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2. Introduction

This thesis is a presentation of the work carried out in [AP19] together with
Piotr Pstr¡gowski. The main body of the text, including this introduction, will
be taken directly from [AP19] with little to no change. However in this work we
will add some exposition and background material.
Moduli spaces often have an expected or so called "virtual" dimension at each

point, which is a lower bound for the actual dimension. An important example is
given by the moduli stack Mg,n(V, β) of stable maps of degree β ∈ H2(V ) from
n-marked prestable curves of genus g into a smooth projective variety V . This is
a proper Deligne-Mumford stack whose actual dimension at a given point (C, f)
will in general be larger than it's virtual dimension, given by

3g − 3 + n+ χ(C, f ∗TV ) = (1− g)(dimV − 3)− β(ωV ) + n.

The moduli of stable curves is used to de�ne Gromov-Witten invariants of V , and
one of the key ingredients is to be able to construct a virtual fundamental class

[Mg,n(V, β)]vir ∈ A(1−g)(dimV−3)−β(ωV )+n(Mg,n(V, β)).

of the expected dimension. There is a general procedure for constructing such
classes whenever the moduli space in question is a Deligne-Mumford stack equipped
with a choice of a perfect obstruction theory due to Behrend and Fantechi [BF97].
In this thesis, we extend the methods of Behrend and Fantechi to the setting of

higher Artin stacks. Reducing to the classical case, where we have access to the
Chow groups of Kresch, we are then able to construct a virtual fundamental class
in a wide context.

Theorem 2.1. Let X→ Y be a morphism of �nite type Artin stacks. Suppose that
Y is of pure dimension r and that we have a perfect obstruction theory E→ LX/Y

which admits a global resolution. Then, there is a well-de�ned virtual fundamental
class [X→ Y,E]vir ∈ CHr+χ(E)(X) in the Chow group of X.

To collect a few examples to which Theorem 2.1 applies, we have
(1) the moduli of twisted stable maps whose target is an Artin stack, see

Example 9.12,
(2) the moduli of canonical surfaces of general type in char. p > 0, see Ex-

ample 9.14, and
(3) the 0-truncation of any quasi-smooth morphism of derived Artin stacks,

in particular the moduli spaces arising in Donaldson-Thomas theory, see
Example 9.15.

The theory of twisted stable maps is of particular importance, as it allows one
to construct generelizations of Gromov-Witten invariants; this will be explored in
forthcoming work.
To obtain the needed virtual fundamental class, Behrend and Fantechi associate

to any morphism X→ Y of Deligne-Mumford type the intrinsic normal cone CXY,



5

which is a closed substack of the normal sheaf. Informally, the virtual fundamen-
tal class is then obtained by intersecting the class of the normal cone with the
zero section of abelian cone of the chosen perfect obstruction theory, mirroring a
classical construction of Fulton [Ful13].
In general, the intrinsic normal cone of a Deligne-Mumford stack is only Artin

rather than Deligne-Mumford, and likewise it turns out that the natural de�nition
of the intrinsic normal cone CX where X is Artin forces the cone to be a higher
Artin stack; that is, an étale sheaf on the site of schemes valued in the∞-category
of spaces rather than in groupoids. Thus, to obtain the correct generalization we
are forced to work in the setting of higher algebraic stacks.
Since we work with ∞-categories, it is often easier to uniquely characterize a

given construction rather than to write it down directly. This is exactly what
we do, and so our work o�ers some conceptual clari�cation even in the classical
context.
Let us say that a relative higher Artin stack X → Y is a locally of �nite type

morphism of higher Artin stacks. We denote the ∞-category of relative higher
Artin stacks with morphisms given by commutative squares by RelArt. We will
say a morphism of relative higher Artin stacks

X′ Y′

X Y

is smooth if both vertical arrows are smooth and surjective if both vertical arrows
are surjective.
If X→ Y is a relative Artin stack, then its normal sheaf NXY := CX(LX/Y[−1])

is de�ned as the abelian cone associated to the shift of the cotangent complex.
Our �rst result provides a unique characterization of this construction.

Theorem 2.2 (6.10). The normal sheaf functor N : RelArt→ Art is character-
ized uniquely by the following properties:

(1) If U ↪→ V is a closed embedding of schemes, then NUV coincides with the
normal sheaf in the classical sense, that is, NUV ' CU(I/I2), where I is
the ideal sheaf

(2) N preserves coproducts.
(3) N preserves smooth and smoothly surjective maps.
(4) N commutes with pullbacks along smooth morphisms.

It is not di�cult to see that any functor satisfying the above properties is a
cosheaf on RelArt with respect to the topology determined by smoothly surjective
maps, and so Theorem 2.2 is strongly related to the �at descent for the cotangent
complex [Bha12].
Since we work only with discrete rings, the abelian cone associated to a quasi-

coherent sheaf depends only on its coconnective part, which one can in fact recover
from the abelian cone. Thus, Theorem 2.2 can be interpreted as saying that the
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"naive" cotangent complex (LX/Y)≤1 is already determined by its behaviour on
closed embeddings of schemes.

Theorem 2.3 (7.2, 7.3). There exists a unique functor C : RelArt→ Art, called
the normal cone, which satis�es the following properties:

(1) If U ↪→ V is a closed embedding of schemes, then CUV coincides with the
classical normal cone, that is, CUV ' SpecU(

⊕
Ik/Ik+1), where I is the

ideal sheaf.
(2) C preserves coproducts.
(3) C preserves smooth and smoothly surjective maps.
(4) C commutes with pullbacks along smooth morphisms of relative Artin stacks.

Moreover, there is a natural map CXY ↪→ NXY which is a closed embedding for an
arbitrary relative higher Artin stack X→ Y.

Note that Theorem 2.3 is qualitatively di�erent from our axiomatization of
the normal sheaf, where we have the construction using the cotangent complex,
as part of the statement is that the needed functor exists. Rather, Theorem 2.2

should be thought of as suggesting that the above set of axioms on the normal
cone is the right one. This is further evidenced by the following comparison with
the construction of Behrend and Fantechi.

Theorem 2.4 (7.9). Let X→ Y be relatively Deligne-Mumford morphism of Artin
stacks of �nite type. Then, the normal cone CXY coincides with the relative intrin-
sic normal cone of Behrend and Fantechi.

The proofs of Theorem 2.2 and Theorem 2.3 use what we call adapted
cosheaves. Roughly, a functor F : C → H from an ∞-site into an ∞-topos is
an adapted cosheaf it it satis�es descent and preserves pullbacks along a distin-
guished class of geometric morphisms which contains all coverings. Our main
result shows that an adapted cosheaves are stable under left Kan extension from
a generating subcategory.
In our case, C is the∞-category of relative higher Artin stacks, the distinguished

class of maps is given by smooth morphisms, and the generating subcategory is
the category of closed embeddings of schemes. This method is very general, and
allows one to construct other functors related to the normal cone, for example the
deformation space.

Theorem 2.5 (8.2). For any relative higher Artin stack X → Y there exists a
higher Artin stack M◦

XY which �ts into a commutative diagram

X× P1 M◦
XY

P1

where both vertical arrows are �at and such that

(1) over A1 ' P1−{∞}, the horizontal arrow is equivalent to X×A1 ↪→ Y×A1

and
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(2) over {∞}, the horizontal arrow is equivalent to X ↪→ CXY.

We point out that the assumptions of being Artin in the classical sense and of
the existence of a global resolution appearing in Theorem 2.1 stem only from
the fact that we are not aware of a theory of Chow groups for higher Artin stacks
which has the needed properties.
If such a theory existed, then for any perfect obstruction theory ϕ : E → LX/Y

our methods would yield the needed virtual fundamental class. In particular, if
one is willing to replace Chow groups with a di�erent homology theory, such as
K-theory, then the fundamental classes exists in full generality, seeRemark 9.10.
Lastly, the restriction to morphisms locally of �nite type comes from the fact

that any such morphism of higher Artin stacks admits a smooth surjection from a
closed embedding of schemes. We believe it is likely that the normal cone satis�es
the analogues of the axioms of Theorem 2.3 with the class of smooth maps
replaced by that of �at maps, as that is the case for the normal sheaf. If that was
the case, the locally of �nite type assumption could be removed throughout.

2.1. Notation and conventions

In the sequel we will use the term Artin stack to refer to what we called a higher
Artin stack in the introduction, see De�nition 3.30. Under this convention,
classical Artin stacks correspond to what we call 1-Artin stacks.
To tackle coherence di�culties inherent in working with functors valued in

spaces, we will use the framework of ∞-categories, as developed by Joyal and
Lurie. The standard reference is [Lur09].
Throughout this paper, we will be working over a �xed �eld k. Note that

even though we work with ∞-categories, we will be indexing our stacks using the
category of discrete commutative k-algebras, which we denote by CAlg♥k . Derived
analogues of commutative rings will appear only indirectly.

3. Preliminaries

The goal of this section is to introduce the reader to the language we will use
throughout this paper. Our aim is to simply collect all the background material
that will be needed to understand the main results. To this end, we have taken
a minimalist approach, providing references to more thorough treatments in the
literature.

3.1. ∞-categories

Our main reference for the theory of ∞-categories and ∞-topoi will be Lurie's
"Higher Topos Theory" [Lur09]. In our opinion the best introduction to this
material is chapter 1 of [Lur09].

De�nition 3.1. An ∞-category is a simplicial set C with the property that: for
every 0 < i < n, a morphism Λn

i → C can be extended to a morphism ∆n → C.
An ∞-category is said to be an ∞-groupoid if
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The theory of ∞-categories is a straightforward generalization of the theory of
usual category theory. In particular via the nerve functor N from the category
of small categories to the category of simplicial sets, one sees via [Lur09][1.1.2.2],
that N(C) is an ∞-category for a small category C.

Remark 3.2. The nerve functor N : Cat → Set∆ is fully faithful. Moreover it
admits a left adjoint τ1 which is the left Kan extension along the Yoneda embedding
of the obvious functor ∆→ Cat.

Example 3.3. One important class of examples of ∞-categories are so called
Kan complexes. That is simplcial sets C with the property: for each 0 ≤ i ≤ n a
morphism Λn

i → X admits an extension ∆n → C. Clearly a Kan complex furnishes
an example of an ∞-category. If X is a topological space then the simplcial set
Sing(X) of singular simplicies of X is a Kan complex.

Example 3.4. Let K be a simplicial set and C be an ∞-category. Then we may
form the∞-category of functors Fun(K,C). Concretely Fun(K,C) is the simplicial
set HomSet∆(∆• ×K,C).

Example 3.5. Let C be a dg-category. Then there is the dg nerve Ndg : Catdg →
Set∆ [Lur17][1.3.1.6]. It is a general fact that Ndg(C) is always an ∞-category
[Lur17][1.3.1.10]. This example will become important when constructing an ∞-
categorical enhancement of the unbounded derived category D(A).

To every ∞-category C we may associate in a functorial way an ordinary cat-
egory, which we denote by hC. One way to do this is via the functor τ1 from
Remark 3.2. A better way to do this is by [Lur09][1.1.5]. At any rate, this
allows us to de�ne the notion of ∞-groupoid.

De�nition 3.6. An∞-category C is an∞-groupoid if the homotopy category hC
is a groupoid.

Example 3.7. Via [Lur09][1.2.5.1], a simplicial set C is an∞-groupoid if and only
if it is a Kan complex.

The collection of ∞-groupoids can be assembled into an ∞-category S, the
in�nity category of spaces [Lur09][3.3.2].

Example 3.8. Let K be a simplicial set, then we may form the ∞-category of
presheaves on K as PSh(K) := Fun(K, S). There is a ∞-categorical Yoneda
embedding j : K → PSh(K) and it is shown in [Lur09][5.1.3.1] that it is fully
faithful.

3.2. Limits and Colimits

In this subsection we brie�y review the theory of limits and colimits in setting
of ∞-categories.
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De�nition 3.9. An object x ∈ C in an ∞-category is said to be �nal, if the
canonical map C/x → C is an acyclic �bration of simplicial sets. One de�nes the
notion of initial object to be a �nal object in Cop.

Remark 3.10. We remind the reader that an acyclic �bration of simplicial sets
is a Kan �bration which is a weak equivalence.

The following proposition in [Lur09][1.2.12.4], the dual statement for initial
objects is also true.

Proposition 3.11. Let C be an∞-category, x ∈ C is �nal if and only if mapC(x′, x)
is contractible for all x′ ∈ C.

The notions of intial/�nal object in ∞-categories is a straightforward general-
ization of the usual notions.

Example 3.12. Let C be an ordinary category then an object c ∈ C is initial/�nal
if and only if c ∈ N(C) is initial/�nal in the ∞-categorical sense.

