nontrivial computations is needed to infer answers to 

those questions through the process that we may call “high-level” vision1,2 (a term commonly 

used to stress the distance from the local-luminance-based descriptions of the input). 

Nonetheless, modern computer vision systems based on deep learning3 are starting to achieve 

and, in some cases surpass, human level performance in some well-circumscribed high-level 

vision tasks: from object recognition4 to face verification5 or image captioning6. These recent 

technological breakthroughs are renewing inside the broader scientific community the interest 

in understanding how biological brains manage to solve these same problems. The present 

moment is, indeed, particularly ripe for the study of high-level vision: for the first time we 

have access to computational models managing to replicate (at least to some extent) the 

sensory and cognitive functions we are interested in. Those artificial systems are starting to 

provide something akin to the “ideal observer models” of classical psychophysics, extending 

their reach to a wider range of interesting tasks (albeit relaxing any claim of full optimality). 

The huge potential for cross-fertilization existing between neuroscience and machine learning 

implied by the above-mentioned considerations make the experimental testing of 

computational theories about biological high-level sensory processing more relevant than 

ever.  

On the other hand, another revolution − this time of experimental nature − is currently 

transforming neuroscience. The development of optogenetics7 (to reversibly excite or inhibit 

neurons in vivo with sub millisecond precision), two-photon imaging with genetically 

encoded calcium indicators8 (to monitor large neural population across different brain areas) 

and transgenic animal lines expressing genetically encoded sensors or effectors with cell-type 

specificity9 are providing unprecedented ways to precisely monitor and perturb information 

flow both at the microcircuit level and across areas in awake behaving animals. Crucially, 

this expanded neuroscientific toolset is currently available in rodents and not readily 

applicable to primates.  

To tackle the challenge of understanding how the brain performs high-level vision it 

will be crucial to leverage on both the computational and the experimental advances 

described above. In order to do so, exploiting the superior experimental accessibility offered 

by rodent animal models will be of paramount importance10. Rats, in particular, have been 

found to rapidly learn and reliably perform many complex visual tasks, emerging as the most 

promising candidates for this role11,12. Until very recently however, primates have been the 

dominant animal model for high-level vision research. Such sustained scientific attention 
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focused on these animals trough decades led to a thorough anatomical and physiological 

characterization of the visual system of these species.  

The recurring theme of my PhD work is the comparison between rat and monkey 

visual cortex coding properties in the attempt to abstract some general principles of high-

level visual computation. More specifically, my work has been subdivided in 5 distinct 

subprojects. Each one will be described in a specific chapter of the thesis: 

 

I --- “Nonlinear processing of shape information in rat lateral extrastriate cortex”. In this 

chapter, the progression of neuronal tuning properties across the putative rat ventral stream 

homologue (V1→LM→LI→LL) is characterized. The result of such characterization is then 

compared with the monkey literature and with what observed “in silico” (both in a deep 

neural network and in a classical hierarchical object recognition model) providing new 

support to the ventral homology hypothesis. The paper describing this work has been 

published in Journal of Neuroscience. 

 

II --- “A template-matching algorithm for laminar identification of cortical recording sites    

from evoked response potentials”. In this chapter, the development and validation of an 

automated method to identify the laminar position of recording sites of a multichannel silicon 

probe is described. The proposed method is based on matching the waveform of recorded 

local field potentials (LFPs) in response to visual stimulation (VEP) to a reference template 

(deduced from a dataset of histologically annotated laminar VEP recordings). The paper 

describing this work is available on bioRxiv. 

 

III --- “Causal adaptation to visual input dynamics governs the development of complex 

cells in V1”. In this chapter, a causal test of the so called “unsupervised temporal learning” 

(UTL) hypothesis is provided. Such computational principle postulates a critical role for the 

temporal continuity of the visual-input experienced during early postnatal development in 

building-up position tolerance of V1 complex cells. The paper describing this work is 

available on bioRxiv. 

 

IV --- “Behavioral evidence of spontaneous motion integration in rats”. In this chapter, rats 

are shown to be able to spontaneously perceive global motion of plaids (i.e. stimuli composed 

of multiple oriented elements). To this aim, a motion direction discrimination priming task 

was designed. This behavioral paradigm enables investigating the spontaneous (i.e. non-

rewarded) representation of grating and plaid stimuli. This, in turn, allows to infer whether 

gratings and plaids are represented by the same neural populations and whether the 

organizing principle of the representation is the local or the global direction of the stimulus.  

 

V --- “Linear receptive field structure does not account for pattern motion responses in rat 

visual cortex”. In this chapter, the neural substrate of motion integration in rat visual cortex 

is investigated. Neurons recorded in V1, LM and RL areas are classified as global (i.e. 

“pattern”) or local (i.e. “component”) direction selective cells and their linear receptive fields 

(RFs) are reconstructed. This enables testing whether observed global-motion sensitive 
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responses observed throughout rodent visual cortex are predictable on the basis of their linear 

RFs or whether they originate from some (less trivial) nonlinear integration mechanism. 

In the next introductory sections, we will briefly review the structure and function of 

monkey “ventral” and “dorsal” streams for shape and motion processing. This is, in fact, the 

necessary background to frame the comparison between primates and rats. Next, we will 

introduce the importance of studying postnatal developmental processes to attain a 

satisfactory understanding of sensory systems, by uncovering the learning principles 

underlying their function. Lastly, we will briefly review the functional and anatomical 

organization of the rodent visual system. 

Ventral and Dorsal streams 

The first lines of evidence that primate visual cortex contains two distinguishable processing 

streams was based on contrasting the effects of inferior temporal (IT) and posterior parietal 

cortex (PPC) lesions in monkeys. IT lesions caused severe deficits in visual discrimination 

tasks, without affecting animal performance in visuospatial tasks (such as visually guided 

reaching or judging which of two objects lies closer to a visual landmark). On the other hand, 

PPC lesions spared visual discrimination capabilities while causing instead severe deficits in 

visuospatial performance. To explain such findings, Ungerleider and Mishkin13 proposed the 

existence of two segregated streams of processing (see Fig. 1).  

The first of those streams is the “occipitotemporal” or “ventral” one, traveling into the 

temporal lobe from V1 and V2 to V4 and finally reaching inferotemporal (IT) cortex, which 

is thought to mediate the visual recognition of objects (i.e. encoding information about 

“what” an object is). The second stream is the “occipitoparietal” or “dorsal” one, starting 

from V1 to reach MT (middle-temporal), MST (medial superior temporal) as well as LIP 

(lateral intraparietal) and VIP (ventral intraparietal) cortex, which is thought to mediate the 
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perception of spatial relationships among objects as well as visual guidance towards them 

(i.e. encoding information about “where” an object is).  

Through almost three decades of research, thanks to the support of many functional 

studies carried out with different techniques (from single unit electrophysiology to fMRI and 

psychophysics), such ideas took hold as the dominant theory of primate visual system 

organization14. The consolidation of this research field was accompanied by a revision of the 

role of the dorsal pathway towards supporting motor control rather than spatial 

representations per se15,16. 

More recently, however, researchers started to draw a more nuanced picture of the 

functional specialization of monkey extrastriate areas. In the dorsal stream a finer subdivision 

between a purely visual motion processing dorsolateral pathway (including MT and MST) 

and a dorsomedial visuomotor one (including LIP and VIP) has been proposed. The first 

pathway would be devoted to optic flow analyses (e.g. to discriminate object from self-

motion or recognize specific motion patterns), while the second one would be involved in 

monitoring the spatial location of objects to guide actions17 (e.g. reaching and grasping). The 

view of the ventral stream became more nuanced too with the realization that spatial 

properties of visual objects, including their position, size, and pose, can be reliably decoded 

from ventral cortex18. 

Recent years also saw the research community cautioning against an exaggeratedly 

rigid distinction among visual streams19 (and one to one mapping areas and function/stream 

assignment). For instance, the existence of direct connections from MT/MST to V4/IT is now 

known to play an important role in underlying the extraction of shape information from 

motion and depth cues20,21, effectively violating a rigid ventral vs. dorsal segregation22. 

Consistently, a view of ventral and dorsal areas as parts of a larger network of areas devoted 

to build physical object representations as building blocks of causal generative models of the 



5 
 

environment (i.e. models of how objects move, interact among them and with the agent: 

something key for planning complex behavior) has been proposed23. 

Despite all those caveats the ventral vs. dorsal distinction remains one of the most 

important conceptualizations in cognitive neuroscience. This is why many efforts are being 

devoted to map that subdivision to the rodent brain in order to improve our understanding of 

extrastriate areas of these animals24.  

Shape processing 

Arguably, the most widely studied high-level ventral visual function is object recognition. 

Perceiving the shape of objects we encounter and recognizing their identity is usually such an 

effortless and automatic process for us that we may be intuitively tempted to underestimate 

its computational difficulty. Each object we encounter throughout the course of our life will 

produce, in every different moment, an almost unique projection on our retina due to 

differences in the many nuisance variables influencing the specific pattern of light projected 

on our photoreceptor arrays. Crucially, changing nuisance variables such as object pose, 

position, size, illumination, presence of clutter, etc… does not change the identity of the 

object itself, while heavily affecting its retinal representation. Becoming tolerant to those 

identity-preserving transformations of the appearance of objects (i.e. changes of the nuisance 

variables) is the very hard challenge that our visual system has to solve to achieve accurate 

and robust visual object recognition25.  
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A solution to such computational challenge, also known as the “invariance problem”, 

has been shown to exist in monkey IT. In fact, neuronal representations in this area (probed 

via extracellular population recordings) are able to support transformation tolerant linear 

decoding of object identity (thus making computationally trivial to perform invariant object 

recognition on them). This property of IT representation is thought to be achieved through a 

progressive reformatting of visual representations throughout the ventral stream with a 

progressive untangling of the manifolds spanned by different objects in the neural population 

space as they undergo identity preserving transformations26 (see Fig. 2). The core of this 

process is thought to be implemented, in the primate brain, via a cascade of largely 

feedforward canonical computations (but see DiCarlo recent work on the role of recurrency27 

in object recognition).  

More specifically, the main hypothesis about how representations of objects become 

more and more explicit (i.e. object identity gets more and more linearly decodable) as they 

get transformed along the ventral stream, is through a hierarchical stacking of AND-like 

selectivity-building and OR-like tolerance-building operations. Such idea has been inspired 
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by the seminal work by Hubel and Wiesel on simple and complex cells28. The transfer 

function of those two functional cell types, in fact, have been conceptualized as computing a 

logical AND (i.e. combination of simple feature detectors into more complex feature 

detectors to get new selectivity) or logical OR (i.e., max pooling to get new position 

tolerance) between their afferents (see Fig. 3).   

Historically, influential models such as the Neocognitron29 or HMAX30 provided a 

first proof of the effectiveness of such architectural motif in explaining many experimentally 

observed phenomena in object perception. Later, these same ideas also led to the 

development of modern deep neural networks that for the first time successfully tackled the 

challenge of invariant object recognition in real world setting3. Their success corroborated 

even further the hypothesis that the principles outlined above may indeed represent the key 

computational building blocks of ventral computations. 

The first subproject of my PhD work has been devoted to the search for new evidence 

that such principles are implemented in rat lateral extrastriate cortex, thereby strengthening 

the functional homology between such hierarchy of areas and the monkey ventral stream. 

Motion processing 

The landmark, purely-perceptual high-level dorsal function is arguably visual motion 

processing. One of the first steps entailed by it is the solution to what is known in the 

psychophysics literature as the “aperture problem”. Such problem consists in the fact that 

local motion direction measurements are insufficient on their own to unambiguously specify 

the global direction of motion of a visual object causing them. In order to do so, at least two 

local directions have to be taken into account in a process known as “motion integration”. 

The need for such computation stems from the fact that when looking at the visual 

scene trough a small aperture (such as the small RF of a V1 neuron) we easily end up 

observing only straight edges moving through it (i.e. small details of the contours of the 

visual objects that are present in the scene). The critical consideration to understand the 

aperture problem is that, in such a situation, the visual pattern visible through the aperture is 

invariant to translation in directions parallel to the edge. This causes the parallel component 

of its motion to be undetectable, effectively enabling only the perception of the edge-

perpendicular component of the object global velocity. Only combining the information from 

at least two aperture-limited samples of local motion (of different edges) it is possible to 

determine the object global velocity causing them (ideally solving the system of two 

equations describing the projection of global velocity on the edge orthogonal vectors). 

A neurally plausible implementation of such computation can be devised moving to 

the frequency space. The starting point for understanding this is the appreciation of the fact 

that the spatiotemporal Fourier spectrum of a moving edge has all its power concentrated in 

two blobs located symmetrically around the origin, and that the one of a rigid, non-rotating, 

object moving in a given direction is bound to lie on a plane in that same space. Thinking to 

the problem of building a global velocity sensitive detector in this space, the possibility of 

doing so by combining the output of many edge detectors to fully tile the object velocity 

plane becomes intuitive. This is exactly the intuition behind the influential model proposed 
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by Simoncelli & Heeger31  to get global (i.e. 2D) motion detectors hierarchically combining 

local ones (i.e. 1D). This is illustrated in Fig. 4. 

Pioneering studies on cats and primates in the dorsal area MT discovered neurons 

capable of such kind of integration32 (dubbed “pattern cells”) and neurons signalling local 

direction only (dubbed “component cells”). As such kind of experimental investigations on 

the neural substrate of motion integration progressed through the years, Simoncelli & 

Heeger31 model emerged as the most successful account of the computation underlying 

pattern selectivity33,34. 

Investigating behaviourally the ability of rats to integrate motion as well as the 

presence and mechanism of pattern and component cells in their visual cortex was the aim of 

the fourth and fifth subprojects, respectively, included in my PhD work. 

Learning to see  

Since the pioneering work of Attneave and Barlow35,36, generations of neuroscientists 

were inspired by the idea that the tuning of sensory neurons is determined by an adaptation to 

the statistics of the input they need to encode. Such process should also happen in an 
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unsupervised manner, requiring only continuous, passive, exposure to the spatiotemporal 

regularities of natural sensory environment. Over the years, such intuition gained momentum, 

increasing its popularity and gaining strong support within the computational neuroscience 

field. A crucial turning point was reached with the now classic work by Olshausen and 

Field37  on unsupervised learning based on maximizing the sparseness of the representation. 

The sparseness of a neural code can be intuitively defined in terms of coding density (i.e. the 

fraction of neurons that are strongly active at any one time): the lower the density, the higher 

the sparseness. Olshausen and Field demonstrated that adapting the selectivity of idealized 

units to produce the sparsest possible code for natural images (while maximally preserving 

the image information) makes their visual selectivity remarkably similar to that of V1 simple 

cells (see Fig. 5).  

Such a theoretical breakthrough prompted many efforts directed at showing that 

unsupervised learning can also account for the emergence of the other key ingredient of high-

level vision: invariance. Most notably, another unsupervised learning principle known as 

slowness maximization38 became the most prominent computational account of how visual 

neurons can learn invariance39. Intuitively, slowness quantifies how slowly in time the 

activation of a neuron changes in response to a time-varying input (see Fig. 6). Wiskott and 

Sejnowski39 demonstrated that optimizing the input-output function of artificial units, to 

make their output change as slowly as possible in response to movies of transforming visual 
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objects, produces units that are able to support transformation tolerant decoding of object 

identity. This can be thought as a way to exploit the temporal structure of the input (i.e. the 

tendency of different object views to occur nearby in time) to factor out high-level visual 

attributes (such as object identity) from other faster-varying, lower-level ones (such as local 

luminance patterns).  

On the experimental side, decades of research have documented the existence of so 

called “critical periods”40,41 during the early postnatal life of mammals in which synaptic 

plasticity is boosted and the connectivity and function of sensory circuits are highly sensitive 

to manipulation of the input. Classically, this has been largely studied in the context of ocular 

dominance plasticity, with the monocular deprivation paradigm: closing an eye early in life 

makes it less effective in driving V1 cells whereas the nondeprived eye gains influence. As 

long as the cortex remains in a highly plastic state it is possible to reverse this condition by 

switching the identity of the deprived eye. However, with time, the effectiveness of such 

manipulations tends to decrease as the critical period closes. Decades of research on this topic 

demonstrated that the opening and closure of the critical period is controlled by the 

maturation of intracortical GABAergic inhibition42,43 and modulated by neurotrophins44 

expression levels as well as by the onset of visual experience (see Fig. 7). Crucially, such 

early susceptibility to the structure of sensory environment is exactly what is needed to 
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implement the above-mentioned adaptations to the statistics of sensory input. Throughout the 

years, many researchers started targeting more subtle coding properties than ocular 

dominance (such as orientation and direction selectivity and surround-suppression). Such 

efforts convincingly demonstrated the susceptibility of a very wide array of stimulus coding 

properties to the early postnatal input45–50.  

Only recently, however, awareness is rising about the importance of studying 

experience-dependent development of brain function, not only as a topic of great scientific 

interest per se, but also as a key avenue to reach a better understanding of adult brain 

function. A convincing argument supporting such point of view has been laid out in a recent 

perspective paper by Richards et al.51. The authors argue that it may result easier to 

understand the few lines of code required to train and run a deep neural network capable of 

recognizing images rather than the resulting properties of its units. Tuning or connectivity 

properties of single units in those networks, in fact, often appear not to be easily interpretable. 

On the other hand, the kind of “understanding” of a neural network that is given in terms of 

learning objectives and rules (i.e. in terms of everything that is needed to specify how the 

network will self-organize during training, adapting to the specific training set that is 

provided to it) may be easier to attain than a mechanistic understanding based on single 

neuron properties. The success of this “learning principles approach” in the artificial neural 

network field is a strong encouragement to a greater focus on learning and development for 

the study of brain function. 

Thanks to their relative ease of handling and their very fast lifecycle, rats are the ideal 

animal models for implementing a research program aiming at investigating the 
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developmental learning principles underlying adult sensory information processing. The third 

subproject of my PhD project was indeed aimed at exploiting the strengths of the rat model to 

take a first step in this direction. More specifically, to provide a causal test to the idea 

(inherent to the slowness maximization hypothesis) that the temporal structure of visual input 

experienced during the postnatal period instructs the development of V1 complex cells 

position tolerance. 

The rat visual system 

Rodents, way before becoming widespread in visual neuroscience research, have been the 

workhorse models of physiological and biomedical research for more than a century. One of 

the main reasons behind their popularity in biological research is that they are not so distant 

from us on the phylogenetic tree. Our common ancestor with rodents, in fact, dates back to 75 

million years ago: 10 million years after the ancestor of other higher mammals (e.g., 

carnivores), and only 12 million years before the common ancestor of all primates.  

This explains why, despite many evident morphological differences, rodents share a 

general common plan for brain development and organization with us, human primates52. 

Even if the rodent cortex is not folded and shows clear differences in its laminar structure 

with respect to the monkey one, its parcellation in functionally and anatomically distinct 

areas still shows a clear anatomical and functional homology with the primate one53. 

Obviously, however, it is not always easy (and likely, sometimes not possible) to find a 

precise one-to-one mapping between cortical areas of rodents and monkeys. This is 

particularly true for smaller and more specialized secondary sensory cortices, where 

structural and functional divergence may strongly reflect the different behavioral demands 

faced by each species in their own peculiar ecological niche. Despite this, attempting to 
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establish such correspondence can be a very productive scientific endeavour with the 

potential of highlighting the conserved core computational mechanisms underlying sensory 

processing while, at the same time, establishing a new advantageous model system for their 

study. In fact, besides their amenability to the ever-growing array of cutting-edge 

experimental techniques mentioned previously, rodents are much easier to house and handle 

with respect to non-human primates. Their reduced infrastructural burden translates into a 

critical scientific advantage since it allows experimenters to reach larger number of subjects 

getting to higher statistical powers in testing their hypotheses. Furthermore, bigger subject 

numbers coupled to their smaller physical dimensions fostered, in recent years, a proliferation 

of different rodent behavioral training paradigms and apparata pushing towards higher 

automation and a reduction of trainer manual intervention in the process. This is very 

promising for increasing data yield and reproducibility54. Moreover, as already mentioned, 

their very fast lifecycle (with a 21 days pregnancy duration and adulthood reached at 

postnatal day 60) makes rats perfect for developmental studies that would require years to be 

carried out in primates. 

As crepuscular animals, rodents have often been presumed to have poor vision and 

weak visually driven behavior. It is this widespread belief that limited for years their adoption 

as visual neuroscience models. However, even if their spatial resolution is indeed ~50 times 

lower than that of primates55, their natural behavior is frequently guided or modulated by 

vision. It has been now widely established that rodents strongly rely on vision to navigate 

their environment56, anchoring their spatial representations to visual landmarks57. Other 

recent evidence shows how vision drives both defensive58 and prey capture behavior in 

mice59 and how rats can use vision as an emotional communication channel with 

conspecifics60. On a more fundamental level, the spontaneous ability of rats to solve invariant 

object recognition, (i.e. to keep recognizing visual objects even in spite of identity-preserving 

transformations such as pose, scale and position) has been thoroughly demonstrated61–63.  

On the other hand, a direct demonstration that rat spontaneously solve the aperture 

problem (i.e. integrate local motion cues to perceive object global motion direction) is still 

lacking. Some studies demonstrated the ability of mice to discriminate the direction of 

random dot kinematograms64,65 by relying on V166. Such behavioral evidences however, 

while requiring the spatial integration of local motion signals to happen in the brain of trained 

animals, do not imply the existence of integrated motion representation in the visual cortex of 

naïve animals. The fourth subproject described in this thesis was aimed at filling this gap. 

Let’s now briefly review the anatomy and function of the rat visual system.  

Rodents lack a fovea67: centro-peripheral retinal ganglion cell (RGC) density ratio in 

rats is 0.2 (from 3000 in the area centralis to 600 cells/mm2 in the periphery) against factors 

of the order of approximately 0.001 characterizing foveated monkey retinas68. The lack of a 

proper fovea makes exploratory fixation likely not useful for rodents (i.e. gaze shifts ought to 

bring the image of an object of interest into the higher resolution-region of the visual field). 

However, studies characterizing the dynamics of rat eye movements in head-fixed rats 

reported the presence of spontaneous stereotypic saccades, distributed mainly along the 

horizontal axis, with little vertical components69,70. In freely moving condition on the other 

hand, the dynamics of their eye movements are complex, deconjugate, often asymmetrical, 

and frequently driven by vestibulo-ocular reflexes71. Differently from primates and other 
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mammals, rodents are also unable to accommodate72 (i.e. perform adjustment of the eye 

optics to keep an object in focus on the retina as its distance from the eye varies). However, 

in high pupil constriction state, rat’s eye shows a considerable depth of focus73, way 

exceeding human one. Such property enables them to form an acceptably sharp image on the 

retina over a span of tens of cm without needing accommodation.  

Consistently with their natural non-diurnal lifestyle their retina is composed at 99% 

by rods74. The remaining 1% of photoreceptors are cones, out of which 93% show a peak in 

absorption spectrum at 510 nm (blue-green) and 7% at 360 nm (ultraviolet)75. In this respect 

it’s interesting to note that, due to the above mentioned color sensitivities of cones in the rat 

retina, the “white” emitted by monitors (i.e. a combination of red, green and blue light 

adjusted for human perception) would likely not appear as white to rats76.  

Due to the lateral placement of their eyes on their head, rats possess a very wide-angle 

field of view characterized by a small frontal region of binocular overlap measuring 40° on 

the horizontal plane to 60° degrees on the vertical one71 (see Fig. 9).  

Finally, as already mentioned, rats are very low acuity animals: their vision have 50 

folds poorer spatial resolution than human one. While human visual acuity is close to 50 

cycle/°, rats acuity varies from 0.5 to 1.5 cycle/° depending on their strain77–79 and according 

to different behavioral and electrophysiological measurements (see Fig. 10).  

When the light pattern of an image travels through the eye of a rat and finally gets 

absorbed by photoreceptor cells in the retina, visual information is encoded in the pattern of 

electrical activity of retinal circuits. Here interneurons like horizontal, bipolar and amacrine 
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cells take part in shaping the output encoded by the RGCs. In the mouse retina 33 different 

distinct subtypes of RGC have been identified80 each coding for distinct spatiotemporal 

features in the input image (including oriented and directional ones). Such reformatted visual 

information leaves the eye travelling through the optic nerve towards more than 50 retino-

recipient subcortical brain areas81.  

Among those, the key one in transmitting information to primary visual cortex (V1) 

(and therefore for visual perception) is the dorsolateral geniculate nucleus (dLGN) of the 

thalamus. Given the above-mentioned functional diversity of mouse RGCs one could expect 

a similarly rich functional representation in mouse dLGN. In contrast, the majority of mouse 

dLGN neurons has been reported to have non-oriented, circularly symmetric, RFs82,83 and to 

perform linear spatial summation84,85, similar to what can be observed in primates (i.e. 

conveying a representation that could still be conceptualized as a “pixel-based” one). In 

mouse, however, a dedicated pathway (anatomically segregated from the classical retino-

geniculo-cortical one carrying non-direction-tuned information to L4 of V1) has been 

discovered relaying some directional and orientation selective signals from retina directly to 

V186. Even if subcortical visual pathways in rats are much less well characterized than those 

of mice87 to which we referred above, similar organizational principles likely hold true for 

this closely related species.  

As final subcortical information processing step, dLGN representations are relayed to 

the primary visual cortex trough the optic radiation. Primary visual area (V1) is the largest 

and most studied visual area in rodents (and more generally in mammals). Rat V1 occupies 

about 10% of the total neocortex53 covering the most posterior surface of both hemispheres. It 

spans a length of about 5mm in the anteroposterior (AP) direction (from AP -4.4 mm to AP -

9.36 mm) and it reaches a maximal mediolateral (ML) width of about 4 mm width at bregma 

-7.92 mm88 (where it spans from ML ~1.4 mm to ML ~5.8 mm). The most medial part of it is 
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often called monocular V1 (V1M) since it receives thalamic input originating from the 

contralateral eye only (and therefore contains monocular neurons only). The most lateral part 

is on the other hand often called binocular V1 (V1B) since it receives thalamic input 

originating from both eyes (and therefore contains binocular neurons). As in other mammals 

V1 displays a retinotopic organization: visual space is smoothly mapped over the cortical 

surface (i.e. physically close neurons in it will respond to stimuli at adjacent positions in the 

visual field). In contrast with what has been found in other species such as monkey and cats, 

however, no clear orientation columns have been found in rat89 and mouse90 visual cortex. 

Interestingly, a more recent study however reported a significant degree of spatial clustering 

of iso-oriented neurons suggesting such organization to be a degraded version of the one 

observable in other mammals, hinting at a possible common origin91. 

V1 (as any cerebral cortex more in general) is well known to be structured in a 

complex, laminar (i.e. subdivided in layers) microcircuit where different neuron types give 

specific contributions to the computation implemented by the tissue. The canonical view92 is 

that thalamic afferents synapse mainly on L4 neurons and in L5-L6 border (even if, to lesser 

extent, in all cortical layers). L4 principal cells project in a mainly feedforward way to all 

layers, but most strongly to L2/3, receiving little feedback in return. L2/3 principal cells on 

the other hand project locally to L5 as well as distal cortical targets (contralateral cortex and 

high-order cortices). L5 in turn contains two distinct principal cell classes: “intratelencefalic 

neurons” projecting locally back to L2/3 and distally to the high-order (and contralateral) 

cortex, as well as “pyramidal tract neurons” exhibiting a connectivity pattern similar to the 

inverse of L4 principal cells (i.e. receiving input from multiple cortical layers and projecting 

to brain stem and spinal cord but also to high-order thalamus). L6 on the other hand receives 

input from all other layers and sends projections targeting primary sensory thalamus and L4 

inhibitory interneurons (i.e. “corticothalamic neurons”; likely with gain control functions) as 

well as long-range cortical targets (i.e. “corticocortical neurons”). Lastly L1 does not contain 

principal cell bodies but rather apical dendritic tufts of L5 and L2/3 neurons onto which 

axons from high-order cortex and thalamus synapse (carrying high order feedback and 

contextual modulation signals) (see Fig. 11). 

Given the rich laminar structure of the cortex it is easy to understand how helpful it is 

to know the laminar location of channels one is recording from. Usually this is attained by 

means of time-consuming histological analyses. The second subproject described in this 

thesis originated from the will to ease such burden. In order to do so we developed an 

automated tool for extracting information about the laminar location of a multichannel silicon 

probe from the shape of the local field potential recorded there in response to sensory 

stimulation. 

First investigators who carried out extracellular recordings in rat V1 reported neurons 

responding to spots, bars, edges and flashes of light with an average RF size of  about 15°93. 

Others assessed that most of V1 neurons were at least broadly tuned for orientation, reporting 

that about 70% of the orientation-selective cells display an orientation tuning bandwidth 

lesser then 60°. On the other hand, the fraction of direction selective units was less than half 

of that reported for orientation79. In this early stage of the exploration of rat V1 functional 

properties, single neuron’s firing temporal modulation in response to drifting gratings was 

also analysed. This enabled to evidence the existence of distinct simple and complex 
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functional cell classes in rat V1 similar to the ones observed in other mammals such as cats 

and monkeys79,94.  Such latter report was critical in motivating my PhD work since, as 

already mentioned, simple and complex cells are great testbed for understanding the 

principles underlying high-level vision.  

Simple cells were classically characterized since the pioneering work by Hubel & 

Wiesel28 as position and orientation selective edge detector units responding to a light bar of 

a defined orientation at a given position. Complex cells, on the other end, where defined as 

orientation selective but, at least locally, position invariant edge detectors, insensitive to 

small changes in position of their preferred bar.  

The identity of an unknown neuron can therefore be assessed with drifting gratings by 

quantifying how locked the neuronal response is to the phase of the stimulus. Simple cells, 

performing linear spatial summation, will exhibit phase-sensitive behavior, responding 

strongly only when a white stripe of the grating is correctly overlapping their receptive field. 

Complex cells on the other hand, performing non-linear spatial summation, will show a 

uniform phase-insensitive response (see Fig. 12). 

In hypothesizing a circuit mechanism to explain their response properties Hubel & 

Wiesel originally suggested those two cell types to represent two consecutive (i.e. 

hierarchical) stages of processing. Complex cells where deemed to build their response 
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properties by pooling over many iso-oriented but slightly displaced simple afferents. Simple 

cells on the other hand were thought to build their oriented receptive fields by integrating 

input from many aligned center-surround thalamic afferents.  

The ’80s and ’90s saw different studies in cats directed to validate those circuits 

models95. This was earlier achieved for L4 simple cells96 whereas for complex cells, 

validation of the hierarchical anatomical model remained debated for longer. The consensus 

model that emerged throughout the years included both thalamic-recipient L4 “first-

order” complex cells (built by pooling directly over thalamic afferents of reversed RF 

contrast polarity) as well as L2/3 “second-order” L4-simple-cells-recipient ones95 (supported 

by a circuit similar to the one proposed by Hubel & Wiesel − see Fig. 13).  

Those ideas however, originated mainly from cat neurophysiology, have never been 

put to the test in rodents. Some studies97,98 that investigated the laminar distributions of 

complex cells in adult mouse however reported a strong predominance of complex cells in L5 

of mouse V1 and a predominance of simple cells not only in L4 and L6 (as reported in other 

mammals99), but also in L2/3. This is suggestive of the possibility that rodents may display a 

shallower laminar processing hierarchy where the first “complexification” (i.e. the built up of 
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second-order complex cells by integrating simple cells input) of RFs happens later (i.e. in L5) 

than in cats and primates. 

In rodents V1 is bordered by a collection of more than 10 high-order visual areas24 

(HVA). However, determining a parcellation of visual cortex in distinct areas is not a 

straightforward process that saw many changes of naming conventions across the years. 

Visual areas can be defined, in fact, according to a convergence of multiple functional and 

anatomical features. Nowadays, existence of a full (even if biased) retinotopic representation 

of the visual field together with a distinct projection pattern is the most commonly accepted 

standard to this aim. Whereas V1 is characterized by its robust retinogeniculate input100 as 

well as landmark cytoarchitectural features (from which the name “striate” cortex), 

extrastriate areas lack them (from which the name “extrastriate” cortices). On the other hand, 

all extrastriate areas receive visual input from two main pathways: an intracortical one (i.e. 

collecting input from V1 and the other HVAs) and the so called “extrageniculate” one, 

connecting them to the lateral posterior nucleus (LP) (receiving input from high-order visual 

thalamus, in turn connected to the superior colliculus). Since the first pioneering 

electrophysiological explorations of the rodent visual cortex, retinotopic mapping has been an 

invaluable tool to discriminate between HVAs93,101,102. In particular, Espinoza & Thomas first 

individuated six areas around V1 containing a full representation of visual space by 

performing serial electrode recordings93. An early tracer-injection study demonstrated that V1 

strongly projects to extrastriate areas in a retinotopically103 organized fashion whereas 

another one demonstrated that extrastriate areas send feedback connections back to V1 as 

well as to LP104. Still using tracers, Coogan and Burkhalter identified laminarly asymmetric 
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projection patterns between pairs of connected areas enabling to distinguish feedforward 

from feedback connectivity105. This allowed them, for the first time, to claim the existence of 

a hierarchy among extrastriate areas. More recently, in mice, the progress towards better 

definition of extrastriate areas borders was driven by the adoption of intrinsic imaging106,107 

and wide field calcium imaging108 techniques, leading to high resolution retinotopic mapping 

of visual cortex (yielding the identification of 16 distinct retinotopically-organized regions). 

