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Tame majorant analyticity for the Birkhoff map of the
defocusing Nonlinear Schrödinger equation on the circle

A. Maspero ∗

December 26, 2017

Abstract

For the defocusing Nonlinear Schrödinger equation on the circle, we construct a Birkhoff
map Φ which is tame majorant analytic in a neighborhood of the origin. Roughly speaking,
majorant analytic means that replacing the coefficients of the Taylor expansion of Φ by their
absolute values gives rise to a series (the majorant map) which is uniformly and absolutely
convergent, at least in a small neighborhood. Tame majorant analytic means that the majorant
map of Φ fulfills tame estimates.
The proof is based on a new tame version of the Kuksin-Perelman theorem [KP10], which is
an infinite dimensional Vey type theorem.

1 Introduction and statement of the main result

1.1 Introduction
It is well known that the cubic defocusing Nonlinear Schrödinger equation (dNLS) on the circle

iϕ̇ = −∂xxϕ+ 2|ϕ|2ϕ , x ∈ T := R/Z (1.1)

is an integrable system [ZS71, ZM74]. The actual construction of action-angle coordinates is quite
complicated, and it has been studied analytically in the last decade by Grébert, Kappeler and
collaborators in a series of works culminating in [GK14]. In particular these authors showed that
there exists a globally defined map Φ : ϕ 7→ (zk, zk)k∈Z, the Birkhoff map, which introduces Birkhoff
coordinates, namely complex conjugates canonical coordinates (zk, zk)k∈Z, with the property that
the dNLS Hamiltonian, once expressed in such coordinates, is a real analytic function of the actions
Ik := |zk|2 alone. As a consequence, in the Birkhoff coordinates the flow (1.1) is conjugated to an
infinite chain of nonlinearly coupled oscillators:

iżk = ωk(I)zk ∀k ∈ Z , (1.2)

where the ωk(I) are frequencies depending only on the actions {Ik}k∈Z.
Recently much effort has been made to understand various analytic properties of the Birkhoff
map which are useful in applications. Such properties include for example the 1-smoothing of
the nonlinear part of Φ [KP10, KSTa], two-sided polynomial estimates on the norm of Φ [Mo15],
extension of Φ to spaces of low regularity [Mo16].

In this paper we contribute to such analysis by investigating the property of tame majorant
analyticity of the Birkhoff map. Roughly speaking, an analytic map is majorant analytic if replacing
the coefficients of its Taylor expansion by their absolute value gives rise to a series (the majorant
map) which is uniformly and absolutely convergent, at least in a small neighborhood. Then tame
majorant analytic means that the majorant map fulfills tame estimates.

Here we prove that this is indeed true for the Birkhoff map of dNLS, at least in a small
neighborhood of the origin and in appropriate topologies. Our construction of the Birkhoff map is
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quite different and less explicit than the one of Grébert-Kappeler, however the two Birkhoff maps
coincide (up to some normalization) as they are both perturbations of the Fourier transform.

While Grébert and Kappeler provide explicit and globally defined formulas for the action-angle
coordinates of dNLS, our construction is valid only close to zero and it is based on the Kuksin-
Perelman theorem [KP10], which is an infinite dimensional Vey-type theorem [Vey78, Eli90]. The
Kuksin-Perelman theorem states that given a set of non-canonical coordinates, it is possible, under
certain circumstances, to deform them into canonical Birkhoff coordinates. Therefore the main idea
of our proof is to construct a starting set of non-canonical coordinates (essentially following the
construction of Bättig, Grébert, Guillot and Kappeler [BGGK]), and then show that they fulfill
the assumptions of the Kuksin-Perelman theorem, so that they can be deformed into Birkhoff
coordinates. Actually we need a little bit more, since our aim is to construct tame Birkhoff
coordinates. Therefore we prove that the starting coordinates are tame majorant analytic, and
then we develop a tame version of the Kuksin-Perelman theorem, which guarantees that if the
starting coordinates are tame-majorant analytic, so are the final Birkhoff coordinates. We think
that the tame version of Kuksin-Perelman theorem could be interesting in itself.

Majorant analyticity and tameness of vector fields are properties extremely useful in perturba-
tion theory and when one wants to apply Birkhoff normal form techniques. Indeed such properties
are closed under composition, generation of flows and solution of homological equations, which are
the typical operations needed in a perturbative scheme. This makes tame majorant analyticity an
extremely robust tool when investigating stability of solutions. For example, majorant analyticity
was used by Nikolenko [Nik86] to obtain Poincaré normal forms for some dissipative PDEs. Simi-
larly, tame majorant analyticity was exploited by Bambusi and Grébert [BG06] to develop Birkhoff
normal form theory for a wide class of Hamiltonian PDEs, and by Cong, Liu and Yuan [CLY] to
study long time stability of small KAM tori of NLS with external potential; see also Berti, Biasco
and Procesi [BBP13] for applications to KAM theory.

Concerning the usefulness of tame properties in perturbation theory, the idea is essentially
the following. Tame estimates are estimates linear in the highest norm, a typical example being
‖un‖Hs ≤ C‖u‖Hs‖u‖n−1

H1 ; such estimates allow to control the size of a nonlinear term in a high
regularity norm by conditions on the size of the function in a lower regularity norm. In [BG06]
this property is exploited to show that, in the algorithm of Birkhoff normal form, large parts of
the nonlinearity are actually very small in size and therefore harmless. A different applications of
tame estimates is in differentiable Nash-Moser scheme, see e.g. [BBP10]; in this case the employ
of tame estimates is one of the necessary ingredients for the convergence of the quadratic scheme.
Also our interest in tame majorant analyticity of the Birkhoff map of dNLS was first motivated
by applications: in the paper [MP17], we discuss the stability of small finite gap solutions of (1.1)
when they are considered as solutions of the defocusing NLS on T2. We first introduce Birkhoff
coordinates and then perform a few steps of Birkhoff normal form. As in [BG06] this requires the
majorant analyticity of the Hamiltonian.

Furthermore we think that properties of tame majorant analyticity of the Birkhoff map might
be useful in the study of long time stability of perturbed dNLS.

1.2 Main result
As usual it is convenient to augment (1.1) with the conjugated equation for ϕ and to consider (ϕ,ϕ)
as independent variables belonging to the phase space L2

c := L2(T,C) × L2(T,C) with elements
ϕ = (ϕ1, ϕ2). More generally we denote Hs

c := Hs(T,C) × Hs(T,C) for any s ∈ R. The dNLS
Hamiltonian is given by

HNLS(ϕ1, ϕ2) =

∫
T

(
∂xϕ1(x) ∂xϕ2(x) + ϕ2

1(x)ϕ2
2(x)

)
dx

and the corresponding Hamiltonian system is{
iϕ̇1 = ∂ϕ2HNLS = −∂xxϕ1 + 2ϕ2ϕ

2
1

iϕ̇2 = −∂ϕ1HNLS = ∂xxϕ2 − 2ϕ1ϕ
2
2

. (1.3)
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In such a way equation (1.1) is obtained by restricting the system above to the real invariant
subspace

Hs
r := {(ϕ1, ϕ2) ∈ Hs

c : ϕ2 = ϕ1} (1.4)

of states of real type. We denote L2
r := H0

r and in such space we introduce the real scalar product
〈·, ·〉 and the symplectic form Ω0 defined for ϕ1 ≡ (ϕ1, ϕ1) and ϕ2 ≡ (ϕ2, ϕ2) by

〈ϕ1,ϕ2〉 := 2 Re

∫
T
ϕ1(x)ϕ2(x) dx , Ω0(ϕ1,ϕ2) := 〈Eϕ1,ϕ2〉 , (1.5)

where E := i.
It is useful to identify functions (ϕ1, ϕ2) with their Fourier coefficients. Thus we denote by F :

L2(T,C)→ `2(Z,C) the Fourier transform and associate to ϕ1 its sequence of Fourier coefficients
{ξj}j∈Z = F(ϕ1) and to ϕ2 its sequence of Fourier coefficients {η−j}j∈Z = F(ϕ2):

ϕ1(x) =
∑
j∈Z

ξj e
−i2jπx , ϕ2(x) =

∑
j∈Z

ηj e
i2jπx . (1.6)

Clearly
(ϕ1, ϕ2) ∈ L2

c ⇐⇒ (ξ, η) ∈ `2c := `2(Z,C)× `2(Z,C) ,

and
(ϕ1, ϕ2) ∈ L2

r ⇐⇒ (ξ, η) ∈ `2r := {(ξ, η) ∈ `2c : ξj = ηj , ∀j ∈ Z} .

We endow `2r with the real scalar product 〈·, ·〉 and symplectic form ω0 defined for ξ1 ≡ (ξ1, ξ
1
)

and ξ2 ≡ (ξ2, ξ
2
) by 〈

ξ1, ξ2
〉

:= 2 Re
∑
j∈Z

ξ1
j ξ

2
j , ω0(ξ1, ξ2) :=

〈
E ξ1, ξ2

〉
, (1.7)

and one has ω0 := (F−1)∗Ω0.

We are interested also in more general spaces which we now introduce. It is more convenient to
define such spaces in term of the Fourier coefficients (ξ, η) of (ϕ1, ϕ2). So for any real 1 ≤ p ≤ 2,
s ≥ 0 define

`p,sc :=
{

(ξ, η) ∈ `2c : ‖(ξ, η)‖p,s <∞
}
, (1.8)

where ‖(ξ, η)‖p,s := ‖ξ‖p,s + ‖η‖p,s and

‖ξ‖p,s :=

∑
j∈Z
〈j〉ps |ξj |p

1/p

; (1.9)

here 〈j〉 := 1 + |j|. Correspondingly `p,sr :=
{

(ξ, ξ) ∈ `p,sc
}
with the induced norm. Note that when

s = 0, then the norm (1.9) is simply the `p norm of the Fourier coefficients of (ϕ1, ϕ2); therefore
the spaces `p,sc can also be thought as weighted Fourier Lebesgue spaces. Furthermore

(ϕ1, ϕ2) ∈ Hs
c ⇐⇒ (ξ, η) ∈ `2,sc , (ϕ1, ϕ2) ∈ Hs

r ⇐⇒ (ξ, η) ∈ `2,sr .

We denote by Bp,s(ρ) the ball with center 0 and radius ρ in the topology of `p,sc , and by Bp,sr (ρ)
the same ball in `p,sr . For s = 0, we will write simply `pc ≡ `p,0c and Bp(ρ) ≡ Bp,0(ρ).

In order to state our main theorem we need to introduce the concept of tame majorant analytic
map more precisely. Given a ρ > 0, 1 ≤ p ≤ 2, let F : Bp,sr (ρ) → `p,s

′

r be a real analytic map in
a neighborhood of the origin1. Write F (ξ, ξ) = (Fj(ξ, ξ), Fj(ξ, ξ))j∈Z in components and expand
each component Fj(ξ, η) into its uniformly convergent Taylor series in a neighborhood of the origin:

Fj(ξ, η) =
∑

|K|+|L|≥0

F jKL ξ
KηL .

1here real analytic in a neighborhood of the origin means that there exists an analytic map F̃ : Bp,s(ρ)→ `p,s
′

(defined in a complex ball) which coincides with F on the real subspace Bp,s(ρ) ∩ `p,sr ≡ Bp,s
r

3



Define
F j(ξ, η) :=

∑
|K|+|L|≥0

∣∣F jKL∣∣ ξKηL
and the majorant map F component-wise by F (ξ, ξ) =

(
Fj(ξ, ξ), Fj(ξ, ξ)

)
j∈Z. Then F will be said

to be majorant analytic if ∃ ρ∗ > 0 s.t. F defines a real analytic map in a neighborhood of the
origin mapping Bp,sr (ρ∗)→ `p,s

′

r .
Given 0 ≤ s ≤ s′ ≤ s′′, F will we said to be (p, s, s′, s′′)- tame majorant analytic if it is majorant
analytic Bp,sr (ρ∗)→ `p,sr and furthermore F restricts to a real analytic map Bp,sr (ρ∗)∩ `p,s

′

r → `p,s
′′

r

fulfilling

sup
ζ∈Bp,s(ρ∗)∩`p,s

′
r

‖F (ζ)‖p,s′′
‖ζ‖p,s′

<∞ . (1.10)

Note that, in the estimate (1.10), the supremum is taken over Bp,s(ρ∗) ∩ `p,s
′

r , namely on all the
elements of `p,s

′

r which belong to a ball of fix radius in the weaker topology of `p,sr . As we will
show below (see Remark 2.12), (1.10) implies that each polynomial of the Taylor expansion of F
is tame in the sense of polynomial maps.

Our main theorem is the following one:

Theorem 1.1. There exists ρ0 > 0 and a real analytic and majorant analytic map Φ : B2
r (ρ0)→ `2r

s.t. the following is true:

(i) Φ is canonical: Φ∗ω0 = ω0.

(ii) The map Φ is a perturbation of the identity; more precisely dΦ(0, 0) = 1, with 1 the identity
map.

(iii) For any reals 1 ≤ p ≤ 2, s ≥ 1, ∃ 0 < ρs < ρ0 s.t. Φ − 1 restricts to a (p, 0, s, s)- tame
majorant analytic map Bp(ρs) ∩ `p,sc → `p,sc . Moreover there exists C > 0, independent of s,
s.t. ∀ 0 < ρ ≤ ρs one has

‖Φ− 1(ξ, η)‖p,s ≤ C 4sρ2‖(ξ, η)‖p,s , ∀(ξ, η) ∈ Bp(ρ) ∩ `p,sc .

The same is true for Φ−1 − 1, with different constants.

(iv) Φ is a local Birkhoff map in the following sense: for any (ξ, ξ) ∈ B2
r (ρ1) ∩ `2,1r , define

(zj , zj) := Φj(ξ, ξ). Then the integrals of motion of dNLS are real analytic functions of the
actions Ij = |zj |2. In particular, the Hamiltonian HNLS(ϕ) ≡

∫
T
∣∣∂xϕ(x)

∣∣2dx+
∫
T
∣∣ϕ(x)

∣∣4dx,
the mass M(ϕ) :=

∫
T
∣∣ϕ(x)

∣∣2dx and the momentum P (ϕ) :=
∫
T ϕ(x)i∂xϕ(x)dx have the form(

HNLS ◦ F−1 ◦ Φ−1
)

(z, z) = hnls(. . . , I−1, I0, I1, . . .) , (1.11)(
M ◦ F−1 ◦ Φ−1

)
(z, z) =

∑
j∈Z

Ij , (1.12)

(
P ◦ F−1 ◦ Φ−1

)
(z, z) =

∑
j∈Z

jIj . (1.13)

Finally Φ− 1 is 1-smoothing, in the following sense:

(v) For any reals 1 ≤ p ≤ 2, s ≥ 1, ∃ 0 < ρ′s < ρ0 s.t. Φ − 1 restricts to a (p, 1, s, s + 1)-tame
majorant analytic map Bp,1(ρ′s) ∩ `p,sc → `p,s+1

c . Moreover there exists C ′ > 0, independent
of s, s.t. ∀ 0 < ρ ≤ ρ′s one has

‖Φ− 1(ξ, η)‖p,s+1 ≤ C ′4sρ2‖(ξ, η)‖p,s , ∀(ξ, η) ∈ Bp,1(ρ) ∩ `p,sc .

The same is true for Φ−1 − 1, with different constants.
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The main novelty of Theorem 1.1 are the tame majorant analytic properties of the Birkhoff
map illustrated in item (iii) and (v). In particular item (iii) shows that Φ is convergent provided
(ξ, η) are small in the low regularity space `2c , despite having large norm in higher regularity spaces.
This turns out to be useful in applications (e.g. in perturbation theory), since in such a way one
has typically to control only the low regularity norms of the solution. Finally item (v) shows that
the nonlinear part of Φ is 1-smoothing provided the variables (ξ, η) are chosen at least in `p,1c .
In such a way, one recovers (in a neighborhood of the origin), the 1-smoothing property of the
Birkhoff map proved in [KSTa].

We are actually able to prove convergence of the Birkhoff map in spaces more general than `p,sc ;
for example we are able to deal with weighted Fourier Lebesgue spaces where the weight 〈j〉s in
(1.9) is replaced by a more general weight w, e.g. by an analytic weight of the form

wj := 〈j〉s ea|j| , a > 0, j ∈ Z ; (1.14)

in such a case the norm is defined by ‖ξ‖p,s,a :=
(∑

j∈Z 〈j〉
ps
epa|j| |ξj |p

)1/p

and the space by

`p,s,ac :=
{

(ξ, η) ∈ `2c : ‖ξ‖p,s,a + ‖η‖p,s,a <∞
}
. Then we have the following theorem

Theorem 1.2. With ρ0 as in Theorem 1.1, ∀ 1 ≤ p ≤ 2, s, a ≥ 0, the map Φ− 1 of Theorem 1.1
restricts to a majorant analytic map Bp,s,a(ρ0)→ `p,s,ac . Morever there exists C > 0, independent
of s, a, s.t. ∀ 0 < ρ ≤ ρ0 one has

sup
‖(ξ,η)‖p,s,a≤ρ

‖Φ− 1(ξ, η)‖p,s,a ≤ Cρ3 .

The same is true for Φ−1 − 1, with different constants.

In this case we prove just majorant analyticity (and not tameness), but in spaces of analytic
functions. Note that the domain of (majorant) analyticity of the Birkhoff map does not shrink to
0 as s, a go to infinity. This is a consequence of an explicit control of every constant in the proof
of the quantitative Kuksin-Perelman theorem 2.19. Finally we mention that we are able to treat
even more general weighted Fourier Lebesgue spaces, giving sufficient conditions for the weight,
see Section 3.

An immediate corollary of Theorem 1.2 concerns the dNLS dynamics in `p,s,ar . Recall that the
Cauchy problem for (1.1) is well posed in L2

r [Bou]. In Birkhoff coordinates, the flow of (1.1) is
given by

(zj(t), zj(t)) =
(
e−iωj(I)tzj(0) , eiωj(I)tzj(0)

)
, ∀j ∈ Z , (1.15)

where ωj := ∂IjHNLS ◦ Φ−1 is the jth frequency, which depends only on the actions (Ik)k∈Z.
Then in the original Fourier coordinates ξ = F(ϕ), provided ξ(0) is small enough to belong to the
domain of the Birkhoff map, one has (ξ(t), ξ(t)) = Φ−1 (z(t), z(t)), where z(t) := (zj(t))j∈Z. Since
the norm ‖ · ‖p,s,a is invariant by the dynamics (1.15), one gets the following result:

Corollary 1.3. There exist constants ρ∗, C∗ > 0 s.t. for any 1 ≤ p ≤ 2, s, a ≥ 0 the following holds
true. Consider the solution ξ(t) = F(ϕ(t)) of (1.1) corresponding to initial data ξ0 = F(ϕ0) ∈
Bp,s,ar (ρ), ρ ≤ ρ∗. Then one has

sup
t∈R
‖ξ(t)‖p,s,a ≤ ρ(1 + C∗ρ

2) . (1.16)

Note that in Corollary 1.3 there is no loss of analyticity of the solution (as it happens in [KP09]
for example), in the sense that exponential decay of the initial datum is preserved by the flow. The
point is that we work only with small initial datum, for which we know that the Birkhoff map and
its inverse map Bp,s,a(ρ)→ `p,s,ar with the same a.

Before closing this introduction, we recall some previous works on analytic properties of the
Birkhoff map of infinite dimensional integrable systems.
Concerning majorant analyticity of the Birkhoff map, the first result was proved by Kuksin and
Perelman in the case of KdV on T [KP10]. In particular, these authors proved that in a small
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neighborhood of the origin in Hs
r , ∀s ≥ 0, the nonlinear part of the Birkhoff map is both majorant

analytic and 1-smoothing. The techniques of this paper were extended by Bambusi and the author
[BM16] in order to deal with the Toda lattice with N particles, N arbitrary large.