Let p : K → C be a functor between ordinary categories. Then if it exists
colim p is the initial object of Cp/ and conversely, if it exists, the initial object
of Cp/ is the colimit of p. Now that we know what the ∞-categorical notions of
initial/�nal objects are we can use this discussion to motivate the de�nitions of
∞-categorical limits and colimits.

De�nition 3.13. Let C be an∞-category and let p : K → C be an arbitrary map
of simplicial sets. A colimit for p is an initial object of Cp/ and a limit for p is a
�nal object of C/p.

Example 3.14. Let A,B,C be ordinary commuative k-algebras. Suppose further
that B and C are A algebras. Then the tensor product B ⊗A C in CAlgank in the
∞-category of animated commutative k-algebras, is what classically denoted as
B ⊗L

A C.

Example 3.15. Let K be a simplicial set then by [Lur09][4.2.4.8], the∞-category
PSh(K) has all limits and colimits. Thus, since S ' PSh(∗) it follows that the
∞-category of spaces has all limits and colimits.

We will brie�y review the notion of relative colimits as these will be useful in
de�ning the ∞-categorical notion of left Kan extension.

De�nition 3.16. Let f : C → D be an inner �bration of simplicial sets, let
p̄ : K. → C be a diagram, and let p = p̄|K. We say that p̄ is an f-colimit of p
if: the map Cp̄/ → Cp/ ×Dfp/

Dfp̄ is a trivial �bration of simplicial sets.

When D = ∗, De�nition 3.16 recovers the notion of colimit we have previously
discussed.

De�nition 3.17. Suppose we are given a diagram of ∞-categories
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C0 D

C D′,

F0

F p

where p is an inner �bration and the left vertical map is the inclusion of a full
subcategory C0 ⊆ C. We say that F is a p-left Kan extension of F0 at C ∈ C

if the induced diagram

C0
/C D

(C0
/C). D′,

FC

p

Exhibits F (C) as a p-colimit of FC . We say that F is a p-left Kan extension of

F0 if it is a p-left Kan extension of F0 at C for every object C ∈ C. When D′ = ∗
we say that F is a left Kan extension of F0.

Let F : C → D be a functor between ∞-categories and D a cocomplete ∞-
category. Then by [Lur09][4.3.2.13] the left Kan extension F along the yoneda
embedding j : C→ PSh(C) exists. By the universal property of presheaf categories
[Lur09][5.1.5.6] composition with the Yoneda embedding gives an equivalence

Funcocont(PShC,D) ' Fun(C,D).

3.3. ∞-Topoi

One of the principal ∞-categories appearing in this work is the ∞-category
of stacks Stk, De�nition 3.28. The ∞-category Stk is a special kind of ∞-
category, it is an ∞-topos. We will de�ne an ∞-topos via the ∞-Giraud axioms
[Lur09][6.1.1]

De�nition 3.18. A presentable ∞-category H is an ∞-topos if the following
axioms are satis�ed

(1) Coproducts are disjoint.
(2) Colimits are universal.
(3) Every groupoid object is e�ective.

To say that coproducts are disjoint means that the intersection of any two
objects X, Y ∈ H in their coproduct is the initial object inH. To say that colimits
are universal means that colimits commute with pullbacks i.e. If f : X → Y ∈ H,
and A : I → H/Y then we have an equivalence:

f ∗(lim−→
i∈I

Ai) = X ×Y (lim−→
i∈I

Ai) = lim−→
i∈I

(X ×Y Ai) = lim−→
i∈I

(f ∗Ai).

We will spend a bit of time on the last axiom.
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De�nition 3.19. A groupoid object in an ∞-topos H is a simplicial object
U : ∆op → H in H such that for ever n ≥ 0 and every partition [n] = S ∪ S ′ such
that S ∩ S ′ consists of a single element s, the diagram

U([n]) U(S)

U(S ′) U({s})

is a pullback square in H.

The condition appearing in the de�nition of groupoid object is sometimes known
as the Segal condition.

Example 3.20. Let H be an∞-topos, and f : X → Y be a morphism in H then
the �ech nerve, Čech(f) of f is a groupoid object in H.

De�nition 3.21. We say that a groupoid object U : ∆op → H in an ∞-topos H
is e�ective if: we write U−1 for the geometric realization of U , then we have

Un ' U0 ×U−1 U0 ×U−1 · · · ×U−1 U0

where there are n factors in the product.

A more succinct way of saying what an e�ective groupoid object is, is that it is
a simplicial object U in H such that it can be extended to a colimit diagram U+

such that U+ is a �ech nerve. Finally we collect some examples of ∞-topoi.

Example 3.22. The ∞-category of spaces, S, is an ∞-topos.

Example 3.23. Let (C, τ) be a pair of an ∞-category C together with the struc-
ture of a Grotehndieck site τ . Then the category of sheaves Sh(C, τ) with respect
to τ is an ∞-topos [Lur09][6.2.2.7]. The main example for us will be C = CAlg♥k
and τ the étale topology.

Remark 3.24. In contrast to Giraud's theorem for ordinary topoi, it is not true
in general that all ∞-topoi are equivalent to sheaves on some Grothendieck site.
[Lur09][6.2.2]

3.4. Stable ∞-categories

In this subsection we brie�y review the notion of stable ∞-category.

De�nition 3.25. An ∞-category C is called stable if:
(1) There exists a zero object 0 ∈ C.
(2) Every morphism in C admits a �ber and a co�ber.
(3) A triangle in C is a �ber sequence if and onl if it is a co�ber sequence.

One of pleasant facts about stable ∞-categories is that their homotopy cate-
gories are canonically triangulated [Lur17][1.1.2.14]. We close with an important
example of a stable ∞-category.
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Example 3.26. Let R be a commutative ring, then Ch(R) the category of chain
complexes overR admits a left proper combinatorial model structure [Lur17][1.3.5.3].
Letting Ch(R)◦ denote the full subcategory spanned by �brant objects then we
de�ne D(R) := Ndg(Ch(R)◦).

3.5. Higher Artin stacks

In algebraic geometry, especially in moduli theory, one often cares about func-
tors which are not naturally valued in sets, but rather in groupoids; such functors
are then given geometric interpretation through the theory of algebraic stacks.
For some purposes - in our case, of giving a well-behaved de�nition of an in-

trinsic normal cone of an algebraic stack - even the category of functors valued in
groupoids is not su�cient [Lur04], [TV05]. One is then naturally led to consider
functors valued in spaces ; the geometric interpretation of such functors is given
by the theory of higher algebraic stacks.

De�nition 3.27. The category Aff of a�ne k-schemes is the opposite of the
category CAlg♥k of discrete k-algebras. We will consider Aff as a Grothendieck
site with respect to the étale topology.

A scheme can be identi�ed with a particular sheaf of sets over Aff; similarly, an
algebraic stack over k can be identi�ed with an appropriate sheaf of groupoids.
As explained above, when working with higher stacks, we instead allow sheaves
valued in spaces.

De�nition 3.28. A prestack X is a presheaf over Aff valued in the ∞-category
S of spaces; that is, it is a functor X : Affop → S. We say a prestack X is a stack
if it is a sheaf with respect to the étale topology. We denote the ∞-categories of
(pre)stacks by PrStk and Stk.

Note that any set can be considered as a discrete space, so that any presheaf
of sets gives rise to a prestack as above. Moreover, in this case the ∞-categorical
sheaf condition reduces to the usual one.

Remark 3.29. Recall that if X is a presheaf of sets on the site of a�ne schemes,
then X is a sheaf if and only if it preserves products and for any étale surjection
U → V of a�ne k-schemes, the diagram X(V )→ X(U) ⇒ X(U ×V U) is a limit.
In the case of a presheaf of spaces, to only consider the two-fold intersections is

not enough, and one instead requires that the whole diagram
X(V )→ X(U) ⇒ X(U ×V U) X(U ×V U ×V U) . . .

induced by the �ech nerve of U → V is a limit diagram of spaces.

Note that in our de�nition of a stack, we allow sheaves of spaces, but we still
index them by the classical category of discrete k-algebras, rather than a derived
variant. Thus, we are working within the framework of classical, rather than
derived, algebraic geometry.
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Nevertheless, a lot of the de�nitions we will work with are analogous to the ones
which became standard in derived algebraic geometry. In particular, our notion
of an Artin stack is analogous to the one appearing in Lurie's thesis [Lur04].

De�nition 3.30. We de�ne n-Artin stacks and smooth n-Artin stacks inductively
as follows:

(1) We say a morphism f : X→ Y of stacks is a relative 0-Artin stack if for
any map g : Spec(A)→ Y, the �ber product Spec(A)×Y X is an algebraic
space.

(2) We say that relative 0-Artin stack f : X → Y is smooth if each of the
associated maps Spec(A) ×Y X → Spec(A) is smooth as a morphism of
algebraic spaces.

(3) For n > 0, we say a morphism f : X → Y of stacks is a relative n-
Artin stack if for any map Spec(A)→ Y there exits a smooth surjection
U → Spec(A)×Y X which is a relative (n− 1)-Artin stack, where U is an
algebraic space.

(4) We say that a relative n-Artin stack f : X → Y is smooth if for every
Spec(A)→ X there exists a smooth surjection U → Spec(A)×YX as in the
previous item, such that U → Spec(A) is a smooth morphism of schemes.

(5) We say that a stack X is an n-Artin stack if it is a relative n-Artin stack
over Spec(k) and will refer to anArtin stack as a stack X which is n-Artin
for some n.

We denote the ∞-category Artin stacks by Art.

The next proposition is a collection of basic properties pertaining to higher
Artin stacks.

Proposition 3.31. We have that

(1) Any relative n-Artin stack is also a relative m-Artin stack for any m ≥ n.
(2) A pullback of a (smooth) relative n-Artin stack is (smooth) relative n-Artin

(3) Let X
f→ Y

g→ Z be a pair of composable morphisms. If both f and g are
(smooth) relative n-Artin stacks, then so is g ◦ f .

(4) Suppose that n > 0 and that we are given morphisms X → Y → Z, where
X → Y is an (n − 1)-submersion and X → Z is a relative n-Artin stack.
Then Y→ Z is a relative n-Artin stack.

(5) Let X
f→ Y

g→ Z be a composable pair of morphisms and n ≥ 1. If g ◦ f is
a relative (n− 1)-Artin stack and g is a relative n-Artin stack, then f is a
relative (n− 1)-Artin stack.

Proof. This is [Lur04][5.1.4]. �

Observe that one of the pleasant consequences of Proposition 3.31 is that any
morphism f : X→ Y of n-Artin stacks is automatically a relative n-Artin stack.

Example 3.32. Let Gm denote the mulitplicative group scheme over k. Classi-
cally, we can form the quotient 1-Artin stack BGm := [Spec(k)//Gm]. From a
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homotopy-theoretic perspective, the stack BGm is the étale shea��cation of the
presheaf

BGm : Affop → S

R 7→ K(R×, 1)

where K(R×, 1) is the �rst Eilenberg-Maclane space of the abelian group of units
of R. Since Gm is abelian, it is very natural to consider prestacks

R 7→ K(R×, n)

for any n ≥ 1. We de�ne BnGm to be étale shea�fcation of the presheaf de�ned
by the above formula, one can show that it is an n-Artin stack.
To see this in the basic case of n = 2, note that we have an equivalence of stacks

B2Gm ' lim−→ (. . . BGm ×BGm BGm ⇒ Spec(k)).

We claim that the induced map Spec(k)→ B2Gm is an 2-submersion, it is clearly
surjective. Furthermore, since the diagram

BGm Spec(k)

Spec(k) B2Gm.

is a pullback diagram and the maps BGm → ∗ are smooth relative 1-Artin stacks
on the account of their �bers being Gm, we conclude that Spec(k) → B2Gm is a
2-submersion. More generally, in the discussion above we could replace Gm with
any smooth abelian group scheme.

De�nition 3.33. Suppose that P is a property of morphisms of schemes over k
which is local both in the source and target in the smooth topology. Then, we say
a morphism f : X → Y of Artin stacks has property P if for any Spec(A) → Y

there exists a smooth surjection S → Spec(A) ×Y X from a scheme such that
S → Spec(A) has property P .

Example 3.34. Properties local both in the source and target in the smooth
topology to which we might want to apply De�nition 3.33 include being locally
of �nite type, �at and smooth. Note that in the smooth case the resulting notion
will coincide with that of a smooth relative Artin stack of De�nition 3.30, as
expected.

A lot of the constructions in this note will be done relative to a �xed stack,
that is, will take place in the overcategory Stk/X. This ∞-category can be itself
described as an ∞-category of sheaves in a standard way, as we now describe.