At the same time anatomical characterization progressed too. One study in mice 

proposed, on the basis of chemoarchitectonic (i.e. m2AChR expression pattern), 

cytoarchitectonic (i.e. cell density) and projection criteria, lateromedial (LM) and 

anterolateral (AL) areas as the “gateways” of ventral and dorsal stream109 respectively (i.e. as 

input hubs of the two putative pathways). A year later, the same group refined this picture 

applying optical densitometry and anterograde tracing to quantitatively determine the 

projection strength of 10 main visual areas towards 39 cortical targets (including the other 

visual areas). Such a rich characterization of the visual cortical graph enabled to analyse its 

community structure, evidencing two clear subnetworks. The first one included 

medial/anterior extrastriate areas and was more strongly linked to parietal, motor, and limbic 

cortices, strongly resembling the dorsal stream in primates110. The second one included lateral 

extrastriate areas and was preferentially connected to temporal and parahippocampal cortices, 

strongly resembling the ventral stream in primates. This result provided a very solid 

anatomical ground for the existence of ventral and dorsal pathways homologues in the rodent 

cortex. 

Evidence for the existence of functionally distinct temporal “ventral-like” and parietal 

“dorsal-like” pathways in rodent extrastriate cortex came from lesion studies too. In a seminal 

work, Tees showed that damage to posterior temporal extrastriate areas (likely including LM, 

LI, LL, AL, and POR) induces in rats a deficit in the ability to detect change in the identity of 

an object located in a familiar location. On the other hand, damage to posterior parietal 

extrastriate areas (likely including RL, A, AM and PM) induces the opposite deficit: animals 

are unable to recognize the change of position of a familiar object while remaining able to 

detect change in its identity at a familiar location111. Other groups showed that damaging 

temporal and perirhinal cortex (downstream of LM and LI) destroys object recognition while 

sparing spatial memory112–115. Conversely other investigators reported impairment in 

visuospatial tasks after lesioning the posterior parietal cortex116,117. 

A few groups tried to characterize the functional specialization of extrastriate areas in 

order to bring some neurophysiological support to the proposed ventral/dorsal distinction. 

The approach adopted in first mice studies was grounded in the assumption of being able to 

distinguish dorsal and ventral areas from their spatial and temporal frequency preferences 

(high SF / low TF = ventral; low SF / high TF = dorsal). Such assumption makes sense in 

light of the differential routing of detailed & static vs. coarse & moving visual information 

that is known to take place across monkey streams118. This approach worked as expected for 

part of the putative dorsal stream (AL, RL and AM) that exhibited the SF and TF preferences 

compatible with optic flow processing areas. PM on the other hand, while firmly in the dorsal 

stream from anatomical grounds, displayed apparently more ventral characteristics, similarly 

to LI. LM broke the anatomical expectations too, preferring more “dorsal” SF and TF119,120. 

Even if showing an interesting degree of specialization and target-specific routing among 
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extrastriate areas121, the above-mentioned studies yielded an inconclusive and conflicted 

picture.  

More recently Smith et al.122 tracked the development of visual responsivity across 

mouse visual cortex from eye opening throughout the critical period. They found that the 

average visual response to gratings, observed via intrinsic imaging, shows a much higher 

correlation within the putative dorsal and ventral subnetworks rather than between them. 

They also reported two different and coherent developmental trajectories for those two 

clusters of areas. Whereas ventral areas are stable in their response magnitude during 

postnatal development, dorsal ones increase their responsivity after eye opening in an 

experience dependant way. The authors then looked at the single neuron level to one 

representative ventral area (LM) and a dorsal one (PM). Doing so, they observed a refinement 

of functional properties consisting in a RF size and orientation selectivity increase in the first 

but not in the second area. Those evidences corroborated the ventral/dorsal clustering 

suggested by anatomical studies. 
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Parallelly, some studies marked a significant step forward in the functional 

characterization of extrastriate areas by pushing the focus beyond mere spatial and temporal 

frequency preferences toward properly ventral and dorsal computations. On one hand 

Juavinett et al. used gratings and plaid stimuli to characterize the amount of pattern and 

component cells in mouse V1 and 4 extrastriate areas (LM, AL, RL and AM). Only RL and, 

somewhat surprisingly (given its anatomical inclusion in the ventral stream), LM displayed 

neurons capable of solving the aperture problem signalling global motion direction123 (i.e. 

pattern cells). The relatively high fraction of pattern units observed in RL, an area already 

implicated in visuotactile integration124, pushed it forward as the most promising candidate to 

be a rodent homolog of MT. On the other hand, two studies by Vermaercke et al.125 and 

Vinken et al.126 were the first to adopt richer stimulus sets (including 2D objects and natural 

movies respectively) and to target near- as well as far-lateral extrastriate cortex of rats. Those 

first rat studies found only weak and contrasted evidence for high level shape processing 

going on in these lateral areas. A few years later, however, Tafazoli et al., adopting an even 

richer (3D objects undergoing size, position, luminance and both in-plane and in-depth 

rotations) stimulus set and more advanced analytical tools, managed to get sharper results. 

They directly demonstrated an increase in the ability of both single neurons and neuronal 

populations to support discrimination of visual objects under identity-preserving 

transformations across the V1→LM→LI→LL hierarchy127. Their result pushed forward LI 

and LL as candidate rodent homologues of the highest stages of the primate ventral stream 

(V4 and IT). Conversely, LM, in light of its mixed properties, could be reasonably mapped to 

primate area V2: one step beyond V1 in the processing hierarchy, routing information to both 

ventral and dorsal streams. 

The picture drawn by the studies discussed above, although far from being conclusive, 

offer a solid standpoint to devise new studies aiming at testing further the proposed ventral 

and dorsal homology of different extrastriate areas.  

Two of the subprojects described in this thesis were aimed at this target. The first one 

searching for the signatures of complex selectivity built up and position tolerance increase 

from V1 to LL, and a second one investigating the computational mechanism behind pattern 

responses in V1 and LM (first and fifth subproject). 

 

 

 

 

 

 

 

N.B. − references for papers cited in the Introduction (above) are listed together with those of 

Conclusion (from p. 140). 
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Chapter I 

 

 

Nonlinear processing of shape information in rat 

lateral extrastriate cortex 

 

 

 

 

 

 

Abstract 

In rodents, the progression of extrastriate areas located laterally to primary visual cortex (V1) 

has been assigned to a putative object-processing pathway (homologous to the primate 

ventral stream), based on anatomical considerations. Recently, our group found functional 

support for such attribution, by showing that this cortical progression is specialized for 

coding object identity despite view changes – the hallmark property of a ventral-like 

pathway. Here, we sought to clarify what computations are at the base of such specialization. 

To this aim, we performed multielectrode recordings from V1 and laterolateral area LL (at 

the apex of the putative ventral-like hierarchy) of male adult rats, during the presentation of 

drifting gratings and noise movies. We found that the extent to which neuronal responses 

were entrained to the phase of the gratings sharply dropped from V1 to LL, along with the 

quality of the receptive fields inferred through reverse correlation. Concomitantly, the 

tendency of neurons to respond to different oriented gratings increased, while the sharpness 

of orientation tuning declined. Critically, these trends are consistent with the nonlinear 

summation of visual inputs that is expected to take place along the ventral stream, according 

to the predictions of hierarchical models of ventral computations and a meta-analysis of the 

monkey literature. This suggests an intriguing homology between the mechanisms 

responsible for building up shape selectivity and transformation tolerance in the visual cortex 

of primates and rodents, reasserting the potential of the latter as models to investigate ventral 

stream functions at the circuitry level. 
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Introduction 

In rodents, primary visual cortex (V1) is bordered by at least 9 extrastriate visual areas, 

whose involvement in dorsal and ventral stream processing (i.e., extraction of, respectively, 

motion and shape information) has become the object of intense investigation. To date, most 

studies on this front have been inspired by the routing of visual information in the specialized 

channels that, in primates, selectively relay low temporal/high spatial frequency signals to the 

ventral stream only, and high temporal/low spatial frequency content to both the ventral and 

dorsal streams1,2. Inspired by a possible homology with primates, and by the existence of 

distinct V1 subpopulations making (receiving) target-specific projections with (from) 

downstream (upstream) areas3–6, several investigators have mapped mouse visual areas with 

drifting gratings of various spatiotemporal frequencies7–11, finding the signature of dorsal 

processing in medial and parietal extrastriate cortex, but only scant evidence of ventral 

computations in lateral extrastriate cortex. This is not surprising, because the increase in the 

complexity of shape selectivity and tolerance to image variation that is the signature of 

ventral processing cannot be routed from upstream areas, but has to emerge as the result of 

local, non-linear integration of presynaptic inputs12. 

To find the signature of such computations, our group recently investigated how 

visual objects are represented along rat lateral extrastriate areas13. These experiments showed 

that the neuronal populations along this progression become increasingly capable of 

supporting discrimination of visual objects despite transformations in their appearance (e.g., 

due to translation and scaling), with the largest transformation tolerance achieved in the most 

ventral region: the laterolateral area (LL). This trend closely matches the one found along the 

primate ventral pathway, thus supporting a central role of LL as the apex of the rat object-

processing hierarchy. At the same time, studying cortical representations of visual objects has 

the disadvantage of relying on idiosyncratic choices of the stimulus set (the object conditions) 

and rather complex interpretative approaches (e.g., information theory and machine learning). 

This makes the experimental design hard to standardize, and often leads to conclusions that 

are only partially overlapping across studies. The assignment of rat lateral extrastriate cortex 

to the ventral stream is no exception, as shown by the much weaker specialization for object 

processing found in this region by earlier studies14,15.  

This prompted us to verify the higher rank of LL, relative to V1, in ventral processing, 

by designing an experiment that exploited the benefits of parametric stimuli, but, rather than 

focusing on spatiotemporal frequency tuning, compared the two areas in terms of the 

nonlinearity of the stimulus-response relationship and the tendency of a neuron to be 

selective for different stimulus orientations. The first property was measured by the degree to 

which neuronal responses were entrained to the phase of drifting gratings, and by the extent 

to which the structure of the neuronal receptive fields could be inferred through reverse 

correlation. The second property was assessed by detecting the presence of multiple peaks in 

the orientation tuning curves and by measuring their sharpness.  
Critically, all these properties followed trends of variations that are consistent with the 

nonlinear summation of visual inputs that is expected to take place along the ventral stream, 

according to the predictions derived from: i) a meta-analysis of the monkey literature; ii) a 

conceptual model of hierarchical ventral computations16; and iii) a state-of-the-art deep 
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convolutional network trained for image classification17. As such, our results suggest a strong 

homology between the mechanisms that are responsible for supporting higher-order 

processing of shape information in rodents, primates and brain-inspired machine vision 

systems. 

 

Results 

We used 32-channel silicon probes to perform extracellular recordings from areas V1 and LL 

(Fig. 1A) of anaesthetized rats that were presented with drifting gratings of various 

orientations, spatial (SF) and temporal (TF) frequencies, as well as with 80 30 s-long movies 

of spatially and temporally correlated noise (see Materials and methods). A total of 168 and 

208 well-isolated single units were recorded, respectively, from V1 and LL. Among these 

neurons, 63% (i.e., 105 V1 units) and 50% (i.e., 104 LL units) were effectively and 

reproducibly driven by one or more of the grating stimuli across repeated presentations (see 

Materials and methods). Before the main stimulus presentation protocol, we also ran a 

receptive field mapping procedure (Materials and methods) to track the progression of the 

RFs recorded along a probe (Fig. 1B). Given that, in rodents, the polarity of the retinotopic 

map reverses at the boundary between each pair of adjacent visual cortical areas18, tracking 

the retinotopy of the RFs allowed a precise identification of the units that were recorded from 

LL. This was possible because, to reach LL, the probe was inserted obliquely (with an angle 

of 30º relative to the vertical to the surface of the skull), in such a way to first cross the lateral 

extrastriate areas that are medial to LL – i.e., the lateromedial (LM) and laterointermediate 

(LI) areas (Fig. 1A). In the case of V1 recordings, the probe was inserted either 

perpendicularly or with a variable angle (between 10º and 30º).  

For each recording session, we also performed the histological reconstruction of the 

probe insertion track, appositely coated with a fluorescent dye before the penetration (see Fig. 

1A). The outline of the probe, with the known location of the recording sites, was then 

superimposed to an image of the cortical section stained for Nissl substance, in such a way to 

infer the laminar location of the recorded single units (see Material and methods). In both 

areas, our recordings targeted the infragranular layers, because the tilted insertion that was 

necessary to track the retinotopy of lateral areas (allowing a reliable identification of LL − 

see previous paragraph), naturally brought the recording sites to land mostly in layer 5. 

Therefore, in order to allow a fair statistical comparison with LL, the probe was aimed at the 

infragranular laminae also in V1.  

Our histological analysis confirmed that the laminar sampling was highly consistent 

between the two areas, with the vast majority of neurons being recorded from layer 5 in both 

V1 and LL (Fig. 1C). Critically, this ensures that the tuning properties being compared in our 

study refer to nearly identical laminar populations. At the same time, the selective targeting 

of layer 5 does not undermine the generality of our comparison. In fact, previous 

investigation of V1 and lateral extrastriate areas showed that the same increase in the 

specialization for ventral processing along the areas’ progression was observable across the 

whole cortical thickness, and was equally sharp in superficial and deep layers13. 
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In both V1 and LL, neuronal responses to drifting gratings displayed a variety of 

tuning profiles that matched well the RF structures inferred through STA. This is illustrated 

in Fig. 2, which reports, for each of two representative V1 (A-B) and LL (C-D) neurons: i) 

the tuning curve as a function of the direction of the grating, when presented at the most 

effective SF and TF; ii) the modulation of the firing rate elicited by the grating at the 

preferred direction; and iii) the sequence of STA images showing the spatiotemporal 

evolution of the RF structure. Each panel also reports the values of the metrics used to 

quantify the tuning properties of the neurons (Materials and methods).  

Orientation and direction tuning were measured using the orientation and direction 

selectivity indexes (OSI and DSI), whose values range from 1 (maximal selectivity) to 0 (no 

selectivity), depending on the difference between the responses to the preferred 

orientation/direction and the orthogonal/opposite one. We also computed a bimodal 

selectivity index (BSI) to assess whether the tuning curve for orientation had multiple peaks. 

This index ranges from 0 (perfectly unimodal curve) to 1 (equal responsiveness to two non-
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adjacent orientations), and can be taken as a measure of complexity of tuning, with large BSI 

indicating selectivity for multiple oriented features19,20.  

Finally, we computed a modulation index (MI) to quantify the extent to which the 

firing rate of a neuron was entrained to the phase of the gratings21–23, with MI > 3 indicating 

responses that were strongly phase-locked to the stimulus temporal frequency. As for the 
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spatiotemporal filter estimated via STA, we used it as the linear stage of a Linear-Nonlinear 

(LN) model of stimulus-response mapping24,25 to predict the tuning curve of the neuron over 

the direction axis and the time course of its response to the preferred grating (in both cases, 

prediction accuracy was quantified as the fraction of response variance that was explained by 

the model).  

Fig. 2A shows an example V1 neuron with sharp orientation tuning, good direction 

selectivity, and a response that was strongly modulated at the temporal frequency (4 Hz) of 

the preferred grating (blue curves/dots). These properties match those of a “simple cell”26, 

detecting the presence of an oriented edge at a specific visual field location – hence, the 

modulation of the firing rate (produced by the phasic alternation of light and dark oriented 

stripes, while the preferred grating swept across the neuron’s RF). Such position-dependent 

neuronal firing suggests that the response of the neuron to a visual pattern can be 

approximated as the sum of its responses to the individual constituent elements (the “pixels”) 

of the stimulus. Accordingly, the STA-reconstructed RF (Fig. 2A.iii) had a Gabor-like, 

double-lobed appearance, with an orientation matching the one corresponding to the peak of 

the tuning curve (Fig. 2A.i). When used as a filter in a LN model, the STA-based RF 

accurately predicted the tuning of the neuron over the direction and time axes (Fig. 2A.i and 

ii, respectively; black curves), thus confirming the linearity of the stimulus-response 

relationship.  

By contrast, the example unit shown in Fig. 2B, while still being selective for a single 

orientation, displayed a highly non-linear behavior, which is typical of the class of neurons 

known as “complex cells”26. This is shown by the lack of modulation of the response to the 

preferred grating (Fig. 2B.ii), by the poorly defined spatiotemporal structure of the STA-

based RF (Fig. 2B.iii), and by the failure of the latter to account for the tuning and time-

modulation of the response (Fig. 2B.i-ii; compare blue and black curves).  

 Interestingly, simple-like and complex-like units were also found in area LL. For 

instance, Fig. 2C shows an LL neuron with a simple-like behavior, as indicated by the phase 

modulation of its response (Fig. 2C.ii; orange dots and curve), which was predicted with 

reasonable accuracy (black line) by the STA-reconstructed RF. This is consistent with the 

well-defined spatiotemporal structure of the RF (Fig. 2C.iii), which, however, was not able to 

explain as much variance of the direction-tuning curve (Fig. 2C.i; black vs. orange curve) as 

in the case of the example V1 simple cell (Fig. 2A.i). This could be due to the sensitivity of 

the neuron to multiple stimulus orientations, as shown by the large BSI value (0.52), which 

reflects the presence of two peaks (at 0° and 240°) in the direction-tuning curve (Fig. 2C.i; 

orange curve) – a behavior that cannot be captured by a RF with a linear, Gabor-like 

structure.  

Fig. 2D shows instead an example LL unit that was sharply tuned for a single 

orientation, but displayed a typical complex-like behavior: its response to the preferred 

grating was unmodulated (Fig. 2D.ii), and both the direction-tuning curve (Fig. 2D.i) and the 

response dynamics (Fig. 2D.ii) were poorly explained by the STA-reconstructed RF (orange 

vs. black curves), which, in turn, lacked any clear spatiotemporal structure (Fig. 2D.iii). 

These examples illustrate how it is possible to compare the level of linearity of the 

stimulus-response relationship for the neuronal populations recorded in V1 and LL, along 

with the sharpness and complexity (e.g., bimodality) of their tuning for orientation. To guide 
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such comparison, we derived predictions about the evolution of neuronal tuning along an 

object processing hierarchy, by assessing how our grating stimuli were represented in HMAX 

– a neural network model of the ventral stream that is able to account for several qualitative 

trends in the tuning properties of ventral neurons16,20,27–30.  

In its simplest implementation, HMAX is a 4-layered, feed-forward network, with 

each layer consisting of either simple-like (S) or complex-like (C) units (Fig. 3).  

The first layer (S1) is a bank of Gabor filters that simulate V1 simple cells. In the 

second layer (C1), each unit performs a max pooling over a set of S1 afferents with the same 

orientation tuning, but slightly different RF positions or sizes. This yields orientation-tuned 

C1 units that are similar to V1 complex cells – i.e., they have larger RFs (dashed circles in 

Fig. 3), with increased position- and size-tolerance, as compared to their S1 afferents. In the 

third layer (S2), each unit performs a non-linear template-matching computation over a set of 

C1 afferent units with different preferred orientations. As a result, the S2 units are tuned for 

complex visual patterns, made of multiple oriented features, like the neurons in higher-level 

stages of the primate ventral stream, such as cortical area V4 and the inferotemporal cortex 
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(IT)12. Finally, in the fourth layer (C2), each unit performs again a max pooling over S2 

afferents that are tuned for the same visual pattern, but with slightly different RF positions 

and sizes. This results in C2 units with complex shape selectivity and large tolerance to 

position and size changes.  

Here, we used this basic 4-layered architecture to predict how the build-up of shape 

tuning and invariance should affect neuronal sensitivity to the orientation and temporal 

frequency of the gratings. In our simulations, layers S1 and C1 correspond to the simple and 

complex cells of V1, while layers S2 and, above all, C2, correspond to a downstream, higher-

level area (such as LL). 

We first turn to investigating the linearity of the stimulus-response relationship.  

To establish whether V1 and LL neurons differed in terms of the linearity of the 

stimulus-response relationship, we first compared the extent to which neuronal responses in 

the two areas were modulated by the phase of the drifting gratings. Despite the presence of 

both strongly phase-modulated and unmodulated units in both areas, the distributions of the 

modulation index (MI) were strikingly different in V1 and LL (p = 5.85*10-6; Kolmogorov-

Smirnov test; Fig. 4A).  
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In agreement with earlier studies of rat31 and mouse9,32 primary visual cortex, the MI 

distribution obtained in V1 (blue curve) revealed the existence of two roughly equi-populated 

classes of neurons, falling, respectively, below and above the MI = 3 threshold that 

distinguishes complex-like from simple-like cells. By contrast, in LL, most MI values were 

lower than 3, following a distribution (orange curve) with a prominent peak at MI < 1, which 

is indicative of a strong prevalence of complex-like units. As a result, the median MI was 

much lower in LL than in V1 (1.28 vs. 2.55; orange vs. blue line) and this difference was 

highly significant (p = 8.04*10-6; Mann-Whitney U-test). Similarly, the fraction of simple-

like cells in LL was half as large as in V1 (Fig. 4B; p = 1.93*10-4, χ2 test, df = 1). 

As illustrated in Fig. 2D.ii, the poor sensitivity to the phase of the drifting gratings 

observed in LL indicates that most neurons in this area respond to phasic stimuli with a 

sustained firing. This suggests that, in LL, most neurons are tolerant to position changes of 

their preferred visual stimuli. This interpretation was supported by the evolution of the 

modulation index observed in HMAX (Fig. 4C), where phase-sensitive cells were only found 

in the bottom layer (S1), corresponding to V1 simple cells. By contrast, from the C1 layer 

onward, all units displayed a fully phase-invariant behavior, because of the nonlinear max 

pooling that, in C1, implements position and size invariance. As a result, the combined 

distribution of MI values obtained in S1 and C1 was in qualitative agreement with the 

mixture of simple and complex cells observed in V1 (compare to Fig. 4A; blue curve). 

Similarly, the extreme phase invariance observed in S2 and C2 was qualitatively consistent 

with the stark prevalence of complex-like cells found in LL (> 80%; compare to Fig. 4A and 

B; orange curve/bar). 

The agreement between the evolution of the modulation index observed in HMAX 

and in our data suggests the existence of specialized computations that build up 

transformation tolerance along rat lateral extrastriate cortex. To further support this 

conclusion, we checked whether the same qualitative trend has been reported in the monkey 

ventral stream literature. To this aim, we performed a simple meta-analysis of the evolution 

of phase-sensitivity to drifting gratings across areas V1, V4 and IT of primates. In V1, the 

fraction of simple cells reported by various authors is quite variable 6,33–41, ranging from 

~16% to 63%  (Table 1), with a mean across studies of ~41% (blue bar in Fig. 4D).  

According to the few studies that investigated the phase-dependence of neuronal 

responses to grating stimuli in downstream areas (Table 1), the proportion of simple-like cells 

diminishes to ~14% in V442–44, to become zero in IT45 (brown and orange bars in Fig. 4D), 

resulting in an overall significant decrement along the ventral stream (p = 0.0098, F2,13 = 

7.25; one-way ANOVA). This trend, which is in agreement with the outcome of the HMAX 

simulations, confirms that the drop in the fraction of simple-like cells across consecutive 

visual processing stages can be taken as a strong marker of ventral stream computations. As 

such, its agreement with the trend observed from V1 to LL in our study (compare to Fig. 4B) 

suggests the existence of specialized machinery to build invariant representations of visual 

objects along rat lateral extrastriate cortex (see also Fig. 10A). 

To further assess the involvement of nonlinear computations in establishing the tuning 

of LL neurons, we compared the quality of the RFs inferred through the STA method in V1 

and LL. To this aim, each pixel intensity value in a STA image was z-scored, based on the 
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null distribution of STA values obtained for that pixel, after randomly permuting the 

association between frames of the movie and spike times 50 times (Materials and methods).  

This allowed expressing the intensity values of the STA image in terms of their 

difference (in units of standard deviation) from what expected in the case of no frame-related 

information carried by the spikes. We then computed a contrast index (CI; see Fig. 5A and a 

full description in Materials and methods) to measure the amount of signal contained in the 

image and establish a conservative threshold (CI > 5.5), beyond which the linear RF structure 

of a neuron could be considered as well defined. 

 Fig. 5C shows the 10 best STA-based RFs in each area, sorted according to the 

magnitude of their CI, from largest to smallest. In V1, most of these RFs featured equally 
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prominent excitatory and inhibitory regions, often displaying a sharp, Gabor-like structure, 

while, in LL, the best STA images typically presented a single lobe, with much lower 

contrast.  
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As a result, the median CI was higher for V1 than for LL neurons (blue vs. orange 

dashed line in Fig. 5D; p = 8.09*10-10; one-tailed Mann-Whitney U-test), and the fraction of 

units with well-defined linear RFs (i.e., with CI > 5.5) was five times larger in V1 than in LL 

(Fig. 5E; p = 6.48*10-10, χ2 test, df = 1).  

We also observed a stark difference between the two areas in terms of the number of 

lobes contained in a STA image. To count the lobes, we binarized each image, by applying a 

threshold to the modulus of its intensity values (see Fig. 5B and a full description in Materials 

and methods; also note that this analysis was restricted to the units with well-defined linear 

RFs). Regardless of the choice of the binarization threshold, the distribution of lobe counts 

peaked at 1 in both areas, but had a heavier tail in V1 than in LL (compare matching rows in 

Fig. 5F), resulting, in most cases, in a statistically significant difference between the two 

areas (Fisher’s exact test; * p < 0.05; ** p < 0.01; see legend for exact p values).  

Overall, this indicates that, in many cases, the responses of V1 neurons could be well 

approximated as a linear, weighted sum of the luminance intensity values falling inside their 

RFs – hence the sharp, multi-lobed STA images. By comparison, the lower-contrast, 

structurally simpler RFs yielded by STA in LL suggest a dominant role of non-linear 

computations in establishing the stimulus-response relationship in this area. 

In fact, in the case of a prevalently non-linear unit, the STA method would be able to 

reconstruct at most its linear sub-parts46–48 – a sort of linear “residue” of the actual non-linear 

filter. Such linear residue would still show, in some cases, the position and main orientation 

of the underlying filter, but would fall short at accounting for the full richness and complexity 

of its structure and for the extension of its invariance field (see next paragraph). This 

conclusion was supported by the tendency (although not significant) of the STA-based RFs to 

explain a lower fraction of variance of the orientation tuning curves in LL, as compared to V1 

(Fig. 6).  

The binarized STA images could also be used to compare the size (diameter) of the 

well-defined linear RFs in the two areas (with the diameter computed as the mean of the 

major and minor axes of the ellipse that best fitted the area covered by the detected lobes). 

When a liberal binarization threshold of 3.0 was chosen (with the goal of capturing most of 

the RF extension), the average diameter in LL (55.4 ± 10º; n = 13) was significantly larger 

than in V1 (39.1 ± 3.0º; n = 54; p = 0.02; one-tailed, unpaired t-test, df = 65). However, such 

difference became smaller (34.2 ± 2.9º in V1 vs. 39.4 ± 5.1º in LL) and not significant (p = 

0.21; one-tailed, unpaired t-test, df = 65), as soon as the binarization threshold was raised at 

3.5.  

This result should not be taken as evidence against the increase of RF size that is 

expected to take place along a ventral-like pathway. Such an increase has already been 

reported by several authors14,15,49,50 and was carefully quantified in previous investigation of 

rat lateral extrastriate cortex13 by our group, where the RF diameter in LL (~30º) was found 

to be twice as large as in V1 (~15º). These estimates were obtained using a mapping 

procedure in which small, high-contrast stimuli (specifically, drifting bars with multiple 

orientations) were presented over a grid of visual field locations. While such high-contrast, 

localized stimuli can effectively elicit responses over the full invariance field of a neuron, 

thus yielding reliable RF estimates also for highly position-tolerant (i.e., nonlinear) units, the 

linear STA analysis used in our current study cannot, by definition, achieve this goal. In fact, 
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for a highly tolerant neuron (such as a complex cell), a spike can be triggered both by a given 

distribution of luminance intensity values (a noise pattern) in a given portion of the visual 

field, and by its contrast reversal – which results in a failure of the STA method to map that 

portion of the RF. In other words, the nonlinear stimulus-response relationship that is typical 

of highly transformation-tolerant neurons prevents an accurate estimate of their RF size using 

STA.  

As a result, the RF size estimates yielded by STA in LL are largely underestimated, 

when compared to those obtained in V1, while the latter are consistent with the RF sizes that 

can be inferred from previous mouse studies, in which V1 receptive fields were also mapped 

using a linear reverse correlation method32,51,52. 

To conclude, the poor quality of the STA-based RFs obtained in LL (in terms of 

contrast, number of lobes and estimated size; Fig. 5), taken together with the prevalence of 

complex-like units in this area (Fig. 4A-B), is consistent with the non-linear computations 

that are expected to build invariance along an object-processing hierarchy. 

Next, we compared the V1 and LL neuronal populations in terms of the shape and 

sharpness of the orientation tuning curves obtained in the two areas. As shown in Fig. 7A, in 

area LL most units had OSI lower than 0.5 (orange curve), with a median of 0.41 (dashed 

orange line), while in V1 the peak of the OSI distribution (blue curve) was in the 0.6-0.8 

range, with a median of 0.53 (dashed blue line).  

The difference between the two OSI distributions was significant (p = 0.0029; 

Kolmogorov-Smirnov test), as it was the difference between their medians (p = 0.0084; one-

tailed, Mann-Whitney U-test). Following a convention established in previous studies (Table 

2) we classified as orientation-selective the units with OSI > 0.6, and we compared the 

fraction of units above such threshold in the two areas (Fig. 7B). In V1, the proportion of 

selective cells was twice as large as in LL (40% vs. 18%), and such difference was highly 

significant (p = 8.15*10-4; χ2 test, df = 1).  

Although the computation of the OSI index is very popular in studies of neuronal 

tuning for oriented gratings (see Table 2), this metric, being based on the average responses 
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of the neurons across repeated stimulus presentations, does not take into account the trial-by-

trial variability of firing rates and, as such, does not provide a direct estimate of the 

information about orientation conveyed by neuronal firing.  

Therefore, we decided to complement the comparison of V1 and LL based on the OSI 

with an information theoretic analysis. For each neuron, we took its preferred direction (e.g., 

60º) and the opposite one (e.g., 240º) and we assigned them to a stimulus category that we 

labeled as preferred orientation. We then took the two directions orthogonal to the preferred 

ones (e.g. 150° and 330°) and we assigned them to a category that we labeled as orthogonal 

orientation. We then pooled all the responses of the neuron to the stimuli within each 

category and we computed the mutual information I(R;S) between the neuronal response R 

(discretized into two equi-populated bins) and the stimulus category S (preferred vs. 

orthogonal). All quantities were computed using the Information Breakdown Toolbox53 and 

were corrected for limited sampling bias using the Panzeri-Treves method54,55. We found that 

V1 neurons conveyed, on average, more than twice as much information about orientation 

than LL units (i.e., 0.054 ± 0.007 bits vs. 0.023 ± 0.003 bits) and this difference was highly 

significant (p = 7.82*10-5; two-tailed, unpaired t-test, df = 207). Moreover, the amount of 

orientation information coded by the neurons within each population was positively and 

significantly correlated with OSI (r = 0.57, p = 2.48*10-10, df = 103 and r = 0.65, p = 4.52*10-



 
 

37 

14, df = 102 for, respectively, V1 and LL). Overall, these results confirm the validity of the 

analysis based on the OSI metric, and show that, even when the signal-to-noise ratio of 

neuronal responses is taken into account, V1 neurons display a much higher degree of 

orientation selectivity, as compared to LL units. 

To check the consistency of this finding with ventral-like processing, we looked at the 

evolution of orientation tuning in HMAX and we carried out another meta-analysis of the 

monkey literature. As shown in Fig. 7C, in the model, the OSI distribution underwent an 

abrupt shift towards much lower values in the transition from the C1 layer, corresponding to 

V1 complex cells, to the S2 layer, corresponding to a downstream area, where tuning for 

combinations of multiple oriented elements is achieved using a non-linear template matching 

operation (see Fig. 3). The shape of the OSI distribution was then maintained in the C2 layer, 

performing the max-pooling operation over the S2 afferents. 
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With regard to the monkey ventral stream (Table 2), most authors report a very large 

fraction of orientation-tuned cells in V119,33–35,38,56,57, with a mean across studies close to 89% 

(blue bar in Fig. 7D). This proportion significantly decreases along downstream areas (p = 

2.31*10-6, F2,14 = 46.17, one-way ANOVA), with ~65% and ~19% of orientation-tuned 

neurons reported, respectively, in V419,44,57,58 and IT59–62 (brown and orange bars in Fig. 7D).  

