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Partial transpose of two disjoint blocks in XY spin

chains

Andrea Coser, Erik Tonni and Pasquale Calabrese

SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy.

Abstract. We consider the partial transpose of the spin reduced density matrix of two

disjoint blocks in spin chains admitting a representation in terms of free fermions, such as

XY chains. We exploit the solution of the model in terms of Majorana fermions and show

that such partial transpose in the spin variables is a linear combination of four Gaussian

fermionic operators. This representation allows to explicitly construct and evaluate the

integer moments of the partial transpose. We numerically study critical XX and Ising

chains and we show that the asymptotic results for large blocks agree with conformal

field theory predictions if corrections to the scaling are properly taken into account.
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1. Introduction

In the last decade, the understanding of the entanglement content of extended quantum

systems boosted an intense research activity at the boundary between condensed matter,

quantum information and quantum field theory (see e.g. Refs. [1] as reviews). The

bipartite entanglement for an extended system in a pure state is measured by the well-

known entanglement entropy which is the von Neumann entropy corresponding to the

reduced density matrix of one of the two parts. One of the most remarkable results in

this field is the logarithmic divergence of the entanglement with the subsystem size in

the case when the low energy properties of the extended critical quantum systems are

described by a 1+1 dimensional conformal invariant theory [2, 3, 4, 5].

Conversely, when an extended quantum system is in a mixed state (or one considers

a tripartition of a pure state and is interested in the relative entanglement between two

of the three parts) the quantification of the entanglement is much more complicated. A

very useful concept is that of partial transposition. Indeed it has been shown that the

presence of entanglement in a bipartite mixed state is related to occurrence of negative

eigenvalues in the spectrum of the partial transpose of the density matrix [6]. This

led to the proposal of the negativity [7] (or the logarithmic negativity) which was later

shown to be an entanglement monotone [8], i.e. a good entanglement measure from a

quantum information perspective. Compared to other entanglement measurements for

mixed states, the negativity has the important property of being easily calculable for an

arbitrary quantum state once its density matrix is known (and indeed for this reason it

has been named a “computable measure of entanglement” [7]).

Recently, a systematic path integral approach to construct the partial transpose

of the reduced density matrix has been developed and from this the negativity in 1+1

dimensional relativistic quantum field theories is obtained via a replica trick [9]. This

approach has been successfully applied to the study of one-dimensional conformal field

theories (CFT) in the ground state [9, 10], in thermal state [11, 12], and in non-equilibrium

protocols [12, 13, 14, 15], as well as to topological systems [16, 17]. The CFT predictions

have been tested for several models [10, 11, 13, 18, 19, 20], especially against exact results

[10, 11, 13, 21] for free bosonic systems (such as the harmonic chain). Indeed for free

bosonic models, the partial transposition corresponds to a time-reversal operation leading

to a partially transposed reduced density matrix which is Gaussian [22] and that can be

straightforwardly diagonalised by correlation matrix techniques [23, 24, 25]. It should

be also mentioned that there exist some earlier results for the negativity in many body

systems [21, 22, 24, 26, 27, 28, 29, 30, 31].

In the case of free fermionic systems (such as the tight-binding model and XY

spin chains) the calculation of the negativity is instead much more involved. Indeed

the partial transpose of the reduced density matrix is not a Gaussian operator and

standard techniques based on the correlation matrix [25] cannot be applied. In view of the

importance that exact calculations for free fermionic systems played in the understanding

of the entanglement entropy [3, 32, 33, 34, 35, 36], it is highly desirable to have an exact
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representation of the negativity also for free fermionic systems. A major step in this

direction has been very recently achieved by Eisler and Zimboras [37] who showed that

the partial transpose is a linear combination of two Gaussian operators. Unfortunately,

it is still not possible to extract the spectrum of the partial transpose and hence the

negativity, but at least one can access to integer powers of the partial transpose which

are the main ingredient for the replica approach to negativity.

In Ref. [37] only truly fermionic systems have been considered and not spin chains

that can be mapped to a fermionic system by means of a (non-local) Jordan-Wigner

transformation. Indeed, in the very interesting case of two disjoint blocks in a spin chain

the density matrix of spins and fermions are not equal [39, 40, 41] and this consequently

affects also the partial transposition, as already pointed out in [37]. In this manuscript

we fill this gap by giving an exact representation of the partial transpose of the reduced

density matrix for two disjoint blocks in the XY spin chain and from this we calculate

the traces of its integer powers. These turn out to converge to the CFT predictions in

the limit of large intervals.

The manuscript is organised as follows. In Sec. 2 we describe the model and the

definition of the quantities we will study. In Sec. 3 we review the results of Ref. [41] for

the moments of the spin reduced density matrix of two disjoint blocks. In Sec. 4 we move

to the core of this manuscript deriving an explicit representation of the partial transpose

of the spin reduced density matrix as a sum of four Gaussian fermionic matrices. This

allows to obtain explicit representations for the moments of the partial transpose. In Sec.

5 we use the above results to numerically calculate these moments up to n = 5 for the

critical Ising model and XX chain and carefully compare them with CFT predictions by

taking into account corrections to the scaling. In Sec. 6 we numerically evaluate and

study the moments of the partial transpose for two disjoint blocks of fermions and again

we compare with new CFT predictions. Finally in Sec. 7 we draw our conclusions. In

appendix A we report all the CFT results which we needed in this manuscript.

2. The model and the quantities of interest

In this manuscript we consider the XY spin chains with Hamiltonian

HXY = −1

2

L∑
j=1

(
1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyjσ
y
j+1 + hσzj

)
, (1)

where σαj are the Pauli matrices at the j-th site and we assume periodic boundary

conditions σαL+1 = σα1 . For γ = 1 Eq. (1) reduces to the Hamiltonian of the Ising model

in a transverse field while for γ = 0 to the one of the XX spin chain. The Hamiltonian (1)

is a paradigmatic model for quantum phase transitions [38]. In fact, it depends on two

parameters: the transverse magnetic field h and the anisotropy parameter γ. The system

is critical for h = 1 and any γ with a transition that belongs to the Ising universality

class. It is also critical for γ = 0 and |h| < 1 with a continuum limit given by a free

compactified boson.
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Figure 1. We consider the entanglement between two disjoint spin blocks A1 and A2

embedded in a spin chain of arbitrary length. The reminder of the system is denoted by

B which is also composed of two disconnected pieces B1 and B2.

The Jordan-Wigner transformation

cj =
(∏
m<j

σzm

)σxj − iσzj
2

, c†j =
(∏
m<j

σzm

)σxj + iσzj
2

, (2)

maps the spin variables into anti-commuting fermionic ones {ci, c†j} = δij. In terms of

these fermionic variables the Hamiltonian (1) becomes

HXY =
L∑
i=1

(
1

2

[
γc†ic

†
i+1 + γci+1ci + c†ici+1 + c†i+1ci

]
− hc†ici

)
, (3)

where we neglected boundary and additive terms. This Hamiltonian is quadratic in the

fermionic operators and hence can be straightforwardly diagonalised in momentum space

by means of a Bogoliubov transformation.