Remark 3.35. If C is a small ∞-category and X ∈ PSh(C) is a presheaf, there is
a canonical equivalence

PSh(C)/X ' PSh(C/X),

between the overcategory of the presheaves and presheaves on the overcategory
[Lur09][5.1.6.12]. Under this equivalence, an object F ∈ PSh(C)/X corresponds
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to an object which assigns to a morphism f : U → X(U), which we can identify
with a point f ∈ X(U), the �ber product {f} ×X(U) F̃(U). Moreover, if C is an
∞-site, then there is an induced topology on the overcategory C/X and the above
equivalence restricts to one of the form Sh(C)/X ' Sh(C/X).
In our situation, we will take C to be the site Aff, and so we deduce that for

an arbitrary stack X ∈ Stk there is a canonical equivalence Stk/X ' Sh(Aff/X). In
this note we will use this equivalence implicitly, blurring the distinction between
the two ∞-categories.

3.6. Quasi-coherent sheaves

If R is a ring, we can associate to it the derived ∞-category D(R), which is
an ∞-categorical enhancement of the classical unbounded derived category. This
∞-category is stable and admits a canonical t-structure whose heart D(R)♥ :=
D(R)≥0 ∩ D(R)≤0 is given by the the abelian category of R-modules.
One advantage of working with stable ∞-categories, rather than triangulated

categories, is that the former can be glued together in a controlled manner. This
allows one to give a transparent de�nition of a quasi-coherent sheaf on an Artin
stack, which we now review.

De�nition 3.36. Let X ∈ Stk be a stack. We de�ne the stable ∞-category
QCoh(X) of quasi-coherent sheaves on X as the limit

QCoh(X) := lim←−
Spec(A)→X

D(A)

taken over the category of a�ne schemes equipped with a map into X, with the
maps between module ∞-categories given by extension of scalars.

Example 3.37. If X ' Spec(A) is a�ne, then the ∞-category of a�nes over X
has a terminal object given by the identity and we obtain

QCoh(Spec(A)) ' D(A).
In particular, notice that according to this convention a quasi-coherent sheaf on
Spec(A) is an object of the derived ∞-category rather than a discrete A-module.

According to De�nition 3.36, a quasi-coherent sheaf F on X consists of an
assignment of an object F(Spec(A)) ∈ D(A) for each map η : Spec(A) → X,
equivalently, for each point η ∈ X(A). This data is required to be compatible in
the sense that we have distinguished equivalences B⊗AF(Spec(A)) ' F(Spec(B))
for each composite Spec(B)→ Spec(A)→ X, as well as higher coherence data.
More formally, we de�ne QCoh(X) as follows. One can construct an∞-category
D whose objects are pairs (A,M), where A ∈ CAlg♥k is a discrete k-algebra and
M ∈ D(A), and such that the obvious functor D → CAlg♥k is a coCartesian
�bration. Then, QCoh(X) is given by the ∞-category of sections of the pullback
�bration D ×CAlg♥k

(CAlg♥k )/X → (CAlg♥k )/X.

Example 3.38. The structure sheaf OX of a stack X is the quasi-coherent sheaf
given by
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OX(Spec(A)→ X) := A,
where we consider the right hand side as an element of the heart of D(A).

Remark 3.39. Note that De�nition 3.36 makes sense already when X is a
prestack, but one can show that the ∞-category of quasi-coherent sheaves is the
same on a prestack and its stacki�cation. In other words, formation of QCoh
satis�es descent with respect to the étale topology, in fact, even with respect to
the �at topology [Lur18][6.2.3.1].

Remark 3.40. If X is Artin, then one can replace the indexing ∞-category in
De�nition 3.36 by the category of those a�nes Spec(A)→ X which are smooth
over X, see [GR17].

As a limit of stable, presentable ∞-categories, QCoh(X) is stable and pre-
sentable for any stack X. Moreover, it is functorial; for any morphism f : X→ Y

of stacks we have an induced adjunction
f ∗ a f∗ : QCoh(Y) � QCoh(X).

Using the informal description given above, f ∗ is de�ned by (f ∗F)(Spec(A)) :=
F(Spec(A)), and its right adjoint exists for abstract reasons. Notice in particular
that if f : Spec(A) → X is a map from an a�ne scheme, then as an object of
QCoh(Spec(A)) ' D(A), the pullback f ∗F corresponds to F(Spec(A)).
The ∞-category QCoh(X) admits a canonical t-structure in which F is connec-

tive if and only if F(Spec(A)) is connective for any morphism Spec(A) → X. In
general, this t-structure is not well-behaved, but the situation is much better in
the Artin case.

Lemma 3.41. Let X be Artin. Then, QCoh(X) admits a t-structure in which
a quasi-coherent sheaf is (co)connective if and only if for any smooth atlas p :
Spec(U)→ X, the quasi-coherent sheaf p∗F is (co)connective.

Proof. This is [Lur04][5.2.4]. �

Note that by de�nition, the pullback functor f ∗ : QCoh(Y) → QCoh(X) pre-
serves connective objects, which implies formally that its right adjoint f∗ preserves
coconnective objects. If f is a smooth morphism of Artin stacks, then by Lemma
3.41 above f ∗ also preserves coconnectivity.

De�nition 3.42. Let P be a property of objects of the derived ∞-category of
a ring which is stable under arbitrary base-change. Then, if X is a stack and
E ∈ QCoh(X), we say E has property P if f ∗E ∈ D(A) has property P for any
f : Spec(A)→ X.

Example 3.43. The properties to which De�nition 3.42 applies which will be
of interest to us are the properties of being perfect, perfect of given amplitude and
perfect up to order n. These properties can be de�ned in a homotopy-invariant
way, see [Lur17], [Lur18], but for the convenience of the reader we will rephrase
them in terms of chain complexes.
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If A is a discrete k-algebra, then an object M ∈ D(A) is perfect if it can be
represented by a bounded chain complex of �nitely generated projectives. It is
perfect of amplitude [a, b] if the representative can be chosen to vanish outside of
degrees d ∈ [a, b]. It is perfect to order n if it has a representative which is bounded
from below and consists of �nitely generated projectives in degrees d ≤ n.

Throughout the paper, we will need some basic properties of the cotangent
complex. The latter is most naturally de�ned and constructed in the setting of
derived algebraic geometry, and since several thorough references exist in the latter
context, we will keep our exposition to the minimum.
A derived stack is an étale sheaf on the opposite of the ∞-category CAlgank of

animated k-algebras, where the latter is the∞-category underlying the model cat-
egory of simplicial commutative k-algebras [Lur18]. Any commutative k-algebra
determines a discrete animated ring, and through left Kan extension one obtains
a functor ι : Stk ↪→ d Stk which can be shown to be fully faithful. Moreover, for
any stack X in our sense we have QCoh(X) ' QCoh(ιX).
One says that a morphism X→ Y of derived stacks admits an algebraic cotangent

complex if there exists an almost connective quasi-coherent sheaf LX/Y ∈ QCoh(X)
such that for any animated k-algebra A, any point η ∈ X(A) and anyM ∈ D(A)≥0,
there is a natural equivalence

mapD(A)≥0
(η∗LX/Y,M) ' fibη(X(A⊕M)→ X(A)×Y(A) Y(A⊕M)).

In other words, the algebraic cotangent complex LX/Y corepresents derivations in
animated k-algebras.

De�nition 3.44. If X → Y is a morphism of stacks, then we say it admits a
cotangent complex if the associated morphism ιX→ ιY of derived stacks admits
an algebraic cotangent complex. In this case, the cotangent complex LX/Y is
the image of LιX/ιY under the equivalence QCoh(X) ' QCoh(ιX).

It follows from our de�nition that if f : X→ Y and g : Y→ Z are a composable
pair of morphisms of stacks which admit cotangent complexes, then we have a
canonical co�bre sequence

f ∗LY/Z → LX/Z → LX/Y

of quasi-coherent sheaves on X. However, some care must be taken with base-
change properties.

Warning 3.45. The inclusion CAlg♥k ↪→ CAlgank of k-algebras into animated k-
algebras does not preserves pushouts, which are given by the tensor product in the
source and the derived tensor product in the target. It follows that the embedding
ι : Stk ↪→ d Stk of stacks into derived stacks does not preserves pullbacks, and the
cotangent complex of De�nition 3.44 does not satisfy arbitrary base-change in
the same way its derived analogue does.

Remark 3.46. One can show that the embedding i : Stk ↪→ d Stk commutes
with pullbacks along all �at morphisms. It follows that the cotangent complex of
De�nition 3.44 satis�es �at base-change.
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We will now give existence and �niteness statements for the cotangent complex.

Proposition 3.47. Let f : X→ Y be a relative n-Artin stack. Then, f admits a
cotangent complex LX/Y which is (−n)-connective and perfect to order −1. If f is
smooth, then LX/Y is perfect of non-positive amplitude.

Proof. It is not di�cult to see from our inductive de�nition that if f is relative n-
Artin, then the associated morphism ι(X→ Y) of derived stacks is n-representable
in the sense of Lurie. The two statements are then given by [Lur18][I.1.2.5.3, I.
1.3.3.7]. �

Proposition 3.48. Suppose that f : X→ Y is morphism of Artin stacks which is
locally of �nite type. Then, LX/Y is perfect to order 0.

Proof. Since the cotangent complex satis�es smooth base-change, we may assume
that Y = Y is a�ne. Choose a smooth surjection p : X → X from a scheme, it is
then enough to show that p∗LX/Y is perfect to order 0. We have a co�bre sequence

p∗LX/Y → LX/Y → LX/X,

and since the last term is perfect of non-positive amplitude, we see it is enough to
show that LX/Y is perfect to order 0.
Since our notion of perfect of order 0 is local, we may further assume that

X → Y is a morphism of a�nes schemes of �nite type. The statement is then
clear, since LX/Y is connective and h0(LX/Y ) ' Ω0

X/Y is �nitely generated. �

We close with a basic example of a calculation of the cotangent complex.

Example 3.49. We will identify the cotangent complex of the stack B2Gm of
Example 3.32. Let i : Spec(k) → B2Gm be the base-point and consider the
diagram

Spec(k)

BGm Spec(k)

Spec(k) B2Gm.

δ

i

i

where the square is a pullback. It follows that i is smooth, and so Remark 3.46

implies that δ∗LBGm/ Spec(k) ' LSpec(k)/B2Gm
. We then deduce from the co�bre

sequence of cotangent complexes that
i∗LB2Gm

' δ∗LBGm [−1] ' k[−2].
In fact, one can show more generally that for any smooth abelian group scheme
G we have i∗LBnG ' g∨[−n], where g is the Lie algebra.
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4. The abelian cone associated to a quasi-coherent sheaf

In this section we study the abelian cone functor, a contravariant analogue of
the h1/h0 functor of Behrend and Fantechi. The main result of this section is
Theorem 4.10, which establishes that the abelian cone is Artin under certain
conditions.

De�nition 4.1. Let X be a stack and E ∈ QCoh(X) a quasi-coherent sheaf. Then,
the abelian cone associated to E is the prestack over X de�ned by the formula

CX(Spec(A)
f→ X) := mapD(A)(f

∗E, A),

where the latter is the mapping space in QCoh(Spec(A)) ' D(A). This construc-
tion yields the abelian cone functor CX : QCoh(X)op → PrStk/X.

We hope the next example eases the reader with the knowledge this is a straight-
forward extension of the construction of relative spectrum over a scheme.

Example 4.2. Let S be a scheme and E ∈ QCoh(S)♥ be a quasi-coherent sheaf in
the classical sense. We claim that CS(E) is the relative spectrum of the symmetric
algebra on E.
We have CS(E)(Spec(A) → S) = mapD(A)(f

∗E, A), where f ∗ : QCoh(S) →
D(A) is the pullback functor between stable ∞-categories, which classically cor-
responds to the derived pullback in the sense that hi(f ∗E) ' Rif

∗E. Since E is
connective, so is f ∗E, and since A is a discrete commutative ring, it is also co-
connective when considered as a module over itself. Since (f ∗E)≤0 ' R0f

∗E, we
deduce using the t-structure axioms that

mapD(A)(f
∗E, A) ' HomModA

(R0f
∗E, A) '

mapSch/S
(Spec(A), SpecS(Sym(R0f

∗E))),
which is what we wanted to show.

Proposition 4.3. Let X be a stack. Then, CX(E) is a stack for any E ∈ QCoh(X).

