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Entanglement negativity in the critical Ising chain
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2 ICFO - The Institute of Photonic Sciences, Av. C.F. Gauss 3, E-08860 Castelldefels
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3 SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy.

Abstract.
We study the scaling of the traces of the integer powers of the partially transposed reduced

density matrix Tr(ρT2

A )n and of the entanglement negativity for two spin blocks as function of
their length and separation in the critical Ising chain. For two adjacent blocks, we show that
tensor network calculations agree with universal conformal field theory (CFT) predictions. In
the case of two disjoint blocks the CFT predictions are recovered only after taking into account
the finite size corrections induced by the finite length of the blocks.
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1. Introduction

During the last decade, it became clear that new concepts from quantum information theory
can be extremely useful also to characterize many-body quantum systems both in and out of
equilibrium. The most successful of these concepts is surely the entanglement entropy which
turned out to be an optimal probe to distinguish the various states of matter, in particular
for critical and topological phases (see e.g. [1] for reviews). Let ρ be the density matrix
of an extended quantum system, which we take to be in a pure quantum state |Ψ〉, so that
ρ = |Ψ〉〈Ψ|. Let the Hilbert space be written as a direct productH = HA⊗HB. A’s reduced
density matrix is ρA = TrBρ and from this the Rényi entanglement entropy is defined as

S
(n)
A =

1

1− n
ln Tr ρnA , (1)

that for n = 1 reduces to the more studied von Neumann entropy. However, the knowledge
of the Rényi entropies for any n provides more information than the n = 1 case and, in fact,
it gives the full spectrum of the reduced density matrix [2].

For a one-dimensional critical system whose scaling limit is described by a conformal
field theory (CFT), in the case when A is an interval of length ` embedded in an infinite
system, the asymptotic large ` behavior of the Rényi entropies is [3, 4, 5, 6]

S
(n)
A =

c

6

(
1 +

1

n

)
log

`

a
+ c′n , (2)

where c is the central charge of the underlying CFT [7] and a the inverse of an ultraviolet
cutoff (e.g. the lattice spacing). The additive constants c′n are non universal but satisfy some
universal relations [8].

Unfortunately, the entanglement entropies do not provide any information about the
multipartite entanglement in a many-body system. In order to give a practical example, let us
imagine to divide an extended quantum system in three spatial parts which we call A1, A2 and
B. We can define the reduced density matrix ρA1∪A2 = TrBρ, but the corresponding entropies
S

(n)
A1∪A2

would measure only the entanglement between A = A1 ∪ A2 and B, but not the
entanglement between A1 and A2 which is the tripartite entanglement in the system. Even the
Rényi mutual information I(n)

A1:A2
= S

(n)
A1

+ S
(n)
A2
− S(n)

A1∪A2
does not provide the entanglement

between A1 and A2, but gives only a measure of their correlations (see e.g. Ref. [9]). The
quantification of the tripartite entanglement in a pure state has been longly a problem (see e.g.
Refs. [1, 9, 10, 11, 12]) until a computable measurement of entanglement has been introduced
by Vidal and Werner [13]. This measure has been called negativity and is defined as follows.
Let us denote by |e(1)

i 〉 and |e(2)
j 〉 two bases in the Hilbert spaces corresponding to A1 and A2

respectively. Let us define the partial transpose with respect to A2 degrees of freedom as

〈e(1)
i e

(2)
j |ρ

T2
A1∪A2

|e(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA1∪A2|e

(1)
k e

(2)
j 〉, (3)

and from this the logarithmic negativity as

E ≡ ln ||ρT2A1∪A2
|| = ln Tr|ρT2A1∪A2

| , (4)

where the trace norm ||ρT2A1∪A2
|| is the sum of the absolute values of the eigenvalues λi of

ρT2A1∪A2
. The negativity has been used to investigate the tripartite entanglement content of
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many body quantum systems both in their ground-state [14, 15, 16, 17, 18, 19, 20, 21] or out
of equilibrium [22, 23]. Furthermore, the definition of the negativity is very intriguing because
it is basis independent and so calculable by quantum field theory (QFT). Only recently [24, 25]
a systematic and generic method to calculate the negativity in QFT (and in particular CFT)
has been developed. This method is based on the calculation of the traces Tr(ρT2A )n and the
negativity is recovered in a replica limit. The negativity between two adjacent intervals has
been calculated for a general CFT and turned out to be a universal quantity depending only on
the central charge. The negativity between two disjoint intervals is still universal but depends
on the full operator content of the theory and the corresponding moments Tr(ρT2A1∪A2

)n have
been calculated explicitly for the free compactified boson [25]. In this manuscript we extend
the previous results to the critical Ising CFT and confirm our predictions by explicit tensor
network calculations in the transverse field Ising chain described by the Hamiltonian

H = −
L∑
j=1

[σxj σ
x
j+1 + hσzj ] , (5)

where σx,zj are Pauli matrices acting on the spin at site j and we use periodic boundary
conditions. The model has a quantum critical point at h = 1 and in the continuum limit
corresponds to a free massless Majorana fermion which is a CFT with central charge c = 1/2.

The manuscript is organized as follows. In Sec. 2 we discuss the general QFT approach
to negativity [24, 25] and report those results which are valid for an arbitrary CFT. In Sec.
3 we report the CFT calculation of the integer powers of the partial transpose of the reduced
density matrix for two disjoint intervals in the critical Ising theory. Although the Ising chain is
mapped to free fermions, it is still not known how to calculate effectively the partial transpose
and for this reason we resort purely numerical methods. In Sec. 4 we introduce the tree tensor
network approach and explain how to adapt it to the calculation of the eigenvalues of the
partially transposed reduced density matrix. Finally we analyze the numerical data in Sec. 5
taking properly into account the corrections to the scaling. In Sec. 6 we draw our conclusions.

2. General results for the negativity in CFT: one interval and two adjacent intervals

In the following we will be interested in tripartion of a one-dimensional systems such as those
depicted in Fig. 1. We will denote with ρA the reduced density matrix of A ≡ A1 ∪ A2, i.e.
ρA = ρA1∪A2 , which is obtained by tracing out the part B of the system, i.e. ρA = TrBρ.
The quantum field theory approach of negativity is based on a replica trick [24, 25], i.e. on
the calculation of the traces Tr(ρT2A )n of integer powers of ρT2A . According to Eq. (4) we are
interested in the sum of the absolute values of the eigenvalues λi of ρT2A . It turns out that
Tr(ρT2A )n have a different functional dependence on |λi| according to the parity of n. Indeed,
for n even and odd (that we denote as ne and no respectively), the traces of integer powers of
ρT2A are

Tr(ρT2A )ne =
∑
i

λnei =
∑
λi>0

|λi|ne +
∑
λi<0

|λi|ne , (6)
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Tr(ρT2A )no =
∑
i

λnoi =
∑
λi>0

|λi|no −
∑
λi<0

|λi|no . (7)

If we set ne = 1 in Eq. (6) we formally obtain Tr|ρT2A | in which we are interested. Instead,
setting no = 1 in Eq. (7) gives the normalization TrρT2A = 1. This means that the analytic
continuations from even and odd n are different and the trace norm in which we are interested
is obtained by considering the analytic continuation of the even sequence at ne → 1, i.e.