For the study of the reduced density matrices it is very useful to introduce the

Majorana fermions [3]

a2j = cj + c†j, a2j−1 = i(cj − c†j), (4)

which satisfy the anti-commutation relations {ar, as} = 2δrs.

2.1. Quantities of interest

The main goal of this manuscript is to determine the entanglement between two disjoint

intervals in the XY spin chain. We consider the geometry depicted in Fig. 1: a spin chain

is divided in two parts A and B and each of them is composed of disconnected pieces.

We denote by A1 and A2 the two blocks in A = A1 ∪A2, B1 is the block in B separating

them, while B2 is the remainder.

The reduced density matrix of A is ρA = TrBρ = TrB|Ψ〉〈Ψ|, where we are mainly

interested in the case in which |Ψ〉 is the ground state of the XY chain, even if the

results of this paper apply to more general cases such as excited states, non-equilibrium

configurations, finite temperature etc. The bipartite entanglement between A and B is

given by the well-known entanglement entropy

SA = −TrρA ln ρA , (5)

or equivalently by the Rényi entropies

S
(n)
A =

1

1− n
ln Tr ρnA , (6)

which in the limit n → 1 reduce to the entanglement entropy, but provide more

information since it is related to the full spectrum of ρA [42].
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In the case of two disjoint blocks in the XY spin chain, the Rényi entropies for integer

n (or equivalently the moments of the reduced density matrix ρA) have been explicitly

constructed in Ref. [41]. However it is still not possible to find the analytic continuation

to arbitrary complex values of n and consequently the entanglement entropy. This is very

similar to the CFT counterpart where also one can calculate only integer moments of the

reduced density matrices (see Appendix A for a summary of the CFT results of interest

for this paper).

However, we are here interested in the entanglement between A1 and A2. A measure

of this entanglement is provided by the logarithmic negativity defined as follows. Let us

denote by |e(1)
i 〉 and |e(2)

j 〉 two arbitrary bases in the Hilbert spaces corresponding to A1

and A2. The partial transpose of ρA with respect to A2 degrees of freedom is defined as

〈e(1)
i e

(2)
j |ρ

T2
A |e

(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA|e

(1)
k e

(2)
j 〉, (7)

and then the logarithmic negativity as

E ≡ ln ||ρT2A || = ln Tr|ρT2A | , (8)

where the trace norm ||ρT2A || is the sum of the absolute values of the eigenvalues of ρT2A .

A systematic method to compute the negativity in quantum field theories has been

developed in Ref. [9, 10] and it is again based on a replica trick from the integer moments

of the partial transpose

Tr(ρT2A )n, (9)

which turn out to admit different analytic continuations from even and odd n (usually

denoted as ne and no respectively). Consequently, the logarithmic negativity is given by

the replica limit

E = lim
ne→1

ln Tr(ρT2A )ne , (10)

performed on the even sequence of moments. Unfortunately, in the case of two disjoint

intervals, it is very difficult to perform this analytic continuation (see Appendix A),

although the integer moments Tr(ρT2A )n are known for the most relevant conformal field

theories. It is however possible to extract very useful information about entanglement

and about the partial transpose already from the knowledge of the moments [9, 10].

Finally, in Refs. [9, 10] the ratios

Rn ≡
Tr(ρT2A )n

TrρnA
, (11)

have been introduced because of some cancellations (see Appendix A) and since anyhow

E = lim
ne→1

ln(Rne), (12)

given that TrρA = 1.
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3. Rényi entropies

In this section we review the results of Ref. [41], where the Rényi entropies of two disjoint

blocks A = A1 ∪ A2 for the XY spin chains have been computed. These results are the

main ingredients to construct the integer powers of the partial transpose which will be

derived in the following section. We will denote the number of spins in A1 and A2 with

`1 and `2 respectively and the remainder of the system B contains a region separating A1

and A2 denoted as B1, as pictorially depicted in Fig. 1.

In a general spin 1/2 chain the reduced density matrix ρA = TrB|Ψ〉〈Ψ| of A = A1∪A2

can be computed by summing all the operators in A as follows [3]

ρA =
1

2`1+`2

∑
νj

〈∏
j∈A

σ
νj
j

〉∏
j∈A

σ
νj
j , (13)

where j is the index labelling the lattice sites and νj ∈ {0, 1, 2, 3}, with σ0 = 1 the identity

matrix and σ1 = σx, σ2 = σy and σ3 = σz the Pauli matrices. The multipoints correlators

in (13) are very difficult to compute, unless there is a representation of the state in terms

of free fermions.

For the single interval case, the Jordan-Wigner string
∏

m<j σ
z
m in Eq. (2) maps the

first ` spins into the first ` fermions [3] so the spin and fermionic entropy are the same.

In general, calculating a fermionic density matrix is very easy. Indeed by Wick theorem

they assume a Gaussian form:

ρW =
exp (1

4

∑
r,s arWrsas)

Tr[ exp (1
4

∑
r,s arWrsas)]

, (14)

with W a complex antisymmetric matrix. This density matrix is univocally identified by

the correlation matrix

Γrs = Tr(arρWas)− δrs, (15)

which (in matrix form) satisfies Γ = tanh(W/2).

Unfortunately, the same reasoning does not apply to two disjoint blocks because

the fermions in the interval B1 separating the two blocks contribute to the spin reduced

density matrix of A1 ∪ A2 [39, 40, 41]. In particular, the following string of Majorana

operators appears in a crucial way‡

PB1 ≡
∏
j∈B1

(ia2j−1a2j). (16)

Similarly, we also introduce the strings of Majorana operators PA1 and PA2 , defined as in

Eq. (16) but taking the product over j ∈ A1 and j ∈ A2 respectively. These operators

satisfies P−1
C = PC , for any C = A1, A2, B1.

