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On functions having coincident p-norms

Giuliano Klun

Abstract. In a measure space (X,A, µ) we consider two measurable functions f, g : E → R,
for some E ∈ A. We prove that the property of having equal p-norms when p varies in some
infinite set P ⊆ [1,+∞) is equivalent to the following condition:

µ({x ∈ E : |f(x)| > α}) = µ({x ∈ E : |g(x)| > α}) for all α ≥ 0 .

1 Introduction

We consider a measure space (X,A, µ) and two measurable functions f, g : E → R, for some
E ∈ A. The aim of this paper is to characterize the property of having equal p-norms when p
belongs to a sequence P = (pj)

∞
j=1 of distinct real numbers pj ≥ 1.

Before stating our main results, let us recall the standard notation for the norms in Lp(E):

‖f‖p =

(∫
E

|f |p dµ

) 1
p

if 1 ≤ p < +∞ , ‖f‖∞ = ess sup
E
|f | .

Moreover, for a measurable function f : E → R, we write

{f > α} = {x ∈ E : f(x) > α} , µ(f > α) = µ({f > α}) .

Here is our main result.

Theorem 1. Suppose f, g ∈ Lp(E) for all p ≥ 1, and P = (pj)
∞
j=1 is a sequence of distinct real numbers

pj ≥ 1. Suppose also that at least one of the following two conditions holds:

a) P has an accumulation point in (1,+∞) ;

b) f, g ∈ L∞(E) and
∞∑
j=1

pj − 1

(pj − 1)2 + 1
= +∞ . (1)

Then the following two statements are equivalent:

i) ‖f‖p = ‖g‖p for all p ∈ P ;

ii) µ(|f | > α) = µ(|g| > α) for all α ≥ 0 .

Observe that, if limj pj = +∞, then (1) is equivalent to

∞∑
j=1

1

pj
= +∞ .
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Notice moreover that, in this case, if we drop the boundedness hypothesis on f and g, the result
is no longer true, as we will show with a counterexample in Section 4. Theorem 1 applies for
example if

P = {j ∈ N, j ≥ 100} , P =

{
1 +

1√
j

: j ∈ N \ {0}
}
, or P =

{
2 +

1

j
: j ∈ N \ {0}

}
.

On the contrary, the set P =
{
j2 : j ∈ N \ {0}

}
is not admissible, since in this case the series

in (1) converges.
It can be seen, as a consequence of the Chebyshev inequality, that ii) implies the identity

‖f‖p = ‖g‖p , for all p ∈ [1,+∞) , and for any functions f, g ∈ Lp(E). Hence, the main interest
of our result will be in proving that i) implies ii).

The paper is organized as follows. In Section 2 we recall some results in measure theory and
complex analysis. Section 3 is devoted to the proof of Theorem 1 by the use of the “Full Müntz
Theorem in C[0, 1]”, elementary complex analysis and the Mellin transform. In Section 4 we
construct the counterexample to the conclusion of Theorem 1 if the boundedness hypothesis on
f and g is dropped in b). In the last section we provide some complementary results and final
remarks.

2 Some preliminaries for the proof

We will need the following preliminary results.

Lemma 2. Suppose P = (pj)
∞
j=1 is a sequence of distinct real numbers pj ≥ 1 satisfying (1) and having

at most 1 as a finite accumulation point. If ϕ ∈ L1[0, 1] satisfies∫ 1

0

ϕ(x)xp−1 dx = 0 for all p ∈ P, (2)

then ϕ(x) = 0 for almost every x ∈ [0, 1].

Proof. By the assumptions given on P , one of the following two cases occurs:

(b1) P has a strictly increasing subsequence (pjk)k such that pjk → +∞ and
∑∞
k=1

1
pjk

= +∞ ;

(b2) P has a strictly decreasing subsequence (pjk)k such that pjk → 1 and
∑∞
k=1(pjk−1) = +∞ .

With no loss of generality, we may replace P by the subsequence pjk , in either case.

Suppose that (b1) holds; then by (2) we have∫ 1

0

ϕ(x)xp1−1xp−p1 dx = 0 .

