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Abstract

We study many-flavor Quantum Electrodynamics (QED) in 2 < d < 6. In the first chapter

we review and summarise our results. In the second chapter we consider QED’s in three

dimensions, with Nf fermionic or bosonic flavors, allowing for interactions that respect the

global symmetry U(Nf/2)2. There are four bosonic and four fermionic fixed points, which

we analyze using the large Nf expansion. We systematically compute, at order O(1/Nf ),

the scaling dimensions of quadratic and quartic mesonic operators. We also consider three

dimensional QED with minimal supersymmetry. In this case the large Nf scaling dimensions

extrapolated at Nf = 2, agree quite well with the scaling dimensions of a dual supersym-

metric Wess-Zumino model. This provides a quantitiative check of the conjectured duality.

In the third chapter, we analyze the fate of the non-supersymmetric QED’s for small

values of Nf . Large Nf arguments suggest that, lowering Nf , the fixed points collide pairwise,

which leads the fixed points either to merge and to annihilate into the complex plane, or

to pass through each other, exchanging their stability properties. In the bosonic QED’s the

merging happens around Nf ∼ 9 − 11. In the fermionic QED’s collision happens around

Nf ∼ 3− 7. In the fermionic case, the fixed points with different symmetries are colliding.

In the last chapter we consider the CP(Nf−1) Non-Linear-Sigma-Model in the dimension

4 < d < 6. The critical behaviour of this model in the large Nf limit is reviewed. We propose

a Higher Derivative Gauge (HDG) theory as an ultraviolet completion of the CP(Nf−1) NLSM.

Tuning mass operators to zero, the HDG in the IR limit reaches to the critical CP(Nf−1).

With partial tunings the HDG reaches either to the critical U(Nf )-Yukawa model or to the

critical pure scalar QED (no Yukawa interactions).

We renormalize the HDG in its critical dimension d = 6. We study the fixed points of

the HDG in d = 6−2ε and we calculate the scaling dimensions of various observables finding

a full agreement with the order O(1/Nf ) predictions of the corresponding critical models.
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Chapter 1

Introduction and Summary

This thesis is organised into three chapters. Below we give a short summary and a review

of each chapter.

Easy-plane QED3’s in the large Nf limit

Quantum Electrodynamics (QED) in 2+1 dimensions, with fermionic and/or bosonic fla-

vors, is a prime example of interacting Quantum Field Theory, with both theoretical and

experimental relevance. We study QED’s in the limit of large number of flavors, the large

Nf limit, where perturbation theory allows to find quantitative results.

Our goal is to define and study models that admit a tractable large Nf expansion but

at the same time might be realistic when the number of flavors is small. For this reason we

consider an even number of flavors and allow for interactions that respect at least U(Nf/2)2

global symmetry, instead of the usual U(Nf ). We use the name “easy plane” QED’s because

for Nf=2, one of the bosonic fixed points is the “easy-plane” CP1 model. Together with

SU(2)-CP1 model it describes the Néel — Valence Bond Solid (VBS) quantum phase tran-

sition in the SU(2) and XY antiferromagnets [1, 2, 3]. The Néel — VBS and the Superfluid

— VBS phase transitions are examples of phenomena known as Deconfined Quantum Crit-

ical Points. The fermionic QED’s with small flavor number are also important for physical

applications. In particular the Nf = 4 pure fermionic QED1 (no Yukawa interactions) de-

scribes the non-superconducting phase of the high-Tc superconducting cuprate compounds

[4, 5]. Additionally non-trivial infrared dualities hold between the Nf = 2 fermionic and the

Nf = 2 bosonic QED’s [6, 7, 8].

1In the fermionic QED’s by Nf we denote the number of 2-component Dirac fermions.
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We find four bosonic (bQED, bQED+, ep-bQED, bQED−) and four fermionic (fQED,

QED-GN+, QED-NJL, QED-GN−) fixed points2. The various models differ by the form of

the quartic interactions, which in the large Nf limit are modelled introducing one or two

Hubbard-Stratonovich scalar fields, see pages (19) and (35) for more details about the fixed

points. In each of the 8 models we systematically compute the anomalous dimensions of all

the scalar (mesonic) operators that at the leading order in Nf have small scaling dimension

(∆=1 or ∆=2). Some operators are quadratic or quartic in the charged fields, some are linear

or quadratic in the Hubbard-Stratonovich fields. We work at the next-to-leading order in the

large Nf expansion, O(1/Nf ), providing many details of the computations, including results

for all individual Feynman diagrams.

Studying quantum field theories in the large Nf limit has been proved to be useful in

different circumstances. In 2+1d the large Nf limit has recently been applied to calculate

scaling dimensions of monopole operators, S3 partition functions and central charges [9,

10, 11, 12, 13, 14, 15, 16]. We believe that it would be interesting to generalize these

computations to the “easy-plane” models described in the chapter 2.

After discussing QED’s with bosonic flavors in section 2.1 and QED’s with fermionic

flavors in section 2.2 we, move to QED with minimal supersymmetry, N = 1. In section

2.3 we compute the scaling dimensions of bilinear and quartic mesonic operators. We also

include the large Nf dimensions of monopole operators from [14]. N = 1 QED with Nf = 2 is

supposed to be dual to a supersymmetric Wess-Zumino model [17, 18], which can be studied

quantitatively in the 4 − ε expansion [18]. We compare the large Nf results on the gauge

theory side of the duality with the 4− ε results on the supersymmetric Wess-Zumino side of

the duality, and we find good quantitative agreement, providing a check of the conjectured

N = 1 duality.

As a prelude to chapter 2, here we discuss the large flavor limit of the O(N) vector model.

Although ultimately we are interested in gauge theories, the O(N) vector model is a good

laboratory to introduce some of the concepts and tools that we will need later for studying

3-dimensional gauge theories.

Let us introduce the O(N) model with N real scalar fields φi in d-dimension

SO(N) =

∫
ddx
[1

2
(∂µφi)

2 + λ
( N∑
i=1

φ2
i

)2
]
. (1.1)

Notice that the mass term τ
N∑
i=1

φ2
i is tuned to zero or equivalently the temperature T is tuned

2In the literature the fixed point bQED+ is known as Abelian Higgs or CP(Nf−1) model, the bQED is

known as tricritical scalar QED [48, 73, 74] and the QED-GN− is known simply as QED-GN [77, 89] .
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to its critical value Tc (τ = T−Tc
Tc
→ 0). In 2 < d < 4 the relevant quartic deformation (1.1)

drives the theory to a Wilson-Fisher fixed point, where the physical observables are expected

to have a power-law behaviour with some non-trivial critical exponents. In d=3, the following

special cases: the N = 1 Ising model, the N = 2 XY magnet and the N = 3 Heisenberg

magnet are very important in statistical physics in the context of phase transitions. For

small values of N it is extremely difficult to analytically study the critical point (second

order phase transition). However, as we will see, when N is large the O(N) vector model

becomes solvable.

First, with the help of Hubbard-Stratonovich (HS) transformation one is trading the

quartic interaction with cubic and quadratic terms. The partition function of the vector

model after HS transformation is as follows

ZO(N) =

∫ [
Dφi

]
e−SO(N) =

∫ [
DφiDσ

]
e−

∫
ddx
[

1
2

(∂φi)
2+σφ2i−

σ2

4λ

]
. (1.2)

Inside the exponent, summation over the flavor index i is assumed. The scalar field σ is

known as a HS or a master field. Indeed integrating out the HS field in (1.2) we will obtain

the partition function of the vector model3. So, we conclude that the vector model (1.1) can

be described by an equivalent theory

S =

∫
ddx
[1
2

(∂φi)
2 + σφ2

i −
σ2

4λ

]
. (1.3)

We analyze the 2-point correlation function (i.e. the propagator) of the HS field in the limit

N →∞. The graphs that contribute to the 2-point correlator are the bubble graphs in Fig.

1.1, all the other graphs are 1/N suppressed. For a single bubble graph we have

N · 2
∫

ddq

(2π)d
1

q2(p− q)2
= N

2Γ(d
2
− 1)2Γ(2− d

2
)

(4π)d/2Γ(d− 2)
pd−4 = NA(d)pd−4 , (1.4)

where the factor N is due to the N scalar flavors circulating inside the closed loop (1.1).

The fraction in (1.4) is denoted by A(d). To calculate the integral we used (B.8).

= + + + ....

Figure 1.1: HS field σ effective propagator (red dashed line). The black dashed line stands

for the tree level HS field propagator and the blue line stands for the scalar field φi

propagator

3The path integral (1.2) over the HS field σ is performed along a contour parallel to the imaginary axis.

This ensures that the path integral is convergent.
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Summing geometric series of the bubble graphs in Fig. 1.1 we obtain

〈σ(p)σ(−p)〉 = (−4λ) + (−4λ)NA(d)pd−4(−4λ) + (−4λ)
(
NA(d)pd−4(−4λ)

)2
+ ...

= (−4λ)
1

1 + 4λNA(d)pd−4
. (1.5)

Using (1.5), we find in 2 < d < 4, the effective propagator of the HS field in the IR limit

〈σ(p)σ(−p)〉|p→0 = (−4λ)
1

1 + 4λNA(d)pd−4

∣∣∣∣
p→0

= − p4−d

NA(d)
, (1.6)

where in the right hand side we kept only the leading term after expanding at small momen-

tum. We conclude that when the number of flavors is large, in the IR limit the scalar HS

field has a scaling dimension ∆[σ] = 2. Therefore at the critical point, the σ2 operator has

a scaling dimension equal to 4 and it is an irrelevant operator. We remind that irrelevant,

marginal and relevant operators are defined with scaling dimensions ∆ > d,∆ = d,∆ < d

respectively. The critical O(N) model is described by the following effective action

Seff =

∫
ddx
[1
2

(∂φi)
2 + σφ2

i

]
. (1.7)

with an HS propagator defined in (1.6). Using the effective action we can proceed to the

next step, which is to find the order O(1/N) corrections to the scaling dimensions of various

observables. In Fig. 1.2 we show the relevant graphs that appear in the 2-point functions of

the scalar fields φi and the HS field σ. Each HS field propagator carries a 1/N factor (1.6)

and each closed loop, with N scalar flavors circulating inside, gives a factor N . Therefore

the last three graphs in the 2-point function of the HS field are of order 1/N , relative to the

leading order effective propagator (1.6). Also notice that, unlike to standard perturbative

expansions, the 1/N expansion has a peculiar property that at a given order in 1/N in each

graph the number of loops will not be necessarily the same for all the graphs. The non-tree

level graphs in Fig. 1.2 are actually divergent (if we specialise in d = 3 then the three loop

graph, also known as Aslamazov-Larkin graph, turns to be finite). The divergent parts of

these graphs (after appropriately regularizing the corresponding integrals) is all we need for

finding order O(1/N) corrections to the scaling dimensions. There are various approaches

for calculating such integrals. Especially it is easy to work in a position space and to identify

the regions from where the potential UV divergencies might raise. We do not provide any

further details here, since all these and other similar graphs will be treated in the chapter

2 and in the appendix C. There we specialise in d = 3, however one might think about

generalizing our results to arbitrary dimension.
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〈φi(p)φj(−p)〉 = +

〈σ(p)σ(−p)〉 = + + +

Figure 1.2: 1/N corrections to the 2-point functions

Below we give the scaling dimensions of the basic fields [19] at the order O(1/N)

∆[φ] =
d− 2

2
+

1

2

η1

N
+O

( 1

N2

)
, (1.8)

where η1 ≡ −
4a
(
2− d

2

)
a
(
d
2
− 1
)

a(2)Γ
(
d
2

+ 1
) and a(z) ≡ Γ(d/2− z)

Γ(z)
, (1.9)

∆[σ] = 2 +
2(d− 1)(d− 2)

d− 2

η1

N
+O

( 1

N2

)
. (1.10)

In the physically interesting dimension d = 3 one obtains

∆[φ] =
1

2
+

4

3π2N
+O

( 1

N2

)
, (1.11)

∆[σ] = 2− 32

3π2N
+O

( 1

N2

)
. (1.12)

The critical O(N) model can be studied near 4 dimensions with the help of the epsilon-

expansion. The IR stable fixed point of the O(N) vector model in d = 4 − 2ε, known as

a Wilson-Fisher fixed point, describes the critical regime of the O(N) model which so far

we have been examining with large N methods. Indeed plugging d = 4 − 2ε in (1.8, 1.10),

expanding for small ε and comparing the results versus epsilon expansion predictions, one

finds total agreement. In other words the large N expansion and the epsilon expansion

being quite different approaches to the problem, are useful for cross-checking each other.

The non-triviality of this check stems from the fact that in the 1/N expansion the critical

O(N) model (1.7) is renormalized, while in the epsilon expansion the O(N) model with (UV)

action (1.1) is perturbatively renormalized.

Finally, we comment about the relation between the d-dimensional O(N) vector model

and the d-dimensional O(N) Non-Linear-Sigma-Model (NLSM). The latter is defined with a

standard kinetic term for the scalar flavor fields, plus a constraint
N∑
i=1

φ2
i = 1. It can be proved

(for instance using the large N methods) that these models lie in the same universality class,

i.e. have the same critical behaviour. Additionally the O(N) NLSM admits an interacting

UV fixed point near 2 dimensions, which can be studied with the help of epsilon expansions

in d = 2 + 2ε.
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QED’s in 2 + 1 dimensions and Complex CFT’s

The fixed points4 of many-flavor fermionic and many-flavor bosonic QED’s, which we ex-

amine in the chapter 2, are examples of unitary conformal field theories. Lowering values

of Nf the RG flow might experience a first order phase transition: a runaway RG flow in

the bosonic QED’s (see the discussion on pages 11-12) and a dynamical chiral symmetry

breaking (DχSB) in the fermionic QED’s. The DχSB has been a subject of many theoretical

studies, see for instance [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and the references

therein. Lattice simulations in Nf = 2 fQED, bQED+ and ep-bQED suggest second order

or weakly first order phase transitions5 with certain critical exponents [34, 35, 36, 37, 38].

However the numerical bootstrap [39, 40, 41, 42, 43] shows that there are no 3d unitary

CFT’s with those critical exponents. Question arises: for which values of Nf the transition

ceases to be second order, and what is the mechanism behind the weakness of the first order

transitions in these theories?

In the chapter 3, using the O(1/Nf ) scaling dimensions of various mesonic operators,

we argue that lowering Nf , at some critical value N∗f the bosonic fixed points collide in

the following pattern: bQED+ with bQED (both have U(Nf ) symmetry), and ep-bQED

with bQED− (both have U(Nf/2)2 symmetry). The large Nf formulas allow us to estimate

N∗f ∼ 9−11. We interpret these collisions as “merging and annihilation” of the fixed points:

two (real) fixed points annihilate into each other and become a pair of complex conjugate

fixed points or complex CFT’s [44, 45, 46]. The RG flow preserves unitarity and doesn’t hit

those complex fixed points, instead it slows down while passing between the complex fixed

points6. For Nf . N∗f the IR physics is not described by a second order phase transition, but

by a weakly first order phase transition. The merging and annihilation between the bQED+

and bQED was also discussed in [47, 48, 49, 50, 51].

In the case of the fermionic QED’s, the large Nf formulas suggest the following collisions:

U(Nf ) fQED with U(Nf/2)2 QED-GN−, and U(Nf ) QED-GN+ with U(Nf/2)2 QED-NJL.

The collisions happen at N∗f ∼ 3− 7. Notice that the fixed points with different symmetries

collide with each other! For this reason, it is not obvious whether these collisions can

4We remind that the stable solutions of the RG beta functions, known as fixed points, are associated with

the second order phase transitions [20]. At those fixed points the couplings do not run and there is a scale

invariance. The absence of a stable fixed point predicts a 1st order phase transition between the disordered

and ordered phases.
5First order phase transitions with huge (compared to the lattice spacing) correlation length are known

as weak first order transitions.
6This behaviour of the RG flow is also known as “walking”, and it was introduced in the context of 4d

gauge theories, see [46] and references therein. In walking gauge theories the gauge coupling runs slowly for

a broad range of energies and the theory is approximately scale invariant.
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be interpreted as merging and annihilation into the complex plane7. Another possibility

is that the fixed points with different symmetries, lowering Nf to N∗f , do not disappear

into the complex plane but instead “pass through each other” and exchange their stability

properties8. Unfortunately this scenario (exchange of stability between fermionic QED’s

following the pattern above) doesn’t predict a first order phase transition and DχSB, and

so the N∗f will not be associated with the critical number of flavors (N c) below which a

DχSB takes place. However it is an interesting phenomenon by itself, and its importance

has been discussed in the context of vector models with cubic anisotropy. The “passing

through each other” scenario is useful for understanding whether a given theory with a bigger

symmetry is stable or unstable under the symmetry breaking deformations. In the paper [6]

we claimed a merging and annihilation between the fermionic QED’s and we supported it

with IR dualities, instead in this thesis we will study the collision patterns using the large

Nf techniques, without specifying the fate of the fermionic QED’s after the collisions.

Let us explain the rationale behind the collisions from the large-Nf perspective. Let us

consider the scaling dimensions of the quartic operators in tricritical bosonic QED and in

fQED, at order O(1/Nf ):

Tricritical bosonic QED: ∆[|Φ|4[2,0,...,0,2]] = 2− 128

3π2Nf

, (1.13)

∆[|Φ|4singlet] = 2 +
256

3π2Nf

. (1.14)

fQED: ∆[|Ψ|4[0,1,0,...,0,1,0]] = 4− 192

3π2Nf

, (1.15)

∆[{(|Ψ|2singlet)2, F µνFµν}] = 4 +
64(2±

√
7)

3π2Nf

, (1.16)

where we explicitly mentioned the Dynkin labels under SU(Nf ). DecreasingNf continuously,

in bQED the singlet operator approaches from below ∆ = 3. The physical interpretation is

that tricritical bosonic QED merges with the CPNf−1 model. In the fermionic QED instead,

it is the SU(Nf )-[0, 1, 0, ..., 0, 1, 0] (symmetry breaking) operator that approaches ∆ = 3

from above. A simple, estimate of the collision points is then easy to obtain:

N∗bQED ∼
256

3π2
' 8.6 , N∗fQED ∼

192

3π2
' 6.5 . (1.17)

In the chapter 3 we provide various estimates of N∗f in all the four collisions, by studying

the operators that hit ∆ = 3 (marginality crossing equation) at the collision points. These

operators are quartic in the flavors or quadratic in the Hubbard-Stratonovich fields. We

consistently find that in the bosonic QED’s N∗f ∼ 9−11, while in fermionic QED’s N∗f ∼ 3−7.

7See however, [25] and [45] where the merging and annihilation between fQED and QED-GN− was

discussed.
8This scenario for the relativistic fermion theories was discussed in [52] using the functional RG technique.
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Let us close this discussion comparing with other large Nf 2+1d models. In O(N) models

or O(N)-Gross-Neveu models, the 1st order corrections to the singlet operators are smaller,

∼ 32
3π2N

, and there is a unitary CFT for all N ≥ 1. Yukawa and quartic scalar interactions

are weaker than gauge interactions. In the minimally supersymmetric QED with Nf flavors

the order O(1/Nf ) correction to the SU(Nf )-singlet quadratic operator, instead of being

large as in non supersymmetric QED’s, is zero. There is no indication of merging and

annihilation into the complex fixed points in the supersymmetric case. Additionally, the

duality between the Nf = 2 super-QED and the Wess-Zumino model (which is checked in

the section 2.3.3) suggests that the N = 1 super-QED doesn’t experience DχSB even for

Nf = 2, but instead in the IR flows to a CFT. On the other hand, it is natural to expect

that non supersymmetric gauge theories with non-Abelian gauge groups, and possibly Chern-

Simons interactions, display a qualitative behavior similar to QED. The large-Nf expansion

might be useful for instance to improve our understanding of the quantum phase scenarios

of [53, 54, 55].

Main tool used in the chapter 3 (besides the order O(1/Nf ) scaling dimensions) is the

marginality crossing equation applied to various mesonic operators. In order to introduce the

concept, below we give two examples. The first example (Abelian Higgs model) is actually

very relevant for the discussion of merging and annihilation between the bQED+ and the

bQED. It shows the merging mechanism of these fixed points near 4 dimensions (instead in

the chapter 3 we study the merging in the physical d=3 dimension). The second example

illustrates the “passing through each other” mechanism in the O(N)×O(N) vector model.

In the chapter 3 we will briefly discuss this model as an ungauged version of the easy-plane

bosonic gauge theories.

The Abelian Higgs model in Euclidean metric is defined as follows

L =
1

4
F µνFµν +

Nf∑
i=1

|DµΦi|2 + λ(

Nf∑
i=1

|Φi|2
)2

+ (gauge fixing term) , (1.18)

where Dµ = ∂µ + ieAµ and Φi, i = 1, ..., Nf are complex scalars. Theory has a global

symmetry SU(Nf ). The one-loop beta functions in d = 4 − 2ε for the gauge and quartic

couplings are

βe =
de

dl
= εe− 1

(4π)2

2Nfe
3

6
, (1.19)

βλ =
dλ

dl
= 2ελ− 1

(4π)2

[
16(Nf + 4)λ2 − 12λe2 +

3

2
e4
]
, (1.20)

where the beta functions are defined as derivatives of running couplings with respect to the

logarithm of the length scale, which we denote by l 9. For positive ε theory in the UV

9We will use this definition in the Introduction, chapters 2 and 3. In the chapter 4, the beta functions
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limit is asymptotically free. When the number of flavors is larger than some critical value

Nf > N∗f ≈ 183 the theory has a charged (non-zero gauge coupling) Wilson-Fisher fixed

point besides the standard uncharged WF point [56] 10. Actually two such fixed points exist,

stable (bQED+) and unstable (bQED). In the range Nf < N∗f the beta functions do not

have real solutions, instead the RG flow runs toward the negative coupling and the quartic

potential becomes unstable. This runaway behaviour can be interpreted as a fluctuation

driven first-order phase transition, between the Coulomb and the Higgs phases.

Now, let us more carefully examine the fixed points. Usually one is interested in real

solutions of (1.19, 1.20) which can be interpreted as unitary CFT’s, however for our purposes

we will not discard the complex solutions. The one-loop beta functions are quadratic in the

variables (e2, λ), and they always have solutions, either real or complex. For convenience we

rescale the couplings e2 → (4π)2e2, λ→ (4π)2λ. Solving (1.19, 1.20) one finds

e2
∗ =

3

Nf

ε , (1.21)

λ∗ =
Nf + 18±

√
N2
f − 180Nf − 540

16Nf (Nf + 4)
ε . (1.22)

The scaling dimension of the quartic operator Φ4 ≡
( Nf∑
i=1

|Φi|2
)2

, at this fixed points is related

to the slope of the quartic coupling beta function

∆[Φ4] = d− dβλ
dλ

∣∣∣∣
(λ=λ∗,e2=e2∗)

= d± 2ε

√
N2
f − 180Nf − 540

Nf

. (1.23)

From (1.23) we conclude that for Nf > N∗f the fixed point with a plus sign (1.21, 1.22) is

stable (i.e. ∆[Φ4] > d) and we identify it with bQED+, and the other solution is unstable

and we identify it with bQED (the tricritical bosonic QED).

Lowering the number of flavors we observe that the solutions (1.21, 1.22) are approaching

to each other. Meanwhile the scaling dimension of the Φ4 operator (1.23), converges from

above (at bQED+) and from below (at bQED) to its marginal value d. When Nf hits the

critical value N∗f ≈ 183 the fixed points merge and the scaling dimension of the quartic

operator becomes exactly equal to d: ∆[Φ4] = d. The last equation is the “marginality

crossing equation” [45]. Let us continue lowering further the number of flavors Nf < N∗f .

Then the λ∗ becomes complex and the scaling dimension of the Φ4 equals to the marginal

are defined as derivatives of couplings with respect to the energy scale.
10It seems that including the higher loop corrections and performing Padé resummations significantly

reduces the value of N∗f obtained in [56], see [57, 58, 59, 60].
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value d plus a pure imaginary correction

∆[Φ4] = d± iδ, δ ≡ 2ε

√
540 + 180Nf −N2

f

Nf

, Nf < N∗f . (1.24)

Let us decompose the quartic coupling into real and imaginary parts λ = x+ iy, then using

(1.20) we can write the RG flow equations for each component. This leads to the following

system of coupled differential equations

de2

dl
= 2εe2 − 2Nfe

4

3
, (1.25)

dx

dl
= 2εx− [16(Nf + 4)(x2 − y2)− 12xe2 +

3

2
e4] , (1.26)

dy

dl
= 2εy − [32(Nf + 4)xy − 12ye2] . (1.27)

Notice that the “beta” function of the y is proportional to y. This means that if we start

the flow with y tuned to zero, then it will stay zero along the flow. This is not surprising

since the RG flow preserves unitarity.