Proof. We have to show that for any commutative diagram

Spec(A) Spec(B)

X

p

f g
,

where p is an étale covering of rings, the diagram

CX(Spec(A)→ X)→ CX(Spec(B)→ X) ⇒ CX(Spec(B ⊗A B)→ X) . . .

induced by the �ech nerve of p is a limit diagram of spaces. Unwinding the
de�nitions, we see that we have to prove that

mapD(B)(g
∗E, B)→ mapD(A)(f

∗E, A) ⇒ mapD(A⊗BA)((f ⊗ f)∗E, A⊗B A) · · ·
is a limit. Using the adjunction between pullback and pushforward, it is enough
to verify that
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g∗B → f∗A⇒ (f ⊗ f)∗(A⊗B A) · · ·
is a limit diagram in QCoh(X). Since g∗ is a right adjoint and f∗ ' g∗ ◦ p∗, this
follows from the classical fact that if p is faithfully �at, in particular étale, then

B → p∗A⇒ (p⊗ p)∗(A⊗B A) · · ·
is a limit of B-modules. �

Notice that since the mapping space between any two A-modules admits a
canonical lift to a connective spectrum, in fact a connective Z-module, the cone
CX(E) is canonically an abelian stack over X, that is, an abelian group object in
Stk/X.

Lemma 4.4. The cone functor CX : QCoh(X)op → Ab(Stk/X) takes colimits to
limits.

Proof. It is enough to observe that for any f : Spec(A)→ X we have

CX(lim−→Ei)(f) ' mapA(f ∗ lim−→Ei, A) ' mapA(lim−→ f ∗Ei, A) ' lim←−mapA(Ei, A) '
lim←−CX(Ei)(f),

where we've used that f ∗ : QCoh(X)→ D(A) is a left adjoint. �

Lemma 4.5. The cone construction satis�es base change in the sense that for any
morphism ϕ : X −→ Y of stacks and E ∈ QCoh(Y) there's a canonical equivalence
X×Y CY(E) ' CX(ϕ∗E).

Proof. For any f : Spec(A)→ X we have

(X×Y CY(E))(f) ' CY(ϕ ◦ f) ' mapA((ϕ ◦ f)∗E, A) ' mapA(f ∗ϕ∗EA) '
CX(ϕ∗E)(f),

which is what we wanted to show. �

Lemma 4.6. Let X be a stack and E ∈ QCoh(X). Then, CX(E) ' CX(E≤0).

Proof. For f : Spec(A)→ X we have

CX(E)(f) ' mapA(f ∗E, A) ' mapQCoh(X)(E, f∗A)

and since A is coconnective as a module over itself, the same is true for f∗A and
we write further

mapQCoh(X)(E, f∗A) ' mapQCoh(X)(E≤0, f∗A) ' mapQCoh(X)(f
∗E≤0, A) '

CX(E≤0)(f).

�

Lemma 4.7. Let X be a stack and E ∈ QCoh(X). If E is connective, then CX(E)→
X is a�ne. If E is bounded below, then the converse holds.
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Proof. By Lemma 4.5, we can assume that X ' Spec(A) is a�ne. To see the
forward direction, observe that by Lemma 4.6, CSpec(A)(E) ' CSpec(A)(E≤0). Since
E≤0 ∈ QCoh(Spec(A))♥ by assumption, the statement follows from Example 4.2.
Now assume that E is bounded below and that CX(E)→ X is a�ne, in particular

it has discrete �bers. We �rst claim that for an arbitrary map f : Spec(B) → X

and a B-module M , the space mapD(B)(f
∗E,M) is discrete.

If we form the trivial square-zero extension B ⊕M and consider the composite
morphism g : Spec(B ⊕M)→ X, it follows that the space

CX(E)(Spec(B ⊕M)) = mapD(B⊕M)((B ⊕M)⊗LB f ∗E, B ⊕M)

is discrete. Using the extension of scalars adjunction we can rewrite the right hand
side as

mapD(B)(f
∗E, B ⊕M) ' mapD(B)(f

∗E, B)×mapD(B)(f
∗E,M)

and thus we deduce that mapD(B)(f
∗E,M) is discrete, as claimed.

Now suppose for a contradiction that f ∗E is not connective and let r < 0 be the
smallest integer such that hr(f ∗E) 6= 0. Then

π−r mapD(B)(f
∗E,M) ' π0 mapD(B)((f

∗E)≤r,M) ' Ext0
B(hr(f

∗E),M)

and since we've already shown that the left hand side vanishes for any M , we
deduce that the same must be true for the right hand side. It follows that
hr(f

∗E) = 0, giving the desired contradiction and ending the argument. �

We are nearing the main result of this section, which states that the cone functor
produces higher Artin stacks when it is applied to quasi-coherent sheaves satisfying
certain �niteness conditions. We begin with a simple lemma.

Lemma 4.8. Let X be a stack and let E→ E′ → P be a co�bre sequence of quasi-
coherent sheaves on X such that P is perfect and of non-positive amplitude. Then,
CX(E′)→ CX(E) is surjective and CX(E′)×CX(E) CX(E′) ' CX(E′)×X CX(P).

Proof. By Lemma 4.5, we can assume that X ' Spec(A) is a�ne. If f :
Spec(B) → Spec(A) is a morphism of a�ne schemes, then the co�bre sequence
Σ−1P→ E→ E′ induces a �bre sequence

C(E′)(f)→ C(E)(f)→ C(Σ−1P)(f)

of spaces. By de�nition, we have π0C(Σ−1P)(f) ' Ext1
B(f ∗P, B) and the lat-

ter group vanishes, since B is connective and f ∗P is perfect and of non-positive
amplitude. Through the long exact sequence of homotopy we deduce that

π0C(E′)(Spec(B)→ Spec(A))→ π0C(E)(Spec(B)→ Spec(A))

is surjective, proving the �rst claim.
The second claim follows from the fact that E′ ⊕E E′ ' E′ ⊕ P and Lemma

4.4. �
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Remark 4.9. The conclusion of Lemma 4.8 can be alternatively rephrased as
follows: if E → E′ → P is a �bre sequence of quasi-coherent sheaves with P

perfect and of non-positive amplitude, then CX(P)→ CX(E′)→ CX(E) is a co�bre
sequence of abelian stacks over X.

Theorem 4.10. Let X be a stack and let E ∈ QCoh(X) be perfect to order −1
and (−n)-connective, where n ≥ 0. Then, the morphism CX(E)→ X is a relative
n-Artin stack. If E is perfect and of non-positive amplitude, then CX(E) is smooth.

Proof. By Lemma 4.5, we may assume that X ' Spec(A) is a�ne. To declut-
ter the notation, for E ∈ QCoh(Spec(A)) let us denote the cone by C(E) :=
CSpec(A)(E).
By Lemma 4.6, we can replace E by its coconnective cover. Since E is perfect

to order −1 and (−n)-connective, it follows that E≤0 ∈ QCoh(Spec(A)) ' D(A)
can be represented by a complex

. . .→ 0→ E0 → E−1 → . . .→ E−n → 0→ . . .

of A-modules, where Ei are �nitely generated, projective for i < 0. If E is per-
fect and of non-positive amplitude, then we can additionally assume that E0 is
projective as well.
Our proof will go by induction on n, the base case n = 0 following from Lemma

4.7. Thus, suppose that n > 0 and consider the co�bre sequence

E→ E0 → P

in QCoh(Spec(A)), where P ' [P−1 → . . .→ P−n] with P−1 concentrated in degree
zero. Notice that P is perfect and coconnective and so it follows from Lemma

4.8 that the map C(E0)→ C(E) is surjective and

C(E0)×C(E) C(E0) ' C(E0)×X C(P).

Since C(P) → X is smooth (n − 1)-Artin by inductive assumption, the needed
result follows. �

Corollary 4.11. Let X be an Artin and let E be perfect to order −1. Then, CX(E)
is Artin.

Proof. Immediate from Lemma 4.10 and Proposition 3.31. �

As mentioned at the beginning of the section, the abelian cone should be thought
of as an analogue of the h1/h0 functor de�ned by Behrend and Fantechi, itself
inspired by Deligne's work on Picard stacks. The following remark explores this
connection futher.

Remark 4.12. A careful reader will notice quickly that h1/h0 is covariant, while
the abelian cone functor of De�nition 4.1 is contravariant. This is because the
two are not really analogous, but rather dual to each other.
The global section functor Γ which is the higher categorical analogue of h1/h0

associates to any E ∈ QCoh(X) the prestack Γ(E) de�ned by the formula



23

(f : Spec(A)→ X) 7→ mapD(A)(A, f
∗E)

One can show that the functor Γ is cocontinuous and takes values in stacks. One
can then check directly that if X is Deligne-Mumford stack, then the restriction
Γ|QCoh(X)≤1

coincides with the functor h1/h0 after suitable identi�cations.
When restricted to the full subcategory of almost prefect objects, the cone

functor can be de�ned in terms of the global sections functor. That is, if X is a
stack, then there exists a commutative diagram

QCoh(X)aperf
op

QCoh(X)

Stk/X

map
QCoh(X)

(−,OX)

Γ
CX(−)

where if F ∈ QCoh(X) is almost perfect then the quasi-coherent sheaf map
QCoh(X)

(F,OX)

is de�ned so that we have a canonical equivalence

Ω∞map
QCoh(X)

(F,OX)(Spec(A)
f→ X) ' mapD(A)(f

∗F, A),

as in [Lur18][6.5.3].
If X is Deligne-Mumford, then after taking di�erent grading conventions into

account, one sees that if E ∈ QCoh(X)[0,1] has coherent homology, the stack
Γ(map

QCoh(X)
(E[−1],OX)) coincides with the one denoted by Behrend and Fan-

techi as h1/h0(E∨). Thus, we deduce from the above analysis that the latter
coincides with our CX(E[−1]).

5. Adapted cosheaves

In this section we introduce the notion of an adapted cosheaf, which is a cosheaf
which preserves pullbacks along a distinguished class of maps. Our main result is
that such cosheaves are stable under left Kan extension to a larger category.

De�nition 5.1. We will say that a class S of morphisms in an ∞-category C is a
marking if

(1) S contains all equivalences and is stable under composition and
(2) C admits pullbacks along morphisms in S and S is stable under such pull-

backs.

The usefulness of the concept of a marking is encapsulated in the following
straightforward result. Recall that we say that an ∞-category C has universal
coproducts if for anyD′ → D and a �nite collection of maps Ci → D, the canonical
map

⊔
Ci ×D D′ → (

⊔
Ci)×D D′ is an equivalence.

Proposition 5.2. Let C be an ∞-category with universal coproducts and S be
a marking on C. Then, C admits a Grothendieck topology in which a family
{Ci → C} is covering precisely when

⊔
Ci → C belongs to S.

Proof. This is [Lur18][A.3.2.1]. �
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The category of schemes, as well as its higher categorical variants, has universal
coproducts and by taking S to be an appropriate class of morphisms (such as
surjective étale) we can produce the classical Grothendieck topologies in schemes
(such as the étale topology).

De�nition 5.3. We will say a full subcategory D ⊆ C is downward closed if
it has the property that if C0 → C is a covering such that Ci ∈ D for all i ≥ 0,
where Ci := C0 ×C × . . .×C C0, then C ∈ D as well.
We say a full subcategory D ⊆ C is generating if it is closed under coproducts,

pullbacks along coverings, and the smallest downward closed subcategory which
contains it is all of C.

Note that since a generating subcategory is closed under coproducts and pull-
backs along coverings, it inherits a topology. The de�nition is chosen so that the
following is true.

Proposition 5.4. Let D ⊆ C be a generating subcategory. Then, the restriction
Sh(C)→ Sh(D) between sheaf ∞-categories is an equivalence.

Proof. The inclusion : D ↪→ C induces an adjunction i∗ a i∗ : Sh(C) � Sh(D),
where i∗ is the restriction and i∗ is the left Kan extension. Clearly, we have
i∗ ◦ i∗ ' id.
To see that the other composite is also the identity, observe that the sheaf

condition implies that for any F ∈ Sh(C) the subcategory of those C ∈ C such
that the counit i∗i∗F (C)→ F (C) is an equivalence, is downward closed. Since it
contains all of D which is generating by assumption, it must be all of C. �

The functors considered in this paper will not only be cosheaves, but will addi-
tionally have compatibility with a wider class of morphisms than just coverings.
This further class will also form a marking; in practice this could be either the
class of all smooth or even all �at morphisms, not necessarily surjective.

De�nition 5.5. Let T be a marking such that S ⊆ T . We will say that a cosheaf
F : C → X is T -adapted if F commutes with pullbacks along morphisms in T .

Warning 5.6. Note that even though we will be �xing two classes of markings,
the topology on C and its variants with respect to which we will require the cosheaf
condition will always be induced by S. Thus, the word covering always refers to
an element of S.

It turns out that the pullback preservation is so strong that it almost implies
the cosheaf condition, as the following shows.

