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Entanglement entropy and negativity of disjoint

intervals in CFT: Some numerical extrapolations

Cristiano De Nobili, Andrea Coser and Erik Tonni

SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy.

Abstract. The entanglement entropy and the logarithmic negativity can be computed

in quantum field theory through a method based on the replica limit. Performing these

analytic continuations in some cases is beyond our current knowledge, even for simple

models. We employ a numerical method based on rational interpolations to extrapolate

the entanglement entropy of two disjoint intervals for the conformal field theories given

by the free compact boson and the Ising model. The case of three disjoint intervals

is studied for the Ising model and the non compact free massless boson. For the latter

model, the logarithmic negativity of two disjoint intervals has been also considered. Some

of our findings have been checked against existing numerical results obtained from the

corresponding lattice models.
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1. Introduction

Entanglement measures have been the focus of an intense research activity in condensed

matter theory, quantum information, quantum field theory and quantum gravity during

the last decade. The most celebrated one among them is the entanglement entropy, which

measures the entanglement between two complementary parts when the whole system is

in a pure state [1]. Considering a quantum system in its ground state |Ψ〉, or in any

other pure state, and assuming that its Hilbert space is factorized as H = HA ⊗ HB,

the A’s reduced density matrix is defined as ρA ≡ TrBρ, being ρ = |Ψ〉〈Ψ| the density

matrix of the whole system. The reduced density matrix ρA, which characterizes a mixed

state, is normalized by requiring that TrAρA = 1. The entanglement entropy SA is the

Von Neumann entropy associated to ρA. Analogously, one can introduce SB and, since ρ

corresponds to a pure quantum state, we have that SB = SA. In quantum field theory,

the entanglement entropy is usually computed by employing the replica limit, namely

SA ≡ −Tr(ρA log ρA) = lim
n→1

S
(n)
A , (1.1)

where S
(n)
A are the Rényi entropies, which are defined as follows

S
(n)
A ≡

log Tr(ρnA)

1− n . (1.2)

From this expression and the normalization condition for ρA, it is straightforward to find

that SA = −∂nTr(ρnA)|n=1. Typically, S
(n)
A is known for positive integers n and therefore

it must be analytically continued to real values of n in order to perform the replica limit

(1.1).

In quantum field theory, the entanglement entropy is a divergent quantity when

a → 0, being a the UV cutoff. In many cases the coefficient of the leading divergence

is proportional to the area of ∂A and this property is known as the area law for the

entanglement entropy. This rule has some important exceptions and the main one is a

generic two dimensional conformal field theory (CFT) at zero temperature. Considering

an infinite line and an interval of length ` as the subsystem A, we have that ∂A is made

by the two endpoints of the interval and it is well known that SA = (c/3) log(`/a)+const,

where c is the central charge of the model [2, 3] (see also [4] for a review).

An important configuration to study is when the subsystem A = A1 ∪A2 is made by

two disjoint spatial regions A1 and A2 (see Fig. 1, top panel, for one spatial dimension).

In this case, it is convenient to introduce the mutual information, which is defined as

IA1,A2 ≡ SA1 + SA2 − SA1∪A2 = lim
n→1

I
(n)
A1,A2

, (1.3)

where in the last step we have emphasized that IA1,A2 can be found as the replica limit

of the following combination of Rényi entropies

I
(n)
A1,A2

≡ S
(n)
A1

+ S
(n)
A2
− S(n)

A1∪A2
=

1

n− 1
logR2,n , R2,n ≡

TrρnA1∪A2

TrρnA1
TrρnA2

. (1.4)
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A1B u1 v1 u2 u3v2 v3A2 A3BB B

Tn Tn TnT̄n T̄n T̄n

A1B u1 v1 u2 v2A2 BB

Tn TnT̄n T̄n

A1B u1 v1 u2 v2A2 BB

Tn TnT̄n T̄n

Figure 1. The configurations of intervals considered. Top and middle: the

entanglement between a subsystem A made by either two (top) or three (middle) disjoint

intervals and the remainder B. Bottom: the entanglement between two disjoint intervals

A1 and A2 embedded in a larger system in its ground state made by A1 ∪ A2 and the

reminder B. In CFT correlation functions of branch-point twist fields Tn and T̄n placed at

the endpoints of the intervals must be computed to get either the entanglement entropy

(top and middle panels) or logarithmic negativity (bottom panel) through the proper

replica limit.

The subadditivity of the entanglement entropy guarantees that IA1,A2 > 0 and the leading

divergence of the different terms cancels in the combination (1.3) when the area law holds.

Moreover, the mutual information (1.3) could contain more physical information with

respect to the entanglement entropy of a single region. For instance, in two dimensional

CFTs, while SA of a single interval depends only on the central charge, the mutual

information IA1,A2 encodes all the CFT data of the model (conformal dimensions of the

primaries and OPE coefficients) [5, 6, 7, 8, 9, 10, 11]. The mutual information has been

studied also through the holographic approach [12, 13].

Taking the limit n → 1 in (1.1) and (1.3) in many interesting cases is highly non

trivial. For instance, the analytic continuation of the Rényi entropies of a single interval for

the excited states given by the primaries [14, 15] has been studied in [16]. For the excited

states given by the descendants a closed expression for all the Rényi entropies is still not

known [17]. Interesting features have been observed by considering the Rényi entropies

of a single interval in critical one dimensional models for real n but no singularities have

been found [18].

In this paper we address the case of disjoint intervals for some models in one spatial

dimension. The Rényi entropies for a subsystem A made by N disjoint intervals (see

Fig. 1, middle panel for N = 3) are given by the partition function of the model on a

Riemann surface of genus g = (N −1)(n−1). These partition functions can be computed

for some simple CFTs like the massless compact boson and the Ising model [7, 8, 19] but

finding the corresponding analytic continuations in the most generic case is still beyond
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our knowledge. For two spatial dimensions, already the simple case of the entanglement

entropy of a disk could lead to a difficult replica limit [20].

Another interesting quantity to consider is the logarithmic negativity, which is a

measure of entanglement for bipartite mixed states [21]. Let us consider a pure or mixed

state characterized by the density matrix ρ acting on a bipartite Hilbert spaceH = H1⊗H2

and the arbitrary bases |e(1)
i 〉 and |e(2)

j 〉 for H1 and H2 respectively. The important object

to introduce is the partial transpose of ρA1∪A2 with respect to one of the two parts.

Considering e.g. the partial transposition with respect to the second part, the matrix

element of ρT2
A1∪A2

is defined as follows

〈e(1)
i e

(2)
j |ρT2

A1∪A2
|e(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA1∪A2|e(1)

k e
(2)
j 〉 . (1.5)

Then, the logarithmic negativity is given by

E ≡ log Tr|ρT2
A1∪A2

| , (1.6)

where Tr|ρT2
A1∪A2

| is the trace norm of the hermitean matrix ρT2
A1∪A2

, which is the sum of the

absolute values of its eigenvalues. Taking into account the traces Tr(ρT2
A1∪A2

)n of integer

powers of ρT2
A1∪A2

, it is not difficult to observe that a parity effect occurs. In particular,

considering the sequence of the odd powers n = no and the one of the even powers n = ne,

the logarithmic negativity (1.6) can be found through the following replica limit [22, 23]

E = lim
ne→1

log Tr
(
ρT2
A1∪A2

)ne
. (1.7)

Notice that for no → 1 one simply recovers the normalization condition TrρT2
A1∪A2

= 1. For

a bipartite pure state a relation occurs between Tr(ρT2
A1∪A2

)n and the Renyi entropies which

tells us that the logarithmic negativity reduces to the Rényi entropy of order n = 1/2.

