
INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

S.I.S.S.A.

DOCTORAL THESIS

Covariance models for

RNA structure prediction

Author:

Francesca CUTURELLO

Supervisor:

Prof. Giovanni BUSSI

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Physics

in the

Molecular and Statistical Biophysics

October 11, 2019

http://www.sissa.it
http://www.sissa.it
fcuturel@sissa.it
bussi@sissa.it
http://www.sissa.it/sbp/


ii



iii

Contents

1 Introduction 1

2 Covariance models 7

2.1 Alignment methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Infernal alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 ClustalW alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Re-weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 R-scape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Average product correction . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Direct coupling analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 Mean field approximation . . . . . . . . . . . . . . . . . . . . . . 12

2.6.2 Pseudo-likelihood maximization . . . . . . . . . . . . . . . . . . 13

2.6.3 Maximum likelihood and Boltzmann learning . . . . . . . . . . 13

2.6.4 Gauge invariance and regularization . . . . . . . . . . . . . . . . 15

2.6.5 Validation of the inferred couplings . . . . . . . . . . . . . . . . 17

2.7 Validation of predicted contacts . . . . . . . . . . . . . . . . . . . . . . . 17

3 RNA contact prediction 21

3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Validation of the inferred couplings . . . . . . . . . . . . . . . . . . . . 22

3.3 Validation of predicted contacts . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Precision and sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Typical contact predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Influence of MSA columns removal . . . . . . . . . . . . . . . . . . . . . 45

3.7 Re-weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



iv Contents

3.8 APC correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Influence of stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Validation on non-riboswitch systems . . . . . . . . . . . . . . . . . . . 48

3.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Encoding prior information in inverse Ising-like models 53

4.1 Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Statistical error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Systematic error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 DCA including informative prior . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 ViennaRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Prior distribution and hyper parameters . . . . . . . . . . . . . 63

4.2.3 RNA contact prediction . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion 69



v

List of Figures

1.1 Hierarchy of RNA structure . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Typical precision, sesitivity, MCC curves as a function of score thresh-

old. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 PDF: 3F2Q,3IRW. Best/worst Boltzmann learning DCA. Comparison

between observed and inferred frequencies . . . . . . . . . . . . . . . . 25

3.2 RMSD between observed and inferred frequencies for all 17 RNA

molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 RMSD between observed and inferred frequencies for pseudo-likelihood

DCA at different regularization strengths k. . . . . . . . . . . . . . . . . 28

3.4 Infernal alignments. MCC at optimal threshold for all 17 systems. . . . 32

3.5 ClustalW alignments. MCC at optimal threshold for all 17 systems. . . 33

3.6 Average MCC curves for Infernal and ClustalW alignemnts. Pseudo-

likelihood and Boltzmann learning DCA. . . . . . . . . . . . . . . . . . 34

3.7 Infernal alignment. Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 ClustalW alignment. Sensitivity . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Infernal alignment.Precision. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 ClustalW alignment.Precision. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.11 Infernal alignment. Sensitivity to contacts in stems. . . . . . . . . . . . . 38

3.12 ClustalW alignment. Sensitivity to contacts in stems. . . . . . . . . . . . 38

3.13 Infernal alignment. Number of correctly predicted tertiary contacts. . . 39

3.14 ClustalW alignment. Number of correctly predicted tertiary contacts. . 39

3.15 Infernal alignment. Number of incorrect predictions. . . . . . . . . . . . 41

3.16 ClustalW alignment. Number of incorrect predictions. . . . . . . . . . . 42

3.17 Most accurate Boltzmann learning prediction (PDB: 3OWI). . . . . . . 43



vi List of Figures

3.18 Most accurate pseudo-likelihood prediction (PDB: 2GIS) . . . . . . . . 44

3.19 Least accurate Boltzmann learning prediction (PDB: 4L81) . . . . . . . 44

3.20 Least accurate pseudo-likelihood prediction (PDB: 4RUM) . . . . . . . 45

3.21 Average MCC for plm-DCA on full and reduced MSA . . . . . . . . . . 46

3.22 Maximum average MCC at various similarity thresholds for sequence

re-weighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Ising system. Optimal prior hyper parameters. λ0 in presence of sta-

tistical error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Ising system. Optimal prior hyper parameters. λ0 in presence of sta-

tistical error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Ising system. Optimal prior hyper parameters. λ1 in presence of sys-

tematic error, λ0 in presence of statistical and systematic errors. . . . . 59

4.4 Average MCC curve varying RNAfold scores threshold. . . . . . . . . . 62

4.5 DCA including ViennaRNA prior. Optimal hyper parameter λ1. . . . . 64

4.6 DCA including ViennaRNA prior. Optimal hyper parameter λ0. . . . . 64

4.7 Maximum average MCC as a function of MSA size. DCA, ViennaRNA

and DCA + prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 MCC at optimal threshold for DCA,ViennaRNA,DCA+prior. . . . . . . 66

4.9 Average sensitivity, precision and sensitivity to contacts in stems for

pure DCA, DCA+ViennaRNA prior and ViennaRNA. . . . . . . . . . . 68



vii

List of Tables

3.1 Data set of 17 riboswitches families. . . . . . . . . . . . . . . . . . . . . 23

3.2 Computation times of the methods. . . . . . . . . . . . . . . . . . . . . . 24

3.3 Infernal alignments. MCC with optimal covariance score threshold S

for all methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 ClustalW alignment. MCC with optimal covariance score threshold S

for all methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Non-canonical tertiary contacts. . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Maximum average MCC for DCA methods with and without APC

correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Fraction of stacked pairs among false positives for all methods at op-

timal threshold score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Non-riboswitches families. Boltzmann learning DCA. . . . . . . . . . . 48

4.1 ViennaRNA. MCC with optimal covariance score threshold S. . . . . . 62





1

Chapter 1

Introduction

Many different types of RNA molecules do not encode proteins, but rather play

important roles in a wide range of cellular processes, including protein synthesis,

gene regulation, protein transport and splicing (Morris and Mattick, 2014; Hon et al.,

2017). The majority of RNAs conserve a particular three dimensional structure that is

energetically favorable and inherent to their function (Smith et al., 2013), which is of-

ten conserved across evolutionary timescales. An RNA’s structure is determined by

intramolecular interactions between different elements in the polynucleotide chain,

as well as by intermolecular interactions with other RNAs or proteins. Many of

these interactions are hydrogen bonds formed by the base-pairing of two RNA nu-

cleotides. Base-pairs commonly occur in groups, or stems, that form helices because

they allow thermodynamically favorable stacking of the π bonds of the bases’ aro-

matic rings. The set of stems in the RNA defines its secondary structure and can be

inferred using thermodynamic models (Mathews, Turner, and Watson, 2016), often

used in combination with chemical probing data (Weeks, 2010). There are other sets

of base-pairs besides Watson-Cricks, called non-canonical (Stombaugh et al., 2009;

Leontis and Westhof, 2001). The hierarchy of RNA structure is schematically shown

in figure 1.1.

Predicting RNA tertiary structure from sequence alone is still very difficult, as it

can be seen by the relatively poor predictive performances of molecular dynamics

simulations (Šponer et al., 2018) and knowledge-based potentials (Miao et al., 2017).

The three dimensional structure of RNAs can be determined using x-ray crystallog-

raphy (Westhof, 2015). Nuclear magnetic resonance (NMR) (Rinnenthal et al., 2011)

has been used to solve the structure of short RNA motifs, but it’s hard to use for
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FIGURE 1.1: Hierarchy of RNA structure. Primary structure (A) is the
nucleotides sequence. Secondary structure (B) is formed by consec-
utive canonical hydrogen bonded pairs (Watson-Crick pairing). Ter-
tiary structure (C) is the three-dimensional shape to the molecule and

includes non canonical pairs.

large RNAs. These techniques are expensive and time-consuming. Given the lower

cost of sequencing techniques, an attractive alternative method for inferring RNA

structure is based exclusively on sequence analysis. Since genomes of all organisms

are evolutionarily related, many genes can be classified into families, composed of

homologous elements. Families of homologous RNAs can be related by a phyloge-

netic tree rooted at the oldest ancestral sequence of the family: along each branch

of the tree the sequences have evolved independently accumulating mutations, but,

importantly, the function of the molecule has acted as an evolutionary constraint.

Organisms whose sequence undergoes mutations that negatively affect function are

less likely to survive to the next generation. Structural inference exploits the fact that

nucleotides that form base-pairs in RNA structure tend to covary throughout evolu-

tion, in order to preserve the function of the molecule in cell processes (Nawrocki,

2009). A necessary first step for identifying covariation is alignment of homologous

sequences. The goal of the alignment is to arrange sequences so that homologous

nucleotides in each sequence occur in the same column of the alignment. The com-

pensatory changes create patterns in multiple sequence alignments that are some-

times even recognizable by eye. The coevolution of bases in RNA fragments with
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known structure has been investigated (Dutheil, Jossinet, and Westhof, 2010), ob-

serving strong correlations in Watson-Crick (WC) pairs and much weaker correla-

tions in non-WC pairs.

In the protein community it has emerged the idea of using so-called direct cou-

pling analysis (DCA) in order to construct a probabilistic model capable to generate

the correlations observed in the analyzed sequences (Morcos et al., 2011; Marks et

al., 2011; Nguyen, Zecchina, and Berg, 2017; Cocco et al., 2018): strong direct cou-

plings in the model indicate spatial proximity. The solution of the corresponding

inverse model has been often obtained through the so-called mean-field approxi-

mation (Morcos et al., 2011), that is strongly correlated with the sparse inverse co-

variance approach (Jones et al., 2011). A further improvement in the level of ap-

proximation of the inferred solution is reached when maximizing the conditional

likelihood (or pseudo-likelihood), which is a consistent estimator of the full likelihood

but involves a tractable maximization (Ekeberg et al., 2013) and is considered as the

state-of-the-art method for protein sequences.

The application of DCA to RNA structure prediction has so far been limited.

DCA has been first applied to RNA in two pioneering works, using either the mean-

field approximation (De Leonardis et al., 2015) or a pseudo-likelihood maximization

(Weinreb et al., 2016). A later work also used the mean-field approach to infer con-

tacts (Wang et al., 2017a). The mentioned applications of DCA to RNA structure

prediction focused on the prediction of RNA three-dimensional structure based on

the combination of DCA with some underlying coarse-grain model (De Leonardis

et al., 2015; Weinreb et al., 2016; Wang et al., 2017a). However, the performance

of the DCA alone is difficult to assess from these works, since the reported results

largely depend on the accuracy of the utilized coarse-grain models. In addition,

within the DCA procedure there are a number of subtle arbitrary choices that might

significantly affect the result, including the choice of a suitable sequence-alignment

algorithm and the identification of the correct threshold for contact prediction.

In this thesis, I report a systematic analysis of the performance of DCA methods

for 17 riboswitch families chosen among those for which at least one high-resolution

crystallographic structure is available. A stochastic procedure based on Boltzmann

learning for solving exactly the DCA inverse problem is introduced and compared
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with the mean-field solution and the pseudo-likelihood maximization approach, as

well as with mutual information (Eddy and Durbin, 1994) and R-scape method (Ri-

vas, Clements, and Eddy, 2017). A rigorous cross-validation procedure that allows to

find a portable threshold to identify predicted contacts is also introduced. Whereas

Boltzmann learning is usually considered as a numerically unfeasible procedure in

DCA, it is shown that it can be effectively used to infer parameters that reproduce

correctly the statistical properties of the analyzed alignments and that correlate with

experimental contacts better than those predicted using alternative approximations.