Proposition 5.7. A functor F : C → X which commutes with pullbacks along
morphisms in T is a cosheaf if and only if

(1) F preserves coproducts
(2) F takes morphisms in S to e�ective epimorphisms.
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Proof. As a consequence of the description of sheaves of [Lur18][A.3.3.1], F is a
cosheaf if and only if it takes �ech nerves

. . .⇒ C ×D C → C → D

of morphisms C → D into colimit diagrams in X. However, since by assumption
S ⊆ T and F preserves pullbacks along elements of the latter, the above diagram
is taken to the �ech diagram of F (C) → F (D). Thus, it is a colimit diagram
precisely when F (C)→ F (D) is an e�ective epimorphism. �

Our main goal for this section is to prove that the property of being adapted with
respect to a given marking T can be veri�ed on a subcategory. As a consequence,
we conclude that the unique extension of an adapted cosheaf is adapted. We begin
with a simple lemma.

Lemma 5.8. Let C ∈ C and �x a morphism D → C. Then, the subcategory of
those morphisms E → C such that

F (D ×C E) ' F (D)×F (C) F (E)

is a downward closed subcategory of C/C.

Proof. Suppose that we have a covering E0 → E such that F (Ei ×C D) '
F (Ei)×F (C) F (E) for all i ≥ 0, where Ei := E0 ×E . . .×E E0. Then,

F (E ×C D) ' lim−→F (Ei ×C D) ' lim−→F (Ei)×F (C) F (D) ' F (E)×F (C) F (D),

where we have twice used that F is a cosheaf and once that X is an ∞-topos, so
that pullbacks therein commute with colimits.

�

Theorem 5.9. Let D ⊆ C be a generating subcategory closed under coproducts
and pullbacks along coverings. Then, a cosheaf F : C → X is T -adapted if and
only if its restriction F|D is.

Proof. One direction is trivial, so instead suppose that F is a cosheaf such that
F|D is adapted, we have to show that F is adapted.
Let us say that a morphism D → C is good if for any other morphism E → C

we have F (E ×C D) ' F (E)×F (C) F (E); our goal is to show that any morphism
in T is good. If D → C is a morphism in D which belongs to T , then since F|D
is assumed to be adapted, we deduce that the condition holds whenever E ∈ D.
Then, it follows from Lemma 5.8 that all such arrows are good.
Let us further say that an object C is excellent if any morphism D → C which

belongs to T is good, we claim that any C ∈ D is excellent. By another application
of Lemma 5.8 we see that the collection of good morphisms is downward closed
in the ∞-category CT/C of arrows D → C which belong to T , so that it is enough
to verify it when we also have D ∈ D, which we already did.
Lastly, we claim that the collection of excellent objects of C is also downward

closed; since we already veri�ed that it contains all objects of D, this will end
the argument. Suppose that we have a covering C0 → C such that all of Ci :=
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C0×C . . .×CC0 are excellent, we want to show that the same is true for C. We �rst
show that F takes the �ech nerve of C0 → C to the �ech nerve of F (C0)→ F (C),
in particular, that F (C1) ' F (C0)×F (C) F (C0). Since F is a cosheaf, the image

. . . F (C1) ⇒ F (C0)→ F (C)

is a colimit diagram. Because X is an ∞-topos, to verify that the above diagram
is a �ech nerve it is enough to check that the underlying simplicial object is a
groupoid; in other words, that for any partition [m] = S ∪ T with S ∩ T = {s},
the induced diagram

F (Cm) F (C|S|)

F (C|T |) F (C0)

is a pullback. This is clear, since C0 is assumed to be excellent.
To check that C itself is excellent, we have to verify that an arbitrary map

D → C is good; by what was said above, it is enough to check that this is the
case for Di → C, where Di := Ci×C D. Thus, we can assume that the given map
D → C factors through C0. Then, by again invoking Lemma 5.8 we see that we
only have to verify that F (D ×C E) ' F (D)×C F (E) where E → C also factors
through C0.
To summarize, to prove that C ∈ C is excellent, it is enough to show that F

preserves pullbacks of spans which can be factorized as

D → C0 → C ← C0 ← E,

where each map belongs to T . Consider the diagram

F (D ×C E) F (C1 ×C0 E) F (E)

F (D ×C0 C1) F (C1) F (C0)

F (D) F (C0) F (C) ,

where each of the squares except possibly the lower right one is a pullback because
Ci are assumed to be excellent. Because we also veri�ed the same about the last
square, the pullback pasting lemma ends the argument. �

We will later �nd ourselves in a situation where we have a natural transforma-
tion between adapted cosheaves which is particularly nice when restricted to the
subcategory. It will then be useful to know that this "niceness" necessarily holds
in general, as we will now verify.
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De�nition 5.10. Let F,G : C → X be functors. Then, we say that a natural
transformation F → G is T -cartesian if for any arrow D → C in T the induced
diagram

F (D) G(D)

F (C) G(C)

is cartesian.

Lemma 5.11. Suppose that F,G : C → X are coproduct-preserving functors and
let F → G be T -cartesian. Then, if G is a T -adapted cosheaf, the same is true for
F .

Proof. Suppose that we have a cospan C0 → C ← D where the left map belongs
to T , we have to check that F (D0)→ F (C̃)×F (C) F (D) is an equivalence, where
D0 := C̃ ×C D. Applying the cartesian property to both the source and target of
this morphism, we see that this is equivalent to asking whether

G(D0)×G(D) F (D)→ G(C0)×G(C) F (C)×F (C) F (D) ' G(C0)×G(C) F (D)

is an equivalence. SinceG is assumed to be adapted, we haveG(D0) ' G(C0)×G(C)

G(D) and it follows that the source of the above map we can rewrite as

G(D0)×G(D) F (D) ' G(C0)×G(C) G(D)×G(D) F (D) ' G(C0)×G(C) F (D)

which is what we wanted to show.
By Proposition 5.7, to �nish showing that F is an adapted cosheaf, we just

have to check that it takes coverings to e�ective epimorphisms. However, if C0 →
C is a covering, then by the cartesian property we have F (C0) ' G(C0)×G(C)F (C)
and we deduce that F (C0) → F (C) is a base-change of G(C0) → G(C), which is
an e�ective epimorphism since G is a cosheaf. �

Proposition 5.12. Let F,G : C → X be T -adapted cosheaves, F → G be a natural
transformation and let D ⊆ C be a generating subcategory. Then, if the restriction
F|D → G|D is T -cartesian, then so is F → G.

Proof. We �rst claim that for any C ∈ C, the subcategory of those morphisms
D → C such that F (D) ' G(D) ×G(C) F (C) is a downward closed subcategory
of CT/C . To see this, let D0 → C be a covering such that all Di → C have this
property, where Di := D0 ×D . . .×D D0. Then,

F (D) ' lim−→F (Di) ' lim−→G(Di)×G(C) F (C) ' G(D)×G(C) F (C),

where we have used that F,G are cosheaves and that colimits in X commute will
pullbacks. We deduce that any morphism in D → C in T with C ∈ D has the
required property.
We next claim that the subcategory of those C such that for any morphism

D → C in T we have F (D) ' G(D) ×G(C) F (C) is a generating subcategory of
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C, together with what we've shown above this will �nish the argument. Choose a
covering C0 → C such that C0 has the needed property and let D0 := C0 ×C D.
Then, since F and G are adapted, we have

F (D)×F (C) F (C0) ' F (D0) ' G(D0)×G(C0) F (C0) '
G(D)×G(C) G(C0)×G(C0) F (C0)

and further

G(D)×G(C) G(C0)×G(C0) F (C0) ' G(D)×G(C) F (C0) '
G(D)×G(C) F (C)×F (C) F (C0).

We deduce that we have F (D) ' G(D) ×G(C) F (C) after base-changing along
F (C0)→ F (C) and since the latter is an e�ective epimorphism since F is a cosheaf,
we deduce that this holds even before the base-change, ending the proof. �

6. Axiomatization of the normal sheaf

In this section, we study the notion of a normal sheaf of a morphism of Artin
stacks, de�ned in terms of the cotangent complex. Our main result is that, as a
functor on relative Artin stacks, the normal sheaf is determined by its values on
closed embeddings of schemes and a short list natural axioms.
Recall that if U ↪→ V is a closed embedding of schemes with ideal sheaf I, then

the cotangent complex LU/V is 1-connective and h1(LU/V ) ' I/I2. The abelian
cone associated to the latter quasi-coherent sheaf de�nes a scheme over U known
as the normal sheaf of the embedding, denoted by NUV := CU(I/I2). In the
particular case when the embedding is regular, I/I2 is locally free and the normal
sheaf is just the classical normal bundle.

De�nition 6.1 ([BF97]). Let X → Y be a morphism of Artin stacks. Then, its
normal sheaf is de�ned as

NXY := CX(LX/Y[−1]),
the abelian cone associated to the shift of the cotangent complex.

Let us give a couple of examples.

Example 6.2. If U ↪→ V is a closed embedding of schemes, then NUV coincides
with the normal sheaf in the classical sense. To see this, note that we veri�ed
in Lemma 4.6 that the abelian cone only depends on the coconnective part of
a quasi-coherent sheaf, so that we have NUV ' CU((LU/V [−1])≥0) ' CU(I/I2),
where I is the ideal sheaf.

Example 6.3. If X is Deligne-Mumford, then the normal sheaf of the unique map
X→ Spec(k) coincides with the intrinsic normal sheaf of Behrend and Fantechi.
As a particularly easy example of the latter, let us suppose that X ' X is a smooth
scheme. Then, LX ' ΩX and so NX ' CX(ΩX [−1]) ' BTX ; that is, there's an
equivalence between the intrinsic normal sheaf of X and the classifying stack of
its tangent bundle.
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Note that a priori the normal sheaf of a morphism X → Y of Artin stacks is a
priori only a stack, and in fact it can fail to be algebraic unless we impose some
�niteness conditions.

Proposition 6.4. Let X → Y be a morphism of Artin stacks which is locally of
�nite type. Then, NXY is Artin and moreover,

(1) if X→ Y is relative n-Artin, then NXY→ X is relative (n+ 1)-Artin,
(2) if X→ Y is smooth, then so is NXY→ X.

Proof. This follows from Theorem 4.10, Proposition 3.48 and Proposition

3.47. �

Remark 6.5. One can consider Proposition 6.4 as giving a quantitative reason
why Behrend and Fantechi only de�ne the normal sheaf for morphisms of Deligne-
Mumford type - if X → Y is 1-Artin, then the correct de�nition makes NXY into
a 2-Artin stack, forcing the introduction of higher algebraic stacks.

Remark 6.6. If X → Y is a morphism of Artin stacks which is not locally of
�nite type, then NXY can fail to be Artin. Nevertheless, it is always "algebraic"
in the sense that it can be locally obtained by starting from a scheme and taking
quotients by actions of �at group schemes; what can fail is that without �niteness
these group schemes will in general not be smooth.

Our goal will be to prove that the normal cone functor is uniquely determined
by a simple set of axioms. As we want to stay in the geometric context, in light
of Proposition 6.4 we should introduce some �niteness conditions. To avoid
repeating them over and over, let us make the following convention.

Convention 6.7. A relative Artin stack is a morphism X→ Y of Artin stacks
which is locally of �nite type. We denote the ∞-category of relative Artin stacks
and commutative squares by RelArt := Funloc.f.t.(∆

1,Art).

As a minor warning, note that the above notion of a relative Artin stack is more
strict than the most general notion of a relative Artin stack in two di�erent ways
- we require the target to also be Artin, rather than arbitrary, and we require the
morphism to be locally of �nite type. For most applications, the stacks considered
are �nite type over a �eld, so that these two assumptions are trivially satis�ed.

Notation 6.8. If X′ → Y′ and X → Y are relative Artin stacks, then we will use
the notation (X′ → Y′) → (X → Y) to denote morphisms in the ∞-category of
relative Artin stacks, which are given by commutative squares

X′ Y′

X Y .
This notation is introduced to lessen our need to draw complicated diagrams.
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De�nition 6.9. We say a morphism (X′ → Y′) → (X → Y) of relative Artin
stacks is smooth if both X′ → X and Y′ → Y are smooth. Likewise, we say it is
surjective if both of those arrows are surjective.

Since one easily veri�es that the ∞-category of Artin stacks has universal co-
products, the same is true for the ∞-category of relative Artin stacks, where
limits and colimits are computed separately in the source and target. It follows
that RelArt admits a unique Grothendieck topology in which covering families are
given by smooth, jointly surjective maps in the sense of De�nition 6.9. We will
use descent with respect to this topology to prove the following result.

Theorem 6.10. The normal sheaf functor N : RelArt → Art is determined up
to a canonical natural equivalence as the unique functor subject to the following
four axioms:

(1) If U ↪→ V is a closed embedding of schemes, then NUV coincides with
the classical normal sheaf, that is, NUV ' CU(I/I2), where I is the ideal
sheaf.

(2) N preserves coproducts; that is, for any two relative Artin stacks X → Y

and X′ → Y′ we have NXtX′(Y t Y′) ' NXY tNX′Y
′.