Moving back to the computation of the spin reduced density matrix (13) in terms of

fermions, we first notice that, since the XY Hamiltonian commutes with
∏

j σ
z
j (where j

runs over the whole chain), only the expectation values of operators containing an even

‡ To compare with Ref. [41], set (S1)there = (PA1
)here and (S)there = (PB1

)here.
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number of fermions are non vanishing. Thus, the numbers of fermions are either even or

odd in both A1 and A2. This leads us to decompose the spin reduced density matrix ρA
of A = A1 ∪ A2 as [41]

ρA = ρeven + PB1 ρodd, (17)

with

ρeven ≡
1

2`1+`2

∑
even

〈O1O2〉O†2O
†
1, ρodd ≡

1

2`1+`2

∑
odd

〈O1PB1O2〉O†2O
†
1, (18)

where we introduced the ‘shorts’ O1 and O2 for arbitrary products of Majorana fermions

in A1 and A2 respectively, and the notation
∑

even (
∑

odd) means that the sum is restricted

to operators O1 and O2 containing an even (odd) number of fermions. It is also convenient

to rewrite (17) as

ρA =
1 + PB1

2
ρ+ +

1− PB1

2
ρ−, ρ± ≡ ρeven ± ρodd, (19)

where 1 is the identity matrix and (1 ± PB1)/2 are orthogonal projectors. Moreover,

the matrices ρ± are unitary equivalent (indeed PA2ρ±PA2 = ρ∓) and commute with PB1

because they do not contain Majorana fermions in B1. As a consequence, we have that

ρnA =
1 + PB1

2
ρn+ +

1− PB1

2
ρn−. (20)

Taking the trace of (20) and employing that PA2ρ±PA2 = ρ∓, one finds

TrρnA = Trρn±. (21)

The matrices ρ± are fermionic but they are not Gaussian, i.e. they are not proportional

to the exponential of a quadratic form, as we will discuss below.

At this point we are ready to consider the ground state of the XY chain with density

matrix ρW = |Ψ〉〈Ψ|, whose correlation matrix Γ is given by Eq. (15). The fermionic

reduced density matrix of A = A1 ∪ A2 is

ρ1
A ≡

1

2`1+`2

∑
even
odd

〈O1O2〉O†2O
†
1, (22)

where we recall that 〈O1O2〉 = 0 when the numbers of fermionic operators in O1 and O2

have different parity. In order to take into account the effect of the string PB1 defined in

Eq. (16), it is useful to introduce the auxiliary density matrix

ρB1
A ≡

TrB(PB1|Ψ〉〈Ψ|)
〈PB1〉

, (23)

in which the normalisation TrρB1
A = 1 holds. By using that

PA2ajPA2 =
{ − aj j ∈ A2,

aj j /∈ A2,
(24)

one finds

PA2ρ
1
APA2 =

1

2`1+`2

∑
even
odd

(−1)µ2〈O1O2〉O†2O
†
1 (25)

=
1

2`1+`2

∑
even

〈O1O2〉O†2O
†
1 −

1

2`1+`2

∑
odd

〈O1O2〉O†2O
†
1, (26)
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where µ2 is the number of Majorana operators occurring in O2. Then, from Eqs. (22)

and (26) it is straightforward to get that the density matrices (18) become

ρeven =
ρ1
A + PA2ρ

1
APA2

2
, ρodd = 〈PB1〉

ρB1
A − PA2ρ

B1
A PA2

2
. (27)

Plugging (27) into (17), one finds that the spin reduced density matrix is a linear

combination of four fermionic Gaussian operators. Since these operators do not commute,

they cannot be diagonalised simultaneously and therefore we cannot find the eigenvalues of

the spin reduced density matrix that would give the entanglement entropy. Nevertheless,

TrρnA for integer n can be computed through Eq. (21) by providing the product rules

between the four Gaussian operators occurring in (27) in terms of the corresponding

correlation matrices, that are denoted by

Γ1 ≡ Γρ 1
A
, Γ2 ≡ ΓPA2

ρ 1
APA2

, Γ3 ≡ Γ
ρ
B1
A
, Γ4 ≡ Γ

PA2
ρ
B1
A PA2

, (28)

where Γρ is the correlation matrix of a Gaussian density matrix ρ as in Eq. (15).

Obviously, Γ1 is the fermionic correlation matrix, i.e. the one of the free fermions without

the Jordan-Wigner string (studied in detail in Ref. [43]).

Following Ref. [41], we can introduce the restricted correlation matrix to two

fermionic sets/blocks C and D (ΓCD)rs which is the correlation matrix in Eq. (15)

associated to |Ψ〉〈Ψ| with the restriction r ∈ C and s ∈ D. In [41] it has been shown that

the matrices Γ2, Γ3 and Γ4 can be written as

Γ1 = ΓAA, Γ3 = Γ1 − ΓAB1Γ
−1
B1B1

ΓB1A, (29)

and

Γ2 = M2Γ1M2, Γ4 = M2Γ3M2, M2 ≡

(
1`1 0

0 −1`2

)
. (30)

These formulas provide an explicit representation of the matrices Γi in terms of the fermion

correlation in the finite subsystem A1 ∪B1 ∪ A2.

By introducing the following notation

{. . . ,Γ, . . . ,Γ′, . . .} ≡ Tr(. . . ρW . . . ρW ′ . . .), (31)

and {. . . ,Γn, . . .} ≡ Tr(. . . ρnW . . .) as special case, from (27) we have that Trρn± can be

written as a linear combination of traces involving the matrices Γk with k ∈ {1, 2, 3, 4}.
This finally provides TrρnA, which we write as follows

TrρnA ≡
Tn

2n−1
. (32)

From (21) and (27), it is straightforward to realise that Tn is a combination of 4n terms

of the form (31) with coefficients given by integer powers of δB1 ≡ 〈PB1〉2 = det[ΓB1B1 ].

However, many of these 4n terms turn out to be equal when using cyclicality of the trace

and other simple algebraic manipulations.

In the following we write Tn explicitly for 2 6 n 6 5, where we have computed also

T5, in addition to the other ones already reported in Ref. [41]:

• n = 2:

T2 = {Γ2
1}+ {Γ1,Γ2}+ δB1

(
{Γ2

3} − {Γ3,Γ4}
)

; (33)



Partial transpose of two disjoint blocks in XY spin chains 9

• n = 3:

T3 = {Γ3
1}+ 3 {Γ2

1,Γ2}+ 3δB1

(
{Γ1,Γ

2
3}+ {Γ2,Γ

2
3} − 2 {Γ1,Γ4,Γ3}

)
; (34)

• n = 4:

T4 = {Γ4
1}+ {Γ1,Γ2,Γ1,Γ2}+ 4 {Γ3

1,Γ2}+ 2 {Γ2
1,Γ

2
2} (35)

+ 2δB1

(
{Γ1,Γ3,Γ1,Γ3}+ {Γ1,Γ4,Γ1,Γ4}+ 2 {Γ2

1,Γ
2
3}+ 2 {Γ2

1,Γ
2
4}

+ 2 {Γ1,Γ3,Γ2,Γ3}+ 4 {Γ1,Γ2,Γ
2
3} − 2[ 2 {Γ2

1,Γ3,Γ4}

+ {Γ1,Γ3,Γ1,Γ4}+ {Γ1,Γ2,Γ3,Γ4}+ {Γ1,Γ3,Γ2,Γ4}+ {Γ1,Γ2,Γ4,Γ3}]
)

+ δ2
B1

(
{Γ4

3}+ 2 {Γ2
3,Γ

2
4}+ {Γ3,Γ4,Γ3,Γ4} − 4 {Γ3

3,Γ4}
)

