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Abstract

Xk k

Coronary artery bypass graft surgery is an invasive procedure performed to circumvent
partial or complete blood flow blockage in coronary artery disease (CAD). In this thesis,
we will construct a numerical framework combining parametrized optimal flow control and
reduced order methods and will apply to real-life clinical case of triple coronary artery
bypass grafts surgery. In this mathematical framework, we will propose patient-specific
physiological data assimilation in the optimal flow control part, with the aim to minimize
the discrepancies between the patient-specific physiological data and the computational
hemodynamics. The optimal flow control paradigm proves to be a handy tool for the pur-
pose and is being commonly used in the scientific community. However, the discrepancies
between clinical measurements and computational hemodynamics modeling are usually
due to unrealistic quantification of hard-to-quantify outflow conditions and computational
inefficiency. In this work, we will utilize the unknown control in the optimal flow control
pipeline to automatically quantify the boundary flux, specifically the outflux, required to
minimize the data misfit, subject to different parametrized scenarios. Furthermore, the
challenge of attaining reliable solutions in a time-efficient manner for such many-query
parameter dependent problems will be addressed by reduced order methods.
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Congenital heart diseases such as coronary artery disease (CAD), that is atherosclerosis of
coronary arteries, is among the top causes of morbidity worldwide. In CAD, plaque builds
up inside the arteries, narrows them down and therefore, partially or completely blocks the
oxygen-rich blood supply. Partially blocked supply can result in myocardial ischemia, that
is, the heart muscle starves of oxygen and can result in angina. Furthermore, complete
blockage can cause the death of heart muscle, medically known as myocardial infarction.
This can lead to heart attack and hence, can be prove fatal. Cardiovascular diseases, in
general, account for 31 % of global morbidity rate and 85 % of this is caused by myocardial
infarction. From statistical point of view, recently carried out research have shown that
heart failure is responsible for 3.9 million deaths per year in Europe only and 1.8 million
deaths in European Union per year [77, [I07]. Furthermore, heart attack kills about 0.735
million people in the United States every year [78] and the morbidity rate by strokes
increased from 3% to 8% in England during 2011 — 13 [25]. Thus, without a doubt, it
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2 Chapter 1. Introduction and Motivation

can be established that ischaemic diseases such as CAD, are the leading cause of death
worldwide.

In less severe cases, the disease can be managed with a healthy life-style and medication,
however, reasonably severe extent of the disease requires surgical treatments. Bypass graft
surgery or heart bypass surgery is one of the possible invasive treatments to restore the
blood supply to the heart muscle. In this surgical procedure, the blood flow blockage
caused in congenital heart diseases is circumvented by attaching additional vessels after
the point of blockage. The additional conduit act as an alternative pathway for the blood
to flow. Patency rate of the coronary artery bypass grafts (CABGs) depends upon a
number of factors, including extent of stenosis in diseased artery, the material used for
graft vessels, shape and type of graft and patient-dependent factors such as age, weight
and gender. While one cannot control the latter for patients, the former can however be
managed by determining the hemodynamics parameters, such as blood flow velocity, wall
shear stress, pressure drop and fractional flow reserve, through non-invasive computational
fluid dynamics techniques. A-priori knowledge of hemodynamics behavior, depicted by
the aforementioned parameters, in the grafted vessels contributes towards pre- and post-
surgery clinical decisions, such as optimal treatment choice, optimal surgical device design,
extent of blockage and its location, and patency of the surgical devices [83] 1011 105, [44].

Reliability and efficiency are vital characteristics for patient-specific computational
hemodynamics models to be helpful in daily-based clinical decisions. Thanks to improved
imaging and computational techniques, the patient-specific computational hemodynamics
modeling [14], [104] has come a long way in terms of real-life geometries [11, 109, B2], pre-
diction of best suitable shape of surgical device [I7, 18] and modeling of patient-specific
physiological data [96,[36]. Despite these accomplishments, the gap between patient-specific
hemodynamics modeling and computational methods needs to filled. The discrepancies in
this regard are usually ought to two critical factors, namely the boundary conditions and
the computational inefficiency. The work in this thesis is directed towards addressing and
overcoming these factors through parametrized reduced order optimal flow control frame-
work with proposed patient-specific data assimilation from 4D-flow magnetic resonance
images (MRIs) [33].

In this chapter, we will first familiarize the reader with the anatomy of coronary arteries
and coronary artery bypass grafts. In the third section we will introduce the motivation
and theme of this thesis and afterwards, we will cover some literature on the patient-specific
computational hemodynamics modeling, optimal flow control problems and reduced order
methods. Then, we will summarize the algorithm followed in this work to reconstruct
patient-specific geometrical models of coronary artery bypass grafts from clinical images.
We will end the chapter by presenting organization of this thesis.

We would like to acknowledge the scientific collaboration with Dr. Stephen Fremes and
Dr. Laura Jiménez-Juan (Sunnybrook Health Sciences Center, Toronto, Canada), and Prof.
Piero Triverio (University of Toronto, Toronto, Canada) and we express our gratitude for
providing us with patient-specific medical images, that will be used in the geometrical
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reconstruction part in the next sections.