(3) N preserves smooth and smoothly surjective maps; that is, if (X′ → Y′)→
(X→ Y) is smooth (resp. smooth surjective) map of relative Artin stacks,
then the same is true for NX′Y

′ → NXY.
(4) N commutes with pullbacks along smooth morphisms; that is, if (X′ →

Y′) → (X → Y) is smooth, then NX′×XW(Y′ ×Y Z) ' NX′Y
′ ×NXY NWZ for

any (W→ Z)→ (X→ Y).

Before proving uniqueness, we will �rst establish that the normal sheaf does
have the required properties.

Lemma 6.11. Let X → Y be a relative Artin stack and suppose that Y′ → Y

is smooth. Then, NX′Y
′ ' p∗NXY, where X′ ' X ×Y Y′ and p : X′ → X is the

projection.

Proof. By �at base-change for the cotangent complex, we have LX′/Y′ ' p∗LX/Y,
so that the statement follows immediately from Lemma 4.5. �

Lemma 6.12. Suppose we have a composite X → Y → Z of morphisms of Artin
stacks. Then

(1) if X→ Y is smooth, there's a co�bre sequence NXY→ NXZ→ X×Y NYZ

(2) if Y → Z is smooth, there's a co�bre sequence ΩX(X ×Y NYZ) → NXY →
NXZ

of abelian stacks over X, where ΩX is the �brewise loop space over X. Moreover,
in both cases the left term is smooth over X and so the right map is a smooth
surjection.

Proof. Using the standard exactness properties of the cotangent complex, the �rst
co�bre sequence follows from Remark 4.9 applied to p∗LY/Z[−1]→ LX/Z[−1]→
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LX/Y[−1], where p : X → Y, and the second from applying it to LX/Z[−1] →
LX/Y → p∗LY/Z.
To see the second claim, observe that in a co�bre sequence, the right map is

always surjective, and smoothness follow from Theorem 4.10. �

Lemma 6.13. The normal sheaf functor N : RelArt→ Art preserves smooth and
smoothly surjective maps.

Proof. Any morphism (X′ → Y′) → (X → Y) of relative Artin stacks can be
decomposed as

X′ Y′

X′ Y

X Y ;

that is, into a composite of two other morphisms for which either the map on the
source or on the target is the identity. If the given morphism is smooth (resp.
smooth and surjective), so are the two factors, so that we can reduce to this case.
The fact that NX′Y

′ → NX′Y is smooth and surjective is immediate from the
second co�bre sequence of Lemma 6.12. The �rst part of the same result implies
that NX′Y → X′ ×X NXY is smooth and surjective, and so the observation that
X′ ×X NXY → NXY is smooth (resp. smooth and surjective) whenever X′ → X is
�nishes the claim. �

Proposition 6.14. Let (X′ → Y′)→ (X→ Y) be a smooth map of relative Artin
stacks and let (W → Z) → (X → Y) be arbitrary. Then, NX′×XW(Y′ ×Y Z) '
NX′Y

′ ×NXY NWZ

Proof. Using the decomposition of a smooth morphism as in the proof of Lemma
6.13 we can assume that the given smooth map is the identity in either the source
or target.
Let us tackle �rst the case when Y′ = Y. Using the notation W′ := W ×X X′,

our goal is to show that NW′Z ' NWZ ×NXY NX′Y. By Lemma 6.12, we have a
co�bre sequence

NX′X→ NX′Y→ X′ ×X NXY

of abelian stacks over X′. Said di�erently, the augmented simplicial object

. . . NX′X×X′ NX′Y ⇒ NX′Y→ X′ ×X NXY

determined by the action is a colimit diagram. By direct inspection, applying
−×NXY NWZ to this diagram yields

. . . NW′W×W′ (NX′Y×NXY NWZ) ⇒ NX′Y×NXY NWZ→W′ ×W NWZ,
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where we've used that the base-change formula NW′W 'W′×X′NX′X of Lemma
6.11. Since taking pullbacks in stacks preserves colimits, this presents a co�bre
sequence

NW′W→ NX′Y×NXY NWZ→W′ ×W NWZ

of abelian stacks onW′. SinceNW′Z is also a middle term of such a co�bre sequence
by the same argument, and these co�bre sequences are natural, we deduce that
NW′Z ' NX′Y×NXY NWZ, which is what we wanted to show.
Let us now suppose that X′ = X, our goal is to show that NXY

′ ×NXY NWZ '
NWZ

′, where Z′ := Z×Y Y
′. Using Lemma 6.12 again we have a co�bre sequence

ΩX(X×Y′ NY′Y)→ NXY
′ → NXY.

and the same argument as before shows that by applying − ×NXY NWZ we get a
co�bre sequence

ΩW(W×Z′ NZ′Z)→ NXY
′ ×NXY NWZ→ NWZ.

Since NWZ
′ is also a middle term of a co�bre sequence of this form, this ends the

argument. �

Observe that Example 6.2, Lemma 6.13 and Proposition 6.14 taken to-
gether already verify all of the properties of the normal sheaf functor spelled out
in the statement of Theorem 6.10. Thus, to complete the proof of the latter, we
only have to check that N is the unique functor subject to these conditions.
Note that the only part of Theorem 6.10 that speci�es values of the normal

sheaf without reference to anything else, is the property that NUV ' CU(I/I2)
for a closed embedding of schemes with ideal sheaf I. As this context will occur
frequently, let us introduce an appropriate terminology.

De�nition 6.15. A pair is a closed embedding U ↪→ V of schemes. The category
Pair of pairs is a full subcategory of the ∞-category of relative Artin stacks.

In this language, we need to show that the normal sheaf functor is determined by
its interaction with smooth maps together with its values at pairs of schemes. To
show that the latter alone su�ces, we will use the topology on RelArt determined
by smooth surjections in the sense of De�nition 6.9. The key is the following
slightly surprising fact.

Lemma 6.16. Any relative Artin stack admits a smooth surjection from a pair of
schemes. In fact, the category Pair is a generating subcategory of RelArt in the
sense of De�nition 5.3.

Proof. Since any n-Artin stack admits a smooth cover from a disjoint union of
a�ne schemes whose iterated intersections are (n − 1)-Artin stacks, it is easy
to see by induction that the ∞-category of relative Artin stacks is generated by
morphisms between such schemes. Thus, it is enough to check that the latter is
generated by closed embeddings.
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Let f : X → Y be a relative Artin stack where X, Y are disjoint unions of a�ne
schemes. Since f is by assumption locally of �nite type, we can �nd a factorization
X ↪→ Y ′ → Y , where the �rst arrow is a closed embedding into a disjoint union
of a�nes and the second one is a smooth surjection.
This factorization determines a smooth surjection (X ↪→ Y ′) → (X → Y ) of

relative Artin stacks whose source is a pair. However, the same is true for all of
the iterated intersections, as they are of the form X ↪→ Y ′×Y . . .×Y Y ′ and these
are easily seen to be closed embeddings of schemes. We deduce that (X → Y ) is
in the subcategory generated by pairs, ending the argument. �

We are now ready to prove the main result of this section.

Proof of Theorem 6.10. We've already veri�ed all of the requires properties of the
normal sheaf functor N : RelArt → Art, all that is left is uniqueness. As a con-
sequence of Proposition 5.7, any functor satisfying these properties is a cosheaf
with respect to the smooth topology on Artin stacks. Since by Lemma 6.16 the
subcategory of pairs of schemes is generating, Proposition 5.4 implies that any
such cosheaf is uniquely determined by its restriction to Pair, ending the proof. �

7. The normal cone of a morphism of Artin stacks

In this section we generalize the construction of the normal cone of a closed
embedding of schemes to any locally of �nite type morphism of Artin stacks. We
characterize our extension as the unique one satisfying certain natural axioms and
verify that in the case of a morphism of Deligne-Mumford type, our construction
agrees with that of Behrend and Fantechi.
Recall that if U ↪→ V is a closed embedding of schemes with ideal sheaf I,

then the normal cone CUV := SpecU(
⊕

Ik/Ik+1) is the relative spectrum of the
associated gradedOV -algebra. The construction of the normal cone is fundamental
in intersection theory [Ful13].

Notation 7.1. We will use the symbol C to denote the normal cone of a morphism,
rather than the plain letter C, which we reserve for the abelian cone associated to
a quasi-coherent sheaf introduced in De�nition 4.1. The normal cone is usually
not abelian.

The normal cone is intimately related to the normal sheaf discussed in the
previous chapter; the graded algebra

⊕
Ik/Ik+1 is generated in degree 1, and it

follows that there is a canonical closed embedding CUV ↪→ NUV into the normal
sheaf. If U ↪→ V is regular, this embedding is an isomorphism, and so one can
consider the normal cone as a measure of non-smoothness.
In Theorem 6.10 we proved that the natural extension of the notion of a

normal sheaf using the theory of the cotangent complex can be characterized
uniquely by simple axioms. We will now prove that an analogous extension can
also be constructed for the normal cone.
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Theorem 7.2. There exists a unique functor C : RelArt→ Art on the∞-category
of relative Artin stacks, called the normal cone, such that:

(1) if U ↪→ V is a closed embedding of schemes, then CUV coincides with the
classical normal cone, that is, CUV ' SpecU(

⊕
Ik/Ik+1), where I is the

ideal sheaf
(2) C preserves coproducts
(3) C preserves smooth and smoothly surjective maps
(4) C commutes with pullbacks along smooth morphisms of relative Artin stacks

Note that the content of the above result is slightly di�erent than that of The-
orem 6.10 which concerned the normal sheaf, as in the latter case we constructed
the functor a priori. In the case of the normal cone, the existence of this functor is
part of the result. Nevertheless, the normal cone is strongly related to the normal
sheaf, as the following shows.

Theorem 7.3. There is a unique natural transformation C → N of functors on
relative Artin stacks which for every pair U ↪→ V of schemes with ideal sheaf
I coincides with the natural morphism CUV → NUV induced by the surjection
Sym(I/I2)→

⊕
Ik/Ik+1.

Moreover, for any relative Artin stack X→ Y

(1) CXY→ NXY is a closed embedding and

(2) for any smooth morphism (X̃→ Ỹ)→ (X→ Y) of relative Artin stacks the
induced square

C
X̃
Ỹ N

X̃
Ỹ

CXY NXY

is cartesian.

The proofs of these two results are intimately related. Observe that Theorem
7.2 implies that C is a cosheaf adapted to the class of smooth maps in the sense
of De�nition 5.5. Since we've shown before in Theorem 5.9 that an adapted
cosheaf can be uniquely extended from a generating subcategory, it is enough to
verify that the classical normal cone of a closed embedding of schemes has the
required properties.
The latter is a problem in commutative algebra which can be tackled directly,

but we will not do so. Instead, we verify that the cartesian property of Theorem
7.3 holds for smooth morphisms between pairs of schemes, the other properties
will then follow from what we've already proven about the normal sheaf.
Before proceeding with the proofs, let us �rst show that expected properties of

the normal cone follow from the above axiomatics.

Lemma 7.4. For any X→ Y, the normal cone CXY is canonically a pointed stack
over X.
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Proof. Observe that both C and the "source" functor s(X→ Y) = X are adapted
cosheaves on relative Artin stacks. It follows that any natural transformations
between them de�ned for closed embeddings of a�ne schemes extend uniquely
to all of RelArt. In particular, for any X → Y there's a canonical projection
CXY→ X, and this projection admits a canonical section, because that is the case
in the classical setting. �

Remark 7.5. The classical normal cone CXY of a closed embedding X ↪→ Y of
schemes has more structure than just being pointed, namely, it is also equipped
with an action of A1 induced by the grading of

⊕
Ik/Ik+1.

A slight variation in the arguments we give shows that the same is true for
the normal cone for an arbitrary morphisms of Artin stacks. Namely, instead of
considering C as an adapted cosheaf valued in Artin stacks, one should consider it
as valued in the ∞-category of morphisms M→ X where M is a pointed X-Artin
stack equipped with an A1-action.

Lemma 7.6. The normal cone of the identity is trivial; that is, for any X we have
CXX ' X.

Proof. Since C is a cosheaf on relative Artin stacks, it is easy to see that the
subcategory of those Artin stacks which satisfy the above condition is downward
closed. Since it contains all a�ne schemes, we deduce that it must be all of
Art. �

Proposition 7.7 (Smooth base-change). The normal cone satis�es smooth base-
change. That is, for any X → Y and smooth Y′ → Y we have CX′Y′ ' X′ ×X CXY,
where X′ ' Y′ ×Y X.