;

• n = 5

T5 = {Γ5
1}+ 5

(
{Γ4

1,Γ2}+ {Γ3
1,Γ

2
2}+ {Γ2

1,Γ2,Γ1,Γ2}
)

(36)

+ 5δB1

(
{Γ3

1,Γ
2
3}+ {Γ3

1,Γ
2
4}+ 2 {Γ1,Γ

2
2,Γ

2
3}+ 2 {Γ2

1,Γ2,Γ
2
3}

+ {Γ1,Γ2,Γ1,Γ
2
3}+ {Γ1,Γ2,Γ1,Γ

2
4}+ {Γ2

1,Γ3,Γ1,Γ3}+ {Γ2
1,Γ3,Γ2,Γ3}

+ 2 {Γ1,Γ3,Γ1,Γ3,Γ2}+ {Γ1,Γ3,Γ
2
2,Γ3}+ {Γ2

1,Γ4,Γ1,Γ4}+ 2 {Γ1,Γ2,Γ3,Γ2,Γ3}
− 2[{Γ2

1,Γ2,Γ4,Γ3}+ {Γ2
1,Γ2,Γ3,Γ4}+ {Γ2

1,Γ3,Γ1,Γ4}+ {Γ2
1,Γ3,Γ2,Γ4}

+ {Γ3
1,Γ3,Γ4}+ {Γ1,Γ2,Γ1,Γ3,Γ4}+ {Γ1,Γ2,Γ4,Γ1,Γ3}+ {Γ2,Γ1,Γ4,Γ1,Γ3}]

)
+ 5δ2

B1

(
{Γ1,Γ

4
3}+ {Γ2,Γ

4
3}+ 2 {Γ1,Γ

2
3,Γ

2
4}+ {Γ1,Γ3,Γ

2
4,Γ3}+ 2 {Γ1,Γ3,Γ4,Γ3,Γ4}

+ {Γ1,Γ4,Γ
2
3,Γ4} − 2[{Γ1,Γ

3
3,Γ4}+ {Γ1,Γ

2
3,Γ4,Γ3}+ {Γ2,Γ4,Γ

3
3}+ {Γ2,Γ

2
3,Γ4,Γ3}]

)
.

We notice that the algebraic sum of the integer coefficients occurring in any term

multiplying a power δpB1
with p > 0 is zero. Moreover, considering only the terms which

are not multiplied by a power δB1 in Tn, the sum of their coefficients is 2n−1.

4. Traces of integer powers of the partial transpose of the spin reduced

density matrix

In this section we move to the main objective of this paper which is to give a representation

of the integer powers of the partial transpose of the spin reduced density matrix of two

disjoint blocks with respect to A2. Eisler and Zimboras in Ref. [37] showed how to obtain

the partial transpose of a fermionic Gaussian density matrix, a procedure which can be

applied to the spin reduced density matrix in Eq. (19) using the linearity of the partial

transpose as we are going to show. We mention that in Ref. [37] the moments of the

partial transpose for two adjacent intervals were studied in details using the property that

fermionic and spin reduced density matrices are equal for this special case.

Given a Gaussian density matrix ρW written in terms of Majorana fermions in

A = A1 ∪ A2, the partial transposition with respect to A2 leaves invariant the modes in

A1 and acts only on the ones in A2. Furthermore, the partial transposition with respect
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to A2 of ρA in (17) leaves the operator PB1 unchanged (because it does not contain modes

in A2), therefore we have

ρT2A = ρT2even + PB1 ρ
T2
odd =

1 + PB1

2
ρT2+ +

1− PB1

2
ρT2− , (37)

where

ρT2± = ρT2even ± ρ
T2
odd, (38)

as clear from Eq. (19) because of the linearity of the partial transpose. The partial

transposition of an arbitrary product of Majorana fermions A2 (denoted shortly as O2

like in the previous section) is given by the following map [37]

R2(O2) ≡ (−1)τ(µ2)O2, τ(µ2) ≡
{ 0 (µ2 mod 4) ∈ {0, 3},

1 (µ2 mod 4) ∈ {1, 2},
(39)

where we recall that µ2 is the number of Majorana operators in O2. Then, applying Eq.

(39) to (18), we find

ρT2even =
1

2`1+`2

∑
even

(−1)µ2/2〈O1O2〉O†2O
†
1,

ρT2odd =
1

2`1+`2

∑
odd

(−1)(µ2−1)/2〈O1PB1O2〉O†2O
†
1, (40)

which gives the desired fermionic representation of the partial transpose of the spin

reduced density matrix.

At this point the moments of ρT2A can be obtained following the same reasoning as for

the moments of ρA. Indeed, since ρT2± are unitarily equivalent (PA2ρ
T2
± PA2 = ρT2∓ because

PA2ρ
T2
evenPA2 = ρT2even and PA2ρ

T2
oddPA2 = −ρT2odd) and PB1 commutes with them, starting

from (37) and repeating the same observations that lead to (21), one gets

Tr(ρT2A )n = Tr(ρT2± )n. (41)

Similarly to the case of the Rényi entropies considered in Sec. 3 (see Eq. (21)), the

matrices ρT2± are fermionic but not Gaussian. In the following we write them as sums of

four Gaussian matrices, as done in (17) and (27) for ρA. In particular, by introducing

ρ̃1
A ≡

1

2`1+`2

∑
even
odd

iµ2〈O1O2〉O†2O
†
1, ρ̃B1

A ≡
1

2`1+`2

∑
even
odd

iµ2
〈O1PB1O2〉
〈PB1〉

O†2O
†
1, (42)

one has that the matrices in (40) become

ρT2even =
ρ̃1
A + PA2 ρ̃

1
APA2

2
, ρT2odd = 〈PB1〉

ρ̃B1
A − PA2 ρ̃

B1
A PA2

2i
, (43)

telling us that ρT2± in (38) are linear combinations of four Gaussian fermionic matrices

occurring in the r.h.s.’s of (43). Notice that ρT2even and ρT2odd are Hermitian but the matrices

defining them are not since

(ρ̃1
A)† = PA2 ρ̃

1
APA2 , (ρ̃B1

A )† = PA2 ρ̃
B1
A PA2 . (44)
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In order to compute the correlation matrices associated to the four matrices in Eq.

(43), it is convenient to introduce

M̃2 ≡

(
1`1 0

0 i1`2

)
. (45)

Then, the correlation matrices associated to ρ̃1
A, PA2 ρ̃

1
APA2 , ρ̃

B1
A and PA2 ρ̃

B1
A PA2 are given

by

Γ̃k ≡ M̃2ΓkM̃2, k ∈ {1, 2, 3, 4}. (46)

In analogy to Eq. (32), we write the moments of ρT2A as

Tr(ρT2A )n =
T̃n

2n−1
. (47)

From Eqs. (38), (41) and (43), we have that T̃n is a linear combination of 4n terms. The

net effect is that T̃n can be written by taking Tn and replacing Γi with Γ̃i and δB1 with

−δB1 . The latter rule comes from the imaginary unit in the denominator of ρT2odd in Eq.