Later on, it was proved in [KST13] that the nonlinear part of the Birkhoff map of the KdV on
T is globally 1-smoothing, and the same is true also for the Birkhoff map of the dNLS on T [KSTa]
(see also [MS16] for the case of KdV on R). However, none of these papers addresses the question
of tameness.

Also the use of Fourier-Lebesgue spaces (namely spaces with norms like (1.9) with p 6= 2) is
not new in this context; e.g. in [KMMT] and [Mo16] the Birkhoff map of KdV and of dNLS
were extended to weighted Fourier-Lebesgue spaces in order to study analytic properties of the
action-to-frequency map I 7→ ω(I).

Concerning tameness properties, recently Kappeler and Montalto [KM16] constructed real an-
alytic, canonical coordinates for the dNLS on T, which are defined in neighborhoods of families
of finite dimensional invariant tori, and which satisfy tame estimates. However such coordinates
are not Birkhoff coordinates, and the dNLS Hamiltonian, once expressed in such coordinates, is in
normal form only up to order three. On the contrary, our coordinates are well defined only in a
neighborhood of the origin, but the dNLS Hamiltonian, written in such coordinates, is in normal
form at every order.

Finally we want to comment on Corollary 1.3, which shows that weighted Fourier-Lebesgue
norms of the solution are uniformly bounded in time. As a consequence, there is no growth of
Sobolev norms. The problem of giving upper bounds of the form (1.16) has been widely studied
both for linear time dependent and nonlinear Schrödinger equations (see e.g. [MR17, BGMR2]
for the linear case, [Soh97, PTV] for the nonlinear one and references therein). In case of linear
Schrödinger equations quasiperiodic in time, iψ̇ = −∆ψ+ V (ωt, x)ψ, it is known that the Sobolev
norms of the solution can be uniformly bounded, provided the frequency vector ω is well chosen,
see e.g. [EK09] for bounded perturbations on Td (see also [BGMR1] for some special perturbations
on Rd, and reference therein).

In case of dNLS, the inequality (1.16) is well known for data in Hs
r , s ∈ N, and can be proved

using the conservation laws of the dNLS hierarchy. In Hs
r , s > 1 real, inequality (1.16) is proved

in [KSTb]. The novelty of inequality (1.16) is to treat the case 1 ≤ p < 2 and weighted spaces.
We point out that the uniform bound (1.16) is not a mere consequence of integrability, but of
the stronger property that the Birkhoff map preserves the topology, see Theorem 1.1. Indeed
Gérard and Grellier proved that the cubic Szegő equation on T is integrable [GG10, GG12], and
nevertheless there are phenomenons of growth of Sobolev norms [GG17].

1.3 Scheme of the proof
In order to prove Theorem 1.1, we apply a tame version of the Kuksin-Perelman theorem [KP10]
to the dNLS equation. We recall that the starting point of the Kuksin-Perelman theorem is to
construct a map ζ 7→ Ψ(ζ) (not symplectic and locally defined), s.t. the quantities |Ψj(ζ)|2 are
in involution, the level sets |Ψj(ζ)|2 = cj give a foliation in invariant tori, and Ψ and dΨ∗ are
majorant analytic maps. Then Kuksin and Perelman [KP10] showed that it is possible to deform
Ψ into a new map Φ which is symplectic, majorant analytic and it is a Birkhoff map, in the sense
that (z, z) := Φ(ξ, ξ) are complex Birkhoff coordinates.

Therefore the first step of our proof is to prove a tame version of the Kuksin-Perelman theorem,
which tells that if Ψ (namely the original map) is a tame majorant analytic map, so is the new
map Φ. In order to prove such a theorem, we revisit the proof of the Kuksin-Perelman theorem
(actually, of the quantitative version of the Kuksin-Perelman theorem proved in [BM16]), and
prove that the algorithm of construction of Φ can be made tame, in the sense that at each step of
the construction we can control quantities as in (1.10) for every object involved. This turns out to
be true since the Kuksin-Perelman algorithm is based on a combination of some basic operations
(like composition of functions, inversion of functions, generation of flows, and solution of a system
of equations) which can be made tame.

Then the second step of our proof is to apply the tame Kuksin-Perelman theorem to the dNLS.

6



This amounts to construct the starting map ζ 7→ Ψ(ζ) and to prove that it fulfills the assumptions
of the tame Kuksin-Perelman theorem (in particular, that Ψ is tame majorant analytic). Here we
adapt to dNLS the ideas already employed in [KP10] for the KdV on T and in [BM16] for the
Toda lattice (see also the pioneering work of Bättig, Grébert, Guillot and Kappeler [BGGK]). The
strategy is to construct Ψ by exploiting the integrable structure of dNLS, and in particular the Lax
pair of dNLS. More precisely, starting from the spectral data of the Lax operator, one constructs
perturbatively a map ζ 7→ Ψ(ζ) s.t. the quantities |Ψj |2 equal the spectral gaps γ2

j , which are
real analytic functions in involution. The main technical challenge is to show that the map Ψ is
tame majorant analytic. This is proved by computing explicitly every polynomial in the Taylor
expansion of Ψ, in order to have a precise formula for a majorant map.

The paper is structured in the following way: in Section 2 we recall the setup of weighted
Sobolev spaces and state the tame Kuksin-Perelman theorem. Its proof is a variant of the proof
written in [BM16], therefore we postpone it to Appendix A. In Section 3 we consider the dNLS
equation and construct the map Ψ required by the tame Kuksin-Perelman theorem, and show that
it is tame majorant analytic.

Acknowledgments. We wish to thank Marcel Guardia, Zaher Hani, Emanuele Haus, Thomas
Kappeler and Michela Procesi for discussions and suggestions. During the preparation of this work,
we were hosted at Laboratoire Jean Leray, University of Nantes (France) and were supported by
ANR-15-CE40-0001-02 ”BEKAM“ of the Agence Nationale de la Recherche. We wish to thank the
laboratory of Nantes for the hospitality and the uncountable scientific exchanges.
Currently we are partially supported by PRIN 2015 “Variational methods, with applications to
problems in mathematical physics and geometry".

2 The tame Kuksin-Perelman theorem
We prefer to work in the setting of abstract weighted Fourier-Lebesgue spaces, which we now recall.
First we define weight a function w : Z → R such that wj > 0 ∀j ∈ Z. A weight will be said to
be symmetric if w−j = wj ∀j ∈ Z and sub-multiplicative if wj+i ≤ wi wj ∀i, j ∈ Z. Given two
weights w and v, we will say that v ≤ w iff vj ≤ wj , ∀j ∈ Z.
Given a weight w we define for any R 3 p ≥ 1 the space `p,w of complex sequences ξ = {ξj}j∈Z
with norm

‖ξ‖p,w :=

∑
j∈Z

wpj |ξj |
p

1/p

<∞. (2.1)

We denote by `p,wc the complex Banach space `p,wc := `p,w ⊕ `p,w 3 (ξ, η) ≡ ζ endowed with the
norm

‖ζ‖p,w ≡ ‖(ξ, η)‖p,w := ‖ξ‖p,w + ‖η‖p,w .

We denote by `p,wr the real subspace of `p,wc defined by

`p,wr :=
{

(ξ, η) ∈ `p,wc : ηj = ξj ∀ j ∈ Z
}
. (2.2)

We endow such a space with the real scalar product and symplectic form (1.7). We will denote
by Bp,w(ρ) (respectively Bp,wr (ρ)) the ball in the topology of `p,wc (respectively `p,wr ) with center 0
and radius ρ > 0. Clearly if wj = 1 ∀j one has `p,wc ≡ `pc := `p(Z,C) × `p(Z,C). In this case we
denote the norm simply by ‖ · ‖p and the ball of radius ρ by Bp(ρ). Similarly we write `pr ≡ `p,wr
and Bpr (ρ) ≡ Bp,wr (ρ).
As for any 1 ≤ p ≤ 2 and weight w > 0 one has the inclusion `p,wr ↪→ `2r, the scalar product and
the symplectic form (1.7) are well defined on `p,wr as well.

Remark 2.1. The space `p,sc defined in (1.8) coincides with the weighted space `p,wc choosing the
weight w = {〈j〉s}j∈Z.

Given a smooth function F : `p,wr → R, we denote by XF the Hamiltonian vector field of F ,
given by XF = J∇F , where J = E−1. For F,G : `p,wr → R we denote by {F,G} the Poisson
bracket (with respect to ω0): {F,G} := 〈∇F, J∇G〉 (provided it exists). We say that the functions
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F,G commute if {F,G} = 0.
For X ,Y Banach spaces, we shall write L(X ,Y) to denote the set of linear and bounded operators
from X to Y. For X = Y we will write just L(X ).

Recall that a map P̃n : (`p,wc )n → B, with B a Banach space, is said to be n-multilinear if
P̃n(ζ(1), . . . , ζ(n)) is C-linear in each variable ζ(j) ≡ (ξ(j), η(j)); a n-multilinear map is said to be
bounded if there exists a constant C > 0 such that

‖P̃n(ζ(1), . . . , ζ(n))‖B ≤ C‖ζ(1)‖p,w . . . ‖ζ(n)‖p,w , ∀ζ(1), . . . , ζ(n) ∈ `p,wc .

Correspondingly its norm is defined by

‖P̃n‖ := sup
‖ζ(1)‖p,w,··· ,‖ζ(n)‖p,w≤1

‖P̃n(ζ(1), · · · , ζ(n))‖B.

A map Pn : `p,wc → B is a homogeneous polynomial of order n if there exists a n-multilinear map
P̃n : (`p,wc )r → B such that

Pn(ζ) = P̃n(ζ, . . . , ζ) , ∀ζ ∈ `p,wc . (2.3)

A n-homogeneous polynomial is bounded if it has finite norm

‖Pn‖ := sup
‖ζ‖p,w≤1

‖Pn(ζ)‖B .

Remark 2.2. Clearly ‖Pn‖ ≤ ‖P̃n‖. Furthermore one has ‖P̃n‖ ≤ en‖Pn‖ – cf. [Muj86].

Remark 2.3. It is easy to see that a multilinear map and the corresponding polynomial are con-
tinuous (and analytic) if and only if they are bounded.

A map F : `p,wc → B is said to be an analytic germ if there exists ρ > 0 such that F :
Bp,w(ρ) → B is analytic. Then F can be written as a power series absolutely and uniformly
convergent in Bp,w(ρ): F (ζ) =

∑
n≥0 F

n(ζ). Here Fn(ζ) is a homogeneous polynomial of degree
n in the variables ζ = (ξ, η). We will write F = O(ζN ) if in the previous expansion Fn(ζ) = 0 for
every n < N .
Let U ⊂ `p,wr be open. A map F : U → B is said to be a real analytic germ on U if for each point
(ξ, ξ) ∈ U there exist a neighborhood V of (ξ, ξ) in `p,wc and an analytic germ which coincides with
F on U ∩ V .
Let now F : U ⊂ `p,w

1

c → `p,w
2

c be an analytic map. We will say that F is real for real sequences
if F (U ∩ `p,w1

r ) ⊆ `p,w
2

r , namely F (ξ, η) = (F1(ξ, η), F2(ξ, η)) satisfies F1(ξ, ξ) = F2(ξ, ξ). Clearly,
the restriction F |

U∩`p,w
1

r
is a real analytic map.

2.1 Majorant analytic maps
Let Pn : `p,wc → B be a homogeneous polynomial of order n; assume B separable and let {bm}m∈Z ⊂
B be a basis for the space B. Expand Pn as follows

Pn(ζ) ≡ Pn(ξ, η) =
∑

|K|+|L|=n
m∈Z

Pn,mK,L ξK ηL bm, (2.4)

where K,L ∈ NZ
0 , N0 = N ∪ {0}, |K| :=

∑
j∈ZKj , ξ ≡ (ξj)j∈Z and ξK :=

∏
j∈Z ξ

Kj
j .

Definition 2.4. The modulus of a polynomial Pn is the polynomial Pn defined by

Pn(ξ, η) :=
∑

|K|+|L|=n
m∈Z

∣∣Pn,mK,L

∣∣ ξKηLbm . (2.5)

A polynomial Pn is said to have bounded modulus if Pn is a bounded polynomial.
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We generalize now the notion of majorant analytic map given in the introduction.

Definition 2.5. An analytic germ F : `p,wc → B is said to be majorant analytic if there exists
ρ > 0 such that

F (ζ) :=
∑
n≥0

Fn(ζ) (2.6)

is absolutely and uniformly convergent in Bp,w(ρ). In such a case we will write F ∈ Nρ(`p,wc ,B).
Nρ(`p,wc ,B) is a Banach space when endowed by the norm

|F |ρ := sup
ζ∈Bp,w(ρ)

‖F (ζ)‖B. (2.7)

A map F : U → B is said to be real majorant analytic on U if for each point (ξ, ξ) ∈ U there
exist a neighborhood V of (ξ, ξ) in `p,wc and a majorant analytic germ which coincides with F on
U ∩ V .

Remark 2.6. From Cauchy inequality one has that the Taylor polynomials F r of F satisfy

‖F r(ζ)‖B ≤ |F |ρ
‖ζ‖rp,w
ρr

, ∀ζ ∈ Bp,w(ρ) . (2.8)

Remark 2.7. Since ∀r ≥ 1 one has ‖F r‖ ≤ ‖F r‖, if F ∈ Nρ(`p,wc ,B) then the Taylor series of F
is uniformly convergent in Bp,w(ρ).

We will often consider the case B = `p,wc ; in such a case the basis {bm}m∈Z coincide with the
natural basis e2m := (em, 0), e2m+1 := (0, em) of such a space (where em is the vector in CZ with
all components equal to zero except the mth one which is equal to 1). We will consider also the case
B = L(`p,w

1

c , `p,w
2

c ) (bounded linear operators from `p,w
1

c to `p,w
2

c ), where w1 and w2 are weights.
Here the chosen basis is bjk = ej ⊗ ek (labeled by 2 indexes).

Remark 2.8. For ζ ≡ (ξ, η) ∈ `p,wc , we denote by |ζ| the vector of the modulus of the components
of ζ: |ζ| = (|ζj |)j∈Z, |ζj | := (|ξj |, |ηj |) ∈ R2. If F ∈ Nρ(`p,wc , `p,wc ) then for any ζ, υ ∈ `p,wc one has

dF (|ζ|)|υ| ≤ dF (|ζ|)|υ|

(see [KP10]). Thus ∀0 < d < 1, Cauchy estimates imply that dF ∈ N(1−d)ρ(`
p,w
c ,L(`p,wc , `p,wc ))

with
|dF |ρ(1−d) ≤

1

dρ
|F |ρ , (2.9)

where dF is computed with respect to the basis ej ⊗ ek.

Following Kuksin-Perelman [KP10] we will need also a further property.

Definition 2.9. Let R 3 ρ > 0 and N 3 N ≥ 2. A majorant analytic germ F ∈ Nρ(`p,wc , `p,wc ) will
be said to be of class ANw,ρ if F = O(ζN ) and the map ζ 7→ dF (ζ)∗ ∈ Nρ(`p,wc ,L(`p,wc , `p,wc )). On
ANw,ρ we will use the norm

‖F‖ANw,ρ := |F |ρ + ρ |dF |ρ + ρ |dF ∗|ρ . (2.10)

Remark 2.10. Assume that for some ρ > 0 the map F ∈ ANw,ρ, N ≥ 2, then for every 0 < d ≤ 1
2

one has
∣∣F ∣∣

dρ
≤ 2dN

∣∣F ∣∣
ρ
and ‖F‖ANw,dρ ≤ 6dN‖F‖ANw,ρ .

A real majorant analytic germ F : Bp,wr (ρ) → `p,wr will be said to be of class Nρ(`p,wr , `p,wr )
(respectively ANw,ρ) if there exists a map of class Nρ(`p,wc , `p,wc ) (respectively ANw,ρ), which coincides
with F on Bp,wr (ρ), namely on the restriction ξj = ηj , ∀j ∈ Z. In this case we will also denote
by
∣∣F ∣∣

ρ
(respectively ‖F‖ANw,ρ) the norm defined by (2.7) (respectively (2.10)) of the complex

extension of F .
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2.2 Tame majorant analytic maps
We begin with the following definition

Definition 2.11. Fix 1 ≤ p ≤ 2, weights w0 ≤ w1 ≤ w2 and F ∈ Nρ(`p,w
0

c , `p,w
0

c ). F is said to be
(p, w0, w1, w2)-tame majorant analytic if F : Bp,w

0

(ρ) ∩ `p,w1

c → `p,w
2

c is analytic and

∣∣F ∣∣T
ρ

:= sup

{
‖F (ζ)‖p,w2

‖ζ‖p,w1

: ζ ∈ Bp,w
0

(ρ) ∩ `p,w
1

c

}
<∞ . (2.11)

In such a case we will write F ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ). We endow such a space with the norm〈∣∣F ∣∣〉
ρ

:=
∣∣F ∣∣

ρ
+ ρ
∣∣F ∣∣T

ρ
, (2.12)

where here
∣∣F ∣∣

ρ
:= sup

{
‖F (ζ)‖p,w0 : ‖ζ‖p,w0 ≤ ρ

}
.

Remark 2.12. Let F ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ). Expand F in Taylor series, F =
∑
n F

n. Then
it follows by Cauchy estimates that each polynomial Fn is (p, w0, w1, w2)- tame majorant analytic
and

‖F r(ζ)‖p,w2 ≤

∣∣F ∣∣T
ρ

ρr−1
‖ζ‖r−1

p,w0‖ζ‖p,w1 .

Consequently, using also (2.8), one has
〈∣∣F r∣∣〉

ρ
≤
〈∣∣F ∣∣〉

ρ
.

In case of maps with values in the space L(`p,w
1

c , `p,w
2

c ) we give the following

Definition 2.13. Fix 1 ≤ p ≤ 2, weights w0 ≤ w1 ≤ w2 and let G ∈ Nρ(`p,w
0

c , L(`p,w
0

c , `p,w
0

c )).
G is said to be (p, w0, w1, w2)-tame majorant analytic if G : Bp,w

0

(ρ)∩ `p,w1

c → L(`p,w
1

c , `p,w
2

c ) and

∣∣G∣∣T
ρ

:= sup

{
‖G(ζ)υ‖p,w2

‖ζ‖p,w1‖υ‖p,w0 + ρ‖υ‖p,w1

: ζ, υ ∈ `p,w
1

c , ‖ζ‖p,w0 ≤ ρ
}
<∞ . (2.13)

In such a case we will write G ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , L(`p,w
1

c , `p,w
2

c )). We endow such a space with
the norm 〈∣∣G∣∣〉

ρ
:=
∣∣G∣∣

ρ
+ ρ
∣∣G∣∣T

ρ
, (2.14)

where here
∣∣G∣∣

ρ
:= sup

{
‖G(ζ)‖L(`p,w

0
c )

: ‖ζ‖p,w0 ≤ ρ
}
.