These trends are confirmed by the few studies that applied the same experimental 

design to directly compare orientation tuning in V1 and either V419 or IT56,62. Vogels and 

Orban found ~85% of orientation-tuned neurons in V1, compared to just ~14% in IT. David 

and colleagues reported a similar figure for V1, while in V4 they found that only 50% of 

neurons were orientation-tuned. In addition, they found that the fraction of cells with bimodal 

tuning (i.e., responding strongly to two non-adjacent orientations) was more than twice as 

large in V4 (28%) as in V1 (11%), in agreement with the increasing proportion of neurons 

that, in V4, are tuned for the combinations of oriented elements found in corners and curved 

boundaries42,43,58,63.  

Overall, the trends observed in our HMAX simulations (Fig. 7C) and emerging from 

the ventral stream literature (Fig. 7D) suggest that building tuning for complex visual patterns 

leads to a strong reduction of orientation tuning. As such, the drop of orientation selectivity 

observed from V1 to LL (Fig. 7A, B) can be taken as indication that LL neurons are tuned to 

more complex combinations of visual features, as compared to V1 units.  

Support to this conclusion came from comparing the two areas in terms of the 

tendency of the orientation tuning curves to be bimodal (Fig. 8A). In V1, most units had BSI 

equal or close to zero (i.e., virtually perfect unimodal tuning), with the distribution dropping 

sharply at larger BSI values (blue curve). In LL, the BSI distribution also peaked at zero, but 

featured a heavier tail, with a secondary peak above 0.5 (orange curve). As a result, the two 

distributions and their medians were significantly different (p = 0.044 and p = 0.029; 

Kolmogorov-Smirnov and one-tailed, Mann-Whitney U-test, respectively) and the fraction of 

neurons with bimodal tuning (i.e., with BSI > 0.5) was more than twice as large in LL as in 

V1 (p = 0.027; χ2 test, df = 1; Fig. 8B). Once again, a similar trend was observed in HMAX 

(Fig. 8C), where the BSI distribution displayed a much heavier tail in the deeper layers (S2 

and C2) than in the early ones (S1 and C1).  

Quantitatively, the difference in the number of bimodal neurons found in V1 and LL 

(7/105 vs. 16/104 in LL) may appear small, but, besides being statistically significant, is not 

dissimilar to the one reported in the monkey19, when comparing V1 and V4 (see previous 

paragraph). In fact, while the incidence of bimodal neurons is approximately twice as large in 

monkey as in rat visual areas (11% vs. 7% in monkey vs. rat V1; 28% vs. 15% in V4 vs. LL), 

the percent increase from monkey V1 to V4 (~254%) is very similar to the percent increase 

from rat V1 to LL (~231%). In addition, in both V1 and LL, bimodal neurons came from 

multiple animals (4/12 in V1 and 4/6 in LL) and multiple recording sessions (4/15 in V1 and 

5/9 in LL), which, not surprisingly (given the low incidence of these neurons), accounted for 

a large fraction of all recorded, visually-driven single units in both areas (56/105 in V1 and 

79/104 in LL).  

Nevertheless, caution should be taken when comparing the BSI distributions obtained 

for two neuronal populations with a different level of orientation selectivity, because the BSI 

and OSI indexes are not constrained to be statistically independent. Intuitively, in presence of 
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some noise, poorly selective neurons (i.e., cells with low OSI) will tend to have slightly 

larger BSI values than sharply selective units, even if the underlying tuning curves are 

unimodal (i.e., even if they are ideal oriented-edge detectors without any true secondary 

peaks in their orientation tuning curve).  

This is because, for a very broad tuning curve, the two largest, non-adjacent peaks 

will tend to be closer, in terms of magnitude, than for a narrow tuning curve. In our data, BSI 

and OSI were in fact negatively correlated (r = -0.48 and r = -0.4, respectively, in V1 and LL; 

p =  2.3*10-7, df = 103 and p = 1.1*10-5, df = 102; unpaired, two-tailed, t-test). Therefore, we 

performed an analysis to quantitatively check that the larger BSI values found in LL, as 

compared to V1 (Fig. 8A), were not simply a byproduct of the lower orientation tuning of the 

LL neurons (Fig. 7A). In other words, we verified that the larger fraction of units being 

classified as bimodal in LL, as compared to V1 (Fig. 8B), was not an artifact of the possibly 

larger proportion of LL neurons with very broad (but unimodal) orientation tuning.  

Our analysis was based on simulating two artificial populations of perfectly unimodal 

units (see examples in Fig. 9A), having: i) the same size of the recorded V1 and LL 

populations (i.e., 105 and 104 simulated V1 and LL units, respectively); ii) OSI values 

sampled from the empirical OSI distributions that were observed in the recorded populations 

(dashed lines in Fig. 9B; same as the distributions shown in Fig. 7A); and iii) peak firing rates 

(FRs) sampled from log-normal functions (dashed lines in Fig. 9C) that were fitted to the 

empirical distributions of peak firing rates observed in the recorded populations (black bars in 

Fig. 9C). As a consequence of point iii) above, the average FRs of the two simulated 

populations were very close to those of the recorded populations (i.e., 11.4 ± 10.7 spikes/s in 

V1 and 6.5 ± 4.3 spikes/s in LL; see arrows in Fig. 9C).  
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In addition, to account for the effect of estimating orientation-tuning curves from a 

limited number of repeated trials in noisy neurons, the responses of a simulated unit to a 

given orientation were drawn from a Poisson distribution with the mean equal to the 

theoretical value of the simulated tuning curve at that orientation (dashed lines in Fig. 9A).  

Ten repeated Poisson responses were simulated for each orientation, and then 

averaged to obtain sampled tuning curves for the simulated units (solid lines in Fig. 9A). The 

goal of our simulation was to check if, as a consequence of the Poisson noise, these sampled 

tuning curves would develop spurious secondary peaks (especially in the case of low 

orientation tuning) that could lead to artifactual differences of bimodal neurons between LL 

and V1. It should be noticed that simulating noisy Poisson neurons, along with the fact that a 

limited number of units were drawn from the theoretical, data-matched OSI and FR 

distributions, brought the sampled OSI and FR distributions to be slightly different from the 

theoretical ones. Such differences, however, were minimal, as it can be appreciated by 

comparing the sampled and theoretical OSI and FR distributions obtained for two example 

simulated V1 and LL populations in Fig. 9B and C (colored lines/areas vs. black dashed 

lines). Fig. 9D reports instead the sampled BSI distributions that were obtained for these 

example simulated populations. As expected, (see previous paragraph), the larger orientation 

tuning of the simulated LL units did bring their BSI distribution (red curve) to have a slightly 

heavier tail, as compared to the BSI distribution of the simulated V1 units (blue curve). 

However, the difference between the two distributions was very minor, as compared to the 

one observed for the actual populations (compare to Fig. 8A). Most noticeably, the simulated 

LL distribution lacked the heavy tail, with the secondary peak at BSI > 0.5, that we found for 

the recorded LL neurons. As a result, the number of units classified as bimodal in these two 

simulated populations (i.e., with BSI > 0.5) was identical (3 units).  

Given the stochastic nature of our analysis, this outcome does not guarantee that, in 

general, no major differences can be observed in the number of bimodal neurons found in the 

two simulated populations. Therefore, to test whether we could statistically reject the null 

hypothesis that the difference of bimodal units observed between the recorded LL and V1 

populations was merely due to differences in terms of broadness of orientation tuning and 

firing rate magnitude (and, as such, response noisiness), we repeated the simulation 

illustrated above in 1000 independent runs, so as to obtain 1000 comparisons among BSI 

distributions of simulated LL and V1 units. In each run, we computed the difference between 

the numbers of neurons classified as bimodal in the two simulated populations. This yielded a 

null distribution of differences of bimodal units between LL and V1, under the null 

hypothesis of purely unimodal tuning in both areas (purple bars in Fig. 9E). When we 

compared the actual, measured difference of bimodal neurons recorded in LL and V1 (dashed 

line in Fig. 9E) to this null distribution, we found that the probability of getting such a 

difference (or a larger one) under the null hypothesis was p = 0.005. Therefore, we could 

statistically reject the hypothesis that the larger fraction of bimodal neurons observed in LL 

was only due to the lower level of orientation tuning observed in this area, as compared to 

V1, with a 0.005 significance level. Interestingly, this conclusion held true, even when we 

simulated LL and V1 populations with the same OSI distributions observed in our recordings, 

but with mean peak firing rates either 3 spikes/s smaller or 3 spikes/s larger than those 

measured in the two areas (Fig. 9F). In particular, we found that the difference of bimodal 
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neurons between LL and V1 was significantly larger than expected by chance, also when the 

statistical comparison was performed against a null distribution obtained from LL and V1 

simulated units with peak firing, respectively, lower and larger than that observed in the 

recorded populations (p = 0.032; top-left cell in Fig. 9F).  

That is, no matter how noisy the tuning curves of the simulated LL units were made 

with respect to those of the simulated V1 units, their tendency to display spurious secondary 

peaks was never so strong as to explain the difference of bimodal units observed in our 

recordings. Overall, this indicates that the majority of neurons classified as bimodal in LL 

were truly so, thus confirming that the different proportion of bimodal cells in LL and V1 

(Fig. 8B) is a small, but robust effect.  

Interestingly, the relatively small incidence of bimodal units in high-order areas is 

fully consistent with the HMAX simulations, where these units were ~51% in layer S2, but 

reduced to ~20% in layer C2 (Fig. 8C). This indicates that the max-pooling operation that 

builds invariance (yielding the C2 layer) partially counterbalances the template-matching 

computation that builds tuning for multiple features (yielding the S2 layer), when it comes to 

produce bimodal tuning. Taken together, these considerations support the interpretation that 

the decrease of OSI from V1 to LL, along with the concomitant increase of BSI, results from 

an increment of the complexity of tuning of LL neurons – a property that is consistent with 

their involvement in ventral processing.  

This conclusion was confirmed by the overall lower effectiveness of the grating 

stimuli to drive LL neurons, as compared to V1 units (see Fig. 9C). By contrast, only a minor 

difference was observed in terms of response latencies (102 ± 11 ms in V1 vs 118 ± 9 ms in 

LL; see Materials and methods). This is in disagreement with previous studies reporting 

lower latencies in both areas and larger differences between V1 (~40 ms) and LL (~75 

ms)13,14, as expected along a partially feedforward processing hierarchy. Such discrepancy is 

explained by the fact that full-field drifting gratings, as opposed to the localized, high-

contrast visual shapes used in13,14, are not suitable to properly estimate response latencies. In 

fact, as shown by the example neurons of Fig. 2, the onset of the neuronal response is 

determined by time of the drift cycle in which the grating happens to properly align with the 

RF of the neuron. This, in turn, depends on the initial phase of the grating relative to the 

neuron’s RF (which varied randomly from neuron to neuron in our experiment, being fixed 

relative to the stimulus display) and on its spatial and temporal frequencies. As a result, 

response latencies measured with drifting gratings are highly variable – they largely 

overestimate the actual time at which neurons in a given area start processing visual inputs, 

and do not allow appreciating differences among areas.  

Finally, we also measured the direction selectivity of the two neuronal populations, 

finding no significant differences in terms of DSI (0.42 in V1 vs. 0.45 in LL; p = 0.7; Mann-

Whitney U-test), which suggests a lack of specialization of LL for motion processing, as 

compared to V1.  

As an extension of our analysis, we turned to the  inclusion in the analysis of the small 

population of laterointermediate (LI) neurons unwantedly recorded during some of the LL-

targeted sessions. The reason why in our original plans we restricted our recordings to LL 

area is that previous work by our group highlighted such region as bearing the clearest 

signature of ventral processing within rat lateral extrastriate cortex13 – i.e., the lowest 
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sensitivity to low-level image attributes (such as luminance and contrast) and the most 

invariant coding of object identity. However, a similar advantage, over V1, to support 

invariant object recognition was also displayed to a lesser extent by area LI, which borders 

LL medially. As already mentioned, our current study was not designed to obtain a statistical 

characterization of LI in terms of tuning for drifting gratings. Nevertheless, we recorded a 

small number of single units also from this region, since, while aiming at LL, a fraction of the 

recording sites of the silicon probe frequently landed in LI (see Fig. 1). We therefore looked 

at the sensitivity for the phase of drifting gratings and at the sharpness and shape of the 

orientation-tuning curves also for the recorded LI neurons (a total of 23 responsive and 

reproducibly driven units).    

 As shown in Fig. 10 (leftmost panel), the fraction of phase-modulated, simple-like 

neurons in LI (brown bar) was intermediate between V1 and LL (blue and orange bars). The 

same applied to the fraction of orientation-selective units (middle panel), while the proportion 

of neurons with bimodal tuning (rightmost panel) was similar in LI and LL. We did not 

quantify statistically these trends, given the low number of cells sampled from LI. 

Nevertheless, we report them here, because they are consistent with our earlier finding that 

the processing leading to the specialization of LL for ventral computations takes place 

gradually, along a processing chain involving multiple areas, of which LI is one of the 

nodes13. 

As shown in the previous sections, most trends of variation observed along rat lateral 

extrastriate areas, in terms of tuning for drifting gratings, are in qualitative agreement with 

the prediction of HMAX. Such agreement is not surprising, given the selectivity-building and 

tolerance-building computations implemented by the units of the model. At the same time, 

the trends observed in HMAX are not trivial and should still be considered as emergent 

properties of the model, because, when such computations are implemented separately by 

thousands of independent units across a cascade of feedforward layers, the outcome of their 

interaction is not easily predictable. For instance, it is far from obvious that the template-

matching computation that increases the complexity of tuning of S2 units will still allow them 

to show some selectivity for oriented gratings (Fig. 7C), and that such selectivity (also in 

layer C2) will be as phase-invariant as the one found (by construction) in layer C1 (Fig. 4C). 

Also, it was interesting to notice how the incidence of bimodal units was boosted (as 

expected) by the selectivity-building computation in layer S2, but it was dampened by the 
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tolerance-building pooling performed by C2 units (Fig. 8C), so that, in this layer, the fraction 

of bimodal units was not far from the one we observed in LL (see previous paragraph). 

HMAX, however, is only one of the possible feedforward neuronal networks with a 

brain-inspired architecture that can serve as a comparison for physiology/behavioral 

experiments. In particular, HMAX can be considered as one of the ancestors of modern deep 

convolutional neuronal networks (DCNNs), which, in recent years, have revolutionized the 

field of machine learning, matching (and even surpassing) human accuracy in a number of 

object recognition tasks64. DCNNs share the same basic architecture of HMAX, with 

alternating layers of complexification of feature selectivity and tolerance-increasing pooling, 

but they are much larger, being made of tens of layers, each with hundreds of thousands units 

(for a total of several millions units). More importantly, while HMAX has a static, hard-wired 

connectivity (Materials and methods), the units in DCNNs iteratively adjust their synaptic 

weights, in such a way to learn feature representations that maximize their accuracy in a 

given image classification task64. Therefore, the emergent properties of DCNNs (e.g., in 

terms of shape selectivity) are less determined by architectural/computational constraints, as 

compared to HMAX, and more strongly driven by the optimization process underlying the 

development of powerful representations for object recognition. This has led several 

neuroscientists to use such networks as benchmarks to study the emergence of selective, yet 

invariant, representations of visual objects in the ventral stream of both monkeys65–67 and 

humans68–71. Inspired by these primate studies, we repeated the same analysis carried out in 

HMAX also in VGG16, a state-of-the-art DCNN that scored second place in object 

classification and first place in object localization at the ILSVRC-2014 competition17. 

VGG16 is a quite large DCNN, totaling about 138 million parameters across its 16 

convolutional and fully-connected layers (Fig. 11A). These layers are grouped in 5 blocks 

(named B1 to B5 in Fig. 11A), each composed by 2 or 3 convolutional layers (colored boxes) 

and followed by a max pooling layer (white boxes), with a final stack of 3 fully-connected 

layers on top, followed by a 1000-way softmax output layer for classification. Thanks to this 

relatively simple and uniform structure, VGG16 is particularly appealing as a model of how 

modern DCNNs work. 

For our tests, we used VGG16 pre-trained on the ImageNet dataset (a large 

photographic database very popular as a computer vision benchmark), and, as done with 

HMAX, we fed to the input layer of the network a set of drifting gratings spanning the same 

range of directions used in the neurophysiology experiment (Materials and methods). We 

then computed the activation (over the entire duration of each presented grating) of a pool of 

1000 randomly selected units from the first convolutional layer of each block (Fig. 11A). For 

each unit, we measured the time evolution of its activation, so as to estimate its sensitivity to 

the phase of the drifting gratings through the MI index, and we obtained orientation-tuning 

curves, from which we computed the OSI and BSI indexes.  

Fig. 11B shows how the distributions of these indexes evolved across the five 

sampled layers of the network. In the case of the modulation index (top row), we observed a 

progressive shift from large (> 7.0) to low (< 3.0) MI values, resulting in a monotonic 

decrease in the mean level of phase modulation along the network (Fig. 11C, leftmost panel). 

This trend was very similar to the one displayed by HMAX (Fig. 4C), and was consistent 

with the drop of simple-like cells observed along the primate ventral stream (Fig. 4D) and, in 
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our experiments, from rat V1 to LL (Fig. 4A-B and Fig. 10, leftmost panel). This confirms 

that the reduction of phase-modulated units can be taken as a strong marker of the existence 

of nonlinear, tolerance-building computations along rat lateral extrastriate cortex, similar to 

the max pooling implemented both in HMAX and VGG16. 

The orientation selectivity index displayed instead a non-monotonic trend (Fig. 11B, 

middle row and Fig. 11C, middle panel), since it first increased, reaching a peak in B3, the 

third block of convolutional layers, and then decreased from B3 to B5. This behavior is 

qualitatively different from that observed in HMAX (Fig. 7C) and may seem inconsistent 

with the monotonic decrease of OSI reported across the monkey ventral stream (Fig. 7D) and 

observed, in our study, along rat lateral extrastriate cortex (Fig. 7A-B and Fig. 10, middle 

panel). Such discrepancy, however, is easily explainable by the fact that in VGG16, 

differently from HMAX, the first processing layer does not contain sharply-tuned oriented 
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Gabors (of tens by tens pixels in size), but a first set of very small convolutional filters (of 

only 3x3 pixels). Having, by construction, such a small receptive field size, these units cannot 

learn the Gabor-like filters with high aspect ratio that are necessary to achieve sharp 

orientation tuning. Only the units in the following convolutional layers, as the effective 

receptive field size increases, can gradually evolve into sharply tuned, oriented-edge 

detectors. In other words, while HMAX, by design, is meant to simulate the processing that 

takes place from primary visual cortex onward, VGG16 could be regarded as a model of the 

entire visual system, with the initial layers, operating on the raw pixel representation of the 

image, being architecturally and functionally closer to subcortical visual areas (such as retina 

and LGN) than to the cortex.  

In the light of these considerations, it is tempting to interpret the initial increase of 

OSI in VGG16 as the attempt of the network to first learn a bank of oriented-tuned units. 

Once this V1-like representation is established (in B3), the network displays a behavior very 

similar to HMAX and to monkey (rat) temporal (lateral) visual cortical areas, with OSI that 

gradually and monotonically decreases, as multiple peaks start appearing in the orientation 

tuning curves – a sign that the units of the upper layers are learning more complex feature 

representations. This was confirmed by the trend observed for BSI (Fig. 11B, bottom row and 

Fig. 11C, rightmost panel), which initially decreased (from B1 to B2), but then monotonically 

increased, with the fraction of units with bimodal tuning reaching ~25% in B5, a value not 

dissimilar from the one found in HMAX (see above). It is possible that DCNNs based on 

slightly different architectures, such as Alexnet72, where the initial layer contains larger 

convolutional filters, may display a behavior that is even more consistent with HMAX, and 

show a strictly monotonic decrease of OSI and increase of BSI across consecutive layers (we 

did not test this possibility, since a systematic comparison of different DCNN architectures is 

clearly beyond the scope of our study). 

Overall, we can conclude that all the trends we observed along rat lateral extrastriate 

cortex are in qualitative agreement not only with the predictions of the conceptual, hard-

wired model of ventral processing implemented in HMAX, but also with the behavior 

displayed by the upper layers of a state-of-the-art, deep convolutional network trained for 

image classification. This adds further support to our conclusion that rat lateral visual cortical 

areas are specialized for processing object information. 

 

Discussion 

In this study, we sought to validate and further explore the specialization of rat area LL for 

ventral computations, as revealed by previous investigation of this region and nearby visual 

cortical areas by our group13. Our work was motivated by the still limited and conflicting 

evidence about the involvement of these areas in advanced shape processing, which makes 

their assignment to a ventral-like stream much weaker, at the functional level, than one would 

expect on anatomical grounds73–78.  For instance, while our group observed an increase in the 

ability of rat lateral areas to support transformation-tolerant recognition13, Vermaercke et al.14 

found that only TO (an area located laterally to LL) was superior to V1 and the other areas in 

supporting position tolerance, and only in relative terms – i.e., in terms of the stability, rather 
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than of the magnitude, of the discrimination performance afforded by TO across two nearby 

positions. Vermaercke et al.14 also found that orientation tuning increased along the areas’ 

progression – a trend that, as shown in our current study, is in disagreement with both the 

ventral stream literature and the behavior of ventral-stream models. In a later study by 

Vinken et al., the same group reported a lack of object categorical representations in rat 

extrastriate lateral areas, which is unexpected for an object-processing stream15. At the same 

time, they found a decrease, along the lateral progression, in the accuracy of V1-like models 

to predict neuronal responses, as expected for a ventral-like pathway. 

 The literature probing the tuning properties of mouse extrastriate areas features a 

similar variety of findings. In mice, it is unclear whether an equivalent of rat area LL exists – 

earlier anatomical maps reported such area79, although more recent studies would place the 

cortical field lateral to LI either in the anterior part of postrhinal cortex (PORa; also named 

posterior area 36) or in the posterior part of temporal cortex (TEp)80–82. Regardless of the 

naming convention, this region has been attributed to the ventral stream on anatomical 

grounds81,83, along with areas LM (lateromedial) and LI, which have been tested with drifting 

gratings in several electrophysiological and imaging studies. Van den Bergh et al.9 measured 

the phase dependence of neuronal responses in V1 and nearby lateral cortex (named V2 by 

the authors, which, very likely, corresponds to area LM) and found that the latter had a lower 

proportion of simple cells (15% vs. 38% in V1). Conversely, the authors reported virtually no 

difference between the areas in terms of OSI. This result contrasts with the general increase 

of orientation tuning that was found in nearly all extrastriate areas (compared to V1) by 

Marshel et al.8, although the increment of OSI was much larger in putative dorsal-stream 

areas than in LM and LI. A significant increase of OSI in LM, relative to V1, was also 

observed by Tohmi et al.11, while other authors found virtually no differences between V1 

and some of the putative dorsal- and ventral-stream areas7,10,84.  

The variety and inconsistency of these findings motivated our further search for the 

signature of ventral processing in LL, where, to be fully complementary with the previous 

studies from our group, we did not probe neuronal representations using visual objects. With 

the goal of targeting those core tuning processes that are responsible for building up 

transformation tolerance and feature selectivity, we deployed drifting gratings and noise 

movies, and we compared the V1 and LL neuronal populations in terms of: i) the phase-

sensitivity of their responses; ii) the goodness of the RF structures recovered through STA; 

and iii) the sharpness and complexity (i.e., bimodality) of their tuning for orientation. This 

approach required deriving clear predictions about how these properties should evolve along 

a ventral-like pathway. This was achieved through a careful survey of the monkey literature 

and by simulating the basic computational architecture of the ventral stream using a 

conceptual model of ventral computations (HMAX) and a state-or-the-art deep convolutional 

network (VGG16). Because of the invariance-building operation, phase-sensitivity sharply 

decreased across HMAX layers (Fig. 4C). Concomitantly, because of the selectivity-building 

computation, orientation tuning became smaller (Fig. 7C), with the units acquiring preference 

for multiple orientations (Fig. 8C). The same drop of phase-sensitivity was observed in 

VGG16, where orientation tuning also decreased sharply (with a concomitant increase of 

bimodal tuning) in the last layers of the network (Fig. 11B-C). All these trends were matched 

by the empirical evidence gathered in our study, when comparing V1 to LL (Figs. 4A-B, 7A-
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B and 8A-B), thus suggesting that similar selectivity- and invariance-building computations 

are at work along the progression of lateral extrastriate areas that culminates with LL. The 

consistency among these trends and those observed across the primate ventral stream (Figs. 

4D and 7D) adds further, critical support to this conclusion. 

As such, our results strengthen the previous attribution of LL to a ventral-like 

stream13, while shedding new light on the possible origin of the discrepancies with and 

among earlier rodent studies (see previous paragraphs). For instance, while we presented very 

large (60ºx110º), full-field gratings, Vermaercke et al.14 used smaller (33º) circular gratings, 

shown at the RF center of each recorded neuron. Our presentation protocol ensured that, for 

most neurons in both areas, the stimuli covered the entire classical receptive field and, very 

likely, a large fraction of the extra-classical receptive field85–89, where surround-suppression 

can strongly affect shape tuning90,91. By contrast, the smaller and more localized gratings 

used in Vermaercke et al.14 likely covered an increasingly smaller fraction of both the 

classical and extra-classical receptive fields while progressing from V1 to LL, given that RF 

size gradually increases along lateral extrastriate areas, being twice as large in LL as in V113. 

This, in turn, may have prevented the tuning for multiple oriented elements, located at 

different RF locations, to emerge in neurons with larger RFs, thus artificially boosting OSI in 

higher-order areas.  

This interpretation is only partially supported by the monkey literature. In fact, 

although surround-modulation has been shown to play a major role in boosting the selectivity 

of monkey visual neurons92, most primate studies reviewed in Table 2 and Fig. 7D used 

circular gratings with a 6-12º diameter to probe orientation tuning, rather than full-field 

stimuli. Still, the size of those stimuli, relative to the typical RF size of ventral stream areas 

(i.e., median of 2º and 10º, respectively in V1 and IT), was slightly larger than the size of the 

circular gratings used by Vermaercke et al.14, relative the median RF size of rat V1 and LL 

neurons (15º and 30º respectively), thus possibly engaging stronger extra-classical processing 

in monkey recordings. Alternatively, it is possible that in rats, even more than in monkeys, 

the signature of higher-order processing of shape information may clearly emerge only when 

surround-modulation mechanisms are fully engaged. Support to this conclusion comes from 

Vinken et al.15, who, as previously mentioned, found a reduction in the ability of V1-like 

models (based on combinations of oriented Gabor filters) to predict neuronal responses to 

natural movies along the lateral progression. Not only this finding is in agreement with the 

poor estimates of the RF structures that we obtained in LL, as compared to V1, using STA, 

but strongly suggests that a reduction of orientation tuning has to be expected from V1 to 

downstream lateral areas (not tested in that study). That is, the conclusions of Vinken et al.15, 

obtained with full-field stimuli (size 50º-74º), appear to be in better agreement with the drop 

of OSI reported in our study than with the increase of OSI previously found by the same 

group, using smaller, circular gratings14. To summarize, the discrepancies among the tuning 

properties of rat lateral neurons appear to be largely accounted for by differences in terms of 

visual stimuli, as argued here, as well as experimental design and data analysis, as discussed 

in Tafazoli et al.13.  

Similar arguments can be applied to interpret the results of mouse experiments, but 

only for the fraction of studies that used localized, circular gratings7,84 instead of full-field 

stimuli8,9,11. In the case of mouse studies, however, a more fundamental methodological 
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difference exists with our and previous rat studies. In mice, many recordings were based on 

calcium imaging, performed using different indicators (e.g., OGB-18 vs. GCaMP37), which 

diverge from a perfectly linear relationship between fluorescence changes and underlying 

spiking activity in an-indicator specific way93. As pointed out by Niell94, this could 

potentially distort the orientation tuning curves and bias the OSI measurements, as compared 

to approaches where well-isolated single-units are recorded with microelectrodes. In addition, 

while our recordings targeted cortical layer 5 (Fig. 1C), optical imaging studies typically 

target superficial layers. Although the previous study from our group found the same 

proportional increase of ventral-specific processing from V1 to LL in both superficial and 

deep layers, the magnitude of this difference was smaller in the former13. This could make 

between-area differences harder to detect in superficial layers, especially when precise spike 

count estimates are not available, as in such imaging studies. This argument does not apply to 

the experiments of Van den Bergh et al.9, who performed single-electrode recordings. 

However, that study targeted only area LM, which has been reported to be functionally very 

similar to V1, never displaying any sign of ventral-like functional specialization7,8,13. Finally, 

the possibility cannot be excluded that major differences exist, between mouse and rat visual 

cortex, in terms of high-order processing of shape information. In fact, despite some recent 

efforts95,96, mouse visual perception is still largely unexplored, and it remains unknown 

whether mice are able to perform those complex perceptual tasks, recently demonstrated in 

rats97–103, that should specifically engage the ventral stream.  

To conclude, we believe that our results nicely complement and extend those of the 

previous study by our group13. In fact, they show how some key neuronal tuning properties, 

which are revealing of the build-up of transformation tolerance and shape selectivity along an 

object-processing pathway, naturally evolve, from V1 to LL, in a direction that is consistent 

with the previously demonstrated ability of LL to support transformation-tolerant object 

recognition – an ability that, in rodents, is likely essential for ecologically relevant tasks such 

as spatial navigation and foraging104,105. In addition, being our experimental approach based 

on the presentation of widely-used parametric stimuli and the application of intuitive metrics, 

it provides a standardized and easily interpretable way to carry out a large-scale screening of 

ventral processing across rodent visual cortical areas. This could help new optical imaging 

studies finding the yet missing functional signature of ventral processing in mouse visual 

cortex – e.g., by analyzing existing large datasets of stimulus-response associations, as the 

one made available by the Allen Brain Observatory106. In this regard, having provided clear 

predictions about the evolution of neuronal tuning along an object-processing pathway will 

likely serve as a reference to guide future explorations of ventral functions in both mice and 

rats. 

 

Materials and methods 

Animal preparation and surgery  

All animal procedures were in agreement with international and institutional standards for the 

care and use of animals in research and were approved by the Italian Ministry of Health: 
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project N. DGSAF 22791-A, submitted on Sep. 7, 2015 and approved on Dec. 10, 2015 

(approval N. 1254/ 2015-PR). 18 naïve Long-Evans male rats (Charles River Laboratories), 

with age 3-12 months and weight 300-700 grams, underwent extracellular recordings in 

either primary visual cortex (V1) or laterolateral (LL) extrastriate visual cortex. Each rat was 

anesthetized with an intraperitoneal (IP) injection of a solution of 0.3 mg/kg of fentanyl 

(Fentanest®, Pfizer) and 0.3 mg/kg of medetomidin (Domitor®, Orion Pharma). The level of 

anesthesia was monitored by checking the absence of tail, ear and hind paw reflex, as well as 

monitoring blood oxygenation, heart and respiratory rate through a pulse oximeter 

(Pulsesense-VET, Nonin). A constant flow of oxygen was delivered to the rat throughout the 

experiment to prevent hypoxia. A constant level of anesthesia was maintained through 

continuous IP infusion of the same anesthetic solution used for induction, but at a lower 

concentration (0.1 mg/kg/h Fentanyl and 0.1 g/kg/h Medetomidin), by means of a syringe 

pump (NE-500; New Era Pump Systems). Temperature was thermostatically kept at 37°C 

using a heating pad to prevent anesthesia-induced hypothermia.  

After induction, the rat was secured to a stereotaxic apparatus (Narishige, SR-5R) in 

flat-skull orientation (i.e., with the surface of the skull parallel to the base of the stereotax) 

and, following a scalp incision, a craniotomy was performed over the target area in the left 

hemisphere (typically, a 2x2 mm2 window) and the dura was removed to allow the insertion 

of the electrode array. When targeting V1, the coordinates of penetration were ~6.5 mm 

posterior from bregma and ~4.5 mm left to the sagittal suture (i.e., AP 6.5, ML 4.5). When 

targeting LL, the coordinates were ~1 mm anterior from lambda and ~1 mm medial from the 

cranial ridge (i.e., AP 8, ML 5). Throughout the procedure, the rat eyes were protected from 

direct light and kept hydrated by repeated application of an ophthalmic ointment (Epigel®, 

Ceva Vetem).  

Once the surgical procedure was completed, and prior to probe insertion, the stereotax 

was placed on a rotating platform and the rat’s left eye was covered with black, opaque tape, 

while the right eye (placed at 30 cm distance from the monitor) was immobilized using a 

metal eye-ring anchored to the stereotax. The platform was then rotated, so as to align the 

right eye with the center of the stimulus display and bring the binocular portion of its visual 

field to cover the left side of the display. During the recordings, the eye and cortex were 

periodically irrigated using saline solution to keep them properly hydrated.  

Neuronal recordings  

Extracellular recordings were performed using single-shank 32-channel silicon probes 

(NeuroNexus Technologies) with site recording area of 775 μm2 and 25 μm of inter-site 

spacing. After grounding (by wiring the probe to the animal’s head skin), the electrode was 

manually lowered into the cortical tissue using an oil hydraulic micromanipulator (Narishige, 

MO-10; typical insertion speed: ~ 5 μm/s), up to the chosen insertion depth (~800-1000 μm 

from the cortical surface when targeting V1, and ~2500 μm when targeting LL). To reach LL, 

the probe was tilted of 30° relative to the vertical to the surface of the skull (i.e., relative to 

the vertical to the base of the stereotax; Fig. 1A), whereas, for V1 recordings, it was inserted 

either perpendicularly (about half of the sessions) or with a variable tilt, between 10º and 30º 

(remaining half of the sessions). Extracellular signals were acquired using a system three 
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workstation (Tucker-Davis Technologies) with a sampling rate of 25 kHz. Before insertion, 

the probe was coated with Vybrant® DiI cell-labeling solution (Invitrogen, Oregon, USA), to 

allow visualizing the probe insertion track post-mortem, through histological procedures. To 

this aim, at the end of the recording session, an electrolytic lesion was also performed by 

delivering current (5 μA for 2 seconds) through the 4 deepest channels at the tip of the shank. 

