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Introduction

In this thesis we address two different problems; the first and the main one is
the study of the relaxed area functional A(u,Ω) of the graph of vector maps u ∈
L1(Ω;Rk) on an open set Ω ⊂ Rn, mainly for n = k = 2. The characterization of the
relaxation is far from being understood, also because for it there is no way to find
an integral representation on the whole of its domain (which is strictly contained
in the space of functions of bounded variation, see (1.9)). Indeed, as conjectured
by De Giorgi [20] and proved in [1], even for n = k = 2 and for piecewise constant
maps taking only three values, A(u, ·) is not subadditive, hence it is not a measure,
see (1.13). In the same paper De Giorgi observed that: ”It would be interesting to
study in a systematic way the functional A(u,Ω) when u takes only a finite number
of values”. This motivates the work in the first part of the present thesis. We focus
on the problem of estimating from above the area of the graph of a singular map u
taking a disk D (called source disk) to three vectors, the vertices of a triangle, and
jumping along three C2− embedded curves that meet transversely at only one point
(called source triple junction) of the disk. We show that the singular part of the
relaxed area can be estimated from above by the solution of a Plateau-type problem
involving three entangled nonparametric area-minimizing surfaces. The idea is to
“fill the hole” in the graph of the singular map with an approximating sequence of
smooth two-codimensional surfaces of graph-type, by imagining three minimal sur-
faces, placed vertically over the jump of u, coupled together via a triple point (called
target triple point) in the target triangle. Such a construction depends on the choice
of a target triple point, and on a connection passing through it, which dictate the
boundary condition for the three minimal surfaces. We show that the singular part
of the relaxed area of u cannot be larger than what we obtain by minimizing over all
possible target triple points and all corresponding connections. We point out that
under a symmetry assumption, both in the source and the target, the relaxed area
A(usymm, D) is actually given by the above upper estimate [10, 36], see the next
Section for definition of usymm and Section 1.3.1.

We investigate the possibility of adopting similar techniques to study the same prob-
lem in more general and different settings for instance when u has several (finite or
infinite) triple junctions, or when n = 3, or when R2×2 is endowed by a Riemannian
metric. An interesting open problem that we plan to address in the future, is to
investigate the lower bound inequality (for the moment known only for u = usymm);
this seems to involve a strong use of geometric measure theory and Cartesian cur-
rents.

ix



x Chapter 0. Introduction

The second part of the thesis is devoted to the problem of characterizing arbitrary
codimensional smooth manifolds with boundary embedded in an open set Ω ⊂ Rn

using the square distance function and the signed distance function from the mani-
fold and from its boundary, i.e., we want to isolate a set of necessary and sufficient
conditions to be satisfied by the signed distance function and the square distance
function from a set E ⊂ Ω and from a set L ⊂ Ω so that E ∪L is a smooth manifold
with boundary L in Ω.

One motivation for this study came from the curvature flow of planar networks
with triple junctions [34, 35, 33], which is, in some weak sense, related to the area
problem stated in the first part. The hope, still not clear at the present moment,
is to find a way to express the flow (before singularities) via the distance functions;
we recall that this has been successfully done in [25] in case of one codimensional
manifolds without boundary, and in [21, 6] for arbitrary codimensional manifolds
without boundary.

Many of the results in this thesis are contained in [8] and [7]; and have been obtained
during my Ph.D. at SISSA (Scuola Internazionale Superiore di Studi Avanzati) in
Trieste.

The relaxed area of the graph of a singular map

Let Ω ⊂ R2 be an open set and v = (v1, v2) : Ω → R2 a Lipschitz map. It is well
known that the area of the graph of v is given by

A(v,Ω) =

ˆ
Ω

√
1 + |∇v1|2 + |∇v2|2 +

(∂v1

∂x

∂v2

∂y
− ∂v1

∂y

∂v2

∂x

)2
dxdy. (0.1)

Extending to nonsmooth maps via relaxation the definition of the area is a difficult
question [28], and is motivated by rather natural problems in calculus of variations:
we can mention for example the use of direct methods to face the two-codimensional
Plateau problem in R4 in cartesian form, and the study of lower semicontinuous en-
velopes of polyconvex functionals with nonstandard growth [1], [27]. A crucial issue
is to decide which topology one has to consider in order to compute the relaxed func-
tional of A(·,Ω): of course, the weakest the topology, the most difficult should be the
computation of the relaxed functional, but the easiest becomes the coerciveness. We
recall that when v is scalar valued, the natural choice is the L1(Ω)-convergence, and
the relaxation problem is completely solved [18], [5]; the L1(Ω)-relaxed functional in
this case consists, besides the absolutely continuous part, of a singular part which
is the total variation of the jump and Cantor parts of the distributional derivative
of v in Ω; in particular, the relaxed functional, when considered as a function of Ω,
is a measure.

The case of interest here, namely when v takes values in R2, is much more involved,
due to the nonconvexity of the integrand in (0.1), and to the unilateral linear growth

A(v,Ω) ≥
ˆ

Ω

√
|∇v1|2 + |∇v2|2 dxdy.



xi

Choosing again the L1(Ω;R2)-convergence (as we shall do in this thesis), the relaxed
functional A(·,Ω) of A(·,Ω), i.e.,

A(v,Ω) := inf
{

lim inf
ε→0

A(uε,Ω) : {uε} ⊂ Lip(Ω;R2), uε → u in L1(Ω;R2)
}
, (0.2)

is, for v ∈ L1(Ω;R2)\W 1,2(Ω;R2), far from being understood, and exhibits surprising
features. One of the few known facts that must be pointed out is that, for a large class
of nonsmooth maps v, the function Ω → A(v,Ω) cannot be written as an integral
[1], [12], [13]; this interesting phenomenon, related to nonlocality, has at least two
sources. For simplicity, let us focus our attention on nonsmooth functions with
jumps, thus neglecting the case of vortices. The first source of nonlocality has been
enlightened answering to a conjecture in [20]. Specifically, consider the symmetric
triple junction map usymm, i.e., the singular map from a disk D of R2

S = R2 into
R2
T = R2, taking only three values – the vertices of an equilateral triangle Teq ⊂ R2

T

– and jumping along three segments meeting at the origin in a triple junction at
equal 120◦ angles: then A(usymm, ·) is not subadditive. This result has been proven
in [1]; subsequently in [11] it is shown that the value A(usymm, D) is related to
the solution of three one-codimensional Plateau-type problems in cartesian form
suitably entangled together through the Steiner point in the triangle Teq. Due to
the special symmetry of the map usymm, the three-problems collapse together to only
one one-codimensional Plateau-type problem in cartesian form, on a fixed rectangle
R whose sides are the radius of D and the side of Teq. Positioning three copies of
this minimal surface “vertically” (in the space of graphs, i.e., in D × R2) over the
jump of usymm allows, in turn, to construct a sequence {uε} of Lipschitz maps from
D into R2 the limit area of which improves the upper estimate of [1]. Optimality
of this construction has been shown in the recent paper [36], on the basis of a
symmetrization procedure for currents.

It is one of the aims of the present thesis to inspect solutions of the above mentioned
three Plateau-type problems in more general situations, in order to provide upper
estimates for A(u,D), for suitable piecewise constant maps u.

A second source of nonlocality for the functional A(u,Ω) is given by the interaction
of the jump set of a discontinuous map u with the boundary of the domain Ω. This
phenomenon, already observed in [1] for the map with one-vortex at the center of
a suitable disk, appears also for functions with jump discontinuities not piecewise
constant [13]. More surprisingly, it appears also for piecewise constant maps taking
three values, provided the jump is sufficiently close to the boundary of Ω, as observed
in [36], taking as Ω a sufficiently thin tubular neighbourhood of the jump itself. In
this thesis we shall not be concerned with this second source of nonlocality. Also, we
shall not study the relaxation on Sobolev functions in W 1,p, p ∈ [1, 2), in particular
vortices. As already said, we are interested in estimating from above the area of the
graph of a singular map u taking three (non collinear) values and jumping along three
embedded curves of class C2 that meet transversely at only one point, see Figure 1.
Let us state this in a more precise way, referring to Chapter 2 for all details. For
simplicity from now on for the first part of the present thesis, we fix Ω to be an
open disk D containing the origin 0S in the source plane R2 = R2

x,y = R2
S . Take
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(a) The domain of u; u = αi on Ei.

(b) A Lipschitz graph-type connection in the
target triangle T. Γ1 ∪ Γ2 (resp. Γ2 ∪ Γ3,
Γ3∪Γ1) is graph over the segment α1α2 (resp.
α2α3, α3α1) of a Lipschitz function ϕ12 (resp.
ϕ23, ϕ31).

Figure 1

three non-overlapping non-empty two-dimensional connected regions E1, E2, E3 of
D such that

E1 ∪ E2 ∪ E3 = D. (0.3)

The three regions are separated by three embedded curves of class C2 (up to the
boundary) of length r12, r23, r31 respectively, that meet only at Q (source triple
junction); moreover, each curve is supposed to meet the boundary of D transversely
and we assume also that Q is a transversal intersection for the three curves, see
Figure 1a. Let α1, α2, α3 be the vertices of a closed triangle T with non empty
interior in the target plane.

Set

`12 := |α1 − α2|, `23 := |α2 − α3|, `31 := |α1 − α3|. (0.4)

We suppose that T contains the origin 0T in its interior.

Let us introduce the space X of connections (Definition 2.2 and (2.4), (2.5)); a
connection Γ = (Γ1,Γ2,Γ3) consists of three rectifiable curves in T, that connect
the vertices of T to some point inside the triangle (called target triple point). We
shall suppose that each curve can be written as a graph, possibly with vertical parts,
over the corresponding two sides of T. When Γ consists of three Lipschitz graphs,
we write Γ ∈ XLip, and we say that Γ is a Lipschitz connection. We now show how
to construct a new functional G, consisting of the sum of the areas of three minimal
surfaces – graphs of three suitable area-minimizing functions m12, m23, m31 defined
on certain rectangles – coupled together by the connection considered as a Dirichlet
boundary condition, see Definition 2.5.

Set

Rij := [0, `ij ]× [0, rij ], ij ∈ {12, 23, 31}. (0.5)
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(a) The graph of the function ϕ12 on R12. (b) The graph of m12 on R12.

Figure 2

Assume Γ ∈ X. Then Γij := Γi ∪ Γj , ij ∈ {12, 23, 31} are (generalized) graphs of
functions ϕij of bounded variation over [0, `ij ]. With a small abuse of notation, set

ϕij(s, t) = ϕij(s), (s, t) ∈ Rij , ij ∈ {12, 23, 31}. (0.6)

The graph of ϕ12 on R12 is depicted in Figure 2a.

Let mij = mij(Γ) be the unique solution of the Dirichlet-Neumann minimum prob-
lem, discussed in Section 1.4 and Section 2.2,

min

{ˆ
Rij

√
1 + |∇f |2 dsdt : f ∈W 1,1(Rij), f = ϕij H1 − a.e. on ∂DRij

}
, (0.7)

where

∂DRij = ∂Rij \ ([0, `ij ]× {rij}) , ij ∈ {12, 23, 31}. (0.8)

Notice that the minimization is taken among all functions having a Dirichlet condi-
tion on three of the four sides of the rectangle Rij ; the missing side corresponds to
the intersection points of the jump with the boundary of D.

From (0.6) it follows that the Dirichlet condition is zero on the sides {0} × [0, rij ]
and {`ij} × [0, rij ] of Rij ; see Figure 2b.

Set

Aij(Γ) :=

ˆ
Rij

√
1 + |∇mij |2 dsdt, ij ∈ {12, 23, 31}. (0.9)

The main result of the the first part of this thesis reads as follows (see Theorem 2.1
and Corollary 3.8).
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Theorem 0.1. Let u : D → {α1, α2, α3} be the discontinuous BV (D;R2) function
defined as

u(x, y) :=


α1 if (x, y) ∈ E1,

α2 if (x, y) ∈ E2,

α3 if (x, y) ∈ E3.

(0.10)

Then
A(u,D) ≤ |D|+ min

{
A12(Γ) + A23(Γ) + A31(Γ) : Γ ∈ X

}
. (0.11)

This theorem says that the singular part of A(u,D) can be estimated from above
by

inf
{
A12(Γ) + A23(Γ) + A31(Γ) : Γ ∈ X

}
(0.12)

and that such an infimum is a minimum. Intuitively, to “fill the hole” in the graph
of u with smooth two-codimensional approximating surfaces of graph-type, we start
to imagine three area-minimizing surfaces, placed vertically over the jump of u,
coupled together via a triple point in the target triangle T (notice that the union
of these three surfaces, viewed in D × R2, is not smooth in correspondence of the
source triple junction). Such a construction depends on the choice of a target triple
point, and on a connection Γ passing through it, dictating the boundary condition
for the three area-minimizing surfaces, over the sides of the triangle T. Theorem 0.1
asserts that the interesting part of the relaxed area of u, namely its singular part,
cannot be larger than what we obtain by minimizing over all possible target triple
points and all corresponding connections. As a direct consequence of the results in
[11], [36], when u = usymm (and 0S is the center of D), the inequality in (0.11) is
an equality, and the infimum in (0.12) is achieved by the Steiner graph connecting
the three vertices of T (the optimal triple point being the Steiner point, i.e., the
barycenter of T). This seems to be an interesting result that could be stated purely
as a problem of three entangled area-minimizing surfaces (each of which lies in a
half-space of R4, the three half-spaces having only {0} × R2 in common) without
referring to the relaxation of the functional A(·, D). We do not know whether, in
general, the Steiner graph is still the solution of the minimization problem in (0.12),
when no symmetry assumptions (the case we are considering here) are required.
However it is reasonable to expect that, if in the source we have symmetry, i.e.,
the source triple junction is positioned at the center of D and u jumps along three
segments meeting at equal 120◦ angles, and if the target triangle T is close to be
equilateral, the inequality in (0.11) to be still an equality. In this respect, it is
worthwhile to observe that showing a lower estimate, for instance showing that, in
certain cases, the inequality in (0.11) is an equality, seems difficult. One of the main
technical obstructions is due to the poor control on the tangential derivative of vε

in proximity of the jump of a discontinuous L1-limit function v (see [13]), where
{vε} is a sequence of Lipschitz maps converging in L1(Ω;R2) to v, and satisfying
the uniform bound supεA(vε,Ω) < +∞. We also notice that the symmetrization
methods of [36] cannot be applied anymore, in view of the lackness of symmetry.
It is worth mentioning that the restriction that we assume on the connections Γ,
namely that each Γi is a graph (possibly with vertical parts) on the correspond-
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ing two sides of T, cannot be avoided in our approach: indeed, only under this
graphicality assumption we can solve the minimum problem in (0.11) in the class of
surfaces which are graphs over the rectangles Rij . In turn, the graphicality of such
area-minimizing surfaces allows to construct the sequence {uε}, see (2.21), and find
a uniform bound for the length in the space X of connections, see Proposition 3.3.
Removing the graphicality assumption on Γ requires some change of perspective,
and needs further investigation, see Section 4.2 for more details.
One more question that rise naturally is that whether or not the same result may
apply to

u : B ⊂ R3 → {α1, α2, α3}, u(Ei) := αi, i = 1, 2, 3,

providing that B is an open ball in R3 and Ei, i = 1, 2, 3, are three partitions
of B separated by three planes that meet at one line, see Figure 4.5. The prob-
lem is essentially what kind of boundary conditions that should be assigned to the
corresponding one-codimensional minimizing problem, see (4.12) and Remark 4.1.

The square distance function from a manifold with boundary

It is well known that the smoothness of the boundary of a bounded open subset
of Rn can be characterized(1) using the signed distance function (see for instance
[26, 30, 29, 22]). This characterization is useful for several purposes, in particular
is related to the study of Hamilton-Jacobi equations [15] and it can be used to
face the mean curvature flow of a one-codimensional family of smooth embedded
hypersurfaces without boundary [25].
For a compact smooth embedded manifold without boundary of arbitrary codimen-
sion, it turns out that the meaningful function to be considered is the square distance
function: in [19] De Giorgi conjectured(2) that if E is a connected subset of an open
set Ω ⊆ Rn such that E ∩ Ω = E ∩ Ω and the 1

2 -square distance function from E,

ηE(x) :=
1

2
inf
y∈E
|x− y|2, x ∈ Rn,

is smooth in a neighborhood of E, then E is an embedded smooth manifold(3)

without boundary in Ω of codimension equal to rank
(
∇2ηE

)
. Such a conjecture has

been proven in [6, 9] (see also [22]) and can be considered as one of the motivations
of this paper.
Investigations on arbitrary codimensional mean curvature flow lead De Giorgi [21]
to further express the motion using the Laplacian of the gradient of the 1

2 -square
distance function from the evolving manifolds, and also to describe the flow passing
to a level set formulation: we refer to [6] for more details, and to [10, 37, 4] for
further applications.
The aim of the second part of this thesis is to characterize a smooth arbitrary
codimensional manifold with boundary embedded in Rn, using the distance functions.

(1)see Theorem 1.27.
(2)If M is a compact smooth embedded manifold without boundary then the square distance

function ηM is smooth in a suitable tubular neighborhood of M, see Theorem 1.29.
(3)See Theorem 1.30.
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The presence of the boundary is the novelty here, and indeed another motivation for
our research came from the study of curvature flow of networks [35], where a sort of
“boundary” (the triple points) is present in the evolution problem.
We start our discussion on the smoothness of the distance function from a manifold
with boundary with a simple observation. Let E be a smooth compact curve in
Rn with two end points (like the ones in Figure 5.1 for n = 2 or in Figure 5.4 for
n = 3): then ηE turns out to be smooth in a sufficiently small neighborhood of E,
excluding portions of a smooth hypersurface orthogonal to the boundary of E (the
two dashed segments in Figure 5.1, and the two disks in Figure 5.4)(4). This suggests
that we have to exclude the boundary and possibly some portions of a hypersurface
containing it, if we are hoping to get some sort of regularity for the squared distance
function from a manifold M with boundary. In fact, in Propositions 5.12 3) and
5.14 3) we show that, in general, ηM is smooth in a neighborhood of M out of a
suitable hypersurface containing the boundary.
Supposing M =M(5) is a smooth manifold with boundary, roughly speaking M is
the union of two sets: the relative interior M◦ (a relatively open subset of M) and
the boundary ∂M (a smooth submanifold of M of codimension one so that M lies
locally “on one side” of ∂M), joined smoothly; in particular M is contained in the
relative interior of a larger smooth manifold of the same dimension.
We want to mimic the above properties for a pair of subsets of Rn, making use
only of the distance functions and their regularity properties. Therefore, let E and
L be two subsets of Rn and Ω ⊆ Rn be an open set. We want to isolate a set of
necessary and sufficient conditions to be satisfied by the signed distance function
and the square distance function from E and from L so that E ∪ L is a smooth
manifold with boundary L in Ω. Our main Definition 5.4 reformulate the above
properties as follows. We say that E ∪L is a smooth manifold with boundary in the
sense of distance functions, and we write (E,L) ∈ DhBCk(Ω) (where h stands for
the dimension of E and k for its smoothness degree), if:

- L∩Ω = L∩Ω and ηL is smooth in a neighborhood of L in Ω: this guarantees
the smoothness of L;

- E ∩ (Ω \ L) = E ∩ (Ω \ L) and ηE is smooth in a neighborhood of E in Ω \ L:
this guarantees the smoothness of E in Ω \ L;

- all points of L are accumulation points of E;

- there is a neighborhood B of E \L in Ω such that the signed distance function
dB from B (negative in B) is smooth in a neighborhood A of L: this guarantees
the smoothness of the boundary of B in A. Such a boundary is, roughly,
represented by the two dashed segments in Figure 5.1 and the two disks in
Figure 5.4. Hence the set E \L must lie on one side of L. In particular points
of L do not belong to the relative interior of E ∪ L, see Figure 5.3;

(4)We can even consider the case n = 1: take a bounded closed interval E = [a, b] ⊂ R. Then
ηE ∈ C1,1 but not C2 in any neighborhood of E in R; however, ηE is smooth in R \{a, b}, see Figure
1.1.

(5)By M we denote the closure of M.
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- there is a smooth extension of ηE in an open neighborhood of B ∩ A: this
ensures that E and L join smoothly.

Notice that localization of Definition 5.1 (on which Definition 5.4 is based) in an
open set is necessary: for instance, even in the simplest case Ω = Rn in the list
above, the regularity on ηE is required only in Rn \ L, which is an open set.
The main result of the second part of this thesis reads as follows (See Theorems 5.11
and 5.15):

Theorem 0.2. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω} and h ∈ {1, . . . , n}. Let Ω ⊆ Rn

be a nonempty open set.

a. If M ⊂ Rn is an embedded Ck-manifold of dimension h ≤ n with nonempty
boundary ∂ΩM in Ω then (M, ∂ΩM) ∈ DhBCk−1(Ω),

b. If E,L ⊂ Rn are such that (E,L) ∈ DhBCk(Ω) then (E ∪ L) ∩ Ω is a h-
dimensional Ck−1-manifold with boundary L ∩ Ω in Ω,

where DhBCk(Ω) is the class of sets defined in Definition 5.4.

The content of the thesis is the following:
We start by a chapter of preliminaries. In Section 1.2 we recall some of the definitions
and relevant results about the theory of functions of bounded variation, in particular,
functions of one variable, the definition of generalized graph (formula (1.4)), and the
chain rule. We define the relaxed area for vector valued functions and state some
of the known results related to the characterization of such functional (Section 1.3).
Solutions of a particular Plateau’s problem will play an important role in the proofs,
so we mention some of the results that will be needed (Section 1.4). In Section 1.5
we recall some properties of Cartesian currents carried by a BV-function. Finally we
recall some of the known results relating the regularity of a set E with the regularity
of the distance functions from it (Section 1.6).
In Chapter 2 the space of connections X and the functional G, appearing on the
right hand side of (0.11), are introduced (see Definition 2.2 and Definition 2.5 re-
spectively). In Section 2.3 we show that

A(u,D) ≤ |D|+ inf
{
G(Γ) : Γ ∈ XLip

}
, (0.13)

see Theorem 2.1. The proof is rather involved, mainly due to technical difficulties:
we first start by supposing that the jump of u consists of three segments (Proposition
2.8). Some work is required to define uε on an ε-strip around the jump of u and
avoiding a neighbourhood of the source triple junction (formula (2.21)) and to define
uε in the missing neighbourhood of the source triple junction (step 3 of the proof
of Proposition 2.8): the construction must be done in such a way that uε remains
Lipschitz, and turns out to be rather involved in the three triangles T ε1 , T

ε
2 , T

ε
3 , see

Figure 2.2b.
In Chapter 3 we prove that the infimum in (0.12) is a minimum. The proof is
achieved by defining a topology in the space X which allows to prove the density
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of XLip in X (Lemma 3.2), the continuity of the functional G (Proposition 3.4) and
the sequential compactness of X (Theorem 3.6). This latter result is also based
on a uniform bound on the length of the connections (Proposition 3.3), which is a
consequence of the bi-graphicality assumptions on the connections.
In Chapter 4 we introduce three different ways to extend the results obtained in
Chapter 2 and Chapter 3, and we point out some of the difficulties that we may face.
We start by introducing a possibility to adopt the former techniques to functions
with a finite number of triple junctions; then we point out that there might be a way
to construct a function u∗ with an infinite number of triple junctions, accumulating
at the origin, such that A(u∗, D) < ∞. In Section 4.2 we discuss the possibility of
removing the bi-graphicality condition in Definition 2.2. In Section 4.3 we change
the domain of the piecewise constant map u to be an open ball B in R3, keeping
the vertices of a triangle T ⊂ R2

T as a target, i.e., the graph of u is of co-dimension
two in R5. The last part of this chapter, Section 4.4, deals with the case where the
domain and the target of u are endowed with Riemannian metrics.
Chapter 5 is dedicated to the study of the second problem that we aim to investigate
in this thesis. We start by introducing the class DhCk(Ω) of h-dimensional embedded
Ck-manifolds without boundary in Ω in the sense of distance functions (Definition
5.1). We recall the correspondence between the classical definition of manifolds with-
out boundary and sets in DhCk(Ω), based on the known results quoted in Subsection
1.6.1, see Remark 5.2. In Definition 5.4 we introduce the class DhBCk(Ω); in Section
5.1 we illustrate the motivations behind this definition through several observations
(Remark 5.5) and examples. In Section 5.2 we prove our first main result in this
chapter (Theorem 5.11) showing that h-dimensional embedded Ck-manifolds with
boundary in Ω are elements of DhBCk−1(Ω). In Section 5.3 we prove our second
main result(6) (Theorem 5.15), showing that sets in DhBCk(Ω) are h-dimensional
embedded Ck−1-manifolds with boundary. This concludes the proof of Theorem 0.2.

(6)In the C∞ or analytic case, this is the converse of Theorem 5.11.



1. Preliminaries

1.1 Basic notation

N The set of positive natural numbers

Rn Euclidean space of dimension n, n ∈ N

| · | The Euclidean norm of a vector or the Lebesgue measure of a set

Ω Open set in Rn

B(Ω) The σ-algebra of Borel subsets of Ω

Bρ(x) Open ball of Rn(resp. of Rh, h < n) centered at x of radius ρ > 0

C(Ω;Rk) Space of continuous maps in Ω

Cc(Ω;Rk) Space of continuous maps with compact support in Ω

Cm(Ω;Rk) Space of maps with m-times continuous derivatives in Ω

Cm,α(Ω;Rk) Maps in Cm(Ω;Rk) with m-th derivative Hölder continuous with exponent α

Cmc (Ω;Rk) The space Cm(Ω;Rk) ∩ Cc(Ω;Rk)

Cω(Ω;Rk) Space of real analytic functions in Ω

C0(Ω;R) The space of real-valued continuous functions on Ω which vanish at infinity

Lip(Ω;Rk) Space of Lipschitz maps in Ω

Lp(Ω;Rk) The Lebesgue space of exponent p, p ∈ [1,+∞]

W 1,p(Ω;Rk) Space of maps belonging, with their distributional derivative, to Lp(Ω;Rk)

ḟ The derivative of the function f , of one variable, in the classical sense

f ′ The derivative of the function f , of one variable, in the sense of distribution

Ln The n-dimensional Lebesgue measure

Hn The n-dimensional Hausdorff measure

1E The characteristic function of the set E

F4E The symmetric difference of the sets E and F

supp The support of a function, of a measure, or of a current

∂− The reduced boundary of a set

We set H1(Ω;Rk) := W 1,2(Ω;Rk). If k = 1, we omit to indicate the target space
(e.g. C(Ω) in place of C(Ω;R)).

1
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1.2 Functions of bounded variation

In this section we collect some of the definitions and relevant results about the theory
of bounded variation maps. We refer to [5] for an exhaustive presentation.

Definition 1.1. Let u ∈ L1(Ω;Rk); we say that u is a function of bounded variation
in Ω if the distributional derivative Du of u is a finite Radon measure on Ω with
values in the space Mk×n of all k × n matrices and we write u ∈ BV(Ω;Rk).

For any open set A ⊂ Ω we define the variation |Du|(A) of u ∈ L1
loc(Ω;Rk) in A as

|Du|(A) := sup{
k∑
j=1

ˆ
A
ujdivφjdx : φ ∈ [C1

c (A)]kn, ||φ||∞ ≤ 1}, (1.1)

where we consider the Hilbert-Schmidt norm on Mk×n, i.e.,

||φ||∞ = sup
x∈A
|φ(x)| and |φ(x)|2 =

∑
j∈{1,··· ,k}
h∈{1,··· ,n}

|φjh(x)|2.

Then |Du|(·) can be extended to a Borel measure in Ω as follows

|Du|(B) := inf{|Du|(A) : B ⊂ A, A open}, B ∈ B(Ω).