Remark 2.14. Let F ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ). By Cauchy formula one has

dF (ζ)υ =
1

2πi

∮
|λ|=ε

F (ζ + λυ)

λ2
dλ , (2.15)

provided |ζ|+ ε|υ| ∈ Bp,w0

(ρ). It follows that for any 0 < d ≤ 1/2, the map dF ∈ N(1−d)ρ(B
p,w0 ∩

`p,w
1

c ,L(`p,w
1

c , `p,w
2

c )) with ∣∣dF ∣∣T
ρ(1−d)

≤ 1

dρ

∣∣F ∣∣T
ρ
. (2.16)

We extend Definition 2.9 to deal with tame majorant analytic maps:

Definition 2.15. Let R 3 ρ > 0 and N 3 N ≥ 2. A map F ∈ ANw0,ρ will be said to be

of class T w2,N
w0,w1,ρ if F ∈ N T

ρ (Bp,w
0 ∩ `p,w1

c , `p,w
2

c ) and the map ζ 7→ dF (ζ)∗ ∈ N T
ρ (Bp,w

0 ∩
`p,w

1

c ,L(`p,w
1

c , `p,w
2

c )). On T w2,N
w0,w1,ρ we will use the norm

‖F‖
T w2,N

w0,w1,ρ

:=
〈∣∣F ∣∣〉

ρ
+ ρ
〈∣∣dF ∣∣〉

ρ
+ ρ
〈∣∣dF ∗∣∣〉

ρ
. (2.17)
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Remark 2.16. Let F ∈ T w2,N
w0,w1,ρ. Then

‖F (ζ)‖p,w2 ≤
‖F‖

T w2,N

w0,w1,ρ

ρ
‖ζ‖p,w1 , ∀ζ ∈ Bp,w

0

(ρ) ∩ `p,w
1

c .

Remark 2.17. Assume that for some ρ > 0 the map F ∈ T w2,N
w0,w1,ρ, N ≥ 2, then for every

0 < d ≤ 1
2 one has

〈∣∣F ∣∣〉
dρ
≤ 2dN

〈∣∣F ∣∣〉
ρ
and ‖F‖

T w2,N

w0,w1,dρ

≤ 6dN‖F‖
T w2,N

w0,w1,ρ

.

2.3 The tame Kuksin-Perelman theorem
We are now able to state a tame version of the Kuksin-Perelman theorem.

Fix ρ > 0, 1 ≤ p ≤ 2 and let Ψ : Bp,w
0

r (ρ) → `p,w
0

r . Write Ψ component-wise, Ψ ={
(Ψj ,Ψj)

}
j∈Z, and consider the foliation defined by the functions

{∣∣Ψj(ξ, ξ)
∣∣2 /2}

j∈Z
. Given

ξ ≡ (ξ, ξ) ∈ `p,w0

r we define the leaf through ξ by

Tξ :=

{
(υ, υ) ∈ `p,w

0

r :
|Ψj(υ, υ)|2

2
=
|Ψj(ξ, ξ)|2

2
, ∀j ∈ Z

}
. (2.18)

Let T =
⋃
ξ∈`p,w

0
r
Tξ be the collection of all the leaves of the foliation. We denote by TξT the

tangent space to Tξ at the point ξ ∈ `p,w0

r . Next we define the function I = {Ij}j∈Z by

Ij(ξ) ≡ Ij(ξ, ξ) :=
|ξj |2

2
∀j ∈ Z . (2.19)

The foliation they define will be denoted by T (0).

Remark 2.18. Ψ maps the foliation T into the foliation T (0), namely T (0) = Ψ(T ).

We state now the tame Kuksin-Perelman theorem:

Theorem 2.19 (Tame Kuksin-Perelman theorem). Let 1 ≤ p ≤ 2 be real. Let w0, w1 and w2 be
weights with w0 ≤ w1 ≤ w2. Consider the space `p,w

0

r endowed with the symplectic form ω0 defined
in (1.7). Let ρ > 0 and assume Ψ : Bp,w

0

r (ρ)→ `p,w
0

r , Ψ = 1+ Ψ0 and Ψ0 ∈ T w2,N
w0,w1,ρ, N 3 N ≥ 2.

Define
ε1 := ‖Ψ0‖

T w2,N

w0,w1,ρ

. (2.20)

Assume that the functionals { 1
2

∣∣Ψj(ξ, ξ)
∣∣2}j∈Z pairwise commute with respect to the symplectic

form ω0, and that ρ is so small that
ε1 < 2−60ρ. (2.21)

Then there exists a real majorant analytic map Ψ̃ : Bp,w
0

r (aρ)→ `p,w
0

r , a = 2−120, with the following
properties:

i) Ψ̃∗ω0 = ω0, so that the coordinates (z, z) := Ψ̃(ξ, ξ) are canonical;

ii) the functionals
{

1
2

∣∣∣Ψ̃j(ξ, ξ)
∣∣∣2}

j∈Z
pairwise commute with respect to the symplectic form ω0;

iii) T (0) = Ψ̃(T ), namely the foliation defined by Ψ coincides with the foliation defined by Ψ̃;

iv) Ψ̃ = 1 + Ψ̃0 with Ψ̃0 ∈ T w2,N
w0,w1,ρ and furthermore ‖Ψ̃0‖

T w2,N

w0,w1,aρ

≤ 217ε1.

v) The inverse map Ψ̃−1 is real majorant analytic Bp,w
0

r (ãρ) → `p,w
0

r , ã = 2−130, Ψ̃−1 − 1 ∈
T w2,N
w0,w1 ,̃aρ with the quantitative estimate ‖Ψ̃−1 − 1‖

T w2,N

w0,w1,ãρ

≤ 218ε1.

Finally the theorem holds true also if the class T w2,N
w0,w1,ρ is replaced by the class ANw0,ρ.
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The novelty of Theorem 2.19 is to prove that the Birkhoff map is tame majorant analytic, provided
the initial map Ψ− 1 is tame majorant analytic. The proof of Theorem 2.19 is actually a variant
of the results of [KP10, BM16], so we postpone it to Appendix A.

The following corollary is an immediate application of Theorem 2.19 and shows that Ψ̃ is a
Birkhoff map:

Corollary 2.20. Let H : `p,w
1

r → R be a real analytic Hamiltonian function. Let Ψ be as in
Theorem 2.19 and assume that for every j ∈ Z,

∣∣Ψj(ξ, ξ)
∣∣2 is an integral of motion for H, i.e.

{H, |Ψj |2} = 0 ∀ j ∈ Z . (2.22)

Then the coordinates (zj , zj) defined by (zj , zj) := Ψ̃j(ξ, ξ) are complex Birkhoff coordinates for
H, namely canonical conjugated coordinates in which the Hamiltonian depends only on |zj |2/2.

Proof. By assumption, Ψ is analytic as a map Bp,w
0

(ρ)∩ `p,w1

c → `p,w
1

c , therefore the composition
H ◦ Φ−1 is well defined and real analytic as a map Bp,w

0

r (ρ) ∩ `p,w1

r → R. Thus it admits a
convergent Taylor expansion of the form(

H ◦ Φ−1
)

(z, z) =
∑
r≥2

|α|+|β|=r

Hr
α,β z

α zβ . (2.23)

Arguing as in [BM16, Corollary 2.13] one shows that (2.22) implies that in each monomial of the
r.h.s. of (2.23), one has α = β.

3 Application to dNLS on T
In order to construct a tame Birkhoff map for dNLS, we wish to apply the Kuksin-Perelman theorem
2.19. This requires to be able to construct the starting map Ψ and to verify that such a map is
tame majorant analytic. To construct Ψ we will exploit the integrable structure of dNLS, following
the ideas already employed in the case of the KdV [KP10] and the Toda lattice [BM16] (see also
[BGGK]). To prove tame majorant analyticity, we will expand Ψ in Taylor series Ψ =

∑
n∈N Ψn,

compute each polynomial Ψn and prove that it belongs to T w2,n
w0,w1,ρ for some weights w0 ≤ w1 ≤ w2.

We are able to state sufficient conditions for the choice of weights w0 ≤ w1 ≤ w2 to use. Such
conditions depend only on some arithmetic property that we state now. To do so, we need a bit
of preparation.
Given n ≥ 3 odd, k1, . . . , kn ∈ Z, we define the function fn : Zn × Z→ R by

fn(k1, . . . , kn; j) := 1{k1+...+kn=j}

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉
· 1

〈k1 + . . .+ km+1〉
, (3.1)

where here 1S is the indicator function on the set S. Given an integer 1 ≤ r ≤ n we define
gn,r : Zn × Z→ R by

gn,r(k1, . . . , kn; j) := fn(k1, . . . , kr−1, j, kr+1, . . . , kn; kr) . (3.2)

Note that gn,r is fn with indexes kr and j switched. Its explicit expression is given in Appendix C.
The key point, as we shall see below, is that fn bounds the kernel of the polynomial Ψn, while

the gn,r’s bound the kernel of [dΨn]∗. For example, it turns out that boundedness of Ψn and
[dΨn]∗ as maps Bp(ρ)→ `pc respectively Bp(ρ)→ L(`pc) are implied by the following summability
properties of fn and gn,r:

Lemma 3.1. Let 1 ≤ p ≤ 2 be real. Let p′ s.t. 1
p + 1

p′ = 1 and define

R∗ :=

(∑
k∈Z

1

〈k〉p
′

)1/p′

.
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Then for every n ≥ 3, n odd

sup
j∈Z

‖fn(·; j)‖`p′ (Zn) ≤ R
n−1
∗ , (3.3)

and
max

1≤r≤n
sup
j∈Z
‖gn,r(·; j)‖`p′ (Zn) ≤ R

n−1
∗ . (3.4)

The lemma is proved in Appendix C.1.

In a similar way, we will show below (see Lemma 3.10 and Lemma 3.11) that the maps Ψn and
[dΨn]∗ are (p, u, v, w)-tame majorant analytic if the weights u ≤ v ≤ w fulfill the following property:

(W)p Let u ≤ v ≤ w be symmetric and sub-multiplicative weights. Let 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1.
There exist R0 > 0, R1 ≥ R∗, s.t. for every n ≥ 3, n odd

sup
j∈Z

wj ‖
fn(·; j)∑n

l=1 vkl
∏
m 6=l ukm

‖`p′ (Zn) ≤ R0R
n−1
1 , (3.5)

and
max

1≤r≤n
sup
j∈Z

wj ‖
gn,r(·; j)∑n

l=1 vkl
∏
m 6=l ukm

‖`p′ (Zn) ≤ R0R
n−1
1 . (3.6)

We give some examples of weights fulfilling condition (W)p:

Proposition 3.2. Let 1 ≤ p ≤ 2. Then the following holds true:

(i) For any s ≥ 0, a ≥ 0 and 0 < b ≤ 1, the weights u = v = w = {〈j〉s ea|j|b}j∈Z fulfill (W)p
with constants

R0 = 1 , R1 =

(∑
k∈Z

1

〈k〉p
′

)1/p′

.

(ii) For any s ≥ 1, the weights u = {1}j∈Z, v = w = {〈j〉s}j∈Z fulfill (W)p with constants

R0 = 1 , R1 = 2s

(∑
k∈Z

1

〈k〉p
′

)1/p′

.

(iii) For any s ≥ 1, the weights u = {〈j〉}j∈Z, v = {〈j〉s}j∈Z and w = {〈j〉s+1}j∈Z fulfill (W)p
with constants

R0 = 1 , R1 = 2s+2

(∑
k∈Z

1

〈k〉p
′

)1/p′

.

The proof of the Proposition is postponed in Appendix C.

The main result of this section is the following theorem:

Theorem 3.3. Fix 1 ≤ p ≤ 2. There exist C, %∗ > 0 and an analytic map Ψ : Bp(%∗) → `pc s.t.
the following is true:

(i) The quantities
∣∣Ψj(ξ, ξ)

∣∣2 are in involution ∀(ξ, ξ) ∈ Bpr (%∗); more precisely
∣∣Ψj(ξ, ξ)

∣∣2 =
γ2
j (ϕ,ϕ), where γj is the jth spectral gap (see (3.11)) and ϕ = F−1(ξ).

(ii) For any u ≤ v ≤ w weights fulfilling (W)p and

0 < ρ ≤ min

(
%∗,

%∗
R1

)
(3.7)

the restriction of Ψ to Bp,u(ρ) is analytic as a map Bp,u(ρ)→ `p,uc ; its nonlinear part Ψ− 1
is (p, u, v, w)-tame majorant analytic, Ψ− 1 ∈ T w,3

u,v,ρ with the quantitative estimate

‖Ψ− 1‖T w,3
u,v,ρ
≤ CR0R

2
1 ρ

3 . (3.8)
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(iii) Ψ is real for real sequences, i.e. Ψ: Bpr (%∗)→ `pr.

Remark 3.4. The constants C, %∗ in Theorem 3.3 do not depend on the regularity of ζ, and it is
possible to compute them, see Section 3.1.

Before proving Theorem 3.3, we show how Theorem 3.3 and the Kuksin-Perelman theorem 2.19
imply Theorem 1.1.

Proof of Theorem 1.1. Let 1 ≤ p ≤ 2. First take u = v = w = {1}j∈Z. By Proposition 3.2 such

weights fulfill (W)p with R0 = 1 and R1 =
(∑

k∈Z
1

〈k〉p′

)1/p′

≤ 2. For ρ ≤ 2−1%∗, Ψ − 1 ∈ T w,3
u,v,ρ

with
ε1 := ‖Ψ− 1‖T w,3

u,v,ρ
≤ 4Cρ3 .

Hence condition (2.21) is satisfied if ρ ≤ min(2−31C−1/2, 2−1%∗) =: %1. Applying the tame Kuksin-
Perelman theorem, there exists a map Ψ̃ : Bpr (a%1)→ `pr , a = 2−120, which fulfills i)–v) of Theorem
2.19. In particular Ψ̃− 1 ∈ A3

u,aρ for any ρ ≤ %1 with

‖Ψ̃− 1‖A3
u,aρ
≤ 217ε1 ≤ 219 C ρ3 .

Denote now Φ := Ψ̃
∣∣∣
Bpr (aρ)

. Such map is majorant analytic as a map Bp(ρ0) → `pc for ρ0 ≡ a%1,

and fulfills (i) and (ii) of Theorem 1.1.
We prove now (iii). Take u = {1}j∈Z, v = w = {〈j〉s}j∈Z with s ≥ 1. By Proposition 3.2(ii) these

weights fulfill (W)p with constants R0 = 1 and R1 = 2s
(∑

k∈Z
1

〈k〉p′

)1/p′

≤ 2s+1. Therefore for

0 < ρ < %∗2
−1−s, one has that Ψ− 1 ∈ T w,3

u,v,ρ and ε1 ≡ ‖Ψ− 1‖T w,3
u,v,ρ
≤ C22s+2ρ3. Thus, condition

(2.21) is fulfilled provided ρ < min(2−31−sC−1/2, 2−1%∗), so one applies the Kuksin Perelman
theorem obtaining that Ψ̃− 1 ∈ T w,3

u,v,aρ. Then with ρ′ = aρ,

‖Φ− 1‖T w,3

u,v,ρ′
≡ ‖Ψ̃− 1‖T w,3

u,v,aρ
≤ C′4sρ′3 .

This estimate and Remark 2.16 implies (iii). Item (v) is proved analogously using the weights
u = {〈j〉}j∈Z, v = {〈j〉s}j∈Z and w = {〈j〉s+1}j∈Z.

Item (iii) is a consequence of Corollary 2.20. The explicit form of the mass and the momentum
in Birkhoff coordinates follows by the result of [GK14] and the remark that, despite the integrating
Birkhoff map is not necessarily unique, it is unique the normal form.

Proof of Theorem 1.2 and Corollary 2.20. Theorem 1.2 follows with the same arguments employed
in the proof of Theorem 1.1, using that the weights u = v = w = {〈j〉s ea|j|}j∈Z fulfill (W)p with
constants R0 and R1 which do not depend on s, a.
The proof of Corollary 2.20 follows as in [BM16, Corollary 1.6].

3.1 Proof of Theorem 3.3
As we already mentioned, in order to construct the map Ψ we will exploit the integrable structure
of the dNLS, which we now recall. It is well known that dNLS on T admits a Lax pair formulation,
where the Lax operator L is the Zakharov-Shabat differential operator given for any (ϕ1, ϕ2) ∈ L2

c

by

L(ϕ1, ϕ2) = i

(
1 0
0 −1

)
∂x +

(
0 ϕ1

ϕ2 0

)
. (3.9)

We consider (3.9) as an operator on the space

Y := L2(R/2Z,C)× L2(R/2Z,C)
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of functions with periodic boundary conditions on the interval [0, 2] (twice the periodicity of ϕ1, ϕ2).

Often we will denoted by
(
f1

f2

)
the elements of Y. The space Y is equipped with the complex

scalar product ((
u1

u2

)
,

(
v1

v2

))
Y

:=

∫ 2

0

(u1(x) v1(x) + u2(x)v2(x)) dx . (3.10)

The standard theory of Lax pairs guarantees that the eigenvalues of (3.9) are infinitely many
commuting constants of motion. More precisely it is well known [GK14] that there exists U ⊂ L2

c a
complex neighborhood of L2

r in L2
c s.t. ∀(ϕ1, ϕ2) ∈ U the spectrum of (3.9) is given by a sequence

of complex numbers (lexicographycally ordered)

· · · � λ−0 (ϕ1, ϕ2) � λ+
0 (ϕ1, ϕ2) � λ−1 (ϕ1, ϕ2) � λ+

1 (ϕ1, ϕ2) < · · ·

The {λ±j (ϕ1, ϕ2)}j∈Z are not analytic as functions of (ϕ1, ϕ2), thus one prefers to use, rather than
the eigenvalues, the spectral gaps

γj(ϕ1, ϕ2) := λ+
j (ϕ1, ϕ2)− λ−j (ϕ1, ϕ2) , j ∈ Z (3.11)

which are known to be real analytic commuting constants of motion. As we already mentioned,
the map Ψ that we will construct has the property that, for real ζ,

∣∣Ψj(ξ, ξ)
∣∣2 = γ2

j (ϕ,ϕ) ∀j ∈ Z,
where ξ = F(ϕ).

Before starting the construction of Ψ, it is useful to state some properties of the Lax operator
which will be used in the following. First decompose L as the sum L = L0 + V , where

L0 := i

(
1 0
0 −1

)
∂x , V (ϕ1, ϕ2) :=

(
0 ϕ1

ϕ2 0

)
. (3.12)

By (1.6), we identify (ϕ1, ϕ2) ∈ L2
c with ζ = (ξ, η) ∈ `2c , thus from now on we will write

V (ζ) ≡ V (ϕ1, ϕ2). The following properties are trivially verified:

(H1) Involution ı: denote by ı the bounded, antilinear operator Y → Y defined by

ı

(
u1

u2

)
=

(
u2

u1

)
.

Then ∀f, g ∈ Y, ∀λ ∈ C one has

ı2f = f , (f, g)Y = (ıf, ıg)Y , ı(λf) = λ ıf .

Furthermore
ı L0 = L0 ı , ı V (ζ) = V (ζ)∗ ı . (3.13)

(H2) Spectrum of L0: L0 is a selfadjoint operator with domain D(L0) dense in Y. Its spectrum
is discrete, σ(L0) =

{
λ0
j

}
j∈Z, and each eigenvalue λ0

j ≡ πj has multiplicity 2. Remark that

inf
i 6=j

∣∣λ0
j − λ0

i

∣∣ = π . (3.14)

(H3) Eigenfunctions of L0: for any j ∈ Z we denote by f+
j0, f

−
j0 ∈ Y the eigenfunctions corre-

sponding to the eigenvalue λ0
j given by

f−j0 :=
1√
2

(
0

eiπjx

)
, f+

j0 :=
1√
2

(
e−iπjx

0

)
.

They fulfill
ıf−j0 = f+

j0 , ıf+
j0 = f−j0 . (3.15)

We denote by Ej0 := Vect(f−j0, f
+
j0) the vectorial space spanned by f±j0.

The vectors {fσj0}j∈Z,σ∈± form a basis for Y.
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(H4) Perturbation V (ζ): for any ζ ∈ `2c , the operator V (ζ) has domain D(V (ζ)) ⊃ D(L0).

(H4a) for any real ζ ∈ `2r, the operator V (ζ) is symmetric (w.r.t. the scalar product (3.10)) on
its domain.