(43).

In the following we write explicitly T̃n for 2 6 n 6 5:

• n = 2

T̃2 = {Γ̃2
1}+ {Γ̃1, Γ̃2}+ δB1

(
{Γ̃3, Γ̃4} − {Γ̃2

3}
)

; (48)

• n = 3

T̃3 = {Γ̃3
1}+ 3 {Γ̃2

1, Γ̃2}+ 3δB1

(
2 {Γ̃1, Γ̃4, Γ̃3} − {Γ̃1, Γ̃

2
3} − {Γ̃2, Γ̃

2
3}
)

; (49)

• n = 4

T̃4 = {Γ̃4
1}+ {Γ̃1, Γ̃2, Γ̃1, Γ̃2}+ 4 {Γ̃3

1, Γ̃2}+ 2 {Γ̃2
1, Γ̃

2
2} (50)

+ 2δB1

(
2 {Γ̃3, Γ̃1, Γ̃4, Γ̃1}+ 2 {Γ̃1, Γ̃2, Γ̃3, Γ̃4}+ 2 {Γ̃1, Γ̃3, Γ̃2, Γ̃4}+ 2 {Γ̃1, Γ̃2, Γ̃4, Γ̃3}

+ 4 {Γ̃3, Γ̃4, Γ̃
2
1} − 2 {Γ̃1, Γ̃3, Γ̃2, Γ̃3} − 4 {Γ̃1, Γ̃2, Γ̃

2
3}

− {Γ̃1, Γ̃3, Γ̃1, Γ̃3} − {Γ̃1, Γ̃4, Γ̃1, Γ̃4} − 2 {Γ̃2
1, Γ̃

2
3} − 2 {Γ̃2

1, Γ̃
2
4}
)

+ δ2
B1

(
{Γ̃4

3}+ 2 {Γ̃2
3, Γ̃

2
4}+ {Γ̃3, Γ̃4, Γ̃3, Γ̃4} − 4 {Γ̃3

3, Γ̃4}
)

;

• n = 5

T̃5 = {Γ̃5
1}+ 5

(
{Γ̃4

1, Γ̃2}+ {Γ̃3
1, Γ̃

2
2}+ {Γ̃2

1, Γ̃2, Γ̃1, Γ̃2}
)

(51)

+ 5δB1

(
2 {Γ̃2

1, Γ̃2, Γ̃4, Γ̃3}+ 2 {Γ̃2
1, Γ̃2, Γ̃3, Γ̃4}+ 2 {Γ̃2

1, Γ̃3, Γ̃1, Γ̃4}+ 2 {Γ̃2
1, Γ̃3, Γ̃2, Γ̃4}

+ 2 {Γ̃3
1, Γ̃3, Γ̃4}+ 2 {Γ̃1, Γ̃2, Γ̃1, Γ̃3, Γ̃4}+ 2 {Γ̃1, Γ̃2, Γ̃4, Γ̃1, Γ̃3}+ 2 {Γ̃1, Γ̃4, Γ̃1, Γ̃3, Γ̃2}

− {Γ̃3
1, Γ̃

2
3} − {Γ̃3

1, Γ̃
2
4} − 2 {Γ̃1, Γ̃

2
2, Γ̃

2
3} − 2 {Γ̃2

1, Γ̃2, Γ̃
2
3}

− {Γ̃1, Γ̃2, Γ̃1, Γ̃
2
3} − {Γ̃1, Γ̃2, Γ̃1, Γ̃

2
4} − {Γ̃2

1, Γ̃3, Γ̃1, Γ̃3} − {Γ̃2
1, Γ̃3, Γ̃2, Γ̃3}

− 2 {Γ̃1, Γ̃3, Γ̃1, Γ̃3, Γ̃2} − {Γ̃1, Γ̃3, Γ̃
2
2, Γ̃3} − {Γ̃2

1, Γ̃4, Γ̃1, Γ̃4} − 2 {Γ̃1, Γ̃2, Γ̃3, Γ̃2, Γ̃3}
)

+ 5δ2
B1

(
{Γ̃1, Γ̃

4
3}+ {Γ̃2, Γ̃

4
3}+ {Γ̃1, Γ̃3, Γ̃

2
4, Γ̃3}+ {Γ̃1, Γ̃4, Γ̃

2
3, Γ̃4}+ 2 {Γ̃1, Γ̃3, Γ̃4, Γ̃3, Γ̃4}

+ 2 {Γ̃1, Γ̃
2
3, Γ̃

2
4} − 2 {Γ̃1, Γ̃

3
3, Γ̃4} − 2 {Γ̃1, Γ̃

2
3, Γ̃4, Γ̃3} − 2 {Γ̃2, Γ̃4, Γ̃

3
3} − 2 {Γ̃2, Γ̃

2
3, Γ̃4, Γ̃3}

)
.
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As for Tn, also in T̃n the algebraic sum of the integer coefficients occurring in any term

multiplying a power δpB1
with p > 0 vanishes.

5. Numerical results for the ground state of the critical Ising and XX model

The results of the previous section for the moments of the partial transpose of the reduced

density matrix of two disjoint blocks are valid for arbitrary configurations of the XY spin

chain: equilibrium, non-equilibrium, finite and infinite systems, critical and non-critical

values of the parameters γ and h. In this section we evaluate numerically these moments

for the configurations that so far attracted most of the theoretical interest, namely the

critical points of the XY Hamiltonian, whose scaling properties are described by conformal

field theories. A great advantage of the present approach compared to purely numerical

methods such as exact diagonalization or tensor networks techniques is that it allows to

deal directly with infinite chains without any approximations, reducing the systematic

errors in the estimates of asymptotic results. Indeed, all the numerical results presented

in the following are obtained for infinite chains.

We will consider two particular points of the XY Hamiltonian, namely the critical

Ising model for γ = h = 1 and the zero field XX spin chain (corresponding to fermions

at half-filling) obtained for γ = h = 0. The scaling limit of the former is the Ising CFT

with central charge c = 1/2, while the scaling limit of the latter is a compactified boson

at the Dirac point with c = 1.

The CFT predictions for the moments of both reduced density matrix and its partial

transpose have been derived in a series of manuscripts and they are reviewed in Appendix

A. For both models we consider the case of two disjoint blocks of equal length ` embedded

in an infinite chain and placed at distance r. We numerically evaluate the moments of ρA
and ρT2A using the trace formulas of the previous sections for n = 2, 3, 4, 5 and we compute

the ratio Rn (defined in Eq. (11)):

Rn ≡
Tr(ρT2A )n

TrρnA
, (52)

whose (unknown) analytic continuation for ne → 1 would give the negativity. Notice that

from Eqs. (32) and (47) we have that Rn = T̃n/Tn. In the scaling limit (i.e. `, r → ∞
with ratio fixed) the ratio Rn converges to the CFT prediction (cf. Eq. (81) in Appendix)

written in terms of the four-point ratio x, which is

x =

(
`

`+ r

)2

, (53)

when specialised to the case of two intervals of equal length ` at distance r.