1.1. Anatomical introduction: coronary arteries

In this section, we will give a general anatomical overview of coronary arteries. The coro-
nary arteries arise from the aortic sinuses and converge towards the apex of the heart [110].
These arteries and their branches are responsible for infusing the entire heart muscle with
oxygen-rich blood. Main branches can be namely classified as left coronary artery (LCA),
right coronary artery (RCA), left anterior descending artery (LAD) and left circumflex
artery (LCx). LCA and RCA originate from ascending aorta just above the aortic valve,
otherwise known as coronary ostia, and LAD and LCx originate from the same main trunk
of LCA (see figure[1.1.1). RCA, LAD and LCx are further divided into sub branches that
will be overviewed in the upcoming discussion and we refer the reader interested in the
anatomical details of coronary arteries to [58, 110, [7].

Figure 1.1.1: Anatomical introduction: coronary arteries (shown in red color), coronary
veins (shown in blue color). Figure is courtesy of my.clevelandclinic.org,.

1.1.1 Right coronary artery (RCA)

The right coronary artery originates from the right aortic sinus or sinus of Valsalva, passes
anteriorly and to the right between the right auricle and the pulmonary artery, and then
descends into the right atrioventricular groove. It bends at the crux of the heart and
continuous posteriorly in the interventricular sulcus. It supplies blood to the right atrium,
right ventricle, the sino-atrial and atrioventricular nodes, some posterior portion of left
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ventricle and posterior part of interventricular septum. Its length ranges from 120mm to
180mm and typically it, first, branches off into conus artery, then a sinoatrial nodal artery,
followed by the diagonal first and second acute marginal arteries (AM1, AM2). As it
curves posteriorly onto the posterior surface of heart, it gives rise to atrioventricular nodal

artery and terminates into posterior descending artery (PDA) and posterior left ventricular
branch (PLV) (see figure [I.1.2[a)).

Acute marginal artery (AM)

Acute marginal artery (AM) is the longest branch of right coronary artery. It originates
as RCA reaches the acute margin of the heart and continues towards cardiac apex and
supplies anterior wall of the right ventricle (RV).

Posterior descending artery (PDA)

Posterior descending artery (PDA) runs along the diaphragmatic surface in the posterior
interventricular sulcus toward the inferior septum and supplies posterior wall of left ven-
tricle and posterior portion of interventricular septum. If the circulation is right dominant
(in ~ 60—65%), PDA is a branch of RCA. Otherwise RCA can peter out in acute marginal
artery (in ~ 35 — 40%) and in this case, known as left dominant, PDA is a branch of left
circumflex artery (LCx).

1.1.2 Left coronary artery (LCA)

Left coronary artery (LCA), also known as left main coronary artery (LCMA), originates
from left coronary ostia and runs in lateral direction behind pulmonary artery (PA), along-
side heart walls and posterior to the right ventricular outflow tract. It has short main
trunk and quickly bifurcates into LAD and LCx (see figure [1.1.2)(a)). Owing to hetero-
geneity among humans anatomy, LCA can occasionally (in ~ 15%) trifurcate into LAD,
LCx and an additional intermediate branch, called ramus intermedius. In some cases, LCA
can be absent and LAD and LCx can originate from left coronary ostia directly. LCA runs
from 1 mm to 25 mm before bifurcating into LAD and LCx and supplies the left atrium,
left ventricle and anterior portion of interventricular septum.

1.1.3 Left anterior descending artery (LAD)

Left anterior descending artery (LAD) continues from LCA and courses around left side of
pulmonary artery (PA) in anterior atrioventricular sulcus, towards the apex of heart and
anterior to the interventricular septum. Generally it runs from 100 mm to 130 mm and
occasionally it gives rise to septal branches which run down along interventricular sulcus
towards the apex. These branches are numbered from base to apex, that are, S1 and S2
and supply the two-third anterior of interventricular septum. Afterwards, LAD bifurcates
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(b).

Figure 1.1.2: (a). Right coronary artery (RCA), left main coronary artery (LMCA) and
corresponding branches. (b). Left anterior descending artery (LAD) and its branches.
Figures are courtesy of www.radiologyassistant.nl.

into diagonal branches that originate at acute angles and run diagonally towards the acute
margin and the apex (see figure [1.1.2]b)).

Diagonal branch

Diagonal branches originate from LAD at acute angle and run over the left ventricle di-
agonally towards the acute margin and the apex of the heart. These branches are usually
numbered from 2 to 9 and run parallel to each other. Generally first diagonal branch (D1)
is more visible, however, in the presence of ramus intermedius the diagonal branches arise
more distally and are less prominent [40}, 58]. Around the apex, LAD connects with the
terminal branches of PDA.