(H4b) for any i1, i2 ∈ Z we have that

(V (ζ) f−i10 , f
+
i20)Y = ξj , if i1 + i2 = 2j

(V (ζ) f+
i10 , f

−
i20)Y = ηj , if i1 + i2 = 2j

(V (ζ) fσ1
i10 , f

σ2
i20)Y = 0 , otherwise

Now take (ξ, η) ∈ `2c with a sufficiently small norm. We will construct perturbatively the
spectral data of L(ζ) (defined in (3.9)) starting from the spectral data of L0 (defined in (3.12))
which is given in (H2) and (H3). We start with a preliminary result:

Lemma 3.5. For any λ ∈ C\σ(L0) the map ζ 7→ V (ζ)(L0−λ)−1 is analytic as a map `2c → L(Y)
and fulfills

‖V (ζ) (L0 − λ)−1‖L(Y) ≤ 2 c(λ) ‖ζ‖2 , (3.16)

where

c(λ) :=

(∑
n∈Z

1

|πn− λ|2

)1/2

.

Proof. The map ζ 7→ V (ζ)(L0 − λ)−1 is a C-linear map, so it is analytic iff it is bounded. To
compute its norm, take f ∈ Y and write

f = (f1, f2) =
1√
2

(∑
k∈Z

αk e
−iπkx ,

∑
k

βk e
iπkx

)
,

so that

(L0 − λ)−1f ≡ (f̃1, f̃2) =
1√
2

(∑
k

αk
πk − λ

e−iπjx ,
∑
k

βk
πk − λ

eiπkx

)
.

Now remark that f̃1, f̃2 ∈ L∞[0, 2] and

‖f̃1‖L∞[0,2] ≤
1√
2

(∑
k

∣∣αk∣∣2)1/2 (∑
k

1∣∣πk − λ∣∣2
)1/2

≡ c(λ) ‖f1‖L2[0,2]

(clearly the same bound holds also for f̃2). Thus

‖V (ζ) (L0 − λ)−1f‖Y =
(
‖ϕ2f̃1‖2L2[0,2] + ‖ϕ1f̃2‖2L2[0,2]

)1/2

≤
√

2‖(ϕ1, ϕ2)‖L2
c

(
‖f̃1‖2L∞[0,2] + ‖f̃2‖2L∞[0,2]

)1/2

≤ 2 c(λ) ‖ζ‖2‖f‖Y

which is the claimed inequality.

Now it is sufficient to apply classical Kato perturbation theory [Kat66] to get the following:

Lemma 3.6. Let 0 < ρ < 1
8 . Then for any ‖ζ‖2 ≤ ρ the following holds true:

(i) For any j ∈ Z, let
Γj :=

{
λ ∈ C : |λ− λ0

j | = π/2
}
. (3.17)

Then Γj ⊂ ρ(L(ζ)), the resolvent set of L(ζ).

(ii) For any j ∈ Z, define the projector Pj(ζ) and the subspace Ej(ζ) ⊆ Y as

Pj(ζ) := − 1

2πi

∮
Γj

(L(ζ)− λ)−1 dλ , Ej(ζ) := RanPj(ζ) , j ∈ Z (3.18)

where Γj is counterclockwise oriented. Then ζ 7→ Pj(ζ) is analytic as a map B2(ρ)→ L(Y).
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(iii) For any j ∈ Z, define the transformation operator Uj(ζ) as

Uj(ζ) := (1− (Pj(ζ)− Pj0)2)−1/2Pj(ζ) ,

where Pj0 := Pj(0). Then ζ 7→ Uj(ζ) is analytic as a map B2(ρ)→ Y and RanUj(ζ) ≡ Ej(ζ).
Furthermore for ζ real

‖Uj(ζ)f‖Y = ‖f‖Y , ∀f ∈ E0
j , (3.19)

[ı, Uj(ζ)] = 0 . (3.20)

Proof. By Lemma 3.5, for any λ ∈ Γj , the map ζ 7→ V (ζ)(L0−λ)−1 is analytic as a map `2c → L(Y)
and

sup
λ∈Γj

‖V (ζ) (L0 − λ)−1‖L(Y) ≤ sup
λ∈Γj

2 c(λ) ‖ζ‖2 ≤ 4 ‖ζ‖2 (3.21)

where in the last step we used the explicit formula for Γj to estimate c(λ). It follows that for
‖ζ‖2 ≤ ρ < 1

8 , the perturbed resolvent L(ζ)− λ is well defined by Neumann series and fulfills the
estimate

sup
λ∈Γj

‖(L(ζ)− λ)−1‖L(Y) ≤
4

π
. (3.22)

Thus for ‖ζ‖2 ≤ ρ < 1/8 the projector Pj(ζ) in (3.18) is well defined and analytic ∀j ∈ Z. By the
resolvent identity

Pj(ζ)− Pj(0) =
1

2πi

∮
Γj

(L(ζ)− λ)
−1

V (ζ) (L0 − λ)
−1

dλ , ∀j ∈ Z

which together with (3.21) and (3.22) gives the estimate

‖Pj(ζ)− Pj(0)‖L(Y) ≤ 8‖ζ‖2 < 1

provided ‖ζ‖2 ≤ ρ < 1/8. Hence also Uj(ζ) is defined by Neumann series.
We prove now (3.20). First we claim that ıPj(ζ) = Pj(ζ)∗ı for every ζ sufficiently small. This

follows by a direct computation using that by (H2), (H4a) ı(L− λ)−1 = [(L− λ)−1]∗ı. Since for ζ
real L(ζ) is self-adjoint, one has Pj(ζ)∗ = Pj(ζ), hence [ı, Pj(ζ)] = 0. (3.20) follows easily.

For any j ∈ Z let us set now

f±j (ζ) := Uj(ζ)f±j0 ∈ Ej(ζ) . (3.23)

Remark that the f±j (ζ)’s do not need to be eigenvectors, but they span the eigenspace Ej(ζ) and
are analytic as functions of ζ.
Finally for any j ∈ Z let us define

zj(ζ) :=
(
(L(ζ)− λ0

j ) f
−
j (ζ) , ıf−j (ζ)

)
Y , wj(ζ) :=

(
(L(ζ)− λ0

j ) f
+
j (ζ) , ıf+

j (ζ)
)
Y . (3.24)

Such coordinates fulfill the following properties:

Lemma 3.7. For any ρ < 1
8 the following holds true:

(i) ∀ j ∈ Z the map B2(ρ)→ C2, ζ 7→ (zj(ζ), wj(ζ)) is analytic.

(ii) ∀ j ∈ Z, for any real ζ ∈ B2
r (ρ) one has zj(ζ) = wj(ζ).

(iii) ∀ j ∈ Z, for any real ζ ∈ B2
r (ρ) one has

∣∣zj(ζ)
∣∣2 = (λ+

j (ζ)− λ−j (ζ))2.

Proof. (i) Define A : Y × Y → C, (f, g) 7→ A(f, g) := (f, ıg)Y . By (H1) A is a C-multilinear
continuous map, hence it is an analytic in each components (see e.g. [Muj86]).
Then zj(ζ) = A

(
(L(ζ)− λ0

j )Uj(ζ)f−j0, Uj(ζ)f−j0

)
Y
is composition of analytic maps and hence it is
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analytic. Analogous for ζ 7→ wj(ζ).
(ii) We claim that for ζ real

ıf−j (ζ) = f+
j (ζ) , ıf+

j (ζ) = f−j (ζ) , ∀j ∈ Z . (3.25)

This follows from the following chain of equalities (which hold for ζ real and sufficiently small)

f+
j (ζ)

(3.23)
= Uj(ζ) f+

j0

(3.15)
= Uj(ζ) ıf−j0

(3.20)
= ı Uj(ζ) f−j0

(3.23)
= ıf−j (ζ) .

Thus for ζ real and ‖ζ‖2 ≤ ρ one has

zj(ζ) =
(
(L(ζ)− λ0

j ) f
−
j (ζ) , ıf−j (ζ)

)
Y =

(
ıf−j (ζ) , (L(ζ)− λ0

j ) f
−
j (ζ)

)
Y

=
(
(L(ζ)− λ0

j ) ıf
−
j (ζ) , f−j (ζ)

)
Y

(3.25)
=

(
(L(ζ)− λ0

j ) f
+
j (ζ) , ıf+

j (ζ)
)
Y = wj(ζ) ,

where in the third equality we used that for ζ real L(ζ)− λ0
j is self-adjoint.

(iii) By Lemma 3.6, for ζ real and ‖ζ‖2 ≤ ρ the operator Uj(ζ)|E0
j
is unitary. Since f+

j0, f
−
j0 are

orthogonal in Y, the vectors f+
j (ζ), f−j (ζ) are orthogonal as well, thus form a basis for Ej(ζ). Let

Mj(ζ) be the matrix of the self-adjoint operator L(ζ)− λ0
j on this basis. One has

Mj(ζ) =

[(
(L(ζ)− λj0) f−j (ζ) , f−j (ζ)

)
Y

(
(L(ζ)− λj0) f−j (ζ) , f+

j (ζ)
)
Y(

(L(ζ)− λj0) f+
j (ζ) , f−j (ζ)

)
Y

(
(L(ζ)− λj0) f+

j (ζ) , f+
j (ζ)

)
Y

]
=

[
a1
j bj
bj a2

j

]
for some a1

j , a
2
j , bj ∈ C. We show now that a1

j = a2
j ∈ R. Indeed using the self-adjointness of

L(ζ)− λ0
j , (

(L(ζ)− λ0
j ) f

−
j (ζ) , f−j (ζ)

)
Y =

(
(L(ζ)− λ0

j ) f
−
j (ζ) , f−j (ζ)

)
Y

while using (3.13), (3.25)(
(L(ζ)− λ0

j ) f
−
j (ζ) , f−j (ζ)

)
Y =

(
(L(ζ)− λ0

j ) ıf
−
j (ζ) , ıf−j (ζ)

)
Y =

(
(L(ζ)− λ0

j ) f
+
j (ζ) , f+

j (ζ)
)
Y .

The eigenvalues of Mj(ζ) are the eigenvalues of L(ζ)− λ0
j

∣∣
Ej(ζ)

, i.e. λ±j (ζ)− λ0
j . Then

(λ+
j (ζ)− λ−j (ζ))2 = (TrMj(ζ))2 − 4detMj(ζ) = |bj |2 .

Now remark that by (3.25) one has zj(ζ) ≡ bj , ∀j ∈ Z.

Since the maps ζ 7→ zj(ζ), ζ 7→ wj(ζ) are analytic, we can expand them in their absolutely and
uniformly convergent Taylor series

zj(ζ) =

∞∑
n=1

Znj (ζ) , wj(ζ) =

∞∑
n=1

Wn
j (ζ) , j ∈ Z , (3.26)

where Znj and Wn
j are homogeneous polynomials of degree n in ζ. By a direct computation the

first terms in the Taylor series are given by

zj(ζ) =
(
V (ζ)f−j0, f

+
j0

)
+
(
V (ζ)

(
L0 − λ0

j

)−1
(1− Pj0)V (ζ)f−j0, f

+
j0

)
+ h.o.t.

wj(ζ) =
(
V (ζ)f+

j0, f
−
j0

)
+
(
V (ζ)

(
L0 − λ0

j

)−1
(1− Pj0)V (ζ)f+

j0, f
−
j0

)
+ h.o.t.

(3.27)

Using (H4b) one verifies that

Z1
j (ζ) = ξj , W 1

j (ζ) = ηj , Z2
j (ζ) = W 2

j (ζ) = 0 . (3.28)

The expression for the general homogeneous term Znj (ζ) is much more involved and is given in the
following proposition:
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Proposition 3.8. For ‖ζ‖2 ≤ ρ < 1/8, the homogeneous polynomials Znj (ζ) and Wn
j (ζ) are given

∀j ∈ Z, ∀n ∈ N, n ≥ 3 by

Znj (ζ) =
∑

k1+...+kn=j

Knj (k1, . . . , kn) ξk1 η−k2 ξk3 · · · η−kn−1
ξkn

Wn
j (ζ) =

∑
k1+...+kn=j

Knj (k1, . . . , kn) ηk1 ξ−k2 ηk3 · · · ξ−kn−1
ηkn

, if n odd (3.29)

and by
Znj (ζ) = Wn

j (ζ) = 0 , if n even .

The kernel Knj (k1, . . . , kn) has support in k1 + . . .+ kn = j and there exist K0, K1 > 0 s.t.

∣∣Knj (k1, . . . , kn)
∣∣ ≤ K0 · Kn−1

1

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉
· 1

〈k1 + . . .+ km+1〉
. (3.30)

The proof of the lemma, being quite technical, is postponed in Appendix B.

Remark 3.9. With fn defined in (3.1), one has∣∣Knj (k1, . . . , kn)
∣∣ ≤ K0 · Kn−1

1 fn(k1, . . . , kn; j) (3.31)

We are finally ready to define the map Ψ of Theorem 3.3. First for ζ ∈ B2(ρ), ρ < 1/8, let

Z(ζ) := (zj(ζ))j∈Z , W (ζ) := (wj(ζ))j∈Z .

Now for any ζ ∈ B2(ρ) we define the map Ψ : B2(ρ)→ CZ × CZ by

Ψ(ζ) :=
(
Z(ζ) , W (ζ)

)
. (3.32)

In the rest of the section we show that Ψ fulfills the properties claimed in Theorem 3.3.
First note that, at least formally, by (3.28) Ψ = 1 + Ψ3, where Ψ3(ζ) := (Z3(ζ),W3(ζ)) and

Z3 := Z − 1, W3 := W − 1 are O(ζ3).
In the next proposition we show that, provided u ≤ v ≤ w are weights fulfilling (W)p, Ψ3 is

analytic and tame majorant analytic as a map Bp,u(ρ)∩ `p,vc → `p,wc (in the sense of Definition 2.5).

Lemma 3.10. Fix 1 ≤ p ≤ 2 and let u ≤ v ≤ w be weights fulfilling (W)p with constants R0, R1.
Then for any

0 < ρ < min

(
1

8
,

1

8 K1R1

)
the map ζ 7→ Ψ3(ζ) is analytic and tame majorant analytic, Ψ3 ∈ N T

ρ (Bp,u ∩ `p,vc ; `p,wc ) and〈∣∣Ψ3

∣∣〉
ρ
≤ 25 K0 K

2
1R0R

2
1 ρ

3 . (3.33)

Proof. By formally Taylor expanding the map Ψ3, one has that Ψ3 =
∑
n≥3 Ψn, where

Ψn(ζ) :=
(
Zn(ζ) , Wn(ζ)

)
, Zn(ζ) :=

(
Znj (ζ)

)
j∈Z , Wn(ζ) :=

(
Wn
j (ζ)

)
j∈Z .

It is sufficient to show that Ψn(ζ) :=
(
Zn(ζ) , Wn(ζ)

)
fulfills

‖Zn(ζ)‖p,w + ‖Wn(ζ)‖p,w ≤ 2 K0R0 (2 K1R1)
n−1 ‖ζ‖n−1

p,u ‖ζ‖p,v , ∀n ≥ 3 . (3.34)

‖Zn(ζ)‖p,u + ‖Wn(ζ)‖p,u ≤ 2 K0R0 (2 K1R1)
n−1 ‖ζ‖np,u , ∀n ≥ 3 . (3.35)

Indeed (3.34) implies that Ψ3 =
∑
n≥3 Ψn fulfills

‖Ψ3(ζ)‖p,w ≤
∑
n≥3

‖Ψn(ζ)‖p,w ≤ 2 K0R0 ‖ζ‖p,v
∑
n≥3

(2 K1R1)
n−1 ‖ζ‖n−1

p,u ,
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from which one deduces that∣∣Ψ3

∣∣T
ρ
≡ sup
‖ζ‖p,u≤ρ

‖Ψ3(ζ)‖p,w
‖ζ‖p,v

≤ 24 K0 K
2
1R0R

2
1ρ

2 .

Analogously, using (3.35) one proves that
∣∣Ψ3

∣∣
ρ
≡ sup‖ζ‖p,u≤ρ ‖Ψ3(ζ)‖p,u ≤ 24 K0 K

2
1R0R

2
1ρ

3. Esti-

mate (3.33) follows by the definition of
〈∣∣Ψ3

∣∣〉
ρ

:=
∣∣Ψ3

∣∣
ρ

+ ρ
∣∣Ψ3

∣∣T
ρ
. Note that by Remark 2.7 one

has that Ψ3 is analytic.
To prove (3.34), (3.35) we use the explicit formulas for Znj and Wn

j given in Proposition 3.8.
We perform the computations only for Zn, since for Wn they are identical.
We begin by proving (3.34). Multiplying and dividing the kernel of Znj by

∑n
l=1 vkl

∏
m 6=l ukm and

using Cauchy-Schwartz one gets for 1/p+ 1/p′ = 1

|Znj (ζ)| ≤ ‖
Knj (k)∑n

l=1 vkl
∏
m 6=l ukm

‖`p′ (Zn) ·
n∑
l=1

βj,l ,

βj,l :=

 ∑
k1+...+kn=j

v
p
kl
|ζkl |p

∏
m6=l

u
p
km
|ζkm |p

1/p

;

by Remark 3.9

|Znj (ζ)| ≤ K0 · Kn−1
1 ‖ fn(·; j)∑n

l=1 vkl
∏
m 6=l ukm

‖`p′ (Zn) ·
n∑
l=1

βj,l .

Now we have

‖Zn(|ζ|)‖p,w ≤ K0 · Kn−1
1 sup

j∈Z

[
wj‖

fn(·; j)∑n
l=1 vkl

∏
m6=l ukm

‖`p′ (Zn)

]
‖

n∑
l=1

βj,l‖`pj

≤ K0R0 · (K1R1)n−1
n∑
l=1

‖βj,l‖`pj ≤ K0R0 · (K1R1)n−1 · n ‖ζ‖p,v ‖ζ‖n−1
p,u

≤ K0R0 · (2 K1R1)n−1 · ‖ζ‖p,v ‖ζ‖n−1
p,u

where to pass to the second line we used (3.5), while in the third inequality we used that

‖βj,l‖`pj ≡

∑
j

|βj,l|p
1/p

≤

∑
j

∑
k1+···+km=j

v
p
kl
|ζkl |p

∏
m 6=l

u
p
km
|ζkm |p

1/p

≤ ‖ζ‖p,v ‖ζ‖n−1
p,u .

To prove (3.35) it is enough to repeat the computations above with w = v = u and use (3.3).

Next we study the operator dΨ3(ζ)t, which is the transposed of dΨ3(ζ) w.r.t. the (complex)
scalar product:(

dΨ3(ζ)(ξ1, η1), (ξ2, η2)
)

=
(

(ξ1, η1),dΨ3(ζ)t(ξ2, η2)
)
, (ξ1, η1), (ξ2, η2) ∈ `2c .