5.1. The critical Ising chain

The negativity and the moments of ρT2A for the critical Ising chain in a transverse field

have been already numerically considered in Ref. [18] by using a tree tensor network

algorithm and in Ref. [19] by Monte Carlo simulations of the two-dimensional classical
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Figure 2. The ratio Rn between the integer moments of ρA and ρT2

A for two disjoint

blocks of length ` at distance r embedded in an infinite critical Ising chain. We report

the results for n = 3, 4, 5 as function of the four-point ratio x for various values of ` (and

correspondingly of r). For large `, the data approach the CFT predictions (solid lines).

The extrapolations to ` → ∞ –done using the scaling form (54)– are shown as crosses

and they perfectly agree with the CFT curves for n = 3 and 4, while for n = 5 the fits

are unstable and the extrapolations are not shown. The last panel shows explicitly the

extrapolating functions for two values of x and n = 3, 4.

problem in the same universality class. However, the finiteness of the chain length did not

allow to obtain very precise extrapolations to the scaling theory for all values of n and of

the four-point ratio x. We found, as generally proved [9], that R2 is identically equal to 1.

In Fig. 2 we report the obtained values of Rn for n = 3, 4, 5 as function of x for different

values of `. It is evident that increasing ` the data approach the CFT predictions (the

solid curves). We can also perform an accurate scaling analysis to show that indeed the

data converge to the CFT results when the corrections to the scaling are properly taken

into account.

It has been argued on the basis of the general CFT arguments [44], and shown

explicitly in few examples [35, 45, 46] both analytically and numerically, that TrρnA displays

‘unusual’ corrections to the scaling which, at the leading order, are governed by the

unusual exponent δn = 2h/n where h is the smallest scaling dimension of a relevant

operator which is inserted locally at the branch point [44]. For the Ising model it has

been found that, in the case of two intervals, h = 1/2 [39, 41]. From the general CFT

arguments in Ref. [44], we expect the same corrections to be present for Tr(ρT2A )n because

they are only due to the conical singularities. Unfortunately, the corrections to the scaling
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in Fig. 2 cannot be captured by a single term, because subleading corrections become

more and more important when n increases, as already pointed out in Ref. [18]. Indeed,

corrections of the form `−m/n for any integer m are know to be present [35, 41, 57]. Thus

the most general finite-` ansatz is of the form

Rn = RCFT
n (x) +

r
(1)
n (x)

`1/n
+
r

(2)
n (x)

`2/n
+
r

(3)
n (x)

`3/n
+ · · · . (54)

The variables rn(x) are used as fitting parameters in the extrapolation procedure. The

number of terms that we should keep in order to have a stable fit depends both on n and on

x. For each case we keep a number of terms such that the extrapolated value at `→∞ is

stable. In any case we never keep corrections beyond the order O(`−1). The results of this

extrapolation procedure for n = 3 and 4 are explicitly reported in Fig. 2. The agreement

of the extrapolations with the CFT predictions is really excellent, at an unprecedented

precision compared with fully numerical computations [18, 19]. Conversely, we find that

for n = 5 the extrapolations are still unstable because of the large number of terms we

should keep in order to have a precise enough extrapolation.

5.2. The XX chain

We now move to the study of the powers of ρT2A for the XX model in zero field. There are

no previous numerical studies of this paradigmatic model. We again consider the ratios

Rn for n = 2, 3, 4, 5 and we again find that R2 is identically equal to 1, as it should be.

In Fig. 3 we report the obtained values of Rn for n = 3, 4, 5 as function of x for different

values of `. It is evident that increasing ` the data approach the CFT predictions (the solid

curves). We should however mention a very remarkable property. It has been observed

that TrρnA shows oscillating corrections to the scaling [35, 45, 41], which for zero magnetic

field, are of the form (−1)`. These oscillations however cancel in the ratio Rn and the

corrections to the scaling are monotonous, a property which makes the extrapolation to

infinite ` slightly simpler.

Also in this case we can perform an accurate scaling analysis to show how the data

converge to the CFT results when the corrections to the scaling are properly taken into

account. For the XX model, the leading correction to the scaling is governed by an

exponent δn = 2/n, which means that they are less severe than in the case of the Ising

model as it is also qualitatively clear from the figure. We then use the general finite-`

ansatz

Rn = RCFT
n (x) +

r
(1)
n (x)

`2/n
+
r

(2)
n (x)

`4/n
+
r

(3)
n (x)

`6/n
+ · · · , (55)

and, as in the case of the Ising model, we keep a number of fitting parameters which

make stable the extrapolation at ` → ∞. The results of this procedure for n = 3 and

4 are explicitly reported in Fig. 3. The agreement of the extrapolations with the CFT

predictions is excellent. Also for the XX chain we find that for n = 5 the fits are unstable.
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Figure 3. The ratio Rn between the integer moments of ρA and ρT2

A for two disjoint

blocks of length ` at distance r embedded in an infinite XX chain at zero field. We report

the results for n = 3, 4, 5 as function of the four-point ratio x for various values of ` (and

correspondingly of r). For large `, the data approach the CFT predictions (solid lines).

The extrapolations to ` → ∞ –done using the scaling form (55)– are shown as crosses

which perfectly agree with the CFT curves for n = 3 and 4, while for n = 5 the fits are

unstable. The last panel shows explicitly the extrapolating functions for two values of x

and n = 3, 4.

6. Two disjoint intervals for free fermions

In this section we consider the partial transposition for two disjoint blocks in the fermionic

variables. This problem was already addressed by Eisler and Zimboras [37], but a detailed

numerical analysis was not presented. For fermionic variables there is no string in B1

connecting the two blocks (cf. Eq. (16)). Thus the partial transpose of fermions can

be obtained from the formulas derived in the previous sections by discarding the string

of Majorana operators (16), i.e. by replacing PB1 with 1. Performing this replacement,

many simplifications occur in the formulas found in Sec. 3 and Sec. 4 as we will discuss

in the following.

6.1. Rényi entropies

By definition the fermionic reduced density matrix is Gaussian with correlation matrix

Γ1 defined in the Sec. 3, i.e.

TrρnA = {Γn1}. (56)
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It is however instructive to recover this result from the formulas in Sec. 3 in order to set

up the calculation for the partial transpose.