1.1.4 Circumflex artery (LCx)

Circumflex artery or left circumflex artery (LCx) originates as the other branch from the
trunk of left main coronary artery, almost at 90 deg. It usually runs from 50 mm to 80 mm
and it courses the left atrioventricular sulcus towards the crux of the heart (see figure
1.1.2(a)). However, occasionally it might diagonally descend upon the left ventricular side
towards the apex of the heart and terminate at the mid portion of interventricular sulcus.
This branch supplies most of the left atrium, the posterior and lateral free walls of the left
ventricle, and part of the anterior papillary muscle of the bicuspid valve. It gives rise to
anterior, marginal or posterior branches, with the names depend upon their corresponding
points of origin and in left dominant case, it gives rise to PDA.
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Obtuse marginal artery (OM)

Obtuse marginal artery branches off from left circumflux artery and travels along the left
margin of the heart and descends towards its apex. These arteries are usually more than
one and are numbered accordingly, for example, first obtuse marginal (OM1) and second
obtuse marginal (OM2).

The general segmentation of these arteries in the case of left dominance and right
dominance flows is shown in figure [1.1.3] where, proximal stands for close to ascending
aorta or the artery of origin, mid is between proximal and distal and distal is stands for
away from the aorta or the artery of origin. Moreover, apical means near the apex of heart.

1y 1y

RCA proximal,

RCA mid,

RCA distal,

Posterior descending (right dominance),
Left main,

LAD proximal,

LAD mid,

LAD apical,

9. first diagonal,

9a. add. first diagonal,

10. second diagonal,

10a. add. second diagonal,

11. proximal circumflex,

12. intermediate/anterolateral,
12(a), 12(b). obtuse marginal,
13. distal circumflex,

) . 14, 14a, 14b. left posterolateral
Figure 1.1.3: Segmentation of coronary arter- 15. posterior descending (left dominance),

ies in left dominant (left) and right dominant 14 16, 16p, 16¢. posterolateral from RCA.
(right) case according to SYNTAX http://www.

syntaxscore. com [62, [IT1].

P NSO L

Left dominance Right dominance

1.2. Anatomical introduction: Coronary artery disease and bypass graft
surgery

Coronary artery disease (CAD) is the narrowing of coronary arteries due to plaque built
up, leading to reduction in blood supply to the heart muscle. Cholesterol and fat deposits
on the inner walls of the coronary arteries constitute this plaque and as it grows, the orig-
inally elastic arteries become more rigid and narrow, a process called atherosclerosis. The
narrowed arteries allow less blood to flow and inadequate blood supply to the heart muscle
can cause the oxygen starvation (ischemia). Varying with respect to degree of severity,
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myocardial ischemia can result in heart ache, known as angina. In some cases, the par-
ticles from plaque can break up and through the blood stream, they can enter and get
lodged in the smaller arteries. This can cause complete blockage of the blood supply and
can lead to death of the heart muscle, otherwise known as myocardial infarction. Myocar-
dial infarcation results in heart failure or heart attack and hence, death. Furthermore,
atherosclerosis of coronary arteries and plaque rupture increase the chances of thrombosis,
that is formation of blood clots that can travel to other arteries and cause the blockage.
Recent studies have marked inflammation as a major contributor in atherogenesis in
coronary arteries and in all the stages of atherosclerosis [68, [69, 39]. Common risk fac-
tors for cardiovascular diseases, for example, smoking, high cholesterol, insulin-resistance,
hypertension, high blood pressure and also, the aging can trigger production of impaired
nitric oxide and loss of antithrombotic properties of the coronary endothelium cells. This,
in turn, can augment the adhesion of blood leukocytes to the inner surface of the arterial
wall. Once the leukocytes reside in the arterial intima, they communicate with endothelial
and smooth muscle cells, which migrate into the intima. These cells proliferate a com-
plex extracellular matrix that modulates the cell functions such as cell death, migration,
activation, healing or destruction of the extracellular matrices of myocardium [69} 68].
Based on common symptoms of coronary artery disease such as chest pain, heartburn,
fatigue, severe shortness of breath, nausea, etc., different clinical tests can be implemented
for diagnosis purposes. Some examples include blood tests to check the level of risk factors
such as cholesterol and sugar, etc., stress tests to examine the functioning of the heart
under physical stress. Advanced and non-invasive medical imaging techniques can then be
used to follow up on the initial confirmations. For example, cardiac computed tomography
(CT) scans can detect the calcium deposits in the arteries and therefore, are used to detect
the presence and extent of coronary artery disease, cardiac MRIs (magnetic resonance
imaging) are used to detect the tissue problems and obstruction of blood flow, these can
also further follow up the results of CT scans, and coronary angiography can detect the
location of stenosis through injection of a colored dye. A prediction about extent of stenosis
can be made by measuring the time taken by the dye to travel through the blocked artery.
The treatment choices for coronary artery disease vary according to the extent of dis-
ease, medical history of the patients and their age, etc. Thus, ranging from mild to severe
degree of stenosis, the doctors recommend healthy life-style changes, medication and surgi-
cal procedures to open the blocked arteries. Coronary artery bypass graft surgery (CABG)
is among the commonly practiced surgical treatments. Coronary artery disease can affect
multiple vessels and accordingly in the coronary artery bypass graft surgery, new connec-
tions are made to the blocked vessels with the help of other arteries and veins extracted
from other parts of body (see figure[1.2.1)(a)). A schematic illustration of the graft connec-
tion techniques is shown in figure m(b) for conventional end-to-side anastomosis. These
external arteries are called bypass grafts and common choices for bypass grafts include
internal thoracic artery, radial artery extracted from arm and saphenuous vein extracted
from leg. The patency of bypass grafts takes many properties into account such as the
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directed connect
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Figure 1.2.1: (a). Illustration of coronary artery bypass grafts, courtesy of www.
ottawacvcentre.com. (b). Schematic illustration of conventional end-to-side anastomosis