E = lim
ne→1

ln Tr(ρT2A )ne . (8)

In a QFT, the traces of integer powers of the partial transpose for two disjoint intervals
(as in Fig. 1 (top)) are partition functions on n-sheeted Riemann surfaces or equivalently the
correlation functions of four twist-fields [25]

Tr(ρT2A )n = 〈Tn(u1)T n(v1)T n(u2)Tn(v2)〉 , (9)

i.e. the partial transposition has the net effect to exchange two twist operators compared to

TrρnA = 〈Tn(u1)T n(v1)Tn(u2)T n(v2)〉 . (10)

(See Refs. [26, 6] for an introduction to the concept of twist fields.)
Eq. (9) is of general validity, but it simplifies when specialized to the case of two adjacent

intervals, obtained by letting v1 → u2, giving the three-point function

Tr(ρT2A )n = 〈Tn(u1)T 2

n(u2)Tn(v2)〉 . (11)

A further simplification occurs when specializing to a pure state by letting B → ∅ (i.e.
u2 → v1 and v2 → u1) for which Tr(ρT2A )n becomes a two-point function

Tr(ρT2A )n = 〈T 2
n (u2)T 2

n(v2)〉 . (12)

As explained in more details in Ref. [25], as a partition function on an n-sheeted Riemann
surface, this expression depends on the parity of n because T 2

n connects the j-th sheet with
the (j + 2)-th one. For n = ne even, the ne-sheeted Riemann surface decouples in two
independent (ne/2)-sheeted surfaces. Conversely for n = no odd, the surface remains a no-
sheeted Riemann surface. In formulas, these observations are

Tr(ρT2A )ne = (〈Tne/2(u2)T ne/2(v2)〉)2 = (Trρ
ne/2
A2

)2 , (13)

Tr(ρT2A )no = 〈Tno(u2)T no(v2)〉 = TrρnoA2
. (14)

Hence, for a bipartite system, Tr(ρT2A )n can be generically written as a function of TrρnA2
, as it

should. In particular, taking the limit ne → 1, we obtain the logarithmic negativity E = S
(1/2)
A2

which is the well known result that for bipartite states the logarithmic negativity equals the
Rényi entropy of order 1/2 [13].

2.1. A single interval in a CFT.

For conformal invariant theories it is useful to consider first the case of a reduced density
matrix corresponding to a bipartite system obtained by letting B → ∅. We recall first the
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standard result for TrρnA2
in a bipartite pure state in the case when A2 is an interval of length

` = |u2 − v2| in the infinite line [4]

TrρnA2
= 〈Tn(u2)T n(v2)〉 = cn

(
`

a

)−c/6(n−1/n)

, (15)

i.e. the twist fields behave like primary operators with scaling dimension ∆Tn = ∆T n =

c/12(n− 1/n).
Following Refs. [24, 25], when the interval A2 is embedded in an infinite system, we can

derive the powers of ρT2A using Eqs. (13) and (14) and from the general formula for TrρnA2
in

Eq. (15), obtaining

Tr(ρT2A )ne = (〈Tne/2(u2)T ne/2(v2)〉)2 = (Trρ
ne/2
A2

)2 = c2
ne/2

( `
a

)−c/3(ne/2−2/ne)

, (16)

and

Tr(ρT2A )no = 〈Tno(u2)T no(v2)〉 = TrρnoA2
= cno

( `
a

)−c/6(no−1/no)

. (17)

This simple result shows an important feature of the negativity in CFT, i.e. for n = ne even,
T 2
ne and T 2

ne have dimensions

∆T 2
ne

= ∆T 2
ne

=
c

6

(ne
2
− 2

ne

)
, (18)

while for n = no odd, T 2
no and T 2

no have dimensions

∆T 2
no

= ∆T 2
no

=
c

12

(
no −

1

no

)
, (19)

the same as Tno . Thus, performing the analytic continuation from the even sequence, we
finally have

||ρT2A || = lim
ne→1

Tr(ρT2A )ne = c2
1/2

( `
a

)c/2
⇒ E =

c

2
ln
`

a
+ 2 ln c1/2 , (20)

which again is the result that for pure bipartite states the logarithmic negativity equals the
Rényi entropy of order 1/2. Continuing instead the odd sequence to no → 1, we recover the
normalization TrρT2A = 1.

Notice that the constants cno,ne are non-universal, but they are the same as in the
entanglement entropies and so new non-universal constants do not appear in the partial
transposition, but are all already encoded in the reduced density matrix.

2.2. Two adjacent intervals in a CFT.

Let us now consider the configuration of two intervals A1 and A2 of length `1 and `2 sharing
a common boundary at the origin as graphically depicted in Fig. 1 (bottom). This can be
obtained by letting v1 → u2 = 0 in Eq. (9) and it is then described by the 3-point function
(we set u1 = −`1 and v2 = `2)

Tr(ρT2A )n = 〈Tn(−`1)T 2

n(0)Tn(`2)〉 , (21)
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Figure 1. The two configurations of the Ising chain that we consider. Top: the entanglement
between two disjoint intervals A1 and A2 embedded in the ground-state of a larger chain.
Bottom: The entanglement between two adjacent intervals in a larger system.

whose form is determined by global conformal symmetry [27]

〈Tn(−`1)T 2

n(0)Tn(`2)〉 =
dn

(`1`2)
∆T 2

n (`1 + `2)
2∆Tn−∆T 2

n

, (22)

where, for simplicity, we have set the UV cutoff a = 1. Notice that dn is not universal, but
can be written as dn = c2

nCTnT 2
nTn

where the structure constant CTnT 2
nTn

is universal and can
be determined by considering the proper limit of the four-point function as explicitly done in
Ref. [25].

For n = ne even, using the dimensions of the twist operators calculated above, we find
the universal scaling relation

Tr(ρT2A )ne =
dne

(`1`2)c/6(ne/2−2/ne)(`1 + `2)c/6(ne/2+1/ne)
, (23)

that in the limit ne → 1 gives

||ρT2A || ∝
(

`1`2

`1 + `2

)c/4
⇒ E =

c

4
ln

`1`2

`1 + `2

+ cnst. (24)

For n = no odd we have

Tr(ρT2A )no =
dno

(`1`2(`1 + `2))c/12(no−1/no)
, (25)

that for no → 1 gives TrρT2A = 1 as it should.