In the Fig. 1.3 we draw the RG flow in the (x, y) plane (i.e. in the complex λ plane) at

fixed e2
∗ = 3ε

Nf
. The complex fixed points are indicated by red dots. From Fig. 1.3 we see

that the RG flow lines never cross the axis x, in accordance with the discussion above. The

beta functions near the fixed points can be treated in a linear approximation

βλ =
dλ

dl
≈ ±iδ · (λ− λ∗) . (1.28)

The equation (1.28) can be easily solved to give

λ(l)− λ∗ ∼ l±iδ . (1.29)

This explains why the RG flow lines are circles around the fixed points Fig. 1.3. It also

explains why the circles are oppositely directed.
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Figure 1.3: Runaway RG flow in the (x, y) plane for Nf = 35.

Let us finally study what happens when the number of flavors is less but very close to

the critical number. In this case the complex fixed points are located very close to the real

axis and the imaginary part of the scaling is

δ ∼ 2ε
(√

N∗f −Nf

)
, Nf → N∗f . (1.30)

The unitary RG flow passes between those complex fixed points and slows down. To under-

stand the last point, we rewrite the beta function in the following form

d(λ− A)

dl
= −16(Nf + 4)

[
(λ− A)2 +

δ2

322(Nf + 4)2

]
, A ≡ Nf + 18

16(Nf + 4)Nf

ε . (1.31)

If we interpret the RG scale l as a time, then we can ask how long it takes for the RG flow

to pass from λ = λ0 to λ = −λ0 (shifting λ→ λ+ A in advance)

∆l = −
−λ0∫
λ0

dλ

16(Nf + 4)
[
λ2 + δ2

322(Nf+4)2

] ∼ 2π

δ
=

π

ε
(√

N∗f −Nf

) . (1.32)

The integral was evaluated in the limit Nf → N∗f , i.e. for small δ (1.30). Equation (1.32)

proves that, closer the number of flavors is to its critical value slower becomes the RG flow:

∆l ∼ 1√
N∗
f−Nf

. In conclusion the merging and annihilation scenario explains the weakness

of the first order phase transition in this example. The scaling behaviour (1.32) is known as

a Miransky scaling. It was discovered in the context of the conformal phase transitions in

4d gauge theories, see [61, 62, 63].
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The O(N)×O(N) vector model (see [64] and the references therein) is defined with the

following action

L=
1

2

N∑
i=1

|∂µφi|+
1

2

N∑
i=1

|∂µφ̃i|2+ λep

(( N∑
i=1

|φi|2
)2

+
( N∑
i=1

|φ̃i|2
)2
)

+ λ

N∑
i=1

|φi|2
N∑
j=1

|φ̃j|2 . (1.33)

The scalar fields φi (φ̃i) transform as a vector under the left (right) factor of the symmetry

group O(N)×O(N). Beta functions for the quartic couplings (λep, λ) are

βλep =
dλep
dl

= 2ελep −
[
8(N + 8)λ2

ep + 2Nλ2
]
, (1.34)

βλ =
dλ

dl
= 2ελ−

[
16λ2 + 16(N + 2)λλep

]
. (1.35)

The system of equations (βλep = 0, βλ = 0) has four solutions, i.e. four fixed points

Gaussian : λep = 0, λ = 0 , (1.36)

O(2N) : λep =
ε

8(4 +N)
, λ = 2λep , (1.37)

Decoupled : λep =
ε

4(8 +N)
, λ = 0 , (1.38)

Model3 : λep =
εN

8(8 +N2)
, λ =

ε(4−N)

4(8 +N2)
. (1.39)

At the O(2N) fixed point the symmetry is O(2N) since λ = 2λep. At the decoupled fixed

point the coupling λ = 0. Since this coupling mediates interactions between φi and φ̃i, then

at the Decoupled fixed point we simply have two decoupled copies of the O(N) model. The

fixed point Model3 carries a symmetry O(N)×O(N).

For large values of N , more precisely when N > 4 the RG flow diagram is as in the

left panel of Fig. 1.4. In this region, the decoupled fixed point is fully stable, while the

O(2N) fixed point is only stable along the deformations that preserve O(2N) symmetry

and is unstable under the symmetry breaking deformations O(2N) → O(N) × O(N). For

2 < N < 4 the Model3 is the fully stable fixed point11: when N → 4+ it moves clockwise

and collides with the Decoupled fixed point and passes through it by exchanging its stability.

The central panel of Fig. 1.4 shows the RG plot in the region 2 < N < 4. Continuing to

11See also the discussion at the beginning of the section (3.1), which disagrees with the statements above,

if those are extrapolated to d = 3. This is not surprising since here we are using a one-loop approximation,

which is not so good for extrapolation. In [98], the O(N)×O(N) model is analyzed using the 5-loop order

beta functions. Since these beta functions are no longer quadratic in the quartic couplings, then there are

more than 4 fixed points. The analysis becomes more involved than what we have discussed above. The fixed

points no longer collide while lowering N . However for small value of N some of the fixed points exchange

their stability properties. More precisely: for N > 1 the decoupled fixed point is fully stable and for N = 1

the O(2N = 2) model becomes fully stable.
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lower N, for N < 2 the O(2N) model becomes the fully stable fixed point (right panel of Fig.

1.4): when N → 2+ the Model3 moving clockwise collides with the O(2N) model (symmetry

enhancement) and passes through it exchanging the stability. The O(2N) model is stable

under both O(2N) symmetry preserving and symmetry breaking O(2N) → O(N) × O(N)

deformations. We want to stress that the collisions of various fixed points in this particular

example cannot be interpreted as “merger and annihilation”, and no complex CFT’s appear

while lowering N .

(a) N > 4 (b) 2 < N < 4 (c) N < 2

Figure 1.4: RG flow diagram of the O(N)×O(N) model.

To conclude, we provide the scaling dimensions of quartic operators at the fixed points

O(2N) and Model3.

O(2N) : ∆1 = 4, ∆2 = 4− 2ε− 2ε(N − 2)

N + 4
, (1.40)

Model3: ∆1 = 4, ∆2 = 4− 2ε− 2ε(N2 − 6N + 8)

N2 + 8
. (1.41)

The scaling dimension ∆1 is associated with the O(2N) invariant quartic operator and it

follows from (1.40, 1.41) that both fixed points are stable with respect to this deformation

(∆1 > d = 4−2ε). The scaling dimension ∆2 is associated with the O(2N)→ O(N)×O(N)

symmetry breaking quartic operator. We see that the marginality crossing equation ∆2 = d

holds when these fixed points collide at N = 2. However for N < 2, ∆2 doesn’t acquire an

imaginary part but stays real as the fixed points pass through each other. This is qualitatively

different behaviour than what we observed in the “merger and annihilation” scenario (1.24).
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Higher Derivative Gauge theory in d = 6 and the CP(Nf−1) NLSM

In the paper [65], Fei, Giombi and Klebanov studied the O(N) vector model in the dimension

4 < d < 6. When d > 4 the φ4 operator is an irrelevant deformation, and the existence of

a UV interacting fixed point was conjectured12. The O(N) vector model was engineered in

the form (1.3), introducing a scalar HS field σ. Notice that in contrast to the case d < 4, in

d > 4 in the large N limit the operator σ2 is a relevant operator at the critical point (since

it has a scaling dimension 4).

The theory (1.3) was UV completed in 4 < d < 6: including in the action a kinetic term

(∂µσ)2 and a cubic term σ3 [65]. Because of the presence of a “Yukawa” type interaction

σφ2, we will refer to this model as O(N)-Yukawa. It is very crucial to observe that these

ultraviolet completion in the dimension 4 < d < 6 has a relevant operator σ2, which must be

tuned to zero (the mass term φ2 needs to be tuned to zero as well) in order to reach the IR

critical point. The IR critical O(N)-Yukawa model was identified with the UV interacting

fixed point of the O(N) vector model in 4 < d < 6.

Additionally, the O(N)-Yukawa model was examined [65] near its critical dimension d = 6

(the critical dimension of a given theory is defined as the dimension where the interactions

in the action become marginal). In its critical dimension the theory was renormalized at one

loop (later 3-loop [67] and 4-loop [68] analysis have been carried out). It was proved that

the IR stable interacting fixed point at d = 6 − 2ε coincides with the critical O(N) vector

model13.

Motivated with this discussion, in the chapter 4 we study the CP(Nf−1) NLSM with Nf

complex scalar fields Φi in 4 < d < 6. This model will be engineered with the help of two

master fields: the vector Aµ and the scalar σ. Notice that the operators (σ2, F 2
αβ) are relevant

at the critical point in the large Nf limit, since both have scaling dimension 4 > d.

The CP(Nf−1) model engineered with the help of two master fields, will be UV completed

including in the action the “kinetic terms”: (∂µσ)2, (∂µFαβ)2 and the interaction terms:

σ3, σF 2
αβ. Notice that the kinetic term of the gauge field contains 4-derivatives, instead the

term F 2
αβ plays a role of a gauge invariant mass term for the gauge field. For this reason we

will refer to the UV completion as a Higher Derivative Gauge (HDG) theory. In this theory

the mass terms (σ2, F 2
αβ) are relevant deformations, and we need to tune both of them to

zero in order to reach in the IR limit the critical CP(Nf−1). If we choose to not tune the σ2

12See however [66], where the authors using the functional RG seem to rule out existence of such a UV

interacting fixed point, with bounded critical potential.
13See also [69, 70, 71, 72], where the vector model, tensor models, fermionic QED and fermionic QCD are

studied in the dimension 4 < d < 6.
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term, then we end up on another interesting critical point: the critical pure scalar QED in

4 < d < 6 (no Yukawa interactions of type σΦ2). Notice that in the dimension 4 < d < 6 the

operator Φ4 is irrelevant, and therefore to reach the IR critical scalar QED, there will be no

need to tune that operator to zero (this was not the case in 2 < d < 4, where for instance to

reach the tricritical point we had to tune to zero the quartic operator). Instead if we do not

tune the term F 2
αβ, then we will end on the critical O(N)-Yukawa, which has already been

discussed in [65].

Most importantly we renormalize the HDG in its critical dimension d = 6. In the

dimension d = 6− 2ε (taking Nf large) we find two IR interacting fixed points (besides the

ungauged fixed point which corresponds to the critical O(N)-Yukawa). We prove that these

fixed points coincide with the critical CP(Nf−1) and the critical pure scalar-QED.

The chapter 4 is organized as follows. First we review the model CP(Nf−1) and its critical

properties in the large Nf limit in 4 < d < 6 using [73]. In particular we provide scaling

dimensions of various operators at the order O(1/Nf ) in d-dimension. We also discuss the

critical pure scalar-QED in the large Nf limit. The large Nf limit of this model has not

been studied yet in the literature, we provide scaling dimensions of some operators without

giving the details of the computations. Second, we renormalize the UV action in d = 6 by

constructing the one-loop beta functions, one-loop anomalous dimensions of the fields and

of the mass operators (mass renormalization). The beta functions are solved in the large Nf

limit and the fixed points are classified. At all the fixed points the scaling dimensions of the

fields and of the mass operators are explicitly provided. Finally, these results are checked

versus the large Nf predictions of the critical models.
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Chapter 2

Easy-plane QED3’s in the large Nf
limit

2.1 Four bosonic QED fixed points in the large Nf limit

In this section we study bosonic QED with large Nf complex scalar fields, imposing at least

U(Nf/2)2 global symmetry. There are four different fixed points, two fixed points have

U(Nf ) global symmetry, two fixed points have U(Nf/2)2 global symmetry.

We start by considering the following UV (Euclidean) lagrangian

L =
1

4e2
FµνF

µν +

Nf/2∑
i=1

(|DΦi|2 + |DΦ̃i|2) + λ

Nf/2∑
i,j=1

|Φi|2|Φ̃j|2

+ λep

(

Nf/2∑
i=1

|Φi|2)2 + (

Nf/2∑
i=1

|Φ̃i|2)2

+
Nf

32(1− ξ)

∫
d3y

∂µA
µ(x)∂νA

ν(y)

2π2|x− y|2
, (2.1)

where Fµν = ∂µAν − ∂νAµ, and Dµ = ∂µ + iAµ is the covariant derivative with respect to

the U(1) gauge field Aµ. The complex scalar fields (Φi, Φ̃i) (i = 1, .., Nf/2) carry charge +1

under the gauge group. Continuous global symmetry group of the action (2.1) is SU(Nf/2)×
SU(Nf/2)×U(1)b×U(1)top. The scalars Φi (Φ̃i) transform in the fundamental representation

under the left (right) factor of the symmetry group SU(Nf/2) × SU(Nf/2). Under U(1)b,

Φi and Φ̃i carry charge +1 and −1, respectively. U(1)top is the topological symmetry, it is

associated with the conserved flux current ∼ εµνσ∂νAσ. There are also discrete symmetries,

such as parity, charge conjugation and exchange symmetry Φi ↔ Φ̃i.

The conformal gauge fixing is defined by the last term in (2.1). Choosing the gauge

fixing parameter to be zero (ξ = 0) simplifies the calculations a lot, however we prefer to
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keep ξ arbitrary (notice that in this parametrization ξ = 1 is the Landau gauge). Calculating

correlation functions of gauge invariant operators, we will see that some Feynman graphs

depend on ξ, but the sum (at a given order in 1/Nf ) doesn’t as expected. This is a useful

check of the calculations. In the following, we will always assume conformal gauge fixing for

all the QED actions, but will not write it explicitly.

The quartic potential in (2.1) is a relevant deformation of the free theory. Depending on

the form of the quartic couplings {λep, λ} there are four different fixed points1:

• bQED (tricritical), defined by vanishing quartic potential ,

• bQED+ (CPNf−1 model), defined by V ∼ (
∑
|Φi|2 + |Φ̃i|2)2 ,

• ep-bQED (”easy-plane”), defined by V ∼ (
∑
|Φi|2)2 + (

∑
|Φ̃i|2)2 ,

• bQED−, defined by V ∼ (
∑
|Φi|2 − |Φ̃i|2)2 .

In appendix A we study the RG flow diagram and the fixed points of the model (2.1) using

the epsilon expansion technique. The zeros of the beta functions support the existence of

precisely these four RG fixed points. See Introduction and chapter 3 for discussions about

the ungauged fixed points and the RG flow.

We study the critical behaviour of the fixed points in the large Nf limit. For this pur-

pose we engineer the quartic interactions in terms of cubic and quadratic interactions via

the Hubbard-Stratonovich trick. Introducing two HS fields σ and σ̃, we get an expression

equivalent to (2.1)

L =
1

4e2
FµνF

µν +

Nf/2∑
i=1

(|DΦi|2 + |DΦ̃i|2) + σ

Nf/2∑
i=1

|Φi|2 + σ̃

Nf/2∑
i=1

|Φ̃i|2

− η1

2
(σ2 + σ̃2)− η2σσ̃ . (2.2)

Integrating out σ and σ̃, one recovers the quartic potential in (2.1) with couplings {λep, λ}
expressed in terms of {η1, η2}:

λep =
η1

2(η2
1 − η2

2)
, (2.3)

λ = − η2

η2
1 − η2

2

. (2.4)

It is sometimes convenient to work with the following HS fields

σ+ =
σ + σ̃

2
,

σ− =
σ − σ̃

2
. (2.5)

1We tune all the mass terms to zero.
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With the choice (2.5) there is no mixed quadratic term between σ+ and σ−.

L =
1

4e2
FµνF

µν +

Nf/2∑
i=1

(|DΦi|2 + |DΦ̃i|2) + σ+

Nf/2∑
i=1

(|Φi|2 + |Φ̃i|2) + σ−

Nf/2∑
i=1

(|Φi|2 − |Φ̃i|2)

− (η1 + η2)σ2
+ − (η1 − η2)σ2

− . (2.6)

2.1.1 bQED (tricritical QED)

The bQED is reached tuning to zero both the mass terms and the quartic interactions. For

this reason another name for it is tricritical bosonic QED. The large Nf effective action is

described by Nf copies of complex scalars Φi (we collected all the scalars (Φ, Φ̃) into a single

field and denoted it by Φ) minimally coupled to the effective photon

Leff =

Nf∑
i=1

|DµΦi|2 . (2.7)

The effective photon propagator is obtained by summing geometric series of bubble diagrams

such as Fig. 2.1 2.

〈Aµ(x)Aν(0)〉eff =
8

π2Nf |x|2
(

(1− ξ)δµν + 2ξ
xµxν
|x|2

)
. (2.8)

The feynman rules for the bQED action (2.7) are summarised in Tab. 2.1.

The faithful global symmetry is(SU(Nf )

ZNf
× U(1)top

)
o ZC2 , (2.9)

where ZNf is the center of SU(Nf ), generated by e2πi/Nf I ∈ SU(Nf ), which is a gauge

transformation, so the actual global symmetry is PSU(Nf ) =
SU(Nf )

ZNf
instead of SU(Nf )

(the gauge invariant local operators transform in SU(Nf ) representations with zero Nf -

ality). ZC2 is the charge-conjugation symmetry Φi → Φ∗i , Aµ → −Aµ. There is also parity

symmetry.

2It is easier to construct the effective photon propagator in momentum space first. Summing the geometric

series in (2.1) gives 〈Aµ(p)Aν(−p)〉eff = Dµρ(1−ΠD)−1
ρν

∣∣
p→0

, where Dµρ(p) = e2

p2

(
δµρ − pµpρ

p2

)
+ 16(1−ξ)

Nf |p|
pµpρ
p2

is the tree level propagator (it is derived from the action (2.1)) and Παβ(p) = Nf
∫

d3q
(2π)3

(p+2q)α(p+2q)β
q2(p+q)2 =

−Nf |p|16

(
δαβ − pαpβ

p2

)
is the one loop integral in Fig. 2.1. Since we are interested in the IR behaviour

of the propagator, we take the limit |p| → 0, and after some algebra one obtains 〈Aµ(p)Aν(−p)〉eff =
16

Nf |p|
(
δµν − ξ pµpνp2

)
+O(p

2

e2 ). Fourier transforming to position space we obtain (2.8).
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= 〈Aµ(x)Aν(0)〉eff

= 1
4π|x|

= −2δµν

x
= i

↔
∂xµ

Table 2.1: bQED Feynman rules.

= + + + ....

Figure 2.1: Effective photon propagator (red wavy line). The black wavy line stands for

tree level photon propagator.

Using the Feynman rules Tab. 2.1, we compute anomalous dimensions of gauge-invariant

operators at order O(1/Nf ). For this purpose, first we calculate the 2-point correlation

function for a given operator, then using it we extract anomalous contribution to the scaling.

It might happen that for a given model there are several gauge invariant operators that have

the same scaling dimensions at the order O(N0
f ) and carry the same quantum numbers.

These operators can mix by quantum corrections at order O(1/Nf ) and one needs to study

the matrix of mixed 2-point correlation functions in order to correctly identify the eigenbasis

of mixed operators and their anomalous dimensions.

Scaling dimension of low-lying scalar operators

Bilinear mesonic operators At the quadratic level, there are N2
f operators of the form

Φ∗iΦ
j. They transform in the adjoint plus singlet representations of SU(Nf ):

|Φ|2adj = Φ∗iΦ
j − δji

Nf

∑
k

Φ∗kΦ
k , (2.10)

|Φ|2sing =
1√
Nf

∑
k

Φ∗kΦ
k . (2.11)

3 When it is not crucial for the graph evaluation, we drop the arrows from propagators.
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=
(

1
4π|x|

)2

≡ WA

B

C

D

E

= 2× 4
(

5+3ξ
)

log x2Λ2

3π2Nf
W

=
24
(

1−ξ
)

log x2Λ2

3π2Nf
W

= 4× −48 log x2Λ2

3π2Nf
W

= 0

Table 2.2: (bQED) Results for individual Feynman graphs appearing in the 2-point

correlation function of the scalar-bilinear operators. The graph D has a vanishing

contribution in the 2-point function of the adjoint operator (see the explanation after eq.

(2.11)).3
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The 2-point correlation function for the adjoint operator is the sum of the graphs A,B,C

Tab. 2.2. Each scalar loop assumes tracing over the flavor indices and the trace with an

adjoint operator insertion is identically zero, this is because the adjoint operator defined in

(2.10) is traceless. Therefore we conclude that for the adjoint operator the graphs D and E

have a vanishing contribution. All the divergent graphs are regularized by putting an UV

cutoff Λ on the momentum integrals. Check the appendix C for more details of the loop

calculations.

〈|Φ|2adj(x)|Φ|2adj(0)〉=
( 1

4π|x|

)2

+
8
(
5 + 3ξ

)
log x2Λ2

3π2Nf

( 1

4π|x|

)2

+
24
(
1− ξ

)
log x2Λ2

3π2Nf

( 1

4π|x|

)2

=
( 1

4π|x|

)2[
1−

(
− 64

3π2Nf

)
log x2Λ2

]
=
( 1

4π|x|

)2( 1

x2Λ2

)∆
(1)
adj

, (2.12)

where we defined anomalous dimension of adjoint operator ∆
(1)
adj, so ∆

(1)
adj = − 64

3π2Nf
. We

extract the anomalous dimension for the singlet operator in a similar way. Notice that for

the singlet operator there is an additional order O(1/Nf ) contribution coming from the graph

D in Tab. 2.2 (in the singlet case each loop in the graphs D and E gives a factor Nf ). The

3-loop graphs of type D and E are known as Aslamazov-Larkin (AL) graphs. Notice how big

is the contribution of AL graph compared to the contributions of the other graphs in Tab.

(2.2). Below we give the final results

∆[|Φ|2adj] = 1− 64

3π2Nf

+O(1/N2
f ) , (2.13)

∆[|Φ|2sing] = 1 +
128

3π2Nf

+O(1/N2
f ) . (2.14)

Quartic mesonic operators Next we consider scalar quartic operators

T ijkl ≡ ΦiΦjΦ∗kΦ
∗
l . (2.15)

T ijkl is a gauge invariant operator, symmetric in its upper and lower indices. The following

decomposition of T into irreducible representations under the SU(Nf ) group is useful for

discussion of their scaling dimensions

T ijkl =
1

Nf (Nf + 1)

[
δ

(i
k δ

j)
l T

mn
mn

]
+

1

Nf + 2

[
δ

(j
(l T

i)n
k)n −

2

Nf

δ
(j
l δ

i)
k T

mn
mn

]
+
[
T ijkl −

1

Nf + 2
δ

(j
(l T

i)n
k)n +

1

(Nf + 1)(Nf + 2)
δ

(j
l δ

i)
k T

mn
mn

]
. (2.16)

The first, second and third terms in the right hand side of (2.16) are correspondingly sin-

glet, adjoint and adjoint-2 (Dynkin labels [2, 0, . . . , 0, 2]) quartic operators. All of them have
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scaling dimension 2 at leading order, it remains to calculate order O(1/Nf ) corrections.

Let us consider quartic adjoint-2 operator defined by the last term of (2.16). It is enough

to study the two-point correlation function for only one component of the adjoint-2 repre-

sentation, which we choose to be

T 12
34 = Φ1Φ2Φ∗3Φ∗4 . (2.17)

All the relevant graphs for extracting the anomalous dimension of the operator (2.17) are

collected in Tab. 2.3 (the last graph doesn’t contribute). It receives contribution from the

anomalous dimensions of the Φi fields (there are 4 such graphs) plus graphs with a photon

connecting two different legs (“kite”-graphs, there are 6 “kite”-graphs). In 2 “kite”-graphs

the photon connects the scalar propagators with arrows going in the same direction, while in

the other 4 “kite”-graphs the photon connects propagators with arrows going in the opposite

direction. The contribution of a “kite”-graph where the photon connects arrows going in the

same direction is equal to minus the contribution of a “kite”-graph where the photon connects

arrows going in the opposite direction. So effectively we are left with the contribution of 2

such “kite”-graphs4.

For the quartic adjoint operator the last graph in Tab. 2.3 contributes at order O(1/Nf ).