I23].

antithrombotic properties of the graft, compatibility at high blood flow rate, its diameter,
length and compliance. Furthermore, arterial and vein grafts can tend to develop intimal
hyperplasia, that is, thickening of intimal layer of the artery or vein because of cell de-
posits, and collapse within a time range of a few days to a few years post-surgery. The
plaque development in these grafts has been associated to the angle of grafting, position of
graft as well as the medical condition of the patient. About a decade ago, prosthetic grafts
gained some popularity however their diameter is to be kept sufficiently large to avoid
the atherosclerosis and hyperplasia and therefore, they are not implemented as coronary
bypass grafts [59]. Next, we will discuss the common choices for coronary artery bypass
grafts, namely internal thoracic artery, radial artery and saphenuous vein.

1.2.1 Graft choice: internal thoracic artery

Internal thoracic artery (ITA), also commonly known as internal mammary artery (IMA)
is the most common choice for coronary arterial revascularization. It is usually classified
as right internal mammary artery (RIMA) or (RITA) and left internal mammary artery
(LIMA) or (LITA). In general, both are branches of subclavian artery and originate from
its first portion. In some cases, LITA can orginate from the trunk with other arteries
originating from the subclavian artery [48]. To be used as a graft, the artery is extracted
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from its original position while in most cases, keeping the portion at origin intact (see figure
1.2.2(a)). ITA runs around 150 mm lateral to the sternum edge and it can be harvested
using either skeletonized technique or pedicle technique. In the former, it is harvested from
the superior-most level near the internal thoracic vein (ITV) and in the latter, the initial
incision is made approximately 100 mm lateral and medial to the artery and it is harvested
as a pedicle including the fascia, muscle, connective tissue, and both veins.

The harvest length depends upon the coronary artery to which the anastomosis is to
be made. Generally, LITA is used to bypass LAD, ramus intermedius and the diagonal
branches and RITA is used to bypass obtuse marginal arteries, PDA and ramus intermedius
and with both arteries, usually a maximum length is harvested. The graft connections can
be made in single or in sequential manner, depending upon the circumstances and the
connections can be made at different angles (for example, parallel, perpendicular, etc.) as
appropriate. Both the number of graft connections and the angle identify different types
of grafts. ITA is the most common and preferable choice of graft for CABG surgery, owing
to its resistance to athersclerosis in 85 — 90% cases for about 7 — 10 years. An eight
year followup for 894 patients who had purely internal thoracic artery grafts showed 86%
survival rate at 5 years and 75% survival rate at 8 years [103].

1.2.2 Graft choice: radial artery

Radial artery (RA) is a major artery in human forearm and it is close to the underside of
the forearm. This artery is important because it is a superficial artery, that is, the damage
is easily repairable and in case of damage, other arteries can take over, thus making it a
possible graft choice. Although ITA is the most common arterial bypass conduit choice, it
still has limitations such as the length of harvest time and risk of sternal wound infection
in patients with diabetes and obesity, etc. In that case, radial artery, which is usually
200 — 250 mm in the length depending upon stature of the patient, has easy accessibility
and does not risk the sternal wound infection. Furthermore, its diameter is 2 — 3 mm
similar to that of coronary arteries. Radial artery is harvested in a pedicle form and
through atraumatic no-touch technique, where the first incision is performed in the lateral
third of the arm (see figure b)) This reduces the spasm tendency of the radial artery,
owing to its muscular wall.

Radial artery is usually used as a second graft to ITA, in the cases when more arterial
grafts are needed. Furthermore, the results have shown that it is safer to use radial artery
graft when the occlusion is of severe degree.

1.2.3 Graft choice: saphenuous vein

Saphenuous vein (SV) is the longest superficial vein in the leg. It originates at the bottom
of the leg, from the union of dorsal vein the great toe and dorsal venuous network of the
foot and travels upwards along the medial side of the lower leg towards the anterior region
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Figure 1.2.2: (a). Illustration of pedicle harvest of Internal thoracic artery (ITA). (b).
Mustration of pedicle harvest of radial artery (RA). (c). Illustration of endoscopic bridge
technique harvest of saphenuous vein.

of thigh where it joins the femoral vein. The procedure of extraction is similar to the
harvest procedure of the arteries, that is, pedicle technique, where long incision is made
on the inner side of the leg and the vein can be divided into multiple segments to perform
multiple anastomoses (see figure [I.2.2|c)). Vein grafts have more tendency to fail and
therefore, another surgery is needed in most cases, in fact the occulsion rate is more than
50% after 10 years [75]. Despite this, saphenuous vein offers more length and therefore,
better access to any coronary artery even multiple arteries, easy access and minimally
invasive harvest procedure.