2.3. Finite systems.

All previous results are generalized to the case of a finite system of length L with periodic
boundary conditions by using a conformal mapping from the cylinder (with axis perpendicular
to the spatial coordinate) to the plane. The net effect of the mapping is to replace each length
`i with the chord length (L/π) sin(π`i/L) in all above formulas.
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Thus for the case of a pure state in a finite system the generalization of Eqs. (16) and
(17) are

Tr(ρT2A )ne = c2
ne/2

( L
πa

sin
π`

L

)−c/3(ne/2−2/ne)

, (26)

Tr(ρT2A )no = cno

( L
πa

sin
π`

L

)−c/6(no−1/no)

, (27)

E =
c

2
ln
( L
πa

sin
π`

L

)
+ 2 ln c1/2 . (28)

For two adjacent intervals embedded in a finite system, the generalizations of Eqs. (23) and
(25) lead to the universal scaling relations

Tr(ρT2A )ne =
dne[

L2

π2 sin (π`1
L

) sin (π`2
L

)
]c/6(ne/2−2/ne)

[
L
π

sin π(`1+`2)
L

]c/6(ne/2+1/ne)
,

Tr(ρT2A )no =
dno[

L3

π3 sin
(
π`1
L

)
sin
(
π`2
L

)
sin π(`1+`2)

L

]c/12(no−1/no)
, (29)

and for the logarithmic negativity

E =
c

4
ln

[
L

π

sin (π`1
L

) sin (π`2
L

)

sin π(`1+`2)
L

]
+ cnst. (30)

3. Negativity for two disjoint intervals in the Ising universality class

For a generic CFT with central charge c, by using global conformal invariance, the four point
function of twist fields can be written as [27, 28]

〈Tn(z1)T n(z2)Tn(z3)T n(z4)〉 = c2
n

∣∣∣∣ z31z42

z21z43z41z32

∣∣∣∣c/6(n−1/n)

Fn(x, x̄) , (31)

where the positions zi ∈ C, zij = zi − zj and x is the four-point ratio

x ≡ z21z43

z31z42

, (32)

and x̄ its complex conjugate. (All distances are measured in units of the UV cutoff a.) The
function Fn(x, x̄) is real and must be computed case by case because it depends on the full
operator content of the theory as explicitly done in some CFTs [28, 29, 30, 31, 32, 33, 34, 35]
and also numerically in some lattice models [36, 37, 38, 39, 40, 41, 42], but mainly with x
real and 0 < x < 1. Since z31z42/(z21z43z41z32) = 1/(z21z43(1 − x)), the normalization of
Fn(x, x̄) is given by Fn(0, 0) = 1. Thus, in the limit x → 0 (i.e. large distance between
the two intervals), the four-point function becomes the product of two two-point functions
normalized through the constant cn.

As explained in Refs. [24, 25], in order to give a physical interpretation to Eq. (31) as
TrρnA or Tr(ρT2A )n, the points zi must be on the real axis and their order allows to distinguish
between TrρnA and Tr(ρT2A )n. We denote the boundaries of the two intervals with four real
variables uj and vj (j = 1, 2) such that u1 < v1 < u2 < v2 in both cases. With these
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definitions, Eq. (31) for TrρnA corresponds to z1 = u1, z2 = v1, z3 = u2 and z4 = v2, leading
to

TrρnA = c2
n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)c/6(n−1/n)

Fn(x) , (33)

where

x =
z21z43

z31z42

=
(v1 − u1)(v2 − u2)

(u2 − u1)(v2 − v1)
, (34)

and 0 < x < 1. Being x real, the dependence on x̄ = x has been dropped.
Instead, Tr(ρT2A )n is obtained from the four-point function (31) with the choice z1 = u1,

z2 = v1, z3 = v2 and z4 = u2, namely by exchanging z3 ↔ z4 with respect to the previous
case. The result can be then written as

Tr(ρT2A )n = c2
n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)c/6(n−1/n)

Gn(y) , (35)

with

y ≡ z21z34

z41z32

=
(v1 − u1)(v2 − u2)

(u2 − u1)(v2 − v1)
, (36)

and 0 < y < 1 and again we dropped the dependence on ȳ because y is real. Notice that we
have chosen the definitions of x and y in such a way that the functional dependence on uj and
vj is the same, but they are two different four-point ratios, as their dependence on zi explicitly
shows. The relation between the two is y = x/(x − 1). The expressions (33) and (35) are
related as

Gn(y) = (1− y)c/3(n−1/n)Fn
( y

y − 1

)
, (37)

as easily derived from Eq. (31).
The logarithmic negativity is obtained by considering the even sequence n = ne and

taking its analytic continuation ne → 1. Thus, the functional dependence on n of Fn(x) for
x = y/(y − 1) < 0 must be different for even and odd n, in such a way that the limit

E(y) = lim
ne→1

lnGne(y) = lim
ne→1

ln

[
Fne
( y

y − 1

)]
, (38)

is not trivially equal to lim
no→1

lnGno(y) = 0. It is natural and convenient to introduce the ratio

Rn(y) ≡ Tr(ρT2A )n

TrρnA
=
〈Tn(u1)T n(v1)T n(u2)Tn(v2)〉
〈Tn(u1)T n(v1)Tn(u2)T n(v2)〉

(39)

=
Gn(y)

Fn(y)
= (1− y)c/3(n−1/n) Fn(y/(y − 1))

Fn(y)
.

Indeed, in such ratio the prefactors cancel and a function only of y ∈ (0, 1) is left. Moreover,
the ratio in Eq. (39) is an easy quantity to consider in the numerical computations. Notice
that, being lim

n→1
TrρnA = 1, the logarithmic negativity is obtained equivalently from the replica

limit of this ratio

E(y) = ln lim
ne→1

Rne(y) . (40)
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Thus, while TrρnA requires Fn(x) only for x ∈ (0, 1), in order to extract Tr(ρT2A )n, and
consequently the negativity E(y), one has to compute the function Fn(x) also for x < 0.

We remark that for the special case n = 2, we have T 2 = T2 because T 2
2 is the identity

operator. This implies that R2(y) = 1 for 0 < y < 1 identically.
In order to find Fn(x, x̄) for the Ising model, it is useful to review the corresponding

result for the free compactified boson (i.e. a Luttinger liquid field theory), derived in Ref.
[25].

3.1. Free compactified boson

For the free real boson compactified on a circle of radius R, the function Fn(x, x̄) in Eq. (31)
for any complex x has been computed in [25]. This has been possible starting from some
results in Refs. [43, 44] and generalizing to x ∈ C the procedure employed in Ref. [29] for
0 < x < 1. The final result is [25]

Fn(x, x̄) =
Θ(0|Tη(x, x̄))∏n−1
k=1 |Fk/n(x)|

, (41)

where we introduced Fk/n(x) ≡ 2F1(k/n, 1 − k/n; 1;x) to denote the special case of the
hypergeometric function 2F1(a, b; c; z). Here Θ(0|K) is of the Riemann-Siegel theta function
which is generically defined as

Θ(0|K) ≡
∑

m∈Zp
exp [iπm ·K ·m] , (42)

where K is a p × p symmetric complex matrix with positive definite imaginary part and 0 is
the p dimensional vector made by zeros. The 2(n− 1)× 2(n− 1) symmetric complex matrix
Tη(x, x̄) entering in Eq. (41) is

Tη(x, x̄) =

(
iηI R
R iI/η

)
, (43)

where the parameter η is proportional to R2 and the (n−1)× (n−1) symmetric real matrices
R and I are respectively the real and the imaginary part of the (n−1)× (n−1) period matrix

τ(x) = R+ i I =
2

n

n−1∑
k=1

τk/n(x) sin(πk/n)Ck/n , (44)

with

τk/n(x) ≡ i
Fk/n(1− x)

Fk/n(x)
, (45)

and Ck/n is the (n− 1)× (n− 1) symmetric matrix whose elements read

(Ck/n)rs = cos [2πk/n(r − s)] , r, s = 1, . . . , n− 1 . (46)

Notice that, because of the k ↔ n − k invariance of the functions Fk/n, for n odd the
denominator in (41) becomes the square of a product over k going from 1 to (no − 1)/2.
Similarly, (44) can be written as a sum over k going from 1 to (no − 1)/2. This suggests that
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the term corresponding to k/n = 1/2, occurring only for even n, plays a key role in the limit
(38), as shown explicitly in [25] for the non-compactified boson in the limit of close intervals.