In inverse problems, parameters of the model are inferred based on observations

maximizing a likelihood function. This maximization is usually performed using

regularization terms in order to avoid overfitting (Ekeberg et al., 2013; Marruzzo

et al., 2017; Tyagi et al., 2016; Ravikumar, Wainwright, Lafferty, et al., 2010; Figli-

uzzi, Barrat-Charlaix, and Weigt, 2018) , especially when a limited number of train-

ing examples is available. In a Bayesian framework, the regularization term can be

interpreted as a prior information on the parameters that is encoded in the process

(Zhu, Chen, and Xing, 2014; Baldassi et al., 2014). In principle, any prior information

about the parameters can be included in order to make their estimation more reliable

and thus decrease both systematic errors, due to approximations in the model, and

statistical errors, due to finite sample sizes. In the second part of the thesis, I show

how to use a maximum posterior estimation procedure including a general prior in

order to improve the solution of inverse Ising-like models. The procedure is first

illustrated on a simple 10×10 Ising model. Then, the capability of DCA in predict-

ing RNA contacts is enhanced by including in the parameters Boltzmann learning

external information obtained from a secondary structure prediction algorithm. In

DCA literature, l2 regularization is usually adopted to avoid overfitting (Ekeberg et

al., 2013; Figliuzzi, Barrat-Charlaix, and Weigt, 2018) and systematic error is tack-

led by post-processing in some advanced way the resulting couplings (Schug et al.,

2009; Chen et al., 2011; Ma et al., 2015; Wang et al., 2017a; Wang et al., 2017b). The

idea of helping the inference including external knowledge is found to significantly

improve the accuracy of contact prediction.

In Chapter 2 of this Thesis I introduce the DCA formalism as well as the Boltz-

mann learning procedure that I developed and implemented. In Chapter 3 I show
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the results obtained for RNA contact prediction on a database of 17 riboswitches. Fi-

nally, in Chapter 4 I illustrate the developed formalism to use informative priors in

inferring couplings and I show how it can be adopted to significantly improve DCA

predictions also when based on alignments that are suboptimal or of very limited

size.

The material included in this Thesis has been partly adapted from two manuscripts

(Cuturello, Tiana, and Bussi, 2019; Cuturello, Tiana, and Bussi, "Encoding prior in-

formation in inverse Ising-like models", in preparation). In addition, I contributed

to another manuscript (Calonaci, Cuturello, Jones, Sattler and Bussi, in preparation),

where data obtained through the models that I developed are used for structure

prediction in combination with chemical probing experiments. The results of this

manuscript are not included in this Thesis.
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Chapter 2

Covariance models

The low cost of sequencing techniques lead to the accumulation of a vast number

of sequence data for many homologous RNA families (Nawrocki et al., 2014). Sys-

tematic approaches based on mutual information analysis (Eddy and Durbin, 1994)

and related methods (Pang et al., 2005) are now routinely used to construct covari-

ance models and score putative contacts. Recently, a G-test-based statistical proce-

dure called R-scape has been shown to be more robust than plain mutual informa-

tion analysis for RNA systems (Rivas, Clements, and Eddy, 2017). In the protein

community it has been widely and successfully employed direct coupling analy-

sis (DCA) for residues contact prediction, which is a probabilistic model capable of

generating the correlations observed in the analyzed alignments of homologous se-

quences (Morcos et al., 2011; Marks et al., 2011; Nguyen, Zecchina, and Berg, 2017;

Cocco et al., 2018). It arises from maximum entropy principle and it consists of an

inverse Potts problem that can be solved in first approximation through the mean-

field approach (Morcos et al., 2011). Another possibility to further improve the level

of approximation is to infer the solution through maximization of the conditional

likelihood (or pseudo-likelihood), which is a consistent estimator of the full likelihood

(Ekeberg et al., 2013). We propose a stochastic procedure (Boltzmann learning) for

solving exactly the DCA inverse problem.

All mentioned covariance methods are described, including a number of subtle

arbitrary choices that might significantly affect the result of the analysis, such as

alignment methods, similarity based re-weighting of sequences, average product

correction and Gauge choice. A description of the adopted measures for validation

of results are also reported.
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2.1 Alignment methods

The analysis of nucleotide co-evolution requires homologous RNA sequences to be

aligned through a process named multiple sequence alignment (MSA). The results of

any co-evolutionary analysis depends on this initial step. We here tested two com-

monly used MSA algorithms, namely those implemented in ClustalW (Thompson,

Higgins, and Gibson, 1994) and Infernal (Nawrocki and Eddy, 2013).

MSAs are matrices {σb}B
b=1 of B homologous RNA sequences that have been

aligned through insertion of gaps to have a common length N, so that each sequence

can be represented as σb = {σb
1 , ..., σb

N}. Vector σ has entries from a q = 5 letters al-

phabet {A, U, C, G,−} coding for nucleotide type, where − represents a gap. Fi(σ)

denotes the empirical frequency of nucleotide σ at position i and Fij(σ, τ) the fre-

quency of co-occurence of nucleotides σ and τ at positions i and j, respectively:

Fi(σ) =
1
B

B

∑
b=1

δ(σb
i , σ) (2.1)

Fij(σ, τ) =
1
B

B

∑
b=1

δ(σb
i , σ)δ(σb

j , τ) (2.2)

Here δ is the Kronecker symbol (which equals one if the two arguments coincide and

zero elsewhere) and σb
k is the nucleotide located at position k in the b-th sequence of

the MSA.

2.1.1 Infernal alignment

Infernal is a tool for building consensus RNA secondary structure profiles called co-

variance models (CMs), and uses them to search nucleic acid sequence databases for

homologous RNAs, or to create structure-based multiple sequence alignments. CMs

are a special case of stochastic context-free grammars providing a statistical frame-

work for combining sequence and secondary structure conservation information in

a single consistent scoring system, designed for modeling RNA consensus sequence

and structure. It relies on the typical conservation of secondary structure in RNA

families, which are easier to asses than the full tertiary structure and thus are often

available. We consider the use of secondary structure information in the alignment

procedure as a strong bias in the input of covariance analysis driven by a previous
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knowledge of the molecular structure. Even though the predictions from covariance

models on these kind of alignments are very accurate, this tool can’t be employed

for future blind contact predictions on families for which no structure information is

available.

2.1.2 ClustalW alignment

ClustalW is a necessary tool for contact prediction on RNA families lacking an as-

sessed experimental structure. It uses a progressive alignment method: it aligns the

most similar sequences first, then it progressively aligns more distant groups of se-

quences until a global alignment is created. ClustalW is a matrix-based algorithm,

since the first step consists in computing a distance matrix between each pair of se-

quences, known as pairwise sequence alignment. Then, a neighbor-joining method

is adopted to build the tree. ClustalW performs well when the data set contains se-

quences with varied degrees of divergence because the guide tree is less sensitive to

noise in this case.

2.2 Re-weighting

The inference of the Potts parameters relies on the assumption that samples of se-

quences are independently generated from the model, which is not true for biolog-

ical sequences. In databases there are many RNA sequences from related species

which did not have enough time to reach statistical independence while evolving.

Moreover, the selection of species to be sequenced is dictated by human interest. In

order to reduce the effect of possible biases on the sampling of RNA sequences in

databases, a common heuristic approach is sequence re-weighting. Two sequences

are considered similar if the fraction of positions with coincident nucleotides (simi-

larity) is larger than a given similarity threshold x:

nb = |s ∈ {1, ..., B} : similarity(σs, σb) > x| (2.3)
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The inverse of nb, ωb = 1
nb

, gives a weight for the sequence contribution to frequen-

cies and the effective number of sequences in the alignment is given by:

Be f f =
B

∑
b=1

ωb (2.4)

The effect of re-weighting is to make the sequence density homogeneous in se-

quences space.

2.3 Mutual information

The mutual information between two positions i and j is defined as

MIij = ∑
σi ,τj

Fij(σi, τj) ln
Fij(σi, τj)

Fi(σi)Fj(τj)
≡ Sij (2.5)

and is a local measure of the mutual dependence between two random variables,

quantifying how much the uncertainty about one of the two variables is reduced by

knowing the other. It is the simplest possible way to assess covariance (Eddy and

Durbin, 1994) and its capability to predict contacts in RNA has been reported to be

surpassed by DCA-based methods (De Leonardis et al., 2015).

2.4 R-scape

R-scape (RNA Significant Covariation Above Phylogenetic Expectation) is a soft-

ware associating E-values to the pairs showing a significant covariation pattern in

a MSA. E-values are determined using a null model of covariation entirely due to

phylogeny. Covariation scores are calculated using the default G-test measure im-

plemented in the package rscape_v1.2.3 at http://eddylab.org/software/rscape.

GT(i, j) = 2B ∑
σi ,τj

Fij(σi, τj)log
Fij(σi, τj)

Fi(σi)Fj(τj)
≡ 2B ·Mij (2.6)

Significantly co-varying pairs are those with a low associated E-value.

http://eddylab.org/software/rscape
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2.5 Average product correction

The average product correction (APC) was introduced with the aim of removing

the contribution of shared ancestry and phylogenetic history from pair covariance

scores (Dunn, Wahl, and Gloor, 2007):

SAPC
ij = Sij −

∑i Sij ∑j Sij

∑
i,j

Sij
(2.7)

This is empirically found to remove the influence of positions entropy from the

scores, even though the reason why this particular functional form works so well

on DCA is still unknown (Ekeberg, Hartonen, and Aurell, 2014).

2.6 Direct coupling analysis

The idea of direct coupling analysis is to infer a global statistical model P(σ) that

is able to generate the empirical data, namely single-site and two-sites frequency

counts (Morcos et al., 2011), such that

Fi(σi) = ∑
{σk |k 6=i}

P(σ1, ..., σN) ≡ fi(σi) (2.8)

Fij(σi, τj) = ∑
{σk |k 6=i,j}

P(σ1, ..., σN) ≡ fij(σi, τj) (2.9)

Introducing a set of Lagrange multipliers θ ≡ {hi(σ), Jij(σ, τ)} to constrain the

model averages f ≡ { fi(σ), fij(σ, τ)} to the observed frequencies F, the maximum

entropy distribution over the sequences takes the form

P(σ) =
1
Z

exp

(
∑

i
hi(σi) + ∑

ij
Jij(σi, σj)

)
(2.10)

corresponding to a five-states fully connected Potts model, where

Z = ∑
{σ}

exp

(
∑

i
hi(σi) + ∑

ij
Jij(σi, σj)

)
(2.11)
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is the partition function, hi(σi) are called local fields, while Jij(σ, τ) are called direct

couplings and can be interpreted as the direct interaction between nucleotides σ and

τ at positions i and j, after disentangling them from the interaction with nucleotides

sited at other positions. Once parameters hi(σ) and Jij(σ, τ) have been determined,

the Frobenius norm of the coupling matrices can be used to obtain a scalar value for

each pair of positions (De Leonardis et al., 2015; Cocco, Monasson, and Weigt, 2013;

Ekeberg, Hartonen, and Aurell, 2014):

Sij =
√

∑
{σ,τ}

Jij(σ, τ)2 (2.12)

We will discuss three different approaches that can be used to determine the param-

eters of the model: the mean-field approximation (Morcos et al., 2011), the pseudo-

likelihood maximization (Ekeberg, Hartonen, and Aurell, 2014), and a Boltzmann-

learning approach proposed here.

2.6.1 Mean field approximation

In the mean-field approximation, the effect of all nucleotides on any given one is

approximated by a single averaged effect, reducing a many-body problem to a one-

body problem. The mean-field approach is the one adopted in Morcos et al., 2011,

by which coupling matrices are estimated as the inverse of the connected correlation

matrices:

Jij(σi, σj) ' −C−1
ij (σi, σj) (2.13)

and the local fields are estimated as:

hi(σi) ' ln
Fi(σi)

Fi(σ̄i)
− ∑

j,j 6=i
∑
σi ,

σi 6=σ̄i

Jij(σi, σj)Fj(σj) (2.14)

where Cij(σi, σj) = Fij(σi, σj) − Fi(σi)Fj(σj) is the correlation matrix and σ̄ is an ar-

bitrarily chosen letter of the alphabet, usually the one representing gaps. To make

the matrix Cij(σi, σj) invertible and alleviate finite sample effects it is common to add
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pseudo-counts. We adopt the same approach as in De Leonardis et al., 2015:

F̂i = (1− λ)Fi +
λ

5
(2.15)

F̂ij = (1− λ)Fij +
λ

25
(1− δij) +

λ

5
δijδσiσj (2.16)

where λ = 0.5.