1.3. Motivation and theme of thesis

In this section, we will introduce motivation and objective of this thesis. This thesis is di-
rected at methodological development of numerical methods for patient-specific computa-
tional hemodynamics modeling and the corresponding applications in the real-life coronary
artery bypass grafts surgery.

Motivation

As discussed in previous sections, the blood flow blockage in the coronary arteries is by-
passed through new externally connected vessels, called bypass grafts, through invasive
surgical procedures. It has also been discussed that the graft patency relies on a num-
ber of factors such as the properties of graft material, compatibility with the coronary
artery, harvesting procedure, the medical condition, and the position and angle of anas-
tomoses. With the improved imaging techniques, the medical science has come a long
way in terms of diagnosis and treatments, yet the medical images cannot give complete
information about the extent of stenosis, its location and restenosis in the surgical devices.
Thus, computational hemodynamics modeling combined with medical images plays a vital
role in predicting these factors. The hemodynamics behavior can identify the restenosis
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in the grafts, the position of occlusion and its extent. Furthermore, the surgeons can use
apriori hemodynamics knowledge to decide the angle for anastomosis and type of anasto-
mosis related to increased patency of the surgical device. Patient-specific computational
hemodynamics modeling has attained popularity since 1990s. It targets at attaining the
blood flow information provided the data of a specific patient, and in the geometries mod-
eling his/her cardiovascular domains. The patient-specific computational hemodynamics
modeling require patient-specific geometric models constructed from clinical images, mesh
discretization, suitable mathematical model and boundary conditions, and numerical tech-
niques to approximate the blood flow. The two challenges in computational hemodynamics
modeling that motivated this work are below:

(7). The critical challenge among the aforementioned factors is the quantification of mean-
ingful boundary conditions and specifically outflow boundary conditions. Many stud-
ies have utilized zero pressure or no traction boundary conditions, however using such
conditions at the outlets lead to unrealistic results [I0I]. Use of resistance-impedance
based 0D or 1D network models has also gain popularity and such models can accu-
rately predict the boundary conditions [101], 102, 109, 32]. However implementation
of such models require manual tuning of certain parameters to achieve results with
desired accuracy [96], 05 [89].

(7i). A crucial requirement in patient-specific computational hemodynamics modeling is
to take into account many-query scenarios modeled by some parameters, for example,
Reynolds number, angle of the graft, inflow velocity. Thus, the numerical simulations
need to be repeated for different parameter values. The geometries in cardiovascular
problems often comprise of large discretization size even when the geometries are
truncated to only main vessels of interest. The repeated simulations with fine mesh
size are usually computationally very demanding and mostly unbearable.

Theme

The theme of this thesis is construction and implementation of numerical techniques that
address the aforementioned challenges, with the aim to model patient-specific physiological
data through computational hemodynamics as best as possible [113] [100].

In this thesis, first we will focus on combining optimal flow control problems with
computational hemodynamics modeling to minimize the misfit between patient-specific
physiological measurements, for example the flow rates or blood flow velocity measured
from 4D-flow MRIs, or in other words, to match the patient-specific data with computa-
tional hemodynamics in many-query parametrized settings. In such problems, the outflow
boundary conditions in our focus will be the ones required to match the desired data. To
address the first challenge, the control in this optimal flow control problems will be an
additional unknown variable implemented through the outflow boundary conditions and
hence, the optimal flow control framework shall yield automated quantification of unknown
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boundary conditions. We will particularly focus on putting this mathematical problem in
a coupled monolithic-structured system.

Then, our center of attention will be construction of a numerical framework based upon
commonly implemented full-order numerical methods to approximate the parametrized op-
timal flow control problems in a reliable and time-efficient manner while keeping the coupled
structural properties [100]. This will address the second challenge. Furthermore, this the-
sis will illustrate the applications of the complete numerical framework in patient-specific
geometric models of coronary artery bypass grafts, constructed through an algorithm that
will be briefly discussed in the next sections [I13] .

1.4. Literature review

In this section, we will review some earlier and recent efforts made separately in computa-
tional hemodynamics modeling, optimal flow control problems and reduced order modeling
and the efforts made in combining the optimal flow control framework and model order
reduction with real-life applications.

e From computational hemodynamics modeling to patient-specific computational hemo-
dynamics modeling.