Few comments are now in order regarding Eq. (41) before proceeding to the partial
transpose. Comparing Eq. (41) with old results about CFT on higher genus Riemann
surfaces [44, 45, 46, 47, 48], one observes that Fn(x, x̄) is related to the partition function
Z = ZquZcl(R) on a genus g = n − 1 Riemann surface, which can be factorized into a
quantum part and a classical part, and all the dependence on R of Z is contained in the latter.
In particular, one finds that Zcl(R) = Θ(0|Tη(x, x̄)) and the period matrix of the Riemann
surface is τ(x) given in (44). As already remarked [43, 29], here we are not dealing with
generic genus g Riemann surfaces, but with a subclass of them obtained through the replica
method (see the appendix of [30] for a pictorial representation). Thus, while for TrρnA one
needs the period matrix τ(x) only for 0 < x < 1, where its real part R vanishes identically,
for Tr(ρT2A )n the period matrix τ(x) for x < 0 is required and in this regime R enters in a
crucial way. The expression (41) is explicitly invariant under η ↔ 1/η. We recall that one
can also rewrite Eq. (41) in a form which makes manifest its invariance under x ↔ 1 − x.
This form is particularly useful also to study the regime η → ∞ of non-compactified boson
because some simplifications occur and the Riemann-Siegel theta function does not contribute
in this limit [25].

At this point, it is easy to write Tr(ρT2A )n for the compactified boson from Eq. (35), where
Gn(y) is given by (37) with c = 1 and Fn(x) by (41), i.e.

Gn(y) = (1− y)(n−1/n)/3
Θ(0|Tη( y

y−1
))∏n−1

k=1 |Fk/n( y
y−1

)|
, (47)

where 0 < y < 1. From Eqs. (47) and (41), we can write the ratio (39) for the free
compactified boson

Rn(y) = (1− y)(n−1/n)/3

(
n−1∏
k=1

∣∣∣ Fk/n(y)

Fk/n( y
y−1

)

∣∣∣) Θ(0|Tη( y
y−1

))

Θ(0|Tη(y))
. (48)

In the decompactification regime η → ∞, this formula has been checked numerically in
Ref. [25] for an harmonic chain with periodic boundary conditions, whose Hamiltonian is
the lattice discretization of a free boson (Klein-Gordon action). Always in this regime and in
the limit y → 1− of close intervals, the analytic continuation ne → 1 of the even sequence
Rne(y) has been explicitly carried out [25]. The analytic continuation ne → 1 for finite and
generic η is still unknown. A similar problem occurs for the von Neumann entanglement
entropy through the analytic continuation of the Rényi entropies of two disjoint intervals. We
finally mention that the results for some finite η have been recently checked in Monte Carlo
simulations [50].

3.2. Ising conformal field theory

In the previous section we have shown that Fn(x, x̄) can be found from the partition function
of the corresponding model on the genus g = n − 1 Riemann surface obtained from the
replica method. The partition function of the Ising model on a genus g Riemann surface has
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Figure 2. The functionRn(y) for the Ising conformal field theory as a function of y for several
values of n (n = 2, 3, 4, 5 curves from top to bottom).

been derived in the eighties [45, 46, 48, 49] by considering Z2 orbifolds models on generic
Riemann surfaces. From the knowledge of the partition function Z = ZquZcl(R) of the
compactified boson on the same Riemann surface, we can explicitly access the period matrix
on the Riemann surface. Then, using the mentioned old results for the Ising model on a genus
g Riemann surface, we can finally write [30]

ZIsing = (Zqu)1/2 2−g
∑
e

|Θ[e](0|τ)| , (49)

where τ is the g × g period matrix. Here we introduced the Riemann-Siegel theta function
with characteristic e, which is defined as

Θ[e](z|τ) =
∑

m∈Zg
eiπ[(m+ε)·τ ·(m+ε)+2(m+ε)·(z+δ)] , (50)

where z ∈ Cg/(Zg + τ Zg) is a g dimensional complex vector and the characteristic e is given
by a pair of g dimensional vectors ε and δ made by 0’s and 1/2’s

[e] =
[ ε
δ

]
=
[ ε1, . . . , εg
δ1, . . . , δg

]
, εi, δi ∈ {0, 1/2} . (51)

In the case at hand, the period matrix τ(x) is given by Eq. (44) and the partition function for
the compactified boson Z = ZquZcl(R) is Eq. (41). Thus, for the Ising model we have

Fn(x, x̄) =

∑
e |Θ[e](0|τ(x))|

2n−1
∏n−1

k=1 |Fk/n(x)|1/2
. (52)

For 0 < x < 1, this function reduces to Fn(x) found in [30] for the Rényi entropies of the
Ising model and it has been tested numerically through various methods [38, 39, 40], finding
agreement once the finite size corrections are properly taken into account.
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Writing Tr(ρT2A )n for the Ising model is now easy by using Eq. (35) with c = 1/2, and
Gn(y) from Eqs. (37) and (52), namely

Gn(y) = (1− y)(n−1/n)/6

∑
e |Θ[e](0|τ( y

y−1
))|

2n−1
∏n−1

k=1 |Fk/n( y
y−1

)|1/2
, (53)

where 0 < y < 1 and τ is given by Eq. (44). From this expression and Eq. (52), we can write
the ratio (39) for the Ising model‡

Rn(y) = (1− y)(n−1/n)/6

n−1∏
k=1

∣∣∣ Fk/n(y)

Fk/n( y
y−1

)

∣∣∣1/2 ∑e |Θ[e](0|τ( y
y−1

))|∑
e |Θ[e](0|τ(y))|

. (54)

The curves Rn(y) for 0 < y < 1 are shown in Fig. 2 for n = 2, 3, 4, 5. They are concave
curves with Rn(0) = 1, which stay below 1 for n > 2. When n = 2, we have R2(y) = 1

identically, as we will explicitly prove below. Moreover, Rn2(y) < Rn1(y) when n2 > n1,
for all 0 < y < 1. Approaching y = 1, Rn(y) approaches zero very steeply in a calculable
power-law way that, for a general model, depends only on the central charge [25].

It is worth mentioning that after a superficial analysis, one could erroneously conclude
that the sum over the characteristics occurring in Eq. (52) involves 22g terms. This is not true
because many of these terms are identically zero. In order to see this, let us introduce the
parity of the characteristic e which is the parity of the integer number 4ε · δ which is related
to the transformation property of the Riemann-Siegel theta function [46]

Θ[e](−z|τ) = (−1)4ε·δΘ[e](z|τ) . (55)

There are 2g−1(2g + 1) even characteristics and 2g−1(2g − 1) odd ones. Eq. (55) implies
that Θ[e](0|τ) = 0 identically for odd characteristics. This means that the sum over the
characteristics which defines Fn(x, x̄) in (52) is made only by 2n−2(2n−1 + 1) terms, namely
the ones with even e.

3.3. The special case n = 2 for Ising model.

For the special case of n = 2, since T2 = T 2, we have R2(y) = 1 identically in 0 < y < 1.
This is true for any CFT, as already noted above, and therefore also for the Ising model.
Nevertheless, we find it instructive to see explicitly how this simplification occurs in Eq. (54),
since this is not apparent from the formula and the explicit proof is related to the modular
invariance of the torus partition function [51].