Proof. Keeping in mind Lemma 7.6, this is immediate from applying the pullback
axiom to the span (X→ Y)→ (Y→ Y)← (Y′ → Y′). �

Proposition 7.8 (Étale invariance). Suppose we have a morphism (X̃ → Ỹ) →
(X → Y) of relative Artin stacks which is étale on both source and target. Then,

C
X̃
Ỹ ' X̃×X CXY.

Proof. Since (X̃→ Ỹ)→ (X→ Y) is smooth, this is immediate from the cartesian
square of Theorem 7.3 and the étale invariance of the normal sheaf. �

We can also verify that in the Deligne-Mumford case, our construction recovers
the intrinsic normal cone of Behrend and Fantechi.

Theorem 7.9. Let X → Y be a morphism of 1-Artin stacks of �nite type which
is a relative Deligne-Mumford stack. Then, the normal cone CXY is equivalent to
the intrinsic normal cone of Behrend-Fantechi.

Proof. Since both the Behrend-Fantechi intrinsic normal cone and the normal cone
of Theorem 7.2 satisfy smooth base-change and are étale-invariant, the latter by
Proposition 7.7 and Proposition 7.8, we can assume that we have a morphism
X → Y of schemes.
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We can lift the given morphism to a closed embedding i : X ↪→ M such that
M → Y is smooth and surjective. Observe that this then de�nes a smooth sur-
jection

(X ↪→M)→ (X → Y )

of relative Artin stacks. It follows from Theorem 7.3 that we have a cartesian
diagram

CXM CXY

NXM NXY ,

which is precisely how Behrend-Fantechi de�ned the intrinsic normal cone [BF97][3.10].
�

Remark 7.10. Note that even in the classical Deligne-Mumford case, Theorem
7.2 clari�es the construction of Behrend and Fantechi by showing that it is the
only extension of the normal cone of a closed embedding of schemes that preserves
certain natural properties.

The rest of this chapter will be devoted to the proofs of Theorem 7.2 and
Theorem 7.3; as explained above, the main step is to establish that the classical
normal cone has the required properties when restricted to the category of pairs
U ↪→ V of schemes.
In more detail, we need to prove that the normal cone functor C : Pair →

Art preserves smooth and smoothly surjective morphisms, and commutes with
pullbacks along smooth morphisms. To do so, it will be convenient to introduce
some temporary terminology.

De�nition 7.11. We say a morphism f : (N ↪→M)→ (X ↪→ Y ) of pairs is good
if the induced diagram

CNM NNM

CXY NXY

between the normal cones and normal sheaves is cartesian.

Our goal is to prove that an arbitrary smooth morphisms of pairs; that is, one
that is smooth on both source and target, is good. As an easy example, any �at
cartesian morphism of pairs is good, as an easy consequence of the �at base-change
for the normal cone and the normal sheaf.

Remark 7.12. It is not true that every morphism of pairs of schemes is good in
the sense of De�nition 7.11. As an example, let L ⊆ A2 be the union of the
coordinate axes and let Spec(k) ↪→ L be the inclusion of the origin. Then, one
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can verify that the obvious morphism (Spec(k) ↪→ L)→ (Spec(k)→ A2) induces
an isomorphism between normal bundles, but not between the normal cones.

Lemma 7.13. Any morphism (X̃ ↪→ Ỹ ) → (X ↪→ Y ) of pairs of schemes which
is étale on both source and target is good.

Proof. Since both the normal sheaf and normal cone satisfy �at base-change, we
can replace Y by the spectrum of the strict henselization of the local ring at each
of its points; then, both X and Y will be of this form. It follows that X̃ is a
disjoint union of copies of X mapping onto it isomorphically, and likewise for Ỹ .
The claim then follows. �

Lemma 7.14. Suppose we have a morphism f : (N ↪→ M)→ (X ↪→ Y ) of pairs
of schemes. Then, f is good if and only if for each n ∈ N there exists an open
neighbourhood U ⊆ M of n such that the restriction (U ∩ N ↪→ U) → (X ↪→ Y )
is good.

Proof. Observe that for any such neighbourhood we have CU∩NU ' CNM ×N (U ∩
N) and likewise for the normal sheaf, and that as n ∈ N varies the open sets
U ∩N form a covering of N . Then, since CNM → CXY ×NXY NNM is a morphism
of N -schemes, the claim is then equivalent to saying that is in isomorphism if and
only if the same is true for the maps

CU∩NM ' CNM×N (U∩N)→ CXY ×NXY NNM×N (U∩N) ' CXY ×NXY NU∩NU .
�

Lemma 7.15. Suppose we have a morphism of pairs of schemes of the form

X Y × An

X Y ,

where the left vertical arrow is the identity, the right one is the projection, and the
upper horizontal arrow is the composite X ↪→ Y ×{0} ↪→ Y ×An of the lower one
with the natural inclusion. Then, any such morphism is good.

Proof. In this case, one can compute directly that CX(Y ×An) ' (CXY )×An, see
[BCM18][3.5.1], and since an analogous formula holds for the normal sheaf, the
claim follows. �

Proposition 7.16. Any smooth morphism (N ↪→ M) → (X ↪→ Y ) of pairs
of schemes is good. In other words, for any such morphism we have CNM '
CXY ×NXY NNM .

Proof. Observe that the induced morphism N ↪→ X ×Y M is a closed embedding
of smooth X-schemes. It follows that by picking n ∈ N and choosing a smaller
a�ne neighbourhood of its image in M , which we can do by Lemma 7.14, we
can assume that there are regular functions (gi)1≤i≤n on X ×Y M and an m ≤ n
such that the resulting diagram
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N X ×Y M

X × Am X × An
,

where the bottom arrow is the natural inclusion, is cartesian and with vertical
arrows étale [RG06][4.9]. By lifting those regular functions to all of M , we can
extend the right vertical arrow to a morphism M → Y × An and by making M
smaller if necessary we can assume that the latter is étale as well. We can then
consider the larger diagram

N M

X × Am Y × An

X × Am Y × Am

X Y ,

where the map Y × An → Y × Am is the obvious projection. Out of the three
squares stacked on top of each other, the bottom one is good because it is smooth
cartesian and the top one by Lemma 7.13. Since the middle square is good by
Lemma 7.15 and composition of good squares is good by the pullback pasting
lemma, we are done. �

We are now ready to give proofs of the two main results of this chapter.

Proof of Theorems 7.2 and 7.3. We �rst claim that C : Pair → Art is an cosheaf
on the site of pairs of schemes adapted to the class of smooth maps. We have
a natural transformation C → N , which as we veri�ed in Proposition 7.16 is
smooth-cartesian in the sense of De�nition 5.10. It then follows from Lemma

5.11 that C is adapted, because this is true for the normal sheaf as a consequence
of Theorem 6.10.
We thus deduce from Proposition 5.4 and Lemma 6.16 that the normal cone

functor uniquely extends to a Stk-valued cosheaf on all relative Artin stacks, and
moreover that this cosheaf is also adapted by Theorem 5.9. We will now show
that for any relative Artin stack X→ Y, the stack CXY is in fact Artin.
We claim that the subcategory of those relative Artin stacks for which the

normal cone is Artin is downward closed, since we know it contains all pairs of
schemes, this will imply the claim. Suppose that (X0 → Y0) → (X → Y) is a
smooth surjection such that CXk

Yk is Artin, where Xk := X0 ×X . . . ×X X0 and
likewise for Y. Since C is an adapted cosheaf, we see that the diagram

. . . CX1Y1 ⇒ CX0Y0 → CXY
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is an e�ective groupoid in the∞-topos Stk. Thus, CXY admits a smooth relatively
Artin surjection from an Artin stack, and it follows that it itself must be Artin,
see [AG14][4.30].
We have a natural transformation C → N de�ned on the category of pairs

of schemes, and since both the source and target are cosheaves, it follows from
another application of Proposition 5.4 that this natural transformation uniquely
extends to one de�ned on all relative Artin stacks.
Since this natural transformation yields cartesian squares when applied to any

smooth morphism of pairs of schemes, as we veri�ed in Proposition 7.16, it
follows formally through Proposition 5.12 that it has this property for any
smooth morphism of relative Artin stacks. It follows from this that C preserves
smooth and smoothly surjective morphisms, �nishing the proof of Theorem 7.2.
Since we already constructed the natural transformation C → N and we checked

that it is smooth-cartesian, to prove Theorem 7.3 we're only left with checking
that for any relative Artin stack X → Y, the resulting morphism CXY → NXY is
a closed embedding. Choose a smooth surjection (X ↪→ Y ) → (X → Y) whose
source is a pair of schemes, it follows that the diagram

CXY NXY

CXY NXY

is cartesian and that both vertical arrows are smooth surjections. Since it clear
that the top horizontal arrow is a closed embedding, we deduce that the same is
true for the bottom one, ending the proof. �

8. The deformation space

Deforming a closed embedding of schemes X ↪→ Y into the zero section imbed-
ding of X into CXY is a fundamental procedure in intersection theory, known
as the deformation to the normal cone. In this section we will generalize this
construction to any locally of �nite type morphism of Artin stacks.
Recall that for a closed embedding X ↪→ Y of schemes, the deformation M◦

XY
is a �at scheme over P1 which �ts into a commutative diagram

X × P1 M◦
XY

P1

such that
(1) over A1 ' P1−{∞} the horizontal arrow is isomorphic toX×A1 ↪→ Y ×A1

and
(2) over {∞}, the horizontal arrow is isomorphic to X ↪→ CXY .
Explicitly, M◦

XY can be constructed as the di�erence
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M◦
XY := BlX×{∞}Y × P1 − BlX×{∞}Y × {∞}

between two blow-ups along X × {∞}. Alternatively, if X ↪→ Y ' Spec(A) is
de�ned by ideal I, then the restriction of M◦

XY to P1 − {0} ' A1 ' Spec(k[t]) is
isomorphic to the spectrum of the Rees algebra R(A, I) :=

⊕
k∈Z I

kt−k ⊆ A[t, t−1].

Lemma 8.1. The deformation space functor M◦ : Pair → Art/P1 preserves co-
products, smooth morphisms, smooth surjections and commutes with pullbacks
along smooth maps. In particular, it is a cosheaf adapted to the class of smooth
maps.

Proof. Since for any pair X ↪→ Y the deformation space M◦
XY is �at over P1, it

su�ces to check all of the claims �brewise. This is clear, since M◦
XY ×P1 {t} ' Y

for t 6= ∞, M◦
XY ×P1 {∞} ' CXY and both of the right hand sides have these

properties, the latter by Theorem 7.2. �

Theorem 8.2. For any relative Artin stack X → Y there exists an Artin stack
M◦

XY which �ts into a commutative diagram

X× P1 M◦
XY

P1

where both vertical arrows are �at and such that

(1) over A1 ' P1−{∞}, the horizontal arrow is isomorphic to X×A1 ↪→ Y×A1

and
(2) over {∞}, the horizontal arrow is isomorphic to X ↪→ CXY.

Proof. Since M◦ is an adapted cosheaf on the site of pairs by Lemma 8.1, it
extends uniquely to an adapted cosheaf on all of RelArt by Theorem 5.9. It is
easy to see that the formula X 7→ X×P1 also yields an adapted cosheaf, and so the
natural transformation between the two de�ned for pairs also extends uniquely.
To see thatM◦

XY→ P1 is �at, choose a smooth surjection (X ↪→ Y )→ (X→ Y)
of relative Artin stacks whose source is a closed immersion of schemes. It then
follows from Lemma 8.1, that M◦

XY → M◦
XY is a smooth surjection, and since

the composite M◦
XY → P1 is �at, we deduce the same is true for M◦

XY→ P1.
To deduce the two properties, observe that Y × A1 → M◦

XY|A1 and CXY →
M◦

XY|{∞} are natural transformations of adapted cosheaves on RelArt which re-
strict to isomorphisms for closed embeddings of schemes, and so must be equiva-
lences in general. �

The existence of the deformation space has the following important consequence,
which in practice allows one to deduce many properties of the normal cone auto-
matically.

Corollary 8.3. Let P be a property of Artin stacks which is stable under �at
deformation over an a�ne base. Then, for any relative Artin stack X→ Y, Y has
property P if and only if the normal cone CXY has property P .

Proof. This is immediate from Theorem 8.2. �
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9. The virtual fundamental class

In this chapter we introduce the notion of a perfect obstruction theory gener-
alizing the classical one due to Behrend and Fantechi, and show that obstruction
theories correspond to closed immersions under the the abelian cone functor. We
then specialize to the case of an 1-Artin stacks, where we have access to Chow
groups, and construct the virtual fundamental class in the presence of global reso-
lutions. Finally, we give a few examples of moduli stacks to which these methods
apply.

De�nition 9.1. Let X → Y be relative Artin stack and ϕ : E → LX/Y[−1] be a
morphism in QCoh(X). We say that ϕ is an obstruction theory if

(1) The homomorphism h0(ϕ) is surjective
(2) The homomorphism hi(ϕ) is an isomorphism for i ≤ −1.