For the singlet quartic operator the last graph contributes twice as much as for the quartic

adjoint operator. We list the quartic operators and their scaling dimensions

∆[|Φ|4adj−2] = 2∆[|Φ|2adj] +O(1/N2
f ) = 2− 128

3π2Nf

+O(1/N2
f ) , (2.18)

∆[|Φ|4adj] = ∆[|Φ|2adj] + ∆[|Φ|2sing] +O(1/N2
f ) = 2 +

64

3π2Nf

+O(1/N2
f ) , (2.19)

∆[|Φ|4sing] = 2∆[|Φ|2sing] +O(1/N2
f ) = 2 +

256

3π2Nf

+O(1/N2
f ) . (2.20)

4One can consider degree-2k operators which transform in the adjoint-k representation (Dynkin labels

[k, 0, . . . , 0, k]). These operators do not mix with other operators. The anomalous dimension of a degree-2k

adjoint-k operator, at order O(1/Nf ), receives contribution from the anomalous dimensions of the Φi fields

(there are 2k such graphs) plus the contribution of “kite” graphs (there are
(

2k
2

)
= 2k2 − k “kite”-graphs).

In 2 ·
(
k
2

)
= k2 − k “kite”-graphs the photon connects fields with arrows going in the same direction, while

in the other k2 “kite”-graphs the photon connects fields with arrows going in the opposite direction. These

two groups of “kite”-graphs contribute with opposite signs, so effectively we are left with the contribution of

k2− (k2− k) = k such “kite”-graphs. Therefore the scaling dimension of the degree-2k adjoint-k operator is

∆[|Φ|2kadj−k] = k∆[|Φ|2adj ] +O(1/N2
f ) = k − 64k

3π2Nf
+O(1/N2

f ) .
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= W 2

= 4× 4
(

5+3ξ
)

log x2Λ2

3π2Nf
W 2

= 2× −24
(

1−ξ
)

log x2Λ2

3π2Nf
W 2

= 4× 24
(

1−ξ
)

log x2Λ2

3π2Nf
W 2

= 4× −48 log x2Λ2

3π2Nf
W 2

Table 2.3: (bQED) adjoint-2 and adjoint quartic operator renormalization.

2.1.2 bQED+ (CPNf−1 model)

The bQED+ fixed point is reached with SU(N)f invariant quartic deformation V ∼ (
∑
|Φi|2+

|Φ̃i|2)2 and by tuning the mass term to zero. In the literature this model is also known as

Abelian Higgs model or CPNf−1 model. The large Nf effective action is described by Nf

copies of complex scalars Φi (we collected all the scalars (Φ, Φ̃) into a single field and denoted

it by Φ), minimally coupled to an effective photon and interacting with a single Hubbard-

Stratonovich field σ+ via a cubic interaction:

Leff =

Nf∑
i=1

|DµΦi|2 + σ+

Nf∑
i=1

|Φi|2 . (2.21)

The effective photon propagator is the same as in (2.8) and the effective propagator for the

HS field is obtained from summing geometric series of the bubble diagrams in Fig. 2.2.

〈σ+(x)σ+(0)〉eff =
8

π2Nf |x|4
. (2.22)

The global symmetry is the same as in bQED (2.9).
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= + + + ....

Figure 2.2: (bQED+) HS field σ+ effective propagator (red dashed line). The black dashed

line stands for tree level HS field propagator.

Scaling dimension of low-lying scalar operators

The N2
f gauge invariant operators Φ∗iΦ

j transform in the adjoint plus singlet of SU(Nf ).

The singlet operator is set to zero by the equation of motion of the Hubbard-Stratonovich

field σ+.5 So we consider the scaling dimension of σ+ instead. The scaling dimensions of

these operators can be readily extracted using the Feynman graphs in Tab. 2.4

∆[|Φ|2adj] = 1− 48

3π2Nf

+O(1/N2
f ) , (2.23)

∆[σ+] = 2− 144

3π2Nf

+O(1/N2
f ) . (2.24)

The formulas above have already been discussed in [56, 74, 73, 75]. The scaling dimensions

(2.23, 2.24) are related to traditional critical exponents by

ηN = 2∆[|Φ|2adj]− 1 = 1− 96

3π2Nf

+O(1/N2
f ) , (2.25)

ν−1 = 3−∆[σ+] = 1 +
144

3π2Nf

+O(1/N2
f ) , (2.26)

where ηN is the anomalous scaling dimension of the adjoint scalar-bilinear operator also

known as Néel field [75].

5As a simple check of this statement, one can explicitly check that the two point function

〈|Φ|2sing(x)|Φ|2sing(0)〉 is zero at order O(N0
f ).

+ = 0

The 1-loop diagram cancels with a 2-loop diagram given by two bubbles connected by a σ+ propagator

(normalizing the singlet operator as 1√
Nf

∑
k Φ∗kΦk, both such graphs are of order 1 at large Nf ). We thank

to Silviu Pufu for clarifying this point.
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= 〈σ+(x)σ+(0)〉eff ≡ U

= 2× −4
(

5+3ξ
)

log x2Λ2

3π2Nf
U

= −24
(

1−ξ
)

log x2Λ2

3π2Nf
U

= 2× 2 log x2Λ2

3π2Nf
U

= 12 log x2Λ2

3π2Nf
U

= 4× 48 log x2Λ2

3π2Nf
U

= 0

= 0

= W

= 2× 4
(

5+3ξ
)

log x2Λ2

3π2Nf
W

=
24
(

1−ξ
)

log x2Λ2

3π2Nf
W

= 2× −2 log x2Λ2

3π2Nf
W

= −12 log x2Λ2

3π2Nf
W

Table 2.4: (bQED+) Results for the individual Feynman graphs appearing in the 2-point

correlation functions 〈σ+(x)σ+(0)〉 (left column)6 and 〈|Φ|2adj(x)|Φ|2adj(0)〉 (right column).

Next we discuss scaling dimension of the quartic adjoint-2 operator (with Dynkin labels

[2, 0, ..., 0, 2]). This operator is in the spectrum and has scaling dimension 2 at order O(N0
f ).

The graphs that contribute to its 2-point correlation function at the order O(1/Nf ) are the

ones in Tab. 2.3 (already discussed in the context of bQED), supplemented with the list of

graphs in Tab. 2.5. There are 4 graphs with HS field connecting a leg with itself and 6 kite

graphs with the HS field joining two different legs. Summing all the contributions we can

6The last two graphs have no logarithmic divergences.
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= 4× −2 log x2Λ2

3π2Nf
W 2

= 6× −12 log x2Λ2

3π2Nf
W 2

Table 2.5: (bQED+) quartic adjoint-2 renormalization. (contribution from graphs with HS

prop.)

extract anomalous dimension of the quartic adjoint-2 operator7

∆[|Φ|4adj−2] = 2− 48

3π2Nf

+O(1/N2
f ) . (2.27)

2.1.3 ep-bQED (”easy-plane” QED)

The ep-bQED fixed point is reached with the quartic potential V ∼ (
∑Nf/2

i=1 |Φi|2)2 +

(
∑Nf/2

i=1 |Φ̃i|2)2 and by tuning the mass terms to zero. The large Nf effective action is

described by complex scalar fields (Φi, Φ̃i) minimally coupled to the effective photon and

interacting with two HS fields via cubic interactions

Leff =

Nf/2∑
i=1

(|DΦi|2 + |DΦ̃i|2) + σ

Nf/2∑
i=1

|Φi|2 + σ̃

Nf/2∑
i=1

|Φ̃i|2 . (2.28)

The effective propagator for the photon is the same as in (2.8), and the effective propagators

for the HS fields are

〈σ(x)σ(0)〉 = 〈σ̃(x)σ̃(0)〉 =
8

π2(Nf/2)|x|4
. (2.29)

The photon “sees” all the Nf flavors, σ and σ̃ only “see” Nf/2 flavors. In the Feynman

graphs, we use red dashed (double dashed) line for σ (σ̃) and blue (double blue) line for Φ

(Φ̃).

7The quartic adjoint and the quartic singlet operators are out of the spectrum, because of the equations

of motion of σ+. In their place, one could consider the operators σ+|Φ|2adj and σ2
+. At order O(N0

f ), these

operators have scaling dimensions 3 and 4, respectively. The operator σ2
+ mixes with FµνF

µν at order

O(1/Nf ). The corresponding mixing matrix and anomalous dimensions were computed in [73].
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The global symmetry of the effective action (2.28) is(SU(Nf/2)× SU(Nf/2)× U(1)b o Ze2
ZNf

× U(1)top

)
o ZC2 . (2.30)

The U(1)b acts: {Φi → eiαΦi, Φ̃i → e−iαΦ̃i}. The Ze2 acts: {Φi ↔ Φ̃i, σ ↔ σ̃}. There is also

parity invariance.

Scaling dimension of low-lying scalar operators

The N2
f quadratic gauge invariant operators transform as two adjoints, two singlets and two

bifundamentals of SU(Nf/2)2. More precisely, in the reducible representation

(adj,1)⊕ (1, adj)⊕ (F̄,F)⊕ (F, F̄)⊕ 2 · (1,1) , (2.31)

where by F we denoted the fundamental representation of SU(Nf/2).

Feynman graphs that contribute to the anomalous scaling dimension of |Φ|2adj are the

graphs in the right column of Tab. 2.4. One has to keep in mind that the photon “sees”

all the flavors, while each sigma field “sees” only half of them, therefore the contribution of

graphs that involve an HS propagator is twice as big as the contribution of the corresponding

graphs in bQED+. For the adjoint operator |Φ̃|2adj one has the same set of graphs, but the blue

lines are exchanged by blue double lines and red dashed lines are exchanged by red dashed

double lines. On the other hand, the scaling dimension of the bifundamental operators

(ΦiΦ̃
∗
j ,Φ

∗
i Φ̃j) is corrected by graphs similar to those in the right column of Tab. 2.4, except

that the last graph is absent. The two scalar-bilinear singlets are set to zero by the equations

of motion of the HS fields σ and σ̃.

The 2-point correlation function 〈σ(x)σ(0)〉 is corrected by the left column graphs in Tab.

2.4, and similar graphs stand for 〈σ̃(x)σ̃(0)〉. It is preferable to denote by U the effective

propagator of the HS field σ (2.29), then the graphs involving single photon contribute as in

bQED+, the graphs involving HS propagator contribute 2 times the corresponding graphs

in bQED+, the graph involving two photons contributes twice less than the same graph in

bQED+. So we conclude that the O(1/Nf ) corrected propagator for the HS σ field is

〈σ(x)σ(0)〉 =
(

1 +
64 log x2Λ2

3π2Nf

)( 8

π2(Nf/2)|x|4
)
. (2.32)

It turns out that already at order O(1/Nf ) there is a mixing between HS fields σ and σ̃ Fig.

2.3.

〈σ(x)σ̃(0)〉 =
96 log x2Λ2

3π2Nf

( 8

π2(Nf/2)|x|4
)
. (2.33)
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= W 2 = 4×
4

(
5+3ξ

)
log x2Λ2

3π2Nf
W 2

= 2× −24(1−ξ) log x2Λ2

3π2Nf
W 2 = 4× 24(1−ξ) log x2Λ2

3π2Nf
W 2

= 4× −4 log x2Λ2

3π2Nf
W 2 = 2× −24 log x2Λ2

3π2Nf
W 2

Table 2.6: Renormalization of the (sym, sym) quartic operator.

The HS fields σ± defined in (2.5) are the eigenvectors of the mixing matrix. Using (2.32,

2.33) one readily extracts anomalous dimensions of those fields (2.37, 2.38).

= 4× 24 log x2Λ2

3π2Nf

(
8

π2(Nf/2)|x|4

)

Figure 2.3: Diagram responsible for mixing 〈σ(x)σ̃(0)〉 .

TheN4
f quartic gauge invariant operators transform as reducible representation of SU(Nf/2)2

with the following decomposition into irreducible blocks

(adj2,1)⊕ (1, adj2)⊕ (sym, sym)⊕ (sym, sym)

⊕(adj, adj)⊕ (R, F̄)⊕ (R̄,F)⊕ (F̄,R)⊕ (F, R̄)

⊕2 · (adj,1)⊕ 2 · (1, adj)⊕ 2 · (F, F̄)⊕ 2 · (F̄,F)⊕ 3 · (1,1) , (2.34)

where by R we denote the representation of SU(Nf/2) with Dynkin labels [2, 0, ..., 0, 1].

All the irreducible blocks in the third row of (2.34) contain a singlet quadratic factor and

therefore they are out of spectrum. In the Tab. 2.6 we collected all the relevant graphs for

extracting the anomalous scaling dimension of the operator (sym, sym) = Φ∗iΦ
∗
j Φ̃kΦ̃l. One

can make similar tables for the other quartic operators which are in the spectrum.
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The scaling dimensions are as follows

∆[|Φ|2adj] = ∆[|Φ̃|2adj] = 1− 32

3π2Nf

+O(1/N2
f ) , (2.35)

∆[ΦiΦ̃
∗
j ] = ∆[Φ∗i Φ̃j] = 1− 56

3π2Nf

+O(1/N2
f ) , (2.36)

∆[σ−] = 2 +
32

3π2Nf

+O(1/N2
f ) , (2.37)

∆[σ+] = 2− 160

3π2Nf

+O(1/N2
f ) , (2.38)

∆[|Φ|4adj−2] = ∆[|Φ̃|4adj−2] = 2 +
32

3π2Nf

+O(1/N2
f ) , (2.39)

∆[Φ̃∗l (ΦiΦjΦ
∗
k)[2,0,...,0,1]] = ∆[Φ̃l(ΦkΦ

∗
iΦ
∗
j)[1,0,...,0,2]] = 2− 40

3π2Nf

+O(1/N2
f ) , (2.40)

∆[Φ∗l (Φ̃iΦ̃jΦ̃
∗
k)[2,0,...,0,1]] = ∆[Φl(Φ̃kΦ̃

∗
i Φ̃
∗
j)[1,0,...,0,2]] = 2− 40

3π2Nf

+O(1/N2
f ) , (2.41)

∆[|Φ|2adj|Φ̃|2adj] = 2− 64

3π2Nf

+O(1/N2
f ) , (2.42)

∆[Φ∗iΦ
∗
j Φ̃kΦ̃l] = ∆[ΦiΦjΦ̃

∗
kΦ̃
∗
l ] = 2− 64

3π2Nf

+O(1/N2
f ) . (2.43)

2.1.4 bQED−

The bQED− is reached with quartic deformation V ∼ (
∑
|Φi|2 − |Φ̃i|2)2 and by tuning

mass terms to zero. Large Nf effective action is described by complex scalar fields (Φi, Φ̃i)

minimally coupled to the effective photon and interacting with single HS field via cubic

interaction.

Leff =

Nf/2∑
i=1

(|DΦi|2 + |DΦ̃i|2) + σ−(

Nf/2∑
i=1

|Φi|2 −
Nf/2∑
i=1

|Φ̃i|2) . (2.44)

Effective propagator for the photon is the same as in (2.8), and the effective propagators for

the HS field σ− is as follows

〈σ−(x)σ−(0)〉 =
8

π2Nf |x|4
. (2.45)

In the Feynman graphs we will use red dashed line for the effective propagator of σ−. The

global symmetry of the bQED− action is the same as for ep-bQED (2.30).
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Scaling dimension of low-lying scalar operators

The N2
f quadratic gauge invariant operators are decomposed into irreducible representations

of SU(Nf/2)2 as in (2.31). Feynman graphs that contribute to the scaling dimensions of the

operators {|Φ|2adj, |Φ̃|2adj} are those in the left column of Tab. 2.4. The same graphs can be

used to calculate scaling dimension of the bifundamental operators {ΦiΦ̃
∗
j ,Φ

∗
i Φ̃j}, however

the graph with HS field σ− joining propagators Φ and Φ̃ contributes with the opposite sign

compared to the similar graph in the bQED+. This is because the cubic vertices with HS field

coupled to the scalar flavors (Φ, Φ̃) have different signs as it follows from the effective action

(2.44). Notice that EOM of the HS field σ− sets to zero the operator (
∑
|Φi|2 −

∑
|Φ̃i|2).

Therefore that operator is out of the spectrum, while the plus combination is in the spectrum

and has a dimension 1 at leading order.

The N4
f quartic gauge invariant operators are decomposed into irreducible representations

of SU(Nf/2)2 as in (2.34). Notice that in the last line of (2.34) not all the operators are

excluded from the spectrum: the quartic operators which are a product of a quadratic

operator (
∑
|Φi|2+

∑
|Φ̃i|2) and a quadratic adjoint or bifundamental operator, as well as the

quartic operator (
∑
|Φi|2 +

∑
|Φ̃i|2)2 are in the spectrum and have scaling dimension equal

to 2 in the leading order. In the table Tab. 2.7 we collected all the graphs that contribute to

the anomalous scaling dimension of the quartic bifundamental operator

(∑
|Φk|2+

∑
|Φ̃k|2

)
ΦiΦ̃

∗
j√

Nf
.

Similar computations can be done for the other operators. Below we give the list of operators

and their scaling dimensions.
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= W 2

= 4× 4
(

5+3ξ
)

log x2Λ2

3π2Nf
W 2

= 4× 24
(

1−ξ
)

log x2Λ2

3π2Nf
W 2

= 2× −24
(

1−ξ
)

log x2Λ2

3π2Nf
W 2

= 4× −48 log x2Λ2

3π2Nf
W 2

= 4× −2 log x2Λ2

3π2Nf
W 2

= 0

Table 2.7: (bQED−) quartic bifundamental operator renormalization. Each graph has the

flavor index k = 1, ..., Nf running in its bottom loop.
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∆[|Φ|2adj] = ∆[|Φ̃|2adj] = 1− 48

3π2Nf

+O(1/N2
f ) , (2.46)

∆[ΦiΦ̃
∗
j ] = ∆[Φ∗i Φ̃j] = 1− 72

3π2Nf

+O(1/N2
f ) , (2.47)

∆
[(∑

|Φi|2 +
∑
|Φ̃i|2

)]
= 1 +

144

3π2Nf

+O(1/N2
f ) , (2.48)

∆[|Φ|4adj−2] = ∆[|Φ̃|4adj−2] = 2− 48

3π2Nf

+O(1/N2
f ) , (2.49)

∆[Φ̃∗l (ΦiΦjΦ
∗
k)[2,0,...,0,1]] = ∆[Φ̃l(ΦkΦ

∗
iΦ
∗
j)[1,0,...,0,2]] = 2− 120

3π2Nf

+O(1/N2
f ) , (2.50)

∆[Φ∗l (Φ̃iΦ̃jΦ̃
∗
k)[2,0,...,0,1]] = ∆[Φl(Φ̃kΦ̃

∗
i Φ̃
∗
j)[1,0,...,0,2]] = 2− 120

3π2Nf

+O(1/N2
f ) , (2.51)

∆[|Φ|2adj|Φ̃|2adj] = 2− 144

3π2Nf

+O(1/N2
f ) , (2.52)

∆[Φ∗iΦ
∗
j Φ̃kΦ̃l] = ∆[ΦiΦjΦ̃

∗
kΦ̃
∗
l ] = 2− 144

3π2Nf

+O(1/N2
f ) , (2.53)

∆
[
|Φ|2adj

∑(
|Φi|2+|Φ̃i|2

)]
=∆

[
|Φ̃|2adj

∑(
|Φi|2 + |Φ̃i|2

)]
=2+

96

3π2Nf

+O(1/N2
f ) , (2.54)

∆
[
ΦiΦ̃

∗
j

∑(
|Φi|2+|Φ̃i|2

)]
=∆

[
Φ∗i Φ̃j

∑(
|Φi|2+|Φ̃i|2

)]
=2+

72

3π2Nf

+O(1/N2
f ) , (2.55)

∆[σ−] = 2 +
48

3π2Nf

+O(1/N2
f ) , (2.56)

∆
[(∑

|Φi|2 +
∑
|Φ̃i|2

)2]
= 2 +

288

3π2Nf

+O(1/N2
f ) . (2.57)

2.2 Four fermionic QED fixed points in the large Nf

limit

In this section we study fermionic QED, with large Nf complex fermionic flavors, imposing

at least U(Nf/2)2 global symmetry. There are four different fixed points, two fixed points

have U(Nf ) global symmetry, two fixed points have U(Nf/2)2 global symmetry.

Let us consider the following UV (Euclidean) lagrangian

L =
1

4e2
FµνF

µν +

Nf/2∑
i=1

(Ψ̄i /DΨi + ¯̃Ψi /DΨ̃i) + ρ+

Nf/2∑
i=1

(Ψ̄iΨ
i + ¯̃ΨiΨ̃

i)

+ ρ−

Nf/2∑
i=1

(Ψ̄iΨ
i − ¯̃ΨiΨ̃

i) +m2
+ρ

2
+ +m2

−ρ
2
− + ... , (2.58)
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where the dots stand for kinetic terms and quartic interactions of the Hubbard-Stratonovich

fields ρ+ and ρ−
8. We choose the gamma matrices to be equal to the Pauli matrices:

γ0 = σ2, γ
1 = σ1, γ

2 = σ3, and /D = γµDµ. The two-component Dirac fermions (Ψi, Ψ̃i) (i =

1, ..., Nf/2) carry charge +1 under the gauge group. We also implicitly assume a conformal

gauge fixing term. These type of theories (2.58) have been studied using various techniques,

e.g. solving Schwinger-Dyson gap equations, epsilon expansion, functional RG flow [21, 22,

23, 26, 27, 28, 29, 32, 33, 76, 77, 78, 79].

Depending on the form of the Yukawa interactions, there are four different fixed points:

• fQED, both HS fields are massive and the Yukawa interactions are absent,

• QED-GN+, the Yukawa interaction involving HS field ρ+ is turned on and the HS field

ρ− is massive,

• QED-NJL (gauged Nambu-Jona-Lasinio), both HS fields ρ± are massless, and both

Yukawa interactions are turned on,

• QED-GN−, the Yukawa interaction involving HS field ρ− is turned on and the HS field

ρ+ is massive.

2.2.1 fQED

In fQED both HS fields are massive and therefore decoupled from the IR spectrum. The

large Nf effective action for the fQED fixed point is described by Nf copies of Dirac fermions

Ψi (we collected all the fermions (Ψ, Ψ̃) into a single field and denoted it by Ψ) minimally

coupled to the effective photon

Leff =

Nf∑
i=1

Ψ̄i /DΨi . (2.59)

The effective photon propagator is obtained summing geometric series of bubble diagrams

(2.1), where all the scalar (blue) loops are exchanged with fermion (green) loops.

〈Aµ(x)Aν(0)〉eff =
8

π2Nf |x|2
(

(1− ξ)δµν + 2ξ
xµxν
x2

)
. (2.60)

8The IR fixed points of the model (2.58) correspond to the UV fixed points of the gauged four-fermion

model with interactions g1

[Nf/2∑
i=1

(Ψ̄iΨ
i + ¯̃ΨiΨ̃

i)
]2

+ g2

[Nf/2∑
i=1

(Ψ̄iΨ
i − ¯̃ΨiΨ̃

i)
]2

, where the couplings g1 and g2

have mass dimension −1. Introducing two HS fields ρ recasts the quartic interactions in the form of Yukawa

couplings and “mass” terms like in (2.58). In this language the “mass” terms are schematically ∼ ρ2

g . Giving

mass to ρ is equivalent to turning off the four-fermion couplings g1,2.
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= 〈Aµ(x)Aν(0)〉eff

= /x

4π|x|3

= −iγµ

Table 2.8: (fQED) Feynman rules for propagators and vertices.

We notice that the effective photon propagator in the fQED coincides with the effective

photon propagator in the bosonic QED’s. This is because the fermion and boson loops that

appear in the geometric sums are equal to each other. Feynman rules for the vertices and

for the propagators are given in Tab. 2.8.

The faithful global symmetry is

SU(Nf )× U(1)top

ZNf
o ZC2 , (2.61)

where ZNf is generated by
(
e2πi/Nf I,−1

)
∈ SU(Nf )×U(1)top (this fact comes from a careful

treatment of the monopoles operators, which are dressed with fermionic zero-modes). ZC2 is

the charge-conjugation symmetry. There is also symmetry under parity9.

Scaling dimension of low-lying scalar operators 10

The N2
f gauge invariant operators Ψ̄iΨ

j transform in the adjoint plus singlet of SU(Nf ).