2.6.2 Pseudo-likelihood maximization

An alternative approach to estimate the DCA inverse problem solution is the max-

imization of the conditional likelihood (or pseudo-likelihood) (Ekeberg et al., 2013),

which is a consistent estimator of the full likelihood, but involves a tractable maxi-

mization and is considered as the state-of-the-art method for protein sequences. This

is equivalent to minimizing the negative pseudo-log likelihood function:

lpseudo = −
1
B ∑

r

B

∑
b=1

log P(σb
r |σb
\r) (2.17)

Here σb
\r denotes the identity of all the nucleotides except the one at position r, and

thus P(σb
r |σb
\r) is the conditional probability of observing one variable σr given all

the other variables. When data is abundant, the conditional likelihood tends to the

full likelihood function (see, e.g., Arnold and Strauss, 1991). Pseudo-likelihood

maximization allows to overcome the intractable evaluation of the full partition

function, since calculating the normalization of the conditional probability only re-

quires an empirical average over the dataset. We exploit the asymmetric pseudo-

likelihood maximization (Ekeberg, Hartonen, and Aurell, 2014) as implemented at

https://github.com/magnusekeberg/plmDCA.

2.6.3 Maximum likelihood and Boltzmann learning

Given a set of independent equilibrium configurations {σb}B
b=1 of the model (Eq.2.10)

such that P(σ) = ∏B
b=1 P(σb), a statistical approach to infer parameters {h, J} is to

let them maximize the likelihood, i.e. the probability of generating the data set for a

https://github.com/magnusekeberg/plmDCA
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given set of parameters (Ekeberg et al., 2013). This can be equivalently done mini-

mizing the negative log likelihood divided by the number of sequences:

l = − 1
B

B

∑
b=1

log P(σb) (2.18)

Minimizing l with respect to local fields hi gives

∂l
∂hi(σ)

=
1
B

B

∑
b=1

(
∂ log Z
∂hi(σ)

− δ(σb
i , σ)

)
=

=
1
B

B

∑
b=1

(
fi(σ)− δ(σb

i , σ)
)

= fi(σ)− Fi(σ) = 0

(2.19)

Similarly, minimizing l with respect to the couplings gives

∂l
∂Jij(σ, τ)

= fij(σ, τ)− Fij(σ, τ) = 0 (2.20)

These equations show that the model maximizing the likelihood of parameters is the

one with frequencies identical to those observed in the MSA. A possible strategy to

minimize l is gradient descent, that is an iterative algorithm in which parameters are

adjusted by forcing them to follow the opposite direction of the function gradient

(Ackley, Hinton, and Sejnowski, 1987; Sutto et al., 2015; Barrat-Charlaix, Figliuzzi,

and Weigt, 2016; Haldane et al., 2016; Figliuzzi, Barrat-Charlaix, and Weigt, 2018).

The value of the parameters θ at iteration k + 1 can be obtained from the value of θ

at the iteration k as

θt+1 = θt − ηt∇θ l(θ) = θt − ηt( f (θ)− F) (2.21)

where ηt is the learning rate and t is the fictitious time, corresponding to the itera-

tion number. Calculation of the gradient requires evaluation of an average over all

the possible sequences. This average can be computed with a Metropolis-Hastings

algorithm in sequence space, but might be very expensive due to the large size of

such space. In addition, the average should be recomputed at every iteration. We

here propose to use the instantaneous value of δ(σi, σ), where σi is the identity of
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the nucleotide at position i in the simulated sequence, as an unbiased estimator of

fi(σ); this procedure allows to update the parameters more frequently, resulting in a

stochastic gradient descent that forces the system to sample the posterior distribution.

The algorithm can be easily parallelized, so that at each iteration the new set θ is an

average of the updated parameters over all processes. We use 20 simultaneous simu-

lations initialized from 20 sequences randomly chosen in the MSA. Once parameters

are stably fluctuating around a given value, their optimal value can be estimated by

taking a time average of θ over a suitable time window (Cesari, Reißer, and Bussi,

2018). At that point, a new simulation could be performed using the time-averaged

parameters. Such a simulation can be used to rigorously validate the obtained pa-

rameters. The learning rate ηt belongs to the class search then converge (Darken and

Moody, 1990):

ηt =
α

1 + t
τS

(2.22)

This function is close to α for small t (“search phase”). For t � τS the function

decreases as 1/t (“converge phase”). Since it is based on Boltzmann sampling of

the sequence space, this procedure is named Boltzmann learning. The exact algo-

rithm is described in Algorithm 1 and the employed C code is available at https:

//github.com/bussilab/bl-dca. In the algorithm implemented here, at variance

with others proposed before (Sutto et al., 2015; Figliuzzi, Barrat-Charlaix, and Weigt,

2018), the Lagrangian multipliers are evolved every few Monte Carlo iterations us-

ing istantaneous values rather than averages obtained from converged trajectories.

A change of variables of the model parameters was proposed to make the minimiza-

tion easier (Figliuzzi, Barrat-Charlaix, and Weigt, 2018). This idea might be beneficial

also in our algorithm.

2.6.4 Gauge invariance and regularization

The number of model parameters in Eq. 2.10 is N(N−1)
2 q2 + Nq but the model is over-

parametrized, in the sense that distinct parameter sets can describe the same prob-

ability distribution. This is because the consistency conditions (Eq. 2.8, 2.9) are not

independent, single-site marginals being implied by the two-sites marginals and all

distributions being normalized; thus the number of independent parameters turns

https://github.com/bussilab/bl-dca
https://github.com/bussilab/bl-dca
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Algorithm 1 Boltzmann learning direct coupling analysis

1. Initialization:

• Choose randomly 20 sequences from the MSA.

• Initialize model parameters {h, J} to zero.

2. Learning: Loop over 100000 Monte Carlo sweeps. For each sweep:

• Loop over the 20 sequences. For each sequence k:

– Loop over nucleotide of each sequence. For each nucleotide i:
∗ Propose a new random nucleotide at position i

∗ Compute the acceptance α =
(

1, Pnew
Pold

)
, where Pnew and Pold are

the probabilities of old and new nucleotides at position i accord-
ing to model parameters {h, J}.
∗ Accept/reject comparing α with a uniform random number in
[0, 1).

– Compute frequencies on the 20 sequences.

• Update parameters {h, J} estimating likelihood gradient based on current
frequencies.

3. Validation: Repeat step 2 using parameters {h, J} computed as averages over
the last 5000 Monte Carlo sweeps of step 2.

out to be N(N−1)
2 (q− 1)2 + N(q− 1) (Weigt et al., 2009). In order to remove the de-

generacy of the mean-field solution so to obtain a unique and reproducible result, a

possible gauge choice for the Potts model (Ekeberg et al., 2013; De Leonardis et al.,

2015) is the one minimizing the norm of couplings matrices (Eq. 2.12):

∑
{τ}

Jij(σ, τ) = ∑
{σ}

Jij(τ, σ) = ∑
{τ}

hi(τ) = 0 ∀ i, j (2.23)

Another possible gauge is the one in which parameters relative to a specific letter of

the alphabet σ̄ (usually the one representing the gaps) are set to zero:

Jij(σ̄, τ) = Jij(τ, σ̄) = hi(σ̄) = 0 ∀ i, j, τ (2.24)

In the Boltzmann learning and pseudo-likelihood maximization frameworks, the

degeneracy can alternatively be removed by minimizing a function obtained by the
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addition of an l2-regularization term to l(θ) (Ekeberg et al., 2013), such that:

θ = arg min
θ
{l(θ) + R(θ)} (2.25)

where

R(θ) =
k
2 ∑

p
θ2

p , p = {1, ...,
N(N − 1)

2
q2 + Nq} (2.26)

For pseudo-likelihood we use a value of k depending on the alignment size, adopt-

ing the default options supplied by the employed software. For the Boltzmann

learning approach we heuristically observed that a regularization is not necessary

and that results are not sensitive to the choice of k. We thus decided not to use any

regularization term, since the chosen length of simulation is indeed playing the role

of an early stopping, a form of regularization commonly used in gradient descent

algorithms (Yao, Rosasco, and Caponnetto, 2007). The regularization term can also

be interpreted in a Bayesian framework as a prior knowledge on the system. The

possibility to use informative priors in DCA is discussed in Chapter 4.

2.6.5 Validation of the inferred couplings

The capability of the discussed DCA methods to infer a Potts model compatible with

the frequencies observed in the MSA can be quantified by computing the root-mean-

square deviation (RMSD) between model and observed pair frequencies:

RMSD =
√
< ( fij(σi, τj)− Fij(σi, τj))2 >{ij},{σi ,τj} (2.27)

For Boltzmann-learning DCA, the model frequencies are calculated in the validation

phase of simulations, and the RMSD can be used to assess their convergence. For

other DCA methods one can simply use the estimated couplings to run a simulation

in sequence space.

2.7 Validation of predicted contacts

Evaluation of the performance of RNA contact prediction methods requires the num-

ber of correct predictions (true positives, TP), the number of contacts predicted but
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absent in the native structure (false positives, FP), and the number of contacts present

in the native structure but not predicted (false negatives, FN). Two common mea-

sures are sensitivity and precision, where sensitivity is the fraction of correctly pre-

dicted base pairs of all true base pairs, while precision is the fraction of true base pairs

of all predicted base pairs:

sensitivity =
TP

TP + FN
(2.28)

precision =
TP

TP + FP
(2.29)

The Matthews correlation coefficient (MCC) can be defined as the geometric average

of sensitivity and precision (Matthews, 1975; Gorodkin, Stricklin, and Stormo, 2001):

MCC =
√

sensitivity · precision (2.30)

and is equivalent to the interaction network fidelity (Parisien et al., 2009). To turn

contact scores Sij into predictions it is necessary to assume a threshold S̄. The pre-

dicted contacts will be those scored by a value above (below, for R-scape) S̄. In order

to allow for a fair comparison between different covariance methods, we choose the

threshold score maximizing the MCC, corresponding to the optimal compromise

between precision and sensitivity as illustrated in Figure 2.1 for a test system (PDB:

LY26). For each covariance method, the MCC as a function of the threshold score S

shows a similar behavior for all the Ns systems, their peaks falling at very similar

positions. This suggests the possibility to set a unique threshold for each covariance

method that maximizes the MCC geometric average over all systems:

S̄ = arg max
S

(
Ns

∏
µ

MCCµ(S)

) 1
Ns

(2.31)
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Threshold

0.0

0.5

1.0
sensitivity
precision
MCC

FIGURE 2.1: Typical behavior of sensitivity, precision and MCC illus-
trated for a test Ising system (PDB: LY26, Boltzmann learning DCA on
Infernal alignment). Notice that the number of false positives grows
as the score threshold decreases. Sensitivity is not exactly 1 at zero
threshold because of APC correction introducing some negative val-

ues among pair scores.
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Chapter 3

RNA contact prediction

An extensive assessment of the capability of covariance-based methods to infer con-

tacts on a data set of 17 RNA families is reported in this chapter. In particular, the

focus is on direct coupling analysis methods, which require the coupling constants

of a Potts model to be estimated. We first assess the capability of different DCA solu-

tions to infer correct couplings. We then compare the high-score contacts with those

observed in high resolution crystallographic structures in order to assess the capabil-

ity of all covariance methods to enhance RNA structure prediction. We also analyze

the robustness of the different models with respect to the choice of the threshold on

covariance scores and discuss the influence of some possible arbitrary choice on the

accuracy of predictions. The performance of the methods in terms of a number of

measures is reported, such as precision, sensitivity, number of tertiary contacts and

false positives, sensitivity to contacts in secondary structures and number of stacked

base pairs among false positives. Moreover, the predicted contacts of the two most

accurate methods are explicitly shown, comparing directly the best and worst per-

forming systems.