Visual stimuli 

During a recording session, two kinds of visual stimulation protocols were administered to 

the rat.  

A 15 min-long receptive field (RF) mapping procedure was used to precisely identify 

the visual area each neuron was recorded from (see details below) and optimize the location 

of the RFs for the main presentation protocol (i.e., ensure that most RFs fell inside the 

monitor, by rotating the platform or repositioning the eye through adjustments of the eye-

ring). During the RF mapping protocol, the animal was presented with 10°-long drifting bars 

with four different orientations (0º, 45º, 90º and 135º), tiling a grid of 66 different visual field 

locations (i.e., 6 rows, spanning vertically 50°, and 11 columns, spanning horizontally 100°). 

The bars were white over a black background. During presentation of these stimuli, multiunit 

spiking responses (MUA) were plotted as a function of screen position in real-time, so as to 

estimate the positions of the RF centers across the recording sites of the probe. This allowed 

identifying in real-time when area LL was reached during an oblique probe insertion. 

Specifically, area LL was identified by the third “rightwards” (i.e., from nasal to temporal) 

reversal of the retinotopy at a recording depth close to 2.5 mm DV13. The same analysis was 

applied off-line to well-isolated single units obtained by spike sorting (see below) to precisely 

identify the neurons that were recorded from LL, as illustrated in Fig. 1B. 

 Once the probe was positioned in the final recording location, the main presentation 

protocol was administered. The rat was presented with: i) 1s-long drifting gratings, made of 

all possible combinations of 3 spatial frequencies (SF; 0.02, 0.04 and 0.08 cycle/°), 3 

temporal frequencies (TF; 2, 4 and 8 Hz), and 12 directions (from 0° to 330°, in 30° 

increments); and ii) 30s-long movies of spatially and temporally correlated noise. To allow 

for a precise estimate of neuronal tuning properties, each grating stimulus was presented in 

20 repeated trials, while 80 distinct noise movies were shown for an overall duration of 40 

minutes. All stimulus conditions were randomly interleaved, with a 1 s-long inter stimulus 

interval (ISI), during which the display was set to a uniform, middle-gray luminance level  

(later used to estimate spontaneous firing rates; see below).  

To generate the movies, random white noise movies were spatially correlated by 

convolving them with a Gaussian kernel. The kernel full width at half maximum (FWHM) 

was chosen to match a 0.02 cycle/° SF, which was found to elicit a robust spiking response in 

a series of pilot experiments. For the same reason (i.e., to increase the chance of evoking 

spikes), temporal correlations were also introduced, by convolving the movies with a causal 

exponential kernel with a 33 ms decay time-constant.  

Stimuli were generated and controlled in MATLAB® using the Psychophysics 

Toolbox package and displayed with gamma correction on a 47-inch LCD monitor  (SHARP 

PNE471R) with 1920x1080 pixel resolution, 220 cd/m2 maximum brightness and spanning a 
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visual angle of 110° azimuth and 60° elevation. Grating stimuli were presented at 60 Hz 

refresh rate, whereas noise movies were played at 30 Hz.  

Histology  

At the end of the recording session, each animal was deeply anesthetized with an overdose of 

urethane (1.5 gr/kg) and perfused transcardially with phosphate buffer saline (PBS) 0.1 M, 

followed by 4% paraformaldehyde (PFA) in PBS 0.1 M, pH 7.4. The brain was then removed 

from the skull, post-fixed in 4% PFA for 24 h at 4°C, and then immersed in cryoprotectant 

solution (15% w/v sucrose in PBS 0.1 M, then 30% w/v sucrose in PBS 0.1 M) for 48 h at 4 

°C.  

The brain was finally sectioned into 30 μm-thick coronal slices using a freezing 

microtome (Leica SM2000R, Nussloch, Germany). Sections were mounted immediately on 

Superfrost Plus slides and let dry at room temperature overnight. A brief wash in distilled 

water was performed, to remove the excess of crystal salt sedimented on the slices, before 

inspecting them at the microscope. Each slice was then photographed with a digital camera 

adapted to a Leica microscope (Leica DM6000B-CTR6000, Nussloch, Germany), acquiring 

both a DiI fluorescence image (700 nm DiI filter) and a bright-field image at 2.5X and 10X 

magnification.  

Following the acquisition of this set of images, the sections displaying the electrode 

fluorescent track were further stained for Nissl substance using a Cresyl Violet Acetate 

solution, and new pictures were taken at 2.5X and 10X magnification. By superimposing the 

fluorescence, bright-field and Nissl-stained images, it was possible to reconstruct the tilt and 

the anteroposterior (AP) position of the probe during the recording session, as well as the 

laminar location of the recording sites. Specifically, the boundaries between the cortical 

layers were identified, based on the difference in size, morphology and density of the Nissl-

labeled cells across the cortical thickness.  

The position of the probe relative to such boundaries was determined by tracing the 

outline of the fluorescent track, and taking into account, when available, the location of the 

electrolytic lesion performed at the end of the recording session. Based on the known 

geometry of the silicon probe, it was possible to draw the location of each recording site over 

the shank, thus estimating its laminar location.  

Selection of the single units included in the analyses  

Responses of single units were isolated offline by applying the spike sorting package 

KlustaKwik-Phy107. Automated spike detection, feature extraction and expectation 

maximization (EM) clustering were followed by manual refinement of the sorting using a 

customized version of the “Kwik-GUI” interface. Specifically, the manual curation of the 

automatic output was performed by taking into consideration many features of the candidate 

clusters: i) the distance between their centroids and their compactness in the space of the 

principal components of the waveforms (a key measure of goodness of spike isolation); ii) the 

shape of the auto- and cross-correlograms (important to decide whether to merge two clusters 

or not); iii) the variation, over time, of the principal component coefficients of the waveform 

(important to detect and take into account possible electrode drifts); and iv) the shape of the 
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average waveform (to exclude, as artifacts, clearly non-physiological signals). Clusters 

suspected to contain a mixture of one or more single units were separated using the 

“reclustering” feature of the GUI (i.e., by rerunning the EM clustering algorithm on the 

spikes of these clusters only). At the end of the manual refinement step, only responsive, 

well-isolated single units, with reproducible firing across repeated stimulus presentations, 

were included in the dataset used to perform all subsequent analyses. Specifically, such units 

were defined by having: i) less than 0.5% of “rogue” spikes within 2 ms in their 

autocorrelogram (i.e., units displaying a clear refractory period); ii) a mean stimulus response 

firing rate of 2 spikes/s above baseline (i.e., responsive units); and iii) responsiveness in at 

least 30% of the trials in one or more stimulus conditions (i.e., stable isolation for at least 6 

trials during the recording and reproducible stimulus-evoked response). We also applied an 

additional, very loose screening on the reproducibility of the firing rate across repeated 

stimulus presentations, by including only neurons with a mean correlation coefficient of the 

direction-tuning curve across trials not lower than 0.03. The average baseline (spontaneous) 

firing-rate of each well-isolated unit was computed by averaging its spiking activity over 

every ISI condition. These criteria led to the selection of 105 units in V1 and 104 units in LL. 

Analysis of the responses to drifting gratings  

The response of a neuron to a drifting grating was computed by counting how many spikes 

the neuron fired (on average, across repeated presentations of the stimulus) during the whole 

duration of stimulus presentation, and then subtracting the spontaneous firing rate (see 

above). To quantify the tuning of a neuron for the orientation and direction of drifting 

gratings, we computed two standard metrics, the orientation and direction selectivity indexes 

(OSI and DSI): 

OSI = (𝑅pref − 𝑅ortho) (𝑅pref + 𝑅ortho)⁄  DSI = (𝑅pref − 𝑅opposite) (𝑅pref + 𝑅opposite)⁄  

where 𝑅pref is the response of the neuron to the preferred direction, 𝑅ortho is the response to 

the orthogonal direction, relative to the preferred one (i.e., 𝑅ortho = 𝑅pref +  𝜋 2⁄ ), and 

𝑅opposite is the response to the opposite direction, relative to the preferred one (i.e., 𝑅opposite =

𝑅pref +  𝜋). Values close to one indicate very sharp tuning, whereas values close to zero are 

typical of untuned units.  

The modulation of the spiking response to drifting gratings at the temporal frequency 

𝑓1 of the stimulus was quantified by a modulation index (MI) adapted from Wypych et al.23 

and defined as:  

MI = ||
𝑃𝑆(𝑓1) − 〈𝑃𝑆〉𝑓

√〈𝑃𝑆2〉𝑓 − 〈𝑃𝑆〉𝑓
2

||, 

where 𝑃𝑆 indicates the power spectral density of the stimulus-evoked response, i.e., of the 

peri-stimulus time histogram (PSTH), and  f denotes the average over frequencies. This 
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metric measures the difference between the power of the response at the stimulus frequency 

and the average value of the power spectrum in units of its standard deviation. The power 

spectrum was computed by applying the Blackman-Tukey estimation method to the baseline-

subtracted, 10 ms-binned PSTH. Being MI a standardized measure, values greater than 3 can 

be interpreted as signaling a strong modulation of the firing rate at the stimulus frequency 

(typical of simple-like cells), whereas values smaller than 3 indicate poor modulation (typical 

of complex-like cells).  

Bimodal tuning (i.e., the presence of two distinct peaks in the orientation-tuning 

curve) was quantified by the Bimodal Selectivity Index19,20: 

BSI = (𝑅2nd peak − 𝑅2nd trough) (𝑅1st peak − 𝑅1st trough)⁄  

where 𝑅1st peak and 𝑅2nd peak indicate the two largest peaks in the orientation-tuning curve 

(with 𝑅1st peak > 𝑅2nd peak), and 𝑅1st trough and 𝑅2nd trough indicate the deepest troughs (with 

𝑅1st trough < 𝑅2nd trough). This index takes values close to one for tuning curves displaying two 

equally high peaks (regardless of their distance along the orientation tuning curve) and close 

to 0 for tuning curves with a single peak. Since this index is meant to provide a first-order 

assessment of the tuning for multiple oriented elements, it does not distinguish between cases 

where the orientation-tuning curve has two peaks from cases where it has more than two (i.e., 

the index discriminates curves with only one peak from curves with multiple peaks). 

All the above metrics were computed using the responses of each neuron to the 

gratings shown at the most effective combination of spatial and temporal frequencies. For the 

vast majority of the recorded units in both areas (i.e., 97% and 86% in, respectively, V1 and 

LL), the preferred SFs were the lowest we tested (i.e., 0.02 and 0.04 cycles/°). Similarly, the 

preferred TFs were the lowest we tested (i.e., 2 and 4 Hz) for most neurons in both V1 (97%) 

and LL (88%). 

Analysis of the responses to the noise movies  

We used the spike-triggered average (STA) analysis24,25 to estimate the linear RF structure of 

each recorded neuron. The method was applied to the spike trains fired by the neuron in 

response to the spatiotemporally correlated noise (see above). The method yields an ordered 

sequence of images, each showing the linear approximation of the spatial RF at different 

times before spike generation (see examples in Fig. 2). To take into account the correlation 

structure of our stimulus ensemble and prevent artifactual blurring of the reconstructed filters, 

we “decorrelated” the resulting STA images by dividing them by the covariance matrix of the 

whole stimulus ensemble24,25, using Tikhonov regularization to handle covariance matrix 

inversion. Statistical significance of the STA images was then assessed pixelwise, by 

applying the following permutation test. After randomly reshuffling the spike times, the STA 

analysis was repeated multiple times (n = 50) to derive a null distribution of intensity values 

for the case of no linear stimulus-spike relationship. This allowed z-scoring the actual STA 

intensity values using the mean and standard deviation of this null distribution (Fig. 2 and 4). 

The temporal span of the spatiotemporal linear kernel reconstructed via STA extended from 

330 ms before spike generation to the time of spike generation, corresponding to a duration of 
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10 frames of the noise movie played at 30 Hz (Fig. 2). These procedures were performed on 

downsampled noise frames (16x32 pixels), with the resulting STA images that were later 

spline interpolated at higher resolution for better visualization and to obtain predictions of the 

neuronal responses using LN models (see next paragraph). 

After estimating the linear spatiotemporal structure of a RF with STA, we used it as a 

filter in the input stage of a classical Linear-Nonlinear (LN) model of stimulus-response 

relationship24,25. To obtain a prediction of the tuning of the neuron over the direction axis, the 

sequence of frames of each drifting grating was fed as an input to the STA-estimated linear 

filter. The output of the filter was then passed through a rectifying nonlinearity with unit gain 

to obtain the final response of the model to each stimulus frame. We finally integrated the 

response of the LN model through time to predict the activity of the neuron for each direction 

of the tuning curve. The agreement between the LN-predicted and observed tuning curves 

(black vs. colored curves in Fig. 2.i) was quantified by computing the fraction of variance 

explained by the model prediction. In addition, we also quantified how well the time course 

of the neuronal response to the preferred grating was explained by the time course of the LN-

model prediction (black vs. colored curves in Fig. 2.ii, bottom), again in terms of explained 

variance. 

 We also estimated the amount of signal contained in a given STA image by defining a 

quality metric based on a measure of maximal local contrast. Specifically, we used MATLAB 

“rangefilt” function (MATLAB Image Processing toolbox) to compute the local contrast in a 

STA image over convolutional patches with size equal to one fifth of the total image size and 

stride 1 (the local contrast in every patch was measured as the difference between the 

maximum and the minimum image intensity values within the patch itself). From the 

resulting local-contrast map (Fig. 5A, middle plot), we obtained a distribution of contrast 

intensity values (Fig. 5A, rightmost plot), and we defined a contrast index (CI) by taking the 

0.9 quantile of this distribution (dashed line; the 0.9 quantile was chosen, instead of simply 

using the maximum local-contrast value, to make this measure more noise-robust). This CI 

metric was then used to quantify the amount of signal contained in the STA image. A STA-

based RF was considered as well defined if, among the sequence of STA images 

corresponding to each pre-spike-generation time lag (see examples in Fig. 2), the one with the 

highest contrast had CI > 5.5 (usually, such highest-contrast image was the third in the 

sequence, corresponding to 66-99 ms before the spiking event; see examples in Fig. 5C). It 

should be noted that, since the intensity values of the original STA images were expressed as 

z-scores (see above), the 5.5 threshold can be interpreted in terms of peak-to-peak (i.e. white-

to-black) distance in σ units of the z-scored STA values. The 5.5 value was chosen in such a 

way to be conservative enough to include only STA images with a good signal-to-noise-ratio, 

but liberal enough to allow a fraction of LL neurons (whose STA images had typically poor 

contrast) to be considered for further analysis. This allowed a meaningful statistical 

comparison between V1 and LL in terms of lobe count (see next paragraph). 

To further analyze the spatial structure of each well-defined, STA-based RF we 

automatically counted how many distinct lobes the highest-contrast STA image obtained for a 

unit contained. To this aim, the selected image was background-suppressed with the Perona-

Malik algorithm108 to enhance the high-intensity regions within the RF and reduce noise-

driven false lobe detections. We then took the absolute value of the resulting image and we 
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set a threshold over its z-score values (ranging from 3 to 6 units of standard deviations; Fig. 

5B). Based on such binarized image, we computed: i) the centroid position of each simply 

connected region (blue dots); and ii) the area-weighted center of mass (CM) of the image 

(green dot). Finally, we defined a “region of acceptability” for the centroids of the simply 

connected regions to be included in the lobe count. This region was a circle, centered on the 

CM, with a radius that was twice as large as the diameter of the largest simply connected 

region. Setting this acceptability circle allowed excluding spurious, simply connected (often 

very small) regions that were far away from the CM of the STA image (e.g., see the yellow 

dot in Fig. 5B), especially in the case of RFs with low CI. The total number of accepted 

centroids at the end of this selection procedure is the lobe count reported in Fig. 5F for the 

different binarization thresholds. 

HMAX simulations  

To obtain predictions about the evolution of the tuning properties of visual neurons along an 

object-processing pathway, we simulated ventral stream functional architecture using the 

HMAX model16. The structure of the model has been described at length in the Results (Fig. 

3) and further motivated in the Discussion. Here, we provide some technical details about its 

specific implementation.  

For our application, we have chosen the version of the model described in 27 and 

downloaded from the website http://maxlab.neuro.georgetown.edu. Briefly, the model is a 

feedforward neural network with alternating layers of units performing: i) either a max-

pooling (invariance-building) operation over input units with the same feature-selectivity, but 

RFs having different positions/scales (C1 and C2 units; dashed lines in Fig. 3); or ii) a 

template-matching (selectivity-building) operation over input units with different feature 

selectivity (S1 and S2 units; solid lines). As pointed out in the Discussion, the feature 

representations built by the model in the S-type layers are not learned, and there is no attempt 

to maximize classification accuracy in a given discrimination task. The S1 layer is simply a 

bank of Gabor filters with various orientations, spatial frequencies, positions and scales 

(similar to V1 simple cells), while the S2 units are tuned to random patches of images taken 

from various databases (e.g., Caltech 101), with different units having as a template the same 

image patch, but at different positions and scales. Such static, hardwired architecture makes 

the model very suitable to isolate the role of the max-pooling and template-matching 

computations in determining the tuning for oriented gratings along a ventral-like processing 

hierarchy. 

To this aim, we fed as an input to the network (i.e., to the S1 layer) a set of drifting 

gratings spanning the same range of directions used in the neurophysiology experiment. Each 

drifting grating consisted of a sequence of progressively phase-shifted frames, and the 

activations of the units of the network in response to such frames were computed to simulate 

the dynamics of the neuronal responses during stimulus presentation. For each sampled unit, 

its preferred stimulus direction was selected and the power spectrum of its time-dependent 

(i.e., frame-dependent) response was computed to estimate the modulation index (MI), thus 

quantifying its phase sensitivity. We also integrated the activation of each unit over the whole 

stimulus presentation to compute its overall mean response for a given grating direction. By 
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iterating this procedure for each stimulus direction, we built orientation and direction tuning 

curves and computed OSI and BSI values. All these indexes were computed for a randomly 

selected subset of units (n = 1000) in each layer, which was enough to obtain smooth 

distributions for the relevant indexes. The resulting distributions are those shown in Fig. 4C, 

7C and 8C. 

VGG16 simulations 

We further checked whether the processing expected to take place along an object-processing 

hierarchy is consistent with the trends observed in rat visual cortex, by measuring the tuning 

for drifting gratins along the layers of VGG16, a state-of-the-art deep convolutional neuronal 

network (DCNN) for image classification17. VGG16 is a large DCNN, totaling about 138 

million parameters across its 16 convolutional and fully-connected layers. More specifically, 

the network consists in 5 blocks (colored boxes in Fig. 11A), made of 2 or 3 convolutional 

layers, with each block followed by a max-pooling layer (white boxes in Fig. 11A), and a 

final stack of three additional, fully-connected layers on top, before the softmax output layer 

for classification. 

Detailed explanations of the roles the convolutional and pooling layers can be found 

elsewhere64. Briefly, the convolutional layer is an architectural prior that allows exploiting 

the structure of natural visual inputs (in particular, the spatial localization of visual objects 

and the ubiquity of translation as a commonly occurring identity-preserving transformation) 

to reduce the number of free parameters. Thanks to the structure of the visual world, a feature 

detector that is useful in one part of the visual field will likely be useful also in another part 

(because of the above-mentioned translation of visual features, caused by physical 

movements of objects and/or sensors). This allows “sharing” filter parameters across the 

visual field, by learning a single spatially localized filter in a given position and then applying 

it iteratively over the whole span of each input image. This also endows convolutional layers 

with spatial sparsity of connections: each unit in a convolutional feature map receives 

information only from a small, localized, subset of units in the previous layer (largely cutting 

down the number of parameters, as compared to a fully connected network). The pooling 

layer is another architectural prior that consists in performing a downsampling operation over 

the input (usually via a “max” computation, equivalent to the one implemented by HMAX), 

thus hardwiring in the output some amount of translation tolerance. This, again, can be seen 

as a way of leveraging on the prior knowledge that naturally occurring translation of visual 

objects preserve their identity, in order to shrink the width of the feature maps (thus reducing 

the number of parameters needed in the subsequent layers) and, at the same time, helping the 

network to build robust, invariant representations. 

For our tests, we used VGG16 pre-trained as it was for the ILSVRC-2014 

competition17. The weights were downloaded from http://www.robots.ox.ac.uk/~vgg 

(Chollet, 2015, GitHub, https://github.com/fchollet/keras) via Keras interface. Those weights 

were originally obtained by training the network on the ImageNet dataset – a large 

photographic database very popular as a computer vision benchmark (including over 14 

million hand-annotated pictures with labels indicating which objects are pictured in each 

image). As done with HMAX, we fed to the input layer of the network a set of drifting 
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gratings, resulting from combining 30 spatial frequencies, 4 temporal frequencies and 

24 different directions. We then computed the activation (over the entire duration of each 

presented grating) of a pool of 1000 randomly selected units from the first convolutional 

layer of each block, from which we measured the relevant tuning properties of the units, to 

obtain the statistical characterization shown in Fig. 11B and C. 

Experimental design and statistical analysis  

To decide how many neurons to record in each of the two areas (V1 and LL) under 

investigation, we took inspiration from previous studies of rodent and monkey visual cortex 

(see Tables 1 and 2). In most of these studies, a good statistical assessment of the tuning 

properties of visual neurons (e.g., orientation tuning and phase sensitivity) was based on a 

sample size of > 100 units, although a few studies used less (~50 or fewer) and some used 

more (> 200). We thus set as a target for our study to collect at least 100 very well-isolated 

single-units (SUs) per area. Since the number of SUs obtained from each recording session 

was highly unpredictable, we performed multiple recording sessions from the same or 

different animals until our target number was reached in both areas. This required performing 

neuronal recordings from V1 of 12 different rats (for a total of 15 recording sessions) and 

from area LL of 6 different rats (for a total of 9 recording sessions), yielding a total of 105 

and 104 responsive and reproducibly driven SUs in, respectively, V1 and LL. In V1, 5 

sessions yielded more than 10 SUs, 4 sessions yielded between 5 and 10 SUs, while the 

remaining 6 sessions yielded less than 5 SUs. In LL, 5 sessions yielded more than 10 SUs, 3 

sessions yielded between 5 and 10 SUs, while the last session yielded less than 5 SUs. When 

considered in terms of neurons yielded by each animal, the mean number of units recorded 

per rat was 8.75 in V1 and 17.33 in LL, while the minimal and maximal numbers of units per 

rat were, respectively, 1 and 29 in V1, and 3 and 45 in LL. 

Throughout the study, differences between median values of two distributions were 

quantified using a Mann-Whitney U-test. Differences in the fraction of units above or below 

a certain threshold index value (for MI, OSI, BSI or CI) were quantified using the χ2 test for 

homogeneity with 1 degree of freedom. When needed (i.e., in case of small sample size), 

Fisher exact-test was used to compare two distributions (e.g., the lobe count distributions in 

Fig. 5F). To check whether the distributions of the relevant indexes (i.e., MI, OSI, and BSI) 

were different between V1 and LL we applied a Kolmogorov-Smirnov test. To compare the 

average RF size extracted from the STA images, we applied an unpaired, one-tailed t-test 

with 65 degrees of freedom. To compare the information conveyed by neuronal responses 

about stimulus orientation in V1 and LL, we applied an unpaired, two-tailed, t-test with 207 

degrees of freedom. To assess the significance of the correlation between the information 

about stimulus orientation and OSI, we used paired, two-tailed, t-tests with 103 (in V1) and 

102 (in LL) degrees of freedom after applying Fisher transformation. Similarly, when testing 

for correlation between BSI and OSI, we adopted paired, two-tailed, t-tests with 103 (in V1) 

and 102 (in LL) degrees of freedom after applying Fisher transformation. Finally, in the 

meta-analysis shown in Fig. 4D and 7D, we statistically compared the mean fractions of 

modulated (Fig. 4D) and orientation-tuned (Fig. 7D) units across primate visual cortical areas 

V1, V4 and IT using a one-way ANOVA with, respectively, 13 and 14 degrees of freedom.   
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A template-matching algorithm for laminar 

identification of cortical recording sites from evoked 

response potentials 

 

 

 

Abstract 

In recent years, the advent of the so-called silicon probes has made it possible to 

homogeneously sample spikes and local field potentials (LFPs) from a regular grid of cortical 

recording sites. In principle, this allows inferring the laminar location of the sites based on 

the spatiotemporal pattern of LFPs recorded along the probe, as in the well-known current 

source-density (CSD) analysis. This approach, however, has several limitations, since it 

usually relies on visual identification of landmark features (i.e., current sinks and sources) in 

the CSD pattern that can be easily missed, if the probe does not span the whole cortical 

thickness. To overcome these limitations, we developed an alternative approach, based on 

finding the optimal match between the LFPs recorded along a probe in a given experiment 

and a template LFP profile that was computed by merging 18 recording sessions, in which the 

depth of the recording sites had been recovered through histology. We show that our method 

can achieve an accuracy of 79 µm in recovering the cortical depth of the recording sites, thus 

providing an alternative to CSD that, being fully automated, is free of subjective judgments 

and works reliably also for recordings spanning a limited cortical stretch. 

 

Introduction 

Most neuronal circuits in the mammalian brain are characterized by a complex spatial 

organization that is tightly intertwined with their function. In particular, in the cortex, laminar 

structure is closely linked to the flow of information among different neuronal populations1,2. 

Therefore, to fully understand the principles of operation of cortical circuits, it is essential to 

analyze the activity of single neurons in their spatial context. 
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Historically, extracellular recordings have been the workhorse method for studying 

cortical functions and they are still largely used in system neuroscience experiments, 

although neurophysiologists are increasingly replacing the traditional single electrode 

approach with multielectrode arrays. The latter allow isolating the waveforms of the action 

potentials (a.k.a. spikes) fired by many single neurons at once with sub-millisecond temporal 

precision3 – with the number of recorded units ranging from a few tens to many hundreds, 

depending on the shape, geometry, technology and materials used to build the array4,5. 

However, such powerful experimental approach has a main limitation: its spatial “blindness”. 

In fact, looking at the spikes detected on a given channel of an extracellular electrode gives 

no direct information about the spatial (e.g., laminar) location of the source neurons. Thus, it 

is not surprising that the challenge of coordinating multielectrode recordings with anatomical 

information has been recognized in the literature as a fundamental one6,7. In particular, the 

most basic anatomical metadata needed to fully make sense of extracellular cortical 

recordings is the laminar identity of the recorded single units (i.e., the cortical layers in which 

the recorded neurons sit). 

This problem has been partially addressed by the advent of the so-called silicon (or 

laminar) probes – fork-shaped silicon substrates with several shanks, along which multiple 

recording sites are placed with a regular spacing8,9. These arrays allow spanning 

homogeneously the whole cortical thickness or a part of it, thus recording simultaneously 

spiking signals and “local field potentials” (LFPs) from neurons located in multiple cortical 

layers. This makes it possible, in principle, to infer the laminar location of the recording sites 

based on the spatio-temporal pattern of LFPs recorded along the probe, without resorting to 

laborious and time-consuming histological procedures. 

 Throughout the years, a technique known as “current source-density” (CSD) analysis 

has been widely exploited to fulfill this goal in different animal models, from monkeys10–13 to 

rodents14–21. CSD exploits the LFP gradients recorded across geometrically-arranged 

electrode arrays to estimate the extracellular current flow in the surrounding tissue22. This is 

done by computing the second spatial derivative of the LFPs recorded along the axis 

perpendicular to the laminar structure of the cortex. In fact, this quantity is directly 

proportional to the extracellular current, if one assumes the tissue as being composed of a 

stack of two-dimensional isopotential planes. The resulting pattern of current sinks and 

sources across the cortical depth, mainly linked to local synaptic activity6, can thus be used to 

infer the laminar location of the recording sites by visual inspection. More specifically, a key 

landmark used in this process is the prominent current sink associated with thalamic afferent 

inputs impinging into layer 4 (L4) of primary sensory cortices. Such characteristic CSD 

feature is usually associated with an inversion of the polarity of the stimulus-evoked LFP 

waveforms – i.e. the evoked response potentials (ERP), a.k.a. visually evoked potentials 

(VEP) in the case of visual stimulation. 

Despite its widespread use, laminar identification through CSD has several drawbacks 

and limitations. First, the identification of the layers is usually carried out through visual 

inspection of the CSD pattern. Such reliance on the subjective judgment of the investigator 

implies a lack of objectivity and standardization, the unknown precision of the inference, and 

the slowness and laboriousness of the process. Second, although the CSD is meant to enhance 

the spatial resolution in the localization of the signal’s source, as compared to raw LFPs, this 
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comes at the expense of being more sensitive to imperfections of the electrode array (e.g., 

unwanted variations of channels impedance along the electrode array that may occur with re-

use of the probe or due to fabrication defects). Third, and more importantly, to infer with 

reasonable confidence the laminar position of the recording sites, it is essential to span a large 

fraction of the cortical depth, so as to observe the landmark sink in L4. This can be a serious 

limitation, when silicon probes with tightly packed sites (e.g., 25 µm inter-site spacing) are 

inserted into the cortex (often with a tilt), so as to densely sample neuronal populations from 

a specific supragranular or infragranular layer, given that the L4 sink will not be observable 

in such cases. 

The approach presented in this study was developed to overcome these limitations and 

perform an automated laminar identification of the recording sites along a cortical silicon 

probe. This was achieved by finding the optimal match between the VEPs recorded across the 

probe in a given experiment and a template VEP profile, spanning the whole cortical 

thickness, that was computed by merging several recording sessions, in which the ground-

true depth and laminar location of the recording sites were recovered through histology. As a 

result, our method was able to achieve, without the need of any subjective human judgment, a 

cross-validated accuracy of 79 µm in recovering the cortical depth of the recording sites and a 

72% accuracy in returning their laminar position. 

 

Results  

Our automated method for inferring the cortical depth and laminar location of the recording 

sites of a silicon probe is based on three key steps. First, we had to build a “template VEP 

profile” along the cortical thickness, by averaging the waveforms of the VEPs recorded at the 

same cortical depth across multiple, repeated experimental sessions employing the same (or 

similar) visual stimulation protocol. Second, we had to establish a map between cortical 

depth and laminar location in the primary visual cortex (V1) of the animal model used to 

demonstrate our method – the Long-Evans rat. Third, we had to find the optimal match 

between the template VEP profile and candidate spatial arrangements of the VEPs recorded 

from a given probe in a given session, so as to infer the cortical depth of the recording sites of 

the probe and, through the depth-to-layer map, their laminar location. 

This required obtaining a rich dataset of VEPs, coupled with the histological depth 

localization of the electrodes from which they were recorded. This was achieved by merging 

the V1 recordings collected in 23, for which the histological analysis yielded the most 

accurate estimates (i.e., 10 recording sessions performed in 8 different rats), with 8 additional 

V1 recording sessions obtained from 5 rats. Both datasets consisted of extracellular 

recordings performed in anesthetized, adult, Long Evans male rats, passively exposed to full-

contrast, sinewave drifting gratings of different orientations, spatial and temporal frequencies, 

each lasting 1 s and presented in 20 repeated trials (see Materials and method). The electrode 

arrays used to perform these recordings were single-shanks Neuronexus® silicon probes, with 

either 32 or 64 recording sites and 25 µm inter-site spacing. Raw voltage traces were 

acquired at 24 kHz sampling rate and later downsampled to 610 Hz after lowpass filtering, to 

obtain LFPs (see Materials and methods). 



68 
 

Let’s now delve into the details of the first step required by our method: building the 

template VEP profile and the depth-to-layer map. 

In order to obtain the average waveforms needed to build the template VEP profile, 

168 ms-long segments (corresponding to 275 samples) were extracted from the LFP traces 

that were recorded in response to all the presentations of the drifting gratings, starting from 

the onset of each stimulus. For any given recording site, these 168 ms-long VEPs were 

averaged across all presented trials, directions, spatial and temporal frequencies, so as to 

obtain a very smooth average VEP. The different temporal frequency of the gratings used to 

collect the two datasets was not an issue, because extracting the first 168 ms of each VEP 

restricted the analysis to the initial transient of the stimulus-evoked LFP deflection, which is 

largely independent from the grating’s frequency. 

After obtaining the average VEP for every channel of each probe used in our 

experiments, we further averaged the resulting waveforms, based on the depth (i.e., the 

distance from the cortical surface) at which they were recorded. To this aim, we discretized 

the cortical thickness (that, in rat V1, approximately spans 1350 µm24) into nine 150 µm-wide 

bins and we averaged the VEPs recorded from all the sites whose depth, as measured though 
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histology, fell inside the same bin. This yielded the template VEP profile shown in Fig. 1A, 

where a small, upward deflection, starting at about 90 ms following stimulus presentation, 

gradually molds into an increasingly deeper, broader and later downward deflection, while 

traveling from the surface to the bottom of the cortex – a profile that is qualitatively 

consistent with the laminar pattern of VEPs reported in previous rodent studies15,21. 