However, we are interested in the logarithmic negativity of mixed states and the reduced

density matrix is an important example. Thus, given a quantum system in a pure state and

considering the reduced density matrix ρA1∪A2 of two adjacent or disjoint spatial regions,

while SA1∪A2 measures the entanglement between A1 ∪A2 and the complementary region

B, the logarithmic negativity in (1.6) measures the entanglement between A1 and A2 (see

Fig. 1, bottom panel, for one spatial dimension).

In two dimensional CFTs, the logarithmic negativity has been studied in [22, 23]

for zero temperature, at finite temperature [24] and also out of equilibrium (the time

evolution after a global quench [25] and after a local quench [26] have been considered).

For two disjoint intervals at zero temperature Tr(ρT2
A1∪A2

)n must be computed case by case

because it encodes all the CFT data. The replica limit (1.7) for these expressions turns

out to be difficult to compute, like for the mutual information. Indeed, analytic results

have not been found for all the possible configurations of intervals.

In this paper we numerically extrapolate the entanglement entropy and the

logarithmic negativity through their replica limits, which are respectively (1.1) and (1.7),

for simple two dimensional CFT models and for configurations of intervals whose analytic

continuations for SA and E are not known. In particular, for the free massless boson,



Extrapolating entanglement entropy and negativity of disjoint intervals in CFT 5

both compactified and in the decompactification regime, and for the Ising model, TrρnA are

known analytically for a generic number N of disjoint intervals [7, 8, 19], while Tr(ρT2
A1∪A2

)n

is known analytically for two disjoint intervals [22, 23, 27, 28]. We consider some of these

models for two or three disjoint intervals (only some configurations in the latter case)

and employ a numerical method based on rational interpolations to get the corresponding

entanglement entropy or logarithmic negativity. This extrapolating method has been first

suggested in this context by [20] (see [29] for other numerical methods). We checked our

extrapolations against numerical results found through the corresponding lattice models

whenever they are available in the literature, finding very good agreement; otherwise the

method provides numerical predictions that could be useful benchmarks for future studies.

The paper is organized as follows. In §2 we extrapolate the mutual information for the

compact boson and for the Ising model comparing the results with the corresponding ones

found for the XXZ spin chain [6] and the critical Ising chain [9]. In §3 the entanglement

entropy of three disjoint intervals is considered for the non compact boson and for the

Ising model. While the extrapolations for the former model can be checked against exact

results for the periodic harmonic chain, there are no results in the literature about the

entanglement entropy of three disjoint intervals for the critical Ising chain to compare

with. In §4 we focus on the logarithmic negativity of two disjoint intervals for the non

compact boson. The appendix §A contains a discussion about the rational interpolation

method that has been employed throughout the paper.

2. Mutual information

In this section, after a quick review of the computation of I
(n)
A1,A2

in CFT, we focus on the

compactified boson and on the Ising model because I
(n)
A1,A2

is known analytically in these

cases. The numerical extrapolation of the analytic expressions for I
(n)
A1,A2

to n→ 1 leads to

the mutual information, which can be compared with the corresponding numerical results

found from the XXZ spin chain and the Ising chain in a transverse field.

Let us consider a two dimensional CFT with central charge c at zero temperature.

As first discussed in [3], TrρnA for a subsystem A made by N disjoint intervals can be

computed as the 2N -point correlation function of branch-point twist fields Tn and T̄n
placed at the endpoints of the intervals in an alternate sequence (see [30] for integrable

quantum field theories). These fields have been largely studied in the early days of string

theory [31] and their crucial role for the entanglement computations has been exploited

during the last decade.

When the subsystem A is a single interval A = [u, v] with length ` = |u− v| on the

infinite line, TrρnA is given by the two-point function of branch-point twist fields [3]

TrρnA = 〈Tn(u)T̄n(v)〉 =
cn

|u− v|2∆n
, ∆n =

c

12

(
n− 1

n

)
, (2.1)

where ∆n are the scaling dimensions of the twist fields Tn and T̄n, being cn a non universal

constant such that c1 = 1. Taking the replica limit (1.1) of (2.1) is straightforward and
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one gets the well known result for the entanglement entropy of an interval in the infinite

line [2]

SA =
c

3
log(`/a) + c′1 , (2.2)

where a is a UV cutoff. Thus, the entanglement entropy and the Rényi entropies for a

single interval depend only on the central charge c of the model.

When the subsystem A = A1 ∪ A2 is made by two disjoint intervals A1 = [u1, v1]

and A2 = [u2, v2] (with the endpoints ordered as u1 < v1 < u2 < v2), the Rényi entropies

encode the full data of the CFT because TrρnA is obtained as a four-point function of twist

fields [7, 8]. By global conformal invariance we have that

TrρnA = 〈Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)〉 (2.3)

= c2
n

[
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(u2 − v1)(v2 − u1)

]2∆n

F2,n(x) (2.4)

where the four-point ratio reads

x =
(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
, (2.5)

and x ∈ (0, 1). Since TrρA = 1 holds, F2,1(x) = 1 identically. The function F2,n(x)

depends on the details of the model and therefore it must be computed case by case.

From (2.1) and (2.3), one gets that (1.4) for a CFT is given by

I
(n)
A1,A2

= − (n+ 1)c

6n
log(1− x) + Ĩn(x) , Ĩn(x) ≡ 1

n− 1
log[F2,n(x)] . (2.6)

Since the mutual information IA1,A2 is the limit n → 1 of (2.6), as stated in (1.3), it is

the function of x given by

IA1,A2 = − c

3
log(1− x) + Ĩ1(x) , Ĩ1(x) ≡ ∂nF2,n(x)

∣∣
n=1

. (2.7)

The explicit expression of F2,n(x) is known for some simple models like the free

compact boson and the Ising model. In these cases F2,n(x) is written in terms of the

Riemann theta function, which is defined as follows [32]

Θ[e](z|Ω) ≡
∑
m ∈ Zp

exp
[

i(m+ ε)t · Ω · (m+ ε) + 2πi(m+ ε)t · (z + δ)
]
, (2.8)

where Ω is a p × p symmetric complex matrix with positive immaginary part and

z ∈ Cp/(Zp + ΩZp) is a complex p dimensional vector. The vector et ≡ (εt, δt) is

the characteristic of the Riemann theta function (2.8), being ε and δ two p dimensional

vectors whose elements are either 0 or 1/2. The characteristic provides the parity of (2.8)

as function of z, which is the same one of the integer number 4εt · δ, indeed

Θ[e](−z|Ω) = (−1)4ε·δ Θ[e](z|Ω) . (2.9)

It is not difficult to realize that there are 2p−1(2p+1) even characteristics and 2p−1(2p−1)

odd ones. Since in this paper we always deal with z = 0, we find it convenient to lighten
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the formulas by introducing the notation Θ[e](Ω) ≡ Θ[e](0|Ω) and Θ(Ω) ≡ Θ[0](Ω). The

Riemann theta functions throughout this paper have been evaluated by using Mathematica

through the built-in function SiegelTheta.

As a first example, we consider the free boson compactified on a circle of radius r,

which has c = 1. The corresponding F2,n(x) for any integer n > 2 is given by [7]

F2,n(x) =
Θ(ητ2) Θ(τ2/η)

Θ(τ2)2
, (2.10)

where η ∝ r2 and τ2 = τ2(x) is the (n − 1) × (n − 1) purely imaginary period matrix of

the Riemann surface which underlies the computation of TrρnA, whose elements read

(τ2)ij ≡ i
2

n

n−1∑
k=1

sin(πk/n)
Fk/n(1− x)

Fk/n(x)
cos[2π(i− j)k/n] , (2.11)

where Fs(x) ≡ 2F1(s, 1 − s; 1;x), being 2F1 the hypergeometric function. Notice that

F2,n(0) = 1. Moreover, F2,n(x) is invariant under η → 1/η and x → 1 − x separately.