By the “Full Müntz Theorem in C[0, 1]” given in [1, Theorem 2.1] the linear span of {xp−p1 , p ∈
P} is a dense subset in C0[0, 1] because in this case∑

p∈P

p− p1

(p− p1)2 + 1
= +∞ ,

by (1). Hence, for any h ∈ C0[0, 1] we have:∫ 1

0

ϕ(x)xp1−1h(x) dx = 0 .
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Extend ϕ ≡ 0 outside [0, 1]. Let χε be a family of mollifying kernels on R (as shown for example
in the article [3] or [9, Chapter 9.2]). Then picking h(x) = χε(x−y) and setting k(x) = ϕ(x)xp1−1

we obtain:∫ 1

0

k(x)h(x) dx =

∫
R
k(x)χε(x− y) dx = (k ∗ χε)(y) = 0 for every y ∈ R.

Now, by [9, Chapter 9, Theorem 9.6],

k ∗ χε → k in L1[0, 1].

Consequently, (2) holds if and only if ϕ = 0 almost everywhere.

If case (b2) holds then we can define a sequence of functions (fj)j by

fj(x) = ϕ(x)xpj−1 .

The sequence (fj)j converges to ϕ pointwise. Moreover, choosing σ(x) = |ϕ(x)|, we obtain that
σ ∈ L1 and

|fj(x)| ≤ σ(x) for all x ∈ [0, 1] and all j ∈ N , j ≥ 1.

By the Dominated Convergence Theorem we obtain that∫ 1

0

ϕ(x) dx = lim
j→∞

∫ 1

0

ϕ(x)xpj−1 dx = 0 .

Consequently we can suppose, without losing in generality, that 1 belongs to P and the proof
proceeds as before applying the “Full Müntz Theorem in C[0, 1]” [1, Theorem 2.1].

Remark 3. If f ∈ Lp(E) for all p ≥ 1, let µf : (0,+∞)→ R be defined by

µf (t) = µ (|f | > t) .

It is well known that µf is a monotone nonincreasing function, continuous from the right, and
that ∫

E

|f |pdµ = p

∫ +∞

0

µf (t)tp−1dt ,

for every p ∈ [1,+∞), cf. [9, Theorem 5.51]. Note in particular that µf ∈ L1(0,+∞).

To deal with the first part of Theorem 1, namely when case a) holds, we have to recall some
tools in complex analysis. The Mellin transform of a function υ(t) is defined as

{Mυ}(z) = F (z) =

∫ ∞
0

υ(t)tz−1dt , z ∈ C ,

whenever the integral exists for at least one value z0 of z (cf. [8, 10, 11]).

Lemma 4. Let υ : [0,+∞)→ R be a function such that

υ(t) tz−1 ∈ L1([0,+∞)) for all z ≥ 1.

ThenMυ is analytic in S = {w ∈ C : <(w) > 1}.
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Proof. Let γ : [0, 1]→ C be a triangle in S and let Φ(s, z) = υ(s)sz−1. Then,∫
γ

F =

∫
γ

(∫ +∞

0

Φ(s, z) ds

)
dz =

∫ 1

0

(∫ +∞

0

Φ(s, γ(t))γ′(t) ds

)
dt ,

with γ′(t) defined for all but three points t ∈ [0, 1]. Observe that∫
γ

|F | =
∫ 1

0

(∫ +∞

0

|Φ(s, γ(t))γ′(t)|ds
)

dt ≤
∫ 1

0

(∫ +∞

0

|υ(s)||sγ(t)−1| |γ′(t)|ds
)

dt .

Being γ a triangle, |γ′(t)| is constant on every side and then there exists C1 such that |γ′(t)| < C1

for all t ∈ [0, 1] where the tangent vector is defined. Let R > 0 be such that Supp(γ) ⊆ B(0, R).
Then,

|sγ(t)−1| = s<[γ(t)−1] ≤ sR+1,

and so ∫ 1

0

(∫ +∞

0

|υ(s)||sγ(t)−1| |γ′(t)|ds
)

dt ≤ C1

∫ 1

0

(∫ +∞

0

|υ(s)sR+1|ds
)

dt .

By hypothesis, υ(s)sp is Lebesgue integrable for all p ≥ 0, so

C1

∫ 1

0

(∫ +∞

0

|υ(s)sR+1|ds
)

dt ≤ C1CR < +∞ .

Then, by Fubini-Tonelli Theorem,∫
γ

F =

∫
γ

(∫ +∞

0

Φ(s, z) ds

)
dz =

∫ +∞

0

(∫
γ

Φ(s, z) dz

)
ds =

∫ +∞

0

(∫
γ

υ(s)sz−1 dz

)
ds .