Making the replacement PB1 → 1, the reduced density matrix of the two disjoint

blocks given in Eqs. (17) and (18) becomes

ρA = ρeven + ρFodd, (57)

where§

ρeven =
1

2`1+`2

∑
even

〈O1O2〉O†2O
†
1, ρFodd =

1

2`1+`2

∑
odd

〈O1O2〉O†2O
†
1. (58)

Moreover, ρB1
A defined in Eq. (23) is replaced as ρB1

A → ρA and therefore, from Eqs. (27)

and (57) we conclude that ρF+ = ρ1
A. As for the correlation matrices Γi, since ρB1

A → ρA,

it is obvious that Γ3 → Γ1 and Γ4 → Γ2.

Summarising, we conclude that the fermionic TrρnA is found by making in Eq. (32)

the following replacements

δB1 → 1, Γ3 → Γ1, Γ4 → Γ2. (59)

Performing these substitutions in the explicit examples given in Sec. 3 for 2 6 n 6 5,

it is straightforward to find Eq. (56), which is just the obvious result that the fermionic

density matrix is the Gaussian operator with correlation matrix given by Γ1.

As a further check of our numerical codes, we numerically calculated TrρnA using Eq.

(56) (as was already done in Ref. [43]), obtaining that on the critical lines in the scaling

limit it converges to

TrρnA →
c2
n

[`1`2(1− x)]2∆n
, (60)

that corresponds to Fn(x) = 1 identically in the general CFT formula (73). Indeed this

result was already proven in the continuum free fermion theory [47].

6.2. Traces of integer powers of the partial transpose

We are now ready to set up the formulas for the moments of the partial transpose, as

already derived by Eisler and Zimboras [37], but numerically studied only for the case of

adjacent intervals.

Once again, Tr(ρT2A )n in the fermionic variables is obtained by replacing PB1 with

1 in the formulas reported in Sec. 4. Performing this replacement in Eq. (37) we get

ρT2A = ρT2even + (ρFodd)T2 = ρT2+ and in Eq. (42) it gives ρ̃B1
A → ρ̃1

A. These observations

together with Eq. (43) lead to

ρT2A =
1− i

2
ρ̃1
A +

1 + i

2
PA2 ρ̃

1
APA2 , (61)

which is exactly the same result obtained in [37] (for direct comparison, set (O+)there =

(ρ̃1
A)here and (O−)there = (PA2 ρ̃

1
APA2)here).

§ To compare our notation with the one used in [37], set (ρ+)there = (ρeven)here and (ρ−)there = (ρFodd)here.
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Figure 4. The ratio Rn between the integer moments of ρA and ρT2

A for two disjoint

intervals of length ` at distance r for the tight-binding model at half-filling. We report

the results for n = 3, 4, 5 as function of the four-point ratio x for various values of `

(and correspondingly of r). For large `, the data approach the CFT predictions (solid

lines). The extrapolations to ` → ∞ –done using the scaling form (55)– are shown as

crosses and they perfectly agree with the CFT curves for n = 3, 4, 5. The last panel

shows explicitly the extrapolating functions for one value of x and n = 3, 4, 5.

The last remaining step is just to write these formulas in terms of correlation matrices.

Given that ρ̃B1
A → ρ̃1

A, it follows that we should perform the replacements Γ̃3 → Γ̃1 and

Γ̃4 → Γ̃2 in order to get the moments of the partial transpose in terms of the correlation

matrices. Summarising, the fermionic Tr(ρT2A )n are given by the formulas in Sec. 4

performing the replacements

δB1 → 1, Γ̃3 → Γ̃1, Γ̃4 → Γ̃2. (62)

Writing Tr(ρT2A )n = T̃ Fn /2
n−1, and performing the replacements in the formulas for

2 6 n 6 5 given in Eqs. (48), (49), (50) and (4), we find

T̃ F2 = 2 {Γ̃1, Γ̃2}, (63)

T̃ F3 = − 2 {Γ̃3
1}+ 6 {Γ̃2

1, Γ̃2}, (64)

T̃ F4 = − 4 {Γ̃4
1}+ 4 {Γ̃1, Γ̃2, Γ̃1, Γ̃2}+ 8 {Γ̃2

1, Γ̃
2
2}, (65)

T̃ F5 = − 4 {Γ̃5
1} − 20 {Γ̃4

1, Γ̃2}+ 20 {Γ̃3
1, Γ̃

2
2}+ 20 {Γ̃2

1, Γ̃2, Γ̃1, Γ̃2}. (66)

Notice that the final expressions are very compact compared to the much more

cumbersome spin counterparts.
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6.3. Numerical Results

We are now going to evaluate numerically the moments of the reduced density matrix and

its partial transpose. We can study the problem for arbitrary values of h and γ entering

in Eq. (3), but in the following we focus on the most physically relevant fermionic system

with h = γ = 0, i.e. the tight binding model

H =
1

2

L∑
i=1

[
c†ici+1 + c†i+1ci

]
, (67)

at half filling (kF = π/2). In the scaling limit, the tight binding model is described by a

CFT with c = 1.

The numerical results for the ratios Rn = Tr(ρT2A )n/(TrρnA) are reported in Fig. 4 as

function of the four-point ratio x for different ` and for n = 3, 4, 5 (we checked that R2 = 1

identically, as it should). We also derived asymptotic CFT predictions for the fermionic

moments of the partial transpose, but their derivation is too cumbersome and beyond the

goals of this manuscript. We will report the derivation in a forthcoming publication [48]

and we limit here to give the final results for n = 2, 3, 4, 5. In order to have manageable

formulas we introduce the shorts[ 2ε

2δ

]
τ

=
|Θ[e](0|τ(x))|2

|Θ(0|τ(x))|2
, (68)

where Θ is the Riemann Theta function defined in Appendix A. In terms of the Θ function

the fermionic ratios Rn are given by [48]

2R2

(1− x)4∆2
−→ 2

[ 0

1

]
τ̃
, (69)

4R3

(1− x)4∆3
−→ − 2 + 6

[ 0 0

0 1

]
τ̃
, (70)

8R4

(1− x)4∆4
−→ − 4 + 8

[ 0 0 0

0 1 0

]
τ̃

+ 4
[ 0 0 0

1 1 1

]
τ̃
, (71)

16R5

(1− x)4∆5
−→ − 4 + 20

[ 0 0 0 0

0 0 1 0

]
τ̃

+ 20
[ 0 0 0 0

0 1 1 1

]
τ̃
− 20

[ 0 0 0 0

0 0 0 1

]
τ̃
, (72)

where the matrix τ̃ has been defined in Eq. (80) and the exponent ∆n in App. A.