The latter symmetry is related to the well known property SA = SB of the entanglement

entropy for pure states in the case of A made by two disjoint intervals. It is worth

remarking that (2.10) holds for x ∈ (0, 1). Indeed, when x ∈ C and x /∈ (0, 1) the

corresponding expression is slightly more complicated [23] and it enters in the computation

of the logarithmic negativity for the compact boson.

In order to find the analytic expression of the mutual information for the compact

boson, one has to compute Ĩ1(x) in (2.7) with F2,n(x) given by (2.10). Since performing

this analytic computation is still an open problem, we employ the numerical extrapolation

method suggested by [20] (see §A) to get a result that can be compared with the numerical

data found in [6] from the XXZ spin chain.

Before entering in the numerical analysis, it is worth discussing the decompactification

regime, which can be addressed analytically. The non compact boson corresponds to the

regime η � 1 (or η � 1 because of the symmetry η ↔ 1/η) in the above expressions. In

[7] it has been found that, for η � 1, the terms Ĩ1(x) in (2.7) becomes

Ĩ1(x)
∣∣
η�1

= −1

2
log η +

D(x) +D(1− x)

2
, D(x) ≡ −

∫ i∞

−i∞

dz

i

πz

sin(πz)
log[Fz(x)] .

(2.12)

The Hamiltonian of the periodic XXZ spin 1/2 chain in a magnetic field h reads [33]

HXXZ ≡
L∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1 + ∆SzjS

z
j+1

)
− h

L∑
j=1

Szj , (2.13)

where Saj = σaj /2, being σaj the standard Pauli matrices acting on the spin at the j-th site.

The chain has L sites and ∆ is the anisotropy. The mutual information for this lattice

model has been computed in [6] by direct diagonalization for L 6 30. When h = 0 and

−1 < ∆ 6 1 the model in the continuum is described by the c = 1 compact boson with
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Figure 2. Mutual information for the XXZ model. The data points are extracted from

[6] and the coloured curves are obtained from the rational interpolations of the analytic

expressions (2.6) and (2.10) for the compact boson with the values of (p, q) indicated in

the left panel. The dashed grey lines correspond to the decompactification regime, where

the analytic continuation (2.12) is known. Left: Ĩ1, defined in (2.7), as function of x for

various values of η. Right: the mutual information IA1,A2 as function of η for two fixed

values of x.

η = 1 − (1/π) arccos ∆, while for h 6= 0 an explicit formula providing η does not exist

and therefore it must be found numerically. The CFT formulas reviewed above can be

applied also to the case of a finite system of length L with periodic boundary conditions

by employing a conformal mapping from the cylinder to the plane. As final result, the

CFT formulas for this case are obtained by considering the expressions for the infinite

line and replacing any length `i with the corresponding chord length (L/π) sin(π`i/L) [3].

Let us consider the mutual information of the compactified boson as first example

of our extrapolation method. For any fixed value of x, we have that I
(n)
A1,A2

are given

analytically by (2.6) and (2.10) for any positive integer n > 2, while the corresponding

analytic continuation to n = 1 is estimated by performing a numerical extrapolation of the

known data through a rational function. The latter one is characterized by two positive

integer parameters p and q, which are the degrees of the numerator and of the denominator

respectively. As explained in §A, to perform a rational interpolation characterized by the

pair (p, q) we need at least p+ q + 1 known data. An important technical difficulty that

one encounters is the evaluation of the Riemann theta functions for large genus period

matrices, i.e. for high values of n. Given the computational resources at our disposal, we

were able to compute Riemann theta functions containing matrices whose size is at most

12. For the compactified boson this corresponds to nmax = 11 and therefore p+q+1 6 10.

In Fig. 2 we compared our numerical extrapolations of the analytic expressions of [7]

with the numerical data for the XXZ spin chain computed in [6] by exact diagonalization,
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finding a very good agreement. In the left panel Ĩ1 is shown as function of the four-

point ratio x for different values of the parameter η, while in the right panel the mutual

information IA1,A2 is shown as function of η for the two fixed configurations of intervals

given by `1 = `2 = d1 = d2 = L/4 (x = 0.5) and 2`1 = 2`2 = d1 = d2 = L/3 (x = 0.25),

being L the total length of the periodic system. All the rational interpolations in the

figure exhibit a good agreement with the numerical data, despite the low values of p

and q. Increasing these parameters, a better approximation is expected but the result is

already stable for these values and we provided two rational interpolations for each curve

as a check. Some rational interpolations may display some spurious bahaviour in some

regimes of x. As discussed in detail in §A, this possibility increases with q. These results

have been discarded and we showed only rational interpolations which are well-behaved

in the whole domain x ∈ (0, 1). Notice that rational interpolations that are well-behaved

for some η and x could display some bad behaviour changing them. Thus, the values

of (p, q) must be chosen case by case. In Fig. 2 the dashed grey lines are obtained from

the analytic continuation (2.12) found in [7], which corresponds to the decompactification

regime and therefore it reproduces the numerical data from the XXZ chain and from the

rational interpolations only for small η, as expected.

Another important case where the Rényi entropies of two disjoint intervals have been

found analytically is the Ising model [8]. The Hamiltonian of the one dimensional spin

chain defining the Ising model in a transverse field is

HIsing ≡ −
L∑
j=1

(
σxj σ

x
j+1 + hσzj

)
, (2.14)

where periodic boundary conditions are imposed. This model has a quantum critical

point at h = 1 and in the continuum it is a free Majorana fermion with central charge

c = 1/2. The Rényi entropies for two disjoint intervals on the spin chain (2.14) have been

studied in [9] through a Tree Tensor Network algorithm [34] and in [10] through the exact

solution of the model in terms of free Majorana fermions. The former method allowed to

find also the mutual information.

As for the Rényi entropies for two disjoint intervals in corresponding CFT, by

employing known results about bosonization on higher genus Riemann surfaces for c = 1

models [31], the expression of F2,n(x) for the Ising model can be written in terms of

Riemann theta functions (2.8) evaluated for the period matrix τ2 in (2.11). In particular,

TrρnA1∪A2
for the Ising model is given by (2.4) with c = 1/2 and [8]

F2,n(x) =

∑
e |Θ[e](τ2)|

2n−1 |Θ(τ2)| , (2.15)

where the sum is performed over all the possible characteristics et ≡ (εt, δt), being ε and

δ two n− 1 dimensional vectors whose elements are either 0 or 1/2. Let us remark that

in the sum (2.15) only the 2n−2(2n−1 + 1) even characteristics occur. Thus, the mutual

information for the Ising model is (2.7) with F2,n(x) given by (2.15). Similarly to the
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Figure 3. Extrapolations for −Ĩ1, defined in (2.7), as function of x for the Ising model.

The data points are extracted from [9] while the coloured curves are obtained through

the rational interpolations with (p, q) indicated.

case of the compact boson, also for the Ising model we are not able to compute Ĩ1(x)

analytically and therefore we perform a numerical extrapolation through the rational

interpolation method described in §A.