Moreover we have

◦ u ∈ L1(Ω;Rk) belongs to BV(Ω;Rk) if and only if |Du|(Ω) <∞,

◦ u 7→ |Du|(Ω) is lower semicontinuous inBV (Ω;Rk) with respect to the L1
loc(Ω;Rk)

topology,

◦ BV(Ω;Rk), endowed with the norm

||u||BV :=

ˆ
Ω
|u|dx+ |Du|(Ω)

is a Banach space; however, even for k = 1, the space C1(Ω) is not dense in
BV(Ω).

Definition 1.2. We say that {uh} ⊂ BV(Ω;Rk) weakly* converges in BV(Ω;Rk)
to u ∈ BV(Ω;Rk) if {uh} converges to u in L1(Ω;Rk) and {Duh} weakly* converges
to Du in Ω, i.e.,

lim
h→∞

ˆ
Ω
φdDuh =

ˆ
Ω
φdDu ∀φ ∈ C0(Ω).

It can be proved that

◦ {uh} weakly* converges to u in BV(Ω;Rk) if and only if {uh} is bounded in
BV(Ω;Rk) and converges to u in L1(Ω;Rk),
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◦ if {uh} converges to u in L1(Ω;Rk) and |Duh|(Ω) converge to |Du|(Ω) then
{uh} weakly* converges to u in BV(Ω;Rk), however the opposite is not true.

Theorem 1.3 (Compactness in BV ). Every {uh} ⊂ BVloc(Ω;Rk) satisfying

sup{
ˆ
A
|uh|dx+ |Duh|(A) : h ∈ N} <∞ ∀A ⊂⊂ Ω open,

admits a subsequence {uh(k)} converging in L1
loc(Ω;Rk) to u ∈ BVloc(Ω;Rk). More-

over if Ω has compact Lipschitz boundary and the sequence is bounded in BV(Ω;Rk)
then u ∈ BV(Ω;Rk) and the subsequence weakly* converges to u.

For any measurable function u : Ω→ R the subgraph of u is defined as the measurable
subset of Ω×R given by

SGu,Ω := {(x, y) ∈ Ω×R | y < u(x)}. (1.2)

Sets of finite perimeter

Definition 1.4. Let E ⊂ Ω be Ln-measurable set. The perimeter P (E,Ω) of E in
Ω is the variation |D1E |(Ω), defined in (1.1), of 1E in Ω. We say that E is a set of
finite perimeter in Ω if P (E,Ω) < +∞.

Sets of finite perimeter can be approximated by open sets with smooth boundary in
the following sense: If Ω is bounded with compact Lipschitz boundary and P (E,Ω) <
+∞, then there exists a sequence {Eh} of open sets with smooth boundary in Rn

such that

|Ω ∩ (Eh4E)| → 0 and P (Eh,Ω)→ P (E,Ω), as h→ +∞.

If E is a set of finite perimeter in Ω we define the reduced boundary ∂−E of E in Ω
as the set of points x ∈ supp|D1E | ∩ Ω such that the limit

ν(x,E) := lim
ρ↓0

D1E(Bρ(x))

|D1E |(Bρ(x))
, (1.3)

exists in Rn and satisfies |ν(x,E)| = 1.
The set ∂−E is a Borel set and the function ν(·, E) : ∂−E → Sn−1 is a Borel map
which we call the generalized inner normal to E. Moreover we have

P (E,Ω) = Hn−1(∂−E) and |D1E | = Hn−1 ∂−E.

Finally the Gauss-Green formula still holds for sets of finite perimeter; if E is a set
of finite perimeter in Ω then

ˆ
E

divφ dx = −
ˆ
∂−E

< ν(x,E), φ > dHn−1(x) ∀φ ∈ C1
c (Ω;Rn).

Theorem 1.5. [28, Thm. 1. p. 371] Let u ∈ L1(Ω). Then u ∈ BV(Ω) if and only
if the subgraph SGu,Ω, defined in (1.2), of u has a finite perimeter in Ω×R.
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BV functions of one variable

Definition 1.6. For ϕ : (a, b)→ Rk we define the pointwise variation pV (ϕ, (a, b))
of ϕ in (a, b) as

pV (ϕ, (a, b)) := sup{
n−1∑
i=1

|ϕ(si+1)− ϕ(si)| : n ≥ 2, a < s1 < · · · < sn < b}.

If pV (ϕ, (a, b)) < ∞ then ϕ is bounded, and it can be written as the difference of
two monotone functions.
Changing ϕ, even at a single point, changes the value of pV (ϕ, (a, b)), hence we
define the essential variation eV (ϕ, (a, b) as

eV (ϕ, (a, b) := inf{pV (ϕ, (a, b)) : ϕ = ϕ L1 − a.e. in (a, b)},

and we have

Theorem 1.7. Let ϕ ∈ L1
loc((a, b);R

k). Then there exists ϕ̄ = ϕ L1−a.e. such that

pV (ϕ̄, (a, b)) = eV (ϕ, (a, b)) = |ϕ′|((a, b)),

where ϕ′ := Dϕ.

Any ϕ̄ satisfies the above property is called a good representative.

Theorem 1.8. Let ϕ ∈ BV ((a, b);Rk). Then

i. there exists a unique c ∈ Rk such that

ϕl(s) := c+ ϕ′((a, s)), ϕr(s) := c+ ϕ′((a, s]) s ∈ (a, b)

are the left continuous and the right continuous good representatives of ϕ; any
other good representative ϕ̄ of ϕ satisfies

ϕ̄(s) ∈ {θϕl(s) + (1− θ)ϕr(s) : θ ∈ [0, 1]} ∀s ∈ (a, b).

ii. Let Jϕ := {s ∈ (a, b) : ϕ′({s}) 6= 0}. Then Jϕ is at most countable; and any
good representative ϕ̄ is continuous in (a, b) \ Jϕ and has a jump point at all
the points of Jϕ:

ϕ̄(s−) = ϕl(s) = ϕr(s−), ϕ̄(s+) = ϕl(s+) = ϕr(s) ∀s ∈ Jϕ,

where ϕ(s±) are the right and left limits of ϕ. Moreover ϕ̄ is differentiable at
L1-a.e. and the derivative in the classical sense ˙̄ϕ is the density of ϕ′ with
respect to L1.

We divide the measure ϕ′ into two singular measures, the absolutely continuous and
singular parts of ϕ′ with respect to the Lebesgue measure, as follow

ϕ′ := ϕ′(a) + ϕ′(s) = ˙̄ϕds+ ϕ′(s),
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where ϕ̄ is any good representative of ϕ. We define the jump part ϕ′(j) and the
Cantor part ϕ′(c) of ϕ′ as

ϕ′(j) = ϕ′ Jϕ = ϕ′(s) Jϕ and ϕ′(c) = ϕ′(s) ((a, b) \ Jϕ).

We say that ϕ ∈ BV((a, b);Rk) is a jump function if ϕ′ = ϕ′(j) and we say that ϕ is
a Cantor function if ϕ′ = ϕ′(c).
The following definition of generalized graph will be used to define the class of
connections X in Definition 2.2.

Definition 1.9. We define the generalized graph of ϕ ∈ BV((a, b)) as

Γϕ := {(s, θϕ̄(s−) + (1− θ)ϕ̄(s+)) : s ∈ (a, b), θ ∈ [0, 1]}, (1.4)

where ϕ̄ is any good representative of ϕ.

We point out that the reduced boundary ∂−SGϕ,(a,b) of the subgraph of ϕ, defined
in (1.2), is a subset of Γϕ and that

H1(Γϕ \ ∂−SGϕ,(a,b)) = 0.

We set
ϕ+(t) := max{ϕl(t), ϕr(t)}, ϕ−(t) := min{ϕl(t), ϕr(t)}, (1.5)

which are clearly good representatives of ϕ.
We conclude this brief section with three results that we shall refer to in the proof
of Lemma 3.2 and Theorem 3.6. We state them as in [28, Thm. 4. p. 378, Thm. 5.
p. 379, eqn. (5) and (6) p.486] taking Ω to be an open interval I ⊂ R.

Theorem 1.10. Let ϕ ∈ BV(I). Then

(i) for |ϕ′|-a.e. s ∈ I \ Jϕ we have

dµ(ϕ′)

d| µ(ϕ′)|
(x) = ν((s, ϕ+(s)), SGϕ,I)

(ii) for |ϕ′|-a.e. s ∈ Jϕ we have

dµ(ϕ′)

d| µ(ϕ′)|
(s) = (ν(s, Jϕ), 0),

where µ(ϕ′) is the vector valued measure defined by µ(ϕ′) := (ϕ′,−L1), ν(·, ·) is the

generalized inner normal defined in (1.3), in particular ν(s, Jϕ) = ϕ(s+)−ϕ(s−)
|ϕ(s+)−ϕ(s−)| .

Theorem 1.11. Let ϕ ∈ BV(I). Then

ϕ′(a) = ϕ′ {s ∈ I | ϕ+(s) = ϕ−(s), ν2((s, ϕ+(s)), SGϕ,I) < 0},
ϕ′(c) = ϕ′ {s ∈ I | ϕ+(s) = ϕ−(s), ν2((s, ϕ+(s)), SGϕ,I) = 0},
ϕ′(j) = ϕ′ {s ∈ I | ϕ+(s) < ϕ−(s)}

= ϕ′ {s ∈ I | ϕ+(s) < ϕ−(s), ν2((s, ϕ+(s)), SGϕ,I) = 0},

where ν = (ν1, ν2) is the generalized inner normal defined in (1.3).
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Theorem 1.12. (Vol’pert chain rule)
Let g ∈ C1(R) and ϕ ∈ BV((a, b)). Then g ◦ ϕ ∈ BV((a, b)) and

(g ◦ ϕ)′ = g′(ϕ)ϕ̇+ds+ g′(ϕ)ϕ′(c) on (a, b) \ Jϕ

(g ◦ ϕ)′ =
∑
s∈Jϕ

ν(s, Jϕ)
[
g(ϕ+(s))− g(ϕ−(s))

]
δs on Jϕ,

where ν(s, Jϕ) = ϕ(s+)−ϕ(s−)
|ϕ(s+)−ϕ(s−)| and δs is the Dirac delta at s.

In the present thesis we shall always assume that any ϕ ∈ BV((a, b)) is the good
representative ϕ = ϕ+.

1.3 The relaxed area functional A
We start by recalling two versions of the area formula, the second one could be useful
in an anisotropic setting.

Theorem 1.13. Let f : Rn → Rn+k be a Lipschitz function. Assume f is one-to-
one on a Ln-measurable set E ⊂ Rn. Then we have

Hn(f(E)) =

ˆ
E

Jn(dfx)dx,

where Jn(dfx) =
√

det(dfx
∗ ◦ dfx) =

√∑
B det2(B), and B runs along all the n× n

minors of the (n+ k)× n matrix dfx.

Theorem 1.14. (anisotropic area formula for linear maps [3])
let W be a Banach space and let f : Rn → W be a Lipschitz(1) function. Assume f
is one-to-one on B ∈ B(Rn). Then

HnW (f(B)) =

ˆ
B

Jn(mdfx)dx,

where HnW is the n-dimensional Hausdorff measure in W ,

Jn(mdfx) :=
ωn

Hn({y ∈ Rn : mdfx(y) ≤ 1})
,

and ωn is the Ln-measure of the unit ball in Rn.

We shall not need the version for non injective maps.
Let Ω ⊂ Rn be an open set and let v ∈ Lip(Ω;Rk); the area of the graph of v is
given by

A(v,Ω) =

ˆ
Ω
|M(∇v)|dx,

(1)We recall that any Lipschitz function f : Rn →W is metrically differentiable at Ln- a.e. x ∈ Rn,
i.e., for Ln- a.e. x there exists a seminorm ||·||x in Rn such that d(f(y), f(x))−||y−x||x = o(|y−x|).
This seminorm will be said to be the metric differential and denoted by mdfx. If W is an Euclidean
space then mdfx(ν) = ||dfx(ν)||, ν ∈ Rk.
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where | · | is the euclidean norm and M(∇v) is the vector whose components are
the determinants of all minors, up to order = min{n, k}, of the k × n matrix ∇v,
including the minor of order 0, whose determinant, by convention, is set to be equal
to 1.
In particular for k = 1 we have

|M(∇v)| =
√

1 + |∇v|2,

and for n = k = 2 (the case of this thesis) we have

|M(∇u)| =
√

1 + |∇u1|2 + |∇u2|2 + (∂xu1∂yu2 − ∂yu1∂xu2)2.

Extending the area functional for non-smooth maps is a natural question. Following
a well established tradition we do that by extending the definition of A(v,Ω) to
v ∈ L1(Ω;Rk) \ C1(Ω;Rk) by setting A(v,Ω) := +∞, then we consider the relaxed
functional

A(u,Ω) := inf
{

lim inf
ε→0

A(uε,Ω) : {uε} ⊂ C1(Ω;Rk), uε → u in L1(Ω;Rk)
}
,

which is the greatest lower semicontinuous functional on L1 less than or equal to A

(for more details of the relaxation in the calculus of variations see for instance [17]
and [14])(2).
Moreover we have

A(u,Ω) = inf
{

lim inf
ε→0

A(uε,Ω) : {uε} ⊂ Lip(Ω;Rk), uε → u in L1(Ω;Rk)
}
, (1.6)

see [11, Step 1 p.377].
The scalar case is fully understood, the domain is characterized and we have an
integral representation, more precisely

{u ∈ L1(Ω) : A(u,Ω) <∞} = BV(Ω), (1.7)

A(u,Ω) =

ˆ
Ω
|M(∇u)|dx+ |Dsu|(Ω), u ∈ BV(Ω), (1.8)

where Du = ∇udx + Dsu is the decomposition of the measure Du with respect to
the Lebesgue measure, see e.g. [31], [5] and [14].
On the other hand the vectorial case is far from being understood. For instance,
different from the equality in (1.7), we have only one strict(3) inclusion for the
domain,

{u ∈ L1(Ω;Rk) : A(u,Ω) <∞} ⊂ BV(Ω;Rk), (1.9)

see [1, Remark 2.6.]. Moreover

A(u,Ω) ≥
ˆ

Ω
|M(∇u)|dx+ |Dsu|(Ω), u ∈ BV(Ω;Rk), (1.10)

see [1, Theorem 2.7] and we can not hope for the other inequality in (1.10) due to
the non-subadditivity of A(u, ·) which we will discuss in the following subsection.

(2)The choice of the L1 topology, in the vector context, is questionable; other notions of conver-
gence could be considered as well, making the computation of the relaxation different in general.

(3)As a counter example take u = x

|x|3/2 for x in the unit ball B1((1, 0)) ⊂ R2 centered at (1, 0)

then u ∈ BV (B1((1, 0)),R2) but u does not belong to the domain of A(·, B1((1, 0))) [39].
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1.3.1 Piecewise constant maps; Non-subadditivity of A(u, ·)

We start by quoting the following result from [1, Theorem 3.14], setting n = k = 2,
which says that if u is a piecewise constant map with a jump with no triple or
multiple points then A(u, ·) is subadditive and has as an integral representative the
right hand side of (1.10).

Theorem 1.15. Let (Ei)i∈I be a finite partition of R2, such that each Ei is a
locally finite perimeter set; let (αi)i∈I be a finite family of points of R2, and let
u ∈ BVloc(R

2;R2) be the map defined as u(x) = αi if x ∈ Ei. Suppose that for
every x ∈ Ω there exists r > 0 such that L2(Br(x)∩Ei) > 0 for at most two distinct
indices i. Then

A(u,Ω) = L2(Ω) +
1

2

∑
i,j∈I
|αi − αj |H1(∂−Ei ∩ ∂−Ej ∩ Ω)

=

ˆ
Ω
|M(∇u)| dx dy + |Dsu|(Ω),

provided that L2(∂Ω) = 0 and H1(∂−Ei ∩ ∂Ω) = 0 for every i ∈ I.

The problem appears once we remove the hypothesis that there are no triple points,
the non-subadditive behavior of A(u, ·) arises, as conjectured by De Giorgi in [20].
More precisely in [1, Section 3] the authors showed that if Dr ⊂ R2

S is a disk of
radius r > 0, Ei, i = 1, 2, 3, are three angular partitions of Dr with angle equal to
120◦, and αi, i = 1, 2, 3, are the vertices of an equilateral triangle Teq ⊂ R2

T of side
length `, then the symmetric singular map usymm, defined as in (0.10), has one triple
junction at the origin of Dr and satisfies the following properties

A(usymm, Dr) ≤ |Dr|+ 4rl, (1.11)

A(usymm, Dr) > |Dr|+ 3rl. (1.12)

Moreover there exist ρ, s > 0 with 0 < ρ < r < s such that

A(usymm, Dr) > A(usymm, Dρ) +A(usymm, Ds \Dρ/2). (1.13)

Thus usymm is in the domain of A(·, Dr), and the inequality in (1.10) is strict. More-
over, by (1.13), there is no way to find an integral representative for the functional
A since A(usymm, ·) is not a measure.
Aiming to find other ways to characterize A(·,Ω) at least for piecewise constant
maps, the authors in [10] and [36] showed that the exact value of A(usymm, Dr) is
given by:

A(usymm, Dr) = |Dr|+ 3A,

where A is the area of a particular area minimizer cartesian surface m : R :=
[0, `] × [0, r] → [0,+∞). More precisely m is the unique solution of the Dirichlet-
Neumann minimum problem:

min

{ˆ
R

√
1 + |∇f |2 dsdt : f ∈W 1,1(R), f = ϕ H1 − a.e. on ∂DR := ∂R \ ([0, `]× {r})

}
,
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where ϕ is the non-negative piecewise affine function that vanishes on the two parallel
sides {0}× [0, r], {`}× [0, r] of ∂DR and its graph on the last side [0, `]×{r} consists
of the two segments connecting the vertices αi and αj , i, j ∈ {1, 2, 3}, i 6= j, to the
barycenter of the triangle Teq (note that ϕ does not depend on the choice of i and
j since Teq is equilateral).

One of the aims of this thesis is to investigate the possibilities of having a suitable
upper bound for the area functional for a larger class of piecewise constant maps.

Finally we would like to point out that piecewise constant maps are not the only
source of non-subadditivity, for instance in [1] the authors give an example of a
Sobolev function in W 1,p, p ∈ [1, 2), the vortex map, where the non-subadditivity
phenomenon is detected, however in this thesis we will not focus on such functions.

1.4 One-codimensional area-minimizing cartesian sur-
faces

In this section we collect some definitions and known results on Plateau’s problem
that will be needed to prove Theorems 2.1 and Proposition 3.4.

We start with the most regular situation: let Ω ⊂ Rn be bounded open set with
C2- boundary, and let ϕ ∈ C2(Rn). We are interested in the problem of minimizing
the area amongst all functions taking the prescribed value ϕ on ∂Ω. Due to the
smoothness of both the boundary of Ω and the initial datum ϕ one can show that
the following minimization problem

min

{ˆ
Ω

√
1 + |∇f |2dx : f ∈ Lip(Ω), f = ϕ on ∂Ω

}
, (1.14)

has a unique solution and that it is analytic in Ω, see [30, Theorem 12.10 and
Theorem 12.11].

Now we want to solve the same Dirichlet problem but for much less regular sets and
initial data. To do that we use the direct method of calculus of variations, and the
natural space to minimize is BV(Ω).

Definition 1.16. Let Ω ⊂ Rn, for f ∈ BV(Ω), define

A(f,Ω) :=

ˆ
Ω

√
1 + |Df |2

:= sup

{ˆ
Ω

(gn+1 + fDigi)dx; g = (g1. · · · , gn+1) ∈ C1
0(Ω;Rn+1); |g| ≤ 1

}
.

We have

- if f ∈W 1,1(Ω) then

ˆ
Ω

√
1 + |Df |2 =

ˆ
Ω

√
1 + |∇f |2dx,
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- A(f,Ω) can be written in terms of a function taking values in S0 and jumping
along the graph of f as follows:

A(f,Ω) = P (SGf,Ω,Ω×R) = |D1SGf,Ω |(Ω×R), (1.15)

where SGf,Ω is the subgraph defined in (1.2), see [30, Theorem 14.6],

- A(·,Ω) is lower semi-continuous with respect to the L1
loc-topology in Ω, i.e.,

A(f,Ω) ≤ lim inf
j→∞

A(fj ,Ω); fj → f in L1
loc(Ω),

see [30, Theorem 14.2].

For the rest of this section Ω ⊂ Rn is a bounded open set with Lipschitz boundary
and ϕ ∈ L1(∂Ω). A known result by Gagliardo, see [30, Theorem 2.16], gurantees
that if Ω ⊂ B, B some open ball in Rn, then ϕ can be extend to a W 1,1 function on
B \ Ω.
Consider the following weaker form of the Dirichlet problem:

min

{
A(f,Ω) +

ˆ
∂Ω
|f − ϕ|dHn−1 : f ∈ BV(Ω), f = ϕ on B \ Ω

}
, (1.16)

note that the last integral can be seen as a penalization for the trace of f not taking
the boundary value ϕ on ∂Ω.
Now we recall some interesting definition and results from [30].

Definition 1.17. Let Ω be a finite perimeter set. We say that the mean curvature
of ∂Ω is non-negative near x ∈ ∂Ω if there exists an open set B containing x such
that ˆ

B
|D1Ω| ≤

ˆ
B
|D1Ω∪K |, for every compact set K ⊂ B,

where 1Ω and 1Ω∪K are the characteristic functions of Ω and Ω ∪K respectively.

From the lower semi-continuity of A(·,Ω) and Theorem 1.3 we conclude the existence
of a minimum. We have therefore:

Theorem 1.18. Let Ω ⊂ Rn be bounded open set with Lipschitz boundary and let
ϕ ∈ L1(∂Ω). Then the minimization problem (1.16) has a solution.

Proof. See [30, Theorem 14.5].

Moreover we have

Theorem 1.19. Let Ω ⊂ Rn be bounded open set with Lipschitz boundary, ϕ ∈
L1(∂Ω), and let f be a minimum of (1.16). If x ∈ ∂Ω is a point of continuity of ϕ
and Ω has non-negative mean curvature near x then

lim
x→x

f(x) = ϕ(x).

Proof. See [30, Theorem 15.9].
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In particular, if ∂Ω has non negative mean curvature Hn−1- a.e. and ϕ is continuous
a.e. then f attains the boundary condition Hn−1-a.e., i.e. f is a minimizer of

min {A(f,Ω) : f ∈ Liploc(Ω), f = ϕ on ∂Ω} , (1.17)

by the following regularity Theorem:

Theorem 1.20. If f ∈ BVloc(Ω) minimize locally the functional A(f,Ω). Then f
is locally Lipschitz and analytic in Ω.

Proof. See [30, Theorem 14.13].

Moreover if Ω connected then f is the unique solution of (1.17), by the following
result:

Theorem 1.21. Let Ω be connected and let ϕ ∈ L1(∂Ω) and f, g be two solutions
of (1.16). Then g = f + const.

Proof. See [30, Theorem 14.12].

To conclude:

Let Ω ⊂ Rn be a bounded connected open set with Lipschitz boundary such
that Ω ⊂ B where B is an open ball in Rn. Assume that ∂Ω has non negative
mean curvatureHn−1-a.e. and that ϕ ∈ L1(∂Ω) is continuousHn−1-a.e.. Then
the minimization problem

min {A(f,Ω) : f ∈ Liploc(Ω), f = ϕ on ∂Ω}

= min

{
A(f,Ω) +

ˆ
∂Ω
|f − ϕ|dHn−1 : f ∈ BV(Ω), f = ϕ on B \ Ω

}
,

(1.18)

has a unique solution and it is analytic in Ω.

1.5 On Cartesian currents

In this section we recall some of the definitions and results about currents in [28]
that will be needed to prove the compactness of the space of connections X, see
Theorem 3.6.

Let U open set in Rm, k ≤ m. A k−dimensional current in U is a continuous linear
functional on the space Dk(U) of all infinitely differentiable compactly supported
k-forms in U . We denote by Dk(U) the space of all k-dimensional currents in U .

The boundary of T ∈ Dk(U) is the (k − 1)-current

∂T (η) := T (dη) ∀η ∈ Dk−1(U),

and we set ∂T = 0 for T ∈ D0(U).
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The ısupport of a current T ∈ Dk(U) is defined by

supp T :=
⋂
{K ⊂ U : K relatively closed in U,

T (ω) = 0 for all ω ∈ Dk(U) with supp ω ⊂ U \ K}.

A current T ∈ Dk(U) is called rectifiable if there exist an Hk-measurable and count-
able k-rectifiable set(4) K ⊂ U , an Hk- measurable and and locally Hk K-summable
map θ : K → R (called the multipicity), and anHk- measurable map ξ : K → ΛkR

n(5)

with ||ξ|| = 1Hk K-a.e and ξ(x) is a simple k-vector associated to the tangent plane
TxK for Hk K-a.e. x, such that

T (ω) =

ˆ
K
< ξ, ω > θdHk, ω ∈ Dk(U),

where < ·, · > is the duality product between covectors and vectors. We write
T = τ(K, θ, ξ). If θ is integer-valued we say that T is integer multiplicity rectifiable,
for short i.m. rectifiable. We define the restriction of an i. m. rectifiable current T
on a Borel set A ⊂ U as

T A :=

ˆ
A
< ξ, ω > θdHk.

If T ∈ Dm(Rm) be i.m. rectifiable current of the form T = {K, 1, e1 ∧ · · · ∧ em}(6)

then T is the integration over the set K and is denoted by

T = [[K]].

We say a sequence {Th} ⊂ Dk(U) converges weakly to T ∈ Dk(U), Th ⇀ T , if

Th(ω)→ T (ω) ∀ω ∈ Dk(U).

The mass of a current T ∈ Dk(U) in an open set V ⊂ U is defined by

MV (T ) := sup{T (ω) | ω ∈ Dk(U), supp ω ⊂ V, ||ω(x)|| ≤ 1 ∀x ∈ U},

where || · || is the comass norm(7). For short we write M(T ) = MU (T ).

The mass is lower semicontinuous with respect to the weak convergence, i.e., if
Th ⇀ T in V ⊂ U then

MV (T ) ≤ lim inf
h→∞

MV (Th). (1.19)

(4)A k-rectifiable set is a countable union of subsets of k-dimensional Lipschitz surfaces (up to a
set of Hk zero measure).

(5)We denote by ΛkR
n the space of k-vectors of Rn.

(6)We denote by {ei}i≤m the canonical basis of Rm.
(7)The comass norm of a covector ω ∈ ΛkRn is defined as ||ω|| := sup{< ξ, ω >: ξ ∈ ΛkR

n, |ξ| ≤
1, ξ simple k-vector}.
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Theorem 1.22. (Compactness theorem)[28, Thm. 2. p. 141] Let {Tj} ⊂
Dk(U) be a sequence of i. m. rectifiable k-currents in an open set U ⊂ Rm, k ≤ m,
satisfying

sup
j

[MV (Tj) + MV (∂Tj)] <∞, ∀V ⊂⊂ U.

Then there exists a (not-relabeled) subsequence {Tj} and an i. m. rectifiable k-
current T in U such that

Tj ⇀ T .

Given Ω ⊂ Rn open set and F : U → Ω smooth map. The push-forward of a current
T ∈ Dk(U) by F is defined as

F]T (ω) := T (F ]ω) for ω ∈ Dk(Ω),

where F ]ω is the pull-back of the form ω through F .

Definition 1.23. Let U = Ω × Rk, where Ω open set in Rn and π : U → Ω be the
canonical projection on Rn. An i. m. rectifiable n-current T is called a Cartesian
current if

- ∂T = 0, M(T ) <∞, π]T = [[Ω]],

- T 0̂0 ≥ 0, where T 0̂0 is the distribution defined by T 0̂0(f) := T (fdx1 ∧ · · · ∧
dxn)(8) for every f ∈ C∞c (U),

- sup
{
T (f(x, y)|y| dx1 · · · dxn) | f ∈ C∞c (U), |f | ≤ 1

}
<∞.