We prove the following result:

Lemma 3.11. With the same assumptions of Lemma 3.10, let

0 < ρ < min

(
1

8
,

1

4 K1R1

)
. (3.36)

Then the following holds true:

(i) For any n ≥ 3, ζ 7→ dΨn(ζ)t ∈ N T
ρ (Bp,u ∩ `p,vc ;L(`p,vc , `p,wc )) and fulfills〈∣∣[dΨn]t

∣∣〉
ρ
≤ 25 K0R0 (2 K1R1)

n−1
ρn−1 , ∀n ≥ 3 . (3.37)
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(ii) The map dΨ∗3 ∈ N T
ρ (Bp,u ∩ `p,vc , L(`p,vc , `p,wc )) and moreover〈∣∣dΨ∗3

∣∣〉
ρ
≤ 28 K0 K

2
1R0R

2
1 ρ

2 . (3.38)

Proof. We will prove that for any n ≥ 3

‖dΨn(ζ)tυ‖p,w ≤ 24 K0R0 (2 K1R1)
n−1

(‖υ‖p,v‖ζ‖p,u + ‖υ‖p,u‖ζ‖p,v) ‖ζ‖n−2
p,u , (3.39)

‖dΨn(ζ)tυ‖p,u ≤ 24 K0R0 (2 K1R1)
n−1 ‖υ‖p,u ‖ζ‖n−1

p,u , (3.40)

from which item (i) follows.
The jth-component of dΨn(ζ)tυ is given by [dΨn(ζ)tυ]j =

(
Anj (ζ)υ , Bnj (ζ)υ

)
where, letting

υ = (ξ̃, η̃),

Anj (ζ)(ξ̃, η̃) :=
∑
`

∂Zn` (ζ)

∂ξj
ξ̃` +

∂Wn
` (ζ)

∂ξj
η̃` , Bnj (ζ)(ξ̃, η̃) :=

∑
`

∂Zn` (ζ)

∂ηj
ξ̃` +

∂Wn
` (ζ)

∂ηj
η̃` .

To compute such terms explicitly we use Proposition 3.8. One has for example (we compute only
Anj (ζ)(ξ̃, η̃), the other is analogous)

Anj (ζ)(ξ̃, η̃) = Ij + IIj ,

Ij :=
∑
`∈Z

∂Zn` (ζ)

∂ξj
ξ̃` =

n∑
r=1
r odd

∑
k∈Sn,r−j

Knkr (k1, . . . , kr−1, j, kr+1, . . . , kn) ξ̃kr ·
ξk1η−k2 . . . ξkn

ξkr

IIj :=
∑
`∈Z

∂Wn
` (ζ)

∂ξj
η̃` =

n∑
r=1
r even

∑
k∈Sn,rj

Knkr (k1, . . . , kr−1,−j, kr+1, . . . , kn) η̃kr ·
ηk1ξ−k2 . . . ηkn

ξkr

where k := (k1, . . . , kn) ∈ Zn and Sn,r
a is the set defined by

Sn,r
a :=

{
k ∈ Zn :

n∑
i=1
i6=r

ki − kr = a
}
. (3.41)

Then
∣∣Anj (ζ)(ξ̃, η̃)

∣∣ ≤ Ij + IIj , where

Ij :=

n∑
r=1
r odd

∑
k∈Sn,r−j

∣∣Knkr (k1, . . . , kr−1, j, kr+1, . . . , kn)
∣∣ |ξ̃kr | · |ξk1 | |η−k2 | . . . |ξkn ||ξkr |

,

IIj :=

n∑
r=1
r even

∑
k∈Sn,rj

∣∣Knkr (k1, . . . , kr−1,−j, kr+1, . . . , kn)
∣∣ |η̃kr | · |ηk1 ||ξ−k2 | . . . |ηkn ||ξkr |

.

To estimate
∣∣Ij∣∣, we first multiply and divide the kernel of Ij by

∑n
l=1 vkl

∏
m6=l ukm , then we use

by Cauchy-Schwartz to obtain

|Ij | ≤
n∑
r=1
r odd

‖
Knkr (k1, . . . , kr−1, j, kr+1, . . . , kn)∑n

l=1 vkl
∏
m6=l ukm

‖`p′ (Zn)

n∑
l=1

βj,l,r

βj,l,r :=

 ∑
k∈Sn,r−j

|ξ̃kr |p |ξk1 |p |η−k2 |p . . . |ξkn |p

|ξkr |p
v
p
kl

∏
m6=l

u
p
km

1/p

;

then since
∣∣Knkr (k1, . . . , kr−1,±j, kr+1, . . . , kn)

∣∣ ≤ K0 · Kn−1
1 gn,r(k;±j) for any k ∈ Sn,r

∓j one gets

|Ij | ≤ K0 · Kn−1
1

n∑
r=1
r odd

‖ gn,r(·; j)∑n
l=1 vkl

∏
m6=l ukm

‖`p′ (Zn)

n∑
l=1

βj,l,r .
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Finally∑
j∈Z

w
p
jIj

p

1/p

≤ K0 · Kn−1
1 max

1≤r≤n
sup
j∈Z

wj‖
gn,r(·; j)∑n

l=1 vkl
∏
m6=l ukm

‖`p′ (Zn) ‖
∑
r

∑
l

βj,l,r‖`pj

≤ K0R0 · (K1R1)n−1
∑
r,l

‖βj,l,r‖`pj

≤ 4 K0R0 · (2K1R1)n−1 (‖υ‖p,u‖ζ‖p,v + ‖υ‖p,v‖ζ‖p,u) ‖ζ‖n−2
p,u

where to pass to the second inequality we used (3.6), while to pass to the third inequality we used
the explicit expression of βj,l,r and the inequality

∑
l,r 1 ≤ 4 · 2n−1.

Clearly
(∑

j w
p
j |IIj |p

)1/p

is bounded by the same quantity. It follows that

‖An(|ζ|)|υ|‖p,w ≤ ‖(Ij)j∈Z‖p,w + ‖(IIj)j∈Z‖p,w
≤ 23 K0R0 (2 K1R1)

n−1 ‖ζ‖n−2
p,u (‖υ‖p,v‖ζ‖p,u + ‖υ‖p,u‖ζ‖p,v) . (3.42)

One verifies that ‖Bn(ζ)υ‖p,w admits the same bound (3.42). Thus estimate (3.39) follows.
The estimate for (3.40) is obtained similarly putting w = v = u. Note that in such a case it is
enough to use the sub-multiplicative property of the weight and estimate (3.4).

We prove now (ii). By the results of item (i) we need just to check that ζ 7→ dΨ(ζ)∗ ∈
N T
ρ (Bp,u ∩ `p,vc ,L(`p,vc , `p,wc )). However this follows from the identity

dΨ3(|ζ|)∗|υ| = dΨ3(|ζ|)t|υ|

and the previous result. Finally
〈∣∣dΨt

3

∣∣〉
ρ
≤
∑
n≥3

〈∣∣dΨt
n

∣∣〉
ρ
≤ 28 K0R0 K

2
1R

2
1 ρ

2.

Then one obtains immediately the following

Lemma 3.12. Fix 1 ≤ p ≤ 2 and let u ≤ v ≤ w be weights fulfilling (W)p with constants R0, R1.
Then for any

0 < ρ < min

(
1

24
,

1

8 K1R1

)
the map Ψ3 ∈ T w,3

u,v,ρ and moreover

‖Ψ3‖T w,3
u,v,ρ
≤ 210 K0R0 K2

1R
2
1 ρ
′3 .

Proof. Let ρ′ = ρ/2. Then by Lemma 3.10, Lemma 3.11 and Cauchy estimates (2.9),(2.16)

‖Ψ3‖T w,3

u,v,ρ′
≤ 2
〈∣∣Ψ3

∣∣〉
2ρ′

+ ρ′
〈∣∣dΨ∗3

∣∣〉
ρ′
≤ 210 K0R0 K2

1R
2
1 ρ
′3 ,

then we denote again ρ′ ≡ ρ.

We conclude the section with the proof of Theorem 3.3.

Proof of Theorem 3.3. Fix 1 ≤ p ≤ 2. By Proposition 3.2(i) the weights u = v = w = {1}j∈Z fulfill

(W)p with R0 = 1 and 1 ≤ R1 ≡
(∑

k∈Z
1

〈k〉p′

)1/p′

≤ 2. Then by Lemma 3.12, Ψ− 1 ∈ T w,3
u,v,ρ for

any ρ < min(2−4, 2−4K−1
1 ) ≡ %∗. Item (i) of Theorem 3.3 follows by Lemma 3.7 (iii). Item (ii) of

Theorem 3.3 follows by Lemma 3.12, with C = 210 K0 K
2
1. Item (iii) follows by Lemma 3.7(ii).
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A Proof of tame Kuksin-Perelman theorem

A.1 Properties of tame majorant analytic functions
In this section we show that the class of tame majorant analytic maps is closed under several
operations like composition, inversion and flow-generation, and provide new quantitative estimates
which will be used during the proof of Theorem 2.19. In the rest of the section denote by S :=∑∞
n=1 1/n2 and by

µ := 1/e232S ≈ 0.0025737 > 2−10 . (A.1)

Lemma A.1. Let F ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ). Write F =
∑
n≥0 F

n and denote by F̃n the
symmetric multilinear map associated to Fn. Then each multilinear map F̃n is a (p, w0, w1, w2)-
tame modulus map in the sense that

‖F̃n(ζ(1), . . . , ζ(n))‖p,w2 ≤ en
∣∣F ∣∣T

ρ

ρn−1

1

n

n∑
l=1

‖ζ(l)‖p,w1

∏
m 6=l

‖ζ(m)‖p,w0 , ∀ζ(1), . . . , ζ(n) ∈ `p,w
1

c .

(A.2)

Proof. By Cauchy formula

F̃n(ζ(1), . . . , ζ(n)) =
1

(2πi)nn!

∮
|λ1|=ε1

· · ·
∮
|λn|=εn

F (λ1ζ
(1) + · · ·+ λnζ

(n))

λ2
1 · · ·λ2

n

dλ1 · · · dλn ;

such formula is well defined provided
∑
j λj ζ

(j) ∈ Bp,w
0

(ρ): this is true e.g. choosing εi =

ρ/n‖ζ(i)‖p,w0 ∀1 ≤ i ≤ n. Then

‖F̃n(ζ(1), . . . , ζ(n))‖p,w2 ≤

∣∣F ∣∣T
ρ

n!ε1 · · · εn

∑
j

εj‖ζ(j)‖p,w1 ≤

∣∣F ∣∣T
ρ

n!

∑
j

‖ζ(j)‖p,w1∏
l 6=j εl

≤

∣∣F ∣∣T
ρ

ρn−1

nn

n!

1

n

∑
j

‖ζ(j)‖p,w1

∏
l 6=j

‖ζ(l)‖p,w0

and the claimed estimate follows.

Lemma A.2. Let 1 ≤ p ≤ 2. Let w0 ≤ w1 ≤ w2 ≤ w3 be weights.

(i) Let F ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ) and G ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , L(`p,w
1

c , `p,w
2

c )). Define H(ζ) =

G(ζ)F (ζ). Then H ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ) and
〈∣∣H∣∣〉

ρ
≤
〈∣∣G∣∣〉

ρ

〈∣∣F ∣∣〉
ρ
.

(ii) Let H,G ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , L(`p,w
1

c , `p,w
2

c )). Define I(ζ)υ := H(ζ)G(ζ)υ for υ ∈ `p,w
1

c .
Then I ∈ N T

ρ (Bp,w
0 ∩ `p,w1

c , L(`p,w
1

c , `p,w
2

c )) and
〈∣∣I∣∣〉

ρ
≤
〈∣∣H∣∣〉

ρ

〈∣∣G∣∣〉
ρ
.

Proof. (i) One has that H(|ζ|) ≤ G(|ζ|)F (|ζ|), which implies immediately that
∣∣H∣∣

ρ
≤
∣∣G∣∣

ρ

∣∣F ∣∣
ρ

and
∣∣H∣∣T

ρ
≤
∣∣G∣∣T

ρ

(∣∣F ∣∣
ρ

+ ρ
∣∣F ∣∣T

ρ

)
. The claim follows.

(ii) One has that H(ζ)G(ζ)υ ≤ H(|ζ|)G(|ζ|)|υ|, then the claim follows as above.

Lemma A.3. Let 1 ≤ p ≤ 2. Let w0 ≤ w1 ≤ w2 ≤ w3 be weights.

(i) Let G ∈ Nρ(`p,w
0

c , `p,w
1

c ) with
∣∣G∣∣

ρ
≤ σ and F ∈ Nσ(`p,w

1

c , `p,w
2

c ). Then F ◦ G belongs to

Nρ(`p,w
0

c , `p,w
2

c ) and
∣∣F ◦G∣∣

ρ
≤
∣∣F ∣∣

σ
.

(ii) Let G ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ) with
〈∣∣G∣∣〉

ρ
≤ σ and F ∈ N T

σ (Bp,w
0 ∩ `p,w2

c , `p,w
3

c ). Then

F ◦G ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
3

c ) and
〈∣∣F ◦G∣∣〉

ρ
≤
〈∣∣F ∣∣〉

σ
.

(iii) Let G ∈ N T
ρ (Bp,w

0 ∩`p,w1

c , `p,w
2

c ) with
〈∣∣G∣∣〉

ρ
≤ σ and E ∈ N T

σ (Bp,w
0 ∩`p,w1

c ,L(`p,w
1

c , `p,w
3

c )).

Define H(ζ) = E(G(ζ)). Then H ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c ,L(`p,w
1

c , `p,w
3

c )) and
〈∣∣H∣∣〉

ρ
≤
〈∣∣E∣∣〉

σ
.
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Proof. (i) It follows as in [BM16, Lemma A.1].
(ii) Recall that F ◦G(|ζ|) ≤ F ◦G(|ζ|) (cf. [KP10]). Provided

∣∣G∣∣
ρ
≤ σ one has ‖F (G(|ζ|))‖p,w3 ≤∣∣F ∣∣T

σ

∣∣G∣∣T
ρ
‖ζ‖p,w1 , hence

∣∣F ◦G∣∣T
ρ
≤
∣∣F ◦G∣∣T

ρ
≤
∣∣F ∣∣T

σ

∣∣G∣∣T
ρ
. Thus〈∣∣F ◦G∣∣〉

ρ
≡
∣∣F ◦G∣∣

ρ
+ ρ
∣∣F ◦G∣∣T

ρ
≤
∣∣F ∣∣

σ
+
∣∣F ∣∣T

σ

∣∣G∣∣T
ρ
ρ ≤

∣∣F ∣∣
σ

+
∣∣F ∣∣T

σ
σ ≡

〈∣∣F ∣∣〉
σ
.

(iii) FirstH(|ζ|)|υ| ≤ E(G(|ζ|))|υ|, which implies
∣∣H∣∣

ρ
≤
∣∣E∣∣

σ
. Furthermore, using also

∣∣G∣∣T
ρ
≤ σ/ρ,

‖H(|ζ|)|υ|‖p,w3 ≤
∣∣E∣∣T

σ

(
‖G(|ζ|)‖p,w1‖υ‖p,w0 + σ‖υ‖p,w1

)
≤
∣∣E∣∣T

σ

(∣∣G∣∣T
ρ
‖ζ‖p,w1‖υ‖p,w0 + σ‖υ‖p,w1

)
≤
∣∣E∣∣T

σ

σ

ρ

(
‖ζ‖p,w1‖υ‖p,w0 + ρ‖υ‖p,w1

)
therefore

∣∣H∣∣T
ρ
≤
∣∣E∣∣T

σ
σ
ρ . Finally

〈∣∣H∣∣〉
ρ

=
∣∣H∣∣

ρ
+ ρ
∣∣H∣∣T

ρ
≤
∣∣E∣∣

σ
+ σ

∣∣E∣∣T
σ
≡
〈∣∣E∣∣〉

σ
.

Lemma A.4. Fix 1 ≤ p ≤ 2 and weights w0 ≤ w1 ≤ w2.

(i) Let F ∈ Nρ(`p,w
0

c , `p,w
0

c ), F = O(ζN ) for some N ≥ 2 and
∣∣F ∣∣

ρ
≤ ρ/e. Then the map

1+F is invertible in Bp,w
0

(µρ), µ as in (A.1). Moreover there exists G ∈ Nµρ(`p,w
0

c , `p,w
0

c ),
G = O(ζN ), such that (1 + F )−1 = 1−G, and

∣∣G∣∣
µρ
≤

∣∣F ∣∣
ρ

8
. (A.3)

(ii) Assume that F ∈ N T
ρ (Bp,w

0 ∩ `p,w1

c , `p,w
2

c ), F = O(ζN ) for some N ≥ 2 and
〈∣∣F ∣∣〉

ρ
≤ ρ/e,

then G ∈ N T
µρ(B

p,w0 ∩ `p,w1

c , `p,w
2

c ) and

〈∣∣G∣∣〉
µρ
≤

〈∣∣F ∣∣〉
ρ

8
. (A.4)

Proof. Item (i) follows as in [BM16, Lemma A.2]. We prove item (ii). Following the scheme of
[BM16], G is given by the power series G =

∑
n≥2G

n, where the homogeneous polynomial Gn = 0
for 1 < n < N and

Gn(ζ) =

n∑
r=2

∑
k1+···+kr=n

F̃ r
(
Gk1(ζ), · · · , Gkr (ζ)

)
, ∀n ≥ N . (A.5)

In the formula above k1, . . . , kr ∈ N, and we wrote F =
∑
r≥N F

r, where F r is a homogeneous
polynomial of degree r and F̃ r is its associated multilinear map (see (2.3)). Moreover we write
G1(ζ) := ζ. We show now that the formal series G =

∑
n≥N G

n with Gn defined by (A.5) is a
tame majorant analytic map. Note that

Gn(|ζ|) ≤
n∑

r=N

∑
k1+···+kr=n

F̃ r
(
Gk1(|ζ|), . . . , Gkr (|ζ|)

)
. (A.6)

We prove that there exists a constant A > 0 such that

‖Gn(|ζ|)‖p,w2 ≤

∣∣F ∣∣T
ρ

8Sn2
An−1‖ζ‖n−1

p,w0‖ζ‖p,w1 , ∀n ≥ N , (A.7)

‖Gn(|ζ|)‖p,w0 ≤

∣∣F ∣∣
ρ

8Sn2
An‖ζ‖np,w0 , ∀n ≥ N (A.8)

The proof is by induction on n. For n = N , by (A.5) it follows that GN (ζ) = F̃N (ζ, . . . , ζ). Using
also Lemma A.1 one has

‖GN (|ζ|)‖p,w2 ≤ eN
∣∣F ∣∣T

ρ

ρN−1
‖ζ‖N−1

p,w0 ‖ζ‖p,w1 ,
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thus (A.7) holds for n = N with A = e232S/ρ. The proof of (A.8) is analogous, and we skip it.
We prove now the inductive step n− 1 n. Assume therefore that (A.7), (A.8) hold up to order
n− 1. Then one has

‖Gn(|ζ|)‖p,w2 ≤
n∑

r=N

∑
k1+···+kr=n

∣∣F ∣∣T
ρ

ρr−1

er

r

r∑
`=1

‖Gk`(|ζ|)‖p,w2

∏
m6=`

‖Gkm(|ζ|)‖p,w0

≤

∣∣F ∣∣T
ρ

8S
An−1‖ζ‖n−1

p,w0‖ζ‖p,w1e
∣∣F ∣∣T

ρ

n∑
r=N

(
e
∣∣F ∣∣

ρ

8Sρ

)r−1 ∑
k1+···+kr=n

1

k2
1 · · · k2

r

≤

∣∣F ∣∣T
ρ

8Sn2
An−1‖ζ‖n−1

p,w0‖ζ‖p,w1e
∣∣F ∣∣T

ρ

∞∑
r=1

(
e
∣∣F ∣∣

ρ

2ρ

)r

≤

∣∣F ∣∣T
ρ

8Sn2
An−1‖ζ‖n−1

p,w0‖ζ‖p,w1

where in the first inequality we used w1 ≤ w2, in the second the inductive assumption and in the
last we used the hypothesis

∣∣F ∣∣
ρ

+ ρ
∣∣F ∣∣T

ρ
≤ ρ/e. Finally to pass from the second to the third line

we used the following standard inequality (see e.g. [BM16, Lemma A.5])

n2
∑

k1+···+kr=n

1

k2
1 · · · k2

r

≤ (4S)r−1, n ≥ 1 . (A.9)

In such a way we proved (A.7). The proof of (A.8) is analogous (for details see [BM16]). Finally

from (A.7) one has
∣∣G∣∣T

µρ
≤
∑
n≥N

∣∣F ∣∣T
ρ

8Sn2 (Aµρ)n−1 ≤
∣∣F ∣∣T

ρ

8 choosing µρ = 1/A = ρ/e232S.