In 1999, Bertolotti and Deplano [24] performed 3D hemodynamics simulations in
an idealized geometry for a coronary artery bypass graft, with two cases of host
artery with and without 75% stenosis. They studied the relation between jet flow
from host artery and supplying flow from the graft and the effects on development
of hyperplasia. Furthermore, the numerical simulations are performed using finite
element methods. In 2001, they extended this work to unsteady flows [37]. In 2002,
Bonert et al. [28] studied the hemodynamics in 3D idealized geometrical models for
different configurations, that are parallel side-to-side, diamond side-to-side, and end-
to- side and concluded that the parallel configuration was better for graft patency,
the diamond configuration was better for host artery patency. They implemented
finite element methods at the numerical level and further suggested the large graft-
to-host diameter ratio to be hemodynamically better than small ratio. Furthermore,
in the same year Ku et al. [64] matched the in-vivo blood flow measurements through
numerical predictions in real-life surgery-based geometrical models of aorta-bypass
grafts in pigs. They utilized pulsatile Womersley profile at the inlets and zero pressure
outflow conditions and their results matched the in-vivo MRI measurements with an
average difference of 6% in the aorta-to-inlet blood flow ratio.

In 2004, Boutsianis et al. [29] reconstructed real-life coronary arteries of the pigs,
from a CT-scan to study the feasibility of intracoronary coronary flow. They used
finite volume methods for the numerical simulations and reported the computational
cost to increase exponentially with the increase in number of mesh elements. In 2006,
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Cacho et al. [31I] studied the effects of different incision lengths and correspond-
ing insertion angles for a given graft diameter for the coronary artery and bypass
graft from same patient. They used finite elment methods for computational hemo-
dynamics modeling and concluded smaller insertion angles to be hemodynamically
beneficial and large incision lengths for the small insertion angles. In 2007 — 08 Poli-
tis et al. [85, 86] performed comparitive study for idealized geometries of different
types of grafts including T-graft, Y-graft, II-graft and sequential graft using finite
element methods. They prescribed a known inlet velocity and uniform outlet pressure
conditions.

In 2006, Clementel et al. [109] studied the outflow boundary conditions for 3D real-
patient geometric models of coronary arteries through finite element methods. They
implemented 1D lumped parameter network at the inlets and outlets and suggested
inadequate outflow conditions to be most critical hurdle for accurate pressure approx-
imations. They extended this work in 2010 to study the outflow conditions through
the lumped models for non-periodic blood flow in real-life geometries of coronary
arteries [32]. Recently Sankaran et al. [96, 95] have modeled patient-specific hemo-
dynamics in patient-specific coronary artery bypass grafts and have implemented
resistance-impedance based models at the boundary where they have choosen some
parameters randomly (for example, 3). Furthermore, Romarowski et al. [89] have im-
plemented a three-element lumped network model approach to model patient-specific
hemodynamics in thoracic aorta.

o From theory of optimal flow control problems to reduced order parametrized optimal
flow control problems and applications.

Owing to vastness of the topics like optimal flow control problems and reduced or-
der methods, here rather than doing a time-line journey of the work done in these
areas, we will try to give a general overview of different efforts made in the method-
ological aspects of these subjects and in connecting them together, and also with
computational hemodynamics modeling.

The theory of optimal flow control problems was introduced by Jacques-Louis Lions
[70, 711, [72] during 1960s and 1970s. Lagrange multiplier approach to cast constrained
problems into unconstrained ones is presented and utilized in [46, 52} 108, 54} [87, 47].
The optimal flow control problems have been combined with numerical methods such
as finite element, least-square and finite volume methods along with applications in
by Bochev and Gunzburger [46, 26, 27], Hinze et al. [52] and Rozza [87]. Some recent
applications using full-order numerical methods such as finite element methods have
been shown in [I12] [6].

The reduced order methods are implemented to approximate parametrized problems
in a time-efficient and reliable manner. For details of these methods, we refer the
reader to [49, [87]. Rozza et al. [90} 9T], 93] 3, 4] developed and implemented the
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reduced order framework for shape optimization and optimal control in idealized ge-
ometries for aorto-coronary and coronary artery bypass grafts. Furthermore, these
methods were implemented by Lassila et al. [66] in inverse hemodynamics problems
in idealized geometries. The work by Rozza et al. [90, [9T], 93] 3, [4] was recently ex-
tended by Ballarin et al. [17, [I8] for shape optimization of patient-specific coronary
artery bypass grafts and fast hemodynamics simulations in patient-specific geomet-
rical models of coronary artery bypass grafts. Furthermore, in the direction of sta-
bilization of these methods, Veroy and Rozza presented reduced order methods with
supremizers stabilization for Stokes equations in [94] and Ballarin et al. extended
this work for Navier-Stokes equations in [I9]. Recently Ali et al. [9] 8, 5I] adopted
different stabilization strategies, for these methods, based upon adding stabilization
term(s) in the problem formulation.

The optimal flow control problems were combined with the reduced order methods
in the early 2000s by Ito, Ravindran and Hou [55, 57, 56, 53]. In 2008, Kunisch
et al. presented proper orthogonal decomposition (POD) based reduced order tech-
nique for optimal control problems in [65]. In 2007 and 2012, Dedé et al. [34] [35]
implemented the reduced order framework for the drag minimization problem and
presented some error estimators for the reduced order parametrized optimal control
problems with control constraints. Recently, Kércher [60] implemented these tech-
niques in parametrized distributed control problems constrained by elliptic equations.
In 2013 — 2015, Negri et al. [88, 82, 8I] formulated the saddle-point framework for
reduced parametrized optimal flow control problems constrained by elliptic equations
and Stokes equations. They applied the framework to simple 2D and 3D problems
with idealized geometries. Recently, this framework has been applied to control gulf
pollution by Strazzullo et al. [99].