Let I ⊂ R be a bounded open interval and ϕ ∈ BV(I). Then

[[SGϕ,I ]] ∈ D2(R2).

The current [[SGϕ,I ]] I×R can be also identified with an integer multiplicity current
in I×R; moreover SGϕ,I has finite perimeter in I×R so, if ∂[[SGϕ,I ]] I×R denotes
the 1-current in I×R defined as the restriction to I×R of the boundary of [[SGϕ,I ]],
this results of finite mass.

For future purposes we recall the following result, see [28, Section 4.2.4].

(8)We use the coordinates xi, i = 1, · · · , n, in Ω and yi, i = 1, · · · , k in Rk.
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Theorem 1.24. Let ϕ ∈ BV(I) and T be the current defined by

T := −∂[[SGϕ,I ]] I ×R. (1.20)

Then T ∈ D1(I ×R) is a Cartesian current, and

T (ω) = −
ˆ
< ω(x), ∗ν(x, SGϕ,I) > dH1 ∂−SGϕ,I(x) ∀ω ∈ D1(I ×R), (1.21)

where ∗ is the Hodge operator and ν(·, SGϕ,I) is the inward generalized unit normal.
Moreover T can be decomposed into three mutually singular currents

T = T (a) + T (j) + T (c), (1.22)

such that

T (a)(ω) =

ˆ
I
[ω1(s, ϕ(s)) + ω2(s, ϕ(s))ϕ̇(s)]ds, (1.23)

T (j)(ω) =
∑
s∈Jϕ

ν(s, Jϕ)

ˆ ϕ+(s)

ϕ−(s)
ω2(s, σ)dσ, (1.24)

T (c)(ω) =

ˆ
I
ω2(s, ϕ(s))ϕ̇(c), (1.25)

where ω = ω1ds+ ω2dσ.

1.6 Distance functions

We start by recalling the definition of distance functions and some of their regularity
properties.

Given E ⊆ Rn, we will denote by

dist(x,E) := inf
y∈E
|x− y|,

the distnce function from E, and we take the convention inf ∅ := +∞.

The signed distance function and the square distance function from E are defined as

dE(x) := dist(x,E)− dist(x,Rn \ E), x ∈ Rn,

and

ηE(x) :=
1

2
(dist(x,E))2, x ∈ Rn.

Notice that

dE = dE ,

and

dE(x) =

{
−dist

(
x, (E \ int E)

)
, if x ∈ E

dist
(
x, (E \ int E)

)
, if x ∈ Rn \ E,
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where E and int E denote the closure and the interior of E in Rn. Hence if E has
empty interior then dE(·) = dist(·, E).
It is readily shown that dist(·, E) and dE are one-Lipschitz functions. Indeed if
x, y ∈ Rn, without loss of generality we assume E to be closed, hence there is ξ ∈ E
such that |ξ − x| = dist(x,E). Then

dist(y,E) ≤ |ξ − y| ≤ |x− y|+ dist(x,E),

interchanging x and y we have

|dist(x,E)− dist(y,E)| ≤ |x− y|.

Theorem 1.25. Let E be a non empty closed set.

(a) If ξ ∈ Rn \ E. Then, dist(·, E) is differentiable at ξ if and only if there exists
a unique x ∈ E such that dist(ξ, E) = |ξ − x|. Moreover

∇dist(ξ, E) =
ξ − x
|ξ − x|

=
ξ − x

dist(ξ, E)
.

(b) The squared distance function ηE is differentiable on E = {ηE = 0} and
satisfies the identity

|∇ηE(ξ)|2 = 2ηE(ξ),

at any differentiability point ξ ∈ Rn, in particular E = {∇ηE = 0}.

Proof. See [2, Theorem 1] and [9, Lemma 2.1].

Remark 1.26. i. If dist(·, E) is differentiable at ξ ∈ Rn\E then |∇dist(ξ, E)| =
1,

ii. If ξ ∈ Rn \ E then xξ := ξ − dist(ξ, E)∇dist(ξ, E) is the nearest point on E
and if z ∈ ξxξ then dist(·, E) is differentiable at z, ∇dist(z, E) = ∇dist(ξ, E),
and xξ is the unique point such that |z − xξ| = dist(z, E).

iii. A similar result to Theorem 1.25 (a), applies to dE(·) on the complement of
the topological boundary of E defined as E \ int{E}.

The regularity of dE , ηE and the smoothness of the topological boundary of E are
related, see Figure 1.1. We start by recalling the following result for open sets.

Theorem 1.27. Let A ⊂ Rn a bounded open set.

(I) If the boundary of A of class Ck, k ≥ 2, then the signed distance function dA
is of class Ck in a tubular neighborhood of the boundary of A.

(II) Conversely, if the signed distance function dA is of class Ck, k ≥ 2, in a
suitable neighborhood of the boundary of A then the boundary of A is of class
Ck.

Proof. See [29, Lemma 14.16].
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Figure 1.1: E is a segment in R. Left: the graph of dist(·, E). Middle: the graph of
dE . Right: the graph of ηE (note that ηE is C1,1 but not C2 at the two end points).

Notation: If ρ > 0, we set

E+
ρ := {ξ ∈ Rn : dist(ξ, E) < ρ},

and if ρ : E → (0,+∞] is a function, we set E+
ρ(·) :=

⋃
x∈E
{ξ ∈ Rn : |ξ − x| < ρ(x)}.

1.6.1 Manifolds without boundary and distance functions

In this subsection we recall the notion of smooth (resp. analytic) manifold without
boundary of arbitrary codimension, using the distance function, and the relation
with the classical definition of smooth manifold.
Let us recall the definition of the class of h-dimensional embedded Ck-manifolds(9)

without boundary in a nonempty open set Ω ⊂ Rn (see for instance [38, 19]).

Definition 1.28 (Smooth embedded manifold without boundary). Let k ∈
N ∪ {∞, ω} and h ∈ {1, . . . , n}. Let Ω ⊆ Rn be a nonempty open set. We say that
Γ ⊂ Rn is a h-dimensional embedded Ck-manifold without boundary in Ω if

Γ ∩ Ω = Γ ∩ Ω, (1.26)

and for all x ∈ Γ ∩ Ω there exist an open set R ⊂ Rn, an open set G ⊂ Rh, and
maps φ ∈ Ck(G;Rn), ψ ∈ Ck(R;Rh) such that

x ∈ R, ψ(φ(y)) = y ∀y ∈ G,

Γ ∩R = {φ(y) : y ∈ G}. (1.27)

Theorem 1.29. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω} and h ∈ {1, . . . , n}. Let Γ ⊂ Rn

be a compact h-dimensional embedded Ck-manifold without boundary in Rn. Then
ηΓ is Ck−1 in a tubular neighbourhood Γ+

ρ of Γ and ηΓ(x+ p) = 1
2 |p|

2 for any x ∈ Γ
and any p in the normal space NxΓ to Γ at x, with x + p ∈ Γ+

ρ . In particular the
matrix ∇2ηΓ(x) represents the orthogonal projection on NxΓ.

Proof. See [2, Theorem 2] and [22].

Theorem 1.29 is still valid if Γ is a h-dimensional embedded Ck-manifold without
boundary (not necessarily compact) in some open set Ω, provided that Γ+

ρ becomes

a neighborhood Γ+
ρ(·) ⊂ Ω of Γ ∩ Ω. Indeed, following the same proof of Theorem

(9)k stands for a positive natural number. We also consider the cases k = +∞ or k = ω (analytic
manifolds), in these cases k − 1 = +∞ (resp. ω).
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1.29 in [2] it follows that that for any x ∈ Γ ∩ Ω there exists ρ(x) > 0 such that
Bρ(x)(x) ⊂ Ω, ηΓ ∈ Ck−1(Bρ(x)(x)), η(x + p) = 1

2 |p|
2 for any p ∈ NxΓ such that

x+p ∈ Bρ(x)(x), and rank(∇2ηΓ(x)) = n−h. Defining Γ+
ρ(·) := ∪x∈ΓBρ(x)(x) we get

the assertion.

Theorem 1.30. Let k ∈ N, k ≥ 3 or k ∈ {∞, ω}. Let A ⊆ Rn be an open
set, E ⊂ Rn a closed subset and suppose that ηE ∈ Ck(A). Then any connected
component of E ∩A is an embedded Ck−1-manifold without boundary in A.

Proof. See [9, Theorem 2.4].

Notice that if rank(∇2ηE(x)) = n−h for any x in a connected component of E ∩A,
then such a connected component must have dimension h. Furthermore it is sufficient
to have E closed in A to get the thesis of Theorem 1.30. Indeed it is enough to apply
Theorem 1.30 to E, hence any connected component of E∩A (= E∩A) is a manifold
without boundary.





2. The functional G, and an
upper bound of A(u,D)

In order to prove the main result (Theorem 0.1) of the first part of the present thesis
we need some preparation. In this chapter we state precisely what we mean by a
connection and define the functional G over the class of connections X. Then we
show the main result of this chapter which provides an upper bound of the relaxed
area A(u,D) and reads as follows:

Theorem 2.1. Let u ∈ BV (D; {α1, α2, α3}) be the function defined in (0.10). Then

A(u,D) ≤ |D|+ inf
{
G(Γ) : Γ ∈ XLip

}
. (2.1)

2.1 The class of connections X

Take three open non-overlapping non-empty connected regions E1, E2, E3 of an
open disk D, each Ei with non empty interior and with E1 ∪ E2 ∪ E3 = D, and let
Cij be their boundaries in D as in the introduction.
Let α1, α2, α3 be the vertices of a closed triangle T as in the introduction; we
suppose that T contains the origin 0T in its interior, and let `ij be as in (0.4).
For any (a, b) ⊂ R bounded open interval and any ϕ ∈ BV((a, b)), we shall always
assume that ϕ is a good representative in its L1 class such that

ϕ(s) = ϕ+(s) := max{ϕ(s+), ϕ(s−)} for all s ∈ (a, b),

where ϕ(s±) are the right and left limits of ϕ; hence the pointwise variation of ϕ is
equal to the total variation |ϕ′|((a, b)). We conventionally set ϕ(a−) = 0, ϕ(b+) = 0;
in this case we can define the generalized graph Γϕ of ϕ as in (1.4) with (a, b) replaced
by [a, b], hence the generalized graph will always pass through the end points of the
interval (with possibly vertical parts over a and b).

Definition 2.2 (Connections in T). We say that Γ := (Γ1,Γ2,Γ3) is a BV graph-
type (resp. Lip graph-type) connection in T if Γi, i ∈ {1, 2, 3}, are subsets of T such
that Γ1 ∩ Γ2 = Γ2 ∩ Γ3 = Γ3 ∩ Γ1 is one point p of T called target triple point of Γ,
αi ∈ Γi for any i = 1, 2, 3, and

Γij := Γi ∪ Γj , ij ∈ {12, 23, 31},

can be written as the generalized graph (resp. graph) of a function of bounded vari-

19
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ation (resp. Lipschitz function) over the closed segment αiαj (see Figures 1b and
3.5).

Note that the case p ∈ ∂T is not excluded. However, by definition, if πij : T→ Rαiαj ,
ij ∈ {12, 23, 31}, is the orthogonal projection on the line Rαiαj containing αiαj , then
πij(p) ∈ αiαj . Set

wij := |αi − πij(p)|. (2.2)

If necessary, in the sequel we will often identify Γij with the (generalized) graph Γϕij
of a function

ϕij : [0, `ij ]→ [0,diamT], ϕij = ϕij(Γij), (2.3)

of bounded variation. If T is acute, choosing a suitable cartesian coordinate system
where the s-axis is the line Rαiαj , we necessarily have ϕij(0) = ϕij(`ij) = 0. In
contrast, if the angle of T at αi is greater than or equal to π

2 then ϕij might have
a vertical part over αi and ϕij(0+) > 0. In the sequel it will be often convenient to
consider an extension of ϕij on (−∞, 0) ∪ (`ij ,+∞). This extension is denoted by
ϕ̃ij . In the case of acute triangle ϕ̃ij is always set equal to 0 on (−∞, 0)∪ (`ij ,+∞).

Remark 2.3. If for any ij ∈ {12, 23, 31}, wij in (2.2) is a point of continuity of
ϕij then the intersection of the generalized graph of ϕki with the set [wki, `ki] × R

coincides with Γi which is also the intersection of the generalized graph of ϕij with
the set [0, wij ]×R, where ij, ki ∈ {12, 23, 31}, ij 6= ki. If wij is a jump point of ϕij
this is in general not true, as in Figure 3.6b, when i = 2.

Remark 2.4. Assume that an angle of T is greater than π
2 , say for instance the

angle at α1; as already said, the generalized graphs composing a connection Γ are
allowed to have vertical parts over α1. The target triple point p of any connection
Γ belongs to Tint ⊂ T , the part of the triangle T which is enclosed between the two
lines passing through α1 and orthogonal to α1α2 and α1α3 respectively.

Define the classes:

XLip :=
{

Γ : Γ Lip graph− type connection in T
}
, (2.4)

X :=
{

Γ : Γ BV graph− type connection in T
}
. (2.5)

Obviously XLip ⊂ X.

2.2 The functional G

Let Rij be as in (0.5), and Γ ∈ X. Then Γij , ij ∈ {12, 23, 31}, are (generalized)
graphs of functions ϕij of bounded variation over [0, `ij ]. Let B ⊂ R2 be an open

disk containing the doubled rectangle R̂ij defined as

R̂ij := [0, `ij ]× [0, 2rij ], ij ∈ {12, 23, 31}. (2.6)
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We use for simplicity the same notation ϕij for the extension of ϕij to R̂ij , defined
as -

ϕij(s, t) = ϕij(s), (s, t) ∈ R̂ij ij ∈ {12, 23, 31}, (2.7)

and for the extension of ϕij to a W 1,1 function on B \ R̂ij as discussed in Section
1.4.

Let m̂ij = m̂ij(Γ), ij ∈ {12, 23, 31}, be a solution of following Dirichlet minimum
problem:

min

{ˆ
R̂ij

√
1 + |Df |2 +

ˆ
∂R̂ij

|f − ϕij |dH1 : f ∈ BV(B), f = ϕij on B \ R̂ij

}
,

(2.8)

where
´

R̂ij

√
1 + |Df |2 is the extension of the area functional to BV(R̂ij) in Defini-

tion 1.16 and m̂ij is given by Theorem 1.18.

From the conclusion in Section 1.4 and the fact that the restriction of ϕij to ∂R̂ij is
continuous up to a countable set of points, it follows that m̂ij is the unique solution
of

min

{ˆ
R̂ij

√
1 + |∇f |2 dsdt : f ∈W 1,1(R̂ij), f = ϕij H1 − a.e. on ∂R̂ij

}
, (2.9)

and it is analytic in R̂ij . Let mij = mij(Γ) be the restriction of m̂ij to Rij . Then,
by the symmetry of ϕij with respect to the line {t = rij}, mij is the unique solution
of the Dirichlet-Neumann minimum problem (0.7). From (0.6) it follows that the
Dirichlet condition is zero on the sides {0}×[0, rij ] and {`ij}×[0, rij ] of the rectangle
Rij . Note that mij is analytic in the interior of Rij but not necessarily Lipschitz in
Rij , see Theorem 1.20 and Figure 2b.

Definition 2.5 (The functional G). We define the functional G : X −→ [0,+∞)
as

G(Γ) := A12(Γ) + A23(Γ) + A31(Γ), (2.10)

where Aij(Γ) are as in (0.9).

The properties of the functional G will be discussed in Section 3.

2.3 Infimum of G as an upper bound of A(u,D)

Lemma 2.6. Let ` ≥ 0, p ≥ 0, ϕ ∈ Lip([0, `]; [0,+∞)) be such that ϕ(0) = ϕ(`) = 0
and w ∈ [0, `] so that ϕ(w) = p. Then there exists a sequence {ϕσ} of C∞ equi-
Lipschitz functions in [0, `], converging to ϕ uniformly on [0, `] as σ → 0+, such
that

ϕσ(0) = ϕσ(`) = 0, ϕσ(w) = p, for any σ > 0 sufficiently small.
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Proof. Let us extend ϕ in R such that ϕ(s) = 0 in R\[0, `], so that the extension (still
denoted by ϕ) belongs to Lip(R). Let ϕ̂σ(s) := ησ ∗ϕ in R, where {ησ} is a standard
sequence of mollifiers. Then ϕ̂σ ∈ C∞(R), Lip(ϕ̂σ) ≤ Lip(ϕ) and the sequence {ϕ̂σ}
converges uniformly to ϕ on compact subsets of R. Without loss of generality we
may assume ϕ̂σ(s) = 0 in R\(−σ/2, `+σ/2) and ϕ̂σ( `+2σ

` w−σ) = p+cσ, cσ = o(1).
Let us first suppose p 6= 0. We define

ϕσ : [0, `]→ [0,+∞), ϕσ(s) :=
p

p + cσ
ϕ̂σ
(`+ 2σ

`
s− σ

)
. (2.11)

It is easy to see that ϕσ ∈ C∞([0, `]), ϕσ(0) = ϕσ(`) = 0, ϕσ(w) = p, ϕσ are equi-
Lipschitz, and {ϕσ} converges to ϕ uniformaly as σ → 0+. Notice that the obtained
approximation is constantly null in a neighborhood of 0 and `.
In the case p = 0, we argue differently. We consider the two intervals [0, w] and [w, `]
and we repeat the same approximation above in the single intervals; more precisely
we choose two points w1 ∈ (0, w) and w2 ∈ (w, `) with ϕ(w1) > 0, ϕ(w2) > 0
(if these points do not exist it means that the functions are constantly 0 and they
are already smooth, so there is nothing to prove). Then we approximate the two
functions ϕ (0, w) and ϕ [w, `] as before, and we glue them along w. Note that
the glued function is smooth in w since both the two smooth approximations are
constantly 0 in a neighborhood of w.

To prove Theorem 2.1 we use the three area-minimizing functions mij introduced
in Section 2.2, to construct a sequence {uε} of Lipschitz functions that converges
to u in L1(D;R2). However mij are only locally Lipschitz so we need the following
smoothing lemma.

Lemma 2.7. Let Γ ∈ XLip, ij ∈ {12, 23, 31}. Let ϕij = ϕij(Γij) ∈ Lip([0, `ij ]),
mij = mij(Γij) ∈ W 1,1(Rij), be defined as in Section 2.2. Then there exists a
sequence {mσ

ij} of Lipschitz functions such that mσ
ij : Rij → R, mσ

ij = ϕij on ∂DRij ,
and ∣∣∣∣∣

ˆ
Rij

√
1 + |∇mij |2 dsdt−

ˆ
Rij

√
1 + |∇mσ

ij |2 dsdt

∣∣∣∣∣ ≤ O(σ). (2.12)

Proof. This can be proved using an argument similar to the one in [11, p. 378; p.
381], and using also Lemma 2.6 with the choice w = wij and p = ϕij(wij).

We start to prove Theorem 2.1 in the special case of a piecewise linear jump, as in
Figure 2.1.

Proposition 2.8. Let u ∈ BV (D; {α1, α2, α3}) be the map defined in (0.10) and
assume that the jump set of u consists of three distinct segments that meet at the
origin. Then (2.1) holds.

Proof. Let Γ ∈ XLip be a connection passing through p ∈ T and G(Γ) = A12(Γ) +
A23(Γ) + A31(Γ). To prove the proposition it is sufficient to construct a sequence
{uε} ⊂ Lip(D;R2) converging to u in L1(D;R2) such that

lim
ε→0
A(uε, D) ≤ |D|+ A12(Γ) + A23(Γ) + A31(Γ). (2.13)
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r23

E2r12

E1

r31

E3

0S

Figure 2.1: E1, E2, E3 are separated by three segments of length r12, r23, r31 that
meet at the origin.

Case 1. Assume that the segments separating E1, E2, E3 meet at the origin with
angles less than π, as in Figure 2.1.
To simplify the computation we may assume that p = 0T, see Figure 1b. The idea of
the proof is similar to the one used in [11], with however new difficulties, in particular
in T ε (step 3). We will specify various subsets of D and define the sequence {uε} on
each of these sets. Let ε > 0 be sufficiently small and δε > 0 be such that δε → 0+ as
ε→ 0+. Define Tε to be the triangle with the origin 0S in its interior, with vertices
ζ1 = ζ1

ε , ζ2 = ζ2
ε , and ζ3 = ζ3

ε , and sides of lengths ε12, ε23, ε31, εij := |ζi− ζj |; the
sides of Tε are perpendicular to the lines containing r12, r23, r31 (respectively) and
their distance from the origin 0S equals δε. Define three cygar-shaped sets Sε23, S

ε
31

and Sε12 as in Figure 2.2a: if for instance y is a coordinate on r12 and x is the
perpendicular coordinate, then Sε12 is defined as

Sε12 :=
{

(x, y) ∈ D : x ∈ (ζ1
1 , ζ

2
1 ), y ≥ δε

}
, (2.14)

where
ζi = (ζi1, ζ

i
2), i = 1, 2, 3.

Let us set

Eε1 := E1\(Sε31 ∪ T ε ∪ Sε12) , Eε2 := E2\(Sε23 ∪ T ε ∪ Sε12) , Eε3 := E3\(Sε23 ∪ T ε ∪ Sε31) .
(2.15)

Step 1. Definition of uε on Eε1 ∪ Eε2 ∪ Eε3. We define

uε :=


α1 in Eε1,

α2 in Eε2,

α3 in Eε3.

(2.16)

Note that A(uε, Eε1 ∪ Eε2 ∪ Eε3) = |Eε1|+ |Eε2|+ |Eε3|, hence

lim
ε→0+

A(uε, Eε1 ∪ Eε2 ∪ Eε3) = |D|. (2.17)
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Sε23

Eε2

Sε12

ζ1 ζ2
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Eε1

Sε31
Eε3

T ε

(a) Case 1 of the proof of Proposition 2.8

ζ1
ζ2

ζ3

wa

wb

wc

T ε1 T ε2

T ε3T ε

T ε0

(b) Zoom of T ε in (a).

Figure 2.2

Step 2. Definition of uε on Sε23 ∪ Sε31 ∪ Sε12 .
We will start with the construction on Sε12. Set

ξ = (ξ1, ξ2) :=
α2 − α1

`12
∈ S1, η = (η1, η2) := ξ⊥, (2.18)

where ⊥ denotes the counterclockwise rotation of π/2.
Let ψε12 : [δε, r12 + cε]→ [0, r12] be linear, increasing, surjective, where cε > 0 is the
smallest number such that

Sε12 ⊂ [ζ1
1 , ζ

2
1 ]× [δε, r12 + cε] , lim

ε→0+
cε = 0.

Note that for any y ∈ [δε, r12 + cε] we have

(ψε12)′(y) =
r12

r12 + cε − δε
=: κε, lim

ε→0+
κε = 1. (2.19)

Let mσ
12 be the map defined in Lemma 2.7, whose area on R12 is by construction

close to A12(Γ), with {σε} ⊂ (0,+∞) a sequence such that

lim
ε→0+

σε = 0. (2.20)

We set, with σ = σε for simplicity,

uε(x, y) := α1 +

(
x− ζ1

1

ε12

)
`12ξ +mσ

12

(
x− ζ1

1

ε12
`12 , ψ

ε
12(y)

)
η, (x, y) ∈ Sε12.

(2.21)
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Figure 2.3: The set Pε is bounded by the bold contour.

Observe that uε = (uε1, u
ε
2) ∈ Lip(Sε12;R2), uε = α1 on {(x, y) ∈ Sε12 : x = ζ1

1}, and
uε = α2 on {(x, y) ∈ Sε12 : x = ζ2

1}. By the definition of mσ
12, it is uniquely defined

the point (depending on ε) wa = (wa1 , w
a
2) ∈ ζ1ζ2 such that uε(wa1 , w

a
2) = 0T (see

Figure 2.2b). Write for simplicity

m̃ = mσ
12.

Using that |ξ| = |η| = 1, ξ1η1 + ξ2η2 = 0, and ξ1η2 − ξ2η1 = 1, we compute

1+|∇uε1|2+|∇uε2|2+

(
∂uε1
∂x

∂uε2
∂y
− ∂uε1

∂y

∂uε2
∂x

)2

= 1+
`212

ε2
12

(
1 +

(
m̃s

)2
+
(
m̃t

)2
κ2
ε

(
1 +

ε2
12

`212

))
,

where m̃s, m̃t denote, respectively, the partial derivatives of m̃ with respect to s :=
x−ζ1

1
ε12

`12 and t := ψε12(y), and are evaluated at
(
x−ζ1

1
ε12

`12 , ψ
ε
12(y)

)
. As a consequence

A(uε, Sε12)

=
`12

ε12

ˆ
Sε12

√
1 +

[
m̃s

(
x− ζ1

1

ε12
`12, ψε12(y)

)]2

+

[
m̃t

(
x− ζ1

1

ε12
`12, ψε12(y)

)]2

κ2
ε

(
1 +

ε2
12

`212

)
+O(ε2) dxdy

=
1

κε

ˆ
R12\Pε

√
1 + [m̃s (s, t)]2 + [m̃t (s, t)]2 κ2

ε

(
1 +

ε2
12

`212

)
+O(ε2) dsdt, (2.22)

where the last equality follows by the change of variables

Φ : R12 3 (s, t) 7→ Φ(s, t) :=

(
ε12

`12
s+ ζ1

1 , ψ
ε
12
−1(t)

)
= (x, y) ∈

[
ζ1

1 , ζ
2
1

]
×[δε, r12 + cε] ⊃ Sε12,

(2.23)
and Pε := R12 \Φ−1(Sε12) (see Figure 2.3). Hence, recalling also (2.19), we conclude

lim
ε→0+

A(uε, Sε12) =

ˆ
R12

√
1 +

(
m̃s

)2
+
(
m̃t

)2
dsdt. (2.24)

We recall that from (2.12) it follows that
ˆ

R12

√
1 +

(
m̃s

)2
+
(
m̃t

)2
dsdt = A12(Γ) +O(ε). (2.25)
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Hence, employing the same construction in the strips Sε23 and Sε31 we obtain

lim
ε→0+

A(uε, Sε23 ∪ Sε31 ∪ Sε12) = A12(Γ) + A23(Γ) + A31(Γ). (2.26)

Step 3. Definition of uε on T ε. We divide T ε into four closed triangles T ε1 , T ε2 , T ε3
and T ε0 as in Figure 2.2b. We set

uε := 0T in T ε0 . (2.27)

We first define uε on ∂T ε1 as follows:

(i) the value of uε at ζ1 is α1;

(ii) the value of uε on the side wcwa is 0T.

Note that uε is already defined on the edges ζ1wa and ζ1wc and its graph over both
edges is given by a rescaled version of the curve Γ1 suitably parametrized.
More precisely, we recall that π12 : Γ1 → α1α2 and π31 : Γ1 → α3α1 are the
orthogonal projections onto the edges α1α2 and α3α1. Since Γ1 is, by hypothesis, a
part of a Lipschitz graph, the maps π12 Γ1 and π31 Γ1 are bi-Lipschitz bijections
between Γ1 and the segments α1π12(p) and α1π31(p), respectively. We know that
if (s, t) are coordinates on T with respect to the system with s-axis α1α2, then the
inverse of π12 Γ1 is given by Φ12 : α1α2 → Γ1,

Φ12((s, 0)) = (s, ϕ12(s)).