Next we have closedness of the classes ANw0,ρ and T w2,N
w0,w1,ρ under different operations.

Lemma A.5. Fix 1 ≤ p ≤ 2, weights w0 ≤ w1 ≤ w2, N 3 N ≥ 2 and let µ be as in (A.1). Then
the following holds true:

(i) If F ∈ T w2,N
w0,w1,ρ and G ∈ T w2,N

w0,w1,µρ with ‖G‖
T w2,N

w0,w1,µρ

< ρµ
e , then H := F (ζ + G(ζ)) ∈

T w2,N
w0,w1,µρ and

‖H‖
T w2,N

w0,w1,µρ

≤ 2‖F‖
T w2,N

w0,w1,ρ

.

(ii) If F ∈ T w2,N
w0,w1,ρ and ‖F‖

T w2,N

w0,w1,ρ

≤ ρ/e, then (1 + F )−1 = 1 +G with G ∈ T w2,N
w0,w1,µρ with

‖G‖
T w2,N

w0,w1,µρ

≤ 2‖F‖
T w2,N

w0,w1,ρ

. (A.10)

(iii) If F ∈ T w2,N
w0,w1,ρ, then H(ζ) := dF (ζ)ζ is in the class T w2,N

w0,w1,µρ and

‖H‖
T w2,N

w0,w1,µρ

≤ 2‖F‖
T w2,N

w0,w1,ρ

.

(iv) If F 0, G0 ∈ T w2,N
w0,w1,ρ with ‖F 0‖

T w2,N

w0,w1,ρ

≤ ρ
e , then H0 := dG0(ζ)∗(F 0(ζ)) ∈ T w2,N

w0,w1,ρ/2 and

‖H0‖T w2,N

w0,w1,ρ/2

≤ ‖G0‖
T w2,N

w0,w1,ρ

4

ρ
‖F 0‖

T w2,N

w0,w1,ρ/2

≤ 2‖G0‖
T w2,N

w0,w1,ρ

.

(v) If F 0, G0 ∈ T w2,N
w0,w1,ρ with ‖F 0‖

T w2,N

w0,w1,ρ

≤ ρ
e , then H0 := dG0(ζ)F 0(ζ) ∈ T w2,N

w0,w1,ρ/2 and

‖H0‖T w2,N

w0,w1,ρ/2

≤ ‖G0‖
T w2,N

w0,w1,ρ

4

ρ
‖F 0‖

T w2,N

w0,w1,ρ/2

≤ 2‖G0‖
T w2,N

w0,w1,ρ

.
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Finally all the results hold true replacing everywhere T w2,N
w0,w1,ρ with ANw0,ρ.

Proof. Again we prove only the tame estimates, since the results for the class ANw0,ρ are already
proved in [BM16, Lemma A.3].

(i) One has 1 +G ∈ N T
µρ(B

p,w0 ∩ `p,w1

c , `p,w
1

c ) with
〈∣∣1 +G

∣∣〉
µρ
≤ ρ, then by Lemma A.3〈∣∣H∣∣〉

µρ
≤
〈∣∣F ∣∣〉

ρ
.

Now dH(ζ) = dF (ζ +G(ζ))(1 + dG(ζ)) therefore

dH(|ζ|) ≤ dF (|ζ|+G(|ζ|)) + dF (|ζ|+G(|ζ|))dG(|ζ|) .

Then exploiting Lemma A.3 (iii) and Lemma A.2〈∣∣dH∣∣〉
µρ
≤
〈∣∣dF ∣∣〉

ρ
(1 +

〈∣∣dG∣∣〉
µρ

) .

Finally the adjoint dH(ζ)∗ = (1 + dG(ζ)∗)dF (ζ +G(ζ))∗, thus analogously one finds〈∣∣dH∗∣∣〉
µρ
≤
〈∣∣dF ∗∣∣〉

ρ
(1 +

〈∣∣dG∗∣∣〉
µρ

) .

Therefore since µρ(
〈∣∣dG∣∣〉

µρ
+
〈∣∣dG∗∣∣〉

µρ
) ≤ ‖G‖

T w2,N

w0,w1,µρ

≤ µρ/e, one has

‖H‖
T w2,N

w0,w1,µρ

≤
〈∣∣F ∣∣〉

µρ
+
〈∣∣dF ∣∣〉

ρ
(µρ+ µρ

〈∣∣dG∣∣〉
µρ

) +
〈∣∣dF ∗∣∣〉

ρ
(µρ+ µρ

〈∣∣dG∗∣∣〉
µρ

)

≤ 2‖F‖
T w2,N

w0,w1,ρ

.

(ii) By Lemma A.4 we know that
〈∣∣G∣∣〉

µρ
≤

〈∣∣F ∣∣〉
ρ

8 . Differentiating the identity G = F ◦ (1−G)
one gets

dG(ζ) = [1 + dF (ζ −G(ζ))]−1dF (ζ −G(ζ)),

thus by Lemma A.3(iii), Lemma A.2 and the assumption ‖F‖
T w2,N

w0,w1,ρ

≤ ρ/e, it follows that

〈∣∣dG∣∣〉
µρ
≤
〈∣∣dF ∣∣〉

ρ

∑
k≥0

〈∣∣dF ∣∣〉k
ρ
≤ e

e− 1

〈∣∣dF ∣∣〉
ρ
.

Analogously
〈∣∣dG∗∣∣〉

µρ
≤ e

e−1

〈∣∣dF ∗∣∣〉
ρ
. Estimate (A.10) then follows.

(iii) Clearly
〈∣∣H∣∣〉

ρ
≤
〈∣∣dF ∣∣〉

ρ
. Then dH(ζ)υ = dF (ζ)υ + d2F (ζ)(υ, ζ), and the claim follows

arguing as in item (i) and using Cauchy estimate (see also the proof of (iv)).

(iv) Consider first H0(|ζ|). By Lemma A.2(i),
〈∣∣H0

∣∣〉
ρ
≤
〈∣∣dG0∗

∣∣〉
ρ

〈∣∣F 0
∣∣〉
ρ
. Consider now

dH0(ζ)υ = dG0(ζ)∗dF 0(ζ)υ + dζ(dG
0(ζ)∗U)υ, U = F 0(ζ). One has

dH0(|ζ|)|υ| ≤ dG0(|ζ|)∗dF 0(|ζ|)|υ|+ d|ζ|(dG
0(|ζ|)∗U)|υ| , U = F 0(|ζ|) .

Using also the Cauchy estimates (2.16), one has
〈∣∣dH0

∣∣〉
ρ/2
≤ 2

ρ

〈∣∣dG0∗
∣∣〉
ρ
‖F 0‖

T w2,N

w0,w1,ρ/2

.

Finally in order to estimate dH0(|ζ|)∗ remark that (see [KP10, Lemma 3.6]) dH0(ζ)∗υ =
dF 0(ζ)∗dG0(ζ)υ + dζ(dG

0(ζ)∗U)υ, thus

dH0(|ζ|)∗|υ| ≤ dF 0(|ζ|)∗dG0(|ζ|)|υ|+ d|ζ|(dG
0(|ζ|)∗U) |υ| .

The
〈∣∣ · ∣∣〉

ρ/2
norm of first term in the r.h.s. is estimated by

〈∣∣dF 0∗
∣∣〉
ρ/2

〈∣∣dG0
∣∣〉
ρ/2

. To
estimate the second term we use Cauchy formula (2.15), obtaining that its

〈∣∣ · ∣∣〉
ρ/2

norm is
controlled by 2

ρ

〈∣∣dG0∗
∣∣〉
ρ

〈∣∣F 0
∣∣〉
ρ/2

. The claim follows.
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(v) The proof is similar to (iv), and we skip it.

Finally we analyze the flow generated by a vector field of class T w2,N
w0,w1,ρ. Given a time dependent

vector field Yt(v), consider the differential equation{
u̇(t) = Yt(u(t))

u(0) = ζ ∈ `p,w0

c

. (A.11)

We will denote by φt(ζ) the corresponding flow map whose existence and properties are given in
the next lemma.

Lemma A.6. Assume that [0, 1] 3 t 7→ Yt ∈ T w2,N
w0,w1,ρ is continuous and supt∈[0,1] ‖Yt‖T w2,N

w0,w1,ρ

≤

ρ/e; then for each t ∈ [0, 1], φt − 1 ∈ T w2,N
w0,w1,µρ and

‖φt − 1‖
T w2,N

w0,w1,µρ

≤ 2 sup
t∈[0,1]

‖Yt‖T w2,N

w0,w1,ρ

. (A.12)

The same holds true if the class T w2,N
w0,w1,µρ is replaced everywhere by ANw0,µρ.

Proof. The claim for the class ANw0,µρ follows as in [BM16], thus we consider only the tame class.
We look for a solution u(t, ζ) =

∑
j≥1 u

j(t, ζ) in power series of ζ, with uj(t, ζ) a homogeneous
polynomial of degree j in ζ. Expanding the vector field Yt(ζ) =

∑
r≥N Y

r
t (ζ) in Taylor series, one

obtains the recursive formula for the solution

u1(t, ζ) = ζ, un(t, ζ) =

n∑
r=2

∑
k1+···+kr=n

∫ t

0

Ỹ rs (uk1(s, ζ), . . . , ukr (s, ζ)) ds ∀n ≥ 2, (A.13)

where Ỹ rs is the multilinear map associated to Y rs (see (2.3)). Arguing as in the proof of (A.4) one
gets that un(t, ζ) = 0 if 1 < n < N , while

‖un(t, ζ)‖p,w2 ≤
supt∈[0,1]

∣∣Yt∣∣Tρ
8Sn2

An−1‖ζ‖n−1
p,w0‖ζ‖p,w1 ∀n ≥ N, (A.14)

‖un(t, ζ)‖p,w0 ≤
supt∈[0,1]

∣∣Yt∣∣ρ
8Sn2

An‖ζ‖np,w0 ∀n ≥ N, (A.15)

with A = e2

ρ 32S, from which it follows that
〈∣∣φt − 1∣∣〉

µρ
≤ supt∈[0,1]

〈∣∣Yt∣∣〉ρ/8. We come to the
estimate of the differential of u(t, ζ) and of its adjoint. To do this, remark that du(t, ζ)υ is the
solution of the linearized equation

ẇ(t) = dYt(u(t, ζ))w(t) , w(0) = υ ,

whose solution can be written by Picard iteration as

du(t, ζ)υ = υ +

∞∑
n=1

t∫
0

· · ·
tn−1∫
0

dYt1(u(t1, ζ)) · · · dYtn(u(tn, ζ))υdtn . . . dt1 .

The series is absolutely and uniformly convergent for ‖ζ‖p,w0 sufficiently small; moreover

(du(t, |ζ|)− 1)|υ| ≤
∞∑
n=1

t∫
0

· · ·
tn−1∫
0

dYt1(u(t1, |ζ|)) · · · dYtn(u(tn, |ζ|))|υ|dtn . . . dt1 , (A.16)

so one has 〈∣∣du− 1∣∣〉
µρ
≤
∞∑
n=1

(
sup
t∈[0,1]

〈∣∣dYt∣∣〉ρ
)n
≤ e

e− 1
sup
t∈[0,1]

〈∣∣dYt∣∣〉ρ
Finally one has to estimate [dun]∗, but this is done by simply taking the adjoint of (A.16) and
estimate the r.h.s. using the bounds on supt∈[0,1]

〈∣∣dY ∗t ∣∣〉
ρ
.
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A.2 Proof Theorem 2.19
The map Ψ̃ of Theorem 2.19 will be constructed in two steps based on the Darboux theorem.
Such a theorem states that in order to construct a coordinate transformation ψ transforming the
closed nondegenerate form Ω1 into a closed nondegenerate form Ω0, then it is convenient to look
for ψ as the time 1 flow ψt of a time-dependent vector field Y t. To construct Y t one defines
Ωt := Ω0 + t(Ω1 − Ω0) and imposes that

0 = d
dt

∣∣
t=0

ψt∗Ωt = ψt∗ (LY tΩt + Ω1 − Ω0) = ψt∗
(
d(Y tyΩt) + d(α1 − α0)

)
where α1, α0 are potential forms for Ω1 and Ω0 (namely dαi = Ωi, i = 0, 1) and LY t is the Lie
derivative of Y t. Then one gets

Y tyΩt + α1 − α0 = df (A.17)

for each f smooth; then, if Ωt is nondegenerate, this defines Y t. If Y t generates a flow ψt defined
up to time 1, the map ψ := ψt|t=1 satisfies ψ∗Ω1 = Ω0 (see also [BM16b] for another application
of Darboux theorem in a different model).

We prove the Kuksin-Perelman theorem only in the case Ψ0 ∈ T w2,N
w0,w1,ρ. In case

Ψ0 ∈ ANw0,ρ, then it is sufficient to replace in the following the class T w2,N
w0,w1,ρ with the

class ANw0,ρ (thanks to the results of Section A.1). Actually the proof is exactly as the one

of [BM16]; therefore we only state the main lemmas with the new classes T w2,N
w0,w1,ρ, while for the

proofs we refer the reader to the corresponding proofs in [BM16].
From now on we will work always in the real subspace `p,wr , so abusing notation, we will write

just ξ ≡ (ξ, ξ). Correspondingly, for a map F : Bp,wr (ρ) → `p,wr we will write simply υ = F (ξ)
rather than (υ, υ) ≡ F (ξ, ξ). Furthermore we fix a real 1 ≤ p ≤ 2 and weights w0 ≤ w1 ≤ w2.
We will meet maps in T w2,N

w0,w1,ρ; to simplify notation, we will write only Tρ if nothing else is specified.

We recall the setup of [BM16]. A non-constant symplectic form Ω is represented through a
linear skew-symmetric invertible operator EΩ as follows:

Ω(υ)(ξ(1); ξ(2)) = 〈EΩ(υ)ξ(1); ξ(2)〉 , ∀ξ(1), ξ(2) ∈ Tυ`p,wr ' `p,wr , ∀υ ∈ `p,wr . (A.18)

Here the scalar product is the one defined in (1.7). We denote by {F,G}Ω the Poisson bracket with
respect to Ω : {F,G}Ω := 〈∇F, JΩ∇G〉, JΩ := E−1

Ω . Similarly we will represent 1-forms through
the vector field A such that

α(υ)(ξ) = 〈A(υ), ξ〉, ∀υ ∈ Tυ`p,wr , ∀υ ∈ `p,wr . (A.19)

Consider the Hamiltonian vector fields X0
−Il of the functions Il ≡

|ξl|2
2 through the symplectic form

ω0; they are given by
[X0
−Il(ξ)]j = δl,j iξl, ∀ l, j ∈ Z , ∀ξ ∈ `p,wr . (A.20)

For every l ∈ Z the corresponding flow φtl ≡ φtX0
−Il

is given by

φtl(ξ) =
(
· · · , ξl−1, e

itξl, ξl+1, · · ·
)
.

Remark that the map φtl is linear in ξ, 2π periodic in t and its adjoint satisfies (φtl)
∗ = φ−tl .

Given a k-form α on `p,wr (k ≥ 0), we define its average by

Mlα(ξ) =
1

2π

∫ 2π

0

((φtl)
∗α)(ξ)dt, l ∈ Z , and Mα(ξ) =

∫
T∞

[(φθ)∗α] dθ (A.21)

where T∞ is the infinite dimensional torus, the map φθ = (· · · ◦ φθ−1

−1 ◦ φ
θ0
0 ◦ φ

θ2
2 · · · ) and dθ is the

Haar measure on T∞.

Remark A.7. In the particular cases of 1 and 2-forms it is useful to compute the average in term
of the representations (A.18) and (A.19). Thus, for υ, ξ(1), ξ(2) ∈ `p,wr , if

α(υ)ξ(1) = 〈A(υ); ξ(1)〉 , ω(υ)(ξ(1), ξ(2)) = 〈E(υ) ξ(1); ξ(2)〉 ,
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one has

(Mα)(υ)ξ(1) = 〈(MA)(υ); ξ(1)〉 , with MA(υ) =

∫
T∞

φ−θA(φθ(υ)) dθ (A.22)

and

(Mω)(υ)(ξ(1), ξ(2)) = 〈(ME)(υ)ξ(1); ξ(2)〉 , with ME(υ) =

∫
T∞

φ−θE(φθ(υ))φθ dθ. (A.23)

Remark A.8. The operator M commutes with the differential operator d and the rotations φθ.
In particular MA(υ) and ME(υ) as in (A.22), (A.23) satisfy

φθMA(υ) = MA(φθυ), φθME(υ)ξ = ME(φθυ)φθξ, ∀ θ ∈ T∞ .

Remark A.9. By condition (2.21) and (A.1), one has

ε1 < µ6ρ . (A.24)

Define ω1 := (Ψ−1)∗ω0, and let Eω1
be the operator representing the symplectic form ω1.

Lemma A.10. Let Φ := Ψ−1 and ω1 be as above. Assume that ε1 ≤ ρ/e. Then the following
holds:

(i) Eω1
= i + Υω1

, with Υω1
∈ N T

µρ(B
p,w0 ∩ `p,w1

r ,L(`p,w
1

r , `p,w
2

r )) and〈∣∣Υω1

∣∣〉
µρ
≤ 8ε1
µρ

. (A.25)

Furthermore Υω1
is antisymmetric, Υω1

(ξ)∗ = −Υω1
(ξ).

(ii) Define

Wω1
(ξ) :=

∫ 1

0

Υω1
(tξ)tξ dt , (A.26)

then Wω1
∈ Tµ3ρ and ‖Wω1

‖Tµ3ρ ≤ 8ε1. Moreover the 1-form αWω1
:= 〈Wω1

; .〉 satisfies
dαWω1

= ω1 − ω0 .

Proof. The proof follows [BM16, Lemma 2.16], using the results of Lemma A.5 and A.3.

Remark A.11. One has Mαω1 − α0 = MαWω1
= 〈MWω1

, ·〉 and ‖MWω1
‖Tµ3ρ ≤ ‖Wω1

‖Tµ3ρ .

We are ready now for the first step.

Lemma A.12. There exists a map ψ̂ : Bp,w
0

r (µ5ρ)→ `p,w
0

r such that (1− ψ̂) ∈ Tµ5ρ and

‖1− ψ̂‖Tµ5ρ ≤ 25ε1 . (A.27)

Moreover ψ̂ satisfies the following properties:

(i) ψ̂ commutes with the rotations φθ, namely φθψ̂(ξ) = ψ̂(φθξ) for every θ ∈ T∞.

(ii) Denote ω̂1 := ψ̂∗ω1, then Mω̂1 = ω0.

Proof. It follows as in [BM16, Lemma 2.18]. We apply the Darboux procedure described at the
beginning of this section with Ω0 = ω0 and Ω1 = Mω1. Then Ωt is represented by the operator
Êtω1

:= (i + t(MEω1 − i)). Write equation (A.17), with f ≡ 0, in terms of the operators defining the
symplectic forms, getting the equation Êtω1

Ŷ t = −MWω1
(see also Remark A.11). This equation

can be solved by inverting the operator Êtω1
by Neumann series:

Ŷ t := −(i + tMΥω1
)−1MWω1

. (A.28)
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In order to estimate it, we expand the r.h.s. of (A.28) in Neumann series and estimate each piece.
First note that for any G ∈ Tµ3ρ, by Lemma A.5, one has

‖Υω1
G‖Tµ3ρ/2 ≤

1

2
‖G‖Tµ3ρ/2 ;

then by induction one has that ‖[Υω1
]kMWω1

‖Tµ3ρ/2 ≤ 2−k‖MWω1
‖Tµ3ρ . Therefore the Neumann

series converges, Ŷ t is of class Tµ4ρ and fulfills

sup
t∈[0,1]

‖Ŷ t‖Tµ4ρ ≤ 2‖MWω1‖Tµ3ρ ≤ 24ε1 . (A.29)

By Lemma A.6 the vector field Ŷ t generates a flow ψ̂t : Bp,w
0

r (µ5ρ)→ `p,w
0

r such that ψ̂t − 1 is of
class Tµ5ρ and satisfies

‖ψ̂t − 1‖Tµ5ρ ≤ 2 sup
t∈[0,1]

‖Ŷ t‖Tµ4ρ ≤ 25ε1.