When n = 2 the Riemann surface is a torus and the period matrix reduces to its modulus
τ(x) = τ1/2(x), which is a complex number. In this case the four-point ratio x ∈ C and its
modulus τ(x) are related as [43, 28]

F1/2(x) =
2

π
K(x) = θ3(τ(x))2, τ(x) =

iK(1− x)

K(x)
, x(τ) =

(
θ2(τ)

θ3(τ)

)4

, (56)

‡ We have been informed that this result has been derived independently also by V. Alba [50].
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where K(x) is the complete elliptic integral of the first kind. From the properties of K, for
0 < y < 1 one finds [52]

F1/2

(
1

1− y

)
=

2

π

√
1− y(K(1− y)− iK(y)) , (57)

F1/2

(
y

y − 1

)
=

2

π

√
1− y K(y) . (58)

Given τ = τ(y) in the second formula of (56), (57) and (58), it is straightforward to observe
that for 0 < y < 1 we have

τ ′ ≡ τ

(
y

y − 1

)
= τ + 1 . (59)

We also need to recall the following transformation properties of the Jacobi theta functions
under the modular transformation τ → τ + 1 [27, 51]

θ2(τ + 1) = eiπ/4θ2(τ) , θ3(τ + 1) = θ4(τ) , θ4(τ + 1) = θ3(τ) . (60)

From the first formula in (56), (59) and the second formula in (60), one finds that

F1/2

(
y

y − 1

)
= θ3(τ + 1)2 = θ4(τ)2 . (61)

Given the expressions above, we are ready to prove that R2(y) = 1 for 0 < y < 1. Indeed,
from Eqs. (56) and (61) we get

(1− y)1/4 =

∣∣∣∣θ4(τ)

θ3(τ)

∣∣∣∣ , ∣∣∣ F1/2(y)

F1/2( y
y−1

)

∣∣∣1/2 =

∣∣∣∣θ3(τ)

θ4(τ)

∣∣∣∣ , (62)

where in the first equation the identity θ4
4 = θ4

3 − θ4
2 has been employed. As for the ratio

containing the Riemann-Siegel theta functions in (54), when n = 2 and 0 < y < 1, it
simplifies to

|θ2(τ ′)|+ |θ3(τ ′)|+ |θ4(τ ′)|
|θ2(τ)|+ |θ3(τ)|+ |θ4(τ)|

= 1 , (63)

where Eq. (59) and the modular transformations (60) have been employed.

4. The partial transposition with Tree Tensor Networks

The Ising chain in a transverse magnetic field is the most studied one dimensional model and
this is mainly due to fact that it is a non-trivial model that can be mapped to a system of
free fermions by means of a Jordan-Wigner transformation [53]. However, it is still a very
hard problem to find an effective way to calculate the partial transpose of the reduced density
matrix (or at least its eigenvalues) in the free fermions formulation as opposite to models of
free bosons for which many results are already available (see e.g. [14, 16, 25]). For this
reason, in order to check the analytical predictions from conformal field theory, we resort
to purely numerical methods based on tree tensor techniques which already have been very
effective in calculating of the entanglement entropies of two disjoint intervals [38, 40]. An
alternative approach based on classical Monte Carlo simulations (generalizing the method in
Refs. [54, 38, 40, 55]) has been also independently developed at the same time of this work
by V. Alba [50].
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Figure 3. Graphical representations of some quantities for a pure state and of some useful
properties in the language of the tensor networks. Top: We consider the bipartition of the
pure state |Ψ〉 in A1 and A2 and its Schmidt decomposition through the isometries U1 and U2.
Bottom left: the density matrix ρA. Bottom right: the partial transpose ρT2

A .

4.1. Tensor networks: notation and examples

We consider a 1D lattice L made of L sites and on each site s ∈ L we set a local Hilbert
space Vs of finite dimension d (e.g. for a spin-1/2 for which d = 2). An arbitrary pure state
|Ψ〉 ∈ V⊗L defined on the lattice L, in the local basis {|1s〉 , |2s〉 , · · · , |ds〉} of Vs, can be
expanded as follows

|Ψ〉 =
d∑

i1=1

d∑
i2=1

· · ·
d∑

iL=1

Ti1i2···iL |i1〉 |i2〉 · · · |iL〉 , (64)

i.e. can be encoded in a tensor T whose dL elements Ti1i2···iL ∈ C fully determine the state.
We refer to the index 1 6 is 6 d, labeling a local basis for site s, as a physical index.

The tensor network approach [56] is a powerful way to rewrite the exponentially large
tensor T in Eq. (64) as a combination of smaller tensors. However, the manipulations
required to make the products of these tensors easily become too long and cumbersome to
write explicitly all indices and then it is very convenient to represent them by diagrams. In
these diagrams each tensor is represented by circles having some outgoing lines and each of
them represents a tensor’s index. For each tensor, we denote its complex conjugate with the
same circle delimitated by a dashed line instead of a continuos one. A line shared by two
tensors represents a contraction of a particular index.

In order to show the power and simplicity of this diagrammatic representation in a
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Figure 4. Graphical representation of the identity Tr(ρT2

A )ne = (Trρ
ne/2
A2

)2 for ne = 2.

concrete example, we will graphically prove the identities Tr(ρT2A )ne = (Trρ
ne/2
A2

)2 and
Tr(ρT2A )no = TrρnoA2

[25], which hold when B = ∅ and the whole chain A = A1 ∪ A2 is in a
pure state. Let us consider the case of a chain A made by 8 spins and a bipartition such that
both A1 and A2 contain 4 spins (but the validity of the proof does not rely on these numbers).
The pure state |Ψ〉 is depicted in the top of Fig. 3 where also its Schmidt decomposition is
shown (the different colors of the circles refer to A1 and A2). The small (purple) circle on
the line connecting the two big circles stands for the diagonal matrix formed by the Schmidt
coefficients cα, i.e. |Ψ〉 =

∑
α cα|e

(1)
α 〉 ⊗ |e(2)

α 〉. We recall that the Schmidt vectors |e(1)
α 〉 and

|e(2)
α 〉 provide an orthonormal basis and this ensures that the transformation matrices U1 and

U2 are isometric [57], a property that graphically can be depicted as in Fig. 3 (top right).
The density matrix ρA = |Ψ〉〈Ψ| is given by the picture on the bottom (left part) of Fig. 3.
The definition of ρT2A given in Eq. (3) can be implemented in the tensor network language by
interchanging the tensor associated to A2 and its complex conjugate, as again shown in Fig. 3
(bottom right).

Now we are ready to show how the above identities for pure states can be easily proved
by using the graphical representation. We first consider even powers, i.e. Tr(ρT2A )ne =

(Trρ
ne/2
A2

)2. In Fig. 4, for sake of graphical simplicity, we restrict to ne = 2 (which trivially
gives 1 because of the normalization condition TrρA2 = 1) but the key steps hold for any
even ne. Tr(ρT2A )2 is obtained by contracting the indices of two copies of ρT2A as shown in Fig.
4 (left), and then realizing that the result factorizes into the product of two TrρA2 as in the
middle of Fig. 4. Using the isometry property in Fig. 3, each TrρA2 further reduces to the
sum of the squared Schmidt coefficients, as it should. Tr(ρT2A )no is graphically calculated in
Fig. 5 for no = 3. As above, we first write Tr(ρT2A )3 through the proper contractions of three
copies of ρT2A . Then, by rearranging the order of the tensors, this can be put as in the center of
Fig. 5, which is Trρ3

A2
. Again, the last step can be obtained through the isometry property in

Fig. 3. These two examples make manifest the power of the graphical notation. Finally, it is
worth stressing, that the same proof could have been done in any other basis. We choose the
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Figure 5. Graphical representation of the identity Tr(ρT2

A )no = Trρno

A2
for no = 3.