Their scaling dimensions at large Nf can be extracted from Feynman graphs in Tab. 2.9

and have already been discussed in [82, 83, 84]

∆[|Ψ|2adj] = 2− 64

3π2Nf

+O(1/N2
f ) , (2.62)

∆[|Ψ|2sing] = 2 +
128

3π2Nf

+O(1/N2
f ) . (2.63)

2.2.2 QED-GN+

In the QED-GN+ fixed point the action is (2.58), with Yukawa interaction involving HS field

ρ+, while the HS field ρ− is massive and is decoupled from the IR spectrum. The large Nf

9It is crucial to have even number of Dirac fermions, otherwise the theory suffers from parity anomaly.
10Check [80, 81] for scaling dimensions of quartic operators, which at infinite Nf have ∆ = 4.
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= 1
8π2|x|4 ≡ W̃A

B

C

D

= 2× −4
(

1−3ξ
)

log x2Λ2

3π2Nf
W̃

=
24
(

3−ξ
)

log x2Λ2

3π2Nf
W̃

= 2× −96 log x2Λ2

3π2Nf
W̃

Table 2.9: (fQED) Results for individual Feynman graphs appearing in the 2-point

correlation function for the fermion-bilinear operators.

effective action is described by Nf copies of Dirac fermions Ψi (we collected all the fermions

(Ψ, Ψ̃) into a single field and denoted it by Ψ) minimally coupled to the effective photon and

interacting with HS field ρ+ via Yukawa interaction

Leff =

Nf∑
i=1

Ψ̄i /DΨi + ρ+

Nf∑
i=1

Ψ̄iΨ
i . (2.64)

The effective propagator for the photon is the same as in the fQED (2.60). The effective

propagator for the HS field ρ+ follows from summing geometric series of bubble diagrams as

in Fig. 2.2 with all the scalar (blue) loops exchanged with fermion (green) loops

〈ρ+(x)ρ+(0)〉eff =
4

π2Nf |x|2
. (2.65)

In the Feynman graphs we use a red dashed line in order to represent the ρ+ propagator.

The global symmetry is the same as in fQED (2.61). There is also parity symmetry (ρ+ is

parity-odd).

Scaling dimension of low-lying scalar operators

As in fQED, the N2
f gauge invariant operators Ψ̄iΨ

j transform in the adjoint plus singlet

representation of SU(Nf ). However, the singlet operator is set to zero by the equation of
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motion of the HS field ρ+. Order O(1/Nf ) scaling dimensions for the adjoint operator and

for ρ+ can be read using Tab. 2.10, for ρ2
+ using Tab. 2.11 11

∆[|Ψ|2adj] = 2− 48

3π2Nf

+O
(
1/N2

f

)
, (2.66)

∆[ρ+] = 1− 144

3π2Nf

+O
(
1/N2

f

)
, (2.67)

∆[ρ2
+] = 2− 240

3π2Nf

+O
(
1/N2

f

)
. (2.68)

We stress that in QED-GN+ the Aslamazov-Larkin graph, which is the 6th graph in Tab.

2.10, gives a big contribution to the 2-point function of the HS field ρ+. Instead in QED-

GN− (see section 2.2.4) in the 2-point function of HS field ρ− such AL graphs cancel each

other. In the literature (see for instance [77, 89]) the QED-GN− is referred as QED-GN.

The scaling dimension of the order parameter ρ2
+ is related to the critical exponent ν:

ν−1 = 3−∆[ρ2
+] = 1 +

240

3π2Nf

+O
(
1/N2

f

)
. (2.69)

11Soon after we presented these results in [6], also [85] computed the scaling dimensions (2.66, 2.67, 2.68).

Their results agree with ours.
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= 〈ρ+(x)ρ+(0)〉eff ≡ Ũ

= 2× 4
(

1−3ξ
)

log x2Λ2

3π2Nf
Ũ

= −24
(

3−ξ
)

log x2Λ2

3π2Nf
Ũ

= 2× 2 log x2Λ2

3π2Nf
Ũ

= 12 log x2Λ2

3π2Nf
Ũ

= 2× 96 log x2Λ2

3π2Nf
Ũ

= 0

= W̃

= 2× −4
(

1−3ξ
)

log x2Λ2

3π2Nf
W̃

=
24
(

3−ξ
)

log x2Λ2

3π2Nf
W̃

= 2× −2 log x2Λ2

3π2Nf
W̃

= −12 log x2Λ2

3π2Nf
W̃

Table 2.10: (QED-GN+) Results for individual Feynman graphs appearing in the 2-point

correlation functions 〈ρ+(x)ρ+(0)〉(left column)12 and 〈|Ψ|2adj(x)|Ψ|2adj(0)〉 (right column).

12The last graph is vanishing (both the divergent and finite parts are zero). This is because parity

invariance forbids single parity odd HS field to decay into 2 HS fields.
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= 2×
(

4
π2Nf |x|2

)2 ≡ Z

= 2× 144 log x2Λ2

3π2Nf
Z

= 4× −6 log x2Λ2

3π2Nf
Z

= 2× −12 log x2Λ2

3π2Nf
Z

= 0

Table 2.11: (QED-GN+) Feynman graphs appearing in the 2-point correlation function of

the composite operator ρ2
+

13. The black ellipse in the second diagram means dressing HS

field propagator with graphs in the left column of Tab. 2.10.

2.2.3 QED-NJL

In the QED-NJL fixed point, the action is (2.58). It involves Yukawa interactions and the

masses of the HS fields are tuned to zero. The large Nf effective action is described by Nf

Dirac fermions (Ψi, Ψ̃i) minimally coupled to the effective photon and interacting with the

HS fields (ρ, ρ̃) via Yukawa interactions

Leff =

Nf/2∑
i=1

Ψ̄i /DΨi +

Nf/2∑
i=1

¯̃Ψi /DΨ̃i + ρ

Nf/2∑
i=1

Ψ̄iΨ
i + ρ̃

Nf/2∑
i=1

¯̃ΨiΨ̃
i , (2.70)

13The last Feynman graph is vanishing because the triangle subgraphs made by fermion propagators are

identically zero.
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where

ρ = ρ+ + ρ− , (2.71)

ρ̃ = ρ+ − ρ− . (2.72)

The photon “sees” all the flavors, therefore effective photon propagator is the same as in

fQED (2.60). The effective propagators for the HS fields are

〈ρ(x)ρ(0)〉 = 〈ρ̃(x)ρ̃(0)〉 =
4

π2(Nf/2)|x|2
. (2.73)

The continuous global symmetry is:

(SU(Nf/2)× SU(Nf/2)× U(1)b × U(1)top) o Ze2
ZNf

o ZC2 . (2.74)

Parity is preserved, provided (ρ, ρ̃) and ρ± are odd under parity transformation. The other

global symmetries act as follows. U(1)b: {Ψ→ eiαΨ, Ψ̃→ e−iαΨ̃}, Ze2: {Ψ↔ Ψ̃, ρ↔ ρ̃}.

Scaling dimension of low-lying scalar operators

The gauge invariant fermion bilinear operators are classified as irreducible representations

(2.31) under SU(Nf/2)2 symmetry group. The calculation of the scaling dimensions for

the adjoint and the bifundamental operators is parallel to the calculation of the scaling

dimensions of the similar operators in the ep-bQED and can be done using the graphs in

Tab. 2.10.

The quadratic singlet operators are out of the spectrum, they are set to zero by the EOM

of the HS fields (ρ, ρ̃). The two-point correlation function for the ρ field can be calculated

using the left column diagrams of Tab. 2.10. Taking into account the necessary changes we

get

〈ρ(x)ρ(0)〉 =
(

1 +
64 log x2Λ2

3π2Nf

)( 4

π2(Nf/2)|x|2
)
. (2.75)

Notice that at order O(1/Nf ) there is a mixing between ρ and ρ̃, Fig. 2.4.

〈ρ(x)ρ̃(0)〉 =
96 log x2Λ2

3π2Nf

( 4

π2(Nf/2)|x|2
)
. (2.76)

Instead, the fields (ρ+, ρ−) do not mix, they are the eigenvectors of the mixing matrix. Using

(2.75, 2.76) one can calculate anomalous dimensions of these fields.
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In Tab. 2.12 we collected all the graphs that contribute to the mixing of operators

quadratic in HS fields: {ρ2(x), ρ̃2(x),
√

2ρρ̃(x)}. We get the following mixing matrix
1 + 32 log x2Λ2

3π2Nf
0 96

√
2 log x2Λ2

π2Nf

0 1 + 32 log x2Λ2

3π2Nf

96
√

2 log x2Λ2

π2Nf
96
√

2 log x2Λ2

π2Nf

96
√

2 log x2Λ2

π2Nf
1 + 128 log x2Λ2

3π2Nf

× Z̃ , (2.77)

where Z̃ is defined in Tab. 2.12. Using (2.77) it is straightforward to pass to the eigenbasis

and find the scaling dimension for each of the eigenbasis operators. Below we give the list

of operators and their scaling dimensions

∆[|Ψ|2adj] = ∆[|Ψ̃|2adj] = 2− 32

3π2Nf

+O(1/N2
f ) , (2.78)

∆[ ¯̃ΨiΨj] = ∆[Ψ̄jΨ̃i] = 2− 56

3π2Nf

+O(1/N2
f ) , (2.79)

∆[ρ+] = 1− 160

3π2Nf

+O(1/N2
f ) , (2.80)

∆[ρ−] = 1 +
32

3π2Nf

+O(1/N2
f ) , (2.81)

∆[ρ+ρ−] = 2− 32

3π2Nf

+O(1/N2
f ) , (2.82)

∆[ρ2
+ + (4 +

√
17)ρ2

−] = 2− 16(5− 3
√

17)

3π2Nf

+O(1/N2
f ) , (2.83)

∆[ρ2
+ + (4−

√
17)ρ2

−] = 2− 16(5 + 3
√

17)

3π2Nf

+O(1/N2
f ) . (2.84)

A similar model with two HS scalars was studied in [86]. Their model seems to be

different from QED-NJL we discuss, in particular the anomalous dimensions of HS fields are

different from ours.

= 2× 48 log x2Λ2

3π2Nf

4
π2(Nf/2)|x|2

Figure 2.4: Diagram responsible for mixing 〈ρ(x)ρ̃(0)〉 .
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〈ρ2(x)ρ2(0)〉 :

= 2×
(

4
π2(Nf/2)|x|2

)2 ≡ Z̃ = 2× 64 log x2Λ2

3π2Nf
Z̃

= 4× −12 log x2Λ2

3π2Nf
Z̃ = 2× −24 log x2Λ2

3π2Nf
Z̃

〈
√

2ρρ̃(x)
√

2ρρ̃(0)〉 :
= Z̃ = 2× 64 log x2Λ2

3π2Nf
Z̃

〈ρ2(0)
√

2ρρ̃(0) : = 96
√

2 log x2Λ2

3π2Nf
Z̃

Table 2.12: (QED-NJL) mixing of quadratic in HS field operators.

2.2.4 QED-GN−

In the QED-GN− fixed point the action is (2.58), with Yukawa interaction involving the HS

field ρ−, while the HS field ρ+ is massive and is decoupled from the IR spectrum. The large

Nf effective action is described by Dirac fermions (Ψi, Ψ̃i) minimally coupled to the effective

photon and interacting with the HS field ρ− via Yukawa interaction

Leff =

Nf/2∑
i=1

(Ψ̄i /DΨi + ¯̃Ψi /DΨ̃i) + ρ−(

Nf/2∑
i=1

Ψ̄iΨ
i −

Nf/2∑
i=1

¯̃ΨiΨ̃
i) . (2.85)

The effective photon propagator is as in (2.60) because the photon “sees” all the flavors.

The effective propagator for the HS field ρ− is

〈ρ−(x)ρ−(0)〉 =
4

π2Nf |x|2
. (2.86)

The continuous global symmetry is the same as that of QED-NJL (2.74). Parity is preserved

provided HS field ρ− is odd under parity transformation. The discrete symmetry Ze2 acts:

{Ψ↔ Ψ̃, ρ− ↔ −ρ−}.
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Scaling dimension of low-lying scalar operators

The fermion bilinear operators are classified according to the irreducible representations of

SU(Nf/2)2, like in (2.31). Notice that ρ− takes the operator
∑Nf/2

i=1 (Ψ̄iΨ
i − ¯̃ΨiΨ̃

i) out from

the spectrum, while the plus combination remains in the spectrum and has dimension 2 at

the leading order.

The scaling dimension of the HS field ρ− is calculated using the graphs in the left column

of Tab. 2.10. The contributions of the first 5 graphs remain unchanged, while there are 4 AL

graphs (each with two photons) and they are canceling each other. This is due to the fact

that ρ− field couples to the fermion flavors (Ψ, Ψ̃) with different signs and therefore the three

loop graph which has fermions Ψ running in one of its loops and fermions Ψ̃ running in the

other loop comes with an opposite sign with respect to the three loop graph made solely by

fermions Ψ (or Ψ̃). The scaling dimensions for the other operators can be calculated easily.

∆[|Ψ|2adj] = ∆[|Ψ̃|2adj] = 2− 48

3π2Nf

+O(1/N2
f ) , (2.87)

∆[ ¯̃ΨiΨj] = ∆[Ψ̄jΨ̃i] = 2− 72

3π2Nf

+O(1/N2
f ) , (2.88)

∆
[ 1√

Nf

(∑
|Ψi|2 +

∑
|Ψ̃i|2

)]
= 2 +

144

3π2Nf

+O(1/N2
f ) , (2.89)

∆[ρ−] = 1 +
48

3π2Nf

+O(1/N2
f ) , (2.90)

∆[ρ2
−] = 2 +

144

3π2Nf

+O(1/N2
f ) . (2.91)

Some of these results have been obtained in [87, 88, 89], which also include some scaling

dimensions at order O(1/N2
f ).

2.3 Super-QED in the large Nf limit

In this section we compute the large Nf scaling dimension of mesonic operators in QED

with minimal supersymmetry, and then compare the results, at Nf = 2, with a dual Gross-

Neveu-Yukawa model. At the end we also consider an N = 2 super-QED.

The UV action of 2+1d QED with minimal supersymmetry, N = 1 (i.e. 2 supercharges),

Nf flavors and zero superpotential

WN=1 = 0 , (2.92)
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has the form

SUV =

∫
d3x
(
− 1

4e2
FµνF

µν +
1

2e2
λ̄i/∂λ+ Ψ̄jiγ

µDµΨj +DµΦjD
µΦj

+ iΨ̄jλΦj − iλ̄ΨjΦ∗j −
Nf

32i(1− ξ)

∫
d3y

∂µA
µ(x)∂νA

ν(y)

2π2|x− y|2
)
. (2.93)

The action (2.93) is written in the Minkowski metric. Our convention for the Minkowski

metric is (+,−,−). The kinetic terms for the photon and for the gaugino are non canonically

normalised, the covariant derivative is Dµ = ∂µ + iAµ. We have Nf flavors of Dirac fermions

and complex scalars: Ψj, Φj, j = 1, ..., Nf . Our conventions for the gamma matrices are:

γ0 = σ2, γ
1 = iσ1, γ

2 = iσ3, where σi are the Pauli matrices. We define Ψ̄ = Ψ†γ0. Notice

that gaugino is a Majorana fermion, with our conventions for the gamma matrices it has

two real components.

The action (2.93) is written in the Wess-Zumino gauge, which explicitly breaks super-

symmetry, the remaining gauge symmetry is fixed by adding the conformal gauge fixing term

in the action. The N = 1 supersymmetry of the action (2.93) becomes obvious when one

constructs it using superspace integrals and superfields, for more details check [91]. The

fields are organized in N = 1 super-multiplets: a vector multiplet {λ,Aµ} and Nf scalar

matter multiplets {Φi,Ψi, F i}. Going on-shell one sets F i = 0. The global symmetry of the

action is

SU(Nf )× U(1)top

ZNf
o ZC2 . (2.94)

Additionally there is parity invariance. These symmetries prevent the generation of ad-

ditional interactions (quadratic or quartic superpotential interactions would break parity

invariance), therefore there is no need of tuning interactions to zero.

The large Nf effective action of the N = 1 SQED is described by Nf scalar and Nf

fermion flavors minimally coupled to the effective photon and interacting with the effective

gaugino via a Yukawa interaction

SIR =

∫
d3x
(
Ψ̄jiγ

µDµΨj +DµΦjD
µΦj + iΨ̄jλΦj − iλ̄ΨjΦ†j

)
. (2.95)

The effective photon propagator is obtained by summing a geometric series of bubble dia-

grams with fermion and scalar loops. We give the effective photon propagator after Wick

rotation from Minkowski to Euclidean space

〈Aµ(x)Aν(0)〉eff = − 4i

π2Nf |x|2
(
(1− ξ)δµν + 2ξ

xµxν
|x|2

)
. (2.96)
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The effective gaugino propagator is obtained by summing a geometric series of bubble dia-

grams with each bubble made by one fermion and one boson propagators, after Wick rotation

we have following expression

〈
λ(x)λT (0)

〉
eff

=
8i(/xγ0)

π2Nf |x|4
. (2.97)

We use red dotted line to represent effective gaugino propagator in the Feynman graphs.

2.3.1 Scaling dimension of low-lying mesonic operators

The following three quadratic operators sit inside the same N = 1 supermultiplet Φ∗Φ

Φ∗Ψα + ΦΨ∗α
Ψ̄Ψ

 . (2.98)

where α is a spinor index. Depending how the flavor indices are contracted we can construct

a singlet and an adjoint representation of the global symmetry SU(Nf ).

A

B

C

D

E

F

= −i
16π2|x|2 = V

= 2× 2(5+3ξ) log x2Λ2

3π2Nf
V

= 2× −4 log x2Λ2

3π2Nf
V

= 12(1−ξ) log x2Λ2

3π2Nf
V

= 4× −12 log x2Λ2

3π2Nf
V

= 2× 12 log x2Λ2

3π2Nf
V

Table 2.13: (N = 1 SQED) Results for individual Feynman graphs appearing in the

2-point correlation function for the scalar-bilinear operators.
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Let us first discuss the adjoint supermultiplet. Using the graphs A,B,C,D from Tab. 2.13

we can extract the scaling dimension of the adjoint scalar-bilinear operator

〈|Φ|2adj(x)|Φ|2adj(0)〉 =
−i

16π2|x|2
+

−i
16π2|x|2

(4(5 + 3ξ)

3π2Nf

− 8

3π2Nf

+
12(1− ξ)

3π2Nf

)
log x2Λ2

=
−i

16π2|x|2
[
1−

(
− 24

3π2Nf

)
log x2Λ2

]
=

−i
16π2|x|2

( 1

x2Λ2

)∆
(1)
adj

. (2.99)

The anomalous dimension of the adjoint operator is ∆
(1)
adj = − 24

3π2Nf
. Due to supersymmetry

the scaling dimensions of the components in (2.98) are related to each other.

∆[(Φ∗Φ)adj] = 1− 24

3π2Nf

+O(1/N2
f ) , (2.100)

∆[(Φ∗Ψα + ΦΨ∗α)adj] =
3

2
− 24

3π2Nf

+O(1/N2
f ) , (2.101)

∆[(Ψ̄Ψ)adj] = 2− 24

3π2Nf

+O(1/N2
f ) . (2.102)

It is also possible to construct another scalar-fermion bilinear

(Φ∗Ψα − ΦΨ∗α)adj . (2.103)

We checked that anomalous dimension of (2.103) is vanishing at order O(1/Nf ). This is not

surprising since operator (2.103) sits in the same supermultiplet with the gauge invariant

flavor current operator
(
Ψ̄γµΨ + i(Φ∗DµΦ − DµΦ · Φ)

)
adj

, which is conserved and has a

scaling dimension exactly equal to 2 for any Nf .

In order to compute the anomalous dimension of the singlet scalar-bilinear operator, we

use all the graphs in the Tab. 2.13, since for this operator all of them contribute. It turns out

that the anomalous scaling dimension vanishes at that order (there seems to be no reason

to think that at higher orders in the 1/Nf expansion the anomalous corrections are going

to be absent). Also the singlet supermultiplet (2.98) has the dimensions of its components

related to each other:

∆[(Φ∗Φ)sing] = 1 +O(1/N2
f ) , (2.104)

∆[(Φ∗Ψα + ΦΨ∗α)sing] =
3

2
+O(1/N2

f ) , (2.105)

∆[(Ψ̄Ψ)sing] = 2 +O(1/N2
f ) . (2.106)

Notice that the singlet counterpart of (2.103) is out of spectrum. This is precisely the

operator that couples to gaugino in the effective action (2.95) and it is set to zero by the

EOM of the gaugino field.
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= − i
(4π|x|)4 = H

= 4× 2
(

5+3ξ
)

log x2Λ2

3π2Nf
H

= 4× −4 log x2Λ2

3π2Nf
H

= 2× −12
(

1−ξ
)

log x2Λ2

3π2Nf
H

= 4× 12
(

1−ξ
)

log x2Λ2

3π2Nf
H

Table 2.14: (N = 1 SQED) quartic adjoint-2 operator renormalization.

Next we consider scalar quartic operators (2.15). In the equation (2.16) we decomposed

this operator into irreducible representations of SU(Nf ) group: singlet, adjoint, adjoint-2. In

order to extract the scaling dimension of the quartic adjoint-2 operator we need the Feynman

graphs of Tab. 2.14. Similar calculations can be done for the other two operators. We skip

the details and give the final result below

∆[|Φ|4adj−2] = 2∆[|Φ|2adj] +O(1/N2
f ) = 2− 48

3π2Nf

+O(1/N2
f ) , (2.107)

∆[|Φ|4adj] = ∆[|Φ|2adj] + ∆[|Φ|2sing] +O(1/N2
f ) = 2− 24

3π2Nf

+O(1/N2
f ) , (2.108)

∆[|Φ|4sing] = 2∆[|Φ|2sing] +O(1/N2
f ) = 2 +O(1/N2

f ) . (2.109)

2.3.2 The duality N=1 SQED with Nf=2 ↔ 7-field Wess-Zumino

model: a quantitative check

The N = 1 super-QED with two flavors (Nf = 2) has been argued to be dual to a cubic

N = 1 supersymmetric Wess-Zumino model with SU(2) × U(1) global symmetry [17, 18].

The field content of the WZ model is given by 7 real N = 1 supermultiplets: a real triplet

µI and a complex doublet Mα. The superpotential of the WZ model is dictated by the
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SU(2)× U(1) global symmetry and by parity invariance:

WN=1 = µIMα(σI)αβM
†
β . (2.110)

The real fields µI map to the quadratic mesons on the gauge theory side. The complex fields

Mα map to the monopoles with minimal topological charge. This duality can be obtained

starting from the N = 4 mirror symmetry [92, 93], which in the IR relates abelian gauge

theory with one hypermultiplet flavor to a free massless hypermultiplet. The N = 1 duality

also has a description in terms of S-duality of Type IIB brane setups [94].

In Tab. 2.15 we collect the basic gauge invariant operators. On the left side we list

the operators which belong to the spectrum of N = 1 SQED, their approximate scaling

dimensions are calculated using the large Nf formulas obtained in the previous two sections.

We also include the scaling dimension of the monopole operators M±1 in the large Nf limit

(∆[M±1] = 0.3619Nf + O(1)), which we extract from the results of [14] in appendix D.

On the right side we list the operators of the dual WZ model, their scaling dimensions are

calculated using 4−ε expansion in [18]. Using the map discussed in detail in [18], on each row

the two operators map into each other under the duality. We notice a quite good agreement

between the dimensions of the corresponding operators, providing a nice quantitative check

of the N = 1 duality.

∆[M±1] ∼ 0.724

∆[(Φ∗Φ)spin−1] ∼
(

1− 24
3π22

)
= 0.595

∆[(Φ∗Φ)sing] ∼ 1

∆[|Φ|4spin−2] ∼
(

2− 48
3π22

)
= 1.19

∆[|Φ|4sing] ∼ 2

∆[Mα] ∼ 0.76

∆[µI ] ∼ 0.66

∆[−2
∑
µ2
I +

∑
|Mα|2] ∼ 1

∆[µIµJ − δIJ
3

∑
µ2
K ] ∼ 1.33

∆[2
∑
µ2
I + 3

∑
|Mα|2] ∼ 2.33

Table 2.15: Operator mapping across the duality and the scaling dimensions of the

operators .

2.3.3 The N = 1 supersymmetric O(N) sigma model and N = 2

SQED

For completeness, we also discuss the large Nf limit of the “chiral” N = 2 QED, with Nf

flavors and 0 anti-flavors (also denoted as (Nf , 0) flavors).
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In 2 + 1 dimensions, the N = 2 chiral multiplet has the field content

Φ Ψ F , (2.111)

where the Φ is a complex scalar, and Ψ is a two-component Dirac fermion and F is an

auxiliary complex field. The vector multiplet has the field content

Aµ σ λ1 λ2 D . (2.112)

Where σ and D are real scalars, the λ1,2 are real two-component Majorana fermions, which

usually are combined into a single two-component Dirac fermion (λ1 + iλ2). (Nf , 0) flavored

N = 2 SQED has Nf chiral multiplets (2.111) with charge +1 minimally coupled to a vector

multiplet (2.112). One can write the action of this theory in N = 1 language. For this

purpose we regroup the fields (2.111, 2.112) into the following N = 1 multiplets

V : Aµ λ1 ,

H : σ λ2 D , (2.113)

Qi : Φi Ψi F i .