3.1 Data set

The analysis is performed on sequences of 17 riboswitches families classified in the

Rfam database (Nawrocki et al., 2014). Riboswitches are ubiquitous in bacteria and

thus show a significant degree of sequence heterogeneity within each family. The

RNA families have been chosen among those for which at least one high-resolution
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crystallographic structure has been reported, ruling out from the analysis the struc-

tures annotated as interacting double chains. The full dataset is listed in Table 3.1.

The number of nucleotides in each chain ranges between 52 and 161, and the num-

ber of sequences between 189 and 10858. The lowest quality structure in the data

set has been solved with resolution 2.95 Å. Contacts in the reference PDB struc-

tures are annotated with DSSR (Lu, Bussemaker, and Olson, 2015), that takes into

account all hydrogen bonds and classify base pairs according to the Westhof-Leontis

nomenclature (Leontis and Westhof, 2001). This is different from other works, us-

ing the geometric distance between heavy atoms belonging to each nucleotide (thus

including also backbone atoms), and is expected to better report on the direct base-

base contacts that are supposed to be associated to covariation. We decided to ig-

nore stacking interactions since co-evolution in RNA is mostly related to isostericity

(Leontis, Stombaugh, and Westhof, 2002; Stombaugh et al., 2009), which is the prop-

erty of some of the base pairs of a given family (e.g. Watson-Crick family) to assume

very similar positions and distances between the C1’ carbon atoms. All the used

MSAs as well as files containing the annotation of each base pair are available at

https://github.com/bussilab/bl-dca. Columns with more than 90% of gaps were

removed from the alignments in order to make the maximization faster and to avoid

overfitting on positions of the alignment that are not relevant. Before computing the

one-site and two-sites frequencies, the columns of the MSA where the sequence cor-

responding to the reference crystallographic structure had a gap were eliminated by

the alignment. Whereas this step should not be in principle required, preliminary

calculations showed that this pruning improves the quality of the results for all the

tested DCA methods.

The required times for all the tested covariance methods scale roughly as the

number of nucleotides squared and are listed in Table 3.2 for the largest and smallest

molecules in the data set. (Dunn, Wahl, and Gloor, 2007).

3.2 Validation of the inferred couplings

As shown in Figure 3.1, the Boltzmann learning procedure is capable to infer a Potts

model that generates sequences with the correct frequencies. The two displayed

https://github.com/bussilab/bl-dca
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TABLE 3.1: PDB, RFAMcode molecule name, alignment length and
size, effective alignment size after reweighting (similarity treshold

x=0.9 on Infernal alignments).

PDB RFAM molecule name length size sizeeff

4L81 RF01725 SAM-I/IV variant riboswitch 97 693 128

2GDI RF00059 TPP riboswitch 80 10858 1054

3F2Q RF00050 FMN riboswitch 109 3144 1078

2GIS RF00162 SAM riboswitch 93 4903 910

1Y26 RF00167 Purine riboswitch 71 2589 508

3DOU RF00168 Lysine riboswitch 161 1870 832

4QLM RF00379 ydaO/yuaA leader 108 2723 1067

2QBZ RF00380 ykoK leader 153 850 240

5T83 RF00442 ykkC-yxkD leader 89 687 138

3OWI RF00504 Glycine riboswitch 88 4602 985

3IRW RF01051 Cyclic di-GMP-I riboswitch 91 2231 578

4FRG RF01689 AdoCbl variant RNA 84 189 25

3VRS RF01734 Fluoride riboswitch 52 1426 312

5DDP RF01739 Glutamine riboswitch 61 1138 179

4XW7 RF01750 ZMP/ZTP riboswitch 64 1197 432

3SD3 RF01831 THF riboswitch 89 547 205

4RUM RF02683 NiCo riboswitch 92 207 42
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TABLE 3.2: Computational time for the smallest and largest inves-
tigated systems. Machine hardware architecture: Intel E5-2620, 12
physical cores. Operating system: GNU/Linux. Mutual informa-
tion, MF-DCA, and BL-DCA predictions were done using in house
code. R-scape predictions were done using R-scape 1.2.3. PL-DCA
predictions were done using plmDCA_asymmetric_v2 code available

on GitHub.

Method 3DOU (largest) 3VRS (smallest)

Boltzmann learning DCA 220 min 20 min

Pseudo-likelihood DCA 3 min 30 sec

R-scape 33 sec 9 sec

Mean field DCA 22 sec 4 sec

Mutual Information 15 sec 3 sec

families are those where the model frequencies agree best (PDB: 3F2Q, Figure 3.1a) or

worst (PDB: 3IRW, Figure 3.1b) with the empirical ones. For 3IRW there are still visi-

ble mismatches, whereas for 3F2Q the modeled and empirical frequencies are virtu-

ally identical. On the other hand, the couplings inferred using the pseudo-likelihood

or the mean-field approximation do not reproduce correctly the empirical frequen-

cies. This is expected, since the mean-field approximation is not meant to be precise

but rather a quick method to compute an approximation of the real couplings. Par-

ticularly striking is the case of the pseudo-likelihood for 3IRW, where there is no ap-

parent correlation between the modeled and the empirical frequencies. In Figure 3.2

we report the RMSD between the empirical and model frequencies for all the investi-

gated families. The learning parameters for the Boltzmann learning simulation were

chosen in order to minimize the RMSD value reported here (α = 0.01, τS = 1000).

A negative control is performed comparing empirical frequencies with the ones cal-

culated on random sequences ( fij = 1/25). The positive control sets a reference for

RMSD values and corresponds to the statistical error on the frequencies calculated

via the bootstrap procedure, by uniformly sampling with repetitions a number of

sequences corresponding to the MSA size and calculating the RMSD between the so

obtained averages and the empirical frequencies. In addition, we compare empirical
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(A) (B)

FIGURE 3.1: FMN riboswitch (PDB code 3F2Q, figure 3.1a) and c-di-
GMP-I (PDB code 3OWI, figure 3.1b). Comparison between modeled
fij(σ, τ) and empirical Fij(σ, τ) frequencies ∀i, j, σ, τ, obtained from
DCA via Boltzmann learning, mean-field approximation and pseudo-

likelihood maximization.
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frequencies against the ones calculated on the 20 MSA sequences initializing the par-

allelized Boltzmann learning simulation, so to ensure that frequencies are not repro-

duced thanks to the statistics resulting from the initial sequences but rather thanks

to a correct choice of the coupling parameters. For all families, the resulting RMSD

obtained with the Boltzmann learning couplings is lower than the one obtained us-

ing the 20 sequences from the MSA, indicating that the chosen couplings are shifting

the distribution towards the empirical one. In some cases the RMSD reaches the sta-

tistical error expected with a finite number of sequences (positive control). Whereas

this is expected since the Boltzmann learning procedure is exaclty trained to repro-

duce these frequencies, it is not obvious that this result can be achieved in a feasible

computational time scale. On the contrary, both the pseudo-likelihood and mean-

field approximation present an RMSD systematically larger than the one obtained

from 20 sequences from the MSA. This indicates that the couplings inferred using

these approximated methods are not leading to a Potts model that reproduces the

experimental frequencies (Figliuzzi, Barrat-Charlaix, and Weigt, 2018; Gao, Zhou,

and Aurell, 2018).

The adopted pseudo-likelihood implementation employs a regularization term

in order to improve predictions when the number of sequences is low. This term

is usually tuned in order to improve the rank of true contacts and not the frequen-

cies reported here. We thus tested parameters obtained using a lower regularization

term obtaining similar results (Figure 3.3). Given that pseudo-likelihood is known to

converge to the exact value in the limit of an infinite number of sequences (see, e.g.,

Arnold and Strauss, 1991), this discrepancy should be attributed to the typical size

of the used alignments. In multiple cases the frequencies obtained using couplings

inferred with pseudo-likelihood tend to be larger than the empirical ones. Since the

RMSD is highly sensitive to large deviations, this can cause some of the systems to be

in less agreement with natural sequences than the employed negative control, which

instead consists by construction of homogeneous frequencies. Qualitatively, the de-

viation observed here is similar to the one reported for protein systems (Figliuzzi,

Barrat-Charlaix, and Weigt, 2018).
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FIGURE 3.2: Validation of the coupling parameters inferred using dif-
ferent methods (Boltzmann learning, pseudo-likelihood and mean-
field DCA). The validation is done running a parallel MC simula-
tion on 20 sequences and calculating the root-mean-square deviation
(RMSD) between the obtained frequencies and the empirical ones. We
report a positive control (statistical error due to finite number of se-
quence), a negative control (RMSD between empirical sequences and
a random sequence) and the RMSD from the ensemble of the 20 se-
quences used as a starting point of the Boltzmann learning simula-
tions. Families are labeled using the PDB code of the representative
crystallographic structure. Average RMSD is reported in first column.

Infernal alignments.
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FIGURE 3.3: Validation of the coupling parameters inferred via the l2-
regularized pseudo-likelihood maximization method implemented at
https://github.com/magnusekeberg/plmDCA, adopting different regular-
ization strengths k. The validation is done running a parallel MC
simulation on 20 sequences and calculating the root-mean-square de-
viation (RMSD) between the obtained frequencies and the empirical
ones. The positive control is the statistical error due to finite number
of sequence, and the negative control is the RMSD between empirical

sequences and a random sequence. Infernal alignment.
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3.3 Validation of predicted contacts

From the previous results it is clear how Boltzmann learning is the only procedure

capable to infer correct couplings. However, this does not necessarily imply that it

is also the method capable of most correct contact predictions. Indeed, this does not

necessarily imply that the exact parameters of the Potts model are correlated with

structural contacts. The predictions is validated against a set of crystallographic

structures by computing the Matthews correlation coefficient (MCC) between the

predicted and empirical contacts. The general approach used to predict contacts

from DCA is to extract the residue pairs with the highest couplings. Similarly, con-

tacts can be predicted choosing pairs with the highest mutual information or the

lowest E-value provided by R-scape. In order to fairly choose the threshold we

adopted a cross-validation procedure: the MCC of each system is the one corre-

sponding to a score cutoff S maximizing the average MCC (Eq. 2.31), calculated

excluding that system. As a negative control we show the MCC obtained assuming

randomly chosen scores. In this case, the precision is equal to the number of native

contacts (Nnative) over the total number of possible contacts ( N(N−1)
2 ) irrespectively

of the chosen threshold, whereas the sensitivity is maximized when the threshold

is chosen such that all the possible contacts are predicted and is equal to 1. The

corresponding MCC is thus
√

2Nnative
N(N−1) .

The choice of the threshold for covariance scores of the different models can be

generalized to an independent data set, since the optimal threshold has a similar

value for all systems (Table 3.3 and 3.4). The results on individual families show that

the choice of threshold covariance score is more consistent for Boltzmann learning

when compared to pseudo-likelihood DCA. This seems to be due to the dependency

of the ł2-regularization strength on the family size in the adopted plmDCA code,

which induces lower optimal score thresholds for the less numerous families. In

order to quantify this effect we introduce a transferability index φ = 1
Ns

Ns

∑
µ

MCCµ

MCCmax
µ

,

which is the ratio between the cross-validated MCC for system µ (MCCµ) and the

maximum MCC that can be obtained by choosing the optimal threshold for each

system MCCmax
µ , averaged over all systems. For the Infernal alignments, this value

amounts to φ = 0.96 for BL and to φ = 0.91 for pseudo-likelihood DCA, suggesting



30 Chapter 3. RNA contact prediction

TABLE 3.3: Infernal alignments. MCC with optimal covariance score
threshold S for Boltzmann learning DCA, pseudo-likelihood DCA,
mean field DCA, mutual information, R-scape for each of 17 RNA

families, obtained through cross-validation procedure.