Schmidt one only because in this basis the reduced density ρA2 matrix is diagonal.

4.2. The Tree Tensor Network

Hereafter we focus on the specific tensor network that we have used for the calculation of the
partially transposed reduced density matrix, i.e. the Tree Tensor Networks (TTN). We only
briefly recall the basics of the method and for a more detailed explanation, we refer the reader
to Refs. [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68].

Representing the pure state |Ψ〉 as in Eq. (64) with a TTN implies that the dL coefficients
of the tensor Ti1i2···iL can be obtained as the result of the contraction of a network made by
tensors w (built with a smaller number of indices) forming a pattern whose shape reminds a
tree structure, as graphically shown in Fig. 6 for a lattice of L = 16 sites and tensors w which
have three indices. The TTN decomposition of Ti1i2···iL is given by a collection of tensors w,
hierarchically organized in layers labelled by τ , with τ = 0, . . . , N and (N+1) = log2 L. The
tensors w have both bond indices and physical indices. All the bond indices are contracted
while the L physical indices are left non contracted, so that they can be thought as the leaves
of the tree. In this way, the TTN encodes the dL complex coefficients Ti1i2···iL of the state in
Eq. (64).

In the example of Fig. 6, each elementary tensor w has at most one lower index (leg) α
and two upper indices (legs) β1 and β2 and for this reason is called a binary tree, which is the
only structure we will consider. At each level τ , we allow the indices βi to run from 1 to χτ .
Without loss of generality, the tensor w can be chosen to be isometric [57], i.e. ωω† = idχ,
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Figure 6. A state |Ψ〉 encoded by a tree tensor network involving 16 spins.

with idχ being the χ× χ identity tensor. Explicitly, this condition reads
χτ∑

β1,β2=1

(w)β1β2α (w†)α
′

β1β2
= δαα′ , τ = 0, . . . , N − 1 , α, α′ = 1, . . . , χτ+1 . (65)

The bottommost tensor of the network (the red one in Fig. 6), i.e. the only tensor at the layer
N , is different from the others. Indeed, since it does not possess any lower index, it represents
a normalized vector, namely∑

β1,β2

(w)β1β2(w†)β1β2 = 1 , τ = N . (66)

The properties (65) and (66), which are graphically shown on the right of Fig. 6, guarantee
that the state |Ψ〉 in (64) is normalized to 1, i.e. 〈Ψ|Ψ〉 = 1. These considerations can be
generalized to cases with elementary tensors having more upper and lower legs [58]. The
natural layered structure of the TTN is emphasized by the arrow on the left of Fig. 6. Each
layer is an isometric transformation that maps a lattice Lτ consisting of Lτ sites to a lattice
Lτ+1 with Lτ+1 = Lτ/2 sites. The physical lattice is L0, whose length L0 = L must be
a power of 2. The arrow on the left of Fig. 6 shows the direction along which the coarse-
graining of the lattice increases.

In order to describe the ground state of a local Hamiltonian H , the tensors of the
network should describe the state |Ψ〉 that minimizes 〈Ψ|H|Ψ〉. This can be achieved using
the (numerical) algorithm described in Ref. [58] whose computational cost is χ4

max, where
χmax = maxτ{χτ} is the largest bond dimension in the network. Recently, the TTN has
been combined with Monte Carlo sampling obtaining an algorithm whose cost scales with
χ3
max [70]. Each layer of the TTN encoding the ground state of H is a coarse-graining

transformation that selects those states of Lτ which are relevant for the low energy physics
of H at the scale of Lτ+1. When both the Hamiltonian and its ground state are translational
invariant, we can force the coarse graining transformations to map translational invariant states
on Lτ into translational invariant states on Lτ+1 by choosing the elementary isometries of the
layer τ to be all equal. This is represented by the color scheme adopted in Fig. 6, where all
the isometries belonging to the same layer have the same color.
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Figure 7. Quantities involved in the computation of the ρA through a TTN algorithm. Top: A
is made by two adjacent intervals. Bottom: A is made by two disjoint intervals.

4.3. Computing the reduced density matrix

Here we briefly describe how to compute the spectrum of the reduced density matrix ρA of a
subsystem A in a given spin chain [58, 40]. To this aim we should first notice that even when
the state |Ψ〉 is translational invariant, by construction the TTN does not enjoy this symmetry.
As a consequence, there are choices of the subsystem A for which the computation of the
spectrum of ρA is simpler. This happens when A is chosen to be one block (or several blocks
Ai) of spins of the original lattice which are coarse grained by the TTN to a single spin at
some level τ̃ < N . For example, given the structure in Fig. 6, it is easier to compute the
spectrum of ρA made by two spins when they belong to the same isometry, since they are
coarse grained to a single spin in one layer. This is due to the fact that, in order to compute
the spectrum of ρA, we do not need to build the full matrix ρA, but only a simplified matrix
ρ̃A which is related to ρA by similarity transformation, i.e.

ρA ≡ ΩA ρ̃A Ω†A . (67)

The matrix ΩA corresponds to the contraction of all the isometries ω involved in this coarse-
graining process and it transforms each original block Ai into a single spin (see Fig. 7). The
matrices ρ̃A are χmτ̃ × χmτ̃ , being χτ̃ the dimensions of the open bonds in ρ̃A and m is the
numbers of disjoint intervals composing A (in this paper we will limit have to m = 1 and
m = 2). Although ρ̃A and ρA have different dimensions (with ρ̃A smaller than ρA), they have
the same spectrum, because they are related by isometries.

Thus, we can focus on the computation of ρ̃A. In this process, we can identify three
groups of tensors: (i) the tensors whose support is fully contained in B; (ii) the tensors whose
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Figure 8. Quantities involved in the computation of the ρT2

A through a TTN algorithm. Top:
A is made by two adjacent intervals. Bottom: A is made by two disjoint intervals.

support is fully contained in A; (iii) the tensors whose support is shared between A and
its complement. The tensors (i) disappear from the calculation because they are contracted
through Eq. (65). The tensors (ii) just define ΩA and therefore they do not occur in the
computation of ρ̃A. Thus, only the tensors of type (iii) are needed for the computation of ρ̃A
which is achieved by contracting these tensors as shown in Fig. 7. Once the simplified tensor
network encoding ρ̃A has been contracted, its diagonalization provides the spectrum of ρA.
The upper bound of the computational cost of the whole algorithm is χ6

max.
Different block configurations (e.g. not optimal choices of A1 and A2 or odd Ai made by

odd number of spins) can also be obtained from the TTN. Naively, one could think that this
requires a higher computational cost, but, with some efforts, it is possible to envisage more
complicated computational strategies to reduce the cost to χ6

max, as discussed in Ref. [69] in
a different context.