1.5. From clinical image to patient-specific coronary artery bypass graft
geometries

Here we will rehash the approach employed and discussed by Ballarin et al.[I7, [I8] to recon-
struct cardiovascular anatomical surfaces from clinical images. The algorithm used in this
work is similar, makes use of open-source 3-dimensional modeling libraries Visualization
Toolkit (VTK)[97] and Vascular Modeling Toolkit (VMTK) [12], and is implemented using
Python. Moreover, we will discuss the algorithm with respect to its application to clinical
data received from Sunnybrook Health Sciences Centre, Toronto, Canada.

The received medical data is a post-surgery computed tomography (CT) scan from a
coronary artery bypass surgery performed on a patient with triple vessel coronary disease.
Thus, three different graft connections are made, that is, right internal mammary artery
(RIMA) is grafted to bypass the blockage in left anterior descending artery (LAD) and
two different connections, using saphenuous vein (SV), are made to first obtuse marginal
artery (OM1) and posterior descending artery (PDA). Diseased coronary arteries and cor-
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RIMA LAD

-
Vein graft OM1
Vein graft PDA

Figure 1.5.1: Clinical case: triple coronary arteries bypass graft surgery

responding grafts, marked with different colors, are shown in figure [1.5.1

We pre-process the obtained medical image in order to augment image segmentation
and geometrical reconstruction process. The pre-processing step is done at three stages,
that are resampling, smoothing and enhancement. The resampling stage aims at matching
the resolution of the acquired image with the desired image segmentation process. Then,
anisotropic diffusion filtering is used to smooth out the image areas with high-frequency
noise and finally vessel enhancement filters are applied to enhance the visibility of vessel-
shaped structures in comparison to other anatomical structures. For more details, we refer
the reader to Antiga et al.[11]. Afterwards, using VMTK we segment the pre-processed
image into level sets, based on colliding fronts approach. 3D polygonal surface is then
generated through marching cube algorithm and is constructed by placing seed points in
user-defined thresholds according to visible intensity of the vessels. Depending upon narrow
range of the thresholds and noise in clinical image, the reconstruction process can add such
artifacts to the reconstructed geometry, that are not a part of the original vessel. We use
VMTK smoothing filters that remove deformities to much extent, however the smoothness
of the resulting tubular structures is not sufficient to make them viable as a computational
domain.

Our goal is to generate sufficiently smooth surfaces preserving same anatomical struc-
tures as reconstructed surfaces. For this purpose, we first extract centerlines, that is the
lines between two sections of lumen such that their minimal distance from the boundary
is maximal[12], 84 [I8]. The extracted centerlines have a maximum inscribed sphere radius
value associated to each point on them. The centerlines are, then, averagely smoothened
and based on the maximum inscribed sphere radii values, polyballs are inserted around the
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Modeling and programming libraries utilized in this work
VTK www.vtk.org
VMTK www.vmtk.org
TetGen www.wias—berlin.de/software/tetgen%
ParaView WWW.paraview.org ]
FEniCS www.fenicsproject.org
RBniCS mathlab.sissa.it/rbnics
multiphenics mathlab.sissa.it/multiphenics/ |

centerlines to yield a smooth 3D volume preserving patient-specific anatomical configura-
tion.

The algorithm is summarized in figure Finally, for computational purposes we
generate tetrahedral mesh inside the reconstructed volumes and triangular mesh over the
boundaries, using TetGen. To exploit Python based finite element libraries, for example,
Dolfin, FEniCS and multiphenics [74, [73] 10} [I], we write the mesh in relative readable
formats using VTK.

1.6. Organization of thesis

This thesis comprises of 5 chapters, organized in the following manner:
Chapter[1]: Introduction and Motivation.

The first chapter is divided into two main parts, where the first part comprises of
anatomical introduction of the coronary arteries, coronary artery disease, bypass graft
surgery and corresponding choices. At the end of this part we have introduced the mo-
tivation and theme of this thesis which will consist of both methodological development
and real-life applications. Then, we have presented some literature review for the patient-
specific hemodynamics modeling and reduced order optimal flow control problems with
cardiovascular applications such as shape optimization and inverse hemodynamics flow.
In the second part of this chapter, we have done a brief overview of the construction of
patient-specific geometric models from a CT-scan of real-life triple coronary artery bypass
surgery, provided to us by Sunnybrook Health Sciences Centre, Toronto, Canada. At the
end of this chapter, we will give some literature review.

Chapter|3: PDEs-constrained optimal flow control problems and numerical approximations.