To obtain the depth-to-layer map, we established the laminar location of the recording 

sites in each recording session through visual inspection of the corresponding Nissl-stained 

brain slice (see Materials and methods for details and Fig. 3B for an example slice). By 

combining this information with the depth of the sites (also recovered from the Nissl 

sections), we computed the probability, for a site within a given cortical lamina, to be found 

at a given cortical depth. Fig. 1B shows the resulting depth distributions for layers 1-3 

(yellow), layer 4 (brown), layer 5 (green) and layer 6 (blue). Given these distributions, the 

optimal boundary between a pair of adjacent layers can be defined as the depth at which the 

corresponding distributions intersect, since this choice minimizes the number of incorrect 

attributions between the two layers. The resulting boundaries (dashed lines) were thus used to 

build the final depth-to-layer map, shown in Fig. 1C. 

Let’s now delve into the details of the second step mentioned above:  the VEP 

template-matching algorithm at the core of our method, whose aim is to infer the most likely 

insertion depth and tilt of each shank of the silicon probe used in a given recording session, 

relative to the surface of the cortex.  

The algorithm consists of two steps. First, we compute the Euclidean distance 

between the observed input data (i.e., the VEPs recorded across the channels of the shank 

under exam) and the VEPs expected for any possible combination of depths and tilts of the 

shank over a 25x25 search grid (spanning a 400-1600 µm range of tip depths and a 0°-50° 

range of tilts). These expected VEPs are obtained from the template VEP profile (Fig. 1A) 
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under the hypotheses that the tip of the shank (i.e., the deepest recording site) is positioned at 

the desired depth and the whole shank is rotated of the desired tilt with respect to the cortical 

surface. These tilt and depth parameters, combined with the known inter-site spacing, 

univocally specify the expected depth of each recording site and, therefore, the expected VEP 

associated to that site, based on the template VEP profile. Fig. 2 graphically illustrates this 

procedure, by showing how two hypothetical shank insertions, having different tip’s depths 

and tilts, give rise to two different patterns of expected VEPs. These are matched to the 

pattern of VEPs that was actually observed along the shank. The outcome of this procedure is 

a 25x25 matrix (Fig. 2C), where each element reports how good the match is between the 

observed VEPs and the expected VEPs (in terms of Euclidean distance), depending on the 

hypothesized insertion depth and tilt of the shank.   

The second step of the algorithm makes use of this matrix to define the inferred 

insertion depth and tilt as the weighted average of all tested combinations of depths and tilts, 

where the weights are the inverse of the Euclidean distances reported in the matrix. Such a 

final estimate of the insertion depth and tilt of the shank is then combined with its known 

inter-site spacing to predict the depth of each recording site. This approach was preferred to 

simply use the depth and tilt values corresponding to the minimum of the matrix of Euclidean 

distances, because the latter yielded less accurate estimates of the sites’ depth – i.e., with a 

root mean squared error (RMSE) that was more than twice as large as that reported in the 

next paragraph (see also Fig. 5A). Once inferred the cortical depth of a recording site along a 

given shank, the depth-to-layer map (shown in Fig. 1C) can be used to get also the putative 

layer assignment of the site. 

Finally, let’s turn to the quantitative validation of the depth inference method we 

propose.  

To measure the accuracy of our method at inferring the cortical depth of the recording 

sites and their laminar location, we used a leave-one-out cross-validation procedure that 

worked as follows. We took only 17, out of the 18 recording sessions, to build the template 

VEP profile (see Fig. 1A), and we used it to predict the depth of the recording sites for the 

remaining left-out session. This procedure was applied exhaustively, so as to obtain the cross-

validated accuracy of our predictions for each of the 18 sessions. 

Fig. 3 shows the reconstruction of the recording sites of a 32-channel silicon probe, 

obtained with our template-matching method for an example session. This session was 

chosen for illustrative purposes, because the error in inferring the depth of the sites was the 

largest among the 18 sessions and, as such, it allowed a clearer visualization of the difference 

between prediction and ground-truth. Yet, for each of the 32 sites, the predicted depth (dots) 

was at less than 212 µm from the actual depth (diamonds), with an overall root mean squared 

error (RMSE) of 166 µm (the prediction was based on the shank insertion geometry that was 

inferred from the matrix of Euclidean distances shown in Fig. 2C). The actual depth was 

established by visual inspection of the Nissl-stained histological section (Fig. 3B), with 

superimposed the fluorescence image of the insertion track of the probe (in red), which had 

been coated with the fluorescent dye DiI before starting the recording (see Materials and 

methods). Visual examination of the section also allowed recovering the boundaries between 

the cortical layers (white dashed lines). When such ground-truth layer attribution was 

compared to the one predicted on the basis of the inferred cortical depth and the average 
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depth-to-layer map of Fig. 1C (also reported in Fig. 3A – see the gray dashed lines), the 

fraction of sites whose laminar location (color coded in Fig. 3A) was correctly predicted 

(black-circled dots) was 75%. 

Overall, this example session allows appreciating how two sources of errors concur to 

limit the accuracy of the predicted laminar location of the sites: 1) the error on the predicted 

depth (i.e., the vertical distance between dots and diamonds in Fig. 3A); and 2) the difference 

between the actual layer boundaries for a specific recording session (as assessed through 

histology) and those inferred from the depth-to-layer map (i.e., the difference between the 

white dashed lines of Fig. 3B and the gray dashed lines of Fig. 3A). Nevertheless, despite 

these potential error sources, we were able to achieve accurate depth and layer predictions for 

most of the recording sessions. This is illustrated in Fig. 4, which shows the cross-validated 

accuracy of our method for each of the 18 sessions examined in our study (the gray area 

highlights the example session we just saw in detail in Fig. 3).  
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In most cases, the absolute distance between predicted (colored dots) and measured 

(black dots) depth of the recording sites was lower than 115 µm (75% quantile of the absolute 

error distribution), with the method yielding, for some sessions, RMSEs as low as a few tens 

of µm. As a result, the overall distribution of absolute depth errors (across all the sites of all 

the recording probes) displayed (Fig. 5A) a prominent peak in the 0-50 µm range, with no 

errors above 220 µm. This yielded a mean RSME ± SEM across sessions of 79 ± 11 µm.  

Fig. 4 also reports the predicted layer attribution of the recording sites (color coded, 

with the layer boundaries marked by dashed lines) and whether such prediction was correct 

(black-circled dots), according to the histological assessment of the cortical sections. The 

fraction of correctly labeled sites (i.e. accuracy) ranged from 41% to 94%, with a mean ± 

SEM of 76 ± 3% across the sessions (first bar in Fig. 5B), when a distinction in four cortical 

laminae was considered (i.e., same as shown in Fig. 1C). When a coarser grouping of the 

layers in supragranular (1-3), granular (4) and infragranular (5-6) was considered, the 

accuracy of the labeling increased to 83 ± 3%  (second bar in Fig. 5B), and further grew to 91 

± 2% for a binary partition of the layers into superficial (1-4) and deep (5-6; third bar in Fig. 

5B).  

The errors in predicting the laminar locations were fairly homogeneously distributed 

across the cortical thickness, when the accuracy was measured in terms of recall (i.e., the 

fraction of sites belonging to a given layer that were correctly labeled as such). As shown in 

Fig. 5C (black bars), recall accuracy peaked in layer 5 (~80% correct), slightly dropped in the 

adjacent layers (~75%), to become ~60% in the supragranular ones. When measured in terms 

of precision (i.e., the fraction of sites labeled in a given way, for which the labeling was 

correct), the accuracy also peaked in layer 5 (~80% correct) and dropped substantially only in 

layer 6 (~40%). 
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Discussion 

The method we developed provides a valuable, automated alternative for inferring cortical 

depth and laminar location of the recording sites along a silicon probe, as compared to 

approaches based on visual inspection of the pattern of current sinks and sources that can be 

derived from the LFPs recorded along the probe, as in CSD analysis10–21.  

One major advantage over these approaches is that, once the template VEP profile 

(Fig. 1A) and the depth-to-layer map (Fig. 1C) have been established from a number of 

training sessions (with ground-truth depth and laminar information recovered through 

histology), our method is fully automatized and does not require any subjective decision 

about the location of layer boundaries to be taken.  

A second, key feature of our method is that its accuracy can be quantitatively and 

rigorously estimated, given the above-mentioned ground-truth information gathered through 

histology. Specifically, our cross-validated measurements indicate that our method is very 

accurate in recovering the depth of the recording sites, with an average RMSE lower than 100 

µm (Fig. 5A, dashed vertical line). In addition, the method yields reliable estimates of the 

cortical laminae, with a 76% accuracy for fine-grained discriminations that increases to 80-

90% for coarser groupings of the layers (Fig. 5B), and with both the recall and precision 

accuracies peaking in layer 5 (~80% correct labeling; Fig. 5C). Unfortunately, a quantitative 
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comparison with CSD-based methods in terms of accuracy is hard to carry out because, to our 

knowledge, the accuracy of these approaches, relative to a ground-truth established through 

histology, typically is not reported. 

Finally, another distinctive feature of our method is that it is able to reliably infer the 

depth and laminar location of the recording sites also in sessions where the probe did not span 

the whole cortical thickness and, in particular, in sessions where the VEPs were not recorded 

from the supragranular layers (see, in Fig. 4, the accuracy attained in sessions where the sites 

were all located below the boundary between layer 3 and 4). As mentioned previously, failure 

to sample VEPs from layers 2-3 would make it hard to properly identify the current sink 

associated with thalamic afferent input impinging into layer 4 by visual inspection of the 

CSD pattern. 

In conclusion, we believe that our automated method for depth inference and laminar 

identification of recording sites represents a valuable alternative over existing, more 

qualitative approaches. Obviously, since our approach is based on obtaining a reliable 

estimate of the average VEP profile across the cortical thickness and of the depth and laminar 

location of the recording sites through histology, its application needs to be fine-tuned as a 

function of the cortical area under exam. In our study, we implemented and demonstrated the 

validity of our approach in the primary visual cortex of the rat. Its application to a different 

cortical area and/or a different species would require building first an appropriate VEP 

template and obtaining ground-truth depth measurements for that area/species.  

 

Materials and methods 

Animal preparation and surgery  

All animal procedures were in agreement with international and institutional standards for the 

care and use of animals in research and were approved by the Italian Ministry of Health: 

project N. DGSAF 22791-A, submitted on Sep. 7, 2015 and approved on Dec. 10, 2015 

(approval N. 1254/ 2015-PR). Extracellular recording data from a total of 13 naïve, Long-

Evans male rats (Charles River Laboratories), 8 from V1 sessions of the study23 reported in 

chapter I of this thesis and 5 from V1 sessions of the study described in chapter V, were 

included in the analysis. Their age ranged 3-12 months and their weight ranged from 300 to 

600 g. Each rat was anesthetized with an intraperitoneal (IP) injection of a solution of 0.3 

mg/kg of fentanyl (Fentanest®, Pfizer) and 0.3 mg/kg of medetomidin (Domitor®, Orion 

Pharma). The level of anesthesia was monitored by checking the absence of tail, ear and hind 

paw reflexes, as well as monitoring blood oxygenation, heart and respiratory rate through a 

pulse oximeter (Pulsesense-VET, Nonin). A constant flow of oxygen was delivered to the rat 

throughout the experiment to prevent hypoxia. A constant level of anesthesia was maintained 

through continuous IP infusion of the same aesthetic solution used for induction, but at a 

lower concentration (0.1 mg/kg/h Fentanyl and 0.1 g/kg/h Medetomidin). This was done 

using a syringe pump (NE-500; New Era Pump Systems). Internal temperature of the animal 

was thermostatically kept at 37°C using a heating pad to prevent anesthesia-induced 

hypothermia.  
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After induction, the rat was secured to a stereotaxic apparatus (Narishige, SR-5R) in 

flat-skull orientation (i.e., with the surface of the skull parallel to the base of the stereotax) 

and, following a scalp incision, a craniotomy was performed over the target area in the left 

hemisphere (typically, a 2x2 mm window) and the dura was removed to allow the insertion of 

the electrode array. The coordinates used to target V1 were ~6.5 mm posterior from bregma 

and ~4.5 mm left to the sagittal suture (i.e., AP 6.5, ML 4.5). Throughout the procedure, the 

eyes of the animal were protected from direct light and kept hydrated by repeated application 

of an ophthalmic ointment (Epigel®, Ceva Vetem).  

Once the surgery was completed, before probe insertion, the stereotax was placed on a 

rotating platform and the rat’s left eye was covered with black, opaque tape, while the right 

eye (placed at 30 cm distance from the monitor) was immobilized using a metal eye-ring 

anchored to the stereotax. The platform was then rotated, so as to align the right eye with the 

center of the stimulus display and bring the binocular portion of its visual field to cover the 

left side of the display. For the whole duration of the recordings, eye and cortex were 

periodically irrigated using saline solution in order to keep them properly hydrated.  

Electrophysiological recordings 

Extracellular recordings were performed using single-shank, 32-channel silicon probes 

(NeuroNexus®) with site recording area of 775 μm2 and 25 μm of inter-site spacing. After 

grounding (by wiring the probe to the animal’s head skin), the electrode was manually 

lowered into the cortical tissue using an oil hydraulic micromanipulator (Narishige, MO-10; 

typical insertion speed: ~ 5 μm/s), up to the chosen insertion depth (~800-1200 μm from the 

cortical surface).  

The probes were inserted with a variable tilt, between 0º and 30º, relative to the 

cortical surface. Extracellular signals were acquired using a system three workstation 

(Tucker-Davis Technologies) with a sampling rate of 25 kHz. Before insertion, the probe was 

coated with Vybrant® DiI cell-labelling solution (Invitrogen, Oregon, USA) to allow 

visualizing the probe insertion track post-mortem through histological procedures. To this 

aim, at the end of the recording session, an electrolytic lesion was also performed by 

delivering current (5 μA for 2 seconds) through the 4 deepest channels at the tip of the shank. 

Raw voltage traces were acquired at 25 kHz sampling rate and later downsampled to 

610 Hz after lowpass filtering to obtain LFPs. Traces were then visually inspected to identify 

possibly “broken” channels (easily identifiable by having very strongly attenuated voltage 

variations as compared to the surrounding channels). The traces recorded at such defective 

sites were replaced by the average of the two surrounding channels (i.e., above and below the 

broken site), so as to obtain a set of LFP traces without artifactual signal discontinuities 

across channels. 

After this pre-processing step we extracted 168 ms-long (i.e. 275 samples-long) VEP 

traces from each site/channel, each starting from the onset of stimulus presentation. More 

specifically, the responses to all the repeated presentations of all the drifting gratings used 

during a recording session were averaged to obtain a smooth VEP for each channel (see next 

section and the Results). 
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Visual stimuli 

During a recording session, two kinds of visual stimulation protocols were administered to 

the rat.  

Initially, a 15 min-long receptive field (RF) mapping procedure was used to verify in 

real-time the identity of the targeted area (based on the assessment of the known retinotopy of 

rat V1) and to optimize the location of the RF centers for the following, main stimulation 

protocol (i.e., to ensure that most RFs fell inside the monitor, by rotating the platform or 

repositioning the eye through adjustments of the eye-ring). Such a brief RF mapping protocol 

and its use for visual areas identification has been thoroughly described elsewhere23,25. 

Once the probe was positioned at the final recording location, the main presentation 

protocol was administered. For the 8 animals taken from chapter I study23, this included 1 s-

long drifting gratings, made of all possible combinations of 3 spatial frequencies (SF; 0.02, 

0.04 and 0.08 cycle/°), 3 temporal frequencies (TF; 2, 4 and 8 Hz), and 12 directions (from 0° 

to 330°, in 30° increments). For the 5 additional animals from the study described in chapter 

V, the main protocol included 1 s-long drifting gratings, made of all possible combinations of 

2 spatial frequencies (SF; 0.02, 0.04 cycle/°), 2 temporal frequencies (TF; 2, 6 Hz), and 12 

directions (from 0° to 330°, in 30° increments). Each grating stimulus was presented in 20 

repeated trials. All stimulus conditions were randomly interleaved, with a 1 s-long inter 

stimulus interval (ISI), during which the display was set to a uniform, middle-gray luminance 

level.  

Stimuli were generated and controlled in MATLAB® using the Psychophysics 

Toolbox package, and displayed with gamma correction on a 47-inch LCD monitor (SHARP 

PNE471R) with 1920x1080 pixel resolution, 220 cd/m2 maximum brightness and spanning a 

visual angle of 110° azimuth and 60° elevation. Grating stimuli were presented at 60 Hz 

refresh rate. 

Histology  

At the end of each recording session, the animal was deeply anesthetized with an overdose of 

urethane (1.5 gr/kg) and perfused transcardially with phosphate buffer saline (PBS) 0.1 M, 

followed by 4% paraformaldehyde (PFA) in PBS 0.1 M, pH 7.2. The brain was then removed 

from the skull, post-fixed in 4% PFA for 24 h at 4°C, and then immersed in cryoprotectant 

solution (30% w/v sucrose in PBS 0.1 M) for at least 48 h at 4 °C. The brain was finally 

sectioned into 30 μm-thick coronal slices using a freezing microtome (Leica SM2000R, 

Nussloch, Germany). Sections were mounted immediately on Superfrost Plus slides and let 

dry at room temperature overnight. A brief wash in distilled water was performed to remove 

the excess of crystal salt sedimented on the slices, before inspecting them at the 

epifluorescence microscope. Each slice was then photographed with a digital camera (MBF 

Bioscience CX9000) adapted to a Leica microscope (Leica DM6000B-CTR6000, Nussloch, 

Germany), acquiring both a DiI fluorescence image (700 nm DiI filter) and a brightfield 

image, using a Leica PL Fluorotar 2.5X/0.07 objective. Following the acquisition of this set 

of images, the sections displaying the electrode fluorescent track were further stained for 

Nissl substance using a 0.5% Cresyl Violet Acetate solution, and new pictures were taken at 

2.5X magnification. By superimposing the fluorescence, bright-field and Nissl-stained 
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images, it was possible to reconstruct the tilt and the anteroposterior (AP) position of the 

probe during the recording session, as well as the cortical depth and laminar location of all 

the recording sites. Specifically, the boundaries between the cortical layers were identified, 

based on the difference in size, morphology and density of the Nissl-labelled cells across the 

cortical thickness. The position of the probe relative to such boundaries and to cortical 

surface was determined by tracing the outline of the fluorescent track, and taking into 

account, when available, the location of the electrolytic lesion performed at the end of the 

recording session. Based on the known geometry of the silicon probe, it was possible to infer 

the location of each recording site along the shank, thus estimating its cortical depth and 

laminar location.  The former was always measured along the line perpendicular to the layers 

at the site of interest. Such analysis was carried out using Inkscape 0.48.3.1. For illustrative 

purposes (Fig. 3B), we acquired large, higher magnification images of some slices from a 

selected representative session. To do so, we used a motorized inverted confocal Nikon 

Eclipse TI microscope equipped with a digital camera (Hamamatsu C4742-95), with a 20X/ 

0.5 (Nikon Plan Fluor) objective. Image acquisition and stitching of a large field of 7x7 mm 

with 40% overlap was handled by Nikon NIS-Elements AR 4.0 software. Images were 

cropped and sized using Adobe Photoshop CS6 and the montages were generated in Adobe 

Illustrator CS6. 
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Chapter III 

 

 

Causal adaptation to visual input dynamics governs the 

development of complex cells in V1 

 

 

 

Abstract 

Visual perception relies on cortical representations of visual objects that remain relatively stable 

with respect to the variation in object appearance typically encountered during natural vision 

(e.g., because of position changes). Such stability, known as transformation tolerance, is built 

incrementally along the ventral stream (the cortical hierarchy devoted to shape processing), but 

early evidence of position tolerance is already found in primary visual cortex (V1) for complex 

cells. To date, it remains unknown what mechanisms drive the development of this class of 

neurons, as well as the emergence of tolerance across the ventral stream. Leading theories 

suggest that tolerance is learned, in an unsupervised manner, either from the temporal continuity 

of natural visual experience or from the spatial statistics of natural scenes. However, neither 

learning principle has been empirically proven to be at work in the postnatal developing cortex. 

Here we show that passive exposure to temporally continuous visual inputs during early 

postnatal life is essential for normal development of complex cells in rat V1. This was causally 

demonstrated by rearing newborn rats with frame-scrambled versions of natural movies, 

resulting in temporally unstructured visual input, but with unaltered, natural spatial statistics. 

This led to a strong reduction of the fraction of complex cells, which also displayed an 

abnormally fast response dynamics and a reduced ability to support stable decoding of stimulus 

orientation over time. Conversely, our manipulation did not prevent the development of simple 

cells, which showed orientation tuning and multi-lobed, Gabor-like receptive fields as sharp as 

those found in rats reared with temporally continuous natural movies. Overall, these findings 

causally implicate unsupervised temporal learning in the postnatal development of 

transformation tolerance but not of shape tuning, in agreement with theories that place the latter 

under the control of unsupervised adaptation to spatial, rather than temporal, image statistics. 
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Introduction 

It has long been proposed that the tuning of sensory neurons is determined by adaptation to the 

statistics of the signals they need to encode1,2. In the visual domain, this notion has given rise to 

two broad families of unsupervised learning algorithms: those relying on the spatial structure of 

natural images, referred to as “unsupervised spatial learning” (USL) models1–6; and those 

leveraging on the spatiotemporal structure of natural image sequences, referred to as 

“unsupervised temporal learning” (UTL) models7–15. Both kinds of learning have been applied to 

explain the ability of visual cortical representations to selectively code for the identity of visual 

objects, a property known as shape tuning, while tolerating variations in their appearance (e.g., 

because of position changes), a property known as transformation tolerance (or invariance)16.

 These properties are built incrementally along the ventral stream (the cortical hierarchy 

devoted to shape processing), but the earliest evidence of shape tuning and invariance in the 

visual system can be traced back to primary visual cortex (V1), where “simple cells” first exhibit 

tuning for non-trivial geometrical patterns (oriented edges) and “complex cells” first display 

some degree of position tolerance17. In sparse coding theories (arguably the most popular 

incarnation of USL), maximizing the sparsity of the representation of natural images produces 

Gabor-like edge-detectors that closely resemble the receptive fields (RFs) of V1 simple cells5,6. 

Other USL models, by optimizing objective functions that depend on the combination of several 

linear spatial filters, also account for the emergence of position-tolerant edge detectors, such as 

V1 complex cells3,4. The latter, however, have been more commonly modeled as the result of 

UTL, where the natural tendency of different object views to occur nearby in time is used to 

factor out object identity from other faster-varying, lower-level visual attributes. Interestingly, 

while some UTL models presuppose the existence of a bank of simple cells, upon which the 

complex cells’ representation is learned7,11–15, other models, such as slow feature analysis (SFA), 

directly evolve complex cells from the pixel (i.e., retinal) representation, thus simultaneously 

learning shape selectivity and invariance8,9.  

To date, it remains unclear what role these hypothesized learning mechanisms play in the 

developing visual cortex, if any. In fact, although it is well established that early visual 

experience can strongly affect the development of visual cortical tuning18–20, empirical support 

for the role of sparse coding in determining orientation selectivity is still inconclusive6,21, while 

no causal evidence has been gathered yet to demonstrate the involvement of UTL in postnatal 

development of invariance and/or selectivity – but see22,23 for a behavioral study of the role of 

UTL in the development of chicks’ object vision.  

 

Results 

To address the latter question, we took 18 newborn rats (housed in light-proof cabinets from 

birth) and, from postnatal day (P)14 (i.e., at eye opening) through P60 (i.e., well beyond the end 

of the critical period), we subjected them to daily, 4-hours-long exposures inside controlled 
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visual environments (Fig. 1A). Specifically, 8 animals (the “control group”) were exposed to 

natural movies, while the remaining 10 (the “experimental group”) were exposed to their frame-

scrambled versions (Fig. 1B). Critically, this manipulation destroyed the temporal continuity of 

natural visual experience for the experimental rats, while sparing the spatial structure of the 

individual image frames, which remained the same as for the control animals. 

 

 This allowed isolating the pure contribution of temporal contiguity to the postnatal 

development of V1 simple and complex cells. 
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This was achieved by performing multi-channel extracellular recordings from V1 of each 

rat under fentanyl/medetomidin anesthesia24, shortly after the end of the controlled-rearing 

period. Our recordings mainly targeted layer 5, which is known to contain the largest fraction of 

complex cells in rodents25 as well as layer 4, with the distributions of recorded units across the 

cortical depth and the cortical laminae being statistically the same for the control and 

experimental groups (Fig. 2).  

During a recording session, each animal was presented with drifting gratings spanning 12 

directions (from 0° to 330° in steps of 30°), and with contrast-modulated movies of spatially and 

temporally correlated noise24,25. Responses to the noise movies allowed inferring the linear RF 

structure of the recorded units using the Spike-Triggered Average (STA) analysis (see Materials 

and methods). Responses to the drifting gratings were used to estimate the tuning of the neurons 

with standard orientation and direction selectivity indexes (OSI and DSI; see Materials and 

methods), as well as to probe their sensitivity to phase-shifts of their preferred gratings, thus 

measuring their position tolerance24,25.  

This is illustrated in Fig. 3A, which shows an example complex cell from the control 

group (left: blue lines) an example simple cell from the experimental group (right: orange lines). 

Those two specific example neurons were chosen for their particularly clear  modulation (or lack 
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of it) of the firing patterns in response to drifting gratings that are the key response property upon 

which the simple (or complex) classification is carried out. 
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Both units displayed sharp orientation tuning (polar plots), but the STA method 

successfully recovered a sharp, Gabor-like RF only for the simple cell - as expected, given the 

nonlinear stimulus-response relationship of complex cells24. Consistently, the response of the 

complex cell was only weakly modulated at the temporal frequency (4 Hz) of its preferred 

grating (middle plots), with the highest power spectral density concentrated at frequencies < 4 

Hz (bottom plot). By contrast, the response of the simple cell was strongly phase-modulated, 

with a power spectrum narrowly peaked at the grating frequency. Thus, by z-scoring the power 

spectral density of the response at the preferred grating frequency, it was possible to define a 

modulation index (MI) that distinguished between complex (MI < 3) and simple (MI > 3) cells24. 

We applied this criterion to the neuronal populations of 105 and 158 well-isolated single 

units recorded from, respectively, the control and experimental group, and we found a 

significantly lower fraction of complex cells in the latter (39%, 47/158) with respect to the 

former (55%, 58/105; p < 0.01, Fisher exact-test). Consistently, the median MI for the control 

population (2.69 ± 0.29) was significantly smaller than for the experimental one (3.52 ± 0.25; p < 

0.05, Wilcoxon test). Such a difference became very sharp after restricting the comparison to the 

neurons that, in both populations, were at least moderately orientation tuned (i.e., 50 control and 

75 experimental units with OSI > 0.4). The resulting MI distribution for the control group had a 

typical double-peak shape24,  featuring two maxima, at MI~2 and MI~5, corresponding to the 

two classes of the complex and simple cells (Fig. 3B, blue curve). Instead, for the experimental 

group, the peak at low MI was flattened out, leaving a single, prominent peak at MI~5 (orange 

curve). This resulted in a large, significant difference between the two distributions and their 

medians (dashed lines), with the fraction of complex cells being almost half in the experimental 

(35%, orange bar) than in the control group (60%, blue bar). Conversely, no difference was 

observed between the two groups in terms of orientation tuning (Fig. 3C), with the OSI 

distributions (blue and orange curves) and their medians (dashed lines) being statistically 

undistinguishable, as well as in terms of the fraction of sharply orientation-tuned units (i.e., 

neurons with OSI > 0.6; blue vs. orange bar). A similar result was found for direction tuning 

(Fig. 4). 
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Taken together, these findings suggest that our experimental manipulation substantially 

impaired the development of complex cells, but not the emergence of orientation and motion 

sensitivity, and the development of simple cells. This was confirmed by the fact that STA was as 

successful at yielding sharp, linear RFs (often similar to Gabor filters) for the experimental units 

as for the control ones (see examples in Fig. 3D, left). The sharpness of the STA images, as 

assessed through an expressly devised contrast index24 (CI; see Materials and methods), was 

similar for the two groups, with the CI distributions and their medians being statistically 

undistinguishable (Fig. 3D, blue vs. orange curve/line). As expected, for both groups, the mean 

CI was significantly larger for the simple than for the complex cells (dark vs. light bars), 

reflecting the better success of STA at inferring the linear RFs of the former, but no difference 

was found between the mean CIs of the simple cells of the two groups (Fig. 3D, dark blue vs. 

brown bar) and the mean CIs of the complex cells (Fig. 3D, light blue vs. yellow bar). 
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Next, we tested the extent to which the experimental units that had been classified as 

complex cells fully retained the functional properties of this class of neurons. Based on intuitive 

considerations (i.e., the local invariance of complex cells) and the predictions of SFA8,9, complex 

cells should fire more persistently than simple cells, in response to a continuous,  

spatiotemporally correlated visual input. To measure the persistence (i.e. “slowness”) of neuronal 

responses, we computed the time-constants of the exponential fits to the autocorrelograms of the 

spike trains evoked by the noise movies (see examples in Fig. 5A).  

As expected, the average time constant was larger for the control than for the 

experimental units (Fig. 5B). Such difference, however, was not merely driven by the larger 

fraction of complex cells in the control group (Fig. 3B). In fact, while the average time constants 

did not significantly differ between the simple cells of the two groups (Fig. 5C, dark blue vs. 

brown bar), the firing of complex cells was faster for the experimental than for the control units 

(yellow vs. light blue bar).  

To understand the functional implication of such abnormally fast dynamics, we assessed 

the ability of the four distinct populations of simple and complex cells of the two groups to 

support stable decoding of stimulus orientation over time. To this aim, we randomly sampled 300 

neurons from each population (after having first matched the populations in terms of OSI and 

orientation preference distributions; see Materials and methods), so as to obtain four, equally 

sized and similarly tuned pseudo-populations, whose units homogenously covered the orientation 

axis.  

We then trained binary logistic classifiers to discriminate between 0°- and 90°-oriented 

gratings (drifting at 4 Hz), based on the activity of each pseudo-population. Each classifier was 

trained using neuronal responses (spike counts) in a 33 ms-wide time bin that was randomly 

chosen within the presentation epoch of the gratings. We then tested the ability of each classifier 

to generalize the discrimination to test bins at increasingly larger time lags (TLs) from the 

training bin (see Fig. 6A and Materials and methods for details).  

As expected, given the strong phase dependence of their responses (see cartoon in Fig. 

6A, top), the simple cells from both groups yielded generalization curves that were strongly 

modulated over time and virtually identical (Fig. 6B, dark blue and brown curves). The 

performance was high (≥ 80% correct) at test bins where the phase of the grating was close to 

that of the training bin (i.e., at TLs that were multiple of the 250 ms grating period), but it 

dropped to less than 30% correct (i.e., well below chance; dashed line) at test bins where the 

grating was in opposition of phase with respect to the training bin (e.g., at TL ~ 125 ms). By 

comparison, the complex cells of the control group, by virtue of their weaker phase dependence 

(see cartoon in Fig. 6A, bottom), afforded a way more phase-tolerant decoding of grating 

orientation, with the performance curve never dropping below chance level at any TL (Fig. 6B, 

light blue curve). However, for the complex cells of the experimental group, the performance 

curve (in orange) was not as stable – at most TLs, it was 5-10 percentage points smaller than the 

performance yielded by the control complex cells, dropping significantly below chance at test 

bins where the grating was in opposition of phase with respect to the training bin. That is, the 
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ability of the experimental complex cells to support phase-tolerant orientation decoding was 

somewhat in between that of properly developed complex cells and that of simple cells. 

 

Discussion 

Overall, these findings show that destroying the temporal continuity of early visual 

experience severely interferes with the typical development of complex cells in V1, leading to a 

sizable reduction of their number (Fig. 3B) and an impairment of their functional properties (Fig. 

5C and 6B). This implies that experience with the temporal structure of natural image sequences 

plays a critical role in the postnatal development of the earliest form of invariance found along 

the ventral stream. Such an instructive role of temporal continuity of visual stimuli, so far, has 

been empirically demonstrated only in adult monkeys, at the very last stage of this pathway: the 

inferotemporal cortex26,27. At the same time, our experiments show that development of 
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orientating tuning is unaffected by the lack of experience with temporal continuity (Fig. 3D), 

with simple cells exhibiting unaltered spatial (Fig. 3C), temporal (Fig. 5C) and functional (Fig. 

6B) properties.  

Even if quite pronounced, all the above mentioned alterations of complex cells reported 

in our experimental animals didn’t amount to a complete abolishment of their existence 

following the temporal discontinuous rearing. At a first glance, this may seem partially at odd 

with the idea that temporal continuity is strictly necessary for the development of transformation 

tolerance in V1. However, it should be noticed that, in practice, input temporal structure 

disruption our animas were subject to, was not full. In fact, even if the rearing videos were 

generated to lack any temporal structure, due to self-motion of the animals themselves and to 

features of the interior of the rearing cages, such as monitor border frames, the rats still could 

experience some examples of continuous visual transformations (even if less than control 

animals – see Materials and methods for further discussion). The presence of such residual 

temporal structure in the visual input to the developing cortex of experimental rats could easily 

motivate the incomplete disruption of complex cells observed in our animals. 