Boltzmann
learning

DCA

Pseudo-
likelihood

DCA

mean
field
DCA

mutual
infor-

mation

R-scape

PDB MCC S MCC S MCC S MCC S MCC S

3DOU 0.68 1.09 0.59 0.65 0.67 1.0 0.68 0.22 0.53 0.5

3F2Q 0.58 1.09 0.58 0.65 0.56 1.0 0.55 0.22 0.53 0.5

2QBZ 0.55 1.09 0.50 0.78 0.52 1.0 0.53 0.22 0.55 0.5

2GDI 0.55 1.09 0.51 0.65 0.57 1.0 0.48 0.22 0.53 0.5

1Y26 0.69 1.09 0.67 0.65 0.63 0.99 0.63 0.22 0.46 0.5

5T83 0.58 1.09 0.58 0.65 0.58 1.0 0.53 0.22 0.57 0.5

5DDP 0.65 1.09 0.63 0.65 0.66 1.0 0.65 0.22 0.52 0.5

4XW7 0.59 1.24 0.63 0.65 0.59 1.0 0.55 0.22 0.53 0.5

4RUM 0.60 1.19 0.39 0.78 0.54 1.06 0.55 0.22 0.65 0.5

4L81 0.46 1.09 0.45 0.78 0.43 1.0 0.35 0.22 0.43 0.5

4FRG 0.63 1.09 0.49 0.78 0.50 0.99 0.64 0.22 0.65 0.5

3SD3 0.67 1.05 0.69 0.65 0.67 1.0 0.63 0.22 0.63 0.5

2GIS 0.67 1.14 0.74 0.65 0.44 1.03 0.37 0.22 0.59 0.5

3OWI 0.73 1.11 0.73 0.65 0.67 1.0 0.29 0.24 0.62 0.5

3IRW 0.58 1.09 0.56 0.65 0.50 1.0 0.35 0.22 0.42 0.3

4QLM 0.56 1.05 0.58 0.65 0.49 1.0 0.43 0.22 0.43 0.5

3VRS 0.64 1.11 0.71 0.65 0.71 1.0 0.67 0.22 0.42 0.1



3.3. Validation of predicted contacts 31

TABLE 3.4: ClustalW alignment. MCC with optimal covariance score
threshold S for Boltzmann learning DCA, pseudo-likelihood DCA,
mean field DCA, mutual information, R-scape for each of 17 RNA

families, obtained through cross-validation procedure.

Boltzmann
learning

DCA

Pseudo-
likelihood

DCA

mean
field
DCA

mutual
infor-

mation

R-scape

PDB MCC S MCC S MCC S MCC S MCC S

3DOU 0.47 1.07 0.45 0.43 0.42 0.82 0.47 0.20 0.50 1.3

3F2Q 0.48 0.99 0.45 0.43 0.32 0.80 0.31 0.20 0.43 1.3

2QBZ 0.49 1.07 0.46 0.51 0.45 0.80 0.39 0.20 0.46 1.3

2GDI 0.44 1.07 0.35 0.47 0.35 0.82 0.29 0.20 0.45 1.3

1Y26 0.57 1.07 0.50 0.43 0.51 0.82 0.32 0.20 0.38 1.3

5T83 0.41 1.07 0.38 0.43 0.32 0.82 0.44 0.20 0.44 1.1

5DDP 0.42 1.10 0.33 0.51 0.19 0.82 0.20 0.20 - -

4XW7 0.38 1.07 0.42 0.43 0.22 0.80 0.19 0.20 0.40 1.3

4RUM 0.46 1.07 0.32 0.51 0.24 0.80 0.37 0.20 0.51 1.3

4L81 0.27 1.07 0.29 0.45 0.18 0.80 0.16 0.20 0.26 1.3

4FRG 0.59 1.07 0.44 0.57 0.34 0.82 0.40 0.20 0.57 1.3

3SD3 0.71 1.07 0.72 0.45 0.58 0.8 0.50 0.20 0.60 1.3

2GIS 0.54 0.99 0.54 0.43 0.40 0.82 0.34 0.20 - -

3OWI 0.42 1.07 0.48 0.47 0.40 0.82 0.24 0.20 0.32 2.8

3IRW 0.55 1.07 0.37 0.44 0.39 0.80 0.25 0.20 0.28 1.1

4QLM 0.38 1.07 0.45 0.51 0.30 0.80 0.10 0.23 0.20 1.3

3VRS 0.55 1.08 0.42 0.43 0.42 0.82 0.34 0.20 0.30 1.3
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that for the latter case the accuracy of contact prediction is more sensible to the choice

of the cutoff, which is less easily transferable between different systems. Results for

mean field DCA and mutual information are φ = 0.95 and φ = 0.92, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

Ave
ra

ge

3D
O
U

3F
2Q

2Q
BZ

2G
D
I

1Y
26

5T
83

5D
D
P

4X
W

7

4R
U
M

4L
81

4F
R
G

3S
D
3

2G
IS

3O
W

I

3I
R
W

4Q
LM

3V
R
S

— M
— C

— C

RNA families

Boltzmann learning DCA
mean field DCA

mutual information
pseudo-likelihood DCA

R-scape
negative control

FIGURE 3.4: Infernal alignment. MCC of Boltzmann learning DCA,
pseudo-likelihood DCA, mean-field DCA, mutual information, R-
scape and negative control for 17 RNA families at optimal threshold
score obtained through cross-validation procedure. Families are la-
beled using the PDB code of the representative crystallographic struc-

ture. Average MCC reported in first column.

Results of the cross-validation procedure for each system (Figure 3.4 for Infernal

alignments) indicate that direct coupling analysis outperforms mutual information

and R-scape, and in particular Boltzmann learning performs the most accurate pre-

diction. We considered the MSA methods implemented in both ClustalW and Infernal

packages. The average MCC over all RNA families when varying threshold S is sys-

tematically higher if sequences are aligned with Infernal rather than ClustalW (Figure

3.5). We attribute this improvement in the quality of prediction performance to the

use of consensus secondary structure in Infernal (Nawrocki and Eddy, 2013). The
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R-scape for 17 RNA families at optimal threshold score obtained
through cross-validation procedure. Families are labeled using the
PDB code of the representative crystallographic structure. Average

MCC is reported in the first column.

average MCC curves of two most accurate covariance methods (Boltzmann learn-

ing and pseudo-likelihood DCA) are shown to compare the two alignment methods

directly (Figure 3.6). The discrepancy between the accuracies of contact prediction

using two different alignment methods enlightens the necessity of efficient tools to

improve covariance analysis input quality. Interestingly, the threshold score S max-

imizing the MCC is the same for the Boltzmann learning performed on the two dif-

ferent MSAs. This suggests the robustness of the adopted procedure to assess the

optimal threshold score (Eq. 2.31), again enlightening a greater consistency in its

choice for the Boltzmann learning with respect to pseudo-likelihood maximization

framework.
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FIGURE 3.6: MCC geometric average over the 17 systems as a
function of threshold scores S for Boltzmann learning and pseudo-
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indicated. The sharp decrease after some method-dependent value of
S is due to the fact that when the threshold is too large the number
of correctly predicted contacts in at least one of the 17 investigated

systems drops to zero.

3.4 Precision and sensitivity

Sensitivity and precision are independently monitored for each RNA family at cross-

validated thresholds, in order to better quantify the capability of the investigated

methods to provide useful information about contacts. The average sensitivity val-

ues are around 0.3–0.4, indicating that approximately one third of the contacts present

in the native structure can be predicted with these procedures (Figures 3.7, 3.8). In

particular, we notice that the two least populous families (PDB: 4FRG and 4RUM)

show the lowest sensitivities for pseudo-likelihood DCA due to a lower optimal

score thresholds for these systems induced by stronger adopted regularizations. It is

interesting to notice how on ClustalW alignments the sensitivity drops significantly

for mutual information, R-scape and mean field DCA, while it is slightly lower for

pseudo-likelihood and Boltzmann learning DCA compared to results obtained on

Infernal alignments (consistently with the level of approximation of the models).
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FIGURE 3.7: Infernal alignment. Sensitivity of Boltzmann learning
DCA, pseudo-likelihood DCA, mean-field DCA, mutual information
and R-scape for all RNA families. Families are labeled using the PDB
code of the representative crystallographic structure. Average sensi-

tivity is reported in the first column.
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and R-scape for all RNA families. Families are labeled using the PDB
code of the representative crystallographic structure. Average preci-
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The average precision instead ranges between 0.7 and 0.9 on Infernal alignments,

indicating that the number of falsely predicted contacts is rather small (Figure 3.9).

On the other hand, on ClustalW alignments there is a visible drop in precision (rang-

ing between 0.5 and 0.8) concerning all methods but Boltzmann learning DCA (Fig-

ure 3.10). The Boltzmann learning and pseudo-likelihood DCA report higher sen-

sitivity and precision than the other methods. R-scape presents a higher sensitivity

when compared with mutual information and a similar precision. We notice that R-

scape results reported here are obtained using an E-value threshold chosen to maxi-

mize the MCC in a training set. By using the recommended threshold (E-value<0.05)

we would have obtained a higher precision, a lower sensitivity, and a lower MCC.

In order to assess the capability of these methods to probe RNA tertiary structure

it is useful to look at the sensitivity value restricted to secondary contacts, obtained

considering only base pairs contained in stems (in this analysis also pseudo-knots

are included as stems). The sensitivity to contacts in stem is quite high for all meth-

ods on Infernal alignment, their average ranging between 0.6 and 0.7 with a system-

atic benefit in adopting pseudo-likelihood or Boltzmann learning DCA (Figure 3.11).
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FIGURE 3.10: ClustalW alignment. Precision of Boltzmann learning
DCA, pseudo-likelihood DCA, mean-field DCA mutual information
and R-scape for all RNA families. Families are labeled using the PDB
code of the representative crystallographic structure. Average preci-

sion is reported in the first column.

All methods show a visible loss in secondary structure sensitivity when adopting

ClustalW alignments (Figure 3.12).

The number of true positive tertiary contacts are reported in figures 3.13 and 3.14.

A contact is here considered as tertiary irrespectively of which edges are shared be-

tween nucleobases, and might even be an isolated WC pair. In other words, tertiary

contacts are base-pairs that don’t belong to any stem. In general, DCA is able to

identify not only cWW pairs (Leontis and Westhof, 2001), where covariance is mostly

associated to canonical pairs (GC, AU, and GU), but also a number of non-canonical

pairs (see Table 3.5 as an example, where we also report the total number of tertiary

contacts present in each of the 17 folded RNA structures). When looking at the

absolute number of incorrect predictions the Boltzmann learning DCA provides the

smallest average number (Figures 3.15 and 3.16). In particular, R-scape and pseudo-

likelihood DCA report a very large number of false positives for a few systems. Also

in this case, this is a consequence of the poor transferability of the cutoff for contact

prediction in these methods. A more careful eye on incorrect predictions reveals that

couplings in consecutive nucleotides might be affected by a bias in the dinucleotide
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FIGURE 3.11: Infernal alignment. Sensitivity to contacts in stems
(RNA secondary structure) of Boltzmann learning DCA, mean field
DCA, mutual information and R-scape for all families. Families are
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structure. Average reported in first column.
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TABLE 3.5: Non-canonical tertiary contacts predicted via Boltzmann
learning DCA on Infernal alignments.