4.4. Computing the partial transpose

The calculation of the spectrum of the partial transpose of ρT2A is very similar to the one
explained above for the spectrum of ρA. First we have to choose A as above, namely such
that each Ai becomes a single spin at level τ̃ . Then, we can identify three groups of tensors :
(I) the tensors fully contained into B; (II) the tensors fully contained into either A1 or A2 (not
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both); (III) the tensors connecting A1 and A2 or Ai and B. Notice that, while (I) is the same
as (i) above, the group (II) is different from (ii) and, consequently, also (III) is not (iii). Let us
focus on computing

ρT2A ≡ Ω′A ρ̃
(2)
A Ω′

†
A, (68)

where Ω′A is an isometric tensor (i.e. Ω′AΩ′†A = idχmτ̃ ). For the same reasons discussed in the
subsection 4.3, only the tensor of type (III) enter in the definition of ρ̃(2)

A .
When A is made by two disjoint blocks (see Fig. 8, bottom panel), the matrix ρ̃(2)

A is
given by ρ̃(2)

A = ρ̃T2A . For two adjacent blocks (see Fig. 8, top panel) this relation does not hold
because ρ̃A has only one incoming and one outgoing bond and therefore we cannot distinguish
between A1 and A2, which is necessary in order to perform the partial transposition. In this
case, indeed we have Ω′A 6= ΩA and the former reads

Ω′A = ΩA1 ⊗ ΩA2 . (69)

Comparing the top panel of Fig. 8 (center) to the top panel of Fig. 7 (center), we realize that
the yellow isometry connecting A1 to A2 does not occur in Ω′A, in contrast with ΩA. Indeed,
the yellow isometry appears in ρ̃(2)

A . We finally mention that the computational cost of all the
algorithm to determine the spectrum of ρT2A is upper-bounded by χ6

max.

5. Numerical results for the critical Ising chain in a transverse magnetic field

In this section we report numerical results for the transverse field Ising chain obtained by
means of the tree tensor network as explained in the previous section. We consider chains of
finite length L of the form L = 2M and the maximum size studied is L = 512. The χmax
for this simulation has been fixed to 128, guaranteeing a relative precision on the ground state
energy of about 10−8. We recall that with the TTN method, using a binary tree, we can quickly
access only subsystems of size ` = 2m with m < M integer, as it should be clear from the
previous section.

As a first calculation we considered a bipartite chain (i.e. B → ∅) and we checked
that the entanglement negativity reproduces the Rényi entropy S(1/2)

A2
, as it should. We do

not report explicit plots of these results, but they have been important numerical checks for
the numerics. The results for tripartite systems are reported and discussed in the following
subsections.

5.1. Two adjacent intervals.

We first consider the case of two adjacent intervals both of equal length ` in a periodic chain
of total length L so that all the results depend on the single parameter z ≡ `/L ∈ [0, 1/2]. In
terms of z and fixing c = 1/2, the CFT predictions in Eq. (29) can be written as

Tr(ρT2A )n = dn ×


(L/π sin(πz))−(ne/2−2/ne)/6(L/π sin(2πz))−(ne/2+1/ne)/12 ,

((L/π)3 sin2(πz) sin(2πz))−(no−1/no)/24,

(70)
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Figure 9. Entanglement for two adjacent intervals of equal length ` ≤ L/2 in a periodic
chain of length L. The quantity rn(z) in Eq. (72) as function of z = `/L compared with the
parameter free CFT prediction for n = 3 (left) and n = 4 (right).

while for the logarithmic negativity we have from Eq. (30)

E =
1

8
ln
[L
π

tan(πz)
]

+ cnst . (71)

Following Ref. [25], we can construct quantities in which the dependence on the non-
universal parameters dn and also the universal dependence on L cancel. To this aim, it is
enough to divide Tr(ρT2A )n by the value it assumes at a given fixed `, e.g. ` = L/4, i.e. by
considering the quantities

rn(z) = ln
Tr(ρ

TA2=`

A )n

Tr(ρ
TA2=L/4

A )n
, (72)

whose parameter free CFT predictions for n even and odd are

rne =
1

12

( 2

ne
− ne

2

)
ln(2 sin2(πz))− 1

12

(ne
2

+
1

ne

)
ln(sin(2πz)),

rno =
1

24

( 1

no
− no

)
ln(2 sin2(πz) sin(2πz)). (73)

The numerical results for these quantities are shown in Fig. 9 for n = 3 and n = 4. The
agreement between the numerical data and the CFT predictions is perfect for all considered
values of L, showing that finite size corrections are very small for these quantities. Notice that
for z = 1/2 we have a bipartite system (i.e. B → ∅) and the equations in (73) obviously do
not work since the data are described by Eqs. (26) and (27), reflecting the fact that the limit
z → 1/2 is approached in a non-uniform way (i.e. the limits z → 1/2 and N → ∞ do not
commute as obvious).

For the logarithmic negativity, we can analogously define the subtracted quantity

ε(z) = E(`, L)− E(L/4, L) =
1

8
ln[tan(πz)] , (74)

and again the r.h.s. is a parameter free CFT prediction. In Fig. 10, this prediction is compared
with the numerical data and the agreement is extremely good except at z = 1/2 where the
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Figure 10. Entanglement negativity for two adjacent intervals of equal length ` < L/2 in a
periodic chain of length L: Subtracted negativity ε(z) in Eq. (74) compared with the parameter
free CFT prediction.

numerical data are described by the bipartite formula (28). Notice that finite size scaling
corrections are even smaller than those for the quantities rn(z) in Fig. 9.

5.2. Two disjoint intervals

In this section we study the most interesting and difficult situation of two disjoint intervals for
which an accurate numerical study of the negativity has been already performed by means of
density matrix renormalization group in Ref. [15], but before the systematic CFT derivation
in Refs. [24, 25]. Here we first consider the traces Tr(ρT2A )n and Tr(ρA)n. Indeed, although
standard Rényi entropies given by TrρnA have been already studied in Refs. [30, 38, 39], they
show large corrections to the scaling which is worth recalling before embarking in the analysis
of Tr(ρT2A )n.

In order to determine numerically the function Fn(x), we calculate for several finite
chains the quantity

F lat
n (x) =

TrρnA1∪A2

TrρnA1
TrρnA2

(1− x)(n−1/n)/12 , (75)

which in the scaling limit should converge to the CFT prediction Fn(x). In a finite system
of length L, the four-point ratio x must be rewritten by replacing all distances by the
corresponding chordal lengths. For two intervals of the same length ` at distance r this reads

x =

(
sin(π`/L)

sin(π(`+ r)/L)

)2

. (76)

The numerical data for the function F lat
n (x) are reported in Fig. 11 for n = 3, 4, 5

as function of x for various values of ` (i.e. different values of L according to Eq.
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Figure 11. Numerical results for F lat
n (x) as function of x for different values of ` for n = 3

(top left), n = 4 (top right), and n = 5 (bottom). The data are extrapolated to ` → ∞ by
means of Eq. (78). The extrapolated data (topmost set of data) are in excellent agreement with
the CFT prediction (continuous line).