But now υ(s)sz−1 is a holomorphic function of z, and then by the Cauchy integral theorem∫
γ

υ(s)sz−1 dz = 0 ,

and then ∫
γ

F = 0 ,

for every triangular path. Consequently, by Morera’s theorem for triangles (see for example [2]),
F (s) is holomorphic on {w ∈ C : <(w) > 1}.

3 Proof of Theorem 1

Being f and g in Lp(E) for every p ∈ [1,+∞), the functions

t→ µ
(
|f | > t

1
p

)
and t→ µ

(
|g| > t

1
p

)
are finite almost everywhere, the function

I(p) =

∫
E

[ |f |p − |g|p ] dµ
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is well defined and finite for every p ∈ [1,+∞), and

I(p) =

∫
E

(
|f |p − |g|p

)
dµ =

=

∫ +∞

0

[
µ(|f |p > t)− µ(|g|p > t)

]
dt =

∫ +∞

0

[
µ
(
|f | > t

1
p

)
− µ

(
|g| > t

1
p

)]
dt .

Substituting z = t
1
p , the integral becomes

I(p) = p

∫ +∞

0

[
µ(|f | > z)− µ(|g| > z)

]
zp−1 dz = p

∫ +∞

0

ϕ(z)zp−1 dz , (3)

where
ϕ(z) = µ(|f | > z)− µ(|g| > z) .

Notice that ϕ : [0,+∞)→ R is continuous from the right and that

‖f‖p = ‖g‖p ⇔ I(p) = 0 .

Suppose a) holds. Being ϕ : [0,+∞) → R the difference of two monotone functions, it is
differentiable almost everywhere, and hence continuous almost everywhere. Moreover, it is of
bounded variation on [a,+∞) for all a > 0 and then of bounded variation in a neighborhood of
each y ∈ (0,+∞). Notice that the integral in the right-hand side of (3) is the Mellin transform
of ϕ , hence

I(p) = 0 ⇔ {Mϕ}(p) = 0 .

By [10, Chapter 6.9, Theorem 28], for every c ∈ (1,+∞),

1

2
[ϕ(x+ 0) + ϕ(x− 0)] =

1

2πi
lim

T→+∞

∫ c+iT

c−iT
{Mϕ}(p)x−p dp , (4)

where
ϕ(x+ 0) = lim

t→x+
ϕ(t) and ϕ(x− 0) = lim

t→x−
ϕ(t) .

By Lemma 4,Mϕ is holomorphic on {w ∈ C : <(w) > 1}. But

{Mϕ}(p) = 0 for all p ∈ P ,

and, by a), P has an accumulation point in {w ∈ C : <(w) > 1}. Then, by the identity theorem
of complex analytic functions,

Mϕ ≡ 0 on {w ∈ C : <(w) > 1}.

The inversion formula (4) then becomes

1

2
[ϕ(x+ 0) + ϕ(x− 0)] =

1

2πi
lim

T→+∞

∫ c+iT

c−iT
0 · x−p dp = 0 .

Being ϕ(x) continuous almost everywhere, we have that ϕ(x) = 0 for almost every x. The
conclusion easily follows.
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Assume now that b) holds and that P has no accumulation points in (1,+∞). If ‖f‖∞ = 0
or ‖g‖∞ = 0 , then either i) or ii) imply that f = g = 0 almost everywhere, and the result is
achieved. Without loss of generality, we can suppose ‖f‖∞ ≤ ‖g‖∞ = 1. Indeed,

‖f‖p = ‖g‖p ⇔ ‖f‖pp = ‖g‖pp

⇔
∫
E

‖g‖p∞
(
|f |
‖g‖∞

)p
dµ =

∫
E

‖g‖p∞
(
|g|
‖g‖∞

)p
dµ

⇔
∫
E

(
|f |
‖g‖∞

)p
dµ =

∫
E

(
|g|
‖g‖∞

)p
dµ .

In this case,

I(p) =

∫ 1

0

ϕ(z)zp−1 dz ,

and ϕ ∈ L1[0, 1]. By Lemma 2 we have that I(p) = 0 for all p ∈ P if and only if ϕ(z) = 0 for
almost every z ∈ [0, 1]. By the the right-continuity, we conclude.