PDB Total
non-canonical

contacts

Predicted
non-canonical

contacts

Type of base
pairing

1Y26 12 1 cSS

2GDI 14 1 tSS

2GIS 14 4 cSS,tSH,c.H,tWS

2QBZ 30 1 tSH

3DOU 21 5 t.H,tSS,tSH,tHS,tHS

3F2Q 17 3 tHS,cSS,cHW

3IRW 11 0 -

3OWI 11 1 tHS

3VRS 5 0 -

5SD3 10 1 tHS

4FRG 11 0 -

4L81 15 0 -

4RUM 7 0 -

4QLM 15 4 tSH,tSH,cSS,tHS

4XW7 5 0 -

5DDP 11 1 ...

5T83 21 3 t.H, tSH,tHW
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FIGURE 3.15: Infernal alignment. Number of incorrect predic-
tions (False Positives) of Boltzmann learning DCA, pseudo-likelihood
DCA, mean-field DCA, mutual information and R-scape for all RNA
families. Families are labeled using the PDB code of the representa-
tive crystallographic structure. Average reported in the first column.

distribution, due to mutational pressure produced by distinct probability of different

substitution types (Belalov and Lukashev, 2013).

3.5 Typical contact predictions

It is instructive to visualize specific contact predictions on individual systems. First,

we discuss the predictions on the systems where Boltzmann learning and pseudo-

likelihood DCA result in the highest MCC (glycine riboswitch, PDB 3OWI, and SAM

riboswitch, PDB 2GIS, respectively). In the glycine riboswitch, Figure 3.17, we see

that the two methods give comparable results. All the four native stems are pre-

dicted, although pseudo-likelihood DCA predicts a slightly larger number of correct

pairs. Also a non-stem WC contact is identified. In the SAM riboswitch, Figure

3.18, we see that the pseudo-likelihood DCA predicts a significantly larger number

of correct contacts. Notably, both methods are capable to identify contacts in a pseu-

doknotted helix between residues 25–28 and residues 68–65. These examples show
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FIGURE 3.16: ClustalW alignment. Number of incorrect predic-
tions (False Positives) of Boltzmann learning DCA, pseudo-likelihood
DCA, mean-field DCA, mutual information and R-scape for all RNA
families. Families are labeled using the PDB code of the representa-
tive crystallographic structure. Average reported in the first column.

that in the best cases these methods allow full helices to be identified accompanied

by a small number of critical tertiary contacts.

It is also useful to consider the cases resulting in the lowest MCC (SAM-I/IV ri-

boswitch, PDB 4L81, for Boltzmann learning and NiCo riboswitch, PDB 4RUM, for

pseudo-likelihood DCA). In the SAM-I/IV riboswitch the two methods give com-

parable results, and only a limited number of secondary contacts are correctly pre-

dicted (Figure 3.19). The stem between position 10 and position 20 shows a number

of false positives. In this case, a helix with a register shifted by one nucleotide is sug-

gested by the both DCA predictions. In more detail, we do not expect the alternative

register to have a significant population in solution, since it would be capped by a

AGAC tetraloop, whereas the reference crystal structure displays a common GAGA

tetraloop. We interpret both sets of false positives as errors in the MSA. Indeed, es-

pecially with sequences consisting of consecutive identical nucleotides, one cannot

assume the alignment procedure to correctly place gaps in the MSA. As a conse-

quence, the reference structure for which the PDB is available might be misaligned

with the majority of the homologous sequences in the MSA, resulting in predicted
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(A) (B)

FIGURE 3.17: Glycine riboswitch (PDB code 3OWI) most accurate
Boltzmann learning prediction (A) and respective pseudo-likelihood
prediction (B). Correctly predicted contacts in secondary structure
are shown in red. Correctly predicted tertiary contacts are shown in
green. False positives are shown in yellow. We notice that G12/C28
pair is here labeled as tertiary since it corresponds to a isolated

Watson-Crick pair in the reference structure.

contacts shifted by one position upstream or downstream. Remarkably, many WC

pairs close to the binding site of the riboswitch are predicted (G10/C21, G22/U50

and G23/C49; ligand directly interacts with nucleotides C7, A25 and U47). In the

NiCo riboswitch, Figure 3.20, pseudo-likelihood DCA only predicts 6 correct heli-

cal contacts, whereas Boltzmann learning DCA is capable to predict a number of

contacts in the helices, even though resulting in several false positives.
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(A) (B)

FIGURE 3.18: SAM riboswitch (PDB code 2GIS), most accurate
pseudo-likelihood prediction (A) and respective Boltzmann learning
prediction (B). Correctly predicted contacts in secondary structure
are shown in red. Correctly predicted tertiary contacts are shown in

green. False positives are shown in yellow.

(A) (B)

FIGURE 3.19: SAM-I/IV riboswitch (PDB code 4L81), least accurate
Boltzmann learning prediction (A) and respective pseudo-likelihood
prediction (B). Correctly predicted contacts in secondary structure
are shown in red. Correctly predicted tertiary contacts are shown in

green. False positives are shown in yellow.
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(A) (B)

FIGURE 3.20: NiCo riboswitch (PDB code 4RUM), least accurate
pseudo-likelihood prediction (A) and respective Boltzmann learning
prediction (B). Correctly predicted contacts in secondary structure
are shown in red. Correctly predicted tertiary contacts are shown in

green. False positives are shown in yellow.

3.6 Influence of MSA columns removal

The effect of removing a priori the MSA columns corresponding to gaps in the target

sequence is to reduce the computational cost required for inferring DCA couplings

for all methods. The Boltzmann learning DCA predictions are unaltered by this

step while simulations on the full alignments are much more time demanding when

compared with the reduced ones. On the other hand, results obtained through the

pseudo-likelihood maximization approach are sensitive to the removal of columns,

as it can be seen from the MCC geometric average over all systems as a function of

the score threshold (Fig 3.21). The worse performance of plm-DCA on the full MSA

could be due to a stronger effect of the regularization term when more columns

are present, leading to a higher discrepancy among ranges of coupling values for

families with heterogeneous numbers of sequences. In particular, scores obtained

from the least numerous families (PDB: 4FRG and 4RUM) show lower values with

respect to the other systems, causing the significant drop in the average MCC.
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FIGURE 3.21: Average MCC at various score thresholds resulting
from pseudo-likelihood DCA on the entire alignments (full MSA) and
on alignments without columns corresponding to gaps in the target

sequence. Infernal alignments.

3.7 Re-weighting

The accuracy of prediction (maximum average MCC) as a function of different sim-

ilarity thresholds for sequence re-weighting obtained with Boltzmann learning DCA

(Figure 3.22) reveals that results from this method are poorly affected by the reweight-

ing procedure. In particular, there is a modest improvement if frequency counts from

sequences with very high similarity in the MSA (x=0.9) are under-weighted.

3.8 APC correction

The empirical average product correction is found to improve the accuracy of predic-

tion of DCA for this dataset. Table 3.6 shows the comparison between the maximum

average MCC obtained through all DCA methods performed with and without the

adoption of the APC correction.

3.9 Influence of stacking

It is worthy to notice that in many cases false positives are just labeled so by our de-

cision to exclude stacking interactions from the true contacts. The fraction of stacked



3.9. Influence of stacking 47

0.60 0.75 0.90 1.00
x (sequence similarity threshold)

0.0

0.2

0.4

0.6

0.8

1.0
<
M
CC

>
m
ax

Infernal
ClustalW

FIGURE 3.22: Maximum average MCC at various similarity thresh-
olds for sequence re-weighting.

pairs that are reported as false positives over the total number of false positives is

reported in Table 3.7 for all different DCA methods as an average over all the 17

RNA molecules. Among the few false positives, ≈ 50% are truly stacked pairs in the

pdb reference structure (base atomes distance < 3.5 Å).

TABLE 3.6: Maximum average MCC for DCA methods with and
without APC correction. Alignments are performed with Infernal.

Boltzmann
learning DCA

Pseudo-likelihood
DCA

Mean field
DCA

APC no APC APC no APC APC no APC

average MCC 0.61 0.59 0.59 0.56 0.57 0.54
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TABLE 3.7: Average fraction of stacked false positives (base atoms
distance < 3.5 Å in the pdb reference structure) for all methods at

optimal score threshold. Infernal alignment.

Boltzmann
learning

Pseudo-
likelihood

DCA

Mean
Field

Mutual
Information

stacked FP / FP 0.43 0.46 0.39 0.39

3.10 Validation on non-riboswitch systems

The DCA Boltzmann learning procedure is further validated by considering 4 ad-

ditional families including ribosomial RNA subunits, transfer RNA (tRNA), and a

purely eukaryotic spliceosomal RNA. All the parameters of the Boltzmann learn-

ing simulations were chosen identical to those used for the riboswitch families. The

threshold used to convert scores into predictions was taken as 1.06, which is the one

that maximizes the MCC on the 17 riboswitch families (leave-one-out procedure on

the new systems). Results are reported in Table 3.8 and are slightly worse than those

obtained for riboswitch families, with the exception of tRNA.

TABLE 3.8: Contact prediction via Boltzmann learning DCA on ri-
bosomial RNA subunits 58S and 5S (PDB 1FFK and 2WW9), tRNA
(PDB 1ASY) and U4 spliceosomal RNA (PDB 2N7M). MCC obtained

at optimal score threshold 1.06. Infernal alignments.

PDB RFAM molecule name length size MCC

1FFK RF00001 5S ribosomal RNA 122 139785 0.49

2WW9 RF00002 58S ribosomal RNA 63 4727 0.35

1ASY RF00005 tRNA 75 100000 0.74

2N7M RF00015 U4 spliceosomal
RNA

92 7670 0.38



3.11. Discussion 49

3.11 Discussion

A systematic assessment of RNA contact prediction based on the co-evolution analy-

sis of nucleotides in aligned homologous sequences is carried out comparing mutual

information analysis, R-scape, and DCA. Differently from other previous works (De

Leonardis et al., 2015; Weinreb et al., 2016; Wang et al., 2017a), our analysis does

not convert the resulting couplings into a structural model and focuses on the DCA

calculation. The capability of various DCA-based methods to reproduce empirical

frequencies from the MSA is evaluated. Native contacts in a set of reference struc-

tures are carefully annotated and compared with the predicted ones. In particular,

we only considered base pairing and excluded other base-backbone or backbone-

backbone contacts.

Results show that approximately 40% of the total native contacts can be predicted

by this procedure. A large fraction of the predicted contacts are secondary structure

contacts or pseudoknotted helices. However, in most of the analyzed structures, at

least one tertiary contact is correctly predicted. In addition, the number of false pos-

itives is very small (≈ 10% of the predicted contacts). In many cases, false positives

are just labeled so by our decision to exclude stacking interactions from the true

contacts. In other cases, false positives are a consequence of an erroneous alignment

of some of the sequences. Some false positives are genuinely caused by numerical

noises or by the assumptions behind the Potts model. In principle, highly conserved

residues carry a limited amount of information and could thus reduce the sensitivity

of the method, although in practice we never observed a very high conservation in

the analyzed bacterial sequences. Eukariotic sequences might be more sensible to

this issue, as it can be seen by the worse performance of the method when applied

to spliceosomal RNA.

Importantly, we developed a rigorous manner to establish a threshold for con-

tact prediction. In particular, once a figure of merit capable to take into account

both the method precision and sensitivity has been defined, an optimal threshold

can be found on a specific training set. We here used the Mathews correlation co-

efficient, that corresponds to the interaction network fidelity (Parisien et al., 2009)



50 Chapter 3. RNA contact prediction

widely used in the RNA structure-prediction community (Miao et al., 2017). The re-

sulting thresholds are different depending on the used method, but are transferable

across different RNA families, as illustrated by our cross-validation analysis.