In Fig. 3 we show −Ĩ1(x) as function of x ∈ (0, 1), which can be found by considering

two disjoint intervals of equal length, and compare the numerical data obtained in [9]

with the curve found through the numerical extrapolation of the corresponding formula

containing (2.15) through rational interpolations. Since (2.15) contains Riemann theta

functions, we cannot consider high values for n, like for the compact boson. Moreover, in

this case one faces an additional complication with respect to the compact boson because

in (2.15) the sum over all the even characteristics occurs and the number of terms in

the sum grows exponentially with n. Given our computational power, we have computed

the Rényi entropies up to n = 7 and in Fig. 3 we show the rational interpolations found

by choosing three different pairs (p, q) which are well-behaved among the available ones.

Since the curves coincide, the final result is quite stable and, moreover, the agreement

with the numerical data found in [9] through the Tree Tensor Network is very good.
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3. Three disjoint intervals

In this section we partially extend the analysis done in §2 by considering the case of three

disjoint intervals. After a brief review of the analytic results known for a generic number

N of disjoint intervals, we focus on N = 3 and perform some numerical extrapolations

for the non compact boson and for the Ising model.

Given a the spatial subsystem A = ∪Ni=1Ai made by the union of the N disjoint

intervals A1 = [u1, v1], . . . , AN = [uN , vN ], a generalization of (1.4) to N > 2 reads [19]

I
(n)
A1,··· ,AN

≡ (−1)N

n− 1
logRN,n , RN,n ≡

N∏
p=1

∏
σN,p

(
TrρnσN,p

)(−1)N−p

, (3.1)

where σN,p denotes the union of a generic choice of 1 6 p 6 N intervals among the N

ones. It is straightforward to observe that the analytic continuation n→ 1 of (3.1), i.e.

IA1,...,AN
≡ lim

n→1
I

(n)
A1,...,AN

, (3.2)

provides a natural generalization to N > 2 of the mutual information (1.3). We find it

useful to normalise the quantities introduced in (3.1) and (3.2) by themselves evaluated

for some fixed configuration of intervals, namely

Rnorm

N,n ≡
RN,n

RN,n

∣∣
fixed

, I sub

N ≡ IN − IN
∣∣
fixed

= lim
n→1

Rnorm

N,n , (3.3)

where we have adopted the shorthand notation IN ≡ IA1,...,AN
.

In two dimensional CFTs, the expression of TrρnA for N disjoint intervals can be

written as a 2N -point function of twist fields [3, 4]. Similarly to the two intervals case,

the global conformal invariance cannot fix the dependence on ui and vi. In particular,

given the endpoints u1 < v1 < · · · < uN < vN , one can employ the following conformal

map

wN(z) =
(u1 − z)(uN − vN)

(u1 − uN)(z − vN)
, (3.4)

which sends u1 → 0, uN → 1 and vN →∞. The remaining endpoints are mapped into the

2N − 3 four-point ratios x1 = wN(v1), x2 = wN(u2), x3 = wN(v2), . . . , x2N−3 = wN(vN−1)

which are invariant under SL(2,C). Notice that xj ∈ R and the order is preserved, namely

0 < x1 < x2 < · · · < x2N−3 < 1.

The global conformal invariance allows us to write TrρnA for N disjoint intervals as

follows [4]

TrρnA = 〈
N∏
i=1

Tn(ui)T̄n(vi)〉 = cNn

∣∣∣∣∣
∏

i<j(uj − ui)(vj − vi)∏
i,j(vj − ui)

∣∣∣∣∣
2∆n

FN,n(x) , (3.5)

where i, j = 1, . . . , N , the scaling dimension ∆n is given in (2.1) and x is the vector whose

elements are the 2N − 3 four-point ratios introduced above. It is worth remarking that
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FN,n(x) encodes the full operator content of the model and therefore its computation

depends on the features of the model. From (3.1) and (3.5), one finds that RN,n and Rnorm
N,n

in CFT become respectively [19]

RN,n(x) =
N∏
p= 2

∏
σN,p

[
Fp,n(xσN,p)

](−1)N−p

, Rnorm

N,n (x) =
RN,n(x)

RN,n(xfixed)
, (3.6)

where xσN,p is the vector made by the 2p−3 four-point ratios obtained with the endpoints

of the p intervals selected by σN,p.

The function FN,n(x) for the compactified boson has been studied in [19] by

generalizing the construction of [7] and, again, it is written in terms of the Riemann

theta function (2.8). For N > 2 disjoint intervals the Riemann surface occurring in the

computation of TrρnA has genus g = (N − 1)(n − 1). The corresponding g × g period

matrix τN = R + i I, which is symmetric and complex with positive imaginary part, is

complicated and, since we do not find instructive to report it here, we refer to [19] for any

detail about it. The expression of FN,n(x) for the compactified boson reads [31, 19]

FN,n(x) =
Θ(Tη)

|Θ(τN)|2 , Tη ≡
(

i η I R
R i I/η

)
, (3.7)

where η is the parameter containing the compactification radius introduced in §2. Notice

that (3.7) is invariant under η ↔ 1/η.

As done in §2 for the two intervals case, also for N disjoint intervals it is interesting

to consider the decompactification regime. When η � 1 the expression in (3.7) becomes

Fη→∞N,n (x) =
ηg/2√

det(I) |Θ(τN)|2
≡ ηg/2 F̂N,n(x) . (3.8)

For computational purposes, it is important to observe that in (3.8) the Riemann theta

function is evaluated for τN , which is g × g, while for finite η, when (3.7) holds, the

matrix occurring in the Riemann theta function is 2g× 2g. This implies that for the non

compact boson we can reach higher values of n and therefore the corresponding numerical

extrapolation is more precise. In the decompactification regime we can also appreciate

the convenience of considering the normalization (3.3). Indeed, plugging (3.8) into (3.6)

one obtains an expression which is η independent

R̂norm

N,n (x) ≡
Rη→∞
N,n (x)

Rη→∞
N,n (xfixed)

=
N∏
p= 2

∏
σN,p

[
F̂p,n(xσN,p)

F̂p,n(x
σN,p
fixed )

](−1)N−p

. (3.9)

As for the Ising model, since the results of [31] about the bosonization on higher genus

Riemann surfaces for c = 1 models hold for a generic genus, we can straightforwardly write

the generalization to N > 2 of the N = 2 formula (2.15). Indeed, given the period matrix

τN employed for the compact boson in (3.7), we have that TrρnA for the Ising model is

(3.5) with c = 1/2 and [31, 19]

FN,n(x) =

∑
e |Θ[e](τN)|
2g |Θ(τN)| . (3.10)
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The Riemann theta functions in this formula are evaluated for the g × g period matrix

and a sum over all the characteristics occurs. It is worth remarking that the Riemann

theta functions in (3.10) with odd characteristics vanish and therefore the sum contains

2g−1(2g + 1) terms. In [19] the formula (3.10) has been checked numerically on the lattice

for n = 2, various N and different configurations of intervals by employing the Matrix

Product States. To our knowledge, numerical results for IN with N > 3 are not available

in the literature for the critical Ising chain in transverse field.

In this paper, for simplicity, we consider only N = 3 disjoint intervals and therefore

let us specify some of the formulas given above to this case. The generalization of the

mutual information to the case of three disjoint intervals is given by

IA1,A2,A3 ≡ SA1 +SA2 +SA3−SA1∪A2−SA1∪A3−SA2∪A3 +SA1∪A2∪A3 = lim
n→1

I
(n)
A1,A2,A3

, (3.11)

where I
(n)
A1,A2,A3

can be written by specifying the expressions in (3.1) to N = 3, namely

I
(n)
A1,A2,A3

≡ log(R3,n)

1− n = S
(n)
A1

+S
(n)
A2

+S
(n)
A3
−S(n)

A1∪A2
−S(n)

A1∪A3
−S(n)

A2∪A3
+S

(n)
A1∪A2∪A3

, (3.12)

with

R3,n ≡
TrρnA1∪A2∪A3

(
TrρnA1

TrρnA2
TrρnA3

)
TrρnA1∪A2

TrρnA1∪A3
TrρnA2∪A3

. (3.13)

Considering CFTs, when N = 3 the vector x = (x1, x2, x3) is made by three four-point

ratios and (3.6) becomes

R3,n(x) =
F3,n(x1, x2, x3)

F2,n(x1(x3−x2)
x2(x3−x1)

)F2,n(x1)F2,n(x3−x2

1−x2
)
, (3.14)

where F3,n(x) is (3.5) for N = 3 and F2,n(x) has been introduced in (2.4).