Let us denote by L12 = Lε12 : ζ1wa ⊂ R2
S → α1π12(p) ⊂ R2

T and L31 = Lε31 : ζ1wa ⊂
R2
S → α1π31(p) ⊂ R2

T the linear bijective maps

L12(Q) = α1 +
|Q− ζ1|
ε12

(α2 − α1), L31(Q′) = α1 +
|Q′ − ζ1|
ε31

(α3 − α1).

Then we define

uε := Φ12 ◦ L12 on ζ1wa, (2.28)

and

uε = Φ31 ◦ L31 on ζ1wc. (2.29)

compare formula (2.21). Since Φ12 and Φ31 are Lipschitz with Lipschitz constants
independent of ε, and the Lipschitz constants of L12 and L31 have order 1

ε , it follows

that the Lipschitz constants of uε over the segments ζ1wa and ζ1wc have order 1
ε .

Now we want to define uε in the interior of T ε1 . First we observe that the map
π31◦Φ12 : α1π12(p) ⊂ R2

T → α1π31(p) ⊂ R2
T is a bi-Lipschitz bijection, with constant

independent of ε. A direct computation then provides that the map Ψ : ζ1wa ⊂
R2
S → ζ1wc ⊂ R2

S defined by

Ψ := (L31)−1 ◦ π31 ◦ Φ12 ◦ L12, (2.30)
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(a) (b)

Figure 2.4: Surjectivity of the foliation in T ε1 ⊂ R2
S .

is bi-Lipschitz between ζ1wa and ζ1wc with bi-Lipschitz constant of order 1 as ε→
0+. Given Q ∈ ζ1wa let Q′ := Ψ(Q) ∈ ζ1wc.
Now we show that T ε1 is foliated by the segments QQ′, i.e., for any R ∈ T ε1 we can
find a unique Q ∈ ζ1wa for which R ∈ QQ′.
First we notice that QQ′ ∩ SS′ = ∅ for any Q 6= S ∈ ζ1wa with Q′ = Ψ(Q) and
S′ = Ψ(S). Indeed, thanks to the fact that Ψ is a homeomorphism and that it keeps
ζ1 fixed, it is easy to see that if S ∈ ζ1Q then S′ ∈ ζ1Q′, or if Q ∈ ζ1S then
Q′ ∈ ζ1S′. Consider the function

f(q, σ) = qτ + σν(q), q ∈ [0, |wa − ζ1|], σ ∈ [0, |Ψ(qτ)− qτ |],

where τ := wa−ζ1

|wa−ζ1| and ν(q) := Ψ(qτ)−qτ
|Ψ(qτ)−qτ | . It is clear that the image of f is a closed

set and Im(f) = {QQ′ : Q ∈ ζ1wa, Q′ = Ψ(Q)}. Now we show that Im(f) = T ε1 .
Assume by contradiction there is R ∈ T ε1 \ Im(f) and take a disk B ⊂ T ε1 \ Im(f)
centered at R. Let Qr, Ql ∈ ζ1wa be such that qr := |Qr − ζ1| (resp. ql = |Ql − ζ1|)
be the supremum (resp. the infimum) parameter for which B lies on the right (resp.
left) of QrQ′r (resp. QlQ

′
l). Note that Qr 6= Ql due to the injectivity of Ψ, thus for

any Q ∈ QrQl the segment QQ′ must intersect B, a contradiction, see Figure 2.4a.
Hence we may define uε on T ε1 as

uε(R) := uε(Q), R ∈ QQ′, Q ∈ ζ1wa. (2.31)

We want now to show that on T ε1 , uε is Lipschitz continuous with Lipschitz constant
of order 1

ε . To prove this let us fix R ∈ T ε1 . By definition uε(R) = uε(Q) for some

Q ∈ ζ1wa and uε is constant on the segment QQ′ 3 R.
Let e : T ε1 → ζ1wa be the function taking (x, y) ∈ T ε1 to the intersection point of
ζ1wa and the line passing through (x, y) parallel to QQ′. Let g : T ε1 → ζ1wc be the
function taking (x, y) ∈ T ε1 to the intersection point of ζ1wc and the line passing
through (x, y) parallel to QQ′. Let R̂ ∈ T ε1 be a point in T ε1 ; we want to estimate
the ratio

|uε(R̂)− uε(R)|
|R̂−R|

.
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Consider the two segments Qe(R̂) and Q′g(R̂). By definition R̂ ∈ SS′ and uε(R̂) =
uε(S) = uε(S′) for two points S ∈ ζ1wa and S′ ∈ ζ1wc. It is straightforward that

either S ∈ Qe(R̂) or S′ ∈ Q′g(R̂). Without loss of generality suppose the first case
holds, see Figure 2.4b.
Finally, denote by θ the angle between QQ′ and ζ1wa and by θ′ the angle between
QQ′ and ζ1wc. Using the fact that the homeomorphism in (2.30) is bi-Lipschitz
with constant of order 1 it is not difficult to see that there is a constant θ0 > 0
independent of ε such that min{θ, θ′} ≥ θ0. This is a consequence of the fact that
the bi-Lipschitz constant of Ψ in (2.30) is of order 1. Indeed, if L = lip(Ψ) and
1/L′ = lip(Ψ−1), we see that

L′ ≤ |Q
′ − ζ1|
|Q− ζ1|

≤ L,

hence
1/L+ cos θζ1

sin θζ1

≤ cos θ

sin θ
≤

1/L′ + cos θζ1

sin θζ1

,

where θζ1 is the angle at ζ1 (here we have used the law of sines and that θ′ =
π−θζ1−θ). A similar estimate holding for θ′, this readily provides the boundedness
from below of min{θ, θ′}.
As a consequence we have

|R̂−R| ≥ |Q− e(R̂)|| sin θ| ≥ |Q− e(R̂)|| sin θ0|.

Thus, we compute

|uε(R̂)− uε(R)|
|R̂−R|

≤ |u
ε(Q)− uε(S)|

|Q− e(R̂)|| sin θ|
≤ |u

ε(Q)− uε(S)|
|Q− S|| sin θ|

≤ 1

| sin θ0|
|uε(Q)− uε(S)|
|Q− S|

,

(2.32)

that is bounded by the Lipschitz constant of Φ12 ◦ L12 which is of order 1
ε .

Eventually we compute the Jacobian of uε in (2.31). By construction the image
of T ε1 by uε is exactly the curve Γ1, which has zero Lebesgue measure in R2. By a
standard application of the area formula it follows that the Jacobian of uε is vanishes
a.e. in T ε1 . We have concluded the definition of uε in T ε1 . The constructions on T ε2
and on T ε3 are similar, and similar estimates of the derivatives and Jacobians hold.
Using that the area of the triangle T ε is of order ε2, we have

lim
ε→0+

A(uε, Tε) = lim
ε→0+

(O(ε) +O(ε2)) = 0. (2.33)

From (2.16), (2.21), (2.27), (2.31), and the estimates above it follows that

{uε} ⊂ Lip(D;R2), lim
ε→0+

ˆ
D
|uε − u| dxdy = 0. (2.34)

Moreover

A(uε, D) = A(uε, Eε1 ∪Eε2 ∪Eε3) +A(uε, Sε23) +A(uε, Sε31) +A(uε, Sε12) +A(uε, T ε).
(2.35)
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(a) The non acute case.
(b) Zoom of Hε in (a).

Figure 2.5

Then (2.13) follows from (2.35), (2.17), (2.26), (2.20) and (2.33).

Case 2. Assume that two of the segments separating E1, E2, E3 meet at the origin
with an angle greater than or equal to π.
Similar to Case 1, we divide the domain D into a finite number of subsets and
define the sequence {uε} on each of these sets. Draw the normal to each segment
at the point of distance δε from the origin. The normal lines meet at two points
ζ1, ζ2. Divide D into three cygar-shape subsets Sε23, S

ε
31, S

ε
12 (with widths of order

δε = O(ε)) and a quadrilateral Hε as in Figure 2.5a. Let

Eε1 := E1\(Sε31 ∪Hε ∪ Sε12) , Eε2 := E2\(Sε23 ∪Hε ∪ Sε12) , Eε3 := E3\(Sε23 ∪Hε ∪ Sε31) .

Set

uε :=


α1 in Eε1,

α2 in Eε2,

α3 in Eε3.

(2.36)

Define uε on Sε23 ∪ Sε31 ∪ Sε12 as in Step 2 in case 1. It remains to define uε on Hε.
Recall that by construction there exist uniquely determined three points wa ∈ ζ1ζ2,
wb ∈ ζ2ζ3 and wc ∈ ζ1ζ4 such that

uε(wa) = uε(wb) = uε(wc) = 0T.

Divide Hε into six triangles T ε0 , T
ε
1 , T

ε
2 , T

ε
3 , T

ε
4 , T

ε
5 , as in Figure 2.5b, where wd is

any point in ζ3ζ4 and wd 6= ζ3, wd 6= ζ4.
Set

uε := 0T in T ε0 .
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We define uε in the triangles T ε1 and T ε2 as in Step 3; it remains to define uε on

T ε3 , T
ε
4 , T

ε
5 . Let us first define uε on the edges wcwd and wbwd. The map uε is

already defined on the other edges, and its graph over ζ4wc and ζ3wb is given by
a suitable reparametrization of the curve Γ3, whereas uε on ζ4ζ3 is constantly α3.
Therefore it suffices to define uε in such a way that its graph over wcwd and wbwd

coincides with Γ3 as well, and then we can define uε inside T ε3 and T ε4 using the

same construction for T ε1 in step 3. Similarly, using that the graph of uε on wcwd

and wbwd is again Γ3, we can repeat the construction in the triangle T ε5 . Following
the computation as in case 1 we get (2.13). This concludes the proof.

Proof of Theorem 2.1. We will suitably adapt the construction made in the proof of
Proposition 2.8. By hypothesis the regions E1, E2, E3 are enclosed by C2-embedded
curves Cij , ij ∈ {12, 23, 31}, parametrized by arc length cij : [0, rij ] → R2, ij ∈
{12, 23, 31}. Moreover such curves meet ∂D transversely and intersect each other
(transversely) only at one point Q. Suppose that the angles formed at Q by the three
curves are all less than π (the other case is similarly adapted from the corresponding
case in the proof of Proposition 2.8). We will divide the domain D into a finite
number of subsets and define the sequence {uε} on each of these sets.
Let δε > 0 be such that δε → 0+ as ε → 0+. Let τ ∈ [0, rij ] be an arc lenght
parameter on Cij , with orthogonal coordinate d that coincides with the signed dis-
tance from Cij negative in Ei and positive in Ej . Let Qij ∈ Cij be the point with
arc distance τ = δε from the origin Q. Consider the three lines normal to Cij at
Qij . For δε sufficiently small, since the angles at the origin are less than π and the
curves are of class C2 up to the closure, these lines mutually meet at points ζ1,
ζ2, and ζ3. Let εij be the length of ζiζj , which are of order ε. The tubular coor-
dinates of the points ζ1 and ζ2 with respect to C12 are (d1, δε, ) and (d2, δε), with
d2−d1 = ε12, d1 < 0, d2 > 0. For δε small enough we can consider the neighborhood
of C12 defined as

Sε12 := {(x, y) ∈ D : τ(x, y) ≥ δε, d(x, y) ∈ (d1, d2)}, (2.37)

where we have prolonged C12 outside D for convenience. Similarly we define Sε23

and Sε31. Let T ε be the triangle with vertices ζ1, ζ2, and ζ3.
Finally, let Eε1, E

ε
2, E

ε
3 be defined as in (2.15), and uε as in (2.16).

Step 1. Definition of uε on Sε12∪Sε23∪Sε31. We do the construction on Sε12, and uε will
be defined similarly on Sε23 and Sε31. We know that c12([δε, r12]) = C12 ∩ Sε12. The
system of coordinates (d, τ) defines a C1-diffeomorphism h between the rectangle

[d1, d2]× [δε, ρ12] and its image N ε,δ
12 which contains Sε12, namely

h : [d1, d2]× [δε, ρ12]→ N ε,δ
12 ; h(d, τ) := c12(τ) + dν̄(τ),

where ν̄(τ) is the unit normal vector pointing toward E2 at c12(τ) and ρ12 = ρε12 ≥
r12 is the infimum of those ρ for which Sε12 ⊂ N

ε,δ
12 , see Figure 2.6b.

Since h is a C1-diffeomorphism we have that

h−1 : N ε,δ
12 → [d1, d2]× [δε, ρ12]; h−1(x, y) := (d(x, y), τ(x, y)),
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(a)

(b)

Figure 2.6: proof of Theorem 2.1.
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is the inverse of h and is of class C1. We want to estimate the Jacobian of h−1. To
this aim, we first see that ∇d(c12(τ)) = ν̄(τ) since c12([δε, ρ12]) is the zero level set
of d and, from [2, Rem. 3(1)], we have

∇d(h(d, τ)) = ν̄(τ), (d, τ) ∈ [d1, d2]× [δε, ρ12]. (2.38)

Fix τ ∈ [δε, ρ12]; by definition of tubular coordinates the segment {c12(τ) + dν̄(τ) :
d ∈ [d1, d2]} is a level set of the function τ(·), hence

∇τ(x, y) ⊥ ν̄(τ(x, y)), (2.39)

therefore
∇τ · ∇d = 0 in Sε12. (2.40)

Thus the Jacobian of h−1 will be

j(h−1) = |∇τ ||∇d| = |∇τ |, (2.41)

since |∇d| = 1 in N ε,δ
12 . Let us compute ∇τ ; fix d ∈ (d1, d2) and define cd12(τ) :=

c12(τ) + dν̄(τ). Now recall (2.39) and that (cd12)′(τ) is parallel to ν̄⊥(τ), so that

|∇τ | = ∇τ · ν̄⊥ =
∇τ · (cd12)′

|(cd12)′|
in Sε12. (2.42)

Let us recall that C12 is parametrized by arc length, i.e., |c′12(τ)| = 1, so that

ν̄ ′(τ) = |c′′12(τ)|c′12(τ). Thus (cd12)
′
(τ) = (1 + d|c′′12(τ)|) c′12(τ). Since τ ◦ cd12 = Id

it follows that ∇τ(cd12(τ))T (cd12)′(τ) = ∇τ(cd12(τ)) · (cd12)′(τ) = 1. Therefore, from
(2.42), we deduce

|∇τ | = 1

1 + d|c′′12(τ)|
in Sε12, (2.43)

and in particular limd→0 |∇τ | = 1 uniformly in Sε12.
We are ready to define uε in Sε12. We first set ψε12 as in (2.19) with r12 + cε = ρ12,
i.e., ψε12(τ) = κε(z−δε), setting κε := ρ12

ρ12−δε . Then we define ũε on [d1, d2]× [δε, ρ12]
as in the right hand side of (2.21) and set

uε := ũε ◦ h−1 in Sε12. (2.44)

Explicitly, recalling that ξ = α2−α1
`12

and η = ξ⊥, for (x, y) ∈ Sε12 we have

uε(x, y) := α1 +

(
d(x, y)− d1

ε12

)
`12ξ +mσ

12

(
d(x, y)− d1

ε12
`12 , κε (τ(x, y)− δε)

)
η.

(2.45)
Observe that uε = (uε1, u

ε
2) ∈ Lip(Sε12;R2), uε = α1 on {(x, y) ∈ Sε12 : d(x, y) = d1},

uε = α2 on {(x, y) ∈ Sε12 : d(x, y) = d2}, and by construction there exists wa ∈
h ([d1, d2]× {δε}) such that uε(wa) = 0T . Write for simplicity m̃ = mσ

12. We have

∇uε1 =

(
`12ξ

1

ε12
dx +

`12η
1

ε12
m̃sdx + κεm̃tτxη

1 ,
`12ξ

1

ε12
dy +

`12η
1

ε12
m̃sdy + κεm̃tτyη

1

)
,

∇uε2 =

(
`12ξ

2

ε12
dx +

`12η
2

ε12
m̃sdx + κεm̃tτxη

2 ,
`12ξ

2

ε12
dy +

`12η
2

ε12
m̃sdy + κεm̃tτyη

2

)
,



2.3. Infimum of G as an upper bound of A(u,D) 33

where m̃s, m̃t denote the partial derivatives of m̃ with respect to s = d(x,y)−d1

ε12
`12 and

t = κε(τ(x, y)−δε) respectively, and are evaluated at
(
d(x,y)−d1

ε12
`12 , κε(τ(x, y)− δε)

)
.

Hence

|∇uε1|2+|∇uε2|2 =
`212

ε2
12

|∇d|2+
`212

ε2
12

|∇d|2(m̃s)
2+κ2

ε|∇τ |2(m̃t)
2+

2`12

ε12
κε (∇d · ∇τ) m̃sm̃t

where we have used |ξ| = |η| = 1 and ξ1η1 + ξ2η2 = 0. From (2.40) we have

|∇uε1|2 + |∇uε2|2 =
`212

ε2
12

+
`212

ε2
12

(m̃s)
2 + κ2

ε|∇τ |2(m̃t)
2. (2.46)

Moreover(
∂uε1
∂x

∂uε2
∂y
− ∂uε1

∂y

∂uε2
∂x

)2

=
`212

ε2
12

κ2
ε(m̃t)

2 (dxτy − dyτx)2 (ξ1η2 − ξ2η1)2 =
`212

ε2
12

κ2
ε(m̃t)

2|∇τ |2,

(2.47)

where again m̃s, m̃t are evaluated at
(
d(x,y)−d1

ε12
`12 , κε(τ(x, y)− δε)

)
, and we have

used (2.40), (2.41), and ξ1η2− ξ2η1 = 1. Therefore from (2.46) and (2.47) we obtain

1 + |∇uε1|2 + |∇uε2|2 +

(
∂uε1
∂x

∂uε2
∂y
− ∂uε1

∂y

∂uε2
∂x

)2

=1 +
`212

ε2
12

(
1 +

(
m̃s

)2
+
(
m̃t

)2
κ2
ε

(
1 +

ε2
12

`212

)
|∇τ |2

)
.

As a consequence

A(uε, Sε12) =
`12

ε12

ˆ
Sε12

√
1 + (m̃s)

2 + (m̃t)
2 κ2

ε

(
1 +

ε2
12

`212

)
|∇τ |2 +O(ε2) dxdy

=
1

κε

ˆ
R12\Pε

1

|∇τ |

√
1 + (m̃s (s, t))2 + (m̃t (s, t))2 κ2

ε

(
1 +

ε2
12

`212

)
|∇τ |2 +O(ε2) dsdt,

(2.48)

where m̃s, m̃t in the first integral are evaluated at
(
d(x,y)−d1

ε12
`12 , κε(τ(x, y)− δε)

)
,

∇τ in the second integral is evaluated at (x, y) = Φ−1(s, t) and the last equality
follows from the change of variables

Φ : (x, y) ∈ N ε
12 →

(
d(x, y)− d1

ε12
`12 , κε(τ(x, y)− δε)

)
= (s, t) ∈ R12, (2.49)

and Pε := R12 \ Φ(Sε12) (see Figure 2.3). Here one checks that Φ = H ◦ h−1 with
H(d, τ) = (d−d1

ε12
`12 , κε(τ − δε)) so that, using (2.41), the Jacobian of the change of

variable is 1
|∇τ(Φ−1(s,t))|

ε12
`12κε

. Hence, recalling (2.43) and that κε → 1 as ε→ 0+,

lim
ε→0+

A(uε, Sε12) =

ˆ
R12

√
1 +

(
m̃s

)2
+
(
m̃t

)2
dsdt. (2.50)
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Now, let us recall that m̃ = mσ
12 is the approximating function as in (2.12); it follows

that ˆ
R12

√
1 +

(
m̃s

)2
+
(
m̃t

)2
dsdt = A12(Γ) +O(σ). (2.51)

Hence, employing the same construction in the strips Sε23 and Sε31, and using (2.51)
we obtain from a diagonal argument with σ = σε → 0 as ε→ 0+,

lim
ε→0+

A(uε, Sε23 ∪ Sε31 ∪ Sε23) = A12(Γ) + A23(Γ) + A31(Γ). (2.52)

Step 2. Definition of uε on T ε. This is identical to Step 3 of the proof of Propo-
sition 2.8 and therefore {uε} ⊂ Lip(Br;R

2) and (2.34) holds. Following the same
computations of Proposition 2.8 the conclusion follows.

Step 3. For the case where two of the curves Cij , ij ∈ {12, 23, 31} meet at Q with an
angle larger than or equal to π we replace T ε with Hε defined in case 2 of Proposition
2.8, in the above construction.

Remark 2.9. It is not difficult to see, by truncating the area-minimizing surfaces
graphs of mij with the lateral boundary of the prisms [0, `ij ]×T, that the infimum
in (2.1) is the same as the infimum obtained without requiring in Definition 2.2 that
Γi ⊂ T, i ∈ {1, 2, 3}.



3. Existence of minimizers for
the functional G

This chapter is dedicated to the second part of the proof of Theorem 0.1. Let D be
an open disk centered at the origin such that E1, E2, E3 are circular sectors with
120◦ angles and let T be an equilateral triangle. Let p be the barycenter of T and
Γ̃i be the segment connecting αi and p, i ∈ {1, 2, 3}. Hence Γ̃ = (Γ̃1, Γ̃2, Γ̃3) ∈ XLip

so that

inf
{
G(Γ) : Γ ∈ XLip

}
≤ G(Γ̃).

Moreover we have

|D|+ G(Γ̃) = A(u,D) ≤ |D|+ inf
{
G(Γ) : Γ ∈ XLip

}
,

where u = usymm (defined in the introduction), and the equality follows from [36,
Section 3] and the inequality follows from Proposition 2.8. Thus

G(Γ̃) = min
{
G(Γ) : Γ ∈ XLip

}
.

Hence in this symmetric situation the optimal connection is obtained through the
Steiner graph connecting α1, α2 and α3. This motivates the analysis of this section,
which is carried on without symmetry assumptions.

We recall that given a connection Γ = (Γ1,Γ2,Γ3) ∈ X we denote by ϕij = ϕij(Γij) :
[0, `ij ]→ [0,diamT] the function whose graph is Γij = Γi ∪ Γj (see (2.3)).

Definition 3.1 (Convergence in X). We say that a sequence {Γn} ⊂ X converges
to Γ ∈ X in X, and we write Γn → Γ in X, if

ϕij(Γ
n
ij)→ ϕij(Γij) in L1([0, `ij ]), ij ∈ {12, 23, 31}. (3.1)

3.1 Density and approximation

We start to show that a BV connection Γ ∈ X can be approximated by Lipschitz
connections; the difficulty is to keep graphicality of each branch of the approximating
connections with respect to the two corresponding edges of T at the same time.

35
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Recall that Γi is the branch of the connection Γ connecting αi to p and that by
Definition 2.2 we have

Γi T \ pπij(p) ∪ pπki(p) = Γϕij [0,wij)
= Γϕki (wki,`ki]

.

Note that we excluded the vertical parts over the points πij(p), ij ∈ {12, 23, 31},
due to Remark 2.3; however we still have

Γi ∪ Γj = Γϕij .

Lemma 3.2 (Piecewise linear approximation). For any Γ ∈ X with target
triple point p ∈ T there exists a sequence {Γn} ⊂ XLip of connections with target
triple point p such that ϕij(Γ

n
ij), ij ∈ {12, 23, 31}, is a piecewise linear(1) function,

H1(Γnij) ≤ H1(Γij)

and
Γn → Γ in X. (3.2)

Proof. Let ij = 12 and let w12 be defined as in (2.2). Let n12 := (0, 1) ∈ R2 be the
inward unit normal to α1α2, n31 := (α, β) be the inward unit normal to α3α1, and
ν(s̄) := (ν1(s̄), ν2(s̄)) be the generalized outward unit normal at the point (s̄, ϕ12(s̄))
to the generalized graph Γϕ12 [0,w12] of ϕ12 [0, w12] (for all s̄ where it exists), see
Figure 3.1. Without loss of generality we may assume Γ1 = Γϕ12 [0,w12]. We start to
show that ϕ12 cannot have too negative slope, otherwise Γ1 loses graphicality with
respect to α3α1.

Step 1. We claim that

ϕ′12 [0, w12] ≥ β

α

in the sense of measures, i.e.,

ϕ′12(B) ≥ β

α
L1(B), ∀B ⊆ [0, w12] Borel set. (3.3)

From the graphicality with respect to π31(p)α1 we have, for all s̄ where ν(s̄) exists,

ν(s̄) · n31 ≤ 0. (3.4)

Set

Ir := {s̄ ∈ [0, w12] : ν(s̄) is defined, and ν2(s̄) > 0},
Is := {s̄ ∈ [0, w12] : ν(s̄) is defined, and ν2(s̄) = 0};

note that ν(s̄) = 1√
1+(ϕ̇12(s̄))2

(−ϕ̇12(s̄), 1) for any s̄ ∈ Ir. From Theorem 1.11, we

have
ϕ̇12ds̄ = ϕ′12 Ir, ϕ̇

(j)
12 + ϕ̇

(c)
12 = ϕ′12 Is. (3.5)

(1)This means that it is Lipschitz piecewise linear with at most finitely many points of nondiffer-
entiability.
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From (3.4) it follows that

ν(s̄) = (−1, 0) ∀s̄ ∈ Is and ϕ̇12(s̄) ≥ β

α
∀s̄ ∈ Ir. (3.6)

From Theorem 1.10, we have

ϕ̇
(j)
12 + ϕ̇

(c)
12 = −ν1|µ| Is = |µ| Is,

where µ := (ϕ′12,−L1) = (−ν1,−ν2)|µ| and the second equality follows from the
first formula in (3.6).
For any Borel set B ⊆ [0, w12] we deduce

ϕ′12(B) =

ˆ
B
ϕ̇12ds̄+ ϕ̇

(j)
12 (B) + ϕ̇

(c)
12 (B) ≥ β

α
L1(B) + |µ| Is(B) ≥ β

α
L1(B).

Step 2. Given ε ∈ (0, 1), we choose n = n(ε) ∈ N and points

ξ0 = 0 < ξ1 < · · · < ξn−1 < ξn = w12,

such that each ξi, i ∈ {1, · · · , n− 1}, is a point of continuity of ϕ12, and if we define
ϕn ∈ Lip([0, w12]) as the piecewise linear interpolation with

ϕn(ξi) = ϕ12(ξi), i = 0, · · · , n;

then, by taking n large enough,

‖ϕn − ϕ12‖L1((0,w12)) < ε.

The graph of ϕn may still have vertical parts over π31(p)α1. Indeed from Theorem
1.8, and the fact that ξi are continuity points of ϕ12 we have

ϕn′(ξ) =
ϕ12(ξi)− ϕ12(ξi−1)

ξi − ξi−1
=
ϕ′12((ξi−1, ξi))

ξi − ξi−1
≥ β

α
, ξ ∈ (ξi−1, ξi), (3.7)

and equality may hold, hence the graph of ϕn over π31(p)α1 may have finitely many
vertical parts. It is now sufficient to repeat the argument with ϕn in place of ϕ12,
choosing a suitable partition of [w31, `31], so to ensure that (recall that ϕn′ exists
out of finitely many points)

ϕn′ >
β

α
at the differentiability points of [0, w12].

In this way ϕn is a Lipschitz graph also with respect to π31(p)α1.

Step 3. We have

H1(Γϕn) =
n∑
i=1

ˆ ξi

ξi−1

√
1 + |ϕn′(s)|2ds =

n∑
i=1

|(ξi, ϕn(ξi))− (ξi−1, ϕ
n(ξi−1))|

≤ sup

{
m∑
i=1

|(ηi, ϕ12(ηi))− (ηi−1, ϕ12(ηi−1))| : m ∈ N, η0 = 0 < η1 < · · · < ηm−1 < ηm = w12

}

=

ˆ
[0,w12]

|Φ′12| = H1(Γϕ12 [0,w12]),

(3.8)
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Figure 3.1: Proof of Lemma 3.2. For convenience we choose α1 to be the origin.

where Φ12 ∈ BV([0, w12];R2) is defined as Φ12(ξ) := (ξ, ϕ12(ξ)), and the last equality
follows from (1.15), Theorem 1.7, and the fact that ϕ12 is a good representative.
Step 4. Define

Γn1 := Γϕn .