It is important to observe that RNA molecules often display dynamics (i.e. coex-

istence of multiple structures) related to function, and that perhaps riboswitches are

the paradigmatic example where multiple structures are required for function. For

instance, some of the false positives might correspond to true contacts in an alterna-

tive, biologically functional structure (e.g., on and off state of the riboswitch). This

fact might affect the results of the comparison reported here. Nevertheless, we be-

lieve that high resolution X-ray structures still represent the best proxy for the correct

solution structure and as such they should be used for a critical assessment. With-

out having an experimentally determined ensemble, it appears difficult to assume

that the observed false positives are, by chance, important contacts in alternative

structures.

A crucial finding is that the stochastic solution of the inverse problem here intro-

duced (Boltzmann learning) is feasible on these systems and outperforms the other

DCA approaches. The resulting Potts models were shown to reproduce correctly

the empirical frequencies from the MSA. Whereas the fact that the mean-field ap-

proach provides an approximate solution is well-known (Nguyen, Zecchina, and

Berg, 2017; Cocco et al., 2018), no such comparison has been reported on RNA DCA

yet. In addition, we show that, although it is supposed to be capable to infer cor-

rect couplings, at least in the limit of a large number of sequences, also the pseudo-

likelihood approximation is not capable to reproduce the correct frequencies with

the employed datasets. This fact was recently observed for protein systems (Figli-

uzzi, Barrat-Charlaix, and Weigt, 2018).

The overall improvement in the accuracy of the predictions, as measured by the

MCC, when passing from state-of-the-art pseudo-likelihood DCA to Boltzmann-

learning DCA is comparable to the one observed when passing from mean-field

DCA to pseudo-likelihood DCA, which has been already shown to improve the

quality of 3D structure prediction (De Leonardis et al., 2015). It is worth saying

that the extra cost of the Boltzmann learning procedure is significant if one wants to
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characterize a large number of families. We also tested the state-of-the-art pseudo-

likelihood maximization approach, which is faster than the Boltzmann learning ap-

proach but, on the tested dataset, provides results of slightly inferior quality.

The impact on contact prediction of other sometime overlooked choices (re-

weighting and APC correction) has also been assessed. Our results show that these

choices lead to negligible or minor improvements to all the methods. Finally, we

show that the alignment procedure used to prepare the MSA has a significant im-

pact on the accuracy of the prediction. Interestingly, the Infernal algorithm, that is

based on a previous prediction of the secondary structure, performs significantly

better than the ClustalW algorithm. Whereas this effect is somewhat expected, we

are not aware of similar assessments done on DCA methods. Moreover, we consider

the discrepancy between the two alignments methods particularly remarkable since

future blind contact predictions, on families for which no structure information is

available, require the adoption of the ClustalW procedure.
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Chapter 4

Encoding prior information in

inverse Ising-like models

Inverse problems in statistical physics arise from the need to create models capable

to interpret large amounts of data (Nguyen, Zecchina, and Berg, 2017). They con-

sist in using the result of some observations to infer the values of the parameters

characterizing the system under investigation. The solution to such problem can be

difficult to assess because different values of the model parameters may be consis-

tent with the data, or their discovery may require the exploration of a huge param-

eter space. Inverse Ising or Potts models are among the simplest physical models

used in this context and have been applied in a number of fields, ranging from re-

construction of gene regulatory network (Lezon et al., 2006) to solution of diluted

Sherrington-Kirkpatrick models (Aurell and Ekeberg, 2012), to biomolecular contact

predictions starting from co-evolutionary information (Morcos et al., 2011). In the

latest case, that is direct coupling analysis discussed in Chapter 2, the applicability

of these method is intrinsically limited by two types of error: (a) statistical, that is the

size of the available dataset (for DCA the number of sequences); and (b) systematic,

that is the intrinsic error in the interpretation of the obtained parameters (for DCA

the assumption that large couplings correspond to physical contacts).

In inverse problems, parameters of the model are inferred based on observations

maximizing a likelihood function or a suitable approximation to it. This maximiza-

tion is usually performed using regularization terms in order to avoid overfitting

(Ekeberg et al., 2013; Marruzzo et al., 2017; Tyagi et al., 2016; Ravikumar, Wain-

wright, Lafferty, et al., 2010; Figliuzzi, Barrat-Charlaix, and Weigt, 2018) , especially
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when a limited number of training examples is available, thus limiting the impact of

the statistical error. In a Bayesian framework, the regularization term can be inter-

preted as a prior information on the parameters that is encoded in the process (Zhu,

Chen, and Xing, 2014; Baldassi et al., 2014). For instance, a l2 regularization is equiv-

alent to a Gaussian prior on the parameters of the model. In principle, any prior

information about the parameters can be included in order to make their estimation

more reliable and thus decrease both systematic and statistical errors.

In what follows, we show how to use an informative prior to improve the so-

lution of inverse Ising-like models. We first illustrate the procedure on a simple

10 spins Ising model, that can be solved by complete enumeration, where we use

synthetic data to emulate the a priori knowledge on the parameters. Statistical and

systematic errors are artificially introduced to test the capability of an informative

prior to cure for both types of error. We then show how the introduced technique

can be used in a real-life application of direct coupling analysis, namely to the pre-

diction of contacts in RNA systems. In particular, we perform DCA through the

Boltzmann learning technique and include in the parameters learning process in-

formation obtained from a secondary structure prediction algorithm. The idea of

helping the inference including external knowledge is new in DCA literature, where

instead l2 regularization is usually adopted to avoid overfitting (Ekeberg et al., 2013;

Figliuzzi, Barrat-Charlaix, and Weigt, 2018) and systematic error is only tackled by

post-processing in some advanced way the resulting couplings (Schug et al., 2009;

Chen et al., 2011; Ma et al., 2015; Wang et al., 2017a; Wang et al., 2017b).
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4.1 Ising model

We first consider a system of 10 spins interacting through an Ising Hamiltonian, with

possible states σ = ± 1
2 . The couplings J̄ are chosen randomly from a Gaussian dis-

tribution with zero average and variance Var(J) =0.5. The equilibrium distribution

reads

P({σ}) ∝ exp

(
∑
ij

J̄ijσiσj

)
(4.1)

Since the number of possible state is only 210 = 1024, the partition function, as

well as the average of any possible observable, can be computed by explicitly enu-

merating them. We then generate a limited number Ns of states, σ, drawn from the

distribution in Eq. (4.1), and use the information contained in these states to infer the

couplings J. Inference is done maximizing the posterior probability of the couplings

given the observed states:

P(J|σ) = P(σ|J)P(J) =

(
Ns

∏
i=s

P({σ}s|J)
)

P(J) (4.2)

or, equivalently, minimizing the negative log-probability divided by the number of

observations:

L = − 1
Ns

∑
s

log P({σ}i|J)−
1

Ns
log P(J) (4.3)

Here P(J) encodes our prior knowledge on the model parameters. Assuming that

we have an independent manner to estimate the parameters of the model, we here

choose a prior in the form

− log P(J) = −λ

2 ∑
ij
(Jij − Jprior

ij )2 (4.4)

Jprior are generated as Jprior = J̄ + εpriorN (0, 1), where εprior represents the error in

our a priori estimate of the couplings and is here set to 1. Here λ is a hyper-parameter

that must be properly chosen to maximize the performance of the inference proce-

dure. λ = 0 corresponds to ignoring the prior knowledge, whereas λ → ∞ cor-

responds to only using the prior knowledge ignoring any information arising from

the observed states. Since in DCA applications one is interested in the ranking of the
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couplings rather than on their precise values, we judge the quality of the inference

procedure by computing the Pearson correlation coefficient ρ J̄,J between the refer-

ence couplings and the inferred ones. Alternative metrics to evaluate the ranking,

such as the Kendall coefficient of concordance, can be used as well.

4.1.1 Statistical error

We first mimic the presence of statistical error by inferring couplings on finite sam-

ples of states Ns. The Pearson correlation coefficient ρ J̄,J is shown as a function of

the number of states in Fig. 4.1, as computed for different choices of λ. Results using

the Kendall coefficient of concordance are analogous, as shown in Fig 4.2.
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FIGURE 4.1: Ising system. Pearson correlation coefficient between
ground truth and inferred couplings for various numbers of se-
quences and different values of λ0. Average and standard deviation

over 500 realizations of the system.
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FIGURE 4.2: Ising system. Kendall coefficient between ground truth
and inferred couplings for various numbers of sequences and differ-
ent values of λ0. Average and standard deviation over 500 realiza-

tions of the system.

Here it can be seen that there is a unique value of λ that leads to the highest cor-

relation between the exact and the inferred couplings independently of the number

of observed states. This specific value depends on the exact value of the error in the

a priori estimate εprior. In this example, since the prior estimate of the couplings was

chosen by adding normalized Gaussian numbers to the exact couplings, its value

is exactly λ = 1. However, in a real application, where we are not sure about the

error in the a priori estimate, this parameter should be chosen via a cross-validation

procedure. In any case, it is crucial to underline that the optimal lambda does not

depend on the finite size sampling errors but only on the error in the prior.

4.1.2 Systematic error

We can then artificially include a systematic error by performing inference on a set

of states generated from a distribution different from Eq. (4.1). Since the choice of

such distribution is arbitrary, we build it to obtain the same correlation with the

ground truth solution as the one between the latter and the prior distribution. In
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this way, the induced error in the estimate of parameters and the error in the prior

contribute similarly to the inference. To this aim, we generate a new set of couplings

Jerr = J̄ + αN (0, 1), where α was iteratively adjusted until the Pearson correlation

coefficient between the exact couplings J̄ and those with the systematic error Jerr is

ρ J̄,Jerr
= ρJ,Jprior .

We then notice that, whereas in presence of purely statistical error, the contribu-

tion of the prior should disappear for a large number of observations, in presence of

both statistical and systematic error, the contribution of the prior should be retained

also for a large number of observations. We thus choose the prior hyper-parameter

in the form λ = λ0 + Nsλ1, where λ0 accounts for the error in the prior and λ1

accounts for the systematic error in the observed states.

Since for an infinite number of states λ ≈ λ1, we first optimize the value of λ1

by performing inference using the pairwise correlations computed directly from the

probability in Eq. (4.1), thus removing the contribution of the statistical error. The

result is shown in Fig 4.3a where it can be seen that for the chosen parameters the

optimal choice is λ1 = 0.03. This specific value depends on the magnitude of the

artificially introduced systematic error. We then choose the value of λ0 that maxi-

mizes ρ for a finite number of states (Fig 4.3b). We underline that also in this case

the optimal choice of the parameters optimizes ρ over the whole range of values of

Ns. We also notice that the result shows little dependence on the exact choices of the

parameters λ0 and λ1, thus indicating that the described procedure is very robust

against the choice of these parameters.
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FIGURE 4.3: Ising system. Pearson correlation coefficient in presence
of systematic error. The optimal λ1 at full sample size (4.3a) is used
to find optimal λ0 in presence of statistical error due to finite sample
size (4.3b). Average and standard deviation over 500 realizations of

the system.
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4.2 DCA including informative prior

In order to show how prior information can be used in a DCA context, we apply

it to the prediction of contacts in RNA molecules. The analysis is performed on se-

quences of 17 riboswitches families classified in the Rfam database (Table 3.1). High-

score contacts are compared with those observed in high resolution crystallographic

structures. The measure for the accuracy of prediction is the Matthews correlation

coefficient (MCC).

In many previous works the Infernal algorithm is used to produce MSA (De

Leonardis et al., 2015; Weinreb et al., 2016; Wang et al., 2017a; Cuturello, Tiana, and

Bussi, 2019). In order to quantify the performance in a blind prediction, we choose

to use the ClustalW method that doesn’t involve any RNA family structural knowl-

edge in the procedure. To this aim, we propose to exploit the maximum a posteriori

estimation procedure (Eq. 4.2) to include structural information, provided by a sec-

ondary structure prediction algorithm based on thermodynamic parameters, in the

DCA couplings learning process.