4 Construction of the counterexample

In this section we want to show that, in general, the boundedness hypothesis on f and g in
Theorem 1, when b) holds, cannot be removed. In the first part we give some definitions to set
the problem in a more general frame, then we develop the counterexample. Precisely, we will
firstly build a continuous function ϕ defined on the positive real semiaxis and orthogonal to
every monomial (and for linearity to every polynomial). Then, we will prove that this function
is continuous and it is of bounded variation on [0,+∞). So, it can be written as the difference
of two strictly decreasing functions; their inverses are the functions we are looking for. To
conclude we show, as corollaries of independent interest, that modifying a bit this function ϕ
firstly we can make it smooth, and secondly it could be orthogonal to every rational power of
x, with fixed denominator. For an in-depth analysis of this argument see e.g. [5, 7].

Lemma 5. The function ϕ : [0,+∞)→ R defined as

ϕ(x) = e−
4
√
x sin

(
4
√
x
)

is such that ∫ +∞

0

xnϕ(x) dx = 0 for all n ∈ N .

Proof. This result was already known by Stieltjes that gave it in his work on continuous fractions
[6, page 105]. For the convenience of the reader we sketch a self-contained proof relying only
on elementary complex analysis.
Set

In =

∫ +∞

0

xne−(1−i)xdx .

Being |xne−(1−i)x| = xne−x, we have that the integral In is well defined for all n. Moreover,
letting z = 1− i, performing the change of variables zx = y we obtain:

In =

∫ +∞

0

xne−(1−i)x dx =

∫ +∞

0

xne−zx dx = z−n−1

∫
γ

yne−y dy ,
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where γ is the half-line starting at the origin, containing the point 1− i. Consider the triangular
path TN in the complex plane joining the points 0, N , N − iN . Being yne−y analytic over the
interior of TN the integral along TN is 0. Moreover:∣∣∣∣∣

∫ N−iN

N

yne−y dy

∣∣∣∣∣ =

∣∣∣∣∣
∫ N

0

(N − it)ne−N+it dt

∣∣∣∣∣ ≤
∫ N

0

|N2 + t2|n2 e−N dt→ 0 ,

and so ∫ N

0

yne−y dy +

∫ N−iN

N

yne−y dy +

∫ 0

N−iN
yne−y dy = 0.

Then, passing to the limit for N tending to +∞, the first term tends to Γ(n+ 1), the second term
tends to 0, and the third tends to −zn+1In hence:

In = z−n−1Γ(n+ 1) = z−n−1n! .

Then,
In = n! · (1− i)−n−1 = n! · (1 + i)n+1 · 2−n−1 =

= n! ·
[

(1 + i)√
2

]n+1

· 2−n−1 · 2
n+1
2 = n! · e

(n+1)iπ
4 · 2−

n+1
2 .

So,
I4p+3 ∈ R for all p ∈ N ,

and then
= (I4p+3) = 0 for all p ∈ N ,

so that

0 = =(I4p+3) =

∫ +∞

0

x4p+3e−x=(eix) dx =

∫ +∞

0

x4p+3e−x sin(x) dx for all p ∈ N .

Letting x = u
1
4 , we arrive to∫ +∞

0

upe−
4
√
u sin( 4

√
u) du = 0 for all p ∈ N .

The function
ϕ(x) = e−

4
√
x sin( 4

√
x)

has the requested properties.

Lemma 6. The function ϕ defined in Lemma 5 belongs to BV ([0,+∞)).

Proof. Observe preliminarily that ϕ(0) = 0 and ϕ tends to 0 at infinity; moreover,

ϕ′(x) =
e−

4
√
x cos ( 4

√
x)

4x3/4
− e−

4
√
x sin ( 4

√
x)

4x3/4
=

√
2e−

4
√
x

4x3/4
sin
(π

4
− 4
√
x
)
,

and so

ϕ′(x) = 0 ⇔
√

2e−
4
√
x

4x3/4
sin
(π

4
− 4
√
x
)

= 0 ⇔ 4
√
x =

π

4
+ kπ for k ∈ N .
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The second derivative of ϕ is given by

ϕ′′(x) =
e−

4
√
x (3 sin ( 4

√
x)− (2 4

√
x+ 3) cos ( 4

√
x))

16x7/4
.