Similarly we define Γn2 and Γn3 , and we set Γnij := Γni ∪ Γnj . Then Γn := (Γn1 ,Γ
n
2 ,Γ

n
3 )

satisfies the required properties.

Proposition 3.3 (Uniform estimate of the length). There exists c > 0 depends
on T such that for all Γ ∈ X we have

H1(Γij) ≤ c, ij ∈ {12, 23, 31}. (3.9)

Proof. Let Γ ∈ X be a connection through p ∈ T. Without loss of generality we
may assume that p 6= α1. From (3.8) we have

H1(Γ1) = sup

{
m∑
i=1

|(ηi, ϕ12(ηi))− (ηi−1, ϕ12(ηi−1))| : m ∈ N, η0 = 0 < η1 < · · · < ηm−1 < ηm = w12

}
.

(3.10)
Choose a partition

ξ0 = 0 < ξ1 < · · · < ξh−1 < ξh = w12.

Let Γh1 be the piecewise linear interpolation connecting (ξi−1, ϕ12(ξi−1)) and (ξi, ϕ12(ξi)),
i ∈ {1, · · · , h}. The unit tangent to Γh1 is enclosed in the angle formed by n12 and
n31, the unit normals to α1α2 and α3α1 (due to the graphicality condition with re-
spect to α1α2 and α3α1), see Figure 3.2. It follows that Γh1 is the graph of a function
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(a) T with angles less than or equal to π
2 .

(b) T with an angle greater than π
2 .

Figure 3.2

φh12 over the segment α1p. Fix a Cartesian coordinate system in which the t-axis is
the line α1p and the origin is α1. For any t ∈ [0, |α1− p|] (up to a finite set) let τ(t)
be the unit tangent to Γh1 at (t, φh12(t)) and let n = (1, 0) and n⊥ = (0, 1). Hence

φh12
′
= τ ·n⊥

τ ·n satisfies

c−1 :=
n31 · n⊥

n31 · n
≤ φh12

′ ≤ n12 · n⊥

n12 · n
=: c+

1 .

Note that one between |c−1 | and |c+
1 | might be +∞, since one of the sides α1α2

or α3α1 can be horizontal (this happens only if the point p is on one side of the
triangle). However we always have c−1 ≤ 0, c+

1 ≥ 0. Furthermore, when the angle α̂1

in α1 is less than or equal to π
2 , it follows that c̃1 := min{|c−1 |, |c

+
1 |} ≤ | tan(π2 −

α̂1
2 )|.

In the case α̂1 >
π
2 , using that p ∈ Tint, we have max{|c−1 |, |c

+
1 |} ≤ | tan(π − α̂1)|.

Thus the only difficulty to prove is that the length of Γh1 is controlled when α̂1 ≤ π
2 .

So let us assume this and in addition that |c−1 | = c̃1 (the other case is similar). Since
φh12(|α1 − p|) = φh12(0) = 0 we have

0 = φh12
′
([0, |α1 − p|]) = (φh12

′
)+([0, |α1 − p|])− (φh12

′
)−([0, |α1 − p|]),

where (φh12
′
)+ and (φh12

′
)− are the positive and negative parts of the measure φh12

′
=

φ̇h12dt. Thus we estimate

|H1(Γh1)| =
ˆ |α1−p|

0

√
1 + φ̇h12(t)2dt

≤ |α1 − p|+ |φh12
′|([0, |α1 − p|]) = |α1 − p|+ 2(φh12

′
)−([0, |α1 − p|])

≤ |α1 − p|+ 2|α1 − p|c̃1 =: c1. (3.11)
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Then c1 is a positive constant depending only on the geometry of T.
From (3.11) and (3.10) it then follows

H1(Γ1) ≤ c1. (3.12)

Similarly we may show that H1(Γ2) ≤ c2 and H1(Γ3) ≤ c3 for c2, c3 > 0 depending
only on T. This proves (3.9) with c = c1 + c2 + c3.

The next lemma shows continuity of the sum of the three areas of area minimizing
surfaces defining G in (2.10), with respect to the L1 convergence of the traces in T.

Proposition 3.4 (Continuity of G). Let Γ ∈ X, and let {Γn} ⊂ X be a sequence
converging to Γ in X. Then

lim
n→+∞

G(Γn) = G(Γ). (3.13)

Proof. Since Γ ∈ X and {Γn} ⊂ X we have ϕij ∈ BV([0, `ij ]) and {ϕnij} ⊂
BV([0, `ij ]), where ϕij := ϕij(Γij), ϕ

n
ij := ϕij(Γ

n
ij).

Hence from (0.6) and Section 2.2 it follows that there exist m̂ij , m̂
n
ij ∈ W 1,1(R̂ij)

such that

2Aij(Γ
n
ij) =

ˆ
R̂ij

√
1 + |∇m̂n

ij |2 dsdt

= min
{ ˆ

R̂ij

√
1 + |Df |2 +

ˆ
∂R̂ij

|f − ϕnij |dH1 : f ∈ BV(B), f = ϕnij on B \ R̂ij

}
,

(3.14)

2Aij(Γij) =

ˆ
R̂ij

√
1 + |∇m̂ij |2 dsdt

= min
{ ˆ

R̂ij

√
1 + |Df |2 +

ˆ
∂R̂ij

|f − ϕij |dH1 : f ∈ BV(B), f = ϕij on B \ R̂ij

}
,

(3.15)

where we recall that R̂ij is the double rectangle defined in (2.6) and ϕij , ϕ
n
ij are

extended on a disk B containing R̂ij as in Section 2.2.
Define m̃n

ij and m̃ij as

m̃n
ij :=

{
m̂n
ij in R̂ij ,

ϕij in B \ R̂ij ,
m̃ij :=

{
m̂ij in R̂ij ,

ϕnij in B \ R̂ij ,

so that m̃n
ij , m̃ij ∈ BV(B). Since m̃n

ij is competitor in (3.15) and m̃ij is competitor
in (3.14) we have, recalling also the discussion leading to (2.9),

2Aij(Γij) ≤
ˆ

R̂ij

√
1 + |∇m̂n

ij |2 dsdt+

ˆ
∂R̂ij

|ϕnij − ϕij |dH1 = 2Anij +

ˆ
∂R̂ij

|ϕnij − ϕij |dH1,

2Aij(Γ
n
ij) ≤

ˆ
R̂ij

√
1 + |∇m̂ij |2 dsdt+

ˆ
∂R̂ij

|ϕij − ϕnij |dH1 = 2Aij +

ˆ
∂R̂ij

|ϕij − ϕnij |dH1.
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Thus

|2Aij(Γnij)− 2Aij(Γij)| ≤
ˆ
∂R̂
|ϕnij − ϕij |dH1. (3.16)

Recall that mn
ij (resp. mij) is the restriction of m̂n

ij (resp. m̂ij) to Rij . Hence, from
(2.10), (3.1) and (3.16), formula (3.13) follows.

Corollary 3.5. We have

inf {G(Γ) : Γ ∈ X} = inf {G(Γ) : Γ ∈ XLip} . (3.17)

3.2 Compactness of the class X

The aim of this section is to show that the infimum in (3.17) is attained. To do this
we need the following result.

Theorem 3.6 (Compactness). Any sequence {Γn} ⊂ X admits a subsequence
converging in X to some Γ ∈ X.

Remark 3.7. In Definition 3.1 it is required convergence of {Γn} to Γ in L1. For
this reason, if Γn has target triple point pn, it is not guaranteed that the point
b := limn→+∞ pn (it exists up to subsequences) still belongs to Γij for all ij, see
Figures 3.4 and 3.7a. As a consequence, if {Γn} converges to Γ it is not true, in
general, that pn → p, where p is the target triple point of Γ.

Let ϕ ∈ BV(I)(2), I = (a, b), and let T be the current defined in Theorem 1.24. Then
T is boundaryless in I × R, namely ∂T = 0. Furthermore, if Γϕ is the generalized
graph of ϕ as defined in (1.4), it turns out that

∂−SGϕ,I ∩ (I ×R) ⊆ Γϕ, H1(Γϕ \ ∂−SGϕ,I) = 0,

where ∂−SGϕ,I is the reduced boundary of the subgraph SGϕ,I of ϕ. It easily follows
that the current T coincides with the integration over the rectifiable set Γϕ (with
the correct orientation). From now on, when the interval is clear from the context,
we will simply denote SGϕ,I by SGϕ.

Proof of Theorem 3.6. Let {Γn} ⊂ X and ϕnij = ϕij(Γ
n
ij), ij ∈ {12, 23, 31}. From

Proposition 3.3 it follows that {ϕnij} is uniformly bounded in BV([0, `ij ]) for any ij ∈
{12, 23, 31}. Thus, up to a not relabelled subsequence, there exists ϕij ∈ BV([0, `ij ])
such that

ϕnij → ϕij in L1((0, `ij)) and pointwise a.e., (3.18)

(ϕnij)
′ ⇀ ϕ′ij weakly∗ as measures, (3.19)

see Theorem 1.3. We shall adopt our usual convention

ϕnij(0−) = ϕij(0−) = ϕnij(`ij+) = ϕij(`ij+) = 0, ϕnij = ϕnij+
, ϕij = ϕij+, ϕ = ϕ+.

(3.20)

(2)Recall that we always assume ϕ = ϕ+, the good representative defined in (1.5).
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Denote by Γij ⊂ R2 the limit graph over (the closed segment) αiαj that we identify
with the generalized graph of ϕij over [0, `ij ]. Since T is closed and convex, from
(3.18), we have Γij ⊂ T ; moreover, by construction, αi and αj are the endpoints of
Γij . Notice that if we assume that T is acute, this excludes the presence of vertical
parts over its vertices.
It remains to prove that the three obtained curves Γij , ij ∈ {12, 23, 31}, form a BV
connection; in particular that they intersect mutually in a unique well-defined point.

We claim that

there exists a unique p ∈
⋂
ij Γij that divides each Γij into two curves Γlij and

Γrij such that

Γlij = Γrki, ij, ki ∈ {12, 23, 31}, ij 6= ki.

Let us denote by ϕ̃nij the extension to R of the function ϕnij vanishing in (−∞, 0) ∪
(`ij ,+∞). Similarly ϕ̃ij is the extension of ϕij vanishing in (−∞, 0) ∪ (`ij ,+∞).
Consider the sequence {[[SGϕ̃nij ]]}n ⊂ D2(R2) of 2-currents regarded in R2 and the

2-current [[SGϕ̃ij ]]. Their boundaries are the currents carried by the graphs of ϕ̃nij
and ϕ̃ij , respectively, as defined in Theorem 1.24. The 1-currents carried by the
graph of ϕnij and ϕij , by convention (3.20), coincide with the restrictions of ∂[[SGϕ̃nij ]]
and ∂[[SGϕ̃ij ]] to the closed set [0, `ij ]×R. Namely, if we denote by

[[Γnij ]] := ∂[[SGϕ̃nij ]] [0, `ij ]×R, [[Γij ]] := ∂[[SGϕ̃ij ]] [0, `ij ]×R,

then

[[Γnij ]] = ∂[[SGϕ̃nij ]]− Lij and [[Γij ]] = ∂[[SGϕ̃ij ]]− Lij , (3.21)

where Lij is the 1-current given by integration over the two halflines (−∞, 0)×{0}∪
(`ij ,+∞)×{0}. The curves Γnij and Γij coincide with the support of [[Γnij ]] and [[Γij ]],
respectively.
We now prove our claim in three steps.

Step 1. The currents [[Γnij ]] converge (up to a not relabelled subsequence) weakly in
the sense of currents to [[Γij ]], i.e.,

[[Γnij ]](ω)→ [[Γij ]](ω) ∀ω ∈ D1(R2). (3.22)

Moreover
H1(Γij) ≤ c, (3.23)

where c > 0 is the constant in (3.9).
There are two ways to prove step 1. The first, which is standard, more general, and
shorter, is as follow:
The characteristic functions 1SGϕn

ij

converge to 1SGϕij
in L1

loc(R
2), thanks to (3.18),

hence

[[SGϕ̃nij ]] ⇀ [[SGϕ̃ij ]] weakly as currents,
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since ˆ
SGϕ̃n

ij

ω̂(s, t)dsdt→
ˆ
SGϕ̃ij

ω̂(s, t)dsdt ∀ω̂ ∈ C∞c (R2).

This implies

∂[[SGϕ̃nij ]] ⇀ ∂[[SGϕ̃ij ]] weakly in the sense of currents,

and (3.22) follows from (3.21). Which conclude the first proof.
The second proof of (3.22) goes as follow. For simplicity we assume T is an
acute triangle, hence none of the currents [[Γnij ]] and [[Γij ]] has vertical parts over the
vertices.
Let

ω(s, t) = ω1(s, t)ds+ ω2(s, t)dt, ω1, ω2 ∈ C∞c
(
(0, `ij)×R

)
.

We have

lim
n→+∞

[[Γnij ]]
(
ω1(s, t)ds

)
= lim

n→+∞

ˆ `ij

0
ω1(s, ϕnij(s))ds

=

ˆ `ij

0
ω1(s, ϕij(s))ds = [[Γij ]]

(
ω1(s, t)ds

)
,

(3.24)

where the first and the last equalities follow from (1.23), and the second equal-
ity follows from Lebesgue dominated convergence theorem (since ϕnij are uniformly
bounded, and ω1 ∈ C∞c ((0, `ij)×R)). Let us show

lim
n→+∞

[[Γnij ]]
(
ω2(s, t)dt

)
= [[Γij ]]

(
ω2(s, t)dt

)
. (3.25)

Assume first that ω2 can be written as

ω2(s, t) = h(s)g(t), h ∈ C∞c ((0, `ij)), g ∈ C∞c (R). (3.26)

Without loss of generality we may also assume that g = G′ for some G ∈ C∞(R).
Thus we have

[[Γij ]]
(
ω2(s, t)dt

)
=

ˆ `ij

0
h(s)g(ϕij(s))ϕ̇ij(s)ds+

ˆ `ij

0
h(s)g(ϕij(s))ϕ̇ij

(c) +
∑
s∈Jϕij

ν(s, Jϕij )h(s)

ˆ ϕij+(s)

ϕij−(s)
g(t)dt

=

ˆ `ij

0
h(s)G′(ϕij(s))ϕ̇ij(s)ds+

ˆ `ij

0
h(s)G′(ϕij(s))ϕ̇ij

(c) +
∑
s∈Jϕij

ν(s, Jϕij )h(s)

ˆ ϕij+(s)

ϕij−(s)
G′(t)dt

=

ˆ `ij

0
h(s)G′(ϕij(s))ϕ̇ij(s)ds+

ˆ `ij

0
h(s)G′(ϕij(s))ϕ̇ij

(c)

+
∑
s∈Jϕij

ν(s, Jϕij )h(s)[G(ϕij+(s))−G(ϕij−(s))]

=

ˆ `ij

0
h(s)(G ◦ ϕij)′,

(3.27)
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where the first equality follows from (1.23), (1.24), (1.25), and the last equality from
Theorem 1.12. Similarly we have

[[Γnij ]]
(
ω2(s, t)dt

)
=

ˆ `ij

0
h(s)(G ◦ ϕnij)′.

Hence

lim
n→+∞

[[Γnij ]]
(
ω2(s, t)dt

)
= lim

n→+∞

ˆ `ij

0
h(s)(G ◦ ϕnij)′ = − lim

n→∞

ˆ `ij

0
h′(s)G(ϕnij(s))ds

= −
ˆ `ij

0
h′(s)G(ϕij(s))ds =

ˆ `ij

0
h(s)(G ◦ ϕij)′,

(3.28)

where the second and last equalities follows from Theorem 1.12 and the third equal-
ity follows from Lebesgue dominated convergence theorem. Thus, from (3.28) and
(3.27), we conclude that (3.25) holds for ω2 that can be written as in (3.26). From
linearity we also have that (3.25) holds for ω2 of the form:

ω2(s, t) =

l∑
r=1

hr(s)gr(t), hr ∈ C∞c ((0, `ij)), gr ∈ C∞c (R), (3.29)

where l ∈ N. From one version of the Stone-Weiestrass Theorem [16, Corollary 8.3.]
the space

A =

{
l∑

r=1

hr(s)gr(t) : l ∈ N, hr ∈ C∞c ((0, `ij)), gr ∈ C∞c (R)

}

is dense(3) in the space C0((0, `ij)×R) of real-valued continuous functions on (0, `ij)×
R which vanish at infinity. In particular for any ω2 ∈ C∞c ((0, `ij) × R) there exists
a sequence {ωm2 } of functions of the form (3.29) that converges locally uniformly in
(0, `ij) × R to ω2. We are now in a position to conclude the proof of (3.25). Fix
k ∈ N then there exists m(k) such that

sup
(0,`ij)×R

|ω2 − ωm2 | ≤
1

2kc
, (3.30)

where c > 0 is a constant such that |ϕnij ′|((0, `ij)) + |ϕij ′|((0, `ij)) ≤ c (recall that
ϕnij and ϕij have equibounded BV−norm, from Proposition 3.3). Since ωm2 is of the
form (3.26) then there exists n = n(m, ε) = n(k) such that

∣∣ ˆ `ij

0
ωm2 (s, ϕnij(s))ϕ

n
ij
′−
ˆ

(0,`ij)\Jϕij
ωm2 (s, ϕij)ϕ

′
ij−

∑
s∈Jϕij

ν(s, Jϕij )

ˆ ϕij+(s)

ϕij−(s)
ωm2 (s, t)dt

∣∣ ≤ 1

2k
.

(3.31)

(3)To show that A separates points in (0, `ij)× R: recall that for any x, y ∈ (0, `ij)× R, x 6= y,
there exists open ball Bρ(x) such that y 6∈ Bρ(x) hence we may construct a smooth function ωx
with compact support equal to Bρ(x) and ωx(x) = 1.
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Moreover we have∣∣ ˆ `ij

0
ω2(s, ϕnij(s))ϕ

n
ij
′ −
ˆ

(0,`ij)\Jϕij
ω2(s, ϕij)ϕij

′ −
∑
s∈Jϕij

ν(s, Jϕij )

ˆ ϕij+(s)

ϕij−(s)
ω2(s, t)dt

∣∣
=
∣∣ ˆ `ij

0
(ω2(s, ϕnij(s)− ωm2 (s, ϕnij(s))ϕ

n
ij
′ −
ˆ

(0,`ij)\Jϕij
(ω2(s, ϕij)− ωm2 (s, ϕij))ϕ

′
ij

−
∑
s∈Jϕij

ν(s, Jϕij )

ˆ ϕij+(s)

ϕij−(s)
(ω2(s, t)− ωm2 (s, t))dt

+

ˆ `ij

0
ωm2 (s, ϕnij(s)ϕ

n
ij
′ −
ˆ

(0,`ij)\Jϕij
ωm2 (s, ϕij)ϕ

′
ij −

∑
s∈Jϕij

ν(s, Jϕij )

ˆ ϕij+(s)

ϕij−(s)
ωm2 (s, t)dt

∣∣
≤ sup |ω2 − ωm2 |

{
|ϕnij

′|((0, `ij)) + |ϕ′ij |((0, `ij))
}

+
∣∣ ˆ `ij

0
ωm2 (s, ϕnij(s))ϕ

n
ij
′ −
ˆ

(0,`ij)\Jϕij
ωm2 (s, ϕij)ϕ

′
ij −

∑
s∈Jϕij

ν(s, Jϕij )

ˆ ϕij+(s)

ϕij−(s)
ωm2 (s, t)dt

∣∣
≤ 1

2k
+
∣∣ ˆ `ij

0
ωm2 (s, ϕnij(s))ϕ

n
ij
′ −
ˆ

(0,`ij)\Jϕij
ωm2 (s, ϕij)ϕ

′
ij −

∑
s∈Jϕij

ν(s, Jϕij )

ˆ ϕij+(s)

ϕij−(s)
ωm2 (s, t)dt

∣∣.
(3.32)

Hence from (3.30), (3.31), (3.32) and a diagonal argument it follows that (up to a
not relabelled subsequence)

lim
n→+∞

∣∣ ˆ `ij

0
ω2(s, ϕnij(s))ϕ

n
ij
′−
ˆ

(0,`ij)\Jϕij
ω2(s, ϕij)ϕij

′−
∑
s∈Jϕij

ν(s, Jϕij )

ˆ ϕij+(s)

ϕij−(s)
ω2(s, t)dt

∣∣ = 0.

(3.33)
Which conclude the second proof of (3.22). Finally (3.23) follows from Lemma 3.3

and the weak lower semicontinuity of the mass of currents, (1.19), and the proof of
step 1 is concluded.

It is not restrictive to assume that wnij = |αi − πij(pn)| is a point of continuity of
ϕnij for all n ∈ N and all ij ∈ {12, 23, 31}. Indeed given a sequence {Γn} ⊂ X
converging to Γ, from Lemma 3.2 for all n we can assign a sequence {Γm,n} ⊂ XLip

such that Γm,n → Γn as m→ +∞. Thus by a diagonal argument, we find a sequence
{Γm(n),n} ⊂ XLip which tends to Γ and satisfies the above requirement (we can also
assume that Γn is Lipschitz, but this will not be needed in the proof).
Without loss of generality (up to a not relabeled subsequence) we may further assume

pn → b ∈ T,

{wnij} is a monotone sequence, and

wnij → wij := |αi − πij(b)|, ij ∈ {12, 23, 31}.

Before passing to the second step, it is convenient to divide the target triangle T
into various regions.
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Assume first that T is acute. The point b, together with the heights

hij := πij(b)b, ij ∈ {12, 23, 31}, (3.34)

divides T into three regions Pi, i ∈ {1, 2, 3}, as shown in Figure 3.3a; precisely, if
P i denotes the closed region enclosed by hij , hki, αiπij(b) and αiπki(b), then Pi is
defined by

Pi := P i \ (hij ∪ hki), i = 1, 2, 3. (3.35)

Similarly we define hnij and Pni by replacing b with pn in (3.34) and (3.35).
Assume now that T is not acute. Without loss of generality we may assume that the
angle at α1 is greater than π

2 . The only difference here is with the definition of Pn1
and P1, since each Γij has to satisfy the graphicality condition with respect to αiαj ;

hence we define P1 as the closed quadrilateral bounded by h12, h31, n12 and n31,
where n12 and n31 are the normals to α1α2 and α3α1, respectively, passing through
α1 (see Figure 3.3b). Similarly we define Pn1 . Finally we set P1 := P1 \ (h12 ∪ h31)
and Pn1 := Pn1 \ (h12 ∪ h31).

Step 2. We will prove that we can decompose Γ12 ∪ Γ23 ∪ Γ31 as three currents
meeting at a point p.
It is easy to see that the sets Pni are converging to P i with respect to the Hausdorff
distance. It is not true in general that {Γnij} is converging to Γij in the Hausdorff
distance (see Figure 3.4); however, since

Γni = Γnij ∩ Pni = Γnki ∩ Pni , Γni ⊂ Pni , (3.36)

for all ij, ki ∈ {12, 23, 31}, ij 6= ki, it is readily seen that

Γij ⊂ T \ Pk,
[[Γij ]] = [[Γij ]] Pi + [[Γij ]] Pj + [[Γij ]] hki + [[Γij ]] hij + [[Γij ]] hjk. (3.37)

For i ∈ {1, 2, 3}, the integral 1-current [[Γni ]] = [[Γnij ]] [0, wij ] × R has boundary

δpn − δαi in R2. By the compactness theorem for integral currents, see Theorem
1.22, there exists an integral current Ti ∈ D1(R2), i = 1, 2, 3, such that, up to a not
relabeled subsequence,

[[Γni ]](ω)→ Ti (ω) ∀ω ∈ D1(R2). (3.38)

Clearly
∂Ti = δb − δαi . (3.39)

From (3.36) and the convergence of Pni to Pi in the Hausdorff distance, we infer

supp Ti ⊂ Pi, hence Ti = Ti Pi + Ti hij + Ti hki, (3.40)

where ij, ki ∈ {12, 23, 31}. Note that Ti is not necessarily equal to [[Γij ]] Pi, due
to a possible cancellation of a vertical part over πij(b), ij ∈ {12, 23, 31} (that is, on
hij), see Figure 3.4. However from [[Γnij ]] = [[Γni ]] + [[Γnj ]] and (3.38) we have

[[Γij ]] = Ti − Tj , ij ∈ {12, 23, 31}, (3.41)
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(a) Partitions of T into P1, P2, P3 and three
segments.

(b) Partitions of T minus the two grey tri-
angles into P1, P2, P3 and three segments
for a non acute triangle.

Figure 3.3

Figure 3.4: In dots a sequence of graphs [[Γnij ]] of functions that pass through a
fixed point b ∈ T . In bold the graph of the limit function (the horizontal segment)
[[Γij ]]. The limit in the sense of currents of the left branches of the sequence {Γni } is

αiπij(b) ∪ πij(b)b while the limit of the right branches {Γnj } is πij(b)b ∪ πij(b)αj .

as currents in R2. Notice that Ti and Tj have multiplicity one, and in (3.41)
they contribute with opposite orientation. This allows, if necessary, to identify
Ti , i = 1, 2, 3, with its support. Note also that Ti may have vertical part over αi,
see Figure 3.5. Now, since [[Γni ]] is Cartesian with respect to both the edges αiαj
and αkαi, from (3.38) it follows that Ti Pi is part of two generalized graphs over
the same edges, i.e.,

Ti Pi = [[Γij ]] Pi = −[[Γki]] Pi. (3.42)

Moreover, we infer that Ti cannot have vertical part over hij and hki at the same
time; in other words once the current Ti touches one of the heights hij or hki it
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Figure 3.5: Ti has vertical part over αi when i = 1.

stays there until it reaches b, and Ti cannot have a nonempty support in more than
one height, see Figures 3.6b-3.7b. We conclude the following statement:

(A) The supports of the three currents Ti, i = 1, 2, 3, have as common point b.
Moreover, if there are i 6= j such that the supports of Ti and Tj intersect in
a point different from b, then this intersection occurs on the mutual height
hij . Finally, if the supports of Ti and Tj intersect on hij outside b, then they
intersect on a closed segment and the intersection of the supports of Ti and Tj
with Tk is only the point b.

Step 3. To conclude the proof of our claim we now analyse the possible cases arising
from (A).
Case (i). Assume that the three supports of the currents Ti, i = 1, 2, 3, intersect
only at the point b. This includes the case

Ti hij = Tj hij = 0 for all ij ∈ {12, 23, 31},

as in Figure 3.6a. But it may also happen that Ti has vertical part over hij , provided
that Tj does not have vertical part over the same height (see for instance Figure 3.6b).
In any case we may set

p := b, Γlij = Ti , Γrij := −Tj , ij ∈ {12, 23, 31},

where we have identified the currents Ti with their supports. By (3.39) and (3.42),
the claim is achieved.
Case (ii). The second case to be discussed is the one considering possible overlapping
of the support of the currents Ti. By condition (A) such overlapping, giving rise to
cancellations, can occur only on one height hij . Hence, assume there exists one (and
only one) ij ∈ {12, 23, 31} such that

Ti hij 6= 0 and Tj hij 6= 0.
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(a) (b)

Figure 3.6: Case (i) of step 3 in the proof of Theorem 3.6.

(a) T1 and T2 coincide only on bp.
(b) T1 and T2 overlap on bp and T1 bp ⊂
T2 bp.

Figure 3.7: Case (ii) of step 3 in the proof of Theorem 3.6.