The N = 2 SQED action can be written as a N = 1 SQED action (2.93), plus a kinetic

term for H and interaction from the superpotential

WN=1 = HQ̄iQ
i . (2.114)

Written in Lorentzian metric, the full action in components becomes

SN=2 = SN=1 +
1

2e2

∫
d3x
(
∂µσ∂µσ + λ̄2iγ

µ∂µλ2 +D2
)

+

∫
d3x
(
− σ2Φ∗jΦ

j + σΨ̄jΨ
j + (Ψ̄jλ2Φj + λ̄2ΨjΦ∗j) +DΦ∗jΦ

j
)
. (2.115)

where the first term in the right hand side of (2.115) is defined in (2.93). The gaugino λ

in (2.93) is replaced by λ1. We have a quartic term in the second line because we have

integrated out the auxiliary fields F j:

F ∗j F
j − σ(Φ∗jF

j + ΦjF ∗j ) → −σ2Φ∗jΦ
j . (2.116)

Performing a 1/Nf expansion with quartic vertix is usually more involved task than working

with the cubic vertex, therefore one usually doesn’t integrate out F j (2.116). However at

order O(1/Nf ) this is not a problem, and we work with the action (2.115), in order to have

less fields. The scaling dimensions of the fields sitting in the chiral multiplet H at the IR

fixed point are

∆[σ] = 1, ∆[λ2] = 3/2, ∆[D] = 2 . (2.117)
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Due to supersymmetry, these dimensions are exact in 1/Nf expansion. This follows from the

fact that the dimension of the gauge field Aµ is exactly 1 and the fields (Aµ, σ, λ1, λ2, D) sit

in the same vector multiplet. The operator (Φ∗Φadj) has a scaling dimension exactly equal

to 1, since it sits in the same N = 2 supermultiplet of the flavor SU(Nf ) currents.

These observations allow us to check our results for the singlet and adjoint operator

dimensions obtained in N = 1 SQED. For this purpose first we notice that the action

(2.115) without the first term is the N = 1 supersymmetric O(N) sigma model [95]. The

large Nf scaling dimensions of the field σ and of the bilinear adjoint operator for this model

have been computed in [95] (see [96] for a finite-Nf study in the 4− ε expansion):

∆[|Φ|2adj]N=1O(N) = 1 +
24

3π2Nf

+O(1/N2
f ) , (2.118)

∆[σ]N=1O(N) = 1 +O(1/N2
f ) . (2.119)

For both of these operators the list of possible diagrams contributing to the 2-point corre-

lation functions in N = 2 SQED are exhausted by the lists given in the context of N = 1

SQED and N = 1 supersymmetric sigma model (if one goes to the order O(1/N2
f ) there

might be graphs with propagators present from both multiplets V and H). Therefore the

sum of this contributions should be such that anomalous scaling dimensions for |Φ|2adj and

σ are exactly zero. As one can see from (2.118, 2.119) and (2.100, 2.106) this is true.

Finally, for completeness, we compute scaling dimensions of the scalar mesonic operators

in N = 2 SQED, which at leading order have dimension 2, but are not protected. One

such operator is the quartic adjoint-2: |Φ|4adj−2, to calculate its scaling dimension one uses

graphs in the Tab. 2.14, 2.16. The operator σ2 has its scaling dimension twice the scaling

dimension of σ field (which is exactly equal to 1) plus the contributions of the last three

graphs in Tab. 2.11. The dimension of σ|Φ|2adj equals to the sum of: ∆[|Φ|2adj] = 1, ∆[σ] = 1,

plus the contribution of the graph (2.5). The final results are

∆[|Φ|4adj−2] = 2 +
48

3π2Nf

+O(1/N2
f ) , (2.120)

∆[σ2] = 2 +
48

3π2Nf

+O(1/N2
f ) , (2.121)

∆[σ|Φ|2adj] = 2 +
48

π2Nf

+O(1/N2
f ) . (2.122)
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= 4× −4 log x2Λ2

3π2Nf
H

= 4× −2 log x2Λ2

3π2Nf
H

= 6× −12 log x2Λ2

3π2Nf
H

Table 2.16: (N = 2 SQED) quartic adjoint-2 operator renormalization. Dotted red line

stands for the effective gaugino λ2 propagator. Thick red line stands for effective D-field

propagator.

= −48 log x2Λ2

π2Nf
×
(

−i
Nf (2π2|x|2)2

)

Figure 2.5: (N = 2 SQED) σ|Φ|2adj operator renormalization. Dashed line stands for

effective σ field propagator.
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Chapter 3

QED’s in 2 + 1 dimensions and

Complex CFT’s

In this chapter we examine our interacting bosonic (2.1) and fermionic (2.58) QED’s with

U(Nf/2)2-invariant quartic couplings with lower values of Nf . The theories live in 2+1

dimensions and all the flavors are massless. We first discuss the RG fixed points in the un-

gauged models, where the existence of four unitary fixed points can be established rigorously

for any Nf > 1.

Upon gauging the U(1) symmetry, the RG flow structure is the same for large enough

Nf , but for small Nf the fate of the gauged fixed points can be different. We estimate in each

case the N∗f where the real fixed points collide. The collision is driven by mesonic operators

becoming relevant and entering the action1.

In the case of bosonic QED’s we will interpret the collisions of fixed points as merging

and annihilation into the complex plane of couplings. When Nf < N∗f , the RG flow slows

down passing close to the pair of complex conjugate CFT’s, the runaway RG flow eventually

experiences a first order phase transition. In the case of fermionic QED’s, two fixed points

with different symmetries collide. If we interpret these collisions as merging and annihilation,

then again the RG flow will slow down passing close to the complex CFT’s and eventually

(parity invariant) mass for the fermions will be generated leading to DχSB. The RG flows

1It is conceivable that a similar mechanism is at play with monopole operators (this would break the

U(1)top topological symmetry). In this thesis we disregard the possibility that monopoles enter the action.

This is certainly the correct thing to do if the gauge group is non-compact (R instead of U(1)), since in this

case monopoles do not exist. Studying possible mergings driven by monopoles is an interesting project that

goes beyond the scope of this thesis.
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eventually reach the Non-Linear-Sigma-Model with target space the complex Grassmannian

U(Nf )

U(Nf/2)× U(Nf/2)
. (3.1)

However, as we already stated in the introduction, it is not clear whether the fixed points

with different symmetries can merge and become a complex CFT’s. Another option is that

fixed points after collision do not merge but pass through each other and continue to exist

as real CFT’s, exchanging their stability properties.

3.1 Bosonic QED

Let us first consider the ungauged model (1.33), with 2Nf real scalars and global symmetry

is (O(Nf )×O(Nf )) oZe2, becoming O(2Nf ) on the locus λ = 2λep. In the ungauged model

the Nf can be any integer. There are four fixed points:

1. Free fixed point, with λ = λep = 0. Both quartic couplings are relevant, obviously.

2. Decoupled fixed point, with λep > 0, λ = 0. It describes two decoupled O(Nf ) models.

We know from the numerical bootstrap [97] that ∆[|φ|2singlet]O(Nf ) >
3
2

(if Nf > 1)2,

so ∆[
∑
|φi|2

∑
|φ̃j|2]decoupled = 2∆[|φ|2singlet]O(Nf ) > 3. This proves rigorously that, for

any Nf > 1, this fixed point is attractive.

3. O(2Nf ) model, with λ = 2λep > 0. O(2Nf ) global symmetry. A relevant symmetry

breaking quartic deformation, (
∑
|φi|2 − |φ̃i|2)2, drives the theory to the decoupled

fixed point.

4. ”Model-3”with λep > 0, λ < 0. Global symmetry is (O(Nf )×O(Nf ))oZe2. A relevant

quartic deformation triggers an RG flow to the decoupled fixed point.

2 In the O(n) vector model, the rigorous scaling dimensions of the quadratic singlet operator is

1.412625(10) if n = 1 (Ising model), 1.5117(25) for the O(2)-model, 1.5957(55) for the O(3)-model, [97]

and goes up to ∼ 2− 32
3π2n at large n. Notice the different qualitative structure at n = 1.
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The RG flows looks as follows

λ

λep

O(2Nf )-model

2Nf Free scalars

Two decoupled

O(Nf )-models

Model-3

O(Nf )
2 o Z2

(3.2)

Let us emphasize that this is an exact result valid for any Nf > 1. Higher order calculations

show that for Nf = 1 the Decoupled fixed point is unstable and the O(2Nf ) is the fully

stable fixed point. The pattern agrees with the findings of [98].

Gauging the U(1) symmetry at even Nf . When we gauge the global symmetry the

four fixed points flow to four interacting QED fixed points3.

If Nf is large enough, the qualitative features of the RG flows are not changing when

turning on the U(1) gauge coupling, which triggers an RG flow from (3.2) to four interacting

bosonic QED’s:

bQED+

(CPNf−1-model)

U(Nf )

bQED

U(Nf )

ep-bQED (”easy plane” QED)

U(Nf/2)2

bQED−
U(Nf/2)2

(3.3)

Assuming that below a certain N∗f two or four fixed points become complex, the picture of

the RG flows below N∗f is different for the RG flows between complex conjugates CFT’s, but

3In the 4 − 2ε expansion, tricritical QED is described by a small λ = 2λep ∼ 1/N2
f fixed point, the

ep-bQED has λep ∼ 1/Nf , λ ∼ 1/N2
f , while the other two fixed points have λep ∼ 1/Nf , λ ∼ 1/Nf , see

Appendix A.
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still there are RG flows from the complex conjugated pair coming from bQED — bQED+ to

the complex conjugated pair coming from bQED− — ep-bQED.

At the fixed points bQED and bQED+ the global symmetry is enhanced to(
SU(Nf )

ZNf
× U(1)top

)
o ZC2 , (3.4)

where ZNf is the center of SU(Nf ). All gauge invariant local operators, including the

monopoles, transform in SU(Nf ) representations with zero Nf -ality. Notice that along the

symmetry enhanced direction λ = 2λep, the Nf can be considered to be any integer.

The two fixed points with U(Nf) symmetry

The scaling dimensions of simple scalar operators in the large-Nf limit, at the fixed points

with U(Nf ) symmetry, are studied in the chapter 2 and [73]:

bQED (tricritical)

U(Nf )-symmetry

∆[Φ∗ΦSU(Nf )−adjoint] = 1− 64
3π2Nf

∆[|Φ|2SU(Nf )−singlet] = 1 + 128
3π2Nf

∆[Φ∗iΦ
∗
jΦ

kΦl − traces] = 2− 128
3π2Nf

∆[|Φ|4SU(Nf )−singlet] = 2 + 256
3π2Nf

bQED+(CPNf−1model)

U(Nf )-symmetry

∆[Φ∗ΦSU(Nf )−adjoint] = 1− 48
3π2Nf

∆[Φ∗iΦ
∗
jΦ

kΦl − traces] = 2− 48
3π2Nf

∆[σ+] = 2− 144
3π2Nf

∆[−5∓
√

37
12

σ2
+ + F µνFµν ] = 4− 32(4±

√
37)

3π2Nf

(3.5)

The quartic operators [Φ∗iΦ
∗
jΦ

kΦl − traces] transform in the adjoint-2 representation of

SU(Nf ), with Dynkin labels [2, 0, . . . , 0, 2].

We are not aware of any order O(1/N2
f ) computation in bosonic QED’s. Extrapolating

finite-Nf numerical simulations, [35] estimated the order O(1/N2
f ) correction to the adjoint

in bQED+ to be4

∆[Φ∗ΦSU(Nf )−adj] = 1− 48

3π2Nf

+
1.8(2)

N2
f

. (3.6)

The merging of these two fixed points happens when the |Φ|4SU(Nf )−singlet operator (that

at Nf =∞ has ∆ = 2) in bQED, decreasing Nf , hits ∆ = 3 from below, and the σ2
+ operator

(that at Nf = ∞ has ∆ = 4) in bQED+ hits ∆ = 3 from above. Actually, the operator σ2
+

4This is taken from ηN in the caption of figure 5 of [35], where there seems to be a sign typo.
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mixes strongly with F µνFµν , that also has ∆ = 4 at Nf = ∞. The mixing was studied in

[73], from which we take the results in the last line of Tab. 3.5.

1/Nf

∆

1

2

3

4

0 0.1 0.2 0.3 0.4

[F 2−σ2
+]CPNf−1−model

[|Φ|4sing]tricritical bQED

(3.7)

Imposing that the interactions reach marginality we can estimate N∗f :

∆[|Φ|4SU(Nf )−singlet]bQED = 3 → N∗f ∼
256

3π2
' 8.6 , (3.8)

∆[−0.924σ2
+ + F µνFµν ]bQED+ = 3 → N∗f ∼

32(4 +
√

37)

3π2
' 10.9 . (3.9)

Another way to estimate the merging point is to impose that the scaling dimension of

the singlet bilinear in bQED is equal to the scaling dimension of the Hubbard-Stratonovich

field σ+ in bQED+:

∆[|Φ|2SU(Nf )−singlet]bQED=1 +
128

3π2Nf

= ∆[σ+]bQED+ = 2− 144

3π2Nf

→ N∗f ∼ 9.2 . (3.10)

Even if these three arguments are not completely independent, it is encouraging to get

somewhat consistent results. Obviously, the N∗f should be unique (for two given fixed points

colliding) and the somewhat different values for N∗f (3.8, 3.9, 3.10) is probably related to

the fact that we are truncating the series at order O(1/Nf ). It might happen that this

truncation is good for the scaling dimensions of some observables but not so good for others.

For instance it might happen that the order O(1/N2
f ) correction to the |Φ|4SU(Nf )−singlet in

bQED is small, instead the same order for the σ2
+ in bQED+ might be big. Then, in one

case it will not affect the N∗f , while in the other case it will. This can be verified only if

one manages to find the scaling dimensions at all orders in 1/Nf (also including possible
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non-perturbative effects), which seems to be out of the scope of the currently available

techniques.

We mention that numerical lattice simulations [35] show a second order phase transitions

for bQED+ for all Nf ≥ 2 (for Nf=2, [99] claims first order phase transition). However, if

the phase transition is weakly first order (large correlation length as compared to the lattice

spacing), it might be difficult in the lattice simulations to differentiate it from the continuous

transition. On the other hand, in [60] authors claim N∗f ∼ 12, which is close to our prediction

N∗f ∼ 10.

The two fixed points with U(Nf/2)2 symmetry

Let us now move to the fixed points with U(Nf/2)2 symmetry, the scaling dimensions of the

mesonic gauge invariant operators are studied in the chapter 2 and [100]:

bQED−
U(Nf/2)2-symmetry

∆[Φ∗ΦSU(Nf/2)−adj, Φ̃
∗Φ̃SU(Nf/2)−adj] = 1− 48

3π2Nf

∆[Φ∗i Φ̃j,ΦiΦ̃
∗
j ] = 1− 72

3π2Nf

∆[Φ∗iΦ
∗
j Φ̃kΦ̃l,ΦiΦjΦ̃

∗
kΦ̃
∗
l ] = 2− 144

3π2Nf

∆[
∑Nf/2

i=1 |Φi|2 + |Φ̃i|2] = 1 + 144
3π2Nf

∆[(
∑Nf/2

i=1 |Φi|2 + |Φ̃i|2)2] = 2 + 288
3π2Nf

∆[σ−] = 2 + 48
3π2Nf

easy plane bQED

U(Nf/2)2-symmetry

∆[Φ∗ΦSU(Nf/2)−adj, Φ̃
∗Φ̃SU(Nf/2)−adj] = 1− 32

3π2Nf

∆[Φ∗i Φ̃j,ΦiΦ̃
∗
j ] = 1− 56

3π2Nf

∆[Φ∗iΦ
∗
j Φ̃kΦ̃l,ΦiΦjΦ̃

∗
kΦ̃
∗
l ] = 2− 64

3π2Nf

∆[σ−] = 2 + 32
3π2Nf

∆[σ+] = 2− 160
3π2Nf

(3.11)

Imposing that the singlet bilinear in bQED− meets the Hubbard-Stratonovich field σ+ in

ep-bQED:

∆[

Nf/2∑
i=1

|Φi|2 + |Φ̃i|2]bQED− = ∆[σ+]ep−bQED → N∗f ∼ 10.3 . (3.12)

Unfortunately in this case we do not have scaling dimensions of the pair of operators

{σ2
−, F

µνFµν}. From the quartic operator in bQED− hitting ∆ = 3 from below we get

∆[(

Nf/2∑
i=1

|Φi|2 + |Φ̃i|2)2]bQED− = 3 → N∗f ∼ 9.7 . (3.13)

59



Let us also consider the possibility of a different collision pattern, for instance that

bQED+ collides with ep-bQED. It is easy to see that the scaling dimensions disfavour this

scenario: in bQED+, the anomalous dimension of [Φ∗iΦ
∗
jΦ

kΦl − traces] is negative, so de-

creasing Nf such operators do not hit ∆ = 3, which would be required in order for bQED+

to collide with ep-bQED.

Finally we want to mention that the merging and annihilation scenario between the

bosonic fixed points with the same pattern is also confirmed in d = 4−2ε using the one-loop

epsilon expansion (see Introduction and the appendix A for more details).

Improved estimate of N ∗f? A square-root ansatz

If the annihilation-of-fixed-points scenario is correct, it must be that the scaling dimensions

of the various operators ∆[O](Nf ) present a square root behaviour when Nf ↘ N∗f , and the

anomalous dimensions becomes complex when Nf < N∗f . For instance for the quartic singlet

operator in tricritical bQED, we might use a simple ansatz of the form

∆[|Φ|4singlet]bQED = 3−
√

1−N∗f /Nf ∼ 2 +
N∗f
2Nf

+
(N∗f )2

8N2
f

+
(N∗f )3

16N3
f

+O(1/N4
f ) . (3.14)

1/Nf

∆[O](Nf )

2

3

(3.15)

Notice that this ansatz predicts that all the higher order corrections have the same sign

of the order O(1/Nf ) correction.

Using the order O(1/Nf ) result ∆[|Φ|4singlet] = 2 + 256
3π2Nf

, in the square-root ansatz (3.14)

provides the estimate N∗f = 2 · 256
3π2 ∼ 17.3. This is a factor of 2 larger than the estimate in

(3.8), which used a linear extrapolation. For all the operators in all the models considered

in this section, the square-root ansatz (3.14) provides estimates of N∗f which are a factor of

2 larger than the estimates using the linear extrapolation.

Let us emphasize that including the square root behavior at Nf → N∗f is equivalent to

imposing information about strongly coupled phenomena. It would be desirable to have
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scaling dimensions at higher order in 1/Nf : this would allow to test if ansatze that include

the square root behavior (3.14) is better than the naive extrapolations.

In the case of the Abelian Higgs model, in the 4− 2ε expansion we already know (1.22)

that the zeroes of the one loop beta function of the quartic coupling λ|Φ|4 are given by

λ∗ =
Nf + 18±

√
N2
f − 180Nf − 540

16Nf (Nf + 4)
ε . (3.16)

The “+” solution is the bQED+, the “−” solution is the tricritical bQED. From the previous

equation it follows that in the limit ε → 0+, the exact result for the fixed point merging is

N∗f = 6(15 + 4
√

15) ∼ 183. On the other hand, we can perform a computation analogous

to eqs. (3.8, 3.9, 3.10), in d→ 4−, using the generic-d scaling dimensions computed in [73].

The result is N∗f (d→ 4−) ∼ 90, which is indeed a factor of ∼ 2 smaller than the exact result.

This computation tells us that, in dimension d→ 4−, the square-root ansatz (3.14) is better

than the linear extrapolation, suggesting that the same might be true in dimension 3, and

the linear extrapolation underestimates N∗f also in d = 3.

Singlet sextic interactions of bosonic tricritical points

At the tricritical fixed point the sextic SU(Nf )-singlet operator at infinite Nf has ∆ = 3.

The 1st order correction is

∆[(

Nf/2∑
i=1

(ΦiΦ∗i + Φ̃iΦ̃∗i ))
3] = 3 + 3

128

3π2Nf

+O(1/N2
f ) . (3.17)

So the sextic SU(Nf ) invariant deformation is irrelevant. Modulo tuning mass and quartic

term to zero, tricritical bQED is a stable fixed point. At the merging of the tricritical fixed

point with the critical fixed point sextic singlet interactions do not play a role. 3d bosonic

gauge theories at the tricritical point (with quartic interactions tuned to zero) were studied

in a completely different regime in [101, 102], where they named the model regular boson

theory. [101, 102] found that for U(Nc)k Chern-Simons with 1 bosonic flavor, at large Nc

and large k with Nc/k fixed, there is a stable fixed point and possibly (depending on the

value of Nc/k) an unstable fixed point. Combining these two results, it is natural to suggest

that at finite Nc, Nf , k, bosonic QCD always has a stable tricritical, or regular, fixed point.

3.2 Fermionic QED

We consider fermionic QED with Nf/2 flavors Ψi plus Nf/2 flavors Ψ̃i (each Ψ, Ψ̃ is a

complex two-component 3d fermion). The quartic Gross-Neveu interactions are modeled by
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Yukawa cubic couplings with two real Hubbard-Stratonovich scalar fields, ρ+ and ρ−.5 ρ+

and ρ− are parity-odd, and all our theories are parity invariant. The Lagrangian reads

L =
1

4e2
FµνF

µν +

Nf/2∑
i=1

(Ψ̄i /DΨi + ¯̃Ψi /DΨ̃i) +
∑
±

ρ±

Nf/2∑
i=1

(Ψ̄iΨi ± ¯̃ΨiΨ̃i) + . . . . (3.18)

The . . . stand for quartic interactions and kinetic terms for the ρ± fields. The mass terms

for ρ± are relevant at large enough Nf .

We start discussing the ungauged model, with O(Nf )
2 o Ze2 global symmetry, the RG

flows between the 4 fixed points are triggered by mass terms for the scalars ρ±. In the

ungauged model Nf can be any integer.

There are 4 fixed points, similar to the bosonic case: a free theory, a decoupled fixed point

with both ρ+ and ρ− (renaming ρ± = ρ ± ρ̃, it splits into two decoupled O(Nf )-invariant

Gross-Neveu models), a Gross-Neveu fixed point with only ρ− and O(Nf )
2 o Ze2-symmetry,

and a Gross-Neveu fixed point with only ρ+ and O(2Nf )-symmetry.

O(2Nf )-Gross-Neveu

”Gross-Neveu−”

O(Nf )
2 o Z2

2Nf Free

Majorana fermions

Two decoupled

O(Nf )-Gross-Neveu’s

ρ2
+

ρ2
+

ρ2
−

ρ2
−

(3.19)

For any N ≥ 1, it is known with good accuracy that in the O(N) Gross-Neveu model,

∆[ρ2] < 3 (at large N ∆[ρ2] ∼ 2 + 32
3π2N

, at N = 1 ∆[ρ2] ∼ 1.59), so in particular the

deformations ρ2
+ and ρ2

− are relevant.

5 Much of the existing literature considers QED’s with N four-component Dirac fermions χi, i = 1, . . . , N ,

in generic dimension d. In d = 3, the global symmetry can be U(2N) or U(N)2, depending on the precise

form of the Yukawa (or Gross-Neveu-Yukawa) couplings.

In terms of two-component 3d fermions χi = (Ψi, Ψ̃i) and (χ̄i = Ψ̄i,− ¯̃Ψi). So
∑N
i=1 χ̄iχi =

∑N
i=1(Ψ̄iΨi−

¯̃ΨiΨ̃i) is a U(N)-singlet in d 6= 3, but it is part of the SU(2N)-adjoint in d = 3. On the other hand∑N
i=1 χ̄iγ35χi =

∑N
i=1(Ψ̄iΨi+

¯̃ΨiΨ̃i) is a SU(2N)-singlet in d = 3. See [77], for definition of γ35 and gamma

matrices, which are 4-dimensional reducible representation of the Clifford algebra.

Often, what is called QED-Gross-Neveu has Lint = σ
∑N
i=1 χ̄iχi, with U(N)2 global symmetry in d = 3.