Another reason that could likely explain such observation, is the possibility that complex 

cell properties are − to some extent − the result of genetically-encoded developmental programs 

defining their wiring (and therefore their initial functional properties), in an experience 

independent way. Hints supporting such “hardwiring” hypothesis (thoroughly laid out in a recent 

perspective28) exist, e.g. for what concerns orientation selectivity in the mouse29,30. No data is 

however available at the moment regarding the state of complex cells transformation tolerance 

before the onset of visual experience in rodents. It should also be noticed how the innate 

“hardwiring” scenario doesn’t exclude the possibility that an experience-dependent refinement of 

innate functional properties may occur, through the exposure to the statistics of the sensory 

environment, at later developmental stages. 

Furthermore, another way to make sense of the partial preservation of V1 transformation 

tolerance in experimental animals while, at the same time, reconciling the unsupervised learning  

and the innatistic stances, is “innate learning”31. 

Key to this concept is the idea that, during development, neural circuits could, by virtue 

of their genetically-determined structure, self-generate neural activity patterns able to act as 

“training examples”, thus sculpting the wiring of the same or other circuits. Such activity 

dependent structuring may be driven by the same unsupervised plasticity rules that will, after the 

onset of sensory experience, act on evoked activity. Specifically, in the context of primary visual 

cortex development, “retinal waves” have been proposed to play the role of spontaneously 

generated training input. Spatiotemporally correlated activity patterns evoked by retinal waves in 

V1, before eye opening, have been implicated in playing a pivotal role in driving the 

development of columnar organization in cats, ferrets and monkeys32,33.  Crucially, and more 

importantly to our discussion, theoretical work demonstrated that retinal waves, sharing many 

relevant temporal and spatial properties with the natural visual input, are sufficient for UTL 

(instantiated as SFA) to reproduce a rich set of complex-cell features34. 
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In conclusion, in light of what explained above, it appears quite likely that the altered 

visual exposure undergone by our experimental animals didn’t act on visual cortical circuits in 

“blank” state, but rather on the resulting state induced by early, innate, developmental programs, 

combined with the effect of internally generated activity such as retinal waves. 

Summing up, from a theoretical standpoint, our results causally validate the family of 

UTL models7–15 at the neural level, albeit limiting their scope to the development of invariance. 

More in general, since slowness has been related to predictability35–37, our results are also 

consistent with normative approaches to sensory processing that are based on temporal 

prediction38. On the other hand, our findings, by showing that exposure to the spatial structure of 

natural images alone is not enough to enable proper development of complex cells, reject 

computational accounts of invariance based exclusively on USL3,4, while leaving open the 

possibility that the latter may govern the experience-dependent development of shape 

tuning1,2,5,6. Consequently, our study tightly constrains unsupervised models of visual cortical 

development, supporting theoretical frameworks where the objectives of sparseness and 

slowness maximization coexist, to yield, respectively, shape selectivity and transformation 

tolerance13,14,39.  

 

Materials and Methods 

Animal procedures and controlled rearing 

All animal procedures were in agreement with international and institutional standards for the 

care and use of animals in research and were approved by the Italian Ministry of Health (Project 

DGSAF 22791-A, submitted on September 7, 2015 and approved on December 10, 2015, 

approval 1254/2015-PR).  

Data were obtained from 18 Long–Evans male rats that were born and reared in our 

facility for visually controlled rearing. The facility consists of a small vestibule, where the 

investigators can wear the infrared goggles that are necessary to operate in total darkness, and a 

larger, lightproof room, containing a lightproof housing cabinet (Tecniplast) and four custom 

cabinets (Tecniplast) for exposure of the rats to controlled visual environments. 

Pregnant mothers (Charles River Laboratories) where brought into the housing cabinet 

about one week before delivery. Pups were born inside the cabinet and spent the first two weeks 

of their life in total darkness with their mothers. Starting from P14 (i.e., at eye opening) through 

P60 (i.e., well beyond the end of the critical period), each rat, while still housed in full darkness 

(i.e., inside the housing cabinet) for most of the day, was also subjected to daily, 4-hours-long 

exposures inside an immersive visual environment (referred to as the “virtual cage”), consisting 

of a transparent basin (480x365x210 mm, Tecniplast 1500U), fully surrounded by 4 computer-

controlled LCD monitors (one per wall; 20” HP P202va; see Fig. 1A), placed on the shelf of one 

of the custom cabinets (each cabinet had 4 shelves, for a total of 16 rats that could be 

simultaneously placed in the visually controlled environments). These controlled-rearing 
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environments (which are reminiscent of those used to study the development of object vision in 

chicks22,23,40) were custom designed in collaboration with Videosystem, which took care of 

building and installing them inside the custom cabinets. 

Different visual stimuli were played on the monitors, depending on whether an animal 

was assigned to the experimental or the control group. Rats in the control group (n = 8) were 

exposed to natural movies, including both indoor and outdoor scenes, camera self-motion and 

moving objects. Overall, the rearing playlist included 16 videos of different duration, lasting 

from a few minutes to half an hour. The playlist was played in random order and looped for the 

whole duration of the exposure. Rats from the experimental group (n = 10) were exposed to a 

time-shuffled version of the same movies, where the order of the frames within each video was 

randomly permuted, so as to destroy the temporal continuity of the movie, while leaving 

unaltered the natural spatial statistics of the individual image frames. All movies were played at 

15 Hz, which is approximately half of the critical flicker fusion frequency (~30-40 Hz) that has 

been measured for the rat41. This ensured that, while the temporal correlation of the input was 

substantially broken, no fusion occurred between consecutive frames of the movies, thus 

allowing the rats to experience the spatial content of the individual image frames. On the other 

hand, choosing a frame rate lower than the flicker fusion frequency allowed the rats, at least in 

principle, to still experience some residual amount of temporal continuity in the visual input, 

resulting from scanning the image frames trough head or eye movements. This, together with the 

presence of some stable visual features in the environment (e.g., the dark edges of the monitors) 

and the possibility for the rats to see their own body, may account for the residual fraction of 

complex cells observed in experimental group (Fig. 2B). 

Animal care, handling and transfer operations were always executed in absolute darkness, 

using night vision goggles (Armasight NXY7), in such a way to prevent any unwanted exposure 

of the animals to visual inputs different from those chosen for the rearing. 

Surgery and recordings 

Acute extracellular recordings were performed between P60 and P90 (last recording). During 

this 30-days period, the animals waiting to undergo the recording procedure were maintained on 

a reduced visual exposure regime (i.e., 2-hours-long visual exposure sessions every second day; 

see previous section). 

The surgery and recording procedure was very similar to the one described for V1 

recording sessions of the study24 described in chapter I of this thesis. Briefly, the day of the 

experiment, the rat was taken from the rearing facility and immediately (within 5-10 minutes) 

anesthetized with an intraperitoneal injection of a solution of 0.3 mg/kg of fentanyl (Fentanest, 

Pfizer) and 0.3 mg/kg of medetomidin (Domitor, Orion Pharma). A constant level of anesthesia 

was then maintained through continuous intraperitoneal infusion of the same anesthetic solution 

used for induction, but at a lower concentration (0.1 mg/kg/h fentanyl and 0.1 g/kg/h 

medetomidine), by means of a syringe pump (NE-1000; New Era Pump Systems). After 

induction, the rat was secured to a stereotaxic apparatus (Narishige, SR-5R) in flat-skull 
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orientation (i.e., with the surface of the skull parallel to the base of the stereotax) and, following 

a scalp incision, a craniotomy was performed over the target area in the left hemisphere 

(typically, a 2x2 mm2 window). The dura was then removed to allow the insertion of the 

electrode array. The coordinates of penetration used to target V1 were ∼6.5 mm posterior from 

bregma and ∼4.5 mm left to the sagittal suture (i.e., anteroposterior 6.5, mediolateral 4.5). Once 

the surgical procedure was completed, and before probe insertion, the stereotax was placed on a 

rotating platform and the rat's left eye was covered with black, opaque tape, while the right eye 

(placed at 30 cm distance from the monitor) was immobilized using a metal eye-ring anchored to 

the stereotax. The platform was then rotated in such a way to bring the binocular visual field of 

the right eye to cover the left side of the display.  

Extracellular recordings were performed using either single- (or double-) shank 32- (or 

64-) channel silicon probes (NeuroNexus®) with site recording area of 775 µm2 and 25 µm of 

intersite spacing. After grounding (by wiring the probe to the animal’s head skin), the electrode 

was manually lowered into the cortical tissue using an oil hydraulic micromanipulator 

(Narishige, MO-10; typical insertion speed: 5 m/s), up to the chosen insertion depth (800 –1000 

µm from the cortical surface), either perpendicularly or with a variable tilt, between 10° and 30° 

relative to the vertical to the surface of the skull. Extracellular signals were acquired using a 

system 3 workstation (Tucker Davis Technologies) with a sampling rate of 25 kHz.  

Since, in rodents, the largest fraction of complex cells in found in layer 5 of V125, our 

recordings aimed at sampling more densely that layer. This was verified a posteriori (Fig. 2), by 

estimating the cortical depth and laminar location of the recorded units, based on the patterns of 

visually evoked potentials (VEPs) recorded across the silicon probes used in our recording 

sessions. More specifically, we used the template-matching algorithm for laminar identification 

of cortical recording sites the development and validation42 of which was described in chapter II 

of this thesis.  

Briefly, the method finds the optimal match between the pattern of VEPs recorded, in a 

given experiment, across a silicon probe and a template VEP profile, spanning the whole cortical 

thickness, that has been computed by merging an independent pool of 18 recording sessions, in 

which the ground-true depth and laminar location of the recording sites had been recovered 

through histology. The method achieves a cross-validated accuracy of 79 µm in recovering the 

cortical depth of the recording sites and a 72% accuracy in returning their laminar position, with 

the latter increasing to 83% for a coarser grouping of the layers into supragranular (L1-3), 

granular (L4) and infragranular (L5-6). 

Visual stimuli 

During a recording session, each animal was presented with: i) 20 repetitions (trials) of 1.5-s-

long drifting gratings, made of all possible combinations of two spatial frequencies (0.02 and 

0.04 cycle/°), two temporal frequencies (2 and 4 Hz), and 12 directions (from 0° to 330°, in 30° 

increments); and ii) 20 different 60-s-long spatially and temporally correlated, contrast 

modulated, noise movies24,25. All stimuli were randomly interleaved, with a 1-s-long inter-
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stimulus interval (ISI), during which the display was set to a uniform, middle-gray luminance 

level. To generate the movies, random white noise movies were spatially correlated by 

convolving them with a Gaussian kernel having full width at half maximum (FWHM) 

corresponding to a spatial frequency of 0.04 cycle/° SF. Temporal correlation was achieved by 

convolving the movies with a causal exponential kernel with a 33 ms decay time-constant. To 

prevent adaptation, each movie was also contrast modulated using a rectified sine wave with a 10 

s period from full contrast to full contrast25.  

Stimuli were generated and controlled in MATLAB® (MathWorks) using the 

Psychophysics Toolbox package and displayed with gamma correction on a 47-inch LCD 

monitor (SHARP PNE471R) with 1920x1080-pixel resolution, 220 cd/m2 maximum brightness, 

and spanning a visual angle of 110° azimuth and 60° elevation. Grating stimuli were presented at 

60 Hz refresh rate, whereas noise movies were played at 30 Hz. 

Single unit isolation 

Single units were isolated offline using the spike sorting package KlustaKwik-Phy43. Automated 

spike detection, feature extraction, and expectation maximization clustering were followed by 

manual refinement of the sorting using a customized version of the Phy interface. Specifically, 

we took into consideration many features of the candidate clusters: a) the distance between their 

centroids and their compactness in the space of the principal components of the waveforms (a 

key measure of goodness of spike isolation); b) the shape of the auto- and cross correlograms 

(important to decide whether to merge two clusters or not); c) the variation, over time, of the 

principal component coefficients of the waveform (important to detect and take into account 

possible electrode drifts); and d) the shape of the average waveform (to exclude, as artifacts, 

clearly non physiological signals). Clusters suspected to contain a mixture of one or more single 

units were separated using the “reclustering” feature of the GUI. After the manual refinement 

step, we included in our analyses only units that were: i) well-isolated, i.e. with less than 0.5% of 

“rogue” spikes within 2 ms in their autocorrelogram; and ii) grating-responsive, i.e., with the 

response to the most effective grating condition being larger than 2 spikes per second (baseline-

subtracted) and being larger than 6 z-scored points relative to baseline activity. The average 

baseline (spontaneous) firing-rate of each well-isolated unit was computed by averaging its 

spiking activity over every ISI condition. These criteria led to the selection of 105 units for the 

control group and 158 units for experimental group.  

Quantification of selectivity 

The response of a neuron to a given drifting grating was computed by counting the number of 

spikes during the whole duration of the stimulus, averaging across trials and then subtracting the 

spontaneous firing rate (computed over ISI periods). To quantify the tuning of a neuron for the 

orientation and direction of drifting gratings, we computed two standard metrics, the orientation 

and direction selectivity indexes (OSI and DSI), which are defined in the following way: 
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OSI = (𝑅pref − 𝑅ortho) (𝑅pref)⁄  DSI = (𝑅pref − 𝑅opposite) (𝑅pref)⁄  

where 𝑅pref is the response of the neuron to the preferred direction, 𝑅ortho is the response to the 

orthogonal direction, relative to the preferred one (i.e., 𝑅ortho = 𝑅pref +  𝜋 2⁄ ), and 𝑅opposite is the 

response to the opposite direction, relative to the preferred one (i.e., 𝑅opposite = 𝑅pref +  𝜋). 

Values close to one indicate very sharp tuning, whereas values close to zero are typical of 

untuned units.  

Quantification of phase modulation (i.e. position tolerance) 

Since phase shifts of a grating are equivalent to positional shifts of the whole, 2D sinusoidal 

pattern, a classical way to assess position tolerance of V1 neurons (thus discriminating between 

simple and complex cells) is to probe the phase sensitivity of their responses to optimally 

oriented gratings. Quantitatively, the phase-dependent modulation of the spiking response at the 

temporal frequency 𝑓1 of a drifting grating was quantified by a modulation index (MI) adapted 

from44 and already used in24, defined as:  

MI = ||
𝑃𝑆(𝑓1) − 〈𝑃𝑆〉𝑓

√〈𝑃𝑆2〉𝑓 − 〈𝑃𝑆〉𝑓
2

||, 

where 𝑃𝑆 indicates the power spectral density of the stimulus-evoked response, i.e., of the peri-

stimulus time histogram (PSTH), and  f denotes the average over frequencies. This metric 

measures the difference between the power of the response at the stimulus frequency and the 

average value of the power spectrum in units of its standard deviation. The power spectrum was 

computed by applying the Blackman-Tukey estimation method to the baseline-subtracted, 10 ms-

binned PSTH. Being MI a standardized measure, values greater than 3 can be interpreted as 

signaling a strong modulation of the firing rate at the stimulus frequency (typical of simple cells), 

whereas values smaller than 3 indicate poor modulation (typical of complex cells). On this 

ground, we adopted MI = 3 as a threshold for classifying neurons as simple or complex.  

Linear receptive field estimation 

We used the Spike-Triggered Average (STA) method45,46 to estimate the linear RF structure of 

each recorded neuron. The method was applied to the spike trains fired by neurons in response to 

the spatiotemporally correlated and contrast modulated noise movies described above. To 

account for the correlation structure of our stimulus ensemble and prevent artifactual blurring of 

the reconstructed filters, we “decorrelated” the raw STA images by dividing them by the 

covariance matrix of the whole stimulus ensemble45,46. We used Tikhonov regularization to 

handle covariance matrix inversion. Statistical significance of the STA images was then assessed 

pixel-wise, by applying the following permutation test. After randomly reshuffling the spike 
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times, the STA analysis was repeated multiple times (n = 50) to derive a null distribution of 

intensity values for the case of no linear stimulus-spike relationship. This allowed z-scoring the 

actual STA intensity values using the mean and standard deviation of this null distribution. The 

temporal span of the spatiotemporal linear kernel we reconstructed via STA extended from 330 

ms before to the moment of spike generation (corresponding to 10 frames of noise at 30 Hz 

frame rate). The STA analysis was performed on downsampled noise frames (16x32 pixels) and 

the resulting filters were later spline-interpolated at higher resolution for better visualization. 

To estimate the amount of signal contained in a given STA image, we used the contrast 

index (CI) metric that we have introduced in a previous study24, as described in chapter I of this 

thesis. The CI is a robust measure of maximal local contrast in a z-scored STA image. Since the 

intensity values of the original STA images were expressed as z-scores (see above), a given CI 

value can be interpreted in terms of peak-to-peak (i.e. white-to-black) distance in σ units of the z-

scored STA values. For the analysis shown in Fig. 2C, the STA image with the highest CI value 

was selected for each neuron. 

Quantification of response slowness 

For each neuron, we quantified the slowness of its response to the same noise movies used to 

estimate its RF, by computing the time constant of the autocorrelogram of the evoked spike 

trains (i.e., the probability density function of inter-spike intervals). Being the noise movies 

composed of richer visual patterns than drifting gratings (i.e., richer orientation and spatial 

frequency content), this was a way to assess the response properties of the recorded population in 

a slightly more naturalistic stimulation regime. The time constants 𝜏 were computed by fitting 

the autocorrelogram with the following exponential function: 

𝑓(∆𝑡) = 𝐴𝑒−
∆𝑡
𝜏 + 𝐶 

where ∆𝑡 is the inter-spike time interval (see Fig. 5A, bottom).  

Only neurons that were strongly modulated at the frequency of variation of the contrast in 

the movies were included in this analysis. The level of modulation was quantified by an index 

similar to the one used to assess the phase-sensitivity of responses to the gratings. To this aim, 

we built PSTHs for the noise movies, by considering each of the 20 different movies we 

presented as a different trial of the same pseudo-stimulus, so as to highlight the effect of contrast 

modulation (see examples of highly contrast modulated neurons in Fig. 5A, top). 

Orientation decoding analysis 

The goal of this analysis was to build four pseudo-populations of neurons – i.e., control simple 

(CS), control complex (CC), experimental simple (ES) and experimental complex (EC) cells – 

with similar distributions of orientation tuning and orientation preference, and then compare their 

ability to support stable decoding of the orientation of the gratings over time. 
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 The pseudo-populations were built as follows. We first matched control and experimental 

populations in terms of sharpness of their orientation tuning. To this aim, we took the OSI 

distributions of the two populations (i.e., the blue and orange curves in Fig. 3C) and, for each bin 

𝑏 in which the OSI axis had been divided (i.e., 10 equi-spaced bins of size = 0.1), we took as a 

reference the population with the lowest number of units 𝑁𝑏 in that bin. For this population, all 

the 𝑁𝑏 units were considered, while, for the other population, 𝑁𝑏 units were randomly sampled 

(without replacement) from those with OSI falling in the bin 𝑏. Repeating this procedure for all 

the 10 bins, we obtained two downsampled populations of control and experimental units, having 

all the same OSI distribution and the same number of units (n = 92). When considering 

separately the pools of simple and complex cells within such downsampled populations, the 

resulting mean OSI were very similar (CS: 0.44 ± 0.04, n = 43; CC: 0.42 ± 0.03, n = 49; ES: 0.46 

± 0.03, n = 57; EC: 0.38 ± 0.04, n = 35) and not statistically different pairwise (two-tailed, 

unpaired t-test p > 0.05). Matching the four populations in terms of the OSI was essential, but 

not sufficient, to make sure that they had approximately the same power to support 

discrimination of the oriented gratings. In fact, the populations could still differ in terms of the 

distributions of orientation preference. To also equate them in this sense, and make sure that all 

possible orientations were equally discriminable, we replicated each unit 11 times, by circularly 

shifting its tuning curve of 11 incremental steps of 30º. This yielded four final pseudo-

populations of 473 (CS), 539 (CC), 627 (ES) and 385 (EC) units, with matched orientation 

tuning and homogeneous orientation preference, to be used for the decoding analysis. 

 The latter worked as follows. From each pseudo-population, we sampled (without 

replacement) 300 units (referred to as decoding pool in what follows) and we built 300-

dimensional population vectors having as components the responses (i.e., spike counts) of the 

sampled units in randomly selected presentations (i.e., trials) of either the 0°- or the 90°-oriented 

grating (drifting at 4 Hz), with each response computed in the same, randomly chosen 33 ms-

wide time bin within the presentation epoch of the grating. More specifically, this time bin was 

chosen under the constraint of being between 561 ms and 957 ms from the onset of stimulus 

presentation, so that the drifting grating continued for at least 2 full cycles (i.e., 561 ms) after the 

selected bin. The random sampling of the trial to be used in a given population vector was 

performed independently for each neuron (and without replacement), so as to get rid of any noise 

correlation among the units that were recorded in the same session. Given that 20 repeated trials 

were recorded per neuron and stimulus condition, a set of 20 population vectors was built for the 

0°-oriented grating and another set for the 90°-oriented gratings. These vectors were used to train 

a binary logistic classifier to discriminate between the two stimuli. The resulting classifier was 

then tested for its ability to discriminate the gratings in 33 ms-wide test bins that were 

increasingly distant (in time) from the training bin, covering two full cycles of the drifting 

gratings (i.e., from 33 to 561 ms following the training bin; see abscissa in Fig. 6B). This 

analysis was repeated for 50 random samplings (without replacement) of the decoding pools and, 

given a decoding pool, for 10 independent random draws (without replacement) of the training 
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time bin. The resulting 500 accuracy curves were then averaged to yield the final estimate of the 

stability of the classification over time (solid curves in Fig. 6B). 

To obtain 95% confidence intervals (shaded regions in Fig. 6B) for such average 

classification curves, we ran a bootstrap analysis that worked as follows. For each of the four 

pseudo-populations, we sampled (with replacement) 50 surrogate populations and we used those 

to re-run the whole decoding analysis described in the previous paragraph. This yielded 50 

bootstrap classification curves that were used to compute standard errors for the actual accuracy  

curve. The standard errors were then converted into confidence intervals by multiplying them by 

the appropriate critical value 1.96 as described in 47. 
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Chapter IV 

 

 

 

Behavioral evidence of spontaneous  

motion integration in rats 
 

 

 

Abstract 

Computing the global motion direction of an extended visual object made of multiple 

oriented elements is an higher-order visual function extensively studied in human and non-

human primates1. However, dissecting the underlying neuronal circuits will likely require the 

molecular tools that are now largely used in rodent studies. Recent physiological work2,3 

reported the presence of neurons selective for global motion in mouse visual cortex. Direct 

psychophysical evidence that the visual system of rodents is capable of combining multiple 

motion signals into global, integrated percepts is, however, still lacking. To address this 

question, we trained two groups of rats to discriminate the motion direction of either gratings 

or plaids (i.e., superpositions of gratings with different directions) and we tested whether 

these visual patterns, when used as prime stimuli, were able to bias rat perception in a way 

that is consistent with an integrated representation of the plaids. More specifically, our 

experiments allowed inferring whether, and under which conditions, the representation of 

these two types of stimuli is shared (i.e., coded by overlapping neuronal populations) and, if 

so, whether its organizing principle is the local or the global direction of the stimulus. We 

found that, depending on the identity of the training stimuli, rats displayed either a shared 

representation based on global motion, or a non-shared one. These results highlight the 

complexity of rat motion perception and provide the first direct behavioral evidence about the 

ability of a rodent species to spontaneously extract global motion information from complex 

visual patterns. 

 

Introduction 

A crucial step in processing visual motion information is the computation of the direction of 

motion of visual objects. Such computation has been widely studied in the dorsal stream of 

primates, and, in particular, in the middle temporal area (MT) of the macaque1. This area 
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receives direct input from neurons in primary visual cortex (V1), signaling the “local” 

direction of moving elements (e.g., edges) in small, localized, regions of the visual field – 

i.e., the receptive fields (RFs). MT units appear to combine the afferent V1 inputs in such a 

way to acquire selectivity for the “global” direction of motion of visual objects (or patterns) 

made of multiple local edges4.  

The leading hypothesis emerging from the primate literature is that this is achieved by 

integrating the local motion signals carried by V1 afferents over different spatial positions 

and directions1,4,5. Notably, such computation is necessary to extract the direction of complex 

objects, made of multiple oriented features. The local output of any V1-like edge detector is, 

in fact, intrinsically ambiguous on its own, being compatible with infinite combinations of 

global object directions and speeds. This ambiguity is at the core of what is known, in the 

psychophysics literature, as the “aperture problem”6–8: only by integrating information from 

multiple moving-edge detectors, it is possible to infer global motion direction. Understanding 

the precise circuit and synaptic mechanisms underlying such computation remains a key 

question in system neuroscience. 

Over the past 10 years, rodents have emerged as interesting model systems to study 

visual cortical processing, given the wide array of experimental tools for the functional 

dissection of neural circuits that are available in mice9–13, combined with the demonstration 

of sophisticated visual behaviors in rats14. This led some investigators to look for the 

signature of motion integration in the rodent brain2,3,15. Inspired by monkey studies16–18, they 

recorded the responses of mouse visual cortical neurons to drifting gratings and coherent 

plaids − i.e., complex visual patterns made of two overlapping gratings with the same 

contrast and speed, but moving along independent directions.  

These stimuli have been widely used to investigate motion integration in human and 

non-human primates since they enable to clearly distinguish local- from global-based motion 

responses. A plaid, in fact, has two well-defined local motion components and a global 

direction that is different from the local ones5, while, for a grating, the local and global 

directions coincide5. By employing these stimuli, mouse visual neurons could be classified as 

“pattern” (i.e., responsive to global motion) or “component” (i.e., responsive to local motion). 

The majority of neurons amenable to such classification fell into the component category, but 

a small fraction of pattern units was reported in V13,15 and in two extrastriate areas, the 

lateromedial (LM) and rostrolateral (RL) areas2. However, the relevance of such tiny 

population of pattern cells in determining mouse motion perception was left untested (but see 

further discussion of 3 below). 

More in general, even if a few studies tested the ability of rats and mice to 

discriminate the dominant motion direction of random dot kinematograms19–22 (RDKs; a task 

linked to motion integration, since it requires spatial integration of local motion cues), no 

study ever probed the ability of rodents to integrate into a global motion percept multiple 

oriented elements moving along different directions. In addition, all the studies employing 

RDKs explicitly trained the animals in the direction discrimination task.  

Critically, this prevented assessing the spontaneous, purely perceptual motion 

integration abilities of naïve rodents. In fact, if feedback (e.g., reward) is provided to an 

animal about the outcome of his perceptual choices, it may learn to associate a given stimulus 

to a given response category without necessarily perceiving the sensory quality that the 
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investigator intends to associate to that category14,23,24. For instance, an animal could learn to 

classify in the same category a rightward drifting grating and a rightward drifting plaid, even 

if it perceives the latter in a non-integrated way (i.e., as the superimposition of two 

independently drifting gratings), simply because of the reinforcement received during 

training. It would thus be impossible to infer from such experiments whether the choices of 

the animal are driven by a general-purpose, stimulus-independent representation of global 

motion direction at the level of visual cortex (as the one found in monkey MT), or by the 

ability to learn abstract representations of arbitrary stimulus categories in higher-order 

association areas involved in perceptual decision making, such as posterior parietal cortex 

(PPC)25–28.  

Only in 3 this confound was avoided, by monitoring the direction of the optokinetic 

nystagmus (OKN) while presenting plaids to naïve, head-fixed mice. The resulting bimodal 

distribution of OKN movements tracking both the local-components and the overall global 

directions of the stimulus is suggestive of mouse ability to spontaneously perceive global 

motion. However, this conclusion is affected by the intrinsic limitation of OKN-based 

experiments to probe cortical processing. In fact, OKN is a reflexive phenomenon that is 

known to be largely controlled by subcortical structures29–31, while motion perception in 

direction discrimination tasks has been shown to rely heavily on visual cortex22,32,33. As a 

result, it remains untested whether rodents are capable of combining independent but 

coherent motion signals (as those found in plaids) into integrated percepts of global motion 

direction. 

Our study was designed to address this question and provide a thorough 

psychophysical assessment of rat ability to spontaneously perceive the global direction of 

drifting plaids. To this aim, we relied on a visual priming paradigm23 that allowed measuring 

the perceptual similarity between gratings and plaids with the same global direction, without 

the need of explicitly training the animals to associate these stimuli to the same response 

category. 

 

Results 

In the first phase of the study, a group of 11 male Long-Evans rats (referred to as the G group 

in what follows) was trained to discriminate leftward- from rightward-drifting gratings (Fig. 

1A, left), using the high-throughput behavioral rig described in14 and previously employed in 

several investigations of rat object recognition23,34–37. Another group of 10 rats (referred to as 

the P group in what follows) was trained to discriminate leftward- from rightward-drifting 

plaids, made of the superposition of two gratings, whose directions were 120º apart  (Fig. 1B, 

left). Rats that maintained at least a criterion performance of 75% correct choices over a four 

consecutive day period were moved to the second phase of the study to be tested with the 

priming paradigm (all rats starting the training phase managed to reach such criterion). 10 out 

of 11 G  rats and 9 out of 10 P rats were included in the subsequent analysis displaying a 

strong identity prime effect (see Materials and Methods). 

In priming phase, the “target” stimulus remained the same as in training phase (i.e., G 

and P rats still had to report the direction of drifting gratings and plaids, respectively), but 
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now the presentation of the target was preceded by the brief presentation (75 ms) of either a 

grating or a plaid drifting along one out of 19 possible directions (from 0° = rightward to 

180° = leftward, in steps of 10°; Fig. 1 A-B, right). The identity (i.e., either grating or plaid) 

and the motion direction of such “prime” stimulus was randomly selected in each trial. 

We refer to trials in which the identities of prime and target coincide as “identity-

priming condition” (e.g., a grating prime stimulus followed by a grating target stimulus), 

whereas we refer to the opposite case as “cross-priming condition” (e.g., a plaid prime 

stimulus followed by a grating target stimulus).  

Critically, the rats kept receiving feedback (i.e., either reward or a time-out period, in 

case of correct and incorrect choices, respectively) only about the correctness of their 

responses to the target stimuli. The identity and direction of the prime stimuli were never 

paired to either the leftward or rightward response categories. As such, the extent to which 

the prime stimuli were able to affect the choices of the rats was purely due to the 

spontaneous, perceived similarity between primes and targets. Assessing such similarity was 

the ultimate goal of our experiments, since it allowed understanding whether, in cross-prime 

condition, the perceived motion direction of plaids was their global one. 

The rationale of this design rests on well-established findings in the human 

psychophysics literature38–41, where presenting an “adapter” before a “test” stimulus has been 
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shown to bias the perception of the test, depending on two key factors: the duration of the 

adapter and the inter stimulus interval (ISI) between adapter and target presentation.  

When the bias induced by the adapter attracts the perceptual choices towards the 

identity of the adapter itself, this effect is called “priming”. Vice versa, when it repels the 

perceptual choices away from the identity of the adapter, it is named “adaptation after-

effect”. Our group has previously shown that brief presentation of a static shape (~50 ms), 

followed by a short ISI (66 ms), is able to induce a strong and robust priming effect on rat 

response to a target shape23. Here we extended this paradigm to moving stimuli, and we 

relied on previous motion adaptation studies in humans40 to select the timing parameters of 

the task, in the attempt of inducing a strong priming effect. 

In the following we will refer to the performance in the target direction discrimination  

as a function of the direction coherence of a prime stimulus (i.e. how close the direction of 

the prime is to the target one) as “priming curve”. In other words, by “direction coherence” 

we mean the degree to which the direction of prime and target is the same. Consistently, we 

will refer to the extremes of such curves as “coherent” or “incoherent” priming, respectively. 

We will call “neutral” priming the mid-point of such curves, consisting in the performance 

when the prime carried no left/right-directional information because it moved vertically. Such 

terminology will be used both for identity- and cross-priming conditions, for both P and G 

groups.  

The first step in our analysis was to verify whether the prime stimuli were indeed 

capable of biasing rat choices consistently with their direction coherence in the identity-prime 

condition.  

For the G group, performances in the identity-priming condition (see Fig. 2A, left, 

black curve), were strongly modulated by the direction coherence of the prime grating. In the 

coherent priming case, rat classification of target direction was strongly facilitated, as 

compared to the reference neutral priming condition. Conversely, in the incoherent priming 

condition, rat classification accuracy was substantially lower than with the reference neutral 

prime. Overall, the identity-priming curve was approximately sigmoidal with the  accuracy 

depending smoothly from the direction coherence of the identity-prime stimulus.  

Also for the P group, in the identity-priming condition, a strong priming was observed 

(see Fig. 2A, right; black curve). In this case too, the magnitude and sign of the priming 

effect depended smoothly on the similarity between the direction of the prime and that of the 

target, resulting in an approximately monotonic drop of rat classification accuracy from the 

fully coherent priming condition towards the fully incoherent one. 