The non compact boson is the CFT describing the massless harmonic chain in the

continuum. The Hamiltonian of the harmonic chain with L lattice sites and with nearest

neighbour interaction reads

H =
L−1∑
n=0

(
1

2M
p2
n +

Mω2

2
q2
n +

K

2
(qn+1 − qn)2

)
, (3.15)

where periodic boundary conditions are imposed. Rewriting (3.15) in terms of a ≡√
M/K and ω through a canonical transformation, one can observe that it provides

the lattice discretization of the free boson with mass ω and lattice spacing a. Thus,

the continuum limit of the ω = 0 case is the decompactified boson discussed above. The

method to compute Rényi entropies for the lattice model (3.15) is well known [35] and TrρnA
can be found from the correlators 〈qrqs〉 and 〈prps〉. Let us recall that setting ω to zero

leads to a divergent expression for 〈qrqs〉 because of the zero mode occurring for periodic

boundary conditions. In [19] the method discussed in [35] has been applied to perform

various checks of the CFT formulas for the non compact boson at fixed n. Moreover, also
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Figure 4. Extrapolations of Isub
3 (see (3.3) with N = 3) as function of the four-point

ratio x2 for the non compact boson. The points are the data obtained in [19] from

the periodic harmonic chain (3.15) with L = 5000 and ωL = 10−5. The configuration

chosen here is made by equal intervals separated by equal distances, while the fixed

configuration normalizing Isub
3 is given in the text. The coloured lines correspond to two

different extrapolations obtained through rational interpolations with (p, q) indicated.

I sub
N has been found from the harmonic chain data, but a comparison with the analytic

results has not been done because the analytic continuation of the corresponding Rényi

entropies is not known yet. Indeed, the Riemann theta function occurs in (3.8) and its

analytic continuation in n is still an open problem. As for the values of ω, in [19] it has

been checked that ωL = 10−5 is small enough to capture the CFT regime through the

periodic harmonic chain. The numerical data for the periodic harmonic chain have been

found by setting M = K = 1 and ωL = 10−5 in (3.15). The same quantities evaluated

for ωL = 10−3 turned out to be indistinguishable.

In the remaining part of this section we focus on the case of three disjoint intervals

and perform some numerical extrapolations of the analytic results reviewed above to n = 1

through rational interpolations, comparing them with the corresponding numerical data

from the lattice models, whenever they are available.

In Figs. 4 and 5 we consider I sub
3 (see (3.3)) for the decompactified boson, comparing

the results obtained for the periodic harmonic chain with the numerical extrapolations

found for the corresponding configurations of intervals obtained through the rational

interpolation (see §A). The dots are numerical data obtained in [19] from the periodic

harmonic chain given by (3.15) with L = 5000 and different sets of data correspond to
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Figure 5. Extrapolations of Isub
3 for the non compact boson. The harmonic chain is

the same one of Fig. 4 while the configurations of intervals are given by (3.16). The data

for the periodic harmonic chain have been extracted from [19].

different configurations of the three intervals. In particular, referring to the inset of Fig. 4

for the notation, the configuration considered in Fig. 4 is the one where all intervals are

equal `1 = `2 = `3 and they are placed at the same distance d1 = d2 = d3 = L/3 − `.
Varying the length ` of the intervals, one finds the result, which is plotted as function

of the four-point ratio x2. In Fig. 5, the data are labeled according to the following

configurations of the three intervals:

(a) `i = λi`, di = (L−∑3
i=1 `i)/3 with λ1 = 1, λ2 = 2, λ3 = 8;

(b) with λ1 = 1, λ2 = 11, λ3 = 11;

(c) `i = γi`, di = γid, d = L/(
∑3

i=1 γi)− ` with γ1 = 1, γ2 = 3, γ3 = 6;

(3.16)

where the parameter ` is varied and the results are plotted as functions of x2 ∈ (0, 1). As

for the fixed configuration normalizing I sub
3 in (3.3) we have chosen `1 = `2 = `3 = d1 =

d2 = int(L/6), where int(. . . ) denotes the integer part. The coloured curves in Figs. 4 and

5 are the numerical extrapolations of the CFT formulas for the non compact boson (3.8)

and (3.9) through the rational interpolation method. For each set of data, we show two

different rational interpolations which are well-behaved in order to check the stability of

the result. The differences between different well-behaved rational interpolations are very

small and the agreement with the numerical data from the harmonic chain is very good,

supporting the validity of the extrapolating method. In Figs. 4 and 5 we have employed

2 6 n 6 6. It is worth remarking at this point that the Riemann theta functions occurring
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Figure 6. Extrapolations of IA1,A2,A3
, defined in (3.11), for the Ising model. Two

configurations of intervals have been considered, namely (3.17) with α = 0.25 (left) and

α = 2 (right). The dots correspond to I
(n)
A1,A2,A3

in (3.12) with n ∈ {2, 3, 4} while the

lines are the extrapolations obtained through the rational interpolation method with the

values of (p, q) indicated. The dot-dashed line is the extrapolation to n = 2 performed

as a check of the method, while the remaining lines correspond to IA1,A2,A3
.

in the CFT expression (3.14) for the non compact boson contain at most g × g matrices

(g = 2(n − 1) for N = 3) while for the compact boson their size is at most 2g × 2g (see

(3.7)). From the computational viewpoint, this is an important difference because the

higher is n that can be addressed, the higher is the number of different (p, q) that can be

considered in the rational interpolations. Thus, the maximum n that we can deal with

is related to the maximum size of the matrices in the Riemann theta functions occurring

in the model. Nevertheless, from Figs. 4 and 5 we observe that, for this case, rational

interpolations with low values of (p, q) are enough to capture the result expected from the

lattice data.

In Fig. 6 we show IA1,A2,A3 , defined in (3.11), for the Ising model. We have considered

the following configurations of three intervals specified by a parameter α (see the inset of

Fig. 4 for the notation)

(d) `i = `, d1 = d2 = α`, d3 = L− (3 + 2α)` . (3.17)

In particular, the results in Fig. 6 correspond to α = 0.25 (left panel) and α = 2 (right

panel), where the dots denote the values of I
(n)
A1,A2,A3

for n ∈ {2, 3, 4}. Unfortunately, with

the computational resources at our disposal, we could not compute Rényi entropies for

higher values of n. Indeed, besides the problem of computing the Riemann theta function

numerically for large period matrices, the additional obstacle occurring for the Ising model

is that the number of elements in the sum (3.10) grows exponentially with n. Given the

few n’s available, only few rational interpolations can be employed to approximate the

analytic continuation to n = 1 and they are depicted in Fig. 6 through solid and dashed

lines (in general we never use (p, q) = (0, 1) because is often not well-behaved). It is

interesting to observe that the three different rational interpolations provide the same



Extrapolating entanglement entropy and negativity of disjoint intervals in CFT 17

extrapolation to n = 1 for a large range of x2 (they differ when x2 is close to 1). Since,

to our knowledge, numerical results about IA1,A2,A3 for the Ising model are not available

in the literature, the curves in Fig. 6 are predictions that would be interesting to test

through other methods.