Letting

xn =
(π

4
+ nπ

)4

,

we see that (ϕ′′(xn))n has alternating signs, since

ϕ′′(xn) = (−1)n+1 256
√

2eπ(−(n+ 1
4 ))

(4πn+ π)6
.

So, the total variation of ϕ is the series of variations between each stationary point. Writing
R+ = {x ∈ R : x ≥ 0}, we have

VR+(ϕ) =
∑
n≥0

|ϕ(xn+1)− ϕ(xn)|

=
∑
n∈2N

|ϕ(xn+1)− ϕ(xn)|+
∑

n∈2N+1

|ϕ(xn+1)− ϕ(xn)|

=
∑
n∈N
|ϕ(x2n+1)− ϕ(x2n)|+

∑
n∈N
|ϕ(x2n+2)− ϕ(x2n+1)|

=
∑
n∈N

∣∣∣∣∣− e−
1
4π(8n+5)

√
2

− e−
1
4π(8n+1)

√
2

∣∣∣∣∣+
∑
n∈N

∣∣∣∣∣e−
1
4π(8n+9)

√
2

+
e−

1
4π(8n+5)

√
2

∣∣∣∣∣
=
e−

π
4 (eπ + 1)√
2 (eπ − 1)

.

We are now ready to construct the counterexample. Define

φ(t) = P (t,+∞) +
1

(t+ 1)
, ψ(t) = N(t,+∞) +

1

(t+ 1)
,

where P (t,+∞) and N(t,+∞) are, respectively, the positive and the negative variation of ϕ
on (t,+∞). The functions φ and ψ are positive, strictly decreasing, bounded, and achieve their
maximum in 0. Moreover,

lim
t→+∞

φ(t) = lim
t→+∞

ψ(t) = 0 ,

and
φ(t)− ψ(t) = ϕ(t) .

Restricting the codomain of φ to (0, φ(0)] and that of ψ to (0, ψ(0)] , we obtain two invertible
functions

φ̂ : [0,+∞)→ (0, φ(0)] , ψ̂ : [0,+∞)→ (0, ψ(0)] .

Moreover, their inverses are also non negative decreasing functions. Define

f = φ̂−1 : (0, φ(0)]→ [0,+∞) , g = ψ̂−1 : (0, ψ(0)]→ [0,+∞) ,

and notice that
lim
x→0+

f(x) = lim
x→0+

g(x) = +∞ .
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Extend f and g to all R by setting them equal to 0 outside their domain, and call them f̃ and g̃.
These are the functions we are looking for. Indeed, we will now prove that µ(|f̃ | > α) does not
coincide with µ(|g̃| > α) for a.e. α ≥ 0. By contradiction suppose that

µ(|f̃ | > α) = µ(|g̃| > α) for a.e. α ≥ 0 .

Being f̃ and g̃ non-negative and being their level sets coincident with those of f and g, we have

µ(f > α) = µ(g > α) for a.e. α ≥ 0 .

But f and g are monotonically strictly decreasing, so {f > α} = [0, f−1(α)) and {g > α} =
[0, g−1(α)), hence

f−1(α) = g−1(α) for a.e. α ≥ 0 .

Being f−1 = φ and g−1 = ψ,

φ(α) = ψ(α) for a.e. α ≥ 0 .

Recall then the definition of φ and ψ to obtain

P (α,+∞) +
1

(α+ 1)
= N(α,+∞) +

1

(α+ 1)
for a.e. α ≥ 0 ,

so
P (α,+∞) = N(α,+∞) for a.e. α ≥ 0 ,

and then
ϕ(α) = P (α,+∞)−N(α,+∞) = 0 for a.e. α ≥ 0 ,

finding a contradiction. The proof is then completed.

In the following corollary, we want to extend Lemma 5 to find a continuous function orthog-
onal to every fractional power of x with fixed denominator.

Corollary 7. Fix q ∈ N \ {0}. There exists a continuous function ϕq : (0,+∞) → R, not identically
equal to 0 , such that ∫ +∞

0

x
n
q ϕq(x) dx = 0 for all n ∈ N .

Proof. Define In as before. We have∫ +∞

0

x4p+3e−x sin(x) dx = 0 for all p ∈ N .

Letting x = u
1
4q we arrive to∫ +∞

0

u
p
q e−

4q
√
u sin( 4q

√
u)u

1−q
q du = 0 for all p ∈ N .