It is evident from Fig. 4 that the lattice numerical results approach the CFT

predictions depicted as solid lines for all n. As in the spin case, we can perform a careful

finite ` analysis to take into account corrections to the scaling. The leading correction is

expected to be of the form `−2/n and subleading ones to be integer powers of the leading

one. The finite ` ansatz is then given by Eq. (55) and again to have an accurate description

of the data we keep a number of fitting parameters which make stable the extrapolation at

`→∞. The results of this extrapolation procedure for n = 3, 4, 5 are explicitly reported

in Fig. 4. The agreement of the extrapolations with the CFT predictions is excellent also

for n = 5 as a difference compared to the spin counterpart.
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7. Conclusions

We have shown that the partial transpose of the reduced density matrix of two disjoint

spin blocks in the XY spin chain can be written as a linear combination of four

Gaussian fermionic operators, fully specified by their correlation matrices (denoted as Γ̃i,

i = 1, 2, 3, 4 in the text) which have been explicitly calculated in terms of the correlation

matrix of the subsystem formed by the two blocks joined with the finite part between

them. This construction allows to calculate the moments of the partial transpose in

generic configurations of the spin chain. In this manuscript we focused on the ground

state of Ising and XY chain, but the approach is more general and can be used for

arbitrary excited states, thermal density matrices, non-equilibrium situations etc.

The obtained representations of the moments of the partial transpose allow us to

study in an exact manner infinite chains and very large subsystems, drastically reducing

the systematic errors in the approach to the scaling limit. We found that for the ground

state of the critical models the moments of the partial transpose agree (with high accuracy)

with the recent CFT predictions after the corrections to the scaling are properly taken

into account. We also studied numerically the integer powers of the partial transpose in

the fermionic degrees of freedom (described in Ref. [37], but not numerically studied).

Even in this case we find that the moments agree perfectly with the CFT predictions in

[48].

The main open problem left by this manuscript for two disjoint blocks of a spin

chain is whether it is somehow possible to obtain the negativity from the correlation

matrix (the problem is also present for the fermionic degrees of freedom [37]). A similar

problem is also open for the entanglement entropy since integer moments are obtained

in a similar fashion [41], but one has no access to the spectrum of the reduced density

matrix and hence to the entanglement entropy. From the practical point of view, it

has been recently shown that if one knows a relative large number of integer moments,

rational interpolations provide accurate estimates of the analytic continuations [49, 50]

(and hence of entanglement entropy and negativity). However, a deeper understanding

of these analytic continuations would be highly desirable.
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A. CFT results for entanglement entropy and negativity of two disjoint

intervals

The moments of the reduced density matrix of two disjoint intervals for CFTs have been

studied in a series of manuscripts [47, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63].

These results have been derived using earlier findings for the partition functions of CFTs

on Riemann surfaces with non vanishing genus [64]. In this appendix we review the

main results (especially from Refs. [10, 53, 56]) which are useful for the comparison

with numerical results. We mention that some universal results are also known in higher

dimensions both from field theory [65] and holography [63, 66, 67].

From global conformal invariance, we know that TrρnA for two disjoint intervals admits

the general scaling form (choosing, without loss of generality, the endpoints of the intervals

in the order u1 < v1 < u2 < v2):

TrρnA = c2
n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)2∆n

Fn(x), (73)

where ∆n = c(n − 1/n)/12, being c the central charge. The variable x is the four-point

ratio

x =
(u1 − v1)(u2 − v2)

(u1 − u2)(v1 − v2)
. (74)

Given the order of the points we have 0 ≤ x ≤ 1. The prefactor cn is non-universal,

but can be exactly fixed from the exact calculation of the entanglement entropy of one

interval.

The difficult task of CFT is to have an exact representation for the universal function

Fn(x) normalised so that Fn(0) = 1. This universal function has been analytically derived

for the compactified boson (with central change c = 1) [52, 53] and for the Ising CFT (with

c = 1/2) [56, 57], as well as for other conformal theories which however are not of interest

for this paper. Concerning the compactified boson, we are only interested in the value of

the compactfication ratio corresponding to the scaling limit of the XX spin chain which

is the so called Dirac point. For the Ising CFT and at the Dirac point (which describe

respectively the scaling limit of the critical Ising chain and the critical XX model), the

function Fn(x) reads [56]

F Ising
n (x) =

∑
e |Θ[e](τ(x))|

2n−1 |Θ(τ(x))|
, FDirac

n (x) =

∑
e |Θ[e](τ(x))|2

2n−1 |Θ(τ(x))|2
, (75)

where Θ[e](Ω) is the Riemann theta function, which is defined as follows [68]

Θ[e](Ω) ≡
∑

m∈Zn−1

e iπ(m+ε)t·Ω·(m+ε)+2πi (m+ε)t·δ, [e] ≡
[ ε
δ

]
≡
[ ε1, . . . , εn−1

δ1, . . . , δn−1

]
, (76)

being Ω a (n− 1)× (n− 1) symmetric complex matrix with positive imaginary part and

e is the characteristic of the Riemann theta function, which is defined by a pair of n− 1
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dimensional vectors made by εi, δi ∈ {0, 1/2}. In Eq. (76) we have to sum over all the

characteristics e. The elements of the matrix τ(x) in Eq. (75) read [53]

τ(x)rs = i
2

n

n−1∑
k=1

sin(πk/n)
2F1(k/n, 1− k/n; 1; 1− x)

2F1(k/n, 1− k/n; 1;x)
cos

[
2π
k

n
(r − s)

]
, (77)

where x ∈ (0, 1) and 2F1 is the hypergeometric function.

Also the moments of the partial transpose correspond to a four-point function of

twist fields in which two of them have been interchanged [9]. Consequently also these

moments admit the universal scaling form

Tr(ρT2A )n = c2
n

(
(u2 − u1)(v2 − v1)

(v1 − u1)(v2 − u2)(v2 − u1)(u2 − v1)

)2∆n

Gn(x), (78)

with cn the same non-universal constant appearing in Eq. (73) and Gn(x) a new universal

scaling function. Exploiting the fact that the above moments correspond to the exchange

of two twist fields, it has been shown that Gn(x) and Fn(x) are related as [9, 10]

Gn(x) = (1− x)4∆nFn
(

x

x− 1

)
, (79)

but some care is needed to take the analytic continuation of the function Fn(y) to negative

argument y (see for details [10]). This result is equivalent to say that Tr(ρT2A )n is given by

Eq. (75) in which the period matrix τ(x) is replaced by

τ(x)→ τ̃(x) = τ

(
x

x− 1

)
. (80)

Thus, the CFT prediction for ratio in Eq. (11) is

RCFT
n (x) = (1− x)4∆n

Fn(x/(x− 1))

Fn(x)
, (81)

in which the universal constants cn as well as the dimensional part of the traces canceled

out leaving a universal scale invariant quantity. Thus, in order to study this quantity

we do not need an a priori knowledge of the constants cn which anyhow are known both

for the XX [32] and the Ising [33, 69] spin chains. It is worth recalling that the analytic

continuation to non-integer n of the ratios (81) for two intervals are not yet known even for

the simpler cases and consequently also the negativity is eluding an analytic description.
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