We say that an obstruction theory is perfect if E is perfect of non-positive am-
plitude.

Keeping in mind that we use the homological grading convention, it is easy to
see that if X is Deligne-Mumford, our de�nition coincides up to a shift with the
one given by Behrend and Fantechi in [BF97]. In this case, LX will be in fact
connective.
Informally, a perfect obstruction theory can be thought of as a "shadow" of a

quasi-smooth derived enhancement, see Example 9.15 for more detail.
The abelian cone functor of De�nition 4.1 provides us with a bridge from

algebraic objects, namely quasi-coherent sheaves, to objects of geometric nature,
namely abelian Artin stacks over X. We will now show what the condition of
being an obstruction theory translates to in geometry, generalizing Behrend and
Fantechi's criterion in the Deligne-Mumford case.

Proposition 9.2. Let X be an Artin stack and let ϕ : E → F be a morphism of
bounded below quasi-coherent sheaves. Then, CX(F)→ CX(E) is

(1) a�ne if and only if h−1(ϕ) is surjective and hi(ϕ) is an isomorphism for
i ≤ −2 and

(2) a closed immersion if and only if h0(ϕ) is surjective and hi(ϕ) is an iso-
morphism for i ≤ −1.

Proof. As formation of the abelian cone commutes with arbitrary base-change
by Lemma 4.5, we can assume that X ' Spec(A) is a�ne by replacing it by
a smooth atlas. Before proceeding, let us observe that both of the homological
conditions can be rephrased as saying that the co�bre of E→ F is respectively, 0-
and 1-connective.
Since both the above homological conditions and the abelian cone only depend

on the coconnective truncations, the latter as a consequence of Lemma 4.6, we
can assume that E and F are coconnective. In this case, E can be represented by
a non-positively graded chain complex
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0→ E0 → E−1 → . . .

of A-modules, and since E is bounded below we can assume that Ei are free for
i < 0 and eventually vanish.
In this case, we see from �ltering E using the truncations of the given chain

complex that for any A-module M , the induced map Ext0
A(E0,M)→ Ext0

A(E,M)
is surjective. Thus, the morphism CSpec(A)(E0) → CSpec(A)(E) is a surjection of
stacks. It follows that the given map between abelian cones is a�ne or a closed
immersion if and only if this is true for the base-change CSpec(A)(E0) ×CSpec(A)(E)

CSpec(A)(F)→ CSpec(A)(E0).
Since the abelian cone takes colimits to limits, the above base-change can be

identi�ed with the map induced by E0 → F ⊕E E0. Since this map has the same
co�bre as E→ F, we see that by replacing E by E0 and F by the pushout, we can
assume that E is an A-module.
If E is discrete, then CSpec(A)(E) is a�ne and we see that the morphism between

cones is a�ne if only if CSpec(A)(F) is a�ne. As a consequence of Lemma 4.7, this
happens precisely when F is connective, which is equivalent to the �rst homological
condition, as hi(E) = 0 for i < 0.
To see that the second homological condition controls whether the morphism

is a closed immersion, observe that in the case above when both E and F are 0-
connective, the map between cones can be identi�ed with Spec(SymA(h0(F))) →
Spec(SymA(h0(E))). This is clearly a closed immersion if and only if h0(E) →
h0(F) is a surjection, ending the proof. �

Corollary 9.3. Let X → Y be a relative Artin stack. Then, ϕ : E → LX/Y[−1]
is an obstruction theory if and only if E is bounded below and NXY→ CX(E) is a
closed immersion.

Proof. This is immediate from Proposition 9.2. �

Recall that if X→ Y is a morphism of Artin stacks, then the cotangent complex
LX/Y controls the deformation theory in the sense that for any A-valued point
η : Spec(A)→ X, an A-module M , and a diagram

Spec(A) Spec(A⊕M)

X Y

(♠)η

,
the extension denoted above by the dotted arrow exists if and only if the associated
obstruction in Ext1

A(η∗LX/Y,M) vanishes. More generally, the cotangent complex
has this property also for square-zero extensions of derived rings, by which it is
then determined uniquely, see the discussion proceeding De�nition 3.44.
This uniqueness does not hold if we consider only discrete rings, in fact we will

now prove a minor generalization of a criterion of Behrend and Fantechi which
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tells us that a morphism E[1] → LX/Y is a shift of an obstruction theory if and
only if E[1] also controls the deformation theory of a�ne schemes mapping into X.

Proposition 9.4. A morphism E[1] → LX/Y is a shift of an obstruction theory
if and only if for any point η : Spec(A) → X and any A-module M , the induced
morphism

ExtiA(η∗LX/Y,M)→ ExtiA(η∗E[1],M)

is injective for i = 1 and an isomorphism for i ≤ 0.

Proof. Since a morphism E[1] → LX/Y is a shift of an obstruction theory if and
only if its co�bre is 2-connective, the statement is equivalent to saying that C ∈
QCoh(X) is 2-connective if and only if Extk(η∗C,M) = 0 for any η, M as above
and k ≤ 1.
This is clear, since C is 2-connective if and only if η∗C is 2-connective for all η,

and that's equivalent to saying that Extk(η∗C,M) = 0 for any k ≥ 1 and M ∈
QCoh(Spec(A))≤0. Since the latter ∞-category is generated under limits by A-
modules, it is enough to check this condition in this case, ending the argument. �

Corollary 9.5. Let φ : E→ LX/Y be a morphism of quasi-coherent sheaves. Then,
φ is a shift of an obstruction theory if and only if for any diagram of the form (♠)

(1) the dotted arrow exists if and only if the associated obstruction in Ext1(η∗E,M)
vanishes, and if this is the case then

(2) the space of such dotted arrows is equivalent to mapQCoh(A)(η
∗E,M), in

particular their homotopy classes form an Ext0
A(η∗E,M)-torsor.

Proof. It is clear that LX/Y has this property, and the statement is then an imme-
diate consequence of Proposition 9.4. �

We now move on to the construction of the virtual fundamental class. Let us
now restrict to the case where X→ Y is a morphism of �nite type 1-Artin stacks,
where we have access to the Chow groups as constructed by Kresch [Kre].

De�nition 9.6. If E is a perfect obstruction theory, then a global resolution
is a morphism E → E injective on h0 such that E ∈ QCoh(X)♥ is a locally free
sheaf of �nite rank.

Construction 9.7. Suppose that we have a morphism of 1-Artin stacks X → Y

with target purely of dimension r, in which case the same is true for the normal
cone CXY as a consequence of Corollary 8.3.
If E→ E is a global resolution, then Lemma 4.8 implies that CX(E)→ CX(E)

is a smooth surjection, and since the source is a vector bundle it forms a smooth
atlas for CX(E) relative to X. We can then consider the pullback diagram

CX(E)×CX(E) CXY CX(E)

CXY CX(E). ,
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where the bottom map is the composite CXY ↪→ NXY ' CX(LX/Y[−1]) ↪→ CX(E),
which is a closed embedding as a consequence of Corollary 9.3.

In the setting of Construction 9.7, we can now de�ne the virtual fundamental
class.

De�nition 9.8. Let X → Y be a morphism of 1-Artin stacks as above. Then,
the virtual fundamental class associated to a perfect obstruction theory E →
LX/Y[−1] which admits a global resolution E is given by

[X→ Y,E]vir := 0![CX(E)×CX(E) CXY] ∈ CHr−χ(E)(X)

where 0 : X→ CX(E) is the zero section.

A priori our construction of the virtual class depends on the choice of global
resolution E we used to de�ne it, we will now show that it is in fact canonically
attached to the perfect obstruction theory E.

Proposition 9.9. The virtual fundamental class [X → Y,E]vir is independent of
the choice of a global resolution of a perfect obstruction theory E.

Proof. If E→ E, E→ F are global resolutions, then it is easy to see that the same
is true for E → E ⊕ F . Thus, it is enough to check that the virtual fundamental
class constructed using E coincides with that of F . We have a commutative
diagram

CX(E ⊕ F )×CX(E) CXY CX(E ⊕ F )

CX(E)×CX(E) CXY CX(E)

p

,

and so p∗[CX(E)×CX(E) CXY] = [CX(E⊕F )×CX(E) CXY] as elements of CH(CX(E⊕
F )). Then, the needed equality is obtained by intersecting with the zero sections
of E and E ⊕ F , since πE⊕F ' p ◦ πE implies 0!

E⊕F ◦ p∗ ' 0!
E.

�

Remark 9.10. Note that the only reason we restricted to 1-Artin stacks is that we
needed a suitably well-behaved theory of Chow groups. It is clear that the above
formula gives a fundamental class associated to any suitable homology theory of
relative Artin stacks. In particular,

0∗[OCX ] ∈ K0(Coh(X)),
where 0 : X→ CX(E) is the zero section, de�nes a virtual fundamental class in K-
theory of a �nite type Artin stack X equipped with a choice of a perfect obstruction
theory.

We now give a few examples of applications of our constructions.

Example 9.11 (Intersection theory). Suppose we have a cartesian diagram
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W X

Y Z

j

g f

i

of 1-Artin stacks such that X and Z are smooth, X has the resolution property
and i is a regular closed embedding. Consider the co�bre sequence

g∗LY/Z[−1]→ j∗LX → E.
where the left map is induced by the morphisms LY/Z[−1]→ i∗LY and f ∗LZ → LX.
Since X is smooth, LX has perfect amplitude in [0,−1] and since i is regular, LY/Z

is equivalent to I/I2[1]. It follows that E is perfect, and one easily observes that
the induced morphism

E → LW

is in fact a perfect obstruction theory. We deduce that W admits a virtual funda-
mental class.
In the case of schemes, the resulting class coincides with i![X] in the classical

sense, as observed by Behrend and Fantechi [BF97][6.1]. Thus, the above con-
struction can be thought of as generalizing Fulton's construction to the setting of
Artin stacks, recovering Kresch's Gysin maps.

Example 9.12 (Twisted stable maps). Let X be a �nitely presented, proper,
smooth, tame 1-Artin stack with �nite inertia. Moreover, suppose that X has the
resolution property, that the coarse moduli space of X is projective, and that we
have �xed an element β ∈ CHnum

1 (X).
In this context, one can show that the canonical morphism

Kg,n(X, β)→Mtw
g,n

from the moduli stack of twisted stable maps to the moduli stack of twisted curves
has a perfect obstruction theory which admits a global resolution. To do so, one
considers the diagram

C C X

Kg,n(X, β) HomMtw
g,n

(C,X)

Mtw
g,n

ψ̄

ι
π π̄

ϕ̄
ϕ

where C is the universal twisted curve and C := C×Mtw
g,n

HomMtw
g,n

(C,X). Then, by
Grothendieck duality there is a canonical morphism

π̄∗(ψ̄
∗LX ⊗ ωπ̄)|Kg,n(X,β) → Lϕ[−1]

which is shown to be a perfect obstruction theory using Corollary 9.5. Moreover,
this obstruction theory has a global resolution due to the fact that X has the
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resolution property and we deduce that the stack Kg,n(X, β) admits a relative
virtual fundamental class. In future work, will prove that this class satis�es the
Gromov-Witten axioms.

Example 9.13 (Quantum K-theory). In the context of the previous example,
one can instead consider the fundamental class in K-theory discussed in Remark
9.10. This class is related to quantum K-theory in the sense of Lee [L+04], which
we hope to revisit in future work.

Example 9.14 (Moduli of surfaces). The following example was communicated to
us by Barbara Fantechi. LetMlci denote the moduli stack of reduced lci surfaces,
and let π : S → Mlci denote the universal surface. Then, one can construct a
perfect obstruction theory onMlci as follows.
There is a canonical morphism LS/Mlci → π∗LM[1] and by tensoring with the

dualizing sheaf ωπ, applying Grothendieck duality and shifting appropriately one
gets a morphism

π∗(Lπ ⊗ ωπ)[−2]→ LM[−1].

which is seen to be an obstruction theory as a consequence of Corollary 9.5.
Moreover, the lci condition implies that this obstruction theory is perfect.

Example 9.15 (Quasi-smooth derived stacks). Let X → Y be a quasi-smooth
morphism of derived 1-stacks in the sense of [Lur18]. If ι : Xcl ↪→ X denotes the
inclusion of the underlying classical stack, then the canonical morphism

i∗LX/Y[−1]→ LXcl/Ycl [−1]

can be shown to be a perfect obstruction theory on Xcl using the connectivity
estimates given in [Lur18][I.1.2.5.6]. If i∗LX/Y[−1] has a global resolution, which is
always the case if Xcl has the resolution property, it follows that we have a virtual
fundamental class [Xcl → Ycl, i∗LX/Y]vir.
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