Thus we have Ti hki = 0 and Tj hjk = 0.
First assume that [[Γij ]] hij = 0, i.e., ϕij is continuous at wij . Then Ti hij =
Tj hij , see Figure 3.7a. We set, identifying Ti with its support,

p := ϕij(wij),

Γlij := Ti Pi, Γrij := Tj Pj ,
Γljk := Tj Pi, Γrjk := Tk ∪ Tj hij ,

Γlki := Tk ∪ Ti hij , Γrki := Ti Pi.

One checks that the connection built above is a BV graph type connection, address-
ing the claim.
Now assume that

[[Γij ]] hij 6= 0,
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i.e., ϕij jumps at wij . Thus either supp [[Γij ]] hij ⊆ supp Ti hij or supp [[Γij ]] hij ⊆
supp Tj hij . Without loss of generality we may assume that supp [[Γij ]] hij ⊆
supp Ti hij , hence Ti (hij\ supp [[Γij ]]) = −Tj hij 6= 0 (note that supp [[Γij ]] hij =
{tϕij(wij+) + (1− t)ϕij(wij−) : t ∈ [0, 1]}). We set

p := ϕij(wij) = ϕij+(wij),

Γlij := Ti Pi ∪ (hij ∩ supp [[Γij ]]), Γrij := Tj Pj ,
Γljk := Tj Pi, Γrjk := Tk ∪ Tj hij ,

Γlki := Tk ∪ Tj hij , Γrki := Ti Pi ∪ (hij ∩ supp [[Γnij ]]),

see Figure 3.7b. Also in this case the conclusion follows.
In the end it is enough to define

Γ := (Γ1,Γ2,Γ3), Γi := Γlij = Γrki, i = 1, 2, 3. (3.43)

From the compactness of the space of BV connection, combining with Proposition
3.4, we see that the infimum in (2.1) is attained. As a consequence, we can conclude
the proof of Theorem 0.1.

Corollary 3.8. We have

A(u,D) ≤ |D|+ inf{G(Γ) : Γ ∈ XLip} = |D|+ min{G(Γ) : Γ ∈ X}. (3.44)



4. Outlook: several triple
junctions; parametric approach;
higher dimension; Riemannian
metrics

The aim of this chapter is to introduce three different possible extensions of the
results obtained in Chapter 2 and Chapter 3 that we plan to investigate in the
future; and to point out some of the difficulties that we may face.

4.1 Several triple junctions

Assume that u : D → {α1, α2, α3} has two triple junctions Qa and Qb in a source
disk D. If the jump curves of each triple junction are disjoint up to the boundary
of D, see Figure 4.1a, then we can apply the former results on each triple junction
separately and the upper bound A(u,D) will have two (non-related) minimization
problems (similar to (0.12)) one for each junction, i.e., the two triple junctions do
not really see each other (we may get two different connections as a solution for each
minimization problem). The same apply for a finite number of triple junctions with
disjoint jump curves up to the boundary.
Now assume that Qa and Qb share a common jump segment, say C12, and the rest
of the jump segments are disjoint up to the boundary of D. In this case the two
triple junctions affect each other. We apply the former techniques for all the jump
segments except for C12, where we need to rephrase the one-codimensional minimum
problem corresponding to it. First the domain of integration in (2.9) may not be a
rectangle anymore but a quadrilateral, see Figure 4.1b. Second the connections, in
the target triangle, used to construct uε on a neighborhood of each triple junction
are not necessarily the same, hence the boundary condition on the quadrilateral
depends on the two connections and not only one of them. Thus the upper bound of
A(u,D) will consist of one minimization problem, in which the two triple junctions
interact, of the form

min
{
A12(Γa∪Γb)+A23(Γa)+A31(Γa)+A24(Γb)+A41(Γb) : (Γa,Γb) ∈ X×X

}
, (4.1)

where A12(Γa ∪ Γb) is the area of the surface over the quadrilateral in the neighbor-

51
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(a) The source disk with two triple
junctions Qa and Qb; and disjoint
jump curves. u(E1) = α1, u(E2) =
u(E4) = α2, u(E3) = u(E5) = α3.

(b) The source disk with two triple junctions Qa and
Qb; and one jump segment C12 in common.

Figure 4.1

hood of C12, and Aij(Γ
a), Akl(Γ

b), ij ∈ {23, 31}, kl ∈ {24, 41}, are as defined in
(0.9).

The study of A(u,D) for u taking only three values can be difficult: Now we want
to indicate a possible configuration of a map u∗, with an infinite number of triple
junctions accumulating at the center of a disk, such that A(u∗, D) is finite (no claim
on the actual value of A(u∗, D) is made).

Assume that D is the unit disk centered at the origin. Consider the countable set
TJ of triple junctions defined as follows

TJ :=

{
Qk,l =

1

k2
e

(3+l)
6

πi : l ∈ {0, 1, 2, 3, 4, 5}, k ∈ N, k > 1

}
⊂ D.

Points in TJ divides D into a countable number of partitions as in Figure 4.2. For
simplicity we set

Ei := u∗
−1(αi), i = 1, 2, 3.

Each triple junction Qk,l, {k, l} 6∈ {{2, 0}, {2, 2}, {2, 4}}, share all of its jump curves

Ck,lij , ij ∈ {12, 23, 31}, with other three triple junctions; on the other hand each triple
junction Q2,l, l = 0, 2, 4, share only two of its jump curves with another two triple
junctions, i.e., among all the jump curves of u∗ only three curves are connected to
only one triple junction, see Figure 4.2.

Note that the length of each curve in the jump set of u∗ is either π
3k2 or ( 1

k2 −



4.1. Several triple junctions 53

Figure 4.2: The source disk D divided by the jump set (of finite length) of u∗ into a
countable number of partitions. The black thick dots are the triple junctions of u∗,
each circle of radius 1

k2 , k ∈ N, k > 1, has six triple junctions given by the rotation

of 1
k2 e

π
2
i with angle π

3 . Only three jump curves reach the boundary of D.
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Figure 4.3: Divide D into finite number of partitions: write D as a union of a disk of
radius ε̄ and an annulus. Then divide the annulus into a finite number of partitions.
Two of the jump curves of each triple junction meets at angles equal to π hence the
neighborhoods of each triple junction has to be quadrilateral (as explained in Case
2 in the proof of Proposition 2.8). We define uε on each partition by adopting the
former techniques.

1
(k+1)2 ), k ∈ N, k > 1, hence we have

∞∑
k=1

ck < +∞ where ck :=
π

3k2
+

1

k2
− 1

(k + 1)2
. (4.2)

A construction of a sequence {uε} of Lipschitz maps, converging to u∗ ∈ BV(D,R2)
in L1(D;R2) such that limε→0A(uε, D) < +∞, seems to be doable. We may start by
defining uε in the annuls N centered at the origin with radii 1 and ε̄(uε), ε̄(uε) > 0.

Divide N into finite number of open sets as in Figure 4.3. Let p be any point in the
target triangle T and let Γ be the connection given by the segments connecting p to
the vertices α1, α2, α3 of T.

On the (cygar-shape) neighborhoods of the three jump curves connected to only one
triple junction (resp. on the quadrilateral neighborhoods of the triple junctions) we
define uε as in Step 2 (resp. Case 2) in the proof of Proposition 2.8.

On the neighborhoods of the jump curves shared by two triple junctions we may
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consider the solution given by a Dirichlet minimum problem similar to (2.9). Hence

A(uε, N) ≤|N |+ A2,0
12 (Γ) + A2,4

23 (Γ) + A2,2
31 (Γ)

+
∑

k>1, l∈{0,1,2,3,4,5}
{k,l}6∈{{2,0},{2,2},{2,4}}

{
A
k,l
12 (Γ) + A

k,l
23 (Γ) + A

k,l
31 (Γ)

}
+O(ε), (4.3)

where A2,l
ij (Γ) is the area of the solution of the corresponding Dirichlet-Neumann

minimum problem (of type (0.7)) defined in (0.9), and A
k,l
ij (Γ) is the area of the

solution of the corresponding Dirichlet minimum problem (of type (2.9)). Note that
the inequality in (4.3) is due to the fact that some of the surfaces are counted twice,
otherwise we get equality.
Along each jump curve of a triple junction Qk,l the piecewise affine function ϕk,lij =

ϕk,lij (Γ), defined in (2.7), is one of the competitor in the minimization problem (of
type (0.7) or (2.9)). Moreover we have

Ak,lij (Γ) < 4ck diam T, (4.4)

where diam T is the diameter of the target triangle T.
It remains to define uε on the disk of radius ε̄(uε). We will not do it but one way
could be defining uε to be constant in a neighborhood of the origin and use the
intermediate region to glue the constant, in a Lipschitz way, with the value of uε on
the annulus N.
From (4.2), (4.3), (4.4) and using a diagonal argument we expect that

lim
ε→0+

A(uε, D) < +∞.

4.2 Parametric approach under a semi-cartesian hypoth-
esis

If we look for a lower bound for the area functional A(u,D) without symmetry
assumptions on u, the first remark is that in principle there is no reason for the
upper bound on the right hand side of (0.11) to be optimal. For instance, in order
to solve the one-codimensional area minimizing problems, the connections do not
necessarily need not to satisfy the bi-graphicality conditions in Definition 2.2, see
Figure 4.4a, which indicates that we may be able to find a better upper bound.
In this section, we discuss the possibility of constructing a sequence {uε} of Lipschitz
maps that converges to u in L1(D;R2) for connections in the target triangle just
with finite length and without self-intersections.
We start by assuming that the surfaces Mij , ij ∈ {12, 23, 31}, that solve the one-
codimensional area minimizing problems(1), are semi-cartesian, i.e., for each ij ∈
{12, 23, 31}, the intersection between Mij and the vertical plane (parallel to the
target triangle) at level t is given by a simple curve γtij : [0, `ij ] → R3 connecting

(1)In the parametric sense, as image of a disk [23].
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(a) Connection in T without bi-graphicality
conditions (with respect to [α1, α2] and
[α2, α3]).

(b) M12 area minimizing surface spanning Γ12

and the two long sides of R12.

Figure 4.4

the two sides of the rectangle Rij , see (4.5) and Figure 4.4b(2). We define uε on the
cygar-shape regions Sεij by allowing the first component of γtij to be the component
of uε along the αiαj direction and letting the second (non constant) component of
γtij to be the component of uε along the direction normal to αiαj , see m1

12 and m3
12

in (4.6) respectively.
Let u ∈ BV(D;R2) be the function defined in (0.10). Let p be a point in T and let
Γi ⊂ T, i ∈ {1, 2, 3}, be three rectifiable curves in T, with no self-intersections and
finite-length, that connects αi to p, i ∈ {1, 2, 3}, moreover we assume Γi ∩ Γj = {p}
for i 6= j. Let

Γij := Γi ∪ Γj , ij ∈ {12, 23, 31},
(note that Γ := (Γ1,Γ2,Γ3) may not be a connection in the sense of Definition 2.2
since Γij need not to be a generalized graph of a BV-function over αiαj).

Let Rij and R̂ij be as defined in (0.5) and (2.6) respectively, and let Γ0
ij ⊂ R̂ij × R

(resp. Γ`ij) be the copy of Γij in [0, `ij ] × {0} × R (resp. [0, `ij ] × {2rij} × R) that
connects the two points (0, 0, 0) and (`ij , 0, 0) (resp. (0, 2rij , 0) and (`ij , 2rij , 0)).
Set

Γ̄ij := Γ0
ij ∪

(
{`ij} × [0, rij ]× {0}

)
∪
(
{0} × [0, rij ]× {0}

)
⊂ Rij ×R,

and define the closed Jordan curve Γ̂ij ⊂ R̂ij ×R as

Γ̂ij := Γ0
ij ∪

(
{`ij} × [0, 2rij ]× {0}

)
∪ Γ`ij ∪

(
{0} × [0, 2rij ]× {0}

)
.

(2)The existence of a semi-cartesian parametrization of a disk-type area minimizing surface is an
interesting problem that requires further investigation. Since Mij has a zero boundary condition
along a preferred direction t and the connections have no self-intersections, it is reasonable to expect
the existence of a semi-cartesian parametrization in this context.



4.2. Parametric approach under a semi-cartesian hypothesis 57

LetMij =Mij(Γij) be a disk-type solution(3) for the Plateau problem correspond-
ing to Γ̂ij , moreover we assume that Mij admits a semi-cartesian parametrization,
i.e., Mij can be parametrized by a map

m̂ij : R̂ij →Mij ⊂ R̂ij ×R, m̂ij(s, t) :=
(
m̂1
ij(s, t), t, m̂

3
ij(s, t)

)
, (4.5)

with the following properties

m̂ij ∈ C(R̂ij ;R
3) ∩ C2(int(R̂ij);R

3), m̂ij(R̂ij) =Mij ,

m̂ij([0, `ij ]× {0}) = Γ0
ij , m̂ij([0, `ij ]× {2rij}) = Γ`ij ,

m̂ij(0, t) = (0, t, 0), m̂ij(`ij , t) = (`ij , t, 0).

Let mij : Rij → R3 be the restriction of m̂ij to the rectangle Rij , ij ∈ {12, 23, 31},
hence

mij(∂DRij) = Γ̄ij ,

where ∂DRij is defined in (0.8).

Of course our previous discussion refers to the case m1
ij = s.

Let Aij = Aij(Γij) be the area of Mij ; then by the area formula we have

Aij =

ˆ
R̂ij

√√√√∣∣∣∣∣∂m1
ij

∂s

∣∣∣∣∣
2

+

∣∣∣∣∣∂m3
ij

∂s

∣∣∣∣∣
2

+

(
∂m1

ij

∂s

∂m3
ij

∂t
−
∂m1

ij

∂t

∂m3
ij

∂s

)2

dsdt.

Divide D into seven open sets Eεi , S
ε
ij , T

ε, ij ∈ {12, 23, 31}, (or Eεi , S
ε
ij , H

ε, ij ∈
{12, 23, 31}) like we did in the proof of Theorem 2.1, in particular Sε12 is as defined
in (2.37).

Define uε on Eεi , i = 1, 2, 3 as in (2.16).

We show that even in this semicartesian setting we can produce an admissible se-
quence {uε}. We restrict ourselves to define uε on Sε12 as follows:

uε(x, y) := α1+m1
12

(
d(x, y)− d1

ε12
`12 , κε (τ(x, y)− δε)

)
ξ

+m3
12

(
d(x, y)− d1

ε12
`12 , κε (τ(x, y)− δε)

)
η,

(4.6)

where d, d1, κε, τ, δε, ε12, ξ, η as in Chapter 2. Observe that uε = α1 on {(x, y) ∈
Sε12 : d(x, y) = d1}, uε = α2 on {(x, y) ∈ Sε12 : d(x, y) = d2}.
Of course uε := (uε1, u

ε
2) may not to be Lipschitz up to the boundary of Sε12 and we

need to regularize it as we did in the non-parametric approach, see Lemma 2.7, but
we will not insist on this now.

Write for simplicity

m̃1 := m1
12 and m̃3 := m3

12.

(3)For more details on disk-type (parametric) solutions of the Plateau problem we refer to [23].
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We have

∇uε1 =

(
`12

ε12
ξ1m̃1

sdx + κεξ
1m̃1

t τx +
`12

ε12
η1m̃3

sdx + κεη
1m̃3

t τx ,

`12

ε12
ξ1m̃1

sdy + κεξ
1m̃1

t τy +
`12

ε12
η1m̃3

sdy + κεη
1m̃3

t τy

)
,

∇uε2 =

(
`12

ε12
ξ2m̃1

sdx + κεξ
2m̃1

t τx +
`12

ε12
η2m̃3

sdx + κεη
2m̃3

t τx ,

`12

ε12
ξ2m̃1

sdy + κεξ
2m̃1

t τy +
`12

ε12
η2m̃3

sdy + κεη
2m̃3

t τy

)
,

where m̃i
s, m̃

i
t, i = 1, 2, denote the partial derivatives of m̃i with respect to s =

d(x,y)−d1

ε12
`12 and t = κε(τ(x, y)−δε) respectively, and are evaluated at

(
d(x,y)−d1

ε12
`12 , κε(τ(x, y)− δε)

)
.

Hence

|∇uε1|2+|∇uε2|2 = (
`12

ε12
)2(m̃1

s)
2+κ2

ε|∇τ |2(m̃1
t )

2+(
`12

ε12
)2(m̃3

s)
2+κ2

ε|∇τ |2(m̃3
t )

2, (4.7)

where we have used |ξ| = |η| = 1, ξ1η1 + ξ2η2 = 0, |∇d| = 1 and (2.40).
Moreover (

∂uε1
∂x

∂uε2
∂y
− ∂uε1

∂y

∂uε2
∂x

)2

= (
`12

ε12
)2κ2

ε|∇τ |2
(
m̃1
sm̃

3
t − m̃1

t m̃
3
s

)2
, (4.8)

where again m̃i
s, m̃

i
t, i = 1, 3, are evaluated at

(
d(x,y)−d1

ε12
`12 , κε(τ(x, y)− δε)

)
, and

we have used (2.40), (2.41), and ξ1η2 − ξ2η1 = 1.
Therefore from (4.7) and (4.8) we obtain

1 + |∇uε1|2 + |∇uε2|2 +

(
∂uε1
∂x

∂uε2
∂y
− ∂uε1

∂y

∂uε2
∂x

)2

=1 + (
`12

ε12
)2
((
m̃1
s

)2
+
(
m̃3
s

)2)
+ κ2

ε|∇τ |2
((
m̃1
t

)2
+
(
m̃3
t

)2)
+ (

`12

ε12
)2κ2

ε|∇τ |2
(
m̃1
sm̃

3
t − m̃1

t m̃
3
s

)2
.

As a consequence

A(uε, Sε12) =
`12

ε12

ˆ
Sε12

[((
m̃1
s

)2
+
(
m̃3
s

)2)
+ (

ε12

`12
)2κ2

ε|∇τ |2
((
m̃1
t

)2
+
(
m̃3
t

)2)
+ κ2

ε|∇τ |2
(
m̃1
sm̃

3
t − m̃1

t m̃
3
s

)2
+O(ε2)

] 1
2

dxdy

=
1

κε

ˆ
R12\Pε

1

|∇τ |

[((
m̃1
s(s, t)

)2
+
(
m̃3
s(s, t)

)2)
+ (

ε12

`12
)2κ2

ε|∇τ |2
((
m̃1
t (s, t)

)2
+
(
m̃3
t (s, t)

)2)
+κ2

ε|∇τ |2
(
m̃1
s(s, t)m̃

3
t (s, t)− m̃1

t (s, t)m̃
3
s(s, t)

)2
+O(ε2)

] 1
2

dsdt,
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where m̃i
s, m̃

i
t, i = 1, 3, in the first integral are evaluated at

(
d(x,y)−d1

ε12
`12 , κε(τ(x, y)− δε)

)
and∇τ in the second integral is evaluated at (x, y) = Φ−1(s, t) where Φ is the change
of variables defined in (2.49).
Hence, recalling (2.43), and that κε → 1 as ε→ 0+, we have

lim
ε→0+

A(uε, Sε12) =

ˆ
R12

√√√√∣∣∣∣∣∂m1
ij

∂s

∣∣∣∣∣
2

+

∣∣∣∣∣∂m3
ij

∂s

∣∣∣∣∣
2

+

(
∂m1

ij

∂s

∂m3
ij

∂t
−
∂m1

ij

∂t

∂m3
ij

∂s

)2

dsdt.

=Aij .

Notice that we do not define uε on T ε, and so we can not check that, in the limit,
there is zero contribution of the mass over the triple junction point. Recall that
in Step 3 of the proof of Proposition 2.8 the bi-graphicalty condition was used, for
instance, to define the bi-Lipschitz map Ψ in (2.30). We also point out that we
needed the bi-graphicality condition to get the uniform estimate of the length of the
connections in Proposition 3.3.

4.3 Higher dimension: singular u from a ball in R3 to
R2

In this section we will try to investigate the possibility of applying the former tech-
niques used in Chapter 2 and Chapter 3 to piecewise constant maps defined in R3.
For simplicity we will consider the symmetric case in both the domain and the
target(4). Let B ⊂ R3

xyz be an open ball centered at the origin of radius r, then

D := B ∩ {z = 0} ⊂ R2
xy

is an open disk. Divide D into three circular regions Ei, i ∈ {1, 2, 3}, separated by
three segments meeting at the origin with an angle of 120◦, and let α1, α2, α3 be
the vertices of an equilateral triangle in R2

T , hence

` := `12 = `23 = `31, ε := ε12 = ε23 = ε31,

where `ij , εij , ij ∈ {12, 23, 31}, are defined in the proof of Proposition 2.8.
Let πxy : R3 → R2

xy be the orthogonal projection to the xy- plane and set

Ei := π−1
xy (Ei) ∩B, i ∈ {1, 2, 3},

i.e., Ei, i ∈ {1, 2, 3}, are three partitions of B formed by three planes meeting at a
common line, z-axis, at equal 120◦ angles, see Figure 4.5.
Define u : B → R2 such that

u(x, y, z) := αi, (x, y, z) ∈ Ei,
(4)The arguments in this section seem to be possibly adopted for the case with no symmetry

assumptions.
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Figure 4.5: The division of a ball B ⊂ R3 of radius r into three partitions Ei, i =
1, 2, 3, by three planes passing through the z-axis and normal to the xy-plane. The
orthogonal projection of the partitions on the xy-plane divide the disk D into three
regions Ei, i = 1, 2, 3, meet at the origin with angle 120◦.
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(a)

(b)

Figure 4.6: Divide the disk D into seven sets. The inverse image of the map πxy|B
of the partitions of D gives seven partitions of the ball B itself.

i.e., u is a singular piecewise constant map jumping along three planes meeting at
the z-axis, a triple junction line passing through the origin, at equal 120◦ angles.
Recall that for v = (v1, v2) ∈ C1(B ⊂ R3; R2), the area of the graph of v is given by

A(v,B) =

ˆ
B

√√√√1 + |∇v1|2 + |∇v2|2 +
∑

{k,l}∈{{x,y},{y,z},{z,x}}

(∂v1

∂k

∂v2

∂l
− ∂v1

∂l

∂v2

∂k

)2
dxdydz.

(4.9)
We extend the definition of area to non-smooth function in L1(B;R2) as in (1.6),
and we aim to find a suitable upper bound of A(u,B) following the same techniques
in Proposition 2.8: Divide B into regions and define a sequence {uε} ⊂ Lip(Ω;R2)
on each of these regions such that uε converges to u strongly in L1(B;R2). First,
divide the disk D into seven regions Eεi , T

ε, Sεij , ij ∈ {12, 23, 31} as in the proof of
Proposition 2.8 then define

E
ε
i := {π−1

xy (Eεi )} ∩B, S
ε
ij := {π−1

xy (Sεij)} ∩B, T
ε

:= {π−1
xy (T ε)} ∩B,

where ij ∈ {12, 23, 31}, see Figure 4.6.
Set

uε(x, y, z) := αi (x, y, z) ∈ Eεi , i ∈ {1, 2, 3}, (4.10)

uε(x, y, z) := uε(x, y) (x, y, z) ∈ T , (4.11)

where uε is as in step 3 of the proof of Proposition 2.8.
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Figure 4.7: The rectangular cuboid R.

Now we deal with the challenging part, defining uε on S
ε
ij , ij ∈ {12, 21, 31}. Let R

be the rectangular cuboid (parallelepiped) defined as

R := [0, `]× [0, r]× [−r, r] := R× [−r, r],

see Figure 4.7, and let

R̂ := [0, `]× [0, 2r]× [−r, r] =: R̂× [−r, r],

be the double rectangular cuboid.
Recall Γ̃ = (Γ̃1, Γ̃2, Γ̃3) is the connection defined at the beginning of Chapter 3; and
m̂ is the solution of (2.9).
Set

m̂ = m̂(Γ̃) : R̂→ [0,+∞], (s, t, w)→ m̂(s, t, w),

be the unique solution(5) of the following Dirichlet minimum problem:

min

{ˆ
R̂

√
1 + |∇f |2 dsdtdw : f ∈W 1,1(R̂), f = ϕ H1 − a.e. on ∂R̂

}
, (4.12)

where

ϕ(s, t, w) :=


0, for s = 0 and s = `

ϕ(s), for t = 0 and t = 2r

m̂(s, t), for w = −r and w = r

,

(5)see Section 1.4.
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and

ϕ := ϕ12(Γ̃12) = ϕ23(Γ̃23) = ϕ31(Γ̃31), m̂ := m̂12(Γ̃) = m̂23(Γ̃) = m̂31(Γ̃).

Notice that due to the special symmetry of the map u, the three-problems collapse
together to only one one-codimensional Plateau-type problem in cartesian form, on

a fixed rectangular cuboid R̂.
Note also that m̂ may not be smooth enough to construct the sequence {uε} and we
need to regularize it first like we did in Lemma 2.7. However we will continue the

computations assuming that m̂ is Lipschitze up to the boundary of R̂.
Let m be the restriction of m̂ to R, i.e. m : R → [0,+∞] is the unique solution of
the Dirichlet-Neumann minimum problem:

min

{ˆ
R̂

√
1 + |∇f |2 dsdtdw : f ∈W 1,1(R), f = ϕ H1 − a.e. on ∂DR

}
=: A(Γ̃),

(4.13)

where ∂DR := ∂R \ ([0, `]× {r} × [−r, r]).
Recall

S
ε
12 = {(x, y, z) ∈ B : x ∈ (−ε, ε), y ∈ (δε, r), z ∈ (−r, r)}.

We define uε on S
ε
12 as follows

uε(x, y, z) := α1 +

(
x+ (ε/2)

ε

)
`ξ +m

(
x+ (ε/2)

ε
` , ψε12(y) , z

)
η,

where ξ, η are as in (2.18) and ψε : [δε, r] → [0, r] the linear, increasing, surjective
map, hence for any y ∈ [δε, r] we have (ψε)′(y) = κε; κε is as defined in (2.19).
We have

∇uε1 =

(
`ξ1

ε
+
`η1

ε
ms , κεη

1mt , η
1mw

)
,

∇uε2 =

(
`ξ2

ε
+
`η2

ε
ms , κεη

2mt , η
2mw

)
,

where ms,mt, and mw denote the partial derivatives of m with respect to s, t,and

w respectively, and are evaluated at
(
x+(ε/2)

ε ` , ψε(y) , z
)

.

Hence

|∇uε1|2 + |∇uε2|2 =
`2

ε2
+
`2

ε2
(ms)

2 + (κε)
2(mt)

2 + (mw)2, (4.14)

where we have used |ξ| = |η| = 1 and ξ1η1 + ξ2η2 = 0, moreover(
∂uε1
∂x

∂u2

∂y
− ∂uε1

∂y

∂uε2
∂x

)2

=
`2

ε2
(κε)

2(mt)
2,(

∂uε1
∂x

∂u2

∂z
− ∂uε1

∂z

∂uε2
∂x

)2

=
`2

ε2
(mw)2,(

∂uε1
∂y

∂u2

∂z
− ∂uε1

∂z

∂uε2
∂y

)2

= 0,

(4.15)
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where again ms,mt, and mw are evaluated at
(
x+(ε/2)

ε ` , ψε(y) , z
)

, and we have

used ξ1η2 − ξ2η1 = 1. Therefore from (4.9), (4.14) and (4.15) we obtain

A(uε, S
ε
12) =

`

ε

ˆ
S
ε
12

√
1 + (ms)

2 + (mt)
2 (κε)2

(
1 +

ε2

`2

)
+ (mw)2 +O(ε2) dxdydz

=
1

κε

ˆ
R\P ε

√
1 + (ms)

2 + (mt)
2 (κε)2

(
1 +

ε2

`2

)
+ (mw)2 +O(ε2) dsdtdw,

where ms,mt, and mw in the first integral are evaluated at
(
x+(ε/2)

ε ` , ψε(y) , z
)

and the last equality follows from the change of variables

Φ : R 3 (s, t, w) 7→ Φ(s, t, w) :=
(ε
`
s− ε

2
, (ψε)−1(t), w

)
= (x, y, z) ∈

[
−ε

2
,
ε

2

]
× [δε, r]× [−r, r] ⊃ Sε12,

and P ε := R \ Φ−1(S
ε
12). Hence, recalling also (2.19) and (4.13), we conclude

lim
ε→0+

A(uε, S
ε
12) =

ˆ
R12

√
1 +

(
ms

)2
+
(
mt

)2
+
(
mw

)2
dsdt = A(Γ̃),

where A(Γ̃) is defined in (4.13). Employing the same construction in the strips S
ε
23

and S
ε
31 we obtain

lim
ε→0+

A(uε, S
ε
23 ∪ S

ε
31 ∪ S

ε
12) = 3A(Γ̃). (4.16)

As a consequence of (4.9), (4.10), (4.11), (2.33), and (4.16) we have

A(u,B) ≤ lim
ε→0+

A(uε, B) = |B|+ 3A(Γ̃).