We instead named this model QED-GN−. On the other hand [8] calls QED-Gross-Neveu the model that we

named QED-GN+, with d = 3 global symmetry U(2N).
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Gauging the U(1) symmetry at even Nf . As in the bosonic case, if Nf is large enough,

gauging the U(1) symmetry triggers an RG flow from (3.19) to the following 4 interacting

fermionic fixed points:

QED-GN+

U(Nf )

QED-NJL

U(Nf/2)2

fQED (standard QED)

U(Nf )

QED-GN−
U(Nf/2)2

ρ2
+

ρ2
+

ρ2
−

ρ2
−

(3.20)

The global symmetry at the fixed points fQED and QED-GN+ is enhanced to

SU(Nf )× U(1)top

ZNf
o ZC2 . (3.21)

Fermionic QED and its partner

The scaling dimensions of mesonic scalar gauge invariant operators to leading order in the

large-Nf limit are studied in the chapter 2 and in [80, 81, 89, 90]6:

fQED

U(Nf )

∆[Ψ̄ΨSU(Nf )−adj] = 2− 64
3π2Nf

+ 256(28−3π2)

9π4N2
f
∼ 2− 2.16

Nf
− 0.47

N2
f

∆[Ψ̄ΨSU(Nf )−singlet] = 2 + 128
3π2Nf

∆[|Ψ|4[0,1,0...,0,1,0]] = 4− 192
3π2Nf

∆[|Ψ|4[2,0,...,0,2]] = 4 + 64
3π2Nf

∆[{(|Ψ|2singlet)2, F µνFµν}] = 4 + 64(2±
√

7)
3π2Nf

QED-GN−
U(Nf/2)2

∆[Ψ̄ΨSU(Nf/2)−adj] = 2− 48
3π2Nf

+ 64(100−9π2)

9π4N2
f
∼ 2− 1.62

Nf
+ 0.82

N2
f

∆[Ψ̄iΨ̃j,
¯̃ΨiΨj] = 2− 72

3π2Nf

∆[
∑Nf/2

i=1 (Ψ̄iΨi + ¯̃ΨiΨ̃i)] = 2 + 144
3π2Nf

∆[ρ−] = 1 + 48
3π2Nf

− 8(1232−243π2)

9π4N2
f

∼ 1 + 1.62
Nf

+ 10.64
N2
f

∆[ρ2
−] = 2 + 144

3π2Nf

(3.22)

6Let us observe that, at order O(1/Nf ), the anomalous (not the total) dimensions of the fermionic fixed

points (3.22, 3.26) are equal to the anomalous dimensions of the bosonic fixed points (3.5, 3.11). This is true

for the Hubbard-Stratonovich fields and for quadratic operators in the charged fields.
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The quartic fermionic operators in fQED were computed in [80, 81], we indicated the Dynkin

labels of the SU(Nf ) representation under which they transform. The mixing between the

quartic singlet and F µνFµν is strong also here, and was solved in [81], the lowest eigenvalue

of the singlets does not seem to run fast enough to hit ∆ = 3 (which would suggest the

symmetry-preserving merging fQED−QED-GN+). We also included the order O(1/N2
f )

contributions, when known [89, 90]7. The order O(1/N2
f ) corrections to the adjoint are quite

small, while ρ− receives a big contribution at order O(1/N2
f ), from which [26, 29] estimated

chiral symmetry breaking below N c
f ∼ 2.8469 · 2 = 5.69 in fQED8.

The conjectural collision of the two fixed points fQED and QED-GN− happens when,

decreasing Nf , the lowest quartic fermion operator (|Ψ|4[0,1,0,...,0,1,0]) hits ∆ = 3 from above

and the mass term of the Hubbard-Stratonovich field ρ2
− hits ∆ = 3 from below:

∆[|Ψ|4[0,1,0...,0,1,0]]fQED = 3 → N∗f ∼
192

3π2
' 6.5 , (3.23)

∆[ρ2
−]QED−GN− = 3 → N∗f ∼

144

3π2
' 4.9 . (3.24)

Another estimate comes equating the adjoint in fQED with ρ− in QED-GN−, using the

order O(1/N2
f ) anomalous dimensions we get

∆[Ψ̄ΨSU(Nf )−adj]fQED = ∆[ρ−]QED−GN− → N∗f =
56 + 2

√
678π2 − 3472

3π2
∼ 5.72 .

(3.25)

Had we used the order O(1/Nf ) anomalous dimensions, we would have got N∗f ∼ 3.8. Hence,

the 2nd order in 1/Nf corrections in fermionic QED’s increase the value of the collision point.

This is because the 2nd order corrections have the same sign of the 1st order corrections, both

in ∆[Ψ̄ΨSU(Nf )−adj]fQED and in ∆[ρ−]QED−GN− (if this collision is interpreted as merging

and annihilation, then the fact that second order corrections increased the value of N∗f gives

more evidence to the square root behaviour which must be present if the merging scenario

is correct, as discussed in section 3.1).

7[90] studies pure QED and eq. 27 gives the scaling dimension of
∑N
i=1 χ̄iχi =

∑N
i=1(Ψ̄iΨi− ¯̃ΨiΨ̃i) which

is part of the SU(Nf=2N)-adjoint in d = 3. See footnote 5.

The QED-GN− results are given eqs. 4.4 and 4.6 of [89], which studies a model (referred to as QED-Gross-

Neveu in [89]) with Lint = σ
∑N
i=1 χ̄iχi. When d = 3 this model is what we call QED-GN−, with U(N)2

3d global symmetry. So the results of [89] are valid for our QED-GN− with Nf=2N flavors. Moreover, [89]

reports the dimension of
∑N
i=1 χ̄iχi, an operator which vanishes on-shell because of the equation of motion

of σ. We report the scaling dimension of σ, using the relation ∆[σ] = 3−∆[
∑N
i=1 χ̄iχi].

8We denoted by N c
f the number of flavors for which chiral symmetry breaking takes place. We want

to emphasise that N∗f is the critical number of flavors for which the collisions happen, and only if these

collisions are interpreted as merger and annihilation one can associate N∗f to N c
f .
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Studying fermionic QED at finite Nf but continuous dimension d, [30] estimated N c
f ∼

2.89 · 2 = 5.8, while [31] found an upper bound for the merging: N c
f < 4.4 · 2 = 8.8.

QED-GN+ and its partner

We now move to the last fixed points. The scaling dimensions for QED-GN+ and QED-NJL

are studied in the chapter 2:

QED-GN+

U(Nf )

∆[Ψ̄ΨSU(Nf )−adj] = 2− 48
3π2Nf

∆[ρ+] = 1− 144
3π2Nf

∆[ρ2
+] = 2− 240

3π2Nf

QED-NJL

U(Nf/2)2

∆[Ψ̄ΨSU(Nf/2)−adj] = 2− 32
3π2Nf

∆[Ψ̄iΨ̃j,
¯̃ΨiΨj] = 2− 56

3π2Nf

∆[ρ−] = 1 + 32
3π2Nf

∆[ρ+] = 1− 160
3π2Nf

∆[ρ+ρ−] = 2− 32
3π2Nf

∆[ρ2
+ + (4∓

√
17)ρ2

−] = 2− 16(5±3
√

17)
3π2Nf

(3.26)

We can estimate N∗f in two ways. First, imposing that the adjoint in QED-GN+ meets the

singlet in QED-NJL:

∆[Ψ̄ΨSU(Nf )−adj] = 2− 48

3π2Nf

= ∆[ρ−] = 1 +
32

3π2Nf

→ N∗f ∼ 2.7 . (3.27)

It is conceivable that, as in (3.25), including 2nd order anomalous dimensions moves this

estimate up significantly. Second, looking at when ρ2
− (after having solved the mixing with

ρ2
+) hits ∆ = 3 from below:

∆[ρ2
− + 0.123ρ2

+]QED−NJL=2 +
16(3
√

17− 5)

3π2Nf

= 3 → N∗f ∼
16(3
√

17− 5)

3π2
' 4 . (3.28)

Notice that a collision between QED-NJL and QED-GN− is not favorable, since the operator

ρ2
+ at QED-NJL9 has a negative anomalous scaling dimension and therefore lowering Nf it

doesn’t hit the marginal value.

9To be precise we should talk about the mixed state (ρ2
+ − 0.123ρ2

−).
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Chapter 4

Higher Derivative Gauge theory in

d = 6 and the CP(Nf−1) NLSM

4.1 Large Nf expansion of the critical CP(Nf−1) NLSM

The CP(Nf−1) Non-Linear-Sigma-Model is described by Nf complex scalar fields subject to

the condition
Nf∑
i=1

|Φi|2 = Nf , with the following action

SCP(Nf−1) =

∫
ddx
[ Nf∑
i=1

|∂µΦi|2 +
1

4Nf

( Nf∑
i=1

(Φ∗i∂µΦi − ∂µΦ∗i · Φi)
)2
]
. (4.1)

The action is easily proved to be gauge invariant under the local U(1) transformations

Φi(x) → eiα(x)Φi(x). Due to the constraint
Nf∑
i=1

|Φi|2 = Nf , the vector Φi lies on a sphere

S2Nf−1. Additionally the gauge invariance implies that the field configurations related by the

gauge transformations are physically equivalent and inside the path integral one shouldn’t

integrate over these equivalent configurations. Geometrically this means that the target

space becomes CP(Nf−1) ∼ S2Nf−1/U(1).

As it is usually the case, for building the 1/Nf expansion it is comfortable to introduce

master (HS) fields: a scalar field σ as a Lagrange multiplier for the constraint and a vector

field Aµ to engineer the complicated quartic interaction with derivatives of (4.1) as a sum of

quadratic and cubic terms (Hubbard-Stratonovich transformation). This allows to rewrite
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the action (4.1) as follows

S =

∫
ddx
[ Nf∑
i=1

|∂µΦi|2 + iAµ

Nf∑
i=1

(Φ∗i∂µΦi − ∂µΦ∗i · Φi) +NfA
2
µ + σ

( Nf∑
i=1

|Φi|2 −Nf

)]
.

(4.2)

After shifting σ → σ + A2
µ the action (4.2) takes the following simple form

S =

∫
ddx
[ Nf∑
i=1

|DµΦi|2 + σ
( Nf∑
i=1

|Φi|2 −Nf

)]
. (4.3)

The U(1) gauge invariance of (4.3) is obvious with the vector field Aµ playing the role of

a gauge field. The gauge fixing term is required to fix the redundancies, following [73] the

standard Rξ gauge is employed (ξ = 0 is the Landau gauge). From now on we are interested

in the large Nf limit of the (4.3).

In [73] Vasil’ev and Nalimov studied (4.3) in the dimension 2 < d < 4. They calculated,

at the critical point, the leading order scaling dimensions of the master fields in the large

Nf limit: ∆[σ] = 2, ∆[Aµ] = 1. They also observed that the scalar QED in 2 < d < 4

(applying HS transformation on the Φ4 interaction), is in the same universality class with

the CP(Nf−1) NLSM. The NLO corrections to the scaling dimensions of various observables

were also calculated in [73]. We will summarize their results at the end of this section.

Before proceeding, we briefly remind why in the scalar QED (2 < d < 4) in the large Nf

limit ∆[Aµ] = 1. The scalar QED action (after applying the HS transformation on Φ4

interaction) is defined by (4.3), adding to it a kinetic term for the photon F 2
µν/4e

2. In the

large Nf limit, only the following bubble graphs contribute to the 2-point function of the

photon.

〈Aµ(p)Aν(−p)〉 = + + + .... ,
(4.4)

The wavy line in the graphs (4.4) represents the tree level photon propagator in the Landau

gauge Dαβ(p) = e2

p2

(
δαβ − pαpβ

p2

)
. For a single bubble graph we have

Παβ(p) = Nf

∫
ddq

(2π)d
(2q + p)α(2q + p)β

q2(p+ q)2

= Nf
22−d√πΓ(1− d/2)Γ(d/2)

(4π)d/2Γ(d/2 + 1/2)

(
δαβ −

pαpβ
p2

)
pd−2 = NfB(d)

(
δαβ −

pαpβ
p2

)
pd−2 , (4.5)

where the factor Nf is due to Nf complex scalar flavors circulating inside the closed loop

(4.4). The fraction in (4.5) is denoted by B(d). Summing geometric series of the bubble
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graphs in (4.4) gives

〈Aµ(p)Aν(−p)〉 = Dµρ(1− ΠD)−1
ρν =

e2

p2

(
δµν −

pµpν
p2

) 1

1−NfB(d)e2pd−4
. (4.6)

Therefore we conclude that in 2 < d < 4, the scaling dimension of the photon in the IR limit

is ∆[Aµ] = 1

〈Aµ(p)Aν(−p)〉|p→0 = −
(
δµν − pµpν

p2

)
p2−d

NfB(d)
. (4.7)

We are interested to examine (4.3) in the dimension 4 < d < 6. The analysis made in

[73] still holds, in particular we can use their results by simply analytically continuing the

dimension d. However there is a one crucial difference: in d < 4 the critical CP(Nf−1) is

realized as an IR fixed point of the scalar QED with Φ4 interaction, while in d > 4 it is an

UV interacting fixed point of that theory. Indeed, it follows from (4.6) that for d > 4, one

recovers the scaling behaviour (4.7) when p→∞ (UV limit).

We propose a Higher Derivative Gauge (HDG) theory as a UV completion of the action

(4.3): including in it the kinetic terms (∂µσ)2, (∂µFαβ)2 and the interaction terms σ3, σF 2
αβ.

In the next section we will see that the HDG is asymptotically free. Apart from the above

mentioned terms, in the HDG action one can include also “mass” terms (σ2, F 2
αβ), which are

relevant deformations. Tuning to zero these terms (also the Φ2 term), the HDG flows to the

IR critical point CP(Nf−1). Indeed, below we will show that in the large Nf limit the IR scal-

ing dimensions are ∆[σ] = 2, ∆[Aµ] = 1. Therefore the operators (∂µσ)2, (∂µFαβ)2, σ3, σF 2
αβ

are irrelevant at the critical point and the HDG in the IR limit is effectively described by

(4.3). In the case, when the term F 2
αβ is turned on, in the IR limit we end up on the critical

U(Nf )-Yukawa. Instead, when the σ2 is turned on, in the IR limit we end up on the critical

scalar-QED (one may call it a pure scalar QED, since the Yukawa (σΦ2) interactions are

absent). Notice that in the dimension 4 < d < 6 the Φ4 operator is irrelevant as opposed to

the d < 4 case.

Let us check the statement ∆[Aµ] = 1 (similarly one can check that tuning σ2 to zero,

in large Nf limit ∆[σ] = 2). Since we tuned the “mass” term F 2
αβ to zero, the tree level

propagator for the photon is solely determined by the higher-derivative kinetic term, which

gives D(p) ∼ 1
p4

(see more details in the next section). Repeating the steps of (4.5), with

that tree level propagator one obtains

〈Aµ(p)Aν(−p)〉 =
e2

p4

(
δµν −

pµpν
p2

) 1

1−NfB(d)e2pd−6
. (4.8)

From (4.8) it follows that in the IR limit p → 0, one recovers the behaviour (4.7), which

proves ∆[Aµ] = 1.
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We pass the following parallels between the many-flavor bosonic (4 < d < 6) and many-

flavor fermionic (2 < d < 4) QED’s. The U(Nf )-Gross-Neveu-Yukawa model with Nf four

component fermions is the analog of U(Nf )-Yukawa model. The SU(Nf ) pure fermionic QED

(no ρΨ2 interaction) is the analog of the SU(Nf ) scalar QED. The QED-GNY is the analog

of the CP(Nf−1). This analogy lies on the following observation: the quartic interaction Φ4

is irrelevant in 4 < d < 6, while four fermion interaction Ψ4 is irrelevant in 2 < d < 4. The

IR fixed points of the U(Nf )-Gross-Neveu-Yukawa and of the SU(Nf ) pure fermionic QED

in 2 < d < 4 are respectively related to the UV fixed points of the Gross-Neveu and of the

Thirring models.

Let us review the findings of [73] about the critical CP(Nf−1) model in d-dimensions. The

scaling dimension of the fundamental scalar field in the Landau gauge is

∆[Φi] =
d− 2

2
+

1

4

(
1 +

4(d− 1)2

d− 4

) η1

Nf

+O
( 1

N2
f

)
, (4.9)

where the η1 is defined in (1.8). At the critical point, due to gauge invariance it is expected

that the scaling dimension of the gauge field is exactly equal to ∆[Aµ] = 1. The absence of

the anomalous dimension was confirmed in [73] at the order O(1/Nf ). The scaling dimension

of the HS field σ is

∆[σ] = 2 +
4d2(d− 1)(2− d)

4− d
η1

Nf

+O
( 1

N2
f

)
. (4.10)

In [103] it was observed, that at the critical point the condition Φ2 = 0 (which is equivalent

to saying that the singlet quadratic operator is out of spectrum) doesn’t hold, after one

introduces the analytic regularization. This regularization was employed in [73]. However in

[103] using the Schwinger equations, it was proved that the Φ2 doesn’t give any new scaling

dimension, instead

∆[Φ2] = d−∆[σ] = ν−1 . (4.11)

This relation is known as a “shadow relation”. The anomalous scaling dimensions of the

operators O1 = σ2

2
and O2 =

F 2
µν

4
was also studied. These operators have a scaling dimension

4 at leading order, and at the order O(1/Nf ) they mix. The mixing matrix in d-dimensions

has the following form

γ

Nf

= −
4a
(
2− d

2

)
a
(
d
2
− 1
)

Nfa(2)Γ
(
d
2

+ 1
) [

γ11 γ12

γ21 γ22

]
, (4.12)
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where

γ11 =
d(d− 1)2(3− 2d)

4− d
, (4.13)

γ12 =
(4− d)(d+ 1)

2
, (4.14)

γ21 =
d(d− 1)3(d+ 1)

4− d
, (4.15)

γ22 =
(d2 − d− 4)(d− 1)

2
. (4.16)

The eigenvalues of the matrix γ/Nf are the anomalous dimensions which we denote by

γ1,2/Nf . The eigenstates are mixtures of the operatorsO1 andO2. The full scaling dimensions

are

∆1 = 4 +
γ1(d)

Nf

+O
( 1

N2
f

)
, (4.17)

∆2 = 4 +
γ2(d)

Nf

+O
( 1

N2
f

)
. (4.18)

The analytic expression for γ1,2 as a function of d are very cumbersome. In the Fig. 4.1 we

plot them in the region 2 < d < 6 (and a separate small plot shows the same functions in

the region 2 < d < 4).

Figure 4.1: γ1(d) (blue) and γ2(d) (orange)

For our future purpose we will need the scaling dimensions (4.9, 4.10, 4.11, 4.17, 4.18)
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at d = 6− 2ε expanded for small ε

∆[Φi] = 2− ε+
51

Nf

ε− 167

2Nf

ε2 +O(ε3) , (4.19)

∆[σ] = 2 +
1440

Nf

ε− 3456

Nf

ε2 +O(ε3) , (4.20)

∆[Aµ] = 1 (4.21)

∆[Φ2] = 4− 2ε− 1440

Nf

ε+
3456

Nf

ε2 +O(ε3) , (4.22)

∆1 = 4 +
40(50 + 7

√
10)

Nf

ε− 2(8275 + 827
√

10)

3Nf

ε2 +O(ε3) , (4.23)

∆2 = 4 +
40(50− 7

√
10)

Nf

ε− 2(8275− 827
√

10)

3Nf

ε2 +O(ε3) . (4.24)

To our knowledge the critical pure scalar-QED in 4 < d < 6 has not been studied yet. We

calculated scaling dimensions at order O(1/Nf ) for few operators. Below we give the results

without providing details on calculations

∆[Φi] =
d− 2

2
+

(d− 1)2

(d− 4)

η1

Nf

+O
( 1

N2
f

)
, (4.25)

∆[Aµ] = 1 , (4.26)

∆[Φ2] = d− 2 +
(d− 1)2(d(d− 1)− 2)

4− d
η1

Nf

+O
( 1

N2
f

)
. (4.27)

The dimension of Φi (4.25) is given in the Landau gauge. Expanding (4.25, 4.27) at d = 6−2ε

for small ε gives

∆[Φi] = 2− ε+
50

Nf

ε− 245

3Nf

ε2 +O(ε3) , (4.28)

∆[Φ2] = 4− 2ε− 1400

Nf

ε+
10160

3Nf

ε2 +O(ε3) . (4.29)

4.2 Higher Derivative Gauge theory in d = 6

The HDG is defined with the following Euclidean (bare) action

S =

∫
ddx
[
DµΦiD

µΦi +
1

2
∂µσ∂

µσ +
1

4
∂µFαβ∂

µFαβ + τ
(0)
1 Φ∗iΦ

i +
τ

(0)
2 σ2

2
+
τ

(0)
3 FαβF

αβ

4

+ g
(0)
1 σΦ∗iΦ

i +
g

(0)
2 σ3

6
+
λ(0)σFαβF

αβ

2
+

1

2ξ

(
∂µ∂αA

α
)(
∂µ∂βA

β
)]

(4.30)

where Dµ = ∂µ + ie0Aµ. The action (4.30) has a SU(Nf ) global symmetry, the complex

scalar fields Φi, i = 1, ..., Nf transform in the fundamental representation of SU(Nf ). The
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real scalar field σ is a SU(Nf ) singlet. The kinetic term for the gauge field Aµ contains 4-

derivatives as opposed to the standard two-derivative kinetic terms, hence the name “higher

derivative gauge theory”. The last term in the action (4.30) is the gauge fixing. We call it

a Rξ gauge borrowing the name of the standard gauge fixing: (∂A)2

2ξ
, commonly used in the

4-dimensional gauge theories. The propagator of the gauge field Aµ in the Rξ gauge has the

following form.

Dαβ(p) = 〈Aα(p)Aβ(−p)〉 =
1

p2(p2 + τ3)

[
δαβ +

(ξ − 1)p2 + ξτ3

p2

pαpβ
p2

]
. (4.31)

We will work in the Landau gauge ξ = 0. In the Landau gauge the propagator is transverse:

Dαβ(p)pβ = 0.

The canonical dimensions of the scalar and gauge fields in d = 6 are: d[Φ] = d[σ] =

2, d[A] = 1. Following the general rules, in the action (4.30) we included all the possible

terms (scalar gauge invariant operators preserving the SU(Nf ) symmetry) that have di-

mensions less or equal 6. There are 3 mass terms: Φ2, σ2, F 2
αβ with dimensions equal to 4

(relevant operators) and there are 3 cubic interactions: σΦ2, σ3, σF 2
αβ with dimensions equal

to 6 (marginal operators). The scalars Φi are minimally coupled to the gauge field which

introduces the standard cubic and quartic interactions between these fields. To distinguish

the bare parameters from the physical ones, we denoted the former with a superscript (4.30).

The marginal operator FαβFβγFγα is identically vanishing, since under the exchange

α ↔ β the Fαβ is antisymmetric and the FβγFγα is symmetric. Notice that besides the

kinetic term for the gauge field that appears in (4.30), there is another dimension 6, 4-

derivative operator: ∼ ∂µFαβ∂αFµβ. However we can prove that it is not an independent

operator, indeed

∂µFαβ∂αFµβ = ∂µFαβ
(
∂αFµβ − ∂βFµα

)
= ∂µFαβ∂µFαβ , (4.32)

where in the last step we used the Bianchi identity: ∂µFαβ+∂αFβµ+∂βFµα = 0. Therefore we

conclude that in the action (4.30) we should include only one of these 4-derivative operators,

which is what we did.