Other sources of prior knowledge were tested, even though results are not shown

in this Thesis. In particular, couplings corresponding to Watson-Crick pairs can be

incremented based on the values of the adjacent Watson-Crick couplings:

− log P(J) ∝ λ ∑
ij

(
∑
{σ,τ}

Jij(σ, τ)2 − 1
NWC

∑
{σ,τ}∈WC

Ji−1,j+1(σ, τ)Jij(σ, τ)

)
(4.5)

where NWC is the number of possible Watson-Crick pairs (NWC=6, including wob-

ble GU pairs). Such prior is found to increase the accuracy of secondary structure

prediction, but in what follows we decided to focus on the inclusion in the model of

external structural information since this last strategy allows to better improve the

prediction performance. Moreover, a prior penalizing pairs with a low isostericity

score was tested with no success. This could be attributed to the arbitrary choice

of such score function, which we constructed as a sum of frequencies restricted to

pairs of nucleotides annotated as isosteric in a given interaction family (Leontis,

Stombaugh, and Westhof, 2002). For all pairs of positions in the MSA, the isostericity

score is eventually the maximum value of such sum among those corresponding to
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each type of base pairing.

4.2.1 ViennaRNA

The ViennaRNA package (Hofacker et al., 1994; Mathews et al., 2004; Lorenz et al.,

2011) implements an algorithm devoted to secondary structure prediction, taking as

an input the single RNA molecule sequence. It is a thermodynamic model (nearest

neighbors energy parametrization) solving the RNA folding problem by means of

dynamic programming (Nussinov and Jacobson, 1980). The RNAfold program in

the package calculates minimum free energy secondary structures and allows for

option −p to compute the partition function and base pairing probability matrix

pij. These canonical base pair probabilities can be used to score putative secondary

contacts:

Sij ≡ pRNA f old
ij (4.6)

The average MCC is computed after ranking the RNAfold scores (Eq. 4.6) and pre-

dicting as interacting pairs those scored above threshold S (Figure 4.4). This is an

unusual procedure in ViennaRNA contact prediction context, but it is necessary for

consistency with chapter 3. We can see that the accuracy of the method is overall

comparable with that of Boltzmann learning DCA on ClustalW (Figure 3.5).

It is to notice that the average here is computed on 15 systems instead of 17,

two RNA systems being excluded here. This is because for systems PDB:5T83 and

PDB:4QLM ViennaRNA gives low accuracy results and RNAfold base pairing prob-

abilities are much lower than for the other systems. This is a sign of lack of portabil-

ity for the MCC-based score threshold in the ViennaRNA contact prediction context

(Table 4.1).
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FIGURE 4.4: ViennaRNA package. Average MCC curve over 15 RNA
families. Covariance scores S are base pair probabilities obtained via

the RNAfold program.

TABLE 4.1: MCC with optimal probability threshold S for each
of 17 RNA families, obtained through cross-validation procedure.
Base pairing probabilities are calculated from the RNAfold program
available in the ViennaRNA package. For systems PDB:5T83 and

PDB:4QLM the MCC is zero for thresholds larger than ≈0.5.

PDB MCC S

3DOU 0.48 0.72

3F2Q 0.51 0.72

2QBZ 0.51 0.72

2GDI 0.48 0.72

1Y26 0.51 0.71

5T83 - -

5DDP 0.48 0.78

4XW7 0.52 0.72

4RUM 0.48 0.72

4L81 0.48 0.8

4FRG 0.49 0.8

3SD3 0.49 0.78

2GIS 0.50 0.72

3OWI 0.53 0.71

3IRW 0.48 0.72

4QLM - -

3VRS 0.50 0.78
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4.2.2 Prior distribution and hyper parameters

In order to enhance the capability of DCA on ClustalW in predicting RNA contacts,

we propose the inclusion of structural information provided by ViennaRNA in the

parameters learning process (the Boltzmann learning technique discussed in chapter

2). The canonical base pair probabilities pij can be used to build the following prior

distribution:

− log P(J) ∝
λ

2 ∑
ij

∑
{σ,τ}

Jij(σ, τ)2

(pRNA f old
ij )2 + ε

(4.7)

This function penalizes couplings corresponding to low RNAfold probability pairs

and thus it differs from the usually adopted l2-regularization term, which doesn’t

carry any external information in the Gaussian variance. Pseudo-count ε in the de-

nominator (ε=0.05) is used to avoid infinite penalization on couplings corresponding

to a null base pair probability in ViennaRNA.

As for the Ising model, hyper parameter λ = λ0 + NSλ1 accounts for both the sta-

tistical error due to finite number of sequences (λ0) and the systematic error due to

mistakes in the alignments (λ1). Such parameters are searched through an iterative

procedure. In the first step, we look for the value of λ1 maximizing the average MCC

using all the available sequences and under the assumption of a negligible statisti-

cal error (Figure 4.5). Adopting the optimized λ1, a sample of possible values of λ0

is scanned including the dependence of λ on Ns, so to find the optimal value (Fig-

ure 4.6). In this second round, the regularization term lambda has thus a different

weight on families of different size. The obtained λ0 is in turn used to search for

possible values of λ1 further improving the accuracy of predictions. The procedure

stops after this iteration since the optimal λ1 equals that found in the first step of the

optimization. Values of hyper parameters maximizing the accuracy are λ0 = 10 and

λ1 = 0.02, validated for all system through leave-one-out procedure.
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FIGURE 4.5: First step of iterative grid searching of prior hyper pa-
rameter λ1: maximum average MCC for different λ1 values under
the approximation of null statistical error (λ0=0). Optimal value is

λ1=0.002. ClustalW alignments.
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FIGURE 4.6: Second step of iterative grid searching of prior hyper
parameter λ0: maximum average MCC for different λ0 values at fixed

λ1 = 0.002. Optimal value is λ0=20. ClustalW alignments.
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4.2.3 RNA contact prediction

The posterior distribution obtained regularizing the DCA likelihood through the Vi-

ennaRNA Gaussian prior can be maximized via the Boltzmann learning algorithm,

and its capability to infer the correct contacts can be compared with both pure DCA

and standard ViennaRNA. Prior hyperparameters are set to their optimal values

derived in 4.2.2 (λ0=10 and λ1=0.02). It is interesting to look at the accuracy of

predictions when artificially reducing the sequence sample size. In Figure 4.7 the

maximum average MCC is shown at various percentages of sequences randomly

extracted from the full MSAs.
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FIGURE 4.7: Maximum average MCC. Comparison of contact predic-
tion accuracies resulting from DCA, ViennaRNA and DCA including
ViennaRNA prior for various percentages of sequences randomly ex-

tracted from the full MSAs. ClustalW alignments.

The accuracy resulting from the inclusion of the Vienna prior in the DCA infer-

ence process outperforms on average both DCA and ViennaRNA methods. This is

not obvious, since the former consists of a combination of results obtained via the

other two methods. Even if the sequence sample is very small, the posterior maxi-

mization method is able to correct for the error in DCA induced by undersampling
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FIGURE 4.8: Average MCC obtained via DCA, ViennaRNA, and
DCA including the ViennaRNA prior for 17 RNA families at optimal
threshold score obtained through cross-validation procedure. Fam-
ilies are labeled using the PDB code of the representative crystal-
lographic structure. Average MCC is reported in the first column.

ClustalW alignments.

of sequences, while still taking the effect of co-evolution into account. At small sam-

ple sizes the performance of DCA alone drops dramatically due to not sufficient

statistics, while the adoption of the prior in DCA is able to cure for the introduced

statistical error relying on ViennaRNA predictions, but still outperforming also this

latter method.

Figure 4.8 shows the MCC of the 17 RNA families corresponding to predictions

at optimal threshold from the three methods on the full MSAs. The values are more

scattered for ViennaRNA method, ranging between 0 and 0.8, due to a less portable

score threshold for this method. The MCC of ViennaRNA is the highest in 5 cases,

while pure DCA outperforms the other methods in 3 cases; the posterior maximiza-

tion procedure reports the highest MCC on 9 systems.

It is interesting to investigate how the two components of the MCC, precision

and sensitivity, contribute to its value. We compare the average sensitivity, precision
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and sensitivity to contacts in secondary structures at optimal threshold of pure DCA,

DCA combined with the ViennaRNA prior and ViennaRNA (Figure 4.9). While pre-

cision is high and very similar for all methods (almost 0.8), including the prior causes

a significant improvement in sensitivity, and in particular in the sensitivity to con-

tacts in stems when compared to DCA. The reason is that ViennaRNA is a tool de-

signed to detect contacts that are formed in RNA secondary structures and does not

give any information about base pairs in tertiary structures.

Overall, via the Boltzmann learning algorithm we are able to incorporate in the

direct coupling analysis external information about the possible base pairs in the

structured molecule, while still retaining information arising from co-evolutionary

signals. The performance obtained through maximization of the posterior are com-

parable with results of DCA on the high quality but structure based Infernal align-

ments. Even though Infernal alignments can serve as a reliable benchmark for as-

sessing the capability of predictions from co-variance models, we are aware that

the inclusion in the alignment procedure of structure knowledge (when available)

poses prohibitive limits for prediction on RNA families for which no experimen-

tal structure is available. For this reason, we consider the improvement of the DCA

performance on ClustalW obtained via the maximum posterior estimation procedure

worthy of future investigations.
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Chapter 5

Conclusion

In this thesis I discussed several methodological issues related to the prediction of

contacts in RNA molecules based on co-evolutionary information. In particular, in

Chapter 2 I introduced the theory of covariance models, with a particular focus on

direct coupling analysis and the Boltzmann learning algorithm that I developed.

Results of the application of these methods to RNA contact prediction are shown

in Chapter 3 for a set of 17 riboswitches families. Among the tested methods, the

Boltzmann learning approach is the one that allows to simultaneously maximize ac-

curacy and precision on the considered data set. If one also includes the cost of a

later 3D structure prediction and refinement, the extra computational time required

by such algorithm can be considered as absolutely worth. Moreover, the fast Boltz-

mann learning procedure introduced here, based on a stochastic gradient descent

devoted to the minimization of the exact negative log-likelihood, could be produc-

tively used in protein systems as well.

As shown in Chapter 3, the procedure employed to align homologous sequences

has a significant impact on the accuracy of the prediction. Results show that Infernal

algorithm, based on experimental secondary structures or on a previous prediction,

performs significantly better than the ClustalW algorithm. This observation suggests

that ClustalW deserves a particular attention, since it is an essential tool to quantify

the performance in a blind prediction. A possible perspective is to use the couplings

obtained with the DCA approach to further refine the multiple sequence alignments.

In particular, once a putative Potts Hamiltonian has been found, one might try to

reposition the gaps in order to minimize the total energy of the sequence. A possible
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strategy is to shift gaps along the sequences through Monte Carlo moves. Paralleliz-

ing the procedure, different starting point of the process can be generated and the

alignment in which sequences take the highest average probability can be selected.

This procedure is however very expensive, since it requires an exhaustive explo-

ration of the space of possible moves, and preliminary attempts were not found to

improve the accuracy of contact prediction.

In Chapter 4 I introduced a method based on maximum a posteriori estimation

procedure with an informative prior. I used this method to exploit structural infor-

mation in the DCA parameters learning process, with the aim of improving the pre-

diction performance on ClustalW alignments. The Boltzmann learning technique is

adopted to include prior knowledge about the couplings, provided by ViennaRNA

secondary structure prediction algorithm. The prior hyper-parameters are easy to

choose and their optimal values are portable across different RNA families. The

method allows to improve the accuracy of contact prediction decreasing both sys-

tematic error, possibly due to alignment mistakes, and statistical error, due to fi-

nite alignments size. The introduced formalism opens the way to the possibility

of including prior information about isostericity matrices in RNA contact predic-

tion, other secondary structure prediction algorithms for proteins, or even three-

dimensional modeling tools both at the coarse-grained or at the atomistic level.
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