In order to check the reliability of the numerical method, we have performed rational

interpolations considering only n ∈ {3, 4} to extrapolate the value at n = 2, which is

known analytically. Since only two points are available, only the rational interpolation

with (p, q) = (1, 0) can be done, which is given by the dot-dashed curve in Fig. 6. Despite

the roughness of the extrapolation due to the few input points, the agreement with the

expected values computed with the analytic expression (black dots) is very good.

4. Entanglement negativity of two disjoint intervals

In this section we consider the logarithmic negativity of two disjoint intervals for the non

compact massless free boson, whose analytic formula is not known.

The method to compute the logarithmic negativity E in quantum field theory and in

conformal field theory has been described in [22, 23] (see [24] for the finite temperature

case) and we refer to these papers for all the details and the discussion of further cases.

In order to briefly mention the main idea, let us consider a subsystem A = ∪Ni=1Ai made

by N disjoint intervals Ai = [ui, vi]. The traces TrρnA in CFT are given by the correlators

of twist fields in (3.5). Denoting by A0  A a set of N0 < N disjoint intervals among

the ones in A and by ρT0
A the partial transpose of ρA with respect to A0, we have that

Tr(ρT0
A )n in CFT is the correlation function of twist fields obtained by placing Tn in ui and

T̄n in vi when Ai ∈ A \ A0, and T̄n in ui and Tn in vi when Ai ∈ A0. The corresponding

logarithmic negativity E , which measures the entanglement between A0 and A \ A0, can

be computed by considering the sequence of the even integers ne and taking the replica

limit (1.7). Configurations containing adjacent intervals are obtained as limiting cases

and the fields T 2
n and T̄ 2

n occur.

In the simplest example, starting from two disjoint intervals A = A1 ∪ A2, whose

endpoints are ordered as u1 < v1 < u2 < v2 like in §2, one considers e.g. the partial

transpose with respect to A2. In this case we have that [22, 23]

Tr(ρT2
A )n = 〈Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)〉 (4.1)

= c2
n

[
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(u2 − v1)(v2 − u1)

]2∆n

Gn(x) , (4.2)

where x ∈ (0, 1) is the four-point ratio (2.5) and ∆n has been introduced in (2.1). Since

(4.1) is obtained from (2.3) by exchanging Tn ↔ T̄n for the endpoints of A2, the function

Gn in (4.2) is related to the function F2,n in (2.4) as follows

Gn(x) ≡ (1− x)4∆n F2,n

(
x/(x− 1)

)
, (4.3)

where we remark that x/(x − 1) ∈ (−∞, 0). Plugging (4.3) into (4.2) and taking the

replica limit (1.7) of the resulting expression, since ∆1 = 0 and c1 = 1, we find that the
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logarithmic negativity of two disjoint intervals in CFT is given by

E(x) = lim
ne→1

log Gne(x) = lim
ne→1

logF2,ne

(
x/(x− 1)

)
, (4.4)

telling us that the logarithmic negativity is scale invariant, being a function of the ratio x

only. In order to get rid of the prefactor in (4.2), it is convenient to consider the following

ratio

R̃n ≡
Tr(ρT2

A )n

Tr(ρA)n
=
Gn(x)

F2,n(x)
= (1− x)4∆n

F2,n

(
x/(x− 1)

)
F2,n(x)

, (4.5)

where (4.3) has been employed in the last step. Since F2,1(x) = 1 for x ∈ (0, 1) because

of the normalization of ρA, the logarithmic negativity can be found also by taking the

replica limit of (4.5), namely

E(x) = log lim
ne→1

R̃ne(x) , (4.6)

Notice that, since for n = 2 we have that T2 = T̄2, one concludes that R̃2 = 1 identically.

The simplest model we can deal with for which analytic expressions for Tr(ρT2
A )n are

available in the literature is the non compact free massless boson. For this model it has

been found that [22, 23]

R̃n(x) = (1− x)(n−1/n)/3

[ ∏n−1
k=1 Fk/n(x)Fk/n(1− x)∏n−1

k=1 Re
(
Fk/n( x

x−1
)F̄k/n( 1

1−x)
)]1/2

. (4.7)

When n = ne is even, it could be convenient to isolate the term k/n = 1/2 in the product

in order to get rid of the square root in the remaining part of the product because of the

symmetry k ↔ n−k in Fk/n. Notice that when n = 2 we have that R̃2(x) = 1 identically.

In Fig. 7 we compare the CFT result (4.7) for R̃n(x) with the corresponding quantity

computed for the periodic harmonic chain (3.15), where Tr(ρT2
A )n is computed through the

correlators 〈qrqs〉 and 〈prps〉 as explained in [35]. Notice that we have improved this check

with respect to [23], indeed the data in Fig. 7 correspond to chains whose total length L is

significantly larger than the ones considered in [23], where L 6 300. All the data reported

in the figure have ωL = 10−5. We have considered also harmonic chains with ωL = 10−3

and L = 10000, finding the same results reported in Fig. 7 for L = 10000. For n = 3 the

agreement is very good, while it gets worse as n increases. This is expected because of

the unusual corrections to the scaling [36].

It is more convenient to consider (4.4) than (4.6) for the computation of the replica

limit, and for the logarithmic negativity of the non compact boson we have that [23]

E(x) = −1

2
log
[
K(x)K(1−x)

]
− 3

8
log(1−x)+log(π/2)− lim

ne→1

ne/2−1∑
k=1

logGk/ne(x) , (4.8)

where

Gβ(x) ≡ 2F1(β, β, 1;x)

[
Γ(1− 2β)

Γ(1− β)2
(1− x)β 2F1(β, β, 2β; 1− x)− (β ↔ 1− β)

]
, (4.9)
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Figure 7. The ratio R̃n(x) in (4.5) for the non compact boson. The data points come

from the periodic harmonic chain with ωL = 10−5, while the curves are given by CFT

formula (4.7).

being K(x) the elliptic integral of the first kind. The sum in (4.8) is defined for ne > 4

and for ne = 2 that term is zero. The analytic continuation in (4.8) is not known for the

entire range x ∈ (0, 1). In [23] the analytic continuation has been found for the regime

x→ 1−, obtaining an expression that surprisingly works down to x ∼ 0.3 (see the dashed

red curve in Fig. 8).

Here we numerically extrapolate E(x) through the formula (4.8) by using the rational

interpolation method, which has been discussed in §A and employed in the previous

sections for the entanglement entropy of disjoint intervals. It is worth remarking that,

since the replica limit (1.7) for E(x) involves only even n’s, to perform a rational

interpolation characterized by some (p, q) we need higher values of n with respect to

the ones employed for the entanglement entropy in the previous sections. In particular,

for the logarithmic negativity p+ q + 1 6 ne,max/2.