The observed strong modulation of rat classification accuracy in identity-priming 

condition is important for two reasons. First, it verified the effectiveness of the priming 

paradigm. Second, and more importantly, it served as a reference against which to compare 

the modulation of the accuracy observed in the cross-priming condition. In fact, the degree of 

similarity between the priming curves measured in identity- and cross-priming condition (i.e., 

between the black and gray curves in Fig. 2A) allowed answering two key questions about 

the neuronal representations of stimuli (i.e., local or global direction-based).  

The first question that will be addressed focusing on the cross-priming curves is 

whether these representations are “shared” (i.e., the same neural population encodes both 

gratings and plaids) or “non-shared” (i.e., distinct, non-overlapping neural populations 
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represent the two types of stimuli). In the former case, we would expect a substantial 

modulation of rat classification accuracy also in the cross-priming condition, possibly as 

large as in identity-priming condition. In the latter case, no cross-priming effect would be 

possible (because of no interaction between the populations representing the two stimuli).  

In case the representations of drifting gratings and plaids were found to be shared, 

then a second, deeper question could be answered by comparing the shapes of the priming 

curves obtained in identity- and cross-priming conditions. If rats spontaneously represented 

stimuli based on their global direction, then the priming curves produced by gratings and 



105 
 

plaids would be largely overlapping. If the contrary were true (stimuli represented on the 

basis of local direction), priming curves produced by gratings and plaids would be different. 

The latter case is the one to be expected if rats, when processing plaid stimuli, were “blind” 

to their global motion direction and extracted instead only the local directions of the 

constituent gratings.  

This qualitative intuition can be translated into quantitative hypotheses about the 

possible shapes of the cross-priming curve, based on the most plausible ways (i.e., 

“combination rules”) by which, in presence of a non-integrated (i.e. local-direction based) 

percept, the prime stimuli could exert their priming influence on the discrimination of the 

target. All the hypotheses formulated below are grounded on the assumption that, in each 

trial, one component of a plaid would prevail in biasing rat perception of the target towards 

its direction, consistently with a form of winner-take-all competition among overlapping 

components42 (the standard alternative to integrative strategies). 

In the first and simplest scenario, a rat, when presented with a plaid, always perceives 

(or is influenced by) the same component of the stimulus – either the more leftward- or the 

more rightward-drifting component grating (where with leftward or rightward we mean with 

respect to the global direction of the plaid). As a result, the cross-priming curve can be 

obtained from the identity-priming curve, by simply shifting the latter either leftward (“left 

component prediction”) or rightward (“right component prediction”) by 60º, i.e., half the 

angle between the two components of the plaid (see Materials and methods and Fig. 6).  

An alternative (and more likely) scenario is that a rat perceives (or is influenced by) 

just one of the two components of a plaid, but this component randomly changes across the 

trials in which the plaid is used as a prime. Such combination rule would produce a cross-

priming curve (referred to as “average prediction” in what follows) obtainable as the average 

of the left and right component predictions.  

Finally, a quantitative prediction about the shape of the cross-priming curve in case of 

integration of the local components into a global motion percept is simply given by the 

identity-priming curve itself. 

To find out which of the above-mentioned hypotheses better matched rat perceptual 

behavior, we compared the corresponding predictions with the cross-priming curves that were 

observed experimentally (computed by averaging over all the rats within a group). We 

estimated 95% confidence intervals for the group average priming curves by bootstrapping 

over sessions (i.e. ensemble of all trials performed in a given day), independently for each 

animal (see Materials and methods). Observed cross-priming curves are shown in Fig. 2A.  

In the G group (Fig. 2A, left), the cross-priming curve (gray) is almost flat and 

significantly different from the identity-priming curve (black), as shown by the non-

overlapping 95% confidence intervals (shaded areas). This means that the plaids, when used 

as prime stimuli, were virtually ineffective at biasing rat discrimination of the target gratings. 

Magnitude of priming effects were quantified by measuring the mean absolute difference 

between the value of the curve at the neutral prime direction and the values of the curve at the 

four leftmost and four rightmost prime directions (i.e., close to the most incoherent and most 

coherent priming conditions).  

The priming magnitude was found to be significantly smaller than in the identity-

priming case (Fig. 2A, inset, left, gray vs. black bar; ** p < 0.01; t-test). This suggests that 
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the neuronal population which G rats relied upon to represent the direction of the (isolated) 

gratings was largely inactive during presentation of the plaids, and thus unable to encode the 

global direction of these stimuli, as well as the local directions of their components.  

By contrast, in the P group, the cross-priming and identity-priming curves largely 

overlapped (Fig. 2A, right: gray vs. black curve). As a result, the priming magnitude 

observed in the two conditions was equally large (Fig. 2A, inset, right: gray vs. black bar; p > 

0.05; t-test). This can be interpreted as the signature of a shared representation, where the 

same neural population codes for both kinds of stimuli (see Discussion). 

As explained above, the existence of such a shared representation allowed further 

investigating its organizing principle (local or global direction). To this aim, in Fig. 2B we 

quantified the overlap between the observed cross-priming curve (in gray) and each of the 

predicted cross-priming curves resulting from assuming either a local representation of the 

individual components of the plaids (including all combination rules discussed above, in 

green) or an integrated representation of its global motion (in orange). The right and left 

component predictions (top subpanels, green) diverged substantially from the observed cross-

priming curve (gray), with 60% of points being significantly different from what expected by 

chance (p < 0.05; test based on bootstrapping the confidence interval of the difference 

between predicted and observed curves; see Materials and methods and Fig. 6). The average 

component prediction (bottom left subpanel, green) yielded a cross-priming curve that is 

closer to the observed one (gray), yet 55% of the points are significantly different between 

the two curves. By contrast, the prediction based on global motion integration yielded a 

cross-priming curve (bottom right subpanel, orange) that largely overlapped with the 

observed one (gray), with no points being significantly different between the two curves.  

Based on these results, we can infer that the representation of plaids in rats trained to 

discriminate such stimuli (P group) is not only shared with the representation of gratings, but 

is structured in such a way to encode global motion direction.  

 

Discussion 

The results presented in Fig. 2 show that rats are capable of spontaneously combining local 

motion cues into integrated percepts of global motion direction of a complex visual pattern. 

This establishes a candidate perceptual correlate of the neuronal selectivity for global motion, 

previously reported across rodent visual cortical areas2,3,15.  

Critically, such motion integration ability only emerged in rats trained to discriminate 

the plaid stimuli (P group). The animals trained in the grating discrimination task (G group) 

were instead virtually insensitive to the plaids, indicating that the neuronal population they 

relied upon to encode the gratings failed to effectively represent the plaids. This suggests two 

intriguing hypotheses about the representational and perceptual decision processes underlying 

motion discrimination in rats.  
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The first is that the specific discrimination being reinforced, through reward delivery, 

during training, biases the recruitment of the neuronal pool within visual cortex that is read 

out by downstream decision neurons towards either a more component-enriched or a more 

pattern-enriched cell population (referred to as the “decoding pool” in what follows).  
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The second hypothesis is that component cells not only fail to represent the global 

direction of the plaids, but signal the local directions of their constituent gratings less reliably 

than when such gratings are presented alone (as it would happen if having a lower response 

firing rate in presence of Poisson variability of firing). 

We checked whether these hypotheses could be supported by the known response 

properties of component and pattern cells, focusing on two specific questions: 1) the relative 

proportion of these functional cell classes within rodent visual cortex and 2) how vigorously 

these two classes of neurons respond to gratings and plaids.  

Although the number of studies investigating global motion integration in rodent 

visual cortical areas is still limited2,3,15, a finding that is consistent among studies is that 

component cells by far outnumber pattern cells, with the former being ~25% of direction-

tuned units and the latter being about ~5% (with the rest being unclassified).  

With respect to the second question, a well-known phenomenon likely affecting the 

strength of grating and plaid responses is cross-orientation suppression43,44, which has been 

recently documented also in rodents45–47. It consists in the reduction of the response to a 

preferred oriented stimulus, when this is presented along with other stimuli with different 

orientations. In principle, cross-orientation suppression could lead to diminished responses to 

plaids, as compared to gratings. However, studies documenting this phenomenon mainly 

targeted V1, without distinguishing between pattern and component cells. When focusing on 

the motion integration literature, it turned out to be difficult to draw any useful data 

concerning the presence of such effect in pattern and component cells from rodent 

studies2,3,15, because of methodological issues (e.g., tuning curves normalization, and calcium 

imaging lacking spike-count-level information). On the other hand, in the primate literature, 

we found hints of cross-orientation suppression being stronger in component cells than in 

pattern cells16,17. If one assumes that the same cross-orientation suppression also affects 

rodent component cells, this phenomenon, by itself, could support the second hypothesis 

formulated above – a decoding pool largely made of component cells would respond less 

(and likely less reliably) to plaids than to gratings. Crucially, this would explain the reduced 

priming efficacy of plaid cross-prime stimuli over target gratings that we observed in the G 

group.  It remains to be explained, however, how training with gratings, rather than with 

plaids, can lead to a component-rich, rather than to a pattern-enriched, decoding pool in the 

first place (i.e., the first hypothesis formulated above). Intuitively, this question can be 

addressed by taking into account the effect of both the scarcity of pattern cells and their lower 

susceptibility to cross-orientation suppression, as compared to component cells. This is 

graphically illustrated in Fig. 3, where the pattern and component cells are represented as 

stylized pyramidal neurons with different colors (orange for the pattern and green for the 

component).  

In the case of training with gratings (Fig. 3A, top), these stimuli will strongly activate 

both pattern and component cells (filled neurons). As such, the selection of the neuronal 

decoding pool by a downstream decision neuron will not be biased towards either class of 

neurons. However, since, in the overall population, the component cells substantially 

outnumber the pattern cells, the units contributing to the decoding pool (dark-boundary 

neurons) will mostly be component cells. As already mentioned, all the neurons in the 

decoding pool will be active during presentation of the grating primes (Fig. 3A, middle; filled 
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neurons). By contrast, most component cells in the pool will be strongly depressed by cross-

orientation suppression during presentation of the plaid primes (Fig. 3A, bottom; empty dark-

boundary neurons), and the few pattern cells in the pool (orange-filled, black-boundary 

neurons), although active, will not be enough to support the representation (and the percept) 

of the pattern stimuli. Hence the lack of cross-priming in the group of rats trained with 

gratings (Fig. 2A, left). 

 In the case of training with plaids (Fig. 3B, top), these stimuli will strongly activate 

the population of pattern cells (orange-filled neurons) but weakly excite component cells, 

activating only a small fraction of them (green-filled neurons) in each trial. This asymmetry 

would lead to a strong selection bias favoring the recruitment of pattern cells in the decoding 

pool (dark-boundary neurons) by a downstream decision neuron. This is consistent with the 

idea of such process being mediated by some form of plasticity similar to the reward-gated 

Hebbian one described in 48 (since stronger firing neurons at time of reward delivery will be 

more likely to be included in the decoding pool). When tested with prime stimuli, such 

pattern-enriched pool would respond with a similar intensity to both kinds of primes (grating 

and plaids; Fig. 3B, middle and bottom panels respectively), leading to similar priming 

curves in both identity- and cross-priming conditions (Fig. 2A, right). This would account for 

the shared representation of global motion direction observed for P group rats. 

To quantitatively test whether the mechanistic account hypothesized in the previous 

paragraphs could explain our findings, we built a computational model where a decision 

neuron has to select his afferent units from a mixed population of component and pattern 

cells in the visual cortex, in order to discriminate the direction of either drifting gratings or 

plaids (Fig. 4A). The relative proportion of simulated component (80%) and pattern (20%) 

cells roughly matched that found, on average, across mouse visual areas V1, LM and RL2,3,15. 

Each unit was simulated as a Poisson spiking neuron, whose average firing rate as a function 

of direction was defined as a von Mises function49,50 having a peak that was randomly 

sampled across the direction axis (see Materials and methods for details). In addition, to 

simulate cross-orientation suppression in component cells, their peak responses to the plaids 

were set to half their peak responses to the gratings, while pattern cells were assumed to be 

unaffected by cross-orientation suppression. The decision neuron consisted in a logistic 

regression classifier that was trained to discriminate between leftward and rightward stimuli. 

Such classifier performs a weighted sum of the inputs provided by all the simulated 

component and pattern cells. With training, the weights are adjusted in such a way to 

maximize its classification accuracy (eventually attaining 100%).  

When trained in the grating discrimination task (reproducing G group training 

condition), the classifier learned to rely more heavily on those motion detectors (no matter 

whether component or pattern cells) preferring directions closer to that of the training stimuli. 

This is shown in Fig. 4C (top), where the weights of the simulated units as a function of their 

preferred direction are reported. For both the component (green dots) and pattern (orange 

dots) cell populations, the most informative neurons were those with preferred direction close 

to 0º/360º (rightward-drifting gratings) and 180º (leftward-drifting gratings), while the units 

tuned around the vertical drift direction (i.e., 90º and 270º) were assigned close-to-zero 

weights.  
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Given these weight distributions, we simulated different degrees of sparsity 

constraints on the connectivity of the decision neuron. This was done by pruning input 

connections with progressively larger weight magnitude, thus gradually reducing the 

effective size of the decoding pool.  
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However, given the closely matching weight magnitudes of the component and 

pattern cells, the level of pruning did not alter their relative proportion in the decoding pool – 

this proportion remained the same as in the original population (i.e., 80% vs. 20%; Fig. 4C, 

bottom).  

This confirms the intuition (see Fig. 3A) that training with gratings, even in presence 

of asymmetric (i.e. acting on component but not pattern cells) cross-orientation suppression, 

leads to no bias in resulting decoding pool composition (that is therefore component-rich). 

A different scenario emerged when we simulated the training in the plaid 

discrimination task (reproducing P group training condition, see Fig. 4B). The weight 

distribution learned by the classifier for the pattern cell population (left, orange dots) was the 

same as in the grating discrimination task. This is because simulated pattern cells are, by 

hypothesis, immune to cross-orientation suppression. On the other hand, the weight 

distribution for the component cell population (green dots) was very different from that 

obtained in the grating discrimination task. First, since these cells responded to the plaid 

components (i.e., the constituent gratings), the classifier learned to assign larger weights to 

those units with preferred direction at ±60º (i.e. half plaid cross-angle) with respect to the 

global directions of the leftward- and rightward-drifting plaids. In addition, because the 

components cells are affected by cross-orientation suppression, the classifier learned to rely 

less on component than on pattern cells, thus assigning much lower weights to the former 

than to the latter (compare the absolute height of the peaks in the distributions of green and 

orange dots in Fig. 4B, top). As a result, when the sparsity of the connections to the decision 

neuron was increased, by leaving in the decoding pool only inputs with progressively larger 

weight magnitude (i.e. performing connection pruning), the proportions of component and 

pattern cells in the pool followed opposite, mirror trends (Fig. 4B, bottom). While the former 

decreased (orange curve), the latter increased (green curve), eventually leading to a reversal 

of the fraction of component and pattern cells in the decoding pool, when the decision neuron 

was allowed to keep only ~10% of its potential inputs. This confirms the intuition (see Fig. 

3B) that cross-orientation suppression can, at least in principle, strongly bias the recruitment 

of pattern cells in the decoding pool, under the constraint of sparse connectivity to the 

decision neurons (leading to a pattern-enriched decoding pool).  

Furthermore, to demonstrate that cross-orientation suppression acting over component 

cells (i.e. asymmetric) was actually necessary and sufficient to produce the above discussed 

decoding pool selection bias effect, we repeated the simulation described above “knocking-

out” the cross-orientation suppression effect itself. As can be seen in Fig. 5, the result of such 

computational control experiment was, as expected, completely identical to the previous case 

for what concerns the grating training (Fig. 5B). 

On the other hand for what concerns the plaid training (Fig. 5A) the weights 

magnitude difference and decoding pool selection effects obtained in presence of asymmetric 

cross-orientation suppression were now completely abolished.   

Overall, these results not only provide solid behavioral evidence of motion integration 

in rodents, but also allow making explicit, testable predictions about the neurophysiological 

mechanisms underlying such ability – i.e., the existence of cross-orientation suppression in 

component but not in pattern cells. More in general, our study provides solid grounding for 

future investigations aimed at dissecting the neuronal circuits underlying integration of local 
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motion cues into global motion percepts. In fact, as highlighted in a recent perspective51, a 

behavioral task involving direction discrimination of gratings and plaids is a necessary 

ingredient of future experiments aimed at establishing a correlational and/or causal link 

between pattern-like responses observed in rodent visual cortex and integrated motion 

perception. 

 

 

Materials and methods 

Animal procedures 

We trained 21 male Long Evans rats (Charles River Laboratory) in a motion direction 

discrimination task. Upon arrival in the lab, rats weighed ~250 g, and they grew up to ~500 g. 

Animals started training during ~ 7th postnatal week. During the experimental period, they 

had free access to food, while their access to water was restricted. Their daily liquid intake 

included 5 – 15 ml of a 1:4 juice-water solution, plus an ad libitum water access for one hour 

after training. Training sessions lasted 50 – 70 minutes and took place 5 days per week. All 

animal procedures were conducted in accordance with the international and institutional 

standards for the care and use of animals in research and were approved by the Italian 
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Ministry of Health and after consulting with a veterinarian (Project DGSAF 22884, submitted 

on November 24, 2014 and approved on September 4, 2015, approval 940/2015-PR). 

Behavioral apparatus and stimuli 

The behavioral setup comprised an operant box, with a 3 cm-diameter hole to allow animals 

to extend their head outside the box. An LCD monitor (ASUS® Ve228) was placed in front 

of the hole (30 cm distance). The box was equipped with three stainless-steel feeding needles 

(Cadence Science®), each connected to a led-photodiode pair to detect animal’s interaction 

with the port. Feeding needles positioned at the right and at the left of the animal's head 

starting position were connected to the reward delivery system (lateral response ports). The 

central feeding needle was not connected to the reward delivery system (trigger port). This 

three-way needle-detector system is referred as “licking sensor”. When an animal reached the 

feeding needles of different ports, photodiodes detected the response side (left or right port) 

or the triggering of a trial (trigger port). Stimulus presentation, response collection and 

reward delivery were controlled via workstations running open source MWorks software 

(https://mworks.github.io/). Liquid reward solution delivery was actuated by two computer-

controlled syringe pumps (New Era Pump Systems NE-500®). The pumps were connected to 

the right and the left feeding needles in order to deliver the reward in case of correct 

response. Target grating stimuli consisted in full-field, full-contrast, sine wave drifting 

gratings, moving horizontally toward left (180°) or right (0°), with temporal frequency of 2 

Hz and spatial frequency of 0.04 cycles/°. Target plaid stimuli were constructed by 

superimposition of two half-contrast gratings (again 0.04 cycles/° and 2 Hz) with a motion 

direction difference of 120° (i.e. 120° plaid cross-angle) with the same global motion 

direction of the grating targets (i.e. left or right). Prime stimuli drift direction (from 0° to 180° 

in steps of 10°) and identity,  during the priming phase, were randomly selected on each trial 

(see Fig. 1). 

Experimental design - Training phase 

Rats were able to trigger a trial by reaching the central feeding needle. As soon as the animal 

reached the trigger, the target stimulus appeared (either a grating or a plaid depending on the 

animal’s experimental group). Responses with reaction times <300 ms from the trigger time 

were considered “too fast”: in this case the trial was aborted and excluded from the analysis. 

Similarly, responses occurring >2000 ms after the end of the stimulus (lasting 2000 ms) were 

considered “ignored” and excluded from the analysis. No reward was delivered in these 

invalid trials. In order to accomplish the task and receive the reward, the rat had to reach the 

feeding needle matching the global motion direction of the target stimulus. Correct execution 

of such task was rewarded equally for both directions during each experimental session. In 

correct trials, the target stimulus remained on the screen for the whole reward delivery period, 

as to strengthen operant association between stimulus response and reward. On the other 

hand, when the animal provided an incorrect response, besides not  delivering any reward, an 

aversive 5-20 cycles of black and grey flashes was shown together with the playing of an 

auditory aversive tone (“time-out”). 
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Experimental design - Priming phase 

In the priming phase, a moving prime stimulus was shown to the animal before the moving 

target stimulus. The prime duration was 75 ms, and the ISI (i.e. time separating its offset from 

the target onset) was 75 ms. As in the training phase, “too fast” or “too long” trials with were 

excluded from the analysis. The definition of “too long” in this second phase of the 

experiment was changed to 1000 ms after target onset (so response window spanned times 

from 300 to 1000 ms from target onset). In order to obtain the reward, the animal, as in the 

training condition, had to reach the feeding needle corresponding to the global-direction of 

the target (i.e. right or left). In this phase, the target was not kept on screen during the reward, 

because there was no longer any need to favor the association between response, stimulus and 

reward. Only animals maintaining a performance in the training task greater that 75% for 4 

consecutive days were transferred to this second phase.  

Rat selection criterion 

Only rats displaying a strong identity-priming effect where included in the analysis described 

in the main text. Quantitatively this corresponded to setting a threshold on the absolute 

priming magnitude in the identity priming condition amounting to 5%. The enforcement of 

such criterion led to the rejection of one rat per group bringing the number of rats included in 

the analysis 10 animals for the G group and to 9 animals for the P group out of the original 11 

animals trained in grating direction discrimination and 10 trained in plaid direction 

discrimination. 

Cross-priming predictions 

Having observed a shared representation of grating and plaid primes in the P group, we were 

interested in obtaining predictions in deriving cross-priming predictions starting from the 

identity-priming curve (i.e. predicting the priming effect of the grating primes from that of 

plaid primes, over plaid targets). For what concerns the left and right predictions, to do so, we 

assumed as predicted cross-priming effect, for each direction, the one observed for the 

identity prime containing that specific grating as left or right component respectively (Fig. 6).  

For what concerns the average prediction, we averaged the left and right predictions, 

considering that this would be the effect of randomly selecting one of the two components 

over many trials. To make the analysis more sensitive to effects linked to the direction of 

prime stimuli (that are the ones enabling to infer the organizing principle of the perceptual 

representation), and less sensitive to intrinsic differences in the difficulty of the task between 

the identity and cross condition the offset needed to match the neutral prime level in the 

cross-priming condition (i.e. 90° priming performance) with the one observed in the identity-

priming one was applied to the original identity priming-performances when generating 

either the left or right component prediction. 
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Decoding pool selection simulation 

To provide computational support to the mechanism we proposed, we trained a logistic 

regression classifier to perform the same task our animals were trained to perform (i.e. 

left/right direction discrimination of either gratings or plaids). As described in the main text, 

the stimuli representation assumed in the simulation is the one originating from a population 

of Poisson neurons containing more component than pattern cells (80% vs. 20%), having 10 

Hz of peak firing rate, 0.9 of mean OSI (gaussianly distributed with standard deviation of 
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0.05), 0.7 of mean DSI (gaussianly distributed with standard deviation of 0.05) with 

randomly centered von Mises tuning curves (uniformly distributed across the circle).  

To test whether cross-orientation suppression is necessary and sufficient to produce the bias 

in the selection of the decoding pool we hypothesized, we ran both a simulation with it (Fig. 

4) and a control simulation without it (Fig. 5). A hypothetical “decision neuron” located 

upstream the sensory area(s) containing the decoded population would plausibly form 

synaptic connections with only a very small (i.e. sparse) subset of the neurons in that area. 

For this reason, in order to obtain a more biologically realistic estimate of the magnitude of 

the selection effect when taking into account such sparsity of connections, we quantified the 

proportion of pattern and component units in the decoding pool as a function of the quantile 

used to threshold the classifier weights (i.e. putting to zero any weight below the chosen 

quantile of the distribution − Fig. 4B and Fig. 5B bottom plots). This is referred elsewhere as 

“connection pruning”. The results we obtained are consistent with what we hypothesized 

from the physiological literature. In fact, in the presence of cross-orientation suppression, the 

plaid-group classifier (Fig. 4B, left) ended up assigning much more weight to pattern cells, 

whereas this was not the case for the grating-group classifier (Fig. 4B, right).  

Being pattern cells much rarer than component, the decoding pool resulted always (i.e. 

independently of the threshold chosen) unbalanced towards component cells in the grating-

group case (Fig. 4B bottom right). Crucially, on the other hand, in the plaid training case 

when thresholding at plausibly high quantiles (i.e. >0.75), in the cross-orientation suppressed 

case, the opposite was true. Specifically, in this case, we observed decoding pools composed 

mainly by pattern cells (up to 100%), demonstrating a strong selection effect (Fig. 4B bottom 

left). Even without cross-orientation suppression, however, a very mild effect favoring the 

inclusion of pattern cells in the decoding pool was apparent, but the proportion of the pattern 

and component cells were never reversed (Fig. 5B bottom left). This is most likely due to the 

difference in signal-to-noise ratio between pattern and component cells originating from 

intrinsically different broadness of plaid tuning curves characterizing the two cell classes. 

In conclusion this suggests that, in presence of cross-orientation suppression, in 

physiologically plausible conditions, a plaid-trained decision neuron would likely end up 

recruiting a pattern-enriched population whereas a grating-trained one would recruit a mainly 

component one. 
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Chapter V 

 

 

 

Linear receptive field structure does not account for 

pattern motion responses in rat visual cortex 
 

 

 

 

 

 

Abstract 

 

A key processing stage of motion perception is solving the aperture problem – i.e. extracting 

the global direction of visual objects by integrating many local direction signals. Decades of 

studies on primates documented how primary visual cortex (V1) contains almost exclusively 

neurons that are selective for local direction (i.e., “component cells”), whereas higher-order 

dorsal stream areas, such as the middle-temporal (MT) and the medial superior temporal 

(MST) areas, are strongly enriched in global-direction selective units (i.e., “pattern cells”). In 

rodents, the investigation of the neuronal substrates of motion integration started only 

recently, with contrasting findings about the presence of pattern cells in mouse V1, and one 

study reporting non-negligible fractions of such cell type in mouse lateromedial (LM) and 

rostrolateral (RL) areas. None of these studies, however, mapped the linear receptive field 

(RF) structure of the recorded neurons, leaving open the possibility that the integrative 

properties of these putative pattern cells might trivially originate from the specific geometry 

(e.g., the low aspect ratio) of linear RF of non-integrative (i.e., component-like) neurons. To 

investigate the extent to which rodent visual cortex contains true (i.e. integrative) pattern 

cells, we performed extracellular recordings in V1, LM and RL of anesthetized rats, during 

the presentation of drifting gratings, plaids (i.e., superpositions of gratings with different 

directions) and noise movies. This revealed the presence of pattern cells in rat V1 and LM, 

but not in RL, corroborating some previous results while contradicting others. Moreover, by 

carrying out reverse correlation analysis, we were able to reconstruct the linear RFs of some 

pattern and component cells. Using them as filters to predict grating and plaid direction 

tuning curves showed that the linear RF structure does not account for pattern motion 

responses in rat visual cortex. This strongly suggests that rodent pattern cells truly perform a 

nonlinear integration of local motion signals to extract the global motion direction of 

complex visual patterns. 
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Introduction 

Perceiving the velocity (i.e. motion direction and speed) of visual objects is critical to interact 

effectively with the environment. Primary visual cortex can be thought as a bank of local 

moving-edge detectors providing a representation of visual input from which object motion 

direction can be extracted. Carrying out such computation, however, is not completely trivial. 

The output of a single localized edge-detector is, in fact, intrinsically ambiguous, since it 

reflects the projection of the global object velocity vector onto the local edge-orthogonal 

direction – in this way, any information regarding the edge-parallel component of object 

motion is lost in the computation. This makes the output of such kind of filter compatible 

with infinite combinations of global directions and speeds, and therefore insufficient to fully 

specify the velocity of the object causing it. Only by combining (i.e., integrating) multiple 

local direction signals of this kind, global object direction and speed can be fully determined. 

This ambiguity is known in the neuroscientific literature as the “aperture problem”1–3. 

Psychophysically, it can be appreciated by the fact that observers looking at a drifting object 

through a small aperture will perceive the edge seen through the aperture as always drifting in 

the perpendicular direction to the edge itself, irrespectively of the global direction of the 

object behind the aperture3. If not handled properly by the visual system, the aperture 

problem would lead to illusory and inaccurate motion measurements. 

In the mammalian brain, motion integration is known to be achieved by pattern cells, 

which are abundant in monkey dorsal stream areas such as MT4–11 and MST9,10. The 

complementary cell class is that of component cells, neurons that − behaving like localized 

edge detector filters − are sensitive to the aperture problem. Such kind of neurons have been 

reported to be predominant in V14,6,9,10 and widespread across multiple areas of the monkey 

visual cortex.  

In rodents, only a handful of studies investigated the distribution of pattern and 

component cells in V112,13 and bordering high-order visual areas14. Furthermore, such studies 

yielded contrasting results about the presence of pattern cells in V1: two of them reported a 

small but consistent fraction of pattern units in this area12,13, while another did not find any14. 

Despite the lack of a clear picture on the electrophysiological front, recent work provided 

compelling evidence about cortex-dependent motion processing capabilities of rodents15. 

Furthermore, as described in the previous chapter of this thesis, we recently provided 

behavioral evidence for the ability of rats to spontaneously perceive global motion.  

Interestingly, the computational model included in that study was able to explain our 

behavioural observations assuming two key properties for the neural representation of motion 

signals: an asymmetry in the fraction of component and pattern cells (with the former being 

much more abundant than the latter) and an asymmetry in the effect of cross-orientation 

suppression on these two classes of neurons (with component cells being much more strongly 

suppressed by the presence of multiple oriented gratings/edges than pattern cells). Identifying 

such properties in some visual area of the rodent brain would convincingly candidate that 

region to be the area supporting our behavioral task. More generally, the rise of rodents as 

interesting models for motion integration calls for: i) the collection of new data capable of 

resolving the ongoing debate about the proportion of pattern units across their visual areas;  
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and ii) the investigation of the computational mechanisms underlying their tuning 

properties16. 

To achieve the first aim (i), we undertook an electrophysiological investigation of V1 

and two putative dorsal extrastriate areas, LM and RL. LM was chosen by virtue of being 

positioned at the interface between ventral and dorsal streams on functional17–19 and 

anatomical20 grounds, consistently with a proposed homology to monkey V2. Furthermore, 

LM was reported by Juavinett et al.14 as highly enriched in pattern cells, making it a very 

interesting target for our investigation. RL, on the other hand, has been proposed as a rodent 

homologue of monkey MT by the same authors14, who found the highest proportion of pattern 

cells in such area across all mouse visual cortex. 

To address the second issue (ii), we considered the possibility of explaining the 

observed pattern responses as trivially emerging from the responses of broadly tuned linear 

units due to the “blobbyness” (i.e., low aspect ratio) of their receptive fields (RFs). In fact, 

even if Palagina et al.13 reported no significant difference of average tuning broadness 

between pattern and component cells, they found that pattern responses in mouse V1 are not 

cross-angle invariant (i.e. they change their pattern/component behaviour depending on the 

angle between the two component grating forming the plaid ). Such sensitivity to the cross-

angle between the grating components of the plaid led them to suggests that the observed 

pattern-selectivity may trivially rely on the geometry of the RF13. As originally proposed by 

Tinsley et al.21, apparent pattern responses could emerge from linear units when local 

contrasts “blobs” of the plaid tightly overlap the excitatory/inhibitory subfields of the 

neuron’s RF. Such explanation looks particularly plausible in rodents, given that, compared 

to higher acuity mammals22–25, rodent visual neurons have broader tuning curves, lower 

spatial frequency preferences18,26,27, and RFs with a lower aspect ratio26,28. This is an 

important factor since, as confirmed by a simple simulation (described below; see Fig. 1), for 

an ideal Gabor filter, blobbyness of the receptive field (i.e., low aspect ratio), broadness of 

the direction tuning curve and the ability to produce pattern-like responses (when probed with 

plaid stimuli) are tightly interconnected. 

In the light of these considerations, when investigating rodent visual cortex, the risk 

of misclassifying linear, non-integrative units (that should be properly considered as broadly 

tuned component cells) as pattern cells cannot be overlooked. This could trivially explain 

pattern selectivity observed in rodents without invoking nonlinear hierarchical mechanisms 

similar to those emerging from the primate literature8,29. As suggested by Palagina et al.13, the 

only direct way to test such blobbyness hypothesis is to reconstruct the linear receptive fields 

of putative pattern neurons and try to predict their plaid responses on that basis. If the 

blobbyness hypothesis holds true, the responses predicted by linear RFs should still be 

pattern-like. On the other hand, if nonlinear, truly integrative mechanisms are at work, linear 

RFs should fail to produce pattern-like responses.  

 

Results 

To provide a quantitative proof-of-principle of the blobbyness effect described above, we ran 

a simple simulation with a Gabor-filter-based linear-nonlinear (LN) neuron model (Fig. 1). 
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We fed to the model gratings and plaids (made of the superposition of two gratings, whose 

directions were 60º apart – this small cross-angle value was chosen to make the effect appear 

already at moderate broadness levels, for illustrative purposes), with 12 equi-spaced drift 

directions for each stimulus type (from 0° to 330°). We used the simulated responses of the 

model neuron to these stimuli to compute tuning curves. We considered 3 different aspect 

ratios of the Gabor filter. In the “high” aspect ratio condition (see the elongated shape of the 

filter shown in Fig. 1A), the tuning curves obtained with the grating (solid line) and plaid 

(dotted line) stimuli both displayed narrow peaks (i.e., sharp tuning).  