The function
ϕ(x) = e−

4q
√
x sin( 4q

√
x)x

1−q
q

is the one we were looking for.
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The aim of the subsequent lemma is to show that, if we multiply the functions ϕ(x) and
ϕq(x), found respectively in Lemma 5 and Corollary 7, by a suitable power of x, we obtain two
new functions that maintain the same property of orthogonality but are arbitrarily regular. We
achieve this result applying Faà di Bruno’s formula.

Lemma 8. Let w ∈ C∞(R) and 0 < α < 1. Then the function gn : [0,+∞)→ R,

gn(x) = xnw(xα) ,

is of class Cn on [0,+∞), with g(j)
n (0) = 0 for all j = 0, 1, 2, . . . , n.

Proof. A central tool of this proof will be Faà di Bruno’s formula that we will recall briefly. Let
w and u be Cm real valued functions such that the composition w ◦ u is defined; then (w ◦ u)(x)
is of class Cm and for x > 0 we have

(w ◦ u)(j)(x) = j!

j∑
k=1

[
w(k)(u(x))

k!

∑
h1+···+hk=j

u(h1)(x)

h1!
· · · u

(hk)(x)

hk!

]
,

or

(w ◦u)(j)(x) =
∑

k1+2k2+···+jkj=j

j!

k1! · · · kj !
w(k1+···+kj)(u(x)) ·

(
u′(x)

1!

)k1
·
(
u′′(x)

2!

)k2
· · ·
(
u(j)(x)

j!

)kj
.

For a proof of this formula look at [4]. We have that

g(j)
n (x) =

j∑
h=0

(
j

h

)
n(n− 1) · · · (n− h+ 1)xn−h [w(xα)]

(n−h)
,

and each term of this sum is of the form

C xn−h[w(xα)](n−h) , (5)

where C is a real number depending on j, h and n. Now we use the Faà di Bruno’s formula to
express the derivatives of w. In our case u(x) = xα and so

u(h)(x) = (α)h x
α−h where (α)h = α(α− 1) · · · (α− h+ 1) .

Consequently

u(h1)(x) · · ·u(hk)(x) = (α)h1
(α)h2

· · · (α)hkx
α−h1xα−h2 · · ·xα−hk ,

and if h1 + · · ·+ hk = j,

u(h1)(x) · · ·u(hk)(x) = C(h1, . . . hk)xkα−j .

So, applying Faà di Bruno’s formula to (5), each term has the form

xn−h
n−h∑
k=1

Ckw
(k)(xα) · xkα−(n−h) =

n−h∑
k=1

Ckw
(k)(xα) · xkα.

To conclude observe that

g(j)
n (x) =

j∑
k=1

C ′kw
(k)(xα)xkα,

and apply the theorem on the limit of the derivative.
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As a consequence of Lemma 8, we have that the function ϕ : [0,+∞) → R in the statement
of Lemma 5 can be chosen to be arbitrarily regular (but not C∞). For example, taking

ϕ(x) = e−
4
√
x sin( 4

√
x)xn, n ∈ N ,

by Lemma 8 choosing w(x) = e−x sin(x) and α = 1
4 , we see that ϕ(x) is of class Cn. The same

reasoning choosing the same w and α = 1
4q allows to conclude that also the function ϕq is of

class Cn if multiplied by xn+1.

5 Final remarks

As a direct consequence of Theorem 1, we have the following.

Corollary 9. Suppose µ(E) < +∞, f ∈ Lp(E) for all p ≥ 1 and P = (pj)
∞
j=1 is a sequence of distinct

real numbers pj ≥ 1. Let C be a non negative constant, and suppose that either a) or b) holds. Then, the
following two conditions are equivalent:

i)

(
1

µ(E)

) 1
p

‖f‖p = C for all p ∈ P ;

ii) |f(x)| = C for a.e. x ∈ E .
Indeed, Theorem 1 applies taking as g a constant function.

Theorem 1 remains valid assuming the existence of an accumulation point of P in (0, 1] and
supposing f, g ∈ Lp(E) for all p > 0. In this case, ‖f‖p is formally defined as before, although
this is not a norm anymore. To prove this, first notice that, without loss of generality, we can
always assume that f, g ≥ 0 . Let δ ∈ (0, 1] be an accumulation point of P . For all p ∈ P ∩

(
δ
2 , 2

)
,∫

E

|f |pdµ =

∫
E

|g|pdµ ⇔
(∫

E

|f δ2 |
2p
δ

dµ

) δ
2p

=

(∫
E

|g δ2 |
2p
δ

dµ

) δ
2p

⇔ ‖f δ2 ‖ 2p
δ

= ‖g δ2 ‖ 2p
δ
.