In Fig. 8 we report the extrapolations found for some values of (p, q). Since the

numerical data from the harmonic chain are accurate enough to provide the curve in the

continuum limit that should be found through the analytic continuation (4.8), we can

check the reliability of our numerical extrapolations against them. For the non compact

boson the expression (4.9) is not difficult to evaluate numerically. Thus, we can deal with
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Figure 8. Logarithmic negativity of two disjoint intervals for the non compact boson

(4.8) as function of the four-point ratio x. The dots are numerical data obtained for the

periodic harmonic chains with ωL = 10−5 and increasing total lengths. All data collapse

on the same curve, which corresponds to the continuum limit. The red dashed curve is

the analytic continuation found in [23] in the regime x→ 1−. The remaining curves are

extrapolations obtained from different rational interpolations having (p, q) indicated. In

the inset we show the same plot in logarithmic scale in order to highlight the behaviour

of the different extrapolated curves when x ∼ 0.

high values of n and therefore we have many possibilities for (p, q). It turns out that an

accurate extrapolation for the logarithmic negativity requires high values of p and q, in

particular for the regime of small intervals x ∼ 0 (see Fig. 11 in §A for extrapolations

having low p and q). As already remarked in [22, 23], the behaviour of E(x) when

x ∼ 0 is not power-like. We observed, as a general behaviour, that increasing q leads

to extrapolations which are closer to the numerical data, but spurious fluctuations or

even singularities in some regimes of x can occur (see the black and magenta curves in

the inset of Fig. 8, and the dashed magenta and cyan curves in Fig. 11). This happens

whenever one of the q poles of the rational function is close to the range (1, nmax) of the

interpolated data and not too far from n = 1 (it may be real or have a small imaginary

part). More details are reported in §A. Taking low q’s, one usually gets smooth curves

but even high values of p’s are not sufficient to capture the behaviour of E(x) when x ∼ 0.

Thus, the logarithmic negativity is more difficult to find through the rational
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interpolation method than the entanglement entropy. Indeed, while for the latter one

few Rényi entropies are enough to capture the expected result in a stable way, for the

logarithmic negativity more input data are needed to reproduce the regime of distant

intervals. Maybe other numerical methods are more efficient. It is worth remarking that

the fact that high values of n’s in Tr(ρT2
A )n are required to perform accurate extrapolations

of the logarithmic negativity leads to a computational obstacle whenever Gn(x) in (4.2) is

written in terms of Riemann theta functions, like for the compact boson [23] and for the

Ising model [27, 28]. Given our computational resources, we have not been able to deal

with those analytic expressions for n high enough to guarantee convincing extrapolations.

5. Conclusions

The analytic continuations leading to analytic expressions for the entanglement entropy

and the logarithmic negativity of disjoint regions can be very difficult to perform, even for

simple CFTs. In this paper we studied this problem numerically for the CFTs given by

the free massless boson (compactified or in the decompactification regime) or by the Ising

model, where TrρnA for a generic number of disjoint intervals [7, 8, 19] and Tr(ρT2
A1∪A2

)n

are known analytically [22, 23, 27, 28].

The numerical extrapolations have been performed through a method based on

rational interpolations, which has been first employed in this context by [20]. Its reliability

has been checked by reproducing the existing results found from the corresponding lattice

models through various techniques like exact diagonalizations [6, 19] and Tree Tensor

Networks [9]. In our analysis, we observed that for the entanglement entropy one finds

the same curve through different extrapolations already with small values of the degrees p

and q of the polynomials occurring in the numerator and in the denominator respectively

of the rational interpolation. Instead, for the logarithmic negativity higher values of p and

q are needed for the regime of distant intervals, where it falls off faster than any power.

Extrapolations having higher values of q are more efficient in providing the expected result,

but they can show some spurious behaviour in some parts of the domain. Our numerical

analysis has been limited both by our computational resources (in the evaluation of the

Riemann theta functions for large matrices) and by the features of the model (e.g. for the

logarithmic negativity of distant intervals). These obstacles prevented us to treat some

interesting cases like the logarithmic negativity of two disjoint intervals for the compact

boson and for the Ising model because high values of n are needed to get convincing

extrapolations. We remark that lattice results for E(x) have been found in [28] for the

Ising model through Tree Tensor Networks, while for the compact boson they are not

available in the literature (see [37] for R̃3 obtained through Quantum Monte Carlo).

When singularities in n occur (see e.g. [38]), the numerical method adopted here is

expected to fail. As for the one dimensional systems that have been considered, given

the good agreement with the lattice results, a posteriori we expect that there are no

singularities in the ranges of n that have been explored.

The rational interpolation method has been also employed to address some cases
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whose corresponding lattice results are not available in the literature (e.g. the U(1) gauge

theory in 2 + 1 dimensions has been studied in [20] and the case of three disjoint intervals

for the Ising model in §3). Thus, it is a useful tool that could be used in future studies

to find numerically the entanglement entropy and the logarithmic negativity of disjoint

regions (or for single regions whenever the analytic continuation is difficult to obtain) for

other interesting situations like e.g. for CFTs in higher dimensions [39] and in the context

of the holographic correspondence [12, 13, 40].
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Appendices

A. Rational interpolations

In this appendix we discuss the numerical method that we have employed throughout

the paper, which is based on rational interpolations, and the issues we encountered to

address the replica limits for the entanglement entropy and negativity considered in the

main text. Its use in this context has been first suggested in [20].

The rational interpolation method consists in constructing a rational function which

interpolates a finite set of given points labeled by a discrete variable. Once the rational

function is written, one simply lets the discrete variable assume all real values. The needed

extrapolation is found by just evaluating the rational function obtained in this way for

the proper value of the variable.

For the quantities we are interested in, the discrete variable is an integer number

n. As a working example, let us consider the case of two disjoint intervals, where the

variable x ∈ (0, 1) characterizes the configuration of intervals. For any integer n > 2 we

have a real function of x and typically we have access only to n 6 nmax for computational

difficulties. The rational function interpolating the given data reads

W
(n)
(p,q)(x) ≡ P (x;n)

Q(x;n)
≡ a0(x) + a1(x)n+ a2(x)n2 + · · ·+ ap(x)np

b0(x) + b1(x)n+ b2(x)n2 + · · ·+ bq(x)nq
, (A.1)

being p ≡ deg(P ) and q ≡ deg(Q) the degrees of the numerator and of the denominator

respectively as polynomials in n. The extrapolations are performed pointwise in the

domain x ∈ (0, 1). Thus, for any given x ∈ (0, 1), in (A.1) we have p + q + 2 coefficients

to determine. Nevertheless, since we can divide both numerator and denominator by the

same number fixing one of them to 1, the number of independent parameters to find is

p + q + 1. Once the coefficients in (A.1) have been found, the extrapolation is easily

done by considering n real and setting it to the needed value. It is important to stress
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Figure 9. The quantity Ĩn in (2.6) and the corresponding n → 1 limit (2.7) for the

compact boson (c = 1) with η = 0.295. The blue line is the extrapolation n = 1 of

the rational interpolation with (p, q) = (2, 2) obtained through the analytic expressions

given by (2.10) and (2.11) with 2 6 n 6 6, whose values for Ĩn are shown by points

for some values of the four point ratio x. In the inset, considering the configuration

having x = 0.2101 (highlighted by the dashed rectangle in the main plot), we show Ĩn
as function of n for rational interpolations having different (p, q). The extrapolations

having q > 0 capture the expected value better than the ones having q = 0.

that, having access only to a limited number m of data points, we can only perform

rational interpolations whose degrees (p, q) are such that p + q + 1 6 m. This method

is implemented in Wolfram Mathematica through the Function Approximations package

and the command RationalInterpolation.

In Fig. 9 we consider an explicit example where we extrapolate the Ĩ1(x) in (2.7) of the

compact boson (c = 1) for a particular value of the compactification radius corresponding

to η = 0.295 (see also Fig 2). For n > 2 the analytic expressions are (2.6) and (2.10) and

we take into account 2 6 n 6 6 only (in Fig. 2 we employ also n = 7). Given these data,

we can perform rational interpolations with p + q + 1 6 5. The blue curve in Fig. 9 is

the extrapolation to n = 1 of the rational interpolation with (p, q) = (2, 2). We find it

instructive to describe the details for a specific value of x. Let us consider, for instance, a

configuration corresponding to x = x̃ ≡ 0.2101 (see the dashed rectangle in Fig. 9). First

one has to compute the rational interpolation with (p, q) = (2, 2), then the limit n → 1

must be taken. For these two steps, we find respectively

W n
(2,2)(x̃) =

0.358− 0.480n+ 3.689n2

1 + 1.347n+ 7.870n2
, lim

n→1
W n

(2,2)(x̃) = 0.349 . (A.2)
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In the inset of Fig. 9 we show how adding more data improves the final extrapolation

and how it becomes stable. Focusing again on x = x̃, we can start by taking only

n ∈ {2, 3}, which allow to perform a rational interpolation with (p, q) = (1, 0) (a line).