Therefore the map ψ̂ ≡ ψ̂t|t=1 exists, satisfies the claimed estimate (A.27) and furthermore
ψ̂∗Mω1 = ω0.
Item (i) is a geometric property and it follows exactly as in [BM16, Lemma 2.18].

The analytic properties of the symplectic form ω̂1 can be studied in the same way as in Lemma
A.10; we get therefore the following corollary:

Corollary A.13. Denote by Eω̂1
the symplectic operator describing ω̂1 = ψ̂∗ω1. Then

(i) Eω̂1
= i + Υω̂1

, with Υω̂1
∈ N T

µ5ρ(B
p,w0 ∩ `p,w1

r ,L(`p,w
1

r , `p,w
2

r )) and
〈∣∣Υω̂1

∣∣〉
µ5ρ
≤ 27 ε1

µρ .

(ii) Define W (ξ) :=
∫ 1

0
Υω̂1

(tξ)tξ dt, then W ∈ Tµ7ρ and ‖W‖Tµ7ρ ≤ 27ε1.

Furthermore the 1-form αW := 〈W, .〉 satisfies dαW = ω̂1 − ω0.

Finally we will need also some analytic and geometric properties of the map

Ψ̌ := ψ̂−1 ◦Ψ. (A.30)

The functions {Ψ̌(ξ)}j∈Z forms a new set of coordinates in a suitable neighborhood of the origin
whose properties are given by the following corollary:

Corollary A.14. The map Ψ̌ : Bp,w
0

r (µ8ρ) → `p,w
0

r , defined in (A.30), satisfies the following
properties:

(i) dΨ̌(0) = 1 and Ψ̌0 := Ψ̌− 1 ∈ Tµ8ρ with ‖Ψ̌0‖Tµ8ρ ≤ 28ε1.

(ii) T (0) = Ψ̌(T ), namely the foliation defined by Ψ̌ coincides with the foliation defined by Ψ.

(iii) The functionals { 1
2

∣∣Ψ̌j

∣∣2}j∈Z pairwise commute with respect to the symplectic form ω0.

Proof. As in [BM16, Corollary 2.20].

The second step consists in transforming ω̂1 into the symplectic form ω0 while preserving the
functions Il. In order to perform this transformation, we apply once more the Darboux procedure
with Ω1 = ω̂1 and Ω0 = ω0. However, we require each leaf of the foliation to be invariant under
the transformation. In practice, we look for a change of coordinates ψ satisfying

ψ∗Ω1 = Ω0 , (A.31)
Il(ψ(ξ)) = Il(ξ), ∀ l ∈ Z . (A.32)

In order to fulfill the second equation, we take advantage of the arbitrariness of f in equation
(A.17). It turns out that if f satisfies the set of differential equations given by

df(X0
−Il)− (α1 − α0)(X0

−Il) = 0, ∀ l ∈ Z , (A.33)
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then equation (A.32) is satisfied (as it will be proved below). Here α1 is the potential form of ω̂1 and
is given by α1 := α0 +αW , where αW is defined in Corollary A.13. However, (A.33) is essentially a
system of equations for the potential of a 1-form on a torus, so there is a solvability condition. In
Lemma A.16 below we will prove that the system (A.33) has a solution if the following conditions
are satisfied:

d(α1 − α0)|TT (0) = 0 , (A.34)
M(α1 − α0)|TT (0) = 0 . (A.35)

In order to show that these two conditions are fulfilled, we need a preliminary result. First,
for ξ ∈ `p,wr fixed, define the symplectic orthogonal of TξT (0) with respect to the form ωt :=
ω0 + t(ω̂1 − ω0) by

(Tξ)
∠t :=

{
h ∈ `p,wr : ωt(ξ)(u, h) = 0 ∀u ∈ TξT (0)

}
. (A.36)

Lemma A.15. (i) For ξ ∈ Bp,w0

r (µ5ρ), one has TξT (0) = (TξT (0))∠t .
(ii) The solvability conditions (A.34), (A.35) are fulfilled.

Proof. It follows with the same arguments of [BM16, Lemma 2.21, Lemma 2.22].

We show now that the system (A.33) can be solved and its solution has good analytic properties:

Lemma A.16. If conditions (A.34) and (A.35) are fulfilled, then equation (A.33) has a solution
f . Moreover, denoting hj := (α1 − α0)(X0

−Ij ), the solution f is given by the explicit formula
f(ξ) =

∑∞
k=0 fk(ξ),

f0(ξ) = L0h0 , f2i−1(ξ) = M0

i−1∏
`=1

(M`M−`)Lihi , f2i(ξ) = M0

i−1∏
`=1

(M`M−`)MiL−ih−i ,

(A.37)
where

Ljg(ξ) =
1

2π

∫ 2π

0

tg(φtj(ξ))dt , ∀j ∈ Z .

Finally f ∈ Nµ7ρ(`
p,w1

r ,C), ∇f ∈ N T
µ7ρ(B

p,w0 ∩ `p,w1

r , `p,w
2

r ), f = O(ξN+1) and∣∣f ∣∣
µ7ρ
≤ 210ε1µ

7ρ,
〈∣∣∇f ∣∣〉

µ7ρ
≤ 211ε1 . (A.38)

Proof. Denote by θj the time along the flow generated by X0
−Ij , then one has dg(X0

−Ij ) = ∂g
∂θj

, so
that the equations to be solved take the form

∂f

∂θj
= hj , ∀j ∈ Z . (A.39)

Clearly ∂
∂θj

Mjhj = 0, and by (A.34) it follows that

∂

∂θl
Mjhj = Mj

∂hj
∂θl

= Mj
∂hl
∂θj

=
∂

∂θj
Mjhl = 0, ∀l, j ∈ Z ,

which shows that Mjhj is independent of all the θ’s, thus Mjhj = Mhj . Furthermore, by (A.35)
one has Mhj = 0, ∀ j ∈ Z. Now, using that ∂

∂θj
Ljg = Lj

∂
∂θj

g = g −Mjg, one verifies that fi
defined in (A.37) satisfies

∂f0

∂θl
= hl −M0hl ,

∂f2i−1

∂θl
=


0 if |l| < i

M0(
∏i−1
`=1M`M−`)hl if l = i

M0(
∏i−1
`=1M`M−`)hl −M0(

∏i−1
`=1M`M−`)Mihl otherwise

,

∂f2i

∂θl
=


0 if |l| < i or l = i

M0(
∏i−1
`=1M`M−`)Mihl if l = −i

M0

∏i−1
`=1(M`M−`)Mihl −M0

∏i
`=1(M`M−`)hl otherwise

.
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Thus the series f(ξ) =
∑
i≥0 fi(ξ), if convergent, satisfies (A.39).

We prove now the convergence of the series for f and ∇f . First we define, for θ ∈ T∞,

Θθ
2i−1 := φθ00

i−1∏
`=1

(φθ`` φ
θ−`
−` )φθii , Θθ

2i := φθ00

i∏
`=1

(φθ`` φ
θ−`
−` ) ∀ i ≥ 0 ,

then by (A.37) one has

f2i−1(ξ) =

∫
T2i

θihi(Θ
θ
2i−1ξ) dθ

2i , f2i(ξ) =

∫
T2i+1

θ−ih−i(Θ
θ
2iξ) dθ

2i+1

(A.40)

∇f2i−1(ξ) =

∫
T2i

Θ−θ2i−1θi∇hi(Θ
θ
2i−1ξ) dθ

2i , ∇f2i(ξ) =

∫
T2i+1

Θ−θ2i θ−i∇h−i(Θ
θ
2iξ) dθ

2i+1

(A.41)

where T2i (respectively T2i+1) is the 2i-dimensional torus (2i + 1-dimensional) and the measure
dθ2i := dθ0

2π (
∏i−1
`=1

dθ`
2π

dθ−`
2π )dθi2π (dθ2i+1 = dθ0

2π (
∏i
`=1

dθ`
2π

dθ−`
2π )). Now, using that

hj(ξ) = 〈W (ξ), X0
−Ij (ξ)〉 = Re(−iWj(ξ)ξj) , ∀ j ∈ Z

one gets that ∀i ≥ 0

f2i−1(|ξ|) ≤ 2π hi(|ξ|) ≤ 2πWi(|ξ|)|ξi| , f2i(|ξ|) ≤ 2π h−i(|ξ|) ≤ 2πW−i(|ξ|)|ξ−i| , ∀i ≥ 0

therefore for every 1 ≤ p ≤ 2 one has

f(|ξ|) ≤
∞∑
k=0

fk(|ξ|) ≤ 2π ‖W (|ξ|)‖2‖ξ‖2 ≤ 2π ‖W (|ξ|)‖p,w0‖ξ‖p,w0

and it follows that
∣∣f ∣∣

µ7ρ
≤ 2π

∣∣W ∣∣
µ7ρ

µ7ρ. This proves the convergence of the series defining f .
Consider now the gradient of hi, whose kth component is given by

[∇hi(ξ)]k = Re

(
−i
∂Wi(ξ)

∂ξk
ξi

)
+ δi,k Re (−iWi(ξ)) .

Inserting the formula displayed above in (A.41) we get that ∇fi is the sum of two terms. We
begin by estimating the second one, which we denote by (∇fi)(2). The kth component (k ∈ Z) of
(∇f)(2) :=

∑
l(∇fl)(2) is given by

[
(∇f(ξ))

(2)
]
k

=

[∑
l

(∇fl(ξ))(2)

]
k

=


∫
T2k

Θ−θ2k−1θk Re (−iWk(Θθ
2k−1ξ)) dθ

2k , k > 0∫
T2|k|+1

Θ−θ2|k|θk Re (−iWk(Θθ
kξ)) dθ

2|k|+1 , k ≤ 0

(A.42)
thus, for any ξ ∈ Bp,w0

r (µ7ρ) one has
[
(∇f(|ξ|))(2)

]
k
≤ 2πWk(|ξ|) , ∀k ∈ Z, and therefore〈∣∣(∇f)

(2)∣∣〉
µ7ρ
≤ 2π

〈∣∣W ∣∣〉
µ7ρ
≤ π28ε1.

We come to the other term, which we denote by (∇fi)(1). Its kth component is given by[
(∇f2i−1(ξ))(1)

]
k

=

∫
T2i

Θ−θ2i−1θiRe

(
−i
∂Wi

∂ξk
(Θθ

2i−1ξ)φ
θi
i ξi

)
dθ2i ,[

(∇f2i(ξ))
(1)
]
k

=

∫
T2i

Θ−θ2i θ−iRe

(
−i
∂W−i
∂ξk

(Θθ
2iξ)φ

θ−i
−i ξ−i

)
dθ2i+1 .

(A.43)

Then [
∇f2i−1(|ξ|)

]
k
≤ 2π

∂Wi

∂ξk
(|ξ|)|ξi| = 2π[dW (|ξ|)]ik|ξi| ,[

∇f2i(|ξ|)
]
k
≤ 2π

∂W−i
∂ξk

(|ξ|)|ξ−i| = 2π[dW (|ξ|)]−ik |ξ−i| .
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It follows that the kth component of the function (∇f)(1) :=
∑
i≥0(∇fi)(1) satisfies

[
(∇f(|ξ|))(1)

]
k
≤

∑
l≥0

(∇fl(|ξ|))(1)


k

≤ 2π
∑
l∈Z

[dW (|ξ|)]lk|ξl| = 2π[dW (|ξ|)∗|ξ|]k .

Therefore
〈∣∣(∇f)(1)

∣∣〉
µ7ρ
≤ 2π ‖W‖Tµ7ρ ≤ π28ε1. This is the step at which the control of the

norm of the modulus dW ∗ of dW ∗ is needed. Thus the claimed estimate for ∇f follows.

We can finally apply the Darboux procedure in order to construct an analytic change of coor-
dinates ψ which satisfies (A.31) and (A.32).

Lemma A.17. There exists a map ψ : Bp,w
0

r (µ9ρ) → `p,w
0

r which satisfies (A.31). Moreover
ψ − 1 ∈ N T

µ9ρ(B
p,w0 ∩ `p,w1

r , `p,w
2

r ), ψ − 1 = O(ξN ) and〈∣∣ψ − 1∣∣〉
µ9ρ
≤ 214ε1 . (A.44)

Proof. As in [BM16, Lemma 2.24]. As anticipated just after Corollary A.14, we apply the Darboux
procedure with Ω0 = ω0, Ω1 = ω̂1 and f solution of (A.33). Then equation (A.17) takes the form

Y t = (i + tΥω̂1)−1(∇f −W ), (A.45)

where Υω̂1 and W are defined in Corollary A.13. By Lemma A.16 and Corollary A.13, the vector
field Y t is of class N T

µ8ρ(B
p,w0 ∩ `p,w1

r , `p,w
2

r ), Y t(ξ) = O(ξN ) and

sup
t∈[0,1]

〈∣∣Y t∣∣〉
µ8ρ

< 2(211ε1 + 27ε1) < 213ε1.

Thus Y t generates a flow ψt : Bp,w
0

r (µ9ρ) → `p,w
0

r , defined for every t ∈ [0, 1], which satisfies (cf.
Lemma A.6) 〈∣∣ψt − 1∣∣〉

µ9ρ
≤ 214ε1, ∀t ∈ [0, 1] .

Thus the map ψ := ψt|t=1 exists and satisfies the claimed properties.

Lemma A.18. Let f be as in (A.37) and ψt be the flow map of the vector field Y t defined in
(A.45). Then ∀ l ≥ 1 one has Il(ψt(ξ)) = Il(ξ), for each t ∈ [0, 1].

Proof. As in [BM16, Lemma 2.25].

Proof of Theorem 2.19. It follows as in [BM16]. The invertibility of Ψ̃ and the analytic properties
stated in item v) follow by Lemma A.5 (ii).

B Proof of Lemma 3.8
We prove the result only for Znj (ζ), since for Wn

j (ζ) the computations are analogous. We follow
again the constuction of [KP10, BM16], adding more precise quantitative estimates.
To perform the Taylor expansion at every order it is convenient to proceed in the following way.
Write zj(ζ) = zj,1(ζ) + zj,2(ζ) where

zj,1(ζ) :=
((
L0 − λ0

j

)
f−j (ζ), ıf−j (ζ)

)
Y , zj,2(ζ) :=

(
V (ζ)f−j (ζ), ıf−j (ζ)

)
Y . (B.1)

For ς = 1, 2 we will write

zj,ς(ζ) =

∞∑
n=1

Znj,ς(ζ) ,
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where the Znj,ς(ζ) are bounded n-homogeneous polynomials in ζ. To obtain the explicit expression
for the Znj,ς ’s, we begin by expanding f+

j (ζ) and f−j (ζ) in Taylor series. Since

f±j (ζ) = Uj(ζ)f±j0 =
(
1− (Pj(ζ)− Pj0)

2
)−1/2(

1 + (Pj(ζ)− Pj0)
)
f±j0

we expand the r.h.s. above in power series of Pj(ζ)− Pj0, getting:

f±j (ζ) =

∞∑
m=0

cm (Pj(ζ)− Pj0)
m
f±j0 , (B.2)

where the cm’s are the coefficients of the Taylor series of the function φ(x) = 1+x
(1−x2)1/2

. In particular

c2k+1 = c2k := (−1)k
(−1/2

k

)
≡
(

1
4

)k (2k
k

)
. Using also that

√
2πn

(
n
e

)n
< n! <

√
2πn

(
n
e

)n
e

1
12n one

has 0 < cm ≤ 1 ,∀m ≥ 0.
Now we expand Pj(ζ) in Taylor series: for ζ sufficiently small

Pj(ζ)− Pj0 =

∞∑
n=1

(−1)nPn(ζ) , Pn(ζ) := − 1

2πi

∮
Γj

(L0 − λ)
−1
Tn(ζ, λ) dλ (B.3)

where the Γj ’s are defined as in (3.17), and

T (ζ, λ) := V (ζ) (L0 − λ)
−1

.

Substituting (B.3) into (B.2) we get that

f±j (ζ) = f±j0 +
∑
n≥1

∑
1≤m≤n

cm
∑

α=(α1,...,αm)∈Nm
|α|=n

f±,αj,m (ζ),

f±,αj,m (ζ) := (−1)|α|Pαm(ζ) ◦ · · · ◦Pα1(ζ)f±j0 .

(B.4)

Consider now Znj,1. It is obtained by inserting (B.4) into zj,1(ζ) and collecting the terms of
order n. Thus Znj,1(ζ) equals∑

q=(q1,q2)∈N2
|q|≤n

cq1cq2
∑

β=(β1,...,β|q|)∈N
|q|

|β|=n

(
(L0 − λ0

j )f
−,(β1,...,βq1 )
j,q1

(ζ) , ıf
−,(β|q|,...,βq1+1)

j,q2
(ζ)
)
Y
. (B.5)

We claim that for every ‖ζ‖2 < 1/8 one has

ıPn(ζ) = Pn(ζ)∗ ı . (B.6)

Indeed by Lemma 3.5, Γj 3 λ 7→ (L0 − λ)
−1
Tn(ζ, λ) ∈ L(Y) is continuous. By (3.13)

ı (L0 − λ)
−1
Tn(ζ, λ) = [(L0 − λ)

−1
Tn(ζ, λ)]∗ ı ,

thus (B.6) follows by a direct computation. Using (B.6), the scalar product of (B.5) becomes

(−1)n
(
Pβ|q|(ζ) ◦ . . . ◦Pβq1+1(ζ)(L0 − λ0

j ) Pβq1 (ζ) ◦ . . . ◦Pβ1(ζ)f−j0 , ıf
−
j0

)
Y
. (B.7)

To write it explicitly remark that by (H4b)

(L0 − λ)
−1
f±j0 =

1

λ0
j − λ

f±j0 , V (ζ)f∓j0 =
∑
i∈Z

(V (ζ)f∓j0, f
±
i0)Y f

±
i0 . (B.8)

Therefore ∀a ∈ N

Pa(ζ)f−j0 =∑
i1,...,ia∈Z

[
i

2π

∮
Γj

1

λ0
j − λ

(V (ζ)f−j0, f
+
i10)

λ0
i1
− λ

(V (ζ)f+
i10, f

−
i20)

λ0
i2
− λ

. . .
(V (ζ)f

σa−1

ia−10, f
σa
ia0)

λ0
ia
− λ

dλ

]
fσaia0

(B.9)
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where σa = + if a is odd, and σa = − if a is even. Using repeatedly (B.9) one gets

(B.7) =
∑

i1,...,in∈Z
Sq,βj,1 (i) (V (ζ)f−j0, f

+
i10)Y (V (ζ)f+

i10, f
−
i20)Y . . . (V (ζ)f

σn−1

in−10, f
σn
in0)Y

(
fσnin0, ı f

−
j0

)
Y
,

with the kernel

Sq,βj,1 (i) :=

(
i

2π

)|q|
(−1)n

∮
Γj

. . .