Remark 4.1. Putting m̂ as a boundary condition on the two sides R̂× {±r} of R̂
in (4.12) is questionable; on the other side putting a Neumann condition is another
option. This is related to a solution of the following Dirichlet-Neumann problem:

min

{ˆ
R̂

√
1 + |∇f |2 dsdt : f ∈W 1,1(R̂), f = ϕ H1 − a.e. on ∂dR̂

}
,

where

∂dR̂ := R̂ \ (R̂× {±r}),

and

ϕ(s, t, w) :=

{
0, for s = 0 and s = `,

ϕ(s), for t = 0 and t = 2r.

which possibly may give better upper bound to A(u,B).
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4.4 Graphs of non-smooth maps in Riemannian mani-
folds

The motivation behind this section is an attempt to extend the results in Chapters 2
and 3 to maps from S2 to {α1, α2, α3} ⊂ S2, with the final aim of hoping formally to
understand better the expression of A in codimension two in an anisotropic setting.
We replace the Euclidean metric in the source and target of the map u : D ⊂ R2

S →
{α1, α2, α3} ⊂ R2

T with a Riemannian metric and we compute the contribution of
the area on the cygar-shape region Sε12 trying to guess what is the corresponding
one-codimensional problem that may replace (0.7) in the former arguments (see the
right hand side of (4.23)). We shall see that even in the simplest case (see (4.18)
and (4.19)) the corresponding one-codimensional problem is not as expected: the
space R3 where the graph of m lives is constructed by the product of Rx ⊂ R2

S and
R2
T which is not the metric we get in (4.24).

Assume that in the source we have (R2
S , gS) where gS is the Riemannian metric

defined as

gS |(x,y) =

[
ES(x, y) FS(x, y)
FS(x, y) GS(x, y)

]
, (x, y) ∈ R2

S ,

and in the target we have (R2
T , gT ) where gT is the Riemannian metric defined as

gT |(u,v) =

[
ET (u, v) FT (u, v)
FT (u, v) GT (u, v)

]
, (u, v) ∈ R2

T .

Consider the product space R2
S ×R2

T with the product metric

g|(x,y,u,v) =

[
gS |(x,y) 0

0 gT |(u,v)

]
, (x, y, u, v) ∈ R2

S ×R2
T .

Thus

|z|2g = |πSz|2gS + |πT z|2gT , z ∈ R2
S ×R2

T ,

see [24, p.42].
Let u ∈ C1(Ω ⊂ R2

S ;R2
T ). The graph of u is a 2-dimension surface in the space

R2
S ×R2

T parametrized by

Φ : Ω ⊂ R2
E → R2

S ×R2
T , φ(x, y) = (x, y, u(x, y)),

where R2
E is R2 with the Euclidean metric. Hence the area of the graph of u is given

by

A(u,Ω) :=

ˆ
Ω

√
det gφijdxdy,

where

gφ11(p) := g(Φx(p),Φx(p)), gφ12(p) := g(Φx(p),Φy(p)), gφ22(p) := g(Φy(p),Φy(p)), p ∈ Ω,

see [24, p.44].
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Hence, we have

det gφij = (ESGS − F 2
S) +GSET (u1

x)2 + ESET (u1
y)

2 +GSGT (u2
x)2 + ESGT (u2

y)
2 + 2FSFTu

1
xu

2
x

+ 2ESFTu
1
yu

2
y + (ESGS − F 2

S)(u1
xu

2
y − u1

yu
2
x)2 − 2ETFSu

1
xu

1
y − 2GTFSu

2
xu

2
y − 2FTFSu

1
xu

2
y

− 2FTFSu
1
yu

2
x

= (det gS) +GS |ux|2gT + ES |uy|2gT − 2FSgT (ux, uy) + (det gT )(u1
xu

2
y − u1

yu
2
x)2

= (det gS) +GS |ux|2gT + ES |uy|2gT − 2FSgT (ux, uy) + (det gT )(det du)2.

Thus

A(u,Ω) =

ˆ
Ω

√
det gS +GS |ux|2gT + ES |uy|2gT − 2FSgT (ux, uy) + det gT (det du)2 dxdy.

(4.17)
From now on for simplicity we assume the following

FS = FT = 0; (4.18)

ES , GS , ET , and GT are constant functions. (4.19)

Let Ω = D and let Sε12, S
ε
23, S

ε
31 and T ε be as defined in the proof of Proposition 2.8.

From (4.17), the area of the graph of u ∈ Lip(Sεij ;R
2
T ) is given by

A(u, Sεij) =

ˆ
Sεij

√
det gS +GS |ux|2gT + ES |uy|2gT + det gT (det du)2 dxdy.

Let

`12 := |α2 − α1|gT , ξ = (ξ1, ξ2) :=
α2 − α1

`12
,

and

η := (η1, η2) :=
√

det gT
(−ξ2

ET
,
ξ1

GT

)
=
√
ETGT

(−ξ2

ET
,
ξ1

GT

)
.

Thus we have

|ξ|gT = |η|gT = 1, gT (ξ, η) = 0, (4.20)

ξ1η
2 − ξ2η1 =

1√
det gT

=
1√

ETGT
. (4.21)

Let
R12 := [0, 1]× [0, r12],

and
m12 ∈ C1(R12 ⊂ R2;R); m12(0, t) = m12(1, t) = 0.

Define uε on Sε12 as follows

uε(x, y) := α1 +

(
x− ζ1

1

ε12

)
`12ξ+m12

(
x− ζ1

1

ε12
, ψε12(y)

)
η, (x, y) ∈ Sε12, (4.22)

where ψε12 and ζ1 are as defined in the proof of Proposition 2.8.
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Write for simplicity
m̃ = m12.

Hence

uεx =
1

ε12

(
`12ξ

1 + m̃sη
1 , `12ξ

2 + m̃sη
2
)
, uεy =

(
κεm̃tη

1 , κεm̃tη
2
)
,

where m̃s, m̃t denote, respectively, the partial derivatives of m̃ with respect to s :=
x−ζ1

1
ε12

and t := ψε12(y), and are evaluated at
(
x−ζ1

1
ε12

, ψε12(y)
)

.

Hence we have

|uεx|2gT = (
`12

ε12
)2

[
|ξ|2gT + (

1

`12
)2|η|2gT m̃

2
s + 2

1

`12
gT (ξ, η)m̃s

]
,

|uεy|2gT = κ2
εm̃

2
t |η|2gT ,

det duε =
`12

ε12
κεm̃t(ξ

1η2 − ξ2η2).

Thus, from (4.20), we have

|uεx|2gT = (
`12

ε12
)2

[
1 + (

1

`12
)2m̃2

s

]
, |uεy|2gT = κ2

εm̃
2
t ,

det duε =
`12

ε12
√

det gT
κεm̃t.

As a consequence

A(uε, Sε12) =
`12

ε12

ˆ
Sε12

[
GS + (

1

`12
)2GS

[
m̃s

(
x− ζ1

1

ε12
, ψε12(y)

)]2

+ ESκ
2
ε

(
1 +

ε2
12

`212

)[
m̃t

(
x− ζ1

1

ε12
, ψε12(y)

)]2

+O(ε2)

] 1
2

dxdy

=
`12

κε

ˆ
R12\Pε

√
GS + (

1

`12
)2GS [m̃s (s, t)]2 + ESκ2

ε

(
1 +

ε2
12

`212

)
[m̃t (s, t)]2 +O(ε2) dsdt,

where the last equality follows by the change of variables Φ defined in (2.23), and
Pε := R12 \ Φ−1(Sε12).
Hence, recalling also that κε → 1 as ε→ 0, we conclude

lim
ε→0+

A(uε, Sε12) =

ˆ
R12

`12

√
GS + (

1

`12
)2GS

(
m̃s

)2
+ ES

(
m̃t

)2
dsdt

=

ˆ
R12

√
`212GS +GS

(
m̃s

)2
+ `212ES

(
m̃t

)2
dsdt. (4.23)

We are lead therefore to believe that the graph of m̃ lives in R3 with the metric `212

√
ES 0 0

0 GS√
ES

0

0 0
√
ES

 . (4.24)





5. Characterization of
manifolds with boundary

The discussion in Section 1.6.1 suggests to introduce the following class of sets
(which we shall consider as the class of h-dimensional embedded Ck-manifolds with-
out boundary in the sense of distance functions):

Definition 5.1 (The class DhCk(Ω)). Let k ∈ N, k ≥ 2, or k ∈ {∞, ω} and h ∈
{0, . . . , n}. Let Ω ⊆ Rn be a nonempty open set, E ⊂ Rn. We write E ∈ DhCk(Ω)
if

(i) E ∩ Ω = {x ∈ Ω : ηE(x) = 0};

(ii) there exists an open set A ⊆ Ω with E ∩ Ω ⊆ A such that ηE ∈ Ck(A);

(iii) rank(∇2ηE(x)) = n− h for any x ∈ E ∩ Ω.

Remark 5.2. (I) If E ∈ DhCk(Ω), k ≥ 3 or k ∈ {∞, ω} then E is closed in Ω
and E ∩ Ω is a h−dimensional embedded manifold of class Ck−1(Ω) without
boundary in Ω. Conversely, if Γ is a h−dimensional embedded manifold of class
Ck(Ω), k ≥ 3 or k ∈ {∞, ω}, without boundary in Ω then Γ ∈ DhCk−1(Ω).

(II) E = ∅ ∈ DhCk(Ω) for any h, k and any open set Ω.

(III) If E = E ⊆ Ω then E ∈ DhCk(Ω) implies E ∈ DhCk(Ω′) for any open set
Ω′ ⊃ Ω.

5.1 Manifolds with boundary and distance functions

We start this section by defining what we mean by an embedded h-dimensional Ck-
manifold in an open set with boundary in the sense of distance functions. But first
we recall the classical definition (see for instance [38, 19]).

69
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Definition 5.3 (Smooth embedded manifold with boundary). Let k ∈ N ∪
{∞, ω} and h ∈ {1, . . . , n}. Let Ω ⊆ Rn be a nonempty open set. We say that
M ⊆ Rn is a h-dimensional embedded manifold of class Ck with boundary of class
Ck in Ω (a h-dimensional Ck-manifold in Ω with boundary, for short) if

M∩ Ω =M∩ Ω

and for all x ∈ M∩ Ω there exist an open set R ⊆ Rn, an open set G ⊆ Rh, maps
φ ∈ Ck(G;Rn), ψ ∈ Ck(R;Rh) and a point z ∈ Rh such that

x ∈ R, ψ(φ(y)) = y ∀y ∈ G,

M∩R = {φ(y) : y ∈ G, 〈y, z〉 ≥ 0} . (5.1)

The boundary of M in Ω, denoted

∂ΩM (∂M when Ω = Rn),

is the set of all points x ∈M∩ Ω such that

x = φ(y), y ∈ G, 〈y, z〉 = 0.

We denote by M◦ the (relative) interior of M defined as M\ ∂ΩM and by TxM
(resp. NxM) the tangent space (resp. the normal space) to M at x ∈M.
Our main definition of smooth manifold with boundary using the distance functions
reads as follows.

Definition 5.4 (The class DhBCk(Ω)). Let k ∈ N, k ≥ 2 or k ∈ {∞, ω} and
h ∈ {1, . . . , n}. Let Ω ⊆ Rn be a nonempty open set, and E,L ⊆ Rn. We write
(E,L) ∈ DhBCk(Ω) if:

(i) L ∈ Dh−1Ck(Ω) and E ∈ DhCk(Ω \ L);

(ii) d(E\L)∩Ω(x) ≤ dL∩Ω(x) for any x ∈ Rn;

(iii) if we define

B := {x ∈ Ω : d(E\L)∩Ω(x) < dL∩Ω(x)}, (5.2)

then there exists an open set A ⊆ Ω with L ∩ Ω ⊆ A such that dB ∈ Ck(A);

(iv) we have(1) ηE ∈ Ck
(
{x ∈ A : dB(x) ≤ 0}

)
.

Since Definition 5.4 is crucial, some comments are in order. Informally the set L∩Ω
should be considered as the “boundary” of E ∪L in Ω, and by condition (i) it must
satisfy Definition 5.1, with h − 1 in place of h, while E must satisfy Definition 5.1
not in the whole of Ω, but only in the open set Ω \ L (remember that L is closed in
Ω by condition (i) in Definition 5.1), see Figure 5.1 for an elementary example.

(1)If C ⊂ Rn, we say that f ∈ Ck(C) if there exist an open set Ĉ ⊃ C and a function f̂ ∈ Ck(Ĉ)

such that f̂ = f on C.
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Figure 5.1: Ω = B1(0) is an open disk in R2, k =∞, h = 1, E is the bold curve (including
the two endpoints), L consists of the two end points of E; d(E\L)∩Ω(·) = dist(·, (E\L)∩Ω) =
dist(·, E), dL∩Ω(·) = dist(·, L ∩ Ω), B contains the shaded region, A is the union of the two
small disks containing L. In Section 5.2 it will also useful to consider H := A ∩ ∂B,
which in this case consists of two dashed segments containing L and normal to E. Finally,
{x ∈ A : dB(x) ≤ 0} consists of the grey areas inside the two disks, including the dashed
segments.

To understand condition (iii), which is a regularity requirement on ∂B, we refer to
Examples 5.7 and 5.10.

Condition (iv) says that E ∩ Ω is smooth up to L ∩ Ω. Note carefully that, in
general, ηE is not of class Ck in an open neighborhood of E ∪ L. For instance, if
n = 1 = h, E = [−1, 1] ⊂ R, L = {±1} then ηE ∈ C1,1 but not C2 in a neighborhood
of L.

Note that (E, ∅) ∈ DhBCk(Ω) if and only if E ∈ DhCk(Ω). Moreover if E = E, L =
L, and E ∪ L ⊆ Ω then (E,L) ∈ DhBCk(Ω) implies (E,L) ∈ DhBCk(Ω′) for every
open set Ω′ ⊇ Ω.

Remark 5.5. Suppose k ∈ N, k ≥ 3 or k ∈ {∞, ω} and (E,L) ∈ DhBCk(Ω).

(I) By Definition 5.4 (i) we have L ∈ Dh−1Ck(Ω) hence, recalling Remark 5.2, we
have that L is an embedded (h − 1)-dimensional Ck−1-manifold without boundary
in Ω. Also, since E ∈ DhCk(Ω \L), E is an embedded h-dimensional Ck−1-manifold
without boundary in Ω \ L.

(II) In Definition 5.4, we do not specify whether or not points of L belong to E.
However, condition (ii) says that (if L is nonempty) all points of L ∩ Ω are accu-
mulation points of (E \ L) ∩ Ω. Indeed, if x ∈ L ∩ Ω then dL∩Ω(x) = 0, hence (ii)
implies

d(E\L)∩Ω(x) ≤ 0,

and so x ∈ (E \ L) ∩ Ω.
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(III) We have
(E ∪ L) ∩ Ω = (E ∪ L) ∩ Ω.

Indeed Definition 5.4(i) implies

L ∩ Ω = L ∩ Ω and E ∩ (Ω \ L) = E ∩ (Ω \ L).

Take x ∈ E ∪ L ∩Ω. If x ∈ L ∩Ω then x ∈ L ∩Ω ⊆ (E ∪L) ∩Ω. If x 6∈ L ∩Ω, then

x ∈ E ∩ (Ω \ L) ⊆ E ∩ (Ω \ L) = E ∩ (Ω \ L) ⊆ (E ∪ L) ∩ Ω.

(IV) We have
(E ∪ L) ∩ Ω = {x ∈ Ω : ηE(x) = 0},

i.e.,
E ∩ Ω = (E ∪ L) ∩ Ω. (5.3)

Indeed, from (II) it follows (E ∪ L) ∩ Ω ⊆ E ∩ Ω. Now take x ∈ (E \ E) ∩ Ω, and
select a sequence (xj) ⊆ E ∩ Ω with xj → x. But xj ∈ (E ∪ L) ∩ Ω which is closed
in Ω by (III). Therefore x ∈ (E ∪ L) ∩ Ω.

(V) Recalling (5.2), we have
(E \ L) ∩ Ω ⊆ B. (5.4)

Indeed let x ∈ (E \ L) ∩ Ω so that d(E\L)∩Ω(x) ≤ 0. Since L is closed in Ω we have
dist(x, L ∩ Ω) > 0 and therefore d(E\L)∩Ω(x) < dist(x, L ∩ Ω) = dL∩Ω(x).

(VI) We have
L ∩ Ω ⊂ topological boundary of B. (5.5)

Let x ∈ L∩Ω; from (II), x ∈ (E \ L) ∩ Ω, hence x ∈ B from (5.4). Since B is open, it
remains to show that x /∈ B, i.e., that d(E\L)∩Ω(x) = dL∩Ω(x). Since dim(L∩Ω) < n,
dL∩Ω(·) = dist(·, L ∩ Ω). By Definition 5.4(ii), d(E\L)∩Ω(x) ≤ dL∩Ω(x) = dist(x, L ∩
Ω) = 0 and since x 6∈ (E \ L) we have d(E\L)∩Ω(x) = dist(x, (E \ L) ∩ Ω) ≥ 0. Thus
d(E\L)∩Ω(x) = dist(x, L ∩ Ω) = 0. Notice that from (5.5) it follows

L ∩ Ω ⊆ {x ∈ A : dB(x) ≤ 0}.

(VII) In a neighborhood of L ∩ Ω, the topological boundary of B is an embedded
hypersurface of class Ck−1. Indeed since B is an open set and there exists an open
set A ⊃ L ∩ Ω such that dB ∈ Ck(A), it follows from Theorem 1.27, that in A the
topological boundary of B is a Ck−1 hypersurface. Consistently with our notation
in Definition 5.3, we indicate by ∂AB the boundary of B in A.
(VIII) For h = n we have

B = (E \ L) ∩ Ω. (5.6)

The inclusion (E \ L) ∩ Ω ⊆ B is in (5.4). To show the converse inclusion we argue
by contradiction. Assume that B 6⊂ (E \L)∩Ω. From (I) we know that (E \L)∩Ω is
an open set and L∩Ω is a hypersurface, moreover L∩Ω is the topological boundary
of (E \ L) in Ω from (5.3). Hence (E \ L) ∩ Ω ∩ B 6= ∅; it follows L ∩ B 6= ∅ which
contradicts (5.5).
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Figure 5.2: Left: E is a segment in R2. Right: E is an arc of a circle in R2 and L its two
end points.

Example 5.6. We start from the simplest nontrivial case (Figure 5.2, left): we
take n = 2, h = 1, k ∈ {∞, ω}, Ω = R2, L = {(±1, 0)}, and E = (−1, 1) × {0}
(E = (−1, 1] × {0} or E = [−1, 1) × {0} or E = [−1, 1] × {0} would not affect the
discussion). In this case it is immediate to verify that the set B in condition (iii)
equals B = (−1, 1) × R; the largest A fulfilling condition (iii) can be taken to be
A = R2 \ {x1 = 0}, and {(x1, x2) ∈ A : dB((x1, x2)) ≤ 0} = ([−1, 1]×R) \ {x1 = 0}.
Finally, in order to fulfill (iv), it is sufficient to take η̂E = η

Ê
, where Ê = (−1 −

δ, 1 + δ)×{0}, for any δ > 0 so that η
Ê
∈ Ck([−1, 1]×R). Note that ηE is not even

C2 on {x = ±1}.
If we choose L to be only one point of the two points {(±1, 0)}, say L = {(1, 0)},
then E = (−1, 1) × {0} is no longer closed in Ω \ L hence it does not belong to
D1Ck(Ω \ L). On the other hand E = (−1, 1]× {0} is closed in Ω \ L but condition
(ii) of Definition 5.1 (with Ω replaced by Ω \ L) is not satisfied, hence E does not
belong to D1Ck(Ω \ L).

Example 5.7. Take n = 2, h = 1, k ∈ {∞, ω}, E = (cos θ, sin θ), θ ∈ (5π
4 ,

7π
4 ),

Ω = R2, and L = {(±1√
2
, −1√

2
)}, see Figure 5.2. We have B ∩ (R × (−∞, 0)) =

{(x1, x2) ∈ R2 : |x1| < |x2|, x2 < 0}. A can be taken to be any open subset of
R× (−∞, 0) containing L that does not contain the origin. Finally, taking η̂E = η

Ê

where Ê = (cos θ, sin θ), θ ∈ (5π
4 − δ,

7π
4 + δ), δ < π

4 , condition (iv) is fulfilled. Note
that ∂B is smooth close to L, but not necessarily far from L (for instance at the
origin).

Example 5.8. Take n = h ≥ 1, k ∈ {∞, ω}, E = B1(0), Ω = Rn, and L = ∂B1(0).
Note that ηE ∈ C1(B1+ε(0))\C2(B1+ε(0)) for any ε > 0. B1(0) ∈ DnCk(Rn\∂B1(0)):
indeed E is closed in Rn\∂B1(0), ηE |E = 0 thus ηE ∈ Ck(E\L) and rank(∇2ηE(x)) =
0 for all x ∈ E \ L. Moreover L ∈ Dn−1C

k(Rn) from Remark 5.2 (I). Hence
condition (i) is fulfilled; condition (ii) is immediate and we also have B = B1(0) and
A = Rn \ {0}. Finally, η̂E = 0 in Rn allows to check condition (iv).



74 Chapter 5. Characterization of manifolds with boundary

Figure 5.3: Example 5.10: L is the union of the two bold circles, one being included in
the larger open disk, B is the grey region. Dashed segments: graph of the signed distance
function dB along {y = 0}.

Example 5.9. Take n = 2, h = 1, k ∈ {∞, ω}, E = S1 the unit circle centered
at the origin, Ω = R2, and L = ∅. Then condition (i) is immediate. Notice that
dL ≡ +∞ hence B = R2, dB ≡ −∞, and A = ∅ so that also condition (iv) is trivially
satisfied.

Example 5.10. Take n = h = 2, E = B2(0), Ω = R2, and L = ∂B1(0) ∪ ∂B2(0).
Then (i) and (ii) of Definition 5.4 are fulfilled. B = B2(0) \ L, moreover there is no
A ⊃ ∂B1(0) such that dB ∈ C1(A) hence (iii) is not satisfied (note that ηE = 0 in
B2(0), i.e., fulfilling (iv) also depends on the existence of A), see Figure 5.3.

5.2 Smooth manifolds with boundary are in DhBCk(Ω)

In this section we show that smooth manifolds with boundary in the classical sense
(Definition 5.3) are smooth manifolds with boundary in the sense of distance func-
tions (Definition 5.4), more precisely:

Theorem 5.11. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω}. Let Ω ⊆ Rn be a nonempty open
set and M ⊂ Rn be an embedded Ck-manifold of dimension h ≤ n with nonempty
boundary in Ω. Then (M, ∂ΩM) ∈ DhBCk−1(Ω).

First we need the following result.
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Figure 5.4: M is a curve (smooth up to the boundary) embedded in R3, N is a smooth
extension of M, and Hε consists of two open disks normal to M at the endpoints (the
boundary of M).

Proposition 5.12. Let k ∈ N, k ≥ 2, or k ∈ {∞, ω}, and h ∈ {1, . . . , n}. Let M⊂
Rn be a compact embedded Ck-manifold of dimension h with nonempty boundary in
Rn. Then there exists ε > 0 such that, setting

Hε :=
⋃

x∈∂M
Bε(x) ∩NxM, (5.7)

the following properties hold:

1) ∂M⊆ Hε ⊆
⋃

x∈∂M
NxM;

2) Hε is an embedded Ck−1-hypersurface without boundary in M+
ε , and NxHε ⊆

TxM for any x ∈ ∂M;

3) ηM ∈ Ck−1(M+
ε \Hε).

Proof. Since we can work separately on each connected component ofM, from now
on we suppose thatM is connected. Suppose first h = n. In this case the interior of
M is a nonempty open set with Ck-boundary, and [30, 29, 22] if ε > 0 is sufficiently
small, dM is of class Ck in the tubular neighborhood (∂M)+

ε of ∂M. Define Hε :=
∂M. Then 1) holds (with the equalities in place of the inequalities), and also 2)
holds because TxM = Rn for any x ∈ ∂M. Moreover dist(·,M) ∈ Ck(M+

ε \ Hε),
since dist(·,M) = 0 in the interior ofM and dist(·,M) = dM(·) inM+

ε \M, hence
also 3) follows.

Now suppose h ∈ {1, . . . , n− 1}. We divide the proof into 3 steps.

Step 1. There exists ε1 > 0 such that

ηM ∈ Ck−1(Vε1), (5.8)
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where Vε1 is the neighborhood of the relative interior M◦ of M defined as

Vε1 :=
⋃

x∈M◦
Bε1(x) ∩NxM◦. (5.9)

The initial part of the proof of this step is rather standard, see for instance [2].
Take any x◦ ∈ M◦. Since M is a smooth manifold embedded in Rn, there exists
ρ = ρ(x◦) > 0 such that

Bρ(x◦) ∩M = Bρ(x◦) ∩M◦, (5.10)

and there are smooth orthonormal vector fields ν1(x), . . . , νn−h(x) spanning NxM◦
for any x ∈ Bρ(x◦) ∩M◦. Consider the function

Φ̃ = Φ̃M◦ : (Bρ(x◦) ∩M◦)×Rn−h −→ Rn, Φ̃(x, α) := x+
n−h∑
i=1

αiν
i(x),(5.11)

where α = (α1, . . . , αn−h) ∈ Rn−h. Let G ⊂ Rh be an open set and f : G →
Bρ(x◦)∩M◦ be a local parametrization ofM◦ with f(y◦) = x◦, y◦ ∈ G. Then Φ̃ in
local coordinates becomes

Φ : G×Rn−h → Rn, Φ(y, α) := Φ̃(f(y), α) = f(y) +
n−h∑
i=1

αiν
i(f(y)).