Since rational interpolations having p = 0 often provide wrong predictions, we prefer

to avoid them, if possible. The extrapolation to n = 1 corresponding to (p, q) = (1, 0)

cannot be trusted and therefore we consider four input data n ∈ {2, 3, 4, 5} which allow to

consider a rational interpolation with, for instance, (p, q) = (3, 0) and also (p, q) = (1, 1).

These two different rational interpolations do not provide the same extrapolation to n = 1

and therefore we must take into account more input data. Considering 2 6 n 6 6 we can

choose also (p, q) = (2, 2) finding that the corresponding rational interpolation basically

coincides with the one with (p, q) = (1, 1) (their difference is of order 10−3). Thus, the

extrapolation to n = 1 obtained with (p, q) = (2, 2) is quite stable. Repeating this

analysis for the whole range of x ∈ (0, 1), one can find the blue curve in Fig. 9. As a

further check, in Fig. 2 we have used (p, q) = (3, 2) using more input data, finding that

the final extrapolation is basically the same. Plots like the one shown in the inset of Fig. 9

are very useful to understand the stability of the extrapolation to n = 1. Increasing the

values of p and q in the rational interpolations leads to more precise extrapolations, as

expected. Rational interpolations with q > 0 provide extrapolations which are closer to

the expected value with respect to the ones with q = 0. When q is strictly positive, q

poles occur in the complex plane parameterized by n ∈ C. Nevertheless, if these poles

are far enough from the real interval (1, nmax) containing all the n’s employed as input

data for the interpolation, the extrapolations to n = 1 are reliable. Increasing q, we have

higher probability that one of the poles is close to the region of interpolation, spoiling

the extrapolation. Plotting W n
(p,q)(x) as function of n is useful to realize whether this

situation occurs (see the inset of Fig. 10 for an explicit example).

The issue of evaluating Riemann theta functions which involve large matrices becomes

important when we want to compute IA1,A2,A3 (see (3.11) and (3.12)) for a compact boson.

Indeed, F3,n(x) in (3.14) is given by (3.7) for N = 3 and therefore the matrix occurring

in the Riemann theta function is 2g × 2g with g = 2(n − 1). Given our computational

power, we computed I
(n)
A1,A2,A3

for n ∈ {2, 3} for all the needed configurations of intervals,

while for n = 4 we got results only for small intervals. In Fig. 10 we show our data and

some numerical extrapolations. In the whole range of x2 we performed only the rational

interpolation with (p, q) = (1, 0) (blue line) because only two input data are available,

while for x2 ∈ (0, 0.22), where also n = 4 is available, we could employ higher values of p

and q. When we have more extrapolations, unfortunately they do not overlap, indicating

that we cannot trust these curves to give a prediction, even if they are quite close. Another

indication that n = 4 is not enough to get a precise extrapolation comes from the fact

that, given the data with n ∈ {3, 4} and extrapolating to n = 2 (orange curve in Fig. 10)

we did not recover exactly the expected values (purple circles) found with the analytic

expressions. In the inset we focus on a configuration of three intervals corresponding

to x2 = 0.224 and show the dependence of I
(n)
A1,A2,A3

on n for various (p, q). While the

extrapolations to n = 1 associated to (1, 0) (for this one only n ∈ {2, 3} have been
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Figure 10. Three disjoint intervals: The quantity I
(n)
A1,A2,A3

in (3.12) for the compact

boson, computed through (3.14) and (3.7) for n > 2. Our limited computational power in

evaluating Riemann theta functions for large matrices prevented us to consider n = 4 in

the whole range of configurations and this limits also the possible rational interpolations

that can be employed. The blu line is the extrapolation found by using only n ∈ {2, 3},
which should not be considered as a prediction because more n’s are needed to find stable

extrapolations. The orange line is a check of the method for n = 2: the fact that the

expected points are not precisely recovered is due to low number of n’s (n ∈ {3, 4})
available. In the inset, considering the configuration having x2 = 0.224, we show

I
(n)
A1,A2,A3

as function of n for rational interpolations having different (p, q). The rational

interpolation with (p, q) = (0, 2) (red line) shows a bad behaviour and the extrapolation

to n = 1 cannot be trusted; indeed, the red curve in the main plot is different from the

other extrapolations.

used), (1, 1) and (2, 0) are very close, the one corresponding to (p, q) = (0, 2) provides a

completely different extrapolation to n = 1. Considering the two poles of the interpolating

function in the regime of x2 where also n = 4 is available, we find that they are real and at

least one of them is inside the domain n ∈ (1, 4). Thus, the function cannot be considered

a good approximation of the true analytic continuation and the extrapolation cannot be

trusted. This behaviour does not occur for the case considered in the inset of Fig. 9.

Thus, it is useful to plot the n dependence of the functions obtained through the rational

interpolation method in order to check the occurrence of singularities that could lead to

wrong extrapolations.

We find it instructive to discuss some details about the extrapolations of the

logarithmic negativity of two disjoint intervals (see §4). The simplest case we can deal

with is the non compact boson and the replica limit to perform for this model is (4.8).
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Figure 11. Logarithmic negativity of two disjoint intervals for the non compact

boson: Extrapolations having low values of p and q. This plot should be compared with

Fig. 8, where higher values of p and q have been considered. Increasing q improves the

extrapolation but in some regimes of x wrong results can be found. The dashed red

curve is the analytic continuation for the regime x→ 1− found in [23], while the points

are obtained through a periodic harmonic chain (3.15) with L sites.

The analytic expression (4.9) contains only hypergeometric functions and therefore it can

be evaluated for high values of n. Some extrapolations performed through the rational

interpolation method explained above are shown in Figs. 8 and 11. The first difference

between the logarithmic negativity and the mutual information in the extrapolation

process is that for the former quantity we need to consider higher values of p and q

with respect to the latter one to recover the expected result. Moreover, in the regime of

small intervals or large separation (i.e. x ∼ 0), where the logarithmic negativity falls off

to zero faster than any power, it is very difficult to capture its behaviour in a clean way,

despite the high values of p and q. In Fig. 11 we show some extrapolations characterized

by low values of p and q. The most difficult regime to capture is the one with x ∼ 0. Thus,

in Fig. 8 we show some extrapolations having higher values of p and q. Comparing the

curves in these figures, one observes that with low q’s it is difficult to capture the regime

of small x, even for very high values of p. Increasing q, the agreement slightly improves for

small x, but, as already remarked, it is more probable that the singularities of the rational

interpolation fall close to the domain of the interpolated data. For example, in the case of

the dashed magenta curve of Fig.11, all the poles of the rational function are real. Varying

the parameter x, they move on the real axis and, whenever one of them comes close to the
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interpolation region (1, nmax) and it is not too far from n = 1, the extrapolated function

to n = 1 cannot be trusted as approximation of the true analytic continuation. This leads

to fluctuations or singularities in the extrapolation curve as function of x (e.g. see also

the dashed cyan curve in Fig. 11 and the black and magenta curves in Fig. 8).
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