The set P̃ = { 2p
δ : p ∈ P ∩

(
δ
2 , 2

)
} is contained in (1,+∞) and has an accumulation point there.

We can now apply the second part of Theorem 1 to find that

µ(|f δ2 | > α) = µ(|g δ2 | > α) for all α ≥ 0 ,

and so µ(|f | > α) = µ(|g| > α) for all α ≥ 0 .

In the last part of this section we consider the special case of `p spaces and show that Theo-
rem 1 can be generalized in this setting. We recall that, for a sequence A = (an)n, the `p norms
are defined as follows:

‖A‖p =

( ∞∑
n=0

|an|p
) 1
p

, ‖A‖∞ = sup
n
|an| .

Here is our result.

Theorem 10. Let A = (an)n and B = (bn)n be two sequences of real numbers in `1. If P = (pj)
∞
j=1 is

a sequence of distinct real numbers pj ≥ 1 having an accumulation point in (1,+∞] and

‖A‖p = ‖B‖p for all p ∈ P ,

then the sequences
|A| = (|an|)n and |B| = (|bn|)n

can be obtained one from the other by permutation, appending or removing some zeroes.
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Proof. Suppose that the accumulation point is finite. Choose X = N, A = P(N) and µ the
counting measure. By Theorem 1, we have that

# (|A| > α) = # (|B| > α) for all α ≥ 0 .

Without loss of generality we can suppose that an, bn > 0 for all n ∈ N. Being (an)n and (bn)n
absolutely convergent, we can rearrange them in such a way that A and B are non increasing
without modifying the `p norms, thus obtaining Â = (ân)n and B̂ = (b̂n)n, respectively. Clearly

# (A > α) = #
(
Â > α

)
and # (B > α) = #

(
B̂ > α

)
.

If ân = b̂n for all n, then the theorem is proved. Assume by contradiction that Â 6= B̂ and let n̄
be the smallest index such that ân̄ 6= b̂n̄. Suppose for instance that ân̄ > b̂n̄ and choose

α =
ân̄ + b̂n̄

2
.

With this choice we have
#
(
Â > α

)
≥ n̄ > #

(
B̂ > α

)
,

a contradiction. Suppose now that +∞ is the only accumulation point of P . We have that

lim
j
‖Â‖pj = ‖Â‖∞ = â0 ,

and similarly for B̂, obtaining that â0 = b̂0. Define Â1 = (ân)n≥1 and B̂1 = (b̂n)n≥1 and notice
that:

‖Â1‖pjpj =

∞∑
n=0

âpjn − â
pj
0 = ‖Â‖pjpj − â

pj
0 = ‖B̂‖pjpj − b̂

pj
0 = ‖B̂1‖pjpj ,

and consequently ‖Â1‖pj = ‖B̂1‖pj for all j. By the same reasoning we will obtain that

lim
j
‖Â1‖pj = ‖Â1‖∞ = â1 ,

and the same for B̂1 , to obtain â1 = b̂1. Proceeding by induction, we conclude that Â = B̂.

Notice that, choosing for example pj = j! for all j ≥ 1, the condition ‖Â‖pj = ‖B̂‖pj for all j
implies that Â = B̂, but in this case the series in (1) converges. Notice moreover that Theorem 10
remains valid if 1 is the only accumulation point of P , supposing that (1) holds.

Let us show with an example that, even if µ(E) is finite, condition (1) could not be necessary
for the conclusion of Theorem 1. Let X = {0}, A = P(X) and µ the counting measure. Let
P = (j2)j≥1 and let f, g : {0} → R two measurable functions. Suppose moreover ‖f‖j2 = ‖g‖j2
for all j ≥ 1. Without losing in generality, we can assume that f(0) = α0 ≥ 0 and g(0) = β0 ≥ 0.
Then,

‖f‖j2 = α0 and ‖g‖j2 = β0 for all j ≥ 1 , (6)

and consequently α0 = β0 . However, condition (1) is not fulfilled.
The problem of the necessity of condition (1) remains open, e.g., when X = R and µ is the

Lebesgue measure.
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