∮
Γj

sq,βj,1 (i,
−→
λ ) dλ1 · · · dλ|q| ,

sq,βj,1 (i,
−→
λ ) :=

n−1∏
m=1

1

λ(im)− µm
×
|q|−1∏
`=1

1

λ(i∑`
r=1 βr

)− λ`+1
×
λ(iβ1+···+βq1 )− λ(j)

λ(j)− λ1
× 1

λ(in)− λ|q|

where we denoted λ(a) := λ0
a, i = (i1, . . . , in),

−→
λ = (λ1, . . . , λ|q|), and µm = µm(λ; q, β) ∈ Γj .

Now remark that ıf−j0 = f+
j0, hence

(
fσnin0, ı f

−
j0

)
Y
≡
(
fσnin0, f

+
j0

)
Y
6= 0 only if in = j, σn = +.

This implies that when n is even (B.7) = 0, while when n is odd

(B.7) =
∑

i1,...,in−1∈Z
Sq,βj,1 (i) (V (ζ)f−j0, f

+
i10)Y (V (ζ)f+

i10, f
−
i20)Y . . . (V (ζ)f

σn−1

in−10, f
+
j0)Y . (B.10)

Altogether one has

Znj,1(ζ) =
∑

i1,...,in−1∈Z
K̃j,1(i) (V (ζ)f−j0, f

+
i10)Y (V (ζ)f+

i10, f
−
i20)Y . . . (V (ζ)f−in−10, f

+
j0)Y ,

K̃j,1(i) :=
∑

q=(q1,q2)∈N2
|q|≤n

cq1cq2
∑

β=(β1,...,β|q|)∈N
|q|

|β|=n

Sq,βj,1 (i) .

Now consider Sq,βj,1 (i). Recall that λ1, . . . , λ|q| ∈ Γj ≡ {λ ∈ C : |λ− λ(j)| = π/2} and that for any
λ ∈ Γj one has the estimate

4
∣∣λ(i)− λ

∣∣ ≥ 〈λ(i)− λ(j)〉 ≥ 〈i− j〉 , ∀i ∈ Z , ∀λ ∈ Γj ;

this implies

∣∣Sq,βj,1 (i)
∣∣ ≤ 4n−1

n−1∏
m=1

1

〈im − j〉
· sup
λ∈Γj

∣∣λ(iβ1+···+βq1 )− λ(j)

λ(iβ1+···+βq1 )− λ
∣∣ ≤ 4n

n−1∏
m=1

1

〈im − j〉
.

Since the coefficients cq ≤ 1 ∀q ∈ N, it follows that2

∣∣K̃nj,1(i)
∣∣ ≤ 4n

n−1∏
m=1

1

〈im − j〉
∑

q=(q1,q2)∈N2
|q|≤n

cq1cq2
∑

β=(β1,...,β|q|)∈N
|q|

|β|=n

1

≤ 4n
n−1∏
m=1

1

〈im − j〉

n∑
r=1

∑
q=(q1,q2)∈N2
|q|=r

∑
β=(β1,...,β|q|)∈N

|q|

|β|=n

1

≤ 4n
n−1∏
m=1

1

〈im − j〉

n∑
r=1

(
r − 1

1

)(
n− 1

r − 1

)
≤ 4n

n−1∏
m=1

1

〈im − j〉

n−1∑
r=0

r

(
n− 1

r

)

≤ 4n
n−1∏
m=1

1

〈im − j〉
(n− 1)2n−2 ≤ 16n−1

n−1∏
m=1

1

〈im − j〉
, (B.11)

Similar computations can be performed for Znj,2(ζ) and one finds

Znj,2(ζ) =
∑

i1,...,in−1∈Z
K̃nj,2(i) (V (ζ)f−j0, f

+
i10)Y (V (ζ)f+

i10, f
−
i20)Y . . . (V (ζ)f−in−10, f

+
j0)Y

2recall that any n ∈ N can be written as a sum of k positive integers in
(n−1
k−1

)
possible ways.
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where the kernel K̃j,2(i) fulfills the same bound (B.11). In such a way we proved that

Znj (ζ) =
∑

i1,...,in−1∈Z
K̃nj (i) (V (ζ)f−j0, f

+
i10)Y (V (ζ)f+

i10, f
−
i20)Y . . . (V (ζ)f−in−10, f

+
j0)Y (B.12)

with ∣∣K̃nj (i)
∣∣ ≤ 2 · 16n−1

n−1∏
m=1

1

〈im − j〉
. (B.13)

Now remark that by (H4b), j + i1, ia + ia+1 and in−1 + j must be even, so define k1, . . . , kn by

2k1 = i1 + j , 2k` = (−1)`+1(i` + i`−1) , 2kn = in−1 + j .

In this way one has
j = k1 + . . .+ kn (B.14)

and by (H4b), for any 1 ≤ m ≤ n, m odd

(V (ζ)f−j0, f
+
i10)Y = ξk1 , (V (ζ)f−im−10, f

+
im0)Y = ξkm , (V (ζ)f+

im0, f
−
im+10)Y = η−km+1

so that (B.12) becomes

Znj (ζ) =
∑

k1+k2+...+kn=j

Knj (k1, · · · , kn) ξk1 η−k2 . . . ξkn

with kernel

Knj (k1, · · · , kn) := K̃nj
(

(2k1 − j),−(2k2 + 2k1 − j), . . . ,−(2kn−1 + . . .+ 2k1 − j)
)
.

Such kernel is supported in (B.14) and by the estimate (B.13) it fulfills (3.30).

C Technical results
First we write explicitly gn,r defined in (3.2). Let 1 ≤ r ≤ n be integers. For r odd we have

gn,r(k; j) ≡1Sn,r−j

r−2∏
m=1
m odd

〈
m∑
`=1

k` − kr

〉−1〈m+1∑
`=1

k`

〉−1

×

〈
r−1∑
`=1

k` + j − kr

〉−1 〈r−1∑
`=1

k` + j + kr+1

〉−1

×
n−1∏
m=r+1
modd

〈
m∑
`=1
` 6=r

k` + j − kr

〉−1〈m+1∑
`=1
` 6=r

k` + j

〉−1

, (C.1)

where Sn,r
a is defined in (3.41). For r even

gn,r(k; j) ≡1Sn,r−j

r−3∏
m=1
m odd

〈
m∑
`=1

k` − kr

〉−1〈m+1∑
`=1

k`

〉−1

×

〈
r−1∑
`=1

k` − kr

〉−1 〈r−1∑
`=1

k` + j

〉−1

×
n−1∏
m=r+1
modd

〈
m∑
`=1
` 6=r

k` + j − kr

〉−1 〈m+1∑
`=1
` 6=r

k` + j

〉−1

.

(C.2)
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Example C.1. For n = 3, one has

f3(k1, k2, k3; j) = 1{k1+k2+k3=j} (〈k1 − j〉 〈k1 + k2〉)−1
,

g3,1(k1, k2, k3; j) = 1{−k1+k2+k3=−j} (〈j − k1〉 〈j + k2〉)−1 ,

g3,2(k1, k2, k3; j) = 1{k1−k2+k3=−j}(〈k1 − k2〉 〈k1 + j〉)−1 ,

g3,3(k1, k2, k3; j) = 1{k1+k2−k3=−j}(〈k1 − k3〉 〈k1 + k2〉)−1 ,

while for n = 5

f5(k1, k2, k3, k4, k5; j) =
1{k1+k2+k3+k4+k5=j}

〈k1 − j〉 〈k1 + k2〉 〈k1 + k2 + k3 − j〉 〈k1 + k2 + k3 + k4〉

g5,1(k1, k2, k3, k4, k5; j) =
1{−k1+k2+k3+k4+k5=−j}

〈j − k1〉 〈j + k2〉 〈j + k2 + k3 − k1〉 〈j + k2 + k3 + k4〉

g5,2(k1, k2, k3, k4, k5; j) =
1{k1−k2+k3+k4+k5=−j}

〈k1 − k2〉 〈k1 + j〉 〈k1 + j + k3 − k2〉 〈k1 + j + k3 + k4〉

g5,3(k1, k2, k3, k4, k5; j) =
1{k1+k2−k3+k4+k5=−j}

〈k1 − k3〉 〈k1 + k2〉 〈k1 + k2 + j − k3〉 〈k1 + k2 + j + k4〉

g5,4(k1, k2, k3, k4, k5; j) =
1{k1+k2+k3−k4+k5=−j}

〈k1 − k4〉 〈k1 + k2〉 〈k1 + k2 + k3 − k4〉 〈k1 + k2 + k3 + j〉

g5,5(k1, k2, k3, k4, k5; j) =
1{k1+k2+k3+k4−k5=−j}

〈k1 − k5〉 〈k1 + k2〉 〈k1 + k2 + k3 − k5〉 〈k1 + k2 + k3 + k4〉

C.1 Proof of Lemma 3.1
Verification of (3.3). We consider 1 < p ≤ 2 and p = 1 separately.
Case 1 < p ≤ 2. The quantity that we have to bound is the p′ root of

∑
k1+...+kn=j

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉p
′ ·

1

〈k1 + . . .+ km+1〉p
′ . (C.3)

For any j ∈ Z we have (recall that n is odd, thus m ∈ {1, 3, . . . , n− 2})

(C.3) ≤
∑
k1

1

〈k1 − j〉p
′

∑
k2

1

〈k1 + k2〉p
′ · · ·

∑
kn−2

1

〈k1 + . . .+ kn−2 − j〉p
′

∑
kn−1

1

〈k1 + . . .+ kn−2 + kn−1〉p
′

≤
(∑

k

1

〈k〉p
′

)n−1

≡ Rp
′(n−1)
∗ .

Thus (3.3) follows.
Case p = 1. In this case the quantity to estimate is

sup
k1+...+kn=j

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉
· 1

〈k1 + . . .+ km+1〉

which is trivially majorated by 1, thus (3.3) follows.

Verification of (3.4). Case 1 < p ≤ 2. To majorate (3.4), it is sufficient to remark that any
index k1, . . . , kn−1 appears at least once in one term of gn,r(k1, . . . , kn; j), as one verifies inspecting

formulas (C.1), (C.2). Then one gets again that ‖gn,r(·; j)‖p
′

`p′ (Zn)
≤
(∑

k
1

〈k〉p′

)n−1

≡ R
p′(n−1)
∗

and (3.4) is fulfilled.
Case p = 1. The argument is similar to the previous case, and we skip it.
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C.2 Proof of Proposition 3.2 (i)

Verification of (3.5). We treat separately the case 1 < p ≤ 2 and p = 1.

Case 1 < p ≤ 2. For every j ∈ Z, a ≥ 0, 0 < b ≤ 1 the l.h.s. of (3.5) is the p′th-root of the
supremum over j of

〈j〉sp
′
ep
′a|j|b

∑
k1+...+kn=j

1

np′
1

n∏
i=1

〈ki〉sp
′
ep′a|ki|b

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉p
′ ·

1

〈k1 + . . .+ km+1〉p
′

which is majorated by (C.3) since for any j = k1 + · · ·+ kn

ep
′a|j|b ≤ ep

′a|k1|b · · · ep
′a|kn|b , 〈j〉sp

′
≤ 〈k1〉sp

′
· · · 〈kn〉sp

′
. (C.4)

Then the result follows from Lemma 3.1, with R0 = 1, R1 = R∗.

Case p = 1. In this case the quantity to estimate is

〈j〉s ea|j|
b

sup
k1+...+kn=j

1

n

1∏n
i=1 〈ki〉

s
ea|ki|b

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉
· 1

〈k1 + . . .+ km+1〉

which is trivially majorated by 1, using (C.4). Thus (3.5) holds with R0 = R1 = 1.

Verification of (3.6). Using (C.4), one is brought back to estimate (3.4).

C.3 Proof of Proposition 3.2 (ii)
Verification of (3.5). As in the previous case we treat two cases:

Case 1 < p ≤ 2. We must estimate the p′-root of

〈j〉p
′s

∑
k1+...+kn=j

1

(
∑n
l=1 〈kl〉

s
)
p′

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉p
′ ·

1

〈k1 + . . .+ km+1〉p
′ (C.5)

For j = k1 + · · ·+ kn, one has the inequalities

〈j〉a ≤

(
n∑
l=1

〈kl〉

)a
≤ na−1

n∑
l=1

〈kl〉a , ∀a ≥ 1 , (C.6)

which yields

(C.5) ≤ np
′s−1

∑
k1+...+kn=j

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉p
′ ·

1

〈k1 + . . .+ km+1〉p
′

≤ (2p
′s−1)n−1 · (C.3) ≤

(
2p
′s
∑
k

1

〈k〉p
′

)n−1

where in the last line we used that ∀a > 1, ∀3 ≤ n ∈ N, one has na ≤ 2a(n−1). Thus (3.5) is

fulfilled with R0 = 1, R1 = 2s
(∑

k∈Z
1

〈k〉p′

)1/p′

.

Case p = 1. One has to bound the quantity

〈j〉s sup
k1+...+kn=j

1∑n
l=1 〈kl〉

s

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉
· 1

〈k1 + . . .+ km+1〉
; (C.7)

using (C.6) one gets the desired bound easily.
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Verification of (3.6). One uses inequality (C.6) and proceed as in the proof of Proposition

3.2(i); in turn (3.6) is fulfilled with R0 = 1, R1 = 2s
(

1

〈k〉p′

)1/p′

.

C.4 Proof of Proposition 3.2 (iii)

Verification of (3.5). As above we treat two cases:

Case 1 < p ≤ 2. We must estimate the p′-root of the supremum over j of

〈j〉p
′(s+1)

∑
k1+...+kn=j

1(∑n
l=1 〈kl〉

s∏
m 6=l 〈km〉

)p′ n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉p
′ ·

1

〈k1 + . . .+ km+1〉p
′

(C.8)

Using (C.6), expression (C.8) is majorated by np
′(s+1)−1

∑n
l=1Ml,n,

Ml,n :=
∑

k1+...+kn=j

〈kl〉p
′∏

m 6=l 〈km〉
p′

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉p
′ ·

1

〈k1 + . . .+ km+1〉p
′ (C.9)

We claim that ∀1 ≤ l ≤ n
Ml,n ≤ Rn−1

[ , R[ := 2p
′
Rp
′

∗ . (C.10)

To prove (C.10) we consider separately the case l even and l odd; if l is even then

Ml,n ≤ 〈kl〉p
′ ∑
km : m6=l

1∏
m 6=l 〈km〉

p′
· 1

〈k1 + . . .+ kl−1 + kl〉p
′ ≤ Rn−1

[ ,

which follows using repeatedly the inequalities∑
k∈Z

1

〈k〉p
′
〈k − j〉p

′ ≤
R[

〈j〉p
′ ,

∑
k∈Z

1

〈k〉p
′ < R[ . (C.11)

Similarly, if l is odd and l 6= n, then

Ml,n ≤ 〈kl〉p
′ ∑
km : m 6=l

1∏
m6=l 〈km〉

p′
· 1

〈k1 + . . .+ kl + kl+1〉p
′ ≤ Rn−1

[ ,

where once again we used (C.11) iteratively. Finally consider the case l = n: using that j − k1 =
k2 + . . .+ kn,

Mn,n ≤ 〈kn〉p
′ ∑
km : m6=n

1∏
m 6=n 〈km〉

p′
· 1

〈k2 + . . .+ kn−1 + kn〉p
′ ≤ Rn−1

[ .

All together we proved (C.10), consequently (C.8) ≤ np
′(s+1)−1

∑n
l=1Ml,n ≤

(
2s+2R∗

)p′(n−1)
.

Thus (3.5) holds with R0 = 1, R1 = 2s+2R∗.

Case p = 1. One has to bound

〈j〉s+1
sup

k1+...+kn=j

∣∣∣∣∣∣ 1∑n
l=1 〈kl〉

s ∏
m6=l 〈km〉

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉
· 1

〈k1 + . . .+ km+1〉

∣∣∣∣∣∣ ,
(C.12)

which is majorated by ns
∑n
l=1 M̃l,n,

M̃l,n := sup
k1+...+kn=j

∣∣∣∣∣∣ 〈kl〉∏
m 6=l 〈km〉

n−1∏
m=1
m odd

1

〈k1 + . . .+ km − j〉
· 1

〈k1 + . . .+ km+1〉

∣∣∣∣∣∣ . (C.13)
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We claim that ∀1 ≤ l ≤ n
M̃l,n ≤ 1 ; (C.14)

this is proved exactly as (C.10) using iteratively the inequality

sup
k∈Z

1

〈k〉 〈k − j〉
≤ 1

〈j〉
(C.15)

in place of (C.11). Thus (3.5) holds with R0 = 1, R1 = 2s+1.

Verification of (3.6). We consider two cases.

Case 1 < p ≤ 2. The quantity that we must estimate is the p′th-root of

〈j〉p
′(s+1)

∑
k∈Sn,r−j

1(∑n
l=1 〈kl〉

s∏
m 6=l 〈km〉

)p′ gn,r(k1, · · · , kn; j)p
′

(C.16)

for every possible choice of 1 ≤ r ≤ n and n ≥ 3, n odd. First remark that (C.16) is majorated by
np
′(s+1)−1

∑n
l=1N l

n,r,

N l
n,r :=

∑
k∈Sn,r−j

〈kl〉p
′∏

m 6=l 〈km〉
p′

gn,r(k1, · · · , kn; j)p
′
. (C.17)

Once again we claim that ∀1 ≤ l, r ≤ n,

N l
n,r ≤ Rn−1

[ . (C.18)

First let r be odd. In this case gn,r is given by (C.1). If l ≤ r − 1, then we have

N l
n,r ≤ 〈kl〉

p′
∑
ki : i 6=l

1∏
i 6=l 〈ki〉

p′
· 1〈∑r−1

`=1 k`

〉p′ ≤ Rn−1
[ ,

using estimates (C.11) iteratively. If l = r, the term
∑r−1
`=1 k` + j + kr+1 equals −

∑n
`=r+2 k` + kr

(due to the condition k ∈ Sn,r
−j ), thus using again (C.11)

N r
n,r ≤ 〈kr〉

p′
∑

ki : i6=r

1∏
i 6=r 〈ki〉

p′
· 1〈∑n

`=r+2 k` − kr
〉p′ ≤ Rn−1

[ .

Finally if l ≥ r+1, we use that the term
∑r−1
`=1 k`+j−kr equals −

∑n
`=r+1 k` (due to the condition

k ∈ Sn,r
−j ), thus again (C.11)

N l
n,r ≤ 〈kl〉

p′
∑
ki : i 6=l

1∏
i 6=l 〈ki〉

p′
· 1〈∑n

`=r+1 k`
〉p′ ≤ Rn−1

[ .

Now take r even; the relevant formula for gn,r is (C.2). In case l ≤ r − 1 we have that

N l
n,r ≤ 〈kl〉

p′
∑
ki : i 6=l

1∏
i6=l 〈ki〉

p′
· 1〈∑r−1

`=1 k` − kr
〉p′ ≤ Rn−1

[ .

In case l ≥ r we use that the term
∑r−1
`=1 k` + j equals kr −

∑n
`=r+1 k` (due to the condition

k ∈ Sn,r
−j ), we have that

N l
n,r ≤ 〈kl〉

p′
∑
ki : i6=l

1∏
i 6=r 〈ki〉

p′
· 1〈
kr −

∑n
`=r+1 k`

〉 ≤ Rn−1
[ .
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All together we have proved (C.18), thus

(C.16) ≤ np
′(s+1)−1

n∑
l=1

N l
n,r ≤ (2p

′(s+1)R[)
n−1 ≤ (2s+2R∗)

p′(n−1) ,

and (3.6) follows with R0 = 1, R1 = 2s+2R∗.

Case p = 1. One proceeds as in the case 1 < p ≤ 2 treating separately r odd and even. One
verifies that (3.6) holds with R0 = 1, R1 = 2s+2.
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