Crucially, the tuning curve for the plaids peaked at +/- 30° (i.e., half plaid cross-angle) 

from the preferred direction of the gratings. Such difference is the hallmark of component 

cells. For an intermediate aspect ratio (notice the less elongated shape of the filter of Fig. 1B), 
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the result was similar, even if all tuning curves were broader (i.e., the less sharp tuning). 

Nevertheless, the two peaks of the tuning curve obtained with the plaids were still well 

separated, enabling the proper classification of such neuron as a component cell. Finally, 

when the aspect ratio was lowered further (the width of the Gabor filter shown in Fig. 1C is 

as large as its height), the tuning curves became very broad. Because of this, the two peaks of 

tuning curve obtained for the plaids (solid line) merged into a single peak centred at the 

midpoint between the original positions of the two. Since such position coincides with the 

global direction of the plaid, the model unit displayed the landmark property of pattern cells 

(i.e., similar tuning curves when probed with gratings or plaids). This is why, in this latter 

condition of low aspect ratio, our simple linear unit would be misclassified as an integrative 

pattern cell solving the aperture problem. Fig. 1D and E provide a graphical description of the 

process leading a unit with a linear Gabor RF to look more like a component or more like a 

pattern cell, depending on its aspect ratio. 

To measure the relative proportion of pattern and component cells across rat visual 

cortex, as well as to directly test whether the blobbyness effect could explain pattern 

responses previously reported across rodent visual cortex, we performed extracellular 

recordings from primary visual (V1, n = 258), lateromedial (LM, n = 187) and rostrolateral 

(RL, n = 184) cortex of anesthetized rats. Animals were passively exposed to a stimulus set 

including moving grating and plaids (with a 120° cross-angle) of all combinations of two 

spatial and two temporal frequencies, drifting in 12 equi-spaced directions (from 0° to 330°), 

as well as spatiotemporally correlated noise movies (see Materials and methods). Grating and 

plaid responses were used to compute direction tuning curves and classify the recorded single 

units as pattern or component cells, based on the standard approach developed in cat and 

monkey studies4, and also used in previous rodent studies12–14. Noise movies were used to 

estimate the linear RF of each neuron (i.e., to find the best linear filter that approximated the 

stimulus-response function) by using the Spike-Triggered Average (STA) technique30,31. 

Only neurons significantly and reliably responsive to gratings or plaids were included 

in the analysis described below (see Material and methods). “Patternness” and 

“componentness” were quantified by computing Fisher-transformed partial correlation 

between the observed responses to the plaids and the responses inferred from the observed 

responses to the gratings, assuming either an ideal pattern or component selectivity (these 

correlations are referred to as Zp and Zc respectively; see Materials and methods for a 

definition). Direction selective neurons showing one of the two Z indexes significantly higher 

than 0 and bigger than the other were classified as pattern or component, as usually done in 

the literature (see Material and methods). Neurons that did not meet at least one of these 

requirements were labelled as unclassified.  

Fig. 2 shows tuning curves and raster plots that were obtained for a few example 

neurons recorded from the three targeted areas and classified as either pattern or component. 

Fig. 3 shows instead the distribution of the Zp and Zc indices for the neuronal populations 

sampled from the three areas. In agreement with Palagina et al.13 and Muir et al.12, but in 

contrast with Juavinett et al.14, our recordings yielded a sizable amount of pattern cells in V1 

(6% of the 78 units meeting the responsivity and direction selectivity criteria in V1). In 

qualitative agreement with the latter study14, on the other hand, we found a significant 

fraction of pattern cells in LM (8% of the 74 units meeting the plaid responsivity and 
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direction selectivity criteria in LM). By contrast, in disagreement with Juavinett et al.14 we 

found the RL population completely devoided of pattern cells (0% of the 65 units meeting the 

plaid responsivity and direction selectivity criteria in RL).  

The fraction of component cells in V1 (27% out of the 78 units meeting the plaid 

responsivity and direction selectivity criteria in V1), in turn, was found to be in qualitative 

agreement with Muir et al.12 and Juavinett et al.14, but different from that reported by Palagina 

et al.13 (where it amounted to nearly half the fraction we observed). On the other hand, 

whereas the proportion of component cells we observed in RL (23% out of the 74 units 

meeting the responsivity and direction selectivity criteria in RL) was similar to the one 

observed by Juavinett et al.14, the one in LM (16% out of the 65 units meeting the 

responsivity and direction selectivity criteria in LM) was roughly half of what they reported. 

Finally, consistently with previous rodent studies, the larger fraction of single units included 

in the analysis fell into the unclassified category (67% in V1, 76% in LM and 77% in RL). 

As already anticipated, the next step of our analysis aimed at comparing the responses 

predicted for pattern and component cells on the basis of their linear RFs, with the responses 

that were experimentally observed. The goal was to test the blobbyness hypothesis, which 

implies that observed pattern responses could trivially originate from the RF geometry of 
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linear, non-integrative neurons. To this aim, linear RFs, inferred by computing STA images 

from the responses to noise movies, were used as the input stage of LN models to predict 

grating and plaid tuning curves (see Materials and methods). 

In Fig. 4A, observed (solid, coloured line) and LN-predicted (solid, black line) tuning 

curves for the same V1 neurons previously shown in Fig. 2A-B are plotted along with a 

spatial snapshot of their STA-based RFs (Fig. 4B). Comparing observed and LN-predicted 

tuning curves for the component cell (in green, on the left) revealed a fairly good match 

between the two. On the contrary, for the pattern cell (in orange, on the right), a qualitatively 

different behavior emerged. Whereas the observed and predicted tuning curves for the 

gratings were, again, reasonably well matched, the observed and predicted tuning curves for 

the plaids were not. Specifically, the predicted tuning curve for the plaids was substantially 

broadened on the sides of the peak. As a result, the predicted tuning curve became more 

component-like. Crucially, the effect was strong enough to switch the classification of the 

LN-predicted tuning curve, with respect to the measured one: based on its linear-RF-

predicted response, the pattern cell would be classified as a component cell. As illustrated in 

Fig. 1C, this is at odd with the blobbyness hypothesis, which would predict instead a pattern-

like tuning curve, simply based on output of a linear Gabor-like filter.  
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To quantify this effect in the sampled V1 and LM neural populations, we compared 

the observed (Fig. 4C) and LN-predicted (Fig. 4D) Zp and Zc distributions in the two areas. 

To this aim, we computed the mean difference between observed and LN-predicted Zp and 

Zc values by bootstrapping over the neurons to get 95% confidence intervals for such 

difference (denoted as “Z-difference” in Fig. 4E). Such analysis revealed no significant 

change in componentness (difference compatible with 0 at 95% confidence), but a significant 

reduction in patternness (difference incompatible with 0 at 95% confidence).  

To better understand whether the behaviour illustrated for the example neurons in Fig. 

4 generalized to all neurons categorized as pattern or component, we computed an average 

pattern and an average component tuning curve by re-aligning each curve to its grating 

preferred direction. This analysis was inspired by the one carried out, in a different context, 

by Ibrahim et al.32  To replicate the analysis carried out on the single neurons, we first had to 

make sure that the STA had a fair amount of predictive power over the tuning curves for the 

gratings of neurons included in each ensemble. For this reason, we included in the pattern and 

component ensembles for this analysis only neurons with more than 0.3 correlation 

coefficient between observed and LN-predicted tuning curves. However, doing so, a very 

small number of units among the already few pattern cells would satisfy such criterion in 

each area. To overcome this issue, thus improving the statistical power of the analysis, we 

increased the number of units included in each ensemble by dropping the usual requirement 

on direction selectivity and merging V1 and LM populations (i.e., the two areas containing 

pattern cells).  

Average re-aligned tuning curves for pattern (orange) ad component (green) units are 

shown in Fig. 4F, along with their 95% bootstrap-estimated confidence intervals (bootstrap 

carried out over neurons included in each ensemble). As it can be appreciated by comparing 

light and dark colored traces in both subpanels, average re-aligned tuning curves, as expected, 

still looked like typical pattern and component curves, respectively. Consistently, computing 

Zp and Zc indexes for these average curves, so as to carry out the usual classification, yielded 

the expected result of the average curve of the pattern cells being classified as pattern, and the 

average curve of the component cells being classified as component. This can be appreciated 

by looking, in Fig. 4G, how the pairs of Zp and Zc indexes computed for these average 

curves (light orange and green dot for, respectively, the average pattern and component 

curves) fell in the matching region of the Zp and Zc plane.   

When considering the average of the LN-predicted, re-aligned tuning curves for the 

component ensemble, we could still observe a clear component-like behavior (black curves in 

Fig. 4F, left). Crucially, however, when considering the average of the LN-predicted, re-

aligned tuning curves for the pattern ensemble, we observed a clear difference with respect to 

the observed curves: the LN-predicted curves looked way more component-like than pattern-

like (black curves in Fig. 4F, right). Such observation was quantified by looking at the 

position of the LN-predicted averages in the Zp and Zc plane. As shown in Fig. 4G, both the 

LN-predicted pattern and component datapoints (dark green and dark orange dots 

respectively) fell in the component region of the plane. This means that LN models based on 

linear STA filters predict a component behavior not only for the actual component cells but 

also for the pattern cells. This, in turn, implies that the linear RF structure of the recorded 

units does not account for pattern motion responses we observed in rat V1 and LM.  
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Having demonstrated the non-trivial nature of pattern responses in V1 and LM, we 

further assessed whether either area featured the other key response property predicted by the 

computational model described in the previous chapter to explain rat perception of plaids and 

gratings – i.e., whether cross-orientation suppression would differentially affect pattern and 

component cells. To test this, we computed a relative peak response difference index, 

quantifying the amount of cross-orientation suppression or facilitation displayed by a neuron. 

This index is defined as the relative firing rate difference between peak plaid and grating 

responses: a negative value indicates cross-orientation suppression (i.e., larger peak response 

for grating than for plaids), while a positive value indicates facilitation (i.e., larger peak 

response for plaids than for gratings).  

As can be seen in Fig. 5, V1 and LM populations (gray clouds) were distributed 

mainly across negative values, with an average of -21.7% in V1 and -35.9% in LM. These 

values indicate that the populations in the two areas are significantly suppressed, on average, 

when presented with plaids, as compared to the case in which they are presented with 

gratings (p<0.001 in both cases; t-test). This result could, in principle, be consistent with our 

computational model. However, when considering pattern and component cells separately in 

both areas, we found that not only the component cells were largely suppressed on average 

(green dots), similarly to the whole population, but the pattern cells too (V1 - component 

cells: -27.9%, pattern cells: -30.9%; LM – component cells: -45.6, pattern cells: -42.8%). 

This is at odd with the asymmetric suppression assumption needed to explain our behavioural 

data in chapter 4. 

 

Discussion 

This study is the first to investigate the pattern and component cell distribution in the visual 

cortex of the rat. With our results, we corroborate the notion that rodent V1 hosts a sizable 

fraction of neurons that are sensitive to global motion12,13. At the same time we also provide a 
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confirmation to the view of LM as an extrastriate area that is rich in pattern cells14. On the 

other hand, our data are at odd with the findings of Juavinett et al.14 about the presence of 

pattern cells in RL (see Table 1 for a summary of rodent studies).  

The most likely argument we can conceive to explain such disagreement is related to 

anesthesia. It is well established that pattern cells are almost absent from V1 of anesthetized 

monkeys4,6,9,10, although Guo et al.33 reported a sizable amount of them (9%) being present in 

awake animals. Such responses were likely enabled by feedback from higher level areas that 

are cut off during anesthesia. This demonstrates how, in principle, anesthesia levels can affect 

motion integration computations. Consistently, Palagina et al.13, who did observe pattern cells 

in V1, used lower isoflurane concentrations (0.6%) than Juavinett. et al.14 (from 0.6 to 1.2%), 

who did not observe them. Interestingly, Muir et al.12 who used a fentanyl and medetomidin 

anesthesia similar to our own, reported proportions of pattern and component cells in V1 

matching ours (3% and 31% against 6% and 27%).  

These considerations would suggest that the anesthesia we and Muir et al.12 used 

corresponds more closely to the light levels of the isoflurane-based one used by Palagina et 

al.13 than to the deep ones used by Juavinett et al.14 While this would reasonably reconcile the 

results for V1, the disagreement between Juavinett et al.14 and our study on the fraction of RL 

pattern cells is hard to explain, unless differential area-specific and species-specific effects of 

anaesthetics are considered. In fact, even if fentanyl and medetomidin anesthesia has been 

demonstrated to leave unaffected even subtle aspects of visual processing in rodent V1 and 

extrastriate areas19,34–36, one way to make sense of  the contrasting observations in RL would 
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be to posit that motion integration is more sensitive to anesthesia in extrastriate dorsal areas 

than in V1. To confirm this hypothesis, further studies systematically comparing pattern 

fractions across extrastriate areas in awake and anesthetized rats would be needed. 

Beside contributing to the above discussed debate, our study is the first carrying out 

STA-based linear RF reconstruction and LN-modelling of neurons identified as pattern or 

component cells. This enabled us to directly test a longstanding question concerning the 

nature of rodent pattern selective units: whether their observed selectivity may be explained 

as the result of a trivial linear mechanisms and the geometry of their RF13,21 (i.e. blobbyness 

hypothesis). Our results show that this is not the case – while the linear RF accounted at least 

partially for the tuning of the component cells, it failed to account for the tuning of the pattern 

cells. This goes against the blobbyness hypothesis, pointing to the role of nonlinear 

mechanisms in shaping the observed tuning for global motion. Together, these results point to 

pattern cells we and other investigators observed in V112,13 and LM14 as potentially similar to 

those found in the primate dorsal stream.  

In spite of this conclusion, whether V1 and LM may be the putative neural substrate 

underlying the execution of the behavioural task described in chapter 4 remains unclear, due 

to the discrepancy between the asymmetric cross-orientation suppression postulated by our 

modelling and the symmetric suppression we observed in our neural data. Such disagreement 

could arguably be explained in two different ways (besides by the lack of robust statistics for 

pattern cells): either the areas supporting pattern and grating perception in our task were 

indeed neither V1 nor LM, or those areas were actually involved (as the presence of pattern 

cells would suggest) but cross-orientation suppression effects might be strongly impacted by 

anaesthesia and thus be different in the awake behaving animal. 

 

Materials and methods 

Animal preparation and surgery  

All animal procedures were in agreement with international and institutional standards for the 

care and use of animals in research and were approved by the Italian Ministry of Health: 

project N. DGSAF 22791-A, submitted on Sep. 7, 2015 and approved on Dec. 10, 2015 

(approval N. 1254/ 2015-PR).  

We performed extracellular neuronal recordings from 29 naïve male Long Evans rats, 

weighted 300-700 grams and aged 3-12 months. Each rat was anesthetized with an 

intraperitoneal (IP) injection of a solution of 0.3 mg/kg of fentanyl (Fentanest®, Pfizer) and 

0.3 mg/kg of medetomidin (Domitor®, Orion Pharma). During the surgery, we monitored the 

anesthesia level by checking the animal paw reflex and by measuring the oxygenation and 

heart rate through a pulse oximeter (Pulsesense-VET, Nonin). To avoid anesthesia-induced 

hypothermia, temperature was monitored and maintained at 37° C through a heating pad. In 

order to prevent hypoxia, a constant flux of oxygen was delivered to the animal throughout 

the surgery. A constant level of anesthesia was maintained by continuously delivering an IP 

injection of the same aesthetic solution used for the induction, but at a lower concentration 

(0.1 mg/kg/h Fentanyl and 0.1 g/kg/h Medetomidin), by means of a syringe pump (NE-500; 
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New Era Pump Systems). Once deeply anesthetized, the animal was secured to a stereotaxic 

apparatus (Narishige, SR-5R) and we performed a craniotomy on the left hemisphere, over 

the selected target (typically, a ~ 4 mm2 window). Stereotaxic coordinates of the center of the 

craniotomy were 6.5 mm AP and 4 mm ML for V1-targeted sessions, 7 mm AP and 5 mm 

ML for LM-targeted sessions and 5 mm AP and 4.5 mm ML for RL-targeted sessions. 

To keep eyes hydrated during the surgery, we protected them by delivering an 

ophthalmic ointment (Epigel®, Ceva Vet). Once completed the surgery, the rat was placed 

over a rotating platform, with the right eye just in front of the center of the screen (distance = 

30 cm) and the left eye covered with black tape. The right eye was fixed through a metal eye-

ring. 

Neuronal recordings  

Extracellular recordings were performed in anesthetized rats passively exposed to visual 

stimulation using either single shank 32-channels or double shank 64-channels silicon probes 

(NeuroNexus technologies). The insertion of the electrode into the cortex was performed 

through an oil hydraulic micromanipulator (Narishige, MO-10). The insertion depth was 

different for each area: for V1 and RL, it was ~900 μm with an electrode angle relative to the 

cortical surface of ~20°, for LM ~1500 μm, with an electrode slope of ~25°. Our recordings 

sampling rate was 25 kHz, and the extracellular signal was acquired and pre-amplified 

through a system three TDT (Tucker-Davis Technologies) workstation. To reconstruct the 

path of the electrode insertion through a post-mortem histology, we coated the probe with 

Vybrant® DiI cell-labelling solution (Invitrogen, Oregon, USA). 

Single unit isolation  

Single-units (n = 258 in V1, n = 187 in LM and n = 184 in RL) were isolated offline using the 

KlustaKwik-Phy software package37. After the automatic spikes detection and features 

extraction, we performed a manual refinement of the sorting through the “Kwik-GUI” 

interface. The manual refinement of the automatic output was sorted based on the following 

criteria: i) the compactness of the clusters in the space of the principal components of the 

waveforms; ii) the shape of the auto- and cross-correlogram (the latter was used to decide 

whether to merge or not two clusters); iii) the variation of the principal components of the 

waveform over time – this was especially useful to take into account possible electrode drifts; 

iv) the shape of the average waveform – this was especially useful to detect artefacts or non-

physiological signals. When we suspected that a cluster was composed by multiple single 

units, we ran the “reclustering” function of the GUI, in an attempt to split it into the 

component single units. In order to be included in the following step of the analysis, Single 

Units (SUs) should meet these criteria: i) they should show a clear refractory period (less than 

0.5% of the spikes present in <2 ms in the autocorrelogram); ii) they should be responsive – a 

response firing rate exceeding 2 Hz.  

Visual Stimuli  

Our stimulation protocol was composed of two different sub-protocols: a first one, aimed at 

coarsely mapping the receptive field of units across the electrode shank length (needed to 
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identify in an online manner the identity of the insertion area based on its retinotopy), and the 

main protocol containing the stimuli used to characterize neurons as pattern or component 

neurons and to reconstruct their linear RFs. 

The first sub-protocol consisted in a ~15 minutes long coarse RF mapping procedure. 

The aim of this protocol was to infer the retinotopy at the recording site in order to establish 

the identity of the insertion area (to obtain feedback on whether it matched the intended target 

area or not). In this small sub-protocol, stimuli consisted of 10° long drifting bars presented 

in different orientations (0°, 45°, 90°, 135°). The bar, a white rectangle over a black 

background, was presented in 66 different positions, in 6 rows (spanning vertically 50°) and 

11 columns (spanning horizontally of 100°) grid. An online plotting of the Multi-Unit-

Activity (MUA) allowed us to identify the RF center of the insertion site. The online 

identification of the area could be performed thanks to the “inversion” (i.e. from nasal to 

temporal instead of from temporal to nasal) of the retinotopy present in LM and RL 

compared with V1. 

The second, main, sub-protocol included full-field, full-contrast sinewave drifting 

gratings and plaids (120° of aperture angle) of different spatial (0.02 and 0.04 cpd) and 

temporal (2 or 6 Hz) frequency, as well as 12 equi-spaced drift directions (from 0° to 330°). 

Those stimuli were presented at 60 Hz frame rate and repeated 20 times (trials) across each 

recording experiment. The other kind of stimulus present in the main sub-protocol was a 0.04 

cpd-matched-contrast modulated Gaussian noise, presented in 40 60-seconds-long chunks at 

30 Hz frame rate. Grating and plaid trials as well as noise chunks were randomly interleaved 

with an Inter Stimulus Interval (ISI) of 1 second. During the ISI, a uniform, luminance-

matched grey coloured screen was shown (this was instrumental to estimate the spontaneous 

firing rate of each unit). The total duration of the main sub-protocol was 102 minutes.  

Stimulus presentation was controlled in Matlab through Psychtoolbox-based custom-made 

functions. Stimuli were displayed on a 47-inch, gamma-corrected, LCD monitor (SHARP 

PNE471R) with 1920x1080 pixel resolution, placed at 30 cm from the eye of the animal. 

Classification of neurons 

In order to categorize a neuron as pattern or component direction selective, the first, 

preliminary, step is to select direction selective units among the recorded neurons. To do so 

we have to quantify direction selectivity of single units in each area computing the Direction 

Selectivity Index (DSI):  

DSI = (𝑅pref − 𝑅opposite) (𝑅pref + 𝑅opposite)⁄  

where 𝑅pref is the response of the neuron to the preferred direction and 𝑅opposite is the response 

to the opposite direction. Neurons with a DSI > 0.33 were categorized as direction selective. 

Among those neurons only plaid-responsive ones were considered viable for the 

classification.  

Plaid-responsiveness was quantitatively defined as having a z-scored plaid tuning curve with 

a peak exceeding 5σ. After this second preparatory step we were ready to classify the neurons 

that passed the two previous selections as pattern, component or unclassified on the basis of 

their Fisher transformed partial correlation indexes (Zp and Zc, defined below).  
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where 𝑟𝑐 is the correlation coefficient between observed and component predicted plaid 

tuning curve, 𝑟𝑝 is the correlation coefficient between observed and pattern predicted plaid, 

𝑟𝑝𝑐 is the correlation coefficient between the two predictions and n is the number of elements 

of the tuning curves. Pattern prediction is simply equal to the observed grating tuning curve. 

Component prediction is obtained from observed grating tuning curve shifting it leftwards 

and rightwards of half plaid cross angle and averaging the resulting curves. At 90% 

confidence (as usually done in the literature) the Z critical value adopted was 1.28 defining 

the pattern and component regions of the Zc Zp plane.  

 

pattern condition: 

 

𝑍𝑐 − 0 > 1.28 if 𝑍𝑐 < 0 

𝑍𝑝 − 𝑍𝑐 > 1.28 if 𝑍𝑐 > 0 

 

component condition: 

 

𝑍𝑐 − 𝑍𝑝 > 1.28 if 𝑍𝑝 > 0 

𝑍𝑐 − 0 > 1.28 if 𝑍𝑝 < 0 

 

Neurons which did not meet these criteria were categorized as unclassified. 

RF reconstruction and LN modelling  

Reconstruction of linear RFs underlying selectivity of recorded neurons was achieved  by 

means of the Spike-Triggered Average (STA) analysis30. The method was applied to the 

spike trains fired by the neuron in response to the spatiotemporally correlated noise (see 

above). The method yields an ordered sequence of images, each showing the linear 

approximation of the spatial RF at different times before spike generation. To take into 

account the correlation structure of our stimulus ensemble and reduce artefactual blurring of 

the reconstructed filters, we “decorrelated” the resulting STA images by dividing them by the 

covariance matrix of the whole stimulus ensemble30, using Tikhonov regularization to handle 

covariance matrix inversion.  

Statistical significance of the STA images was then assessed pixelwise, by applying 

the following permutation test. After randomly reshuffling the spike times, the STA analysis 
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was repeated multiple times (n = 50) to derive a null distribution of intensity values for the 

case of no linear stimulus-spike relationship. This allowed z scoring the actual STA intensity 

values using the mean and SD of this null distribution. The temporal span of the 

spatiotemporal linear kernel reconstructed via STA extended from spike generation time up 

to 330 ms before. This corresponds to a duration of 10 frames of the noise movie played at 30 

Hz. These procedures were performed on downsampled noise frames (16x32 pixels). 

Resulting STA images that were later spline interpolated at higher resolution for better 

visualization and for LN prediction. 

After estimating the linear spatiotemporal structure of a RF with STA, we used it as a 

filter in the input stage of a classical LN model of stimulus-response relationship30. To obtain 

a prediction of the tuning of the neuron over the direction axis, the sequence of frames of 

each drifting grating was fed as an input to the STA-estimated linear filter. The output of the 

filter was then passed through a rectifying nonlinearity with unit gain to obtain the final 

response of the model to each stimulus frame. We finally integrated the response of the LN 

model through time to predict the activity of the neuron for each direction of the tuning 

curve. The agreement between the LN-predicted and observed tuning curves was quantified 

by computing the correlation coefficient between the two.  

Cross-orientation suppression quantification 

To this aim we devised an index defined as the relative firing rate difference between peak 

plaid and grating responses, leading to a negative value for cross-orientation suppressed units 

and to a positive value for cross-orientation facilitated units.  

Formally the index (COI) was defined as: 

COI =
(𝑘𝑝 − 𝑘𝑔)

𝑚𝑎𝑥(𝑘𝑝, 𝑘𝑔)
 

with 𝑘𝑝 and 𝑘𝑐 indicating peak response firing rate to plaids and gratings respectively.  
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Conclusion 

While the studies described in this thesis where ongoing, many papers were published that 

deserve to be mentioned in order to thoroughly frame the results we reported in the broader 

context of the current literature. 

Notably, the last few months saw what is arguably the main industrial-scale “big 

science” initiative in neuroscience get to the data-release phase. First results of Allen Institute’s 

large-scale survey of the coding properties of mouse visual system128 where reported in two 

preprints129,130. Recent Allen Institute findings are particularly relevant for the identification of 

the hierarchical organization of rodent visual areas as well as for the ventral/dorsal homology 

hypothesis. 

The first preprint129 reported the results from a two-photon calcium imaging survey of 

60.000 neurons of 6 visual areas (V1, LM, AL, RL, PM and AM) of the mouse cortex under 

presentation of gratings, noise and natural stimuli. A 70% of neurons was significantly 

responsive to stimulation showing very high trial to trial variability (i.e. response to ~ 50% of 

trials in the preferred condition on average) and sparse responses, in particular to natural 

scenes. Furthermore, when fitting the responses with a model using, as features, spatiotemporal 

wavelets followed by either rectifying or quadratic nonlinearities, the authors find out that the 

latter always had more weight. This was interpreted, at odd with numerous previous 

findings79,94,97,98,131 (including our rat results), as the mouse visual cortex containing complex 

cells only. As a last step, the authors analysed the similarity of the observed neural 

representations with those in VGG16 (the same network we used in chapter I study) showing 

a peak of V1 correlation with middle layers of the artificial network and a peak correlation of 

LM, PM and AL with slightly higher ones. This is consistent with those areas being located at 

two close but different levels in a functional hierarchy. 

The second preprint describes the results of an electrophysiological survey with high 

density Neuropixel probes132 across the same 6 areas, totalling ~ 40.000 single units. Nearly 

60% of those units displayed significant visual receptive fields. Notably, one of the four 

analyses described in the paper was explicitly inspired by our work, described in chapter I. The 

authors used our MI index to categorize neurons as simple or complex on the ground of the 

phase dependency of their grating responses. In contrast with what suggested by the calcium 

imaging survey cited above, they found in V1 a bimodal distribution of MI values consistent 

with the coexistence of simple and complex cells in this area, as evidenced by our and previous 

studies. Interestingly, the increase in position tolerance observed across extrastriate areas was 

highly correlated with their “anatomical hierarchy score” (derived from another recent Allen 

Institute study probing the mesoscale connectome of mouse visual cortex133). This further 

validates the MI as a useful measure for hierarchical level. 

Besides the industrial scale science efforts described above, some recent papers targeted 

specifically putative ventral areas, adding new pieces of evidence to the picture delineated so 

far. Cadena et al.134 applied an approach, inspired to the one used by Yamins et al.135 in the 

primate ventral stream, to predict visual responses observed imaging mouse V1, LM, AL and 

RL. In order to do so they regressed neural responses with visual features extracted from 

different layers of VGG16. To their surprise, they found that activity in all areas was optimally 
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predicted by 4th-layer VGG features, in contrast with what would be expected assuming the 

existence of a processing hierarchy among those areas. Even more surprisingly, the authors 

found that the same network with randomized weights performed equally better in predicting 

the neural activity. One key consideration that could explain the first puzzling finding (and 

maybe partially even the second) is the choice of the extrastriate areas targeted for the study. 

In fact, the authors didn’t target putative higher-level shape processing areas such as LI, LL 

and POR but instead an area that seems to be shared at the start of both processing streams 

(LM) and two plainly dorsal ones (AL, RL). Also, according to the latest Allen Institute 

anatomical survey cited above133, those areas are among the lowest in terms of hierarchical 

scoring. All these considerations make the inconclusive result reported by Cadena et al. less 

surprising considering the less than ideal choice of areas to be targeted. A different study, by 

Nishio et al.136, found in ventral area POR, evidence of invariance to stimulus size, consistently 

with the tendency observed in lateral areas to progressively discard low level luminance 

information127. Han et al.137 imaged mouse visual cortex while presenting noise stimuli with 

different orientation content. In doing so they evidenced a decrease in preference for stimuli 

containing a single orientation from V1 to LI, corroborating our result obtained using 

gratings131. Finally, a new study from our lab showed an increase in the activity time-scale and 

object decoding temporal stability across the V1→LM→LI→LL hierarchy under natural 

movie stimulation138. This is consistent with the idea that increasing temporal slowness is the 

signature of a shape processing hierarchy progressively building up transformation invariance. 

On the other hand, other recent studies advanced significantly the characterization of 

putative dorsal areas in mice. Diamanti et al.139, while documenting the widespread spatial 

modulation of neurons across the whole mouse visual cortex, showed how navigation increases 

the reliability of neural responses in AM, PM and A. This is consistent with their tentative 

placement in the dorsal subnetwork concerned with optic flow analyses. Sit et al.140 used two 

photon calcium imaging to probe mouse extrastriate cortex with random dot kinematograms 

(RDK) and natural movies. They found that a high (>70%) proportion of units is responsive to 

coherent motion in all areas, with a bias towards the lower visual field. The strongest motion 

responsivities were observed in areas AM, PM and AL, whereas the lower ones in LI and LM. 

Such result is consistent with the proposed dorsal and ventral assignation of those areas. RL, 

on the other hand, violated expectations displaying high coherent motion responsivity under 

movie stimulation, but not under RDK one. In another recent work141, reporting a high fraction 

(>50%) of binocular disparity tuned units across all mouse visual cortex, RL emerged as an 

area specialized for processing visual objects very close to the animal (between ~ 2 and 7.0 cm 

from the eyes against ~ 5 to 20 cm for V1 and LM). Interestingly, RL-preferred distance range 

falls within reach of the mouse’s whiskers. Such new evidence, together with a previously 

reported retinotopic overrepresentation of the lower visual field108,  corroborates the view of 

RL as specialized for visuotactile integration124. Containing matched visual and somatosensory 

maps, in fact, RL may form a multimodal representation of near space in front of the animal, 

likely playing a key role for vision- and active-whisking-mediated object exploration. Such 

putative role would place RL firmly in the dorsal sensorimotor pathway, with a possible 

homology with the “parietal reach region” in primate PPC, coordinating vision and arm/hand 

movements for object interaction142. 
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Finally, even on the postnatal unsupervised learning front, a relevant paper was recently 

published. Crijns et al.143 set themselves to test the occurrence of unsupervised learning of scale 

invariance in V1 of adult rats, similarly to what Li et al.144 did in monkey IT. Animals were 

repeatedly exposed to a temporal transition between two gratings of different SF and different 

orientation (or the same orientation in case of controls). A temporal contiguity-based learning 

principle would predict the neurons originally selective for a given orientation across the two 

SF would develop responsivity to the new orientation at the new SF. This would mean 

effectively “breaking” the SF-invariant orientation selectivity of those neuron trough exposure 

to an altered temporal visual statistic. The experiment however yielded negative results, 

showing such manipulation to be ineffective in altering the selectivity of the neuros. This could 

be likely due to the choice of performing the experiment in V1 of an adult animal where the 

levels of plasticity are likely quite low, no longer enabling such dramatic experience- 

dependent changes of the basic building blocks of perceptual representations. 

The discussion of the recent literature reported above shows the rich research landscape 

in which the research work described in this thesis sits.  

Summing up, with the first subproject (chapter I) we provided new functional evidence 

supporting the homology of rat lateral extrastriate cortex with the monkey ventral stream. With 

the second subproject (chapter II) we developed and validated a novel, automated, method for 

laminar identification of multichannel silicon probes recording sites. With the third subproject 

(chapter III) we provided a causal demonstration that temporal continuity of the early postnatal 

visual experience plays a key role in the learning of position tolerance in V1. With the fourth 

subproject (chapter IV) we reported the first direct behavioral assessment of the ability of rats 

to spontaneously integrate motion direction across multiple moving elements. With the last, 

fifth subproject (chapter V) we investigated the neuronal substrate of such ability, showing 

how in both rat V1 and LM, pattern cell exist whose behavior is not accounted for by their 

linear receptive field.   

Overall, we hope that the body of work described in this thesis may have provided a 

vivid example of how rats can serve as an extremely interesting, innovative and useful animal 

model for the study of cortical visual information processing. 
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