Clearly Φ is Ck−1 and therefore dΦ(y◦,0) is represented by a matrix with columns

fy1(y◦), fy2(y◦), . . . , fyh(y◦), ν
1(f(y◦)), ν

2(f(y◦)), . . . , ν
n−h(f(y◦)),

where y = (y1, . . . , yh) and fyi = ∂
∂yi

. Since span{fy1(y◦), . . . , fyh(y◦)} = Tx◦M,
the columns of dΦ(y◦,0) are linearly independent. Hence, by the implicit function

theorem, Φ is locally invertible with inverse of class Ck−1. Let

O := (Br◦(x◦) ∩M◦)×Bn−h
r◦ (0),

where 0 < r◦ = r(x◦) ≤ ρ is so that the implicit function theorem holds, and let

Ψ : Φ̃(O) ⊂ Rn → O, Ψ(ξ) = (x(ξ), α(ξ)),

be the local inverse of Φ̃. Take δ◦ ∈ (0, r◦/2) and ξ ∈ Bδ◦(x◦) ⊂ Φ̃(O), and let
x ∈ M be so that dist(ξ,M) = |x − ξ|, recall that M is closed by Definition 5.3.
Since |x− ξ| ≤ |x◦ − ξ| < δ◦ it follows x ∈ Br◦(x◦) ∩M◦ (recall (5.10) and r◦ ≤ ρ),
hence x = x(ξ)(2) and dist(ξ,M) = |α(ξ)|. Thus,

ηM(ξ) =
1

2
|α(ξ)|2 =

1

2

n−h∑
i=1

(αi(ξ))
2 ∀ξ ∈ Bδ◦(x◦),

(2)Indeed ξ ∈ NxM◦, i.e., for any ω ∈ TxM we have < x − ξ, ω >= 0. To prove that, consider
a local chart f around x such that f(p) = x and dfpτ = ω. Since p is a minimum point for the
function |ξ− f(p+ στ)|2 where |σ| is small enough then 0 = d

dσ
|ξ− f(p+ στ)|2|σ=0 =< ξ− x, ω >.
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where α(ξ) = (α1(ξ) . . . αn−h(ξ)). Therefore ηM ∈ Ck−1(Bδ◦ (x◦)).

Now we deal with points on ∂M. SinceM is an embedded Ck-manifold with bound-
ary, it can be extended(3) to a connected Ck-manifold with boundary N of the same
dimension such that ∂M ⊂ N ◦. Let x̄ ∈ ∂M ⊂ N and repeat the argument at
the beginning of this step with M replaced by N , to conclude that ηN is Ck−1 in

Bδ(x̄) ⊂ Φ̃N ◦((Br(x̄) ∩ N ◦) × Bn−h
r (0)) for r > 0 sufficient small and δ ∈ (0, r2).

Consider the open set

W =W(x̄) := Bδ(x̄) ∩
(

Φ̃N ◦((Br(x) ∩M◦)×Bn−h
r (0))

)
.

We claim that

ηM = ηN on W,

and hence ηM ∈ Ck−1(W). Indeed, take ξ ∈ W; then ξ ∈ Bδ(x̄) implies the existence
of a unique x(ξ) ∈ N such that dist(ξ,N ) = |x(ξ) − ξ| and ξ ∈ Nx(ξ)N (clearly

NxM◦ = NxN ◦ at x ∈ M◦). Moreover ξ ∈ Φ̃N ◦
(
(Br(x̄) ∩M◦)×Bn−h

r (0)
)

implies

x(ξ) ∈ M◦ by the definition of Φ̃N ◦ . In particular, any point of W has a unique
point of minimal distance to N on Br(x̄) ∩M◦.

By the compactness of M, we can select ε1 > 0 such that:

- (5.8) holds;

- for any ξ ∈ Vε1 there exists a unique x(ξ) ∈ M◦ such that dist(ξ,M) = |ξ − x(ξ)|,
in particular

dist(·,M) < dist(·, ∂M) in Vε1 ; (5.12)

- by construction Vε1 ⊂M+
ε1 and the topological boundary of Vε1 is K ∪Hε1 , where

K ⊂ ∂(M+
ε1) and Hε1 is defined in (5.7) with ε replaced by ε1. Hence the closure of

Vε1 in M+
ε1 is Hε1 (see Figure 5.4);

- ηN ∈ Ck−1(M+
ε1) and

ηN = ηM in Vε1 ∪Hε1 . (5.13)

Step 2. For ε2 > 0 small enough, Hε2 is a Ck−1 embedded hypersurface without

boundary in M+
ε2 .

Let x̄ ∈ ∂M and g : G′x̄ ⊂ Rh−1 −→ Bρ(x̄) ∩ ∂M, ρ > 0, be a local chart on ∂M.
Define

X(y′, α) = g(y′) +
n−h∑
i

αiν
i(g(y′)), y′ ∈ G′x̄, α ∈ Bn−h

ε(x̄) (0), (5.14)

where {νi(g(y′))}i=1,...,n−h are orthonormal vector fields of class Ck−1 spanning the
normal space to M at g(y′) ∈ ∂M and ε(x̄) > 0. Clearly X is Ck−1 and dX(y′,0)

is non singular and X is a local homeomorphism onto its image. Now, we use the

(3)This directly follows from Definition 5.3.
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compactness of ∂M to get a finite subcovering
⋃l
i=1 gi(G

′
x̄i) =

⋃l
i=1Bρi(x̄i)∩∂M =

∂M, x̄i ∈ ∂M, and define

ε2 := min{ε(x̄i) : i = 1, . . . , l} > 0, Hε2 =
l⋃

i=1

X(G′x̄i ×B
n−h
ε2 (0)).

It remains to prove that, possibly reducing the value of ε2, any ζ ∈ Hε2 has an
open neighborhood V such that V ∩ Hε2 is exactly the image of one of the charts
X(G′x̄i × B

n−h
ε2 (0)) (that is, Hε2 has no self-intersections). Assume that ε2 > 0 is

small enough so that
Hε2 ⊂ (φM)+

ε2 ,

and

- for every ξ ∈ (φM)+
ε2 there exists unique xξ ∈ ∂M such that ξ ∈ Nxξ∂M and

dist(ξ, ∂M) = |ξ − xξ|;

- the projection map P : (∂M)+
ε2 → ∂M, P (ξ) = xξ is Ck−1, see [32].

Now let ζ ∈ Hε2 and x̄i be such that xζ ∈ Bρi(x̄i)∩∂M. Define V := P−1(Bρi(x̄i)∩
∂M) which is an open neighborhood of ζ in Rn. We have

V ∩Hε2 = X(G′x̄i ×B
n−h
ε2 (0)).

Indeed, if ξ ∈ V ∩Hε2 then xξ ∈ Bρi(x̄i) ∩ ∂M, |ξ − xξ| < ε2 and ξ ∈ NxξM , i.e.,

ξ ∈ X(G′x̄i × Bn−h
ε2 (0)) by the definition of X in (5.14). On the other hand the

inclusion V ∩Hε2 ⊇ X(G′x̄i ×B
n−h
ε2 (0)) is immediate.

Note that assertions 1) and 2) of the proposition follow immediately from (5.7), with
ε replaced by ε2.

Step 3. There exists ε ∈ (0,min(ε1, ε2)) such that

ηM ∈ Ck−1(M+
ε \Hε). (5.15)

From Theorem 1.29, we may assume that η∂M is Ck−1 in a tubular neighborhood
(∂M)+

ε3 of ∂M of radius ε3 > 0. Define

ε := min{ε1, ε2, ε3}. (5.16)

If Vε is as in step 1, we have Vε ⊂M+
ε and, from step 1, ηM is Ck−1 in Vε. We claim

that
ηM = η∂M in M+

ε \ Vε. (5.17)

Since ∂M ⊂M, dist(·,M) ≤ dist(·, ∂M) hence ηM ≤ η∂M. Assume by contradic-
tion that there exists ξ ∈ M+

ε \ Vε such that dist(ξ,M) < dist(ξ, ∂M). Then there
exists x ∈ M \ ∂M such that |ξ − x| = dist(ξ,M) < ε which, by the definition of
Vε, implies ξ ∈ Vε, a contradiction.
Since the closure of Vε in M+

ε is Hε (see the end of step 1) it follows that M+
ε \

(Vε ∪Hε) is an open subset of (∂M)+
ε3 in which ηM is Ck−1. Hence assertion 3) is

proven.
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Now, we prove Theorem 5.11 when Ω = Rn and supposing that the manifold is
compact.

Theorem 5.13. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω}, and h ∈ {1, . . . , n}. LetM⊂ Rn

be an embedded compact Ck-manifold of dimension h with nonempty boundary ∂M
in Rn. Then

(M, ∂M) ∈ DhBCk−1(Rn).

Proof. We have to check conditions (i)-(iv) of Definition 5.4.

Suppose h = n. By Remark 5.2 (I) it follows ∂M ∈ Dn−1Ck−1(Rn). One also
immediately checks thatM∈ DnCk−1(Rn\∂M). Moreover dM(·) = ±dist(·, ∂M) ≤
dist(·, ∂M) = d∂M(·) and B = M \ ∂M, hence [30, 29, 2] the function dB is Ck
in a tubular neighborhood of ∂M, which shows condition (iii). Clearly {x ∈ Rn :
dB(x) ≤ 0} =M; thus η̂ ≡ 0 is a Ck(Rn) extension of ηM, so that condition (iv) is
fulfilled.

Now suppose h < n. From Remark 5.2(I) we have

∂M∈ Dh−1Ck−1(Rn).

Moreover, since M is a Ck-manifold without boundary in Rn \ ∂M then, again by
Remark 5.2(I),

M∈ DhCk−1(Rn \ ∂M),

which shows (i). We also have dM(·) = dist(·,M) ≤ dist(·, ∂M) = d∂M(·), which
shows (ii).

Let B be defined as in (5.2) with Ω = Rn, and (E,L) := (M, ∂M). Then by (5.12)
and the last comments in step 1 in Proposition 5.12 we have

B ∩M+
ε = Vε and M+

ε ∩ ∂B = Hε,

where ε, Vε and Hε are as in (5.16), (5.9) and (5.7), respectively. Since by Proposition
5.12 2) Hε is an embedded hypersurface (without boundary) of class Ck−1 in M+

ε

then, following the same argument in the comment after Theorem 1.29 and using
[30, 29, 2], there exists an open neighborhood A ⊂ M+

ε of Hε such that dB ∈
Ck−1(A). Hence condition (iii) is satisfied.

Finally, since {x ∈ A : dB(x) ≤ 0} ⊂ Vε ∪Hε, condition (iv) follows from (5.13).

Now we generalize Proposition 5.12: dropping the compactness of M implies that
we can not take tubular neighborhoods of constant width.
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Proposition 5.14. Let k ∈ N, k ≥ 2, or k ∈ {∞, ω}, and h ∈ {1, . . . , n}. Let Ω ⊆
Rn be a nonempty open set. Let M⊂ Rn be an embedded Ck-manifold of dimension
h with nonempty boundary in Ω. Then there exists a function ε :M∩Ω→ (0,+∞]
such that, setting

Hε(·) :=
⋃

x̄∈∂ΩM
Bε̄(x̄)(x̄) ∩Nx̄M (5.18)

where ε(x̄) := sup{ρ > 0 : Bρ(x̄) ∩ Nx̄M ⊂ (M∩ Ω)+
ε(·)}, the following properties

hold:

1) ∂ΩM⊆ Hε(·) ⊆
⋃

x̄∈∂ΩM
Nx̄M;

2) Hε(·) is an embedded Ck−1-hypersurface without boundary in (M∩ Ω)+
ε(·), and

Nx̄Hε(·) ⊆ Tx̄M for any x̄ ∈ ∂ΩM;

3) ηM ∈ Ck−1((M∩ Ω)+
ε(·) \Hε(·)).

Proof. The proof is similar to the proof of Proposition 5.12 with slight modifications.
We suppose thatM∩Ω is connected. Let us write for simplicity εx = ε(x), εx = ε̄(x)
and so on.

Assume first h = n; then the interior of M∩ Ω is a nonempty open set with Ck-
boundary in Ω, and for every x̄ ∈ ∂ΩM there exists εx̄ > 0 such that Bεx̄(x̄) ⊂ Ω
and dM ∈ Ck(Bεx̄(x̄)) [30, 29, 22], hence dM is of class Ck in (∂ΩM)+

ε(·) ⊂ Ω. Define

Hε(·) := ∂ΩM. Then assertions 1)-3) follow as in the proof of Proposition 5.12.

Now suppose h ∈ {1, . . . , n−1}. Following the same argument in step 1 in the proof
of Proposition 5.12 it follows that:

- for every x◦ ∈ (M∩Ω)◦ there exists ε1x◦ > 0 such that Bε1x◦ (x◦) ⊂ Ω, Bε1x◦ (x◦)∩
∂ΩM = ∅ and ηM ∈ Ck−1(Bε1x◦ (x◦));

- if N ⊂ Ω is a connected embedded Ck-manifold of dimension h containing M
and so that ∂ΩM ⊂ N o then, for every x̄ ∈ ∂ΩM, there exists ε1x̄ > 0 such
that Bε1x̄(x̄) ⊂ Ω and

Wε1x̄
=Wε1x̄

(x̄) : = {ξ ∈ Bε1x̄(x̄) : dist(ξ,N ) = |ξ − xξ|, xξ ∈ (M∩ Ω)◦}

=
⋃

y∈(M∩Ω)◦

Bε1x̄(x̄) ∩NyM

is an open subset of Ω, and Wε1x̄
∩Bε1x̄(x̄) =Wε1x̄

∪
( ⋃
y∈∂ΩM

(Bε1x̄(x̄) ∩NyM)
)

;

- ηM = ηN in Wε1x̄
, hence ηM ∈ Ck−1

(
Wε1x̄
∩Bε1x̄(x̄)).

Define

Vε1(·) :=
( ⋃
x◦∈(M∩Ω)◦

Bε1x◦ (x◦)
)
∪
( ⋃
x̄∈∂ΩM

Wε1x̄

)
.
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The presence of the set
⋃
x̄∈∂ΩMWε1x̄

is due to the fact that, whenM is not compact,
it could happen that, as x◦ ∈ M◦ converges to a point of ∂ΩM, the corresponding
ε1x◦ converges to zero.

By construction Vε1(·) ⊂ (M∩ Ω)+
ε1(·) and the topological boundary of Vε1(·) is K ∪

Hε1(·), where K is subset of the topological boundary of ((M∩ Ω)+
ε1(·)) and Hε1(·)

are as in (5.18) with ε̄ replaced by ε̄1. Hence the topological boundary of Vε1(·) in

(M∩Ω)+
ε1(·) is Hε1(·). Moreover ηN ∈ Ck−1((M∩Ω)+

ε1(·)) and ηN = ηM in Vε1(·)∪
Hε1(·). We conclude that ηM ∈ Ck−1(Vε1(·)).

Following the same arguments in step 1 and step 2 in the proof of Proposition 5.12
it follows that for each x̄ ∈ ∂ΩM there exist ε2x̄ > 0, G′x̄ ⊂ Rh−1, Bx̄ ⊂ Rn−h+1 open
sets and a Ck−1-diffeomorphism

X : G′x̄ ×Bx̄ → Bε2x̄(x̄) ⊂ Rn, X(y′, α) := g(y′) +

n−h+1∑
i=1

αiν
i(g(y′)),

where g : G′x̄ ⊂ Rh−1 −→ Bε2x̄(x̄)∩∂ΩM is a local chart on ∂ΩM and {νi(g(y′))}i=1,...,n−h+1,

νn−h+1(g(y′)) ∈ Tg(y′)M, are orthonormal vector fields of class Ck−1 spanning the
normal space to ∂ΩM at g(y′) ∈ ∂ΩM. Thus

(∂ΩM)+
ε2(·) =

⋃
x̄∈∂ΩM

X(G′x̄ ×Bx̄).

Let

X : G′x̄ ×Bn−h
x̄ → Bε2x̄(x̄), X(y′, α) := g(y′) +

n−h∑
i=1

αiν
i(g(y′)),

where Bn−h
x̄ := {(α1, · · · , αn−h+1) ∈ Bx̄ : αn−h+1 = 0} ⊂ Rn−h (note that X equals

the restriction of X in G′x̄×Bn−h
x̄ , hence it is a Ck−1-diffeomorphism). Setting Hε2(·)

as in (5.18) with ε̄ replaced by ε̄2, we have

Hε2(·) =
⋃

x̄∈∂ΩM
X(G′x̄ ×Bn−h

x̄ ).

Thus for each ζ ∈ Hε2(·) there exists x̄ ∈ ∂ΩM such that ζ ∈ X(G′x̄×Bn−h
x̄ ). Letting

V := X(G′x̄ × Bx̄), following the argument in step 2 of Proposition 5.12, we may
show that the maps X(G′x̄ ×Bn−h

x̄ ) are local charts covering Hε2(·). This completes
the proof of assertion 2).

To prove 3) we assume that η∂M is Ck−1 in a neighborhood (∂ΩM)+
ε3(·) of ∂ΩM,

see the comment after Theorem 1.29, and we define ε(x) := min{ε1x, ε2x, ε3x}. Again
following step 3 in the proof of Proposition 5.12 we have ηM ∈ Ck−1((M∩ Ω)+

ε(·) \
Hε(·)).

Conclusion of the proof of Theorem 5.11. It follows from Proposition 5.14 the same
way the proof of Theorem 5.13 follows from Proposition 5.12.
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5.3 Sets in DhBCk(Ω) are smooth manifolds with bound-
ary

The goal of this section is to prove a sort of converse(4) of Theorem 5.11. That is,
we want to show the following:

Theorem 5.15. Let k ∈ N, k ≥ 3, or k ∈ {∞, ω} and h ∈ {1, . . . , n}. Let Ω ⊆ Rn

be a nonempty open set, and let E,L ⊂ Rn be such that (E,L) ∈ DhBCk(Ω). Then
(E ∪ L) ∩ Ω is a h-dimensional Ck−1-manifold in Ω with boundary L ∩ Ω.

Proof. Let us assume first Ω = Rn (which includes the converse of Theorem 5.13).
We can suppose

L 6= ∅,

since if L = ∅ the result follows from Remark 5.2 (I).
Recall from Remark 5.5 (I) that L is an embedded Ck−1-manifold in Rn without
boundary of dimension h−1, and E is an embedded Ck−1-manifold without boundary
in Rn \ L of dimension h.
Moreover from condition (iv) in Definition 5.4, following the notation of (iii) in
particular concerning the sets B and A, if we call

C := {x ∈ A : dB(x) ≤ 0}, (5.19)

then there exist an open set Ĉ ⊂ Rn containing C and a function η̂ ∈ Ck(Ĉ) such
that

η̂ = ηE on C. (5.20)

We divide the proof of the theorem into five steps.

Step 1. We have
E ∩ C ⊆ {x ∈ Ĉ : ∇η̂(x) = 0}. (5.21)

From Theorem 1.25(b), ηE is differentiable on E and

E = {x ∈ Rn : ∇ηE(x) = 0}.

Hence, since from (5.3) we have E = E ∪ L, it follows

E ∩ C = (E ∪ L) ∩ C = {x ∈ C : ∇ηE(x) = 0}. (5.22)

Now we show that
∇η̂ = ∇ηE on (E ∪ L) ∩ C. (5.23)

We split the proof into two cases. If x ∈ (E \ L) ∩ C then from (5.4) and (5.19) it
follows

x ∈ B ∩ C = {x ∈ A : dB(x) < 0} = B ∩A ⊂ C. (5.24)

Hence, since B ∩A is open, x is an interior point of C, and from (5.20) we deduce

∇η̂(x) = ∇ηE(x).

(4)In the C∞ or analytic case, it is the converse.
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Now, let x ∈ L = L∩C; recall from Remark 5.5 (VII) that the topological boundary
of B is of class Ck−1 in a neighborhood of x. Then x ∈ ∂AB = {x ∈ A : dB(x) = 0}
from (5.5). We shall show that

∇η̂(x)ν = ∇ηE(x)ν ∀ν ∈ Rn. (5.25)

Take ν ∈ Rn \ {0}. Let n ≥ 2 (the case n = 1 being trivial); if ν ∈ Tx∂AB then
there exist ε > 0 and α : (−ε, ε) → ∂AB of class C1 such that α(0) = x, α′(0) = ν.
Hence, using also (5.20),

∇ηE(x)ν =
d

dt
ηE(α(t))|t=0 =

d

dt
η̂(α(t))|t=0 = ∇η̂(x)ν.

If ν ∈ Nx∂AB then we can select β : (−ε, ε) → Rn of class C1 such that β(0) =
x, β′(0) = ν and β((−ε, 0)) is contained in the interior of C. Hence, denoting by
d
dt−

the left derivative,

∇η̂E(x)ν =
d

dt
ηE(β(t))|t=0 =

d

dt−
ηE(β(t))|t=0 =

d

dt−
η̂(β(t))|t=0 =

d

dt
η̂(β(t))|t=0 = ∇η̂(x)ν.

This concludes the proof of (5.25), and then (5.21) follows from (5.22) and (5.23).

Step 2. We have

rank
(
∇2η̂(x)

)
= n− h for any x ∈ (E ∪ L) ∩ C. (5.26)

From Definition 5.4 (i), Definition 5.1 (iii) and (5.24) we have

rank
(
∇2η̂(x)

)
= n− h for any x ∈ (E \ L) ∩ C. (5.27)

Now we observe that (5.27) holds also for x ∈ L. Indeed, if x ∈ L, from (5.3) we
can select a sequence {xm} ⊂ (E \ L) ∩C converging to x. Then, by the continuity
of ∇2η̂ at x, it follows rank

(
∇2η̂(x)

)
= n− h.

Step 3. There exists an embedded h-dimensional manifold N of class Ck−1, without
boundary in a sufficiently small neighborhood of E ∪ L, such that

E ∪ L ⊂ N .

For h = n, it is sufficient to take N = Rn. Hence, suppose h < n. Take

x ∈ L

and, recalling (5.26), let {ν1, ν2, . . . , νn−h} be an orthonormal basis of Im
(
∇2η̂(x)

)
.

Define

Fi(x) := 〈∇η̂(x), νi〉, i = 1, . . . , n− h, x ∈ Ĉ,

and set

F : Ĉ −→ Rn−h, F := (F1, F2, . . . , Fn−h).
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From (5.3),(5.22) and (5.23) we have

(E ∪ L) ∩ C = E ∩ C ⊆ {x ∈ Ĉ : ∇η̂(x) = 0} ⊆ {x ∈ Ĉ : F (x) = 0}. (5.28)

Observe that F ∈ Ck−1(Ĉ;Rn−h). Moreover, if we denote by JF (x) the Jacobian of
F at x, then

JF (x) = QT∇2η̂(x), (5.29)

where QT is the transposed of the n × (n − h) matrix Q :=
[
ν1ν2 . . . νn−h

]
having

as columns the linear independent vectors (νi)i=1,...,n−h. Recalling the definition of
ν1, . . . νn−h, by construction JF (x) has rank n − h. Choose σ = σ(x) > 0 so that
the Jacobian of F has constant rank n− h on Bσ(x). Let

Γx := Bσ(x) ∩ {x ∈ Ĉ : F (x) = 0}.

Then the implicit function theorem ensures that Γx is an embedded h−dimensional
manifold (without boundary in Bσ(x)) of class Ck−1.

Note that Bσ(x)∩((E\L)∩C) (which is nonempty by (5.4) and (5.19)) is a manifold
without boundary in Bσ(x) \ L of dimension h (Remark 5.5 (I)) and it is contained
in Γx by (5.28). Hence Γx is an extension of (E \ L) ∩ C in Bσ(x).

Defining

N := E ∪
⋃
x∈L

Γx,

we have that N satisfies the assertion.

Step 4. E ∪ L is an embedded h-dimensional Ck−1-manifold in Rn with boundary.

We need to check that Definition 5.3 is satisfied. Recall from Remark 5.5 (III) that
E ∪ L = E ∪ L. Now, let x ∈ E \ L; in this case there is nothing to prove, since
E \ L is a manifold without boundary in Rn \ L of dimension h (Remark 5.5 (I)).

Let x̄ ∈ L. Since L is a Ck−1 embedded submanifold of N of codimension 1 (step
3), there exist an open neighborhood R ⊂ Rn of x̄ and a Ck−1 local parametrization

φ : G := Bh
1 (0)→ U := R ∩N ⊂ Rn (5.30)

such that

R ∩ L = {φ(y) : y = (y1, . . . , yh) ∈ G, yh = 0}. (5.31)

Hence U ∩ L divides U into two relatively open connected components U+ and U−

defined as

U± := {φ(y) : y ∈ G, 〈y,±eh〉 > 0}, (5.32)

where eh := (0, . . . , 0, 1) ∈ Rh (note that (E \ L) ∩ (U \ L) 6= ∅). Clearly

L ∩ U+ = L ∩ U− = ∅. (5.33)

Let us show

U± ∩ (E \ L) 6= ∅ ⇒ U± ∩ (E \ L) = U±. (5.34)



5.3. Sets in DhBCk(Ω) are smooth manifolds with boundary 85

Assume U+ ∩ (E \ L) 6= ∅ and suppose by contradiction that U+ \
(
U+ ∩ (E \ L)

)
is nonempty (the case for U− being similar).

Recalling that U+ is connected and that both sets E \L and U+ are relatively open
in N , we have

U+ ∩ (E \ L)  U+ ∩ (E \ L) ∩ U+. (5.35)

Thus

U+ ∩ (E \ L) ∩ U+ ⊆ U+ ∩ (E \ L) = (U+ ∩ (E \ L)) ∪ (L ∩ U+), (5.36)

where the equality follows from Remark 5.5 (III). From (5.35) and (5.36) we deduce
L ∩ U+ 6= ∅, which contradicts (5.33).

Case 1. U− ∩ (E \ L) = ∅. Then from (5.34) it follows U ∩ (E \ L) = U+, and
(5.1) (with M replaced by E ∪ L) is a consequence of (5.31) and (5.32). We argue
similarly in the case U+ ∩ (E \ L) = ∅.
Case 2. U± ∩ (E \ L) 6= ∅. Then from (5.34) it follows U ∩ (E \ L) = U \ L, and
(1.27) follows from (5.31) and (5.32).

This concludes the proof of step 4.

Step 5. We have

∂(E ∪ L) = L.

Since E is a Ck−1-manifold without boundary in Rn \L of dimension h (Remark 5.5
(I)), we have

∂(E ∪ L) ⊆ L.

To prove the converse inclusion, recalling also the proof of step 4 (see (5.30), (5.31)
and (5.34)), it is sufficient to show that for any x ∈ L there is no relatively open
neighborhood U of x in N such that U ∩ (E \ L) = U \ L.

Let x ∈ L, and recall once more the definition of B in (5.2), and that L ⊂ ∂AB
(see (5.5)). From condition (iii) of Definition 5.4 we know that dB is of class Ck in
a neighborhood of x. Hence there exist a neighborhhood R ⊂ Rn of x, δ > 0, and
a map ψ ∈ Ck(R;Rn) such that ψ(R) = Bδ(0), ψ(R ∩ B) = Bδ(0) ∩ {xn > 0} and
ψ(R ∩ ∂B) = Bδ(0) ∩ {xn = 0} (in particular B locally lies on one side of ∂B).

If h = n, our assertion follows from the fact that B = E \ L by (5.6).

Assume now h < n. Suppose by contradiction that there exist x ∈ L and a neigh-
borhood U of x in N such that U \ L = U ∩ (E \ L). Since B is locally on one side
of ∂B and x ∈ L ⊂ ∂AB, recalling also (5.4), we have

U \ L ⊂ B.

Moreover since U is relatively open in N and by (5.5) we have L ⊂ ∂AB, we get

TxN = TxU ⊂ Tx∂AB.

Take ξ ∈ B \ N such that dist(ξ,N ) = |ξ − x|. Then

dL(ξ) = dist(ξ, L) = dist(ξ, E \ L) = dE\L(ξ), (5.37)
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where the second equality follows from Remark 5.5 (III) and x̄ ∈ L, and the last
equality follows from the fact that E \ L ⊂ N and ξ 6∈ N , so that ξ 6∈ E \ L. Then
(5.37) contradicts the inclusion ξ ∈ B = {z ∈ Rn : d(E\L)∩Ω(z) < dL∩Ω(z)}.
This concludes the proof when Ω = Rn. The proof when Ω is a nonempty open
subset of Rn follows by replacing E with E ∩ Ω, L with L ∩ Ω, and Rn with Ω in
the above arguments.
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