(76)). It is evident that strong scaling corrections affect the data, as known from previous
analyses [38, 39]. It has been argued on the basis of the general CFT arguments [72], and
shown explicitly in few examples [71, 73, 74] both analytically and numerically, that the
entanglement entropies (hence also the function F lat

n (x)), display ‘unusual’ corrections to the
scaling which, at the leading order, can be effectively taken into account by the scaling ansatz

F lat
n (x) = Fn(x) + `−1/nfn(x) + . . . . (77)

However, the corrections to the scaling in Fig. 11 cannot be captured by this simple
ansatz because subleading corrections to the scaling become more and more important with
increasing the value of n. Indeed, corrections of the form `−m/n for any integer m are know
to be present [73, 39, 40]. Thus the most general finite-` ansatz is

F lat
n (x) = Fn(x) +

f
(1)
n (x)

`1/n
+
f

(2)
n (x)

`2/n
+
f

(3)
n (x)

`3/n
. . . . (78)

The effect of the subleading corrections is enhanced by the fact the amplitude functions f (i)
n (x)

have different signs determining a non-monotonic behavior in ` (in particular, we have that
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Figure 12. Numerical results for Glat
n (x) as function of y for different values of ` for n = 3

(top left), n = 4 (top right), and n = 5 (bottom). The data are extrapolated to ` → ∞ by
means of Eq. (80). The extrapolated data (topmost set of data) are in excellent agreement with
the CFT prediction (continuous line).

f
(1)
n is always negative, while f (2)

n and f (3)
n are always positive, as discussed in Ref. [40]). In

order to have an accurate extrapolation to ` → ∞, for any n we consider all the corrections
above up to order O(`−3/n) and we get the extrapolations reported in Fig. 11. The error bars
are estimated by studying the stability of the extrapolation with respect to the number of sizes
` included in the fit. The overall agreement of the extrapolated points with the CFT prediction
is excellent for all values of x and for the three considered values of n, reproducing the results
in Refs. [38, 39].

After having summarized the corrections to the scaling for the entanglement entropies
we can turn to the integer powers of the partial transpose in which we are interested here. In
analogy with Eq. (75) we can define the lattice ratio

Glat
n (y) =

Tr(ρT2A1∪A2
)n

TrρnA1
TrρnA2

(1− y)(n−1/n)/12 , (79)

that in the limit ` → ∞ is expected to converge to the CFT scaling function Gn(y) given by
Eq. (53). In the case at hand, the numerical value of y is given by the same expression in Eq.
(76) for x. The numerical data for Glat

n (y) are reported in Fig. 12 for n = 3, 4, 5 as function
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Figure 13. Numerical results for Rlat
n (x) as function of y for different values of ` for n = 3

(top left), n = 4 (top right), and n = 5 (bottom). The data are extrapolated to ` → ∞ by
means of Eq. (82). The extrapolated data (topmost set of data) are in excellent agreement with
the CFT prediction (continuous line).

of y for various values of `. Also in this case, large scaling corrections are present. These are
expected to be of the same form as for F lat

n (x), i.e. described by the ansatz

Glat
n (y) = Gn(y) +

g
(1)
n (y)

`1/n
+
g

(2)
n (y)

`2/n
+
g

(3)
n (y)

`3/n
. . . . (80)

We repeat exactly the same analysis as for F lat
n (x) to extrapolate the data to `→∞. As above,

we find that g(1)
n is always negative, while g(2)

n and g(3)
n are positive. Using this observation, we

extrapolate to `→∞, obtaining the results (with error bars) reported in Fig. 12. These points
agree very well with the CFT prediction in Eq. (53) for the three values of n considered.

It is evident from the comparison of Figs. 11 and 12 that the functionsGlat
n (y) and F lat

n (y)

are very close to each other and the logarithmic negativity is instead only determined by the
small differences between the two. Thus, as already discussed in Sec. 3, a practical way to
have more accurate tests of the CFT predictions which are sensitive to the small differences
between the two universal functions Gn(y) and Fn(y) is to consider the ratio Rn(y) between
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Figure 14. Logarithmic negativity for two intervals of equal length ` at distance r as function
of the four point ratio y.

the two and the analogous lattice quantity

Rlat
n (y) ≡ Glat

n (y)

F lat
n (y)

, (81)

which in the limit ` → ∞ converges to the CFT prediction in Eq. (54). The numerical data
for Rlat

n (y) are reported in Fig. 13 for n = 3, 4, 5 as function of y for different values of `.
Once again, large scaling corrections are present and there are no accidental cancellations in
the ratio, so that they are again expected to be of the same form as for F lat

n (x), i.e. described
by the ansatz

Rlat
n (y) = Rn(y) +

r
(1)
n (y)

`1/n
+
r

(2)
n (y)

`2/n
+
r

(3)
n (y)

`3/n
. . . . (82)

We repeat again the same analysis as for F lat
n (x) to extrapolate the data to ` → ∞ and the

results (with error bars) are reported in Fig. 13. Unlike f (j)
n (x)’s and g(j)

n (y)’s, in this case the
signs of r(j)

n (y)’s are not defined (indeed r(j)
n ’s can be written as complicated combinations of

f
(j)
n ’s and g(j)

n ’s). For this reason, the error bars in Fig. 13 are larger than the ones in Fig. 11
and in Fig. 12. It is evident that the extrapolated points in Fig. 13 agree very well with the
CFT prediction for the three considered values of n. It is very remarkable that the numerical
calculations are accurate enough to detect the small differences of these ratios from 1 (at least
for n = 3 and n = 4, while for n = 5 the estimated error is too large to distinguish the
extrapolation from one).

Finally we turn to the study of the logarithmic negativity E . The numerical data as a
function of y are reported in Fig. 14 for several values of `. In the figure all data collapse on
a single curve, with some tiny corrections to the scaling for the smaller values of `, which
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however are much smaller than the scaling corrections for the ratios Rn(y), as evident from
a comparison between Fig. 14 and Fig. 13. This is similar to what has been observed for
the free boson in Ref. [25] and recalls the similar effect for the entanglement entropies both
for one and two intervals where the unusual corrections to the scaling are suppressed for the
von Neumann entropy for periodic boundary conditions [71, 73]. It would be then interesting
to study the negativity for Ising chains with open boundary conditions to check whether the
unusual corrections are enhanced (analogously to Friedel oscillations [75, 76]). On the more
theoretical side, we have not been able to find the analytic continuation of Rne(y) to ne → 1

which would allow a strict check of the numerical data in Fig. 14. However, the data for
y � 1 are very close to zero in agreement with the general result [25] that the negativity
should fall off faster than any power with the separation of the intervals.

6. Conclusions

In this manuscript we presented a systematic study of the entanglement negativity and of
the traces of integer powers of the partial transpose of the reduced density matrix in the
critical Ising chain. In order to have an accurate numerical evaluation of these quantities we
adapted the tree tensor network technique to the calculation of the eigenvalues of the partially
transposed reduced density matrix. For two adjacent intervals we found perfect agreement
with the model independent CFT predictions in Refs. [24, 25]. For two disjoint intervals
we first derived a CFT prediction for Tr(ρT2A1∪A2

)n which later has been compared with the
numerical data taking into account the finite size corrections induced by the finite length of
the blocks. Unfortunately, in order to determine the logarithmic negativity, it remains a hard
open problem to find the analytic continuation to ne → 1 of these traces. This reflects the
similar problem found for the standard entanglement entropies, where explicit formulas for
TrρnA1∪A2

have been obtained for some models [29, 30], but they have not been analytically
continued to n → 1, preventing us to write down a close formula for the von Neumann
entropy.
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