In order to cure the divergencies appearing in the Green functions we need to renor-

malize the action (4.30). We perform the renormalization in the Minimal Subtraction (MS)

scheme. First we introduce dimensional regularization, i.e. we define the theory (4.30)

in the dimension d = 6 − 2ε. The canonical dimensions of the fields in d = 6 − 2ε are:

d[Φ] = d[σ] = 2 − ε, d[A] = 1 − ε. The bare action (4.30) is related to the renormalized
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action by field renormalizations:

SR(Φ, σ, A) = S(ZΦΦ, Zσσ, ZAA) (4.33)

ZΦ = ZΦ(g1, g2, e, λ, ε) (4.34)

Zσ = Zσ(g1, g2, e, λ, ε) (4.35)

ZA = ZA(g1, g2, e, λ, ε) (4.36)

The bare masses τ
(0)
a are related to the renormalized masses τa

τ (0)
a =

∑
b

Zτ
ab(g1, g2, e, λ, ε)τb , a, b = 1, 2, 3 , (4.37)

The canonical dimensions of the mass parameters are d[τ
(0)
a ] = d[τa] = 2. The canonical

dimensions of the bare couplings are d[g
(0)
1 ] = d[g

(0)
2 ] = d[e(0)] = d[λ(0)] = ε. The renormal-

ized couplings in (4.38) are dimensionless, this is achieved by introducing the MS scheme

parameter µ, which has a mass dimension equal to one. For convenience let us denote

(e = g3, λ = g4), then the relation between the bare and renormalized couplings can be

written in the compact form

g(0)
u =

∑
v

Zuv(g1, g2, e, λ, ε)µ
εgv , u, v = 1, 2, 3, 4 , (4.38)

The gauge coupling is actually renormalized multiplicatively

e(0) = Ze(g1, g2, e, λ, ε)µ
εe , (4.39)

In other words Z31 = Z32 = Z34 = 0 and Z33 ≡ Ze in (4.38). It follows from the gauge

invariance of the action (4.30) that ZeZA = 1. Therefore we do not need to separately

renormalize the gauge interaction vertices (A2
α|Φ|2, AαΦ∗

↔
∂αΦ), instead we determine ZA =

1/Ze by studing the renormalization of the gauge field propagator.

We remind that the renormalized action is a function either of bare parameters or of

renormalized parameters, since only one set can be considered to be independent. We choose

SR to be a function of renormalized masses and couplings.

SR =

∫
ddx
[
DµΦiD

µΦi +
1

2
∂µσ∂

µσ +
1

4
∂µFαβ∂

µFαβ + τ1Φ∗iΦ
i +

τ2σ
2

2
+
τ3FαβF

αβ

4

+ g1µ
εσΦ∗iΦ

i +
g2µ

εσ3

6
+
λµεσFαβF

αβ

2
+

1

2ξ

(
∂µ∂αA

α
)(
∂µ∂βA

β
)

+ (Z2
Φ − 1)DµΦiD

µΦi +
Z2
σ − 1

2
∂µσ∂

µσ +
Z2
A − 1

4
∂µFαβ∂

µFαβ

+
(
Z2

Φ

∑
Zτ

1aτa − τ1

)
Φ∗iΦ

i +

(
Z2
σ

∑
Zτ

2aτa − τ2

)
σ2

2
+

(
Z2
A

∑
Zτ

3aτa − τ3

)
FαβF

αβ

4

+
(
Z2

ΦZσ
∑

Z1ugu − g1

)
µεσΦ∗iΦ

i +

(
Z3
σ

∑
Z2ugu − g2

)
µεσ3

6
+

(
ZσZ

2
A

∑
Z4ugu −λ

)
µεσFαβF

αβ

2

]
.

(4.40)
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Using (4.40) we define the Feynman rules for the vertices (see Tab. 4.1) and for the counter-

vertices (CV). The graphical representation for the propagators and vertices are collected in

Tab. 4.1.

CV (σΦΦ∗) = −(Z2
ΦZσZ11 − 1)g1µ

ε − Z2
ΦZσZ12g2µ

ε − Z2
ΦZσZ13eµ

ε − Z2
ΦZσZ14λµ

ε , (4.41)

CV (σσσ) = −Z3
σZ21g1µ

ε − (Z3
σZ22 − 1)g2µ

ε − Z3
σZ23eµ

ε − Z3
σZ24λµ

ε , (4.42)

CV

(
σAα(p)Aβ(q)

)
=2
[
Z2
AZσZ41g1µ

ε +Z2
AZσZ42g2µ

ε + Z2
AZσZ43eµ

ε + (Z2
AZσZ44 − 1)λµε

]
Lαβ(p, q) .

(4.43)

where we defined Lαβ(p, q) ≡ δαβp · q − pβqα . The counter-terms for the kinetic and for the

mass terms are given in the first lines of the Tab. 4.3, 4.4, 4.5, 4.6.

The 1-PI Green-functions of the renormalized theory are constructed in the form of

perturbative expansion in the renormalized couplings. All the terms of this expansion can be

represented graphically: connected Feynman graphs with amputated external legs and such

that cutting any single internal leg doesn’t split the graph into disconnected components.

The Feynman graphs already at one-loop typically are divergent integrals (when we put

ε = 0). Demanding that the Green functions are free of divergencies one determines order-

by-order the renormalization constants (Z’s) defined in (4.34, 4.35, 4.36, 4.37, 4.38, 4.39)

and the counter-vertices. In the next section we determine ZΦ, Zσ, ZA and the the matrix

Zuv (4.38). To determine these constants it is sufficient to renormalize the 2-point and the

3-point Green functions in the massless limit: τa = 0, a = 1, 2, 3.

4.3 Renormalization of fields and cubic vertices: anoma-

lous dimensions of fields and beta functions

We study the 1-PI two-point Green-functions for the scalar and gauge fields at the one-loop

order. The Tab. 4.2 contain all the one-loop graphs that appear in those Green-functions.

For our purposes, it is sufficient to calculate the divergent parts of the one-loop integrals,

which are (simple) poles in ε → 0. Some of the graphs (G1, G4, G5) in the Tab. 4.2 have

already been evaluated in the context of the O(N)-Yukawa theory [65], which is the ungauged

version of our theory1.

1 More precisely one should take N = 2Nf in the O(N)-Yukawa theory, then to gauge the U(1) factor in

the U(1) × SU(Nf ) ⊂ O(2Nf ). As a result one will obtain the SU(Nf ) symmetric higher derivative gauge

theory (4.30).
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= 〈Φi(p)Φ
∗
j(−p)〉 =

δij
p2+τ1

= 〈σ(p)σ(−p)〉 = 1
p2+τ2

= 〈Aα(p)Aβ(−p)〉 = (4.31)

= −µεg1

= −µεg2

q p = µεe(p+ q)α

= −2µ2εδαβe
2

p q

α β

= 2µελ(δαβp · q − pβqα) = 2µελLαβ(p, q)

Table 4.1: Feynman rules for tree-level propagators and vertices.

75



Using (B.8), we obtain for the graph G1

G1 = (−g1)2µ2ε

∫
ddq

(2π)d
1

q2(q + p)2
= (−g1)2µ2ε Γ(2− ε)2Γ(−1 + ε)

(4π)3−εΓ(1)2Γ(4− 2ε)
p2−2ε

ε→0
= − g2

1

6(4π)3ε
p2 . (4.44)

The graph G2 gives

G2 = e2µ2ε

∫
ddq

(2π)d
(2p+ q)α(2p+ q)β

(p+ q)2

δαβ − qαqβ
q2

q4

= 4e2µ2ε
(
p2

∫
ddq

(2π)d
1

(p+ q)2q4
− pαpβ

∫
ddq

(2π)d
qαqβ

(p+ q)2q6

)
ε→0
= 4e2

( p2

2(4π)3ε
− p2

12(4π)3ε

)
=

5e2

3(4π)3ε
p2 . (4.45)

To pass to the second line in (4.45), we used the transversality condition of the photon

propagator. The first integral of the second line is evaluated using (B.8), the second integral

is evaluated introducing Feynman parametrization (B.7) and then using formulas (B.9, B.10).

The tadpole G3 is vanishing in the dimensional regularization in the massless limit and

therefore it does not contribute to the field renormalization. However we will see in the

next section that the tadpoles are important for mass renormalizations. The counter-term

CV (ΦΦ∗) = −(Z2
Φ − 1)p2 must be such that the Green function Γ(ΦΦ∗), thus

ZΦ = 1− g2
1

12(4π)3ε
+

5e2

6(4π)3ε
. (4.46)

The graphs G4, G5 have the same topology as the graph G1, and can be evaluated similarly.

Their values are given in the Tab. 4.2. The graph G6 gives

G6 = 2λ2µ2ε

∫
ddq

(2π)d
Lαµ(q, p− q)Dαβ(q)Lβν(−q, q − p)Dµν(p− q)

ε→0
= − 5λ2

(4π)3ε
p2 . (4.47)

The integral in (4.47) can be simplified using the transversality condition and the identity

q(q − p) = q2+(q−p)2−p2
2

. The resulting integrals are evaluated introducing the Feynman

parametrization and with the help of formulas (B.9, B.10, B.11). We omit the details of a

long and tedious calculation.

The counter-term CV (σσ) = −(Z2
σ − 1)p2 should cancel the divergencies in the Green

function Γ(σσ), thus

Zσ = 1− Nfg
2
1

12(4π)3ε
− g2

2

24(4π)3ε
− 5λ2

2(4π)3ε
. (4.48)

76



The graph G7 gives

G7 = Nfe
2µ2ε

∫
ddq

(2π)d
(p+ 2q)α(p+ 2q)β

q2(p+ q)2

ε→0
=

Nfe
2

30(4π)3ε
(δαβp

4 − pαpβp2) . (4.49)

The factor Nf is due to the Nf scalar flavors circulating in the loop of the graph G7. Notice

that the G7 (4.49) is transverse. This was expected since G7 contributes to the self-energy

of the photon, which in turn must be transverse due to the gauge invariance. The tadpole

G8 is vanishing in the dimensional regularization in the massless limit. The graph G9 has

no pole

G9 = 4λ2µ2ε

∫
ddq

(2π)d
1

(p− q)2
Lαµ(−p, q)Dµν(q)Lνβ(−q, p) ε→0

= 0 . (4.50)

The integral (4.50) is simplified noticing that Dµν(q)Lνβ(−q, p) = Lµβ/q
4, the resulting

integral is simply calculated with the help of formulas of appendix B.

We choose the ZA such that the counter-term CV (AA) = −(Z2
A − 1)(δαβp

4 − pαpβp
2)

cancels the divergencies in the Green function Γ(AA)

ZA = 1 +
Nfe

2

60(4π)3ε
. (4.51)

The anomalous dimensions of the fields are constructed using the field renormalization con-

stants (4.46, 4.48, 4.51) as follows

γΦ =
d lnZΦ

d lnµ
=
g2

1 − 10e2

6(4π)3
, (4.52)

γσ =
d lnZσ
d lnµ

=
2Nfg

2
1 + g2

2 + 60λ2

12(4π)3
, (4.53)

γA =
d lnZA
d lnµ

= − Nfe
2

30(4π)3
, (4.54)

where we used the chain rule d lnZ
d lnµ

=
∑
u

βgu
d lnZ
dgu

and the beta functions in the trivial ap-

proximation βgu = (−εgu + ...) .

Next we proceed with the renormalization of the 3-point 1-PI Green functions, i.e. the

vertices. All the one-loop graphs appearing in those Green functions are collected in Tab.

4.3. In the first line of Tab. 4.3 we draw the counter-vertices. To calculate the graphs that

appear in the Green functions Γ(σΦΦ∗),Γ(σσσ) we do not need to prescribe arbitrary momenta

to the external legs (subject to the obvious condition that the total sum of the momenta is

zero), it is sufficient to choose two of the external legs with opposite non-zero momenta and

the remaining leg with zero momentum. Crucially the choice can vary from graph to graph,

the only requirement is that the graph with a given choice of momenta “leak” should not
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Γ(ΦΦ∗) Γ(σσ)

= −(Z2
Φ − 1)p2

= − g21
6(4π)3ε

p2G1

= − 5e2

3(4π)3ε
p2G2

G3 = 0

= −(Z2
σ − 1)p2

G4 Nf

G5

= − Nfg
2
1

6(4π)3ε
p2

= − g22
12(4π)3ε

p2

G6 = − 5λ2

(4π)3ε
p2

Γ(AA)

= −(Z2
A − 1)(δαβp

4 − pαpβp2)

G7 =
Nf e

2

30(4π)3ε
(δαβp

4 − pαpβp2)Nf

G8 = 0
Nf

G9 = 0

Table 4.2: 2-point Green functions in the one-loop approximation.
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Γ(σΦΦ∗) Γ(σσσ) Γ(σAA) = 〈Aα(p)Aβ(−p)σ(0)〉

G10

G11

G12

G13

G14

G15

G16

G17

G18

G19

G20

G21

= (4.41)

= − g31
2(4π)3ε

= − g21g2
2(4π)3ε

= 0

= 0

= 5e2λ
(4π)3ε

= (4.42)

= − Nfg
3
1

(4π)3ε
Nf

= − g32
2(4π)3ε

= − 20λ3

(4π)3ε

= (4.43)

= −Nfg1e
2

3(4π)3ε
LαβNf

= 2g2λ2

3(4π)3ε
Lαβ

= 4λ3

3(4π)3ε
Lαβ

= 0
Nf

Table 4.3: 3-point Green functions in the one-loop approximation. Lαβ = pαpβ − δαβp2.
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have infrared divergencies. This freedom, known as “Infrared rearrangement” [104, 105], is

due to the graphs in the Green functions Γ(σΦΦ∗),Γ(σσσ) being only logarithmically divergent.

With a good choice of momenta leak, the integrals can simplify a lot (this could be especially

useful if one wants to do higher loop calculations). In the case of Green function Γ(σAA), the

graphs are quadratically divergent and so the momenta leak should be fixed and must be

the same for all the graphs.

The graphs G10, G11, G15, G16 have already been evaluated in [65]. In all the one-loop

graphs of Γ(σΦΦ∗), we choose the momenta leak in the external lines as follows: σ(−p) Φ(p) Φ∗(0).

The graph G10 gives

G10 = (−g1)3µ3ε

∫
ddq

(2π)d
1

(p+ q)2q4

ε→0
= − g3

1

2(4π)3ε
. (4.55)

The graph G11 has the same topology as the graph G10, and it can be evaluated similarly.

Its value is given in the Tab. 4.3. It is easy to see that G12, G13 have no poles. This is

because in each of these graphs, with the right external leg (with our choice) carries a zero

momentum and therefore the internal propagators adjacent to it have the same momenta,

then using the transversality condition the integral vanishes. The graph G14 gives

G14 =− 2e2λµ3ε

∫
ddq

(2π)d
δαβDαµ(q)Dβν(p− q)Lµν(q, p− q)

= 2e2λµ3ε

∫
ddq

(2π)d

( d− 2

q2(p− q)4
+

[q · (p− q)]2

q4(p− q)6

)
ε→0
= 2e2λ

( 2

(4π)3ε
+

1

2(4π)3ε

)
=

5e2λ

(4π)3ε
. (4.56)

To pass to the second line we replaced Lµν(q, p− q) = δµνq · (p− q)− qν(p− q)µ → −δµνq2,

because the terms in Lµν(q, p−q) that are linear in q will not give poles after integration and

the term qµqν gives zero contribution after tensor contraction with the photon propagators.

In the counter-vertex CV (σΦΦ∗) (4.41) we choose the constants (Z2
ΦZσZ1u, u = 1, 2, 3, 4) as

to cancel the divergencies coming from G10, G11, G14. Then using values of ZΦ and Zσ from

(4.46, 4.48) we find the (Z1u, u = 1, 2, 3, 4)

Z11 = 1 +
(Nf − 4)g2

1

12(4π)3ε
− g1g2

2(4π)3ε
+

g2
2

24(4π)3ε
− 5e2

3(4π)3ε
+

5λ2

2(4π)3ε
, (4.57)

Z12 = Z13 = 0 , (4.58)

Z14 =
5e2

(4π)3ε
. (4.59)

In all the one-loop graphs of Γ(σσσ) we choose the momenta leak as follows: σ(−p) σ(p) σ(0).

The graphs G15, G16 have the same topology as G10, and can be evaluated similarly. Their
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values are reported in the Tab. 4.3. The graph G17 gives

G17 = 8λ3µ3ε

∫
ddq

(2π)d
Lαρ(q, p− q)Dαβ(q)Lβµ(−q, q)Dµν(q)Lνσ(−q, q − p)Dρσ(p− q)

ε→0
= − 20λ3

(4π)3ε
. (4.60)

Demanding the counter-vertex CV (σσσ) (4.42) to cancel the divergencies coming fromG15, G16, G17

(i.e. to render the Green function Γ(σσσ)) and using the value of Zσ from (4.48) we find the

(Z2u, u = 1, 2, 3, 4)

Z21 = − Nfg
2
1

(4π)3ε
, (4.61)

Z22 = 1 +
Nfg

2
1

4(4π)3ε
− 3g2

2

8(4π)3ε
+

15λ2

2(4π)3ε
, (4.62)

Z23 = 0 , (4.63)

Z24 = − 20λ2

(4π)3ε
. (4.64)

In the Green function Γ(σAA) we choose the momenta leak as follows: Aα(p) Aβ(−p) σ(0).

The graphs G18, G19, G20 give

G18 = −2Nfg1e
2µ3ε

∫
ddq

(2π)d
(p+ 2q)α(p+ 2q)β

q4(q + p)2

ε→0
= −Nfg1e

2

3(4π)3ε
Lαβ , (4.65)

G19 = −4g2λ
2µ3ε

∫
ddq

(2π)d
Lαµ(−p, q)Dµν(q)Lνβ(−q, p) 1

(p− q)4

ε→0
=

2g2λ
2

3(4π)3ε
Lαβ , (4.66)

G20 = 8λ3µ3ε

∫
ddq

(2π)d
Lαµ(−p, q)Dµν(q)Lνρ(−q, q)Dρσ(q)Lσβ(−q, p) 1

(p− q)2

ε→0
=

4λ3

3(4π)3ε
Lαβ ,

(4.67)

where we introduced a shorthand notation Lαβ ≡ Lαβ(p,−p). Notice that the graphs

G18, G19, G20 are one-loop corrections to the tree-level vertex (σ − A − A) Tab. 4.1 and

hence they must be proportional to the same rank-2 tensor (Lαβ) as the tree-level vertex,

which is confirmed by (4.65, 4.66, 4.67). The graph G21 is zero in dimensional regularization

in the massless limit. Demanding the counter-vertex CV (σAA) (4.43) to cancel the divergen-

cies coming from G18, G19, G20 and using the values of Zσ and ZA from (4.48, 4.51) we find
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the (Z4u, u = 1, 2, 3, 4)

Z41 =
Nfe

2

6(4π)3ε
, (4.68)

Z42 = − λ2

3(4π)3ε
, (4.69)

Z43 = 0 , (4.70)

Z44 = 1 +
Nfg

2
1

12(4π)3ε
+

g2
2

24(4π)3ε
− Nfe

2

30(4π)3ε
+

11λ2

6(4π)3ε
. (4.71)

In principle we could have renormalized the vertex A−Φ−Φ∗ as well. However as we already

remarked in the section (4.2), the gauge coupling is renormalized multiplicatively (4.39) and

due to gauge invariance

Ze = 1/ZA = 1− Nfe
2

60(4π)3ε
. (4.72)

The final step is the construction of the beta functions with the help of the following

equations

εgu + βgu + Z−1
uw

dZwv
dgh

gv · βgh = 0 , u = 1, 2, 3, 4 , (4.73)

where summation over indices w, v, h is assumed. The equations (4.73) follow from the

Callan-Symanzik equations. Plugging values of the mixing matrix Zuv into (4.73) we find

the beta functions

βg1 = −εg1 +
(Nf − 4)g3

1

6(4π)3
− g2

1g2

(4π)3
+

g1g
2
2

12(4π)3
− 10g1e

2

3(4π)3
+

5g1λ
2

(4π)3
+

10λe2

(4π)3
, (4.74)

βg2 = −εg2 −
2Nfg

3
1

(4π)3
+
Nfg

2
1g2

2(4π)3
− 3g3

2

4(4π)3
+

15g2λ
2

(4π)3
− 40λ3

(4π)3
, (4.75)

βe = −εe− Nfe
3

30(4π)3
, (4.76)

βλ = −ελ+
Nfg1e

2

3(4π)3
− 2g2λ

2

3(4π)3
+
Nfg

2
1λ

6(4π)3
+

λg2
2

12(4π)3
− Nfλe

2

15(4π)3
+

11λ3

3(4π)3
. (4.77)

It is obvious that the HDG is asymptotically free in the UV limit in d = 6− 2ε.

Large Nf limit of the beta functions: We solve the beta functions (4.74, 4.75, 4.76,

4.77) in the large Nf limit. Besides the trivial fixed point where all the couplings vanish, we

find three IR interacting fixed points. One of the fixed points has a vanishing gauge coupling.

It is the fixed point of the O(2Nf )-Yukawa theory [65]. The other two fixed points have a
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non-vanishing gauge coupling. We denote them as FP1 and FP2. The values of couplings at

those fixed points are

FP1 :

g1 =

√
6(4π)3ε

Nf

(
1 +

336

Nf

+O
( 1

N2
f

))
, (4.78)

g2 =6

√
6(4π)3ε

Nf

(
1 +O

( 1

Nf

))
, (4.79)

e2 =− 30(4π)3ε

Nf

, (4.80)

λ =5

√
6(4π)3ε

Nf

(
1 +O

( 1

Nf

))
. (4.81)

FP2 :

g1 =g2 = λ = 0 , (4.82)

e2 =− 30(4π)3ε

Nf

. (4.83)

Since at the fixed point FP2 the couplings g1, g2, λ vanish, the σ field does not interact with

any other field (including itself) and propagates freely. At the FP2 the scalar flavors Φi are

minimally coupled to the gauge field, with non-zero gauge coupling (4.83). The irrelevant

Φ4 operator cannot be generated along the flow (at least if we are close to d=6). Therefore

we can foresee that the FP2 describes the critical scalar QED. Instead at the fixed point FP1

neither of the couplings vanish (4.78, 4.79, 4.80, 4.82) and it describes the critical CP(Nf−1).

In order to test these statements, below we evaluate the scaling dimensions of the fields

(Φ, σ, A) at the fixed points FP1,2. Plugging in (4.52, 4.53, 4.54) the FP1 values of the

couplings we obtain

∆[Φi] = 2− ε+
51ε

Nf

+O(ε2) , (4.84)

∆[σ] = 2 +
1440ε

Nf

+O(ε2) , (4.85)

∆[Aµ] = 1 . (4.86)

The scaling dimension of the gauge field at the interacting fixed point is equal to 1 (actually

this holds true at all orders in the perturbative expansion). We see a perfect match with

the scaling dimensions of the fields (Φ, σ, A) calculated at the critical point CP(Nf−1) (4.19,

4.20, 4.21) with the help of a large Nf expansion.

Similarly, plugging in (4.52, 4.53, 4.54) the FP2 values of the couplings we obtain (as we

have already mentioned the σ field is free, and its scaling dimension is that of a free scalar
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field in d = 6− 2ε)

∆[Φi] = 2− ε+
50ε

Nf

+O(ε2) , (4.87)

∆[Aµ] = 1 . (4.88)

Again, we find an agreement with the scaling dimensions of the fields (Φ, A) calculated at

the critical pure scalar QED (4.25, 4.26).

4.4 Renormalization of the mass parameters and the

anomalous dimensions of the quadratic operators

Until now we considered the theory (4.30) in the massless limit. When one turns on the

masses, additional divergencies appear in the 2-point 1PI Green functions which must be can-

celled with the appropriate mass counter-terms. The strategy for calculating these counter-

terms is to first differentiate the 2-point Green functions with respect to the mass and then

to put the mass equal to zero. In this way, quadratically divergent Green functions Γ(ΦΦ∗)

and Γ(σσ) become logarithmically divergent and the quarticly divergent Green function Γ(AA)

becomes quadratically divergent. The graphs which appear in the differentiated Green func-

tions are collected in the Tab. 4.4, 4.5, 4.6. We use the slash to mark the propagators which

have been differentiated in a given graph. In the first lines of the Tab. 4.4, 4.5, 4.6 we provide

the differentiated mass counter-terms, which are necessary for curing the divergencies.

Using (B.9) for the graph G22 we obtain

G22 = −g2
1µ

2ε

∫
ddq

(2π)d
1

q4(p− q)2

ε→0
= − g2

1

2(4π)4ε
. (4.89)

The minus sign in front of the integral (4.89) comes from the differentiation of the scalar

propagator ∂
∂τ1

(
1

q2+τ1

)∣∣∣
τ1=0

= − 1
q4

. The graph G23 gives

G23 = −e2µ2ε

∫
ddq

(2π)d
(2p− q)α(2p− q)β

(p− q)4
Dαβ(q) = finite . (4.90)

The absence of a pole in G23 can be proved using the transversality condition Dαβqα = 0 in

(4.90). Using (4.89) and the value of Zφ from (4.46), we find

Zτ
11 = 1− g2

1

3(4π)3ε
− 5e2

3(4π)3ε
. (4.91)

The pole of the graph G24 is the same as that of the G22. Using it we find

Zτ
12 = − g2

1

2(4π)3ε
. (4.92)
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The graph G25 is finite (using the transversality condition). The tadpole G26 gives

G26 = e2µ2ε

∫
ddq

(2π)d
δαβ

δαβ − qαqβ
q2

(q2 + τ3)3

ε→0
=

5e2

2(4π)3ε
. (4.93)

In the graph G26, the gauge propagator is differentiated with respect to the gauge mass τ3.

In order to avoid the IR divergencies, in the integral (4.93) we kept a non-zero mass (which

obviously doesn’t effect the UV pole of the G26). Using (4.93) we find

Zτ
13 =

5e2

2(4π)3ε
. (4.94)

Notice that the loops in some of the graphs in Tab. 4.2 are made by the propagators of

the same field. Therefore differentiation will give two equivalent graphs with one propagator

differentiated and the other one not. Since they are equivalent we simply multiply those

graphs by two in the Tab. 4.4, 4.5. The poles of the graphs G27 and G28 are extracted doing

a calculation similar to the one in (4.89). Using their values, which are recorded in the Tab.

4.4 and the value of Zσ we obtain

Zτ
21 = − Nfg

2
1

(4π)3ε
, (4.95)

Zτ
22 = 1 +

Nfg
2
1

6(4π)3ε
− 5g2

2

12(4π)3ε
+

5λ2

(4π)3ε
. (4.96)

The graph G29 gives

G29 = −4λ2µ2ε

∫
ddq

(2π)d
Lαµ(q, p− q)Dαβ(q)

q2
Lβν(q, p− q)Dµν(p− q)

ε→0
= − 10λ2

(4π)3ε
. (4.97)

The minus sign in front of the integral (4.97) comes from the differentiation of the photon

propagator (4.31):
∂Dαβ(q)

∂τ3

∣∣∣
τ3=0

= −Dαβ(q)

q2
. To extract the divergent part of the integral

(4.97), it is sufficient to replace in it Lαµ(q, p − q) → −δαµq2 and Lβν(q, p − q) → −δβνq2.

This is because other terms inside these vertices either give finite contributions or vanish

after multiplying them with photon propagators in (4.97). Using ((4.97)) we find

Zτ
23 = − 10λ2

(4π)3ε
. (4.98)

The graph G30 gives

G30 = −2Nfe
2µ2ε

∫
ddq

(2π)d
(p+ 2q)α(p+ 2q)β

q4(q + p)2

ε→0
= − Nfe

2

3(4π)3ε
Lαβ . (4.99)

The integral (4.99) is calculated introducing Feynman parametrization and using formulas

(B.9, B.10). The tadpole G31 is vanishing in the dimensional regularization. Using the (4.99)

we obtain

Zτ
31 =

Nfe
2

3(4π)3ε
. (4.100)
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The graphs G32 and G33 are different but it turns out that their poles are equal

G32 = −4λ2µ2ε

∫
ddq

(2π)d
1

(p− q)4
Lαµ(−p, q)Dµν(q)Lνβ(−q, p) ε→0

=
2λ2

3(4π)3ε
Lαβ , (4.101)

G33 = −4λ2µ2ε

∫
ddq

(2π)d
1

(p− q)2
Lαµ(−p, q)Dµν(q)

q2
Lνβ(−q, p) ε→0

=
2λ2

3(4π)3ε
Lαβ . (4.102)

Using (4.101, 4.102) and the value of ZA from (4.51) we find

Zτ
32 = − 2λ2

3(4π)3ε
, (4.103)

Zτ
33 = 1− Nfe

2

30(4π)3ε
− 2λ2

3(4π)3ε
. (4.104)

Having constructed the renormalization matrix Zτ
ab, which is responsible for the mixing

between the masses (4.37), we now proceed to find the mixing matrix of the mass parameters.

Those are defined as follows

γτab =
d lnZτ

ab

d lnµ
= (Zτ )−1

ac

dZτ
cb

dgv
βgv ; a, b = 1, 2, 3 , (4.105)

Where summation over the indices c = 1, 2, 3 and v = 1, 2, 3, 4 is assumed. Plugging in

(4.105) the values of Zτ matrix, we find

γτab =
1

(4π)3


2g21
3

+ 10e2

3
g2

1 −5e2

2Nfg
2
1 −Nfg

2
1

3
+

5g22
6
− 10λ2 20λ2

−2Nf e
2

3
4λ2

3

Nf e
2

15
+ 4λ2

3

 , (4.106)

where we factored out the common factor 1/(4π)3.

The scaling dimensions of the mass operators at the fixed points: We remind that

the mixing matrix of the mass operators (Φ2, σ2, F 2
αβ) is minus the (4.106). This is because

the sum of the scaling dimensions of the mass and the mass operator should be equal to

d = 6− 2ε and we know that the classical dimensions of the mass and of mass operator are

respectively 2 and 4− 2ε.

First, let us construct the mixing matrix of the mass parameters at the fixed point FP1.

Plugging in (4.106) the FP1 values of the couplings (4.78, 4.79, 4.80, 4.82) and keeping the

entries of the matrix to the order 1/Nf we find

γτab

∣∣∣∣
FP1

= ε


−96
Nf

6
Nf

150
Nf

12
(
1 + 672

Nf

)
−2
(
1 + 1332

Nf

)
3000
Nf

20 200
Nf

−2
(
1− 100

Nf

)
 . (4.107)
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The eigenvalues of the matrix (4.107), taken with an opposite sign are the anomalous scaling

dimensions of the mass operators 2. The full scaling dimensions are as follows

∆
(FP1)
1 =4−2ε−

(
− 2ε− 2000 + 280

√
10

Nf

ε
)

+O(ε2)=4 +
40(50 + 7

√
10)

Nf

ε+O(ε2) , (4.108)

∆
(FP1)
2 =4−2ε−

(
− 2ε− 2000− 280

√
10

Nf

ε
)

+O(ε2)=4 +
40(50− 7

√
10)

Nf

ε+O(ε2) , (4.109)

∆
(FP1)
3 =4− 2ε− 1440ε

Nf

+O(ε2) . (4.110)

Again we find a perfect agreement with the scaling dimensions of these operators at the

critical point CP(Nf−1) (4.22, 4.23, 4.24).

Finally, let us plug in (4.106) the FP2 values of the couplings to determine the anomalous

mixing matrix of the mass parameters at that fixed point

γτab

∣∣∣∣
FP2

= ε

[
−100

Nf

150
Nf

20 −2

]
. (4.111)

The eigenvalues of the matrix (4.111), taken with an opposite sign are the anomalous scaling

dimensions of the mass operators (Φ2, F 2
αβ). The full scaling dimensions are as follows

∆
(FP2)
1 = 4− 2ε− 1400

Nf

ε+O(ε2) , (4.112)

∆
(FP2)
2 = 4 +

1500

Nf

ε+O(ε2) . (4.113)

One of the eigenvalues, ∆
(FP2)
1 , matches with the scaling dimension of the Φ2 operator calcu-

lated at the critical scalar QED (4.29). We do not have a formula for the scaling dimension

(order O(1/Nf )) of the F 2
αβ operator at the critical scalar QED, and so we cannot provide

a check for (4.113). We remind that at the fixed point FP2 the σ field doesn’t interact,

therefore the scaling dimension of the operator σ2 is simply twice a scaling dimension of a

free scalar field.

2To be more precise we should refer to the mass eigenstates rather than to the mass operators, since after

diagonalization of the matrix (4.107) the operators (Φ2, σ2, F 2
αβ) mix with each other.
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∂τ1Γ
(ΦΦ∗)|τ1=τ2=τ3=0 ∂τ2Γ

(ΦΦ∗)|τ1=τ2=τ3=0 ∂τ3Γ
(ΦΦ∗)|τ1=τ2=τ3=0

∂
∂τ1

( )
= −(Z2

ΦZ
τ
11 − 1)

G22

/ = − g21
2(4π)3ε

G23

/ = 0

∂
∂τ2

( )
= −Z2

ΦZ
τ
12

G24
/

= − g21
2(4π)3ε

∂
∂τ3

( )
= −Z2

ΦZ
τ
13

G25

= 0

G26

/

= 5e2

2(4π)3ε

/

Table 4.4: 2-point Green function Γ(ΦΦ∗) differentiated w.r.t masses

∂τ1Γ
(σσ)|τ1=τ2=τ3=0 ∂τ2Γ

(σσ)|τ1=τ2=τ3=0 ∂τ3Γ
(σσ)|τ1=τ2=τ3=0

∂
∂τ1

( )
= −Z2

σZ
τ
21

Nf

G27

/
2× = − Nfg

2
1

(4π)3ε

∂
∂τ2

( )
= −(Z2

σZ
τ
22 − 1)

G28

/
2× = − g22

2(4π)3ε

∂
∂τ3

( )

G29

= −Z2
σZ

τ
23

/
2× = − 10λ2

(4π)3ε

Table 4.5: 2-point Green function Γ(σσ) differentiated w.r.t masses

∂τ1Γ
(AA)|τ1=τ2=τ3=0 ∂τ2Γ

(AA)|τ1=τ2=τ3=0 ∂τ3Γ
(AA)|τ1=τ2=τ3=0

∂
∂τ1

( )
= Z2

AZ
τ
31Lαβ

/
2× Nf

G30

= − Nf e
2

3(4π)3ε
Lαβ

G31

/

= 0

∂
∂τ2

( )
= Z2

AZ
τ
32Lαβ

G32

/

= 2λ2

3(4π)3ε
Lαβ

∂
∂τ3

( )
= (Z2

AZ
τ
33 − 1)Lαβ

G33

/ = 2λ2

3(4π)3ε
Lαβ

Table 4.6: 2-point Green function Γ(AA) differentiated w.r.t masses
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Appendix A

Bosonic QED’s in the 4− 2ε expansion

We consider the bosonic QED’s with global symmetry SU(Nf/2) × SU(Nf/2) × U(1) in

dimension d = 4− 2ε

L =
1

4
F µνFµν +

Nf/2∑
i=1

DµΦiDµΦi +

Nf/2∑
i=1

DµΦ̃iDµΦ̃i + λep

((Nf/2∑
i=1

|Φi|2
)2

+
(Nf/2∑
i=1

|Φ̃i|2
)2
)

+ λ

Nf/2∑
i=1

|Φi|2
Nf/2∑
j=1

|Φ̃j|2 + (gauge fixing term) , (A.1)

where the Dµ = ∂µ + ieAµ, and the kinetic term for the photon is canonically normalized.

Using [106, 107] the beta functions of the gauge and quartic couplings at one loop order are

βe =
de

dl
= εe− 1

(4π)2

2Nfe
3

6
, (A.2)

βλep =
dλep
dl

=2ελep −
1

(4π)2

[
8(Nf + 8)λ2

ep + 2Nfλ
2 − 12λepe

2 +
3

2
e4
]
, (A.3)

βλ =
dλ

dl
= 2ελ− 1

(4π)2

(
16λ2 + 16(Nf + 2)λλep − 12λe2 + 3e4

)
. (A.4)

The beta function of the gauge coupling has two zeroes. One trivial zero is when the gauge

coupling vanishes, then we have the ungauged O(Nf )×O(Nf ) vector model. See Introduction

and chapter 3 for discussions about the ungauged fixed points and RG flow. The other zero

is when

e2 =
48π2

Nf

ε . (A.5)

Plugging this value into the beta functions (A.3, A.4) we generically expect to find four fixed

points. There are two fixed points (which we identify with bQED and bQED+ discussed in
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the main text) for which λ = 2λep with a global symmetry group SU(Nf ). The values of the

quartic couplings at those fixed points are

λ = 2λep =
Nf + 18±

√
N2
f − 180Nf − 540

Nf (Nf + 4)
π22ε . (A.6)

It follows from (A.6) that for Nf < 182.95 the quartic couplings become complex. Similarly

one writes solutions for the remaining two fixed points (which we identify with ep-bQED and

bQED− discussed in the main text), for which global symmetry is SU(Nf/2)× SU(Nf/2):

λ =
−(Nf + 18)(Nf − 4)∓

√
D

Nf (N2
f + 8)

π22ε , (A.7)

λep =
288 + 160Nf + 62N2

f + 3N3
f ± (4−Nf )

√
D

2Nf (Nf + 8)(N2
f + 8)

π22ε , (A.8)

where we defined the discriminant

D = N4
f − 188N3

f − 1676N2
f − 3744Nf − 8640 . (A.9)

It follows from (A.9) that at these two fixed points the quartic couplings become complex

when Nf < 196.22.

We provide the expansions of solutions (A.6, A.7, A.8) in the large Nf limit (ε = 1/2)

bQED (tricritical): λep =
54π2

N2
f

+
1944π2

N3
f

+O
( 1

N4
f

)
, λ = 2λep , (A.10)

bQED+: λep =
π2

Nf

− 40π2

N2
f

− 2000π2

N3
f

+O
( 1

N4
f

)
, λ = 2λep , (A.11)

bQED−: λep=
π2

Nf

+
72π2

N2
f

+
1936π2

N3
f

+O
( 1

N4
f

)
, λ=−2π2

Nf

+
80π2

N2
f

+
5344π2

N3
f

+O
( 1

N4
f

)
, (A.12)

ep-bQED: λep=
2π2

Nf

− 34π2

N2
f

− 2104π2

N3
f

+O
( 1

N4
f

)
, λ=−108π2

N2
f

− 5184π2

N3
f

+O
( 1

N4
f

)
. (A.13)

Notice that at the tricritical point: λ ∼ 1/N2
f , while in bQED+: λ ∼ 1/Nf . Similarly,

in bQED−: λ, λep ∼ 1/Nf , while in ep-bQED: λep ∼ 1/Nf , λ ∼ 1/N2
f . This justifies our

identification with the four fixed points discussed at large Nf in the main text.

The Fig. A.1 is an example of RG flow and fixed points in the space of quartic couplings.
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Figure A.1: RG flow in scalar QED: Nf = 250, e2 = 48π2

Nf
(ε = 1/2) .
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Appendix B

Useful formulae

G(x) =

∫
ddp

(2π)d
e−ipxG(p) , (B.1)

G(p) =

∫
ddx

1
eipxG(x) , (B.2)

1

|x|2α
=

Γ(d
2
− α)

π
d
2 22αΓ(α)

∫
ddp

e−ipx

|p|d−2α
, (B.3)

xµ
|x|2(α+1)

=
Γ(d

2
− α)

π
d
2 22α+1αΓ(α)

∫
ddp

e−ipxipµ
|p|d−2α

, (B.4)

∫
d3q

(2π)3

1

q2(q + p)2
=

1

8|p|
, (B.5)

∫
d3q

(2π)3

qµ
q4(q + p)2

= − pµ
16|p|3

, (B.6)
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Feynman parametrization:

Aα1
1 ...A

αn
n =

Γ
( n∑
i=1

αi
)

n∏
i=1

Γ
(
λi
) ∫ 1

0

dx1...

∫ 1

0

dxn

δ
( n∑
i=1

xi − 1
) n∏
i=1

xλi−1
i[ n∑

i=1

Aixi

]∑λi
, (B.7)

∫
ddq

(2π)d
1

(q − p)2αq2β
=

Γ(d
2
− α)Γ(d

2
− β)Γ(α + β − d

2
)

(4π)d/2Γ(α)Γ(β)Γ(d− α− β)
pd−2α−2β , (B.8)

∫
ddq

(2π)d
1

(q2 + τ)αq2β
=

Γ(α + β − d
2
)Γ(d

2
− β)

(4π)d/2Γ(α)Γ(d
2
)

τ d/2−α−β , (B.9)

∫
ddq

(2π)d
f(q2)qµqν =

δµν
d

∫
ddq

(2π)d
f(q2)q2 , (B.10)

∫
ddq

(2π)d
f(q2)qµqνqρqσ =

δµνδρσ + δµρδνσ + δµσδνρ
d(d+ 2)

∫
ddq

(2π)d
f(q2)q4 . (B.11)
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Appendix C

Feynman graphs

In this appendix we give some examples of computation of the Feynman diagrams, using

an approach similar for instance to [81]. We read the graphs using position space Feynman

rules, then we identify the region from where UV logarithmic divergences appear.

x y
µ

ν

z

w

0

α

β

Figure C.1: Symmetry factor is 4 .

The Feynman graph (C.1) using the Feynman rules (2.1) can be read as follows

Graph (C.1) = 4Nf

∫
d3yd3zd3w

( 1

4π|x− y|

)2

(−δµν)
8δµα

Nfπ2|y − z|2
8δνβ

Nfπ2|y − w|2

×
[ 1

4π|w|
i
↔
∂wβ

1

4π|w − z|
i
↔
∂zα

1

4π|z|

]
. (C.1)

where the 4 is the symmetry factor of the graph (C.1). Each blue loop in the graph gives

a factor Nf , and since we normalized singlet bilinear operator as follows 1√
Nf

∑Nf
i=1 |Φi|2 we

also get a factor 1/Nf . After cancelation we obtain the factor Nf in (C.1). Also we choose

to work in the ξ = 0 gauge since the graph (C.1) turns to be independent from the choice of

the gauge parameter.
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The logarithmic divergences come from the region where y, z, w are close to 0.

Graph (C.1)=
4Nf

(4π|x|)2

∫
d3yd3zd3w

8

Nfπ2|y − z|2
8

Nfπ2|y − w|2
[ 1

4π|w|
i
↔
∂wµ

1

4π|w − z|
i
↔
∂zµ

1

4π|z|

]
=− 4Nf

(4π|x|)2

( 16

Nf

)2
∫

d3p

(2π)3

∫
d3q

(2π)3

(p+ q)2

p4q2(q − p)2
, (C.2)

where in the last line we performed Fourier transformation (B.1, B.2, B.3) to pass to the

momentum space. First we perform integration over momentum p using formulas (B.5, B.6)

and we obtain

Graph (C.1) = − 4Nf

(4π|x|)2

( 16

Nf

)2
∫

d3q

(2π)3

1

4|q|3
. (C.3)

The integral over q is logarithmically divergent. We regularize it by putting a UV cut-off Λ.

The final result is

Graph (C.1) = 4× −16 log(x2Λ2)

π2Nf

( 1

4π|x|

)2

. (C.4)

x 0

y

z

Figure C.2: Symmetry factor is 1 .

The Feynman graph (C.2) corresponds to the following expression

Graph (C.2) = −
∫
d3yd3zTr

[ /x− /y
4π|x− y|3

/y

4π|y|3
−/z

4π|z|3
/z − /x

4π|z− x|3
] 4

π2Nf |y − z|2
. (C.5)

Where the minus sign stands for the fermion loop. The logarithmic divergence of the integral

(C.5) comes from the regions where y, z are close either to 0 or to x. We will consider the

region y, z close to 0 and multiply the answer by 2, since the other region gives the same

contribution.

Graph (C.2) = −2
( /x

4π|x|3
)2
∫
d3yd3zTr

[ /y

4π|y|3
/z

4π|z|3
] 4

π2Nf |y − z|2
. (C.6)

Now we pass to the momentum space using (B.1, B.2, B.3, B.4).

Graph (C.2) = −2
( /x

4π|x|3
)2
∫

d3p

(2π)3
Tr
[ i/p

p2

−i/p

p2

] 8

Nf |p|
. (C.7)
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This integral is logarithmically divergent. We regularize with a UV cutoff Λ .

Graph (C.2) =
4 log x2Λ2

π2Nf

× 2
( /x

4π|x|3
)2

. (C.8)

x

y

v

z

w

0

Figure C.3: Symmetry factor is 4.

Using the Feynman rules we can read the graph (C.3) as follows

Graph (C.3) = −4Nf

∫
d3yd3zd3wd3v

4

π2Nf |x− y|2
4

π2Nf |x− v|2

× Tr
[ (/y − /z)

4π|y − z|3
(/z − /w)

4π|z− w|3
(/w − /v)

4π|w − v|3
(/v − /y)

4π|v − y|3
] 4

π2Nf |z2|
4

π2Nf |w2|
. (C.9)

The minus stands for the fermion (green) loop in (C.3), factor Nf comes from summing over

the number of fermion flavors in the same loop, 4 is the symmetry factor of the graph. The

logarithmic divergences of the integral (C.9) come from the regions where y, z, v, w are close

either to 0 or to x. Let us inspect the region y, z, v, w close to 0 and multiply the answer by

2, since it is obvious that the other region gives the same logarithmic divergence.

Graph (C.3) =2× (−4Nf )
( 4

π2Nf |x2|

)2
∫
d3yd3zd3wd3v

4

π2Nf |z|2
4

π2Nf |w|2

× Tr
[ (/y − /z)

4π|y − z|3
(/z − /w)

4π|z− w|3
(/w − /v)

4π|w − v|3
(/v − /y)

4π|v − y|3
]
. (C.10)

Now using (B.1, B.2, B.3, B.4) we perform a Fourier transformation to the momentum space.

Graph (C.3) = 2
( 4

π2Nf |x2|

)2

× −82 · 4
Nf

∫
d3p

(2π)3

∫
d3q

(2π)3

2q(p+ q)

p2q2(p+ q)4
. (C.11)

First one performs integral over the momentum q

Graph (C.3) = 2
( 4

π2Nf |x2|

)2

× −82 · 4
Nf

∫
d3p

(2π)3

1

8|p|3
. (C.12)

The integral over p is logarithmically divergent. We regularize it by putting a UV cutoff Λ

and perform integration over the p. The final answer is

Graph (C.3) =
−8 log x2Λ2

π2Nf

× 2
( 4

π2Nf |x2|

)2

. (C.13)
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Appendix D

Scaling dimensions of monopole

operators in N = 1 SQED

The scaling dimensions of the monopole operators M2q with topological charge 2q (2q is

an integer) in N = 1 SQED, at the leading order in the large Nf expansion, have been

computed in [14]. We use formula 2.59 of [14]

∆[M2q]

Nf

=
∑

j≥q−1/2

(2j + 1)
√

(j + 1/2)2 − q2 −
∑̂

j≥q−1/2

(2j + 1)
√

(j + 1/2)2 − q2 . (D.1)

where in the first sum j ≥ q − 1/2 runs over the values for which (j − q) is a non-negative

integer, while in the second sum j ≥ q − 1/2 runs over the values for which (j − q − 1/2) is

a non-negative integer. Both sums are divergent, since for large values of j the expressions

under the sum scale like j2. We follow the approach of [14] to regularize the sums and extract

the scaling dimensions of monopole operators. First we shift the power of the energy mode

as follows (
(j + 1/2)2 − q2

) 1
2 →

(
(j + 1/2)2 − q2

) 1
2
−s
. (D.2)
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It is clear that by choosing large values for s one makes the sum (D.1) convergent. Next we

add and subtract quantities that are divergent when s = 0

∆[M2q]

Nf

=lim
s→0

∑
j≥q−1/2

[
(2j + 1)

(
(j + 1/2)2−q2

) 1
2
−s−2(j + 1/2)2−2s+q2(1− 2s)(j+1/2)−2s

]
−lim
s→0

∑
j≥q−1/2

[
− 2(j + 1/2)2−2s + q2(1− 2s)(j + 1/2)−2s

]
−lim
s→0

∑̂
j≥q−1/2

[
(2j + 1)

(
(j + 1/2)2−q2

) 1
2
−s−2(j + 1/2)2−2s + q2(1− 2s)(j+1/2)−2s

]
+lim
s→0

∑̂
j≥q−1/2

[
− 2(j + 1/2)2−2s + q2(1− 2s)(j + 1/2)−2s

]
. (D.3)

Notice that the first and the third lines of (D.3) are convergent, this is true since for large

values of j the expressions under sum scale like 1/j2. One can evaluate them in the limit

s → 0 numerically. The second and forth lines are divergent and one needs to regularise

them using zeta functions. Finally we obtain

∆[M2q]

Nf

=
∑

j≥q−1/2

[
(2j + 1)

√
(j + 1/2)2 − q2 − 2(j + 1/2)2 + q2

]
+
q(1 + 2q2)

6

−
∑̂

j≥q−1/2

[
(2j + 1)

√
(j + 1/2)2 − q2 − 2(j + 1/2)2 + q2

]
− q(q + 2)(2q − 1)

6
.

(D.4)

Using (D.4) one evaluates scaling dimensions of monopole operators with charges (±1,±2,±3,±4)

as follows

∆[M±1]

Nf

= 0.3619 +O(1/Nf ) , (D.5)

∆[M±2]

Nf

= 0.8996 +O(1/Nf ) , (D.6)

∆[M±3]

Nf

= 1.5708 +O(1/Nf ) , (D.7)

∆[M±4]

Nf

= 2.3534 +O(1/Nf ) . (D.8)
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