In the second chapter we will first introduce the optimal flow control problems in a
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general paradigm when the state of fluid flow is modeled by partial differential equations
(PDEs) and the objective functional considered is quadratic. We will review the first
order sufficient optimality conditions and the derivation of coupled Karush-Kuhn-Tucker
(KKT) optimality system in a Lagrangian framework. Afterwards, we will concentrate
on the optimal flow control problems with control implemented at boundaries and state
modeled specifically by Stokes equations and Navier-Stokes equations. We will show the
saddle-point formulation of the problem in both cases and further, we will numerically ap-
proximate these problems using Galerkin finite element methods. We will also review some
basic conditions needed to be fulfilled in order to ensure the existence of a unique stable
solution at the continuous and the discrete level. At the end of this chapter, we will illus-
trate the applications of the numerical optimal flow control framework to patient-specific
coronary arteries and will show the quantification of unknown boundary conditions at the
outlets, required to match the desired physiological data.

Chapter [3: Reduced order methods for parametrized optimal flow control problems.

In the third chapter, we will consider the extension of the numerical framework discussed
in chapter [2to parametrized optimal flow control problems. The chapter will begin with the
introduction of Stokes-constrained optimal flow control framework in parametrized settings.
Then we will show construction of a reduced order framework for these problems, based
upon proper orthogonal decomposition (POD)—Galerkin approach and we will show that
this framework preserves the algebraic structure of the continuous and discrete problems
and while slightly increasing the dimensions, we can satisfy the requirements for existence
of a unique stable solution at the reduced order level. Furthermore, we will show the phase
decoupling of computational procedure in the reduced order framework based upon the
assumption of affine decomposition.

Afterwards, we will extend the reduced order framework to non-linear quadratic op-
timal flow control problems that are constrained by Navier-Stokes equations. The focus
will be to retain the algebraic structure, the stability properties and the phase decoupling,
which can be challenging owing to non-linearity of the terms. We will show implementation
of iterative numerical schemes in such cases and further, we will illustrate the application
of both cases to idealized geometries that can be considered close to a Y-graft.

Chapter [4):  Applications of reduced order parametrized optimal flow control problems to
patient-specific coronary artery bypass grafts.

In the fourth chapter, we will apply the reduced order framework constructed in chapter
to the patient-specific coronary artery bypass grafts. We will compare the computational
performances with respect to the patient-specific applications shown in chapter [2] in which
numerical solution is attained through high order methods. Furthermore, the results will
be shown for two cases, first when we will consider a geometry comprising of single graft
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and coronary artery and second when we will consider a geometry comprising of two grafts
and corresponding coronary arteries, not connected with each other but considered as a
single computational domain. In such case, the unknown control will account for the out-
flow boundary conditions required at the two outlets altogether to match the desired data,
provided different inflow velocities at the corresponding inlets.

Chapter[5: Concluding remarks & future perspectives.

In the fifth chapter, we will provide some concluding remarks and some future perspec-
tives with possible extensions of this work. We would like to bring the reader’s attention
towards the main assumptions kept in this thesis, that are, rigid and fixed geometries,
use of unknown control to quantify simple Neumann boundary conditions and arbitrary
desired velocity matched through Stokes and Navier-Stokes velocities. With this work, we
have shown the construction of a reduced order framework and through its applications to
real-life cardiovascular problems, we have shown the reliability and time-efficiency of the
framework, however for the aforementioned restrictions. Future directions can include ex-
tension of the framework to surpass the restrictions kept in this work, thus, fluid-structure
interaction problems, unknown control implementation in surrogate boundary conditions
models and implementation of 4D patient-specific physiological data are a few of many
possible extensions.
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In this chapter, we will introduce general formulation of optimal flow control problems
constrained by partial differential equations (PDEs) and numerical techniques employed
for solving such problems in finite dimensional settings. We will further introduce data
assimilation in cardiovascular problems through the optimal flow control regime and will
demonstrate its application to patient-specific cardiovascular configurations, with the goal
to minimize misfit between clinical data and solution attained through a numerical simu-
lation.

The optimal flow control problems structurally comprise of state modeling equations,
a defined objective functional and unknown control quantities affecting fluid flow. Solving
such problems, we aim at finding an optimal pair of state and control variables that mini-
mize the objective functional. Thanks to their structure, these problems are being applied
to control several phenomena in fluid dynamics. Some examples include recent applica-
tions in wind turbines to mitigate power losses caused by turbine wake [I12], in thermal
sterilization process to control temperature, in marine applications to control parameters
responsible for quality of aquatic life and to control gulf pollution [99] and in acoustical
applications to control noise [23], etc.

In the last few decades, implementation of the optimal flow control framework has
flourished in computational biomedical sciences. Some recent efforts in this direction aim
at addressing one of the critical challenges faced in computational hemodynamics modeling,
that is quantification of boundary conditions. It is well-known that accuracy of boundary
conditions is vital to realistic hemodynamics modeling. In literature, multiscale models
such as lumped network models and distributed network models are being used for the
purpose [32], [96], [95]. However, when the focus is on computational fluid dynamics or fluid-
structure interaction or the exact boundary conditions are known, simpler expressions such
as Dirichlet and Neumann conditions are being utilized at the boundaries.

Romarowski et al. [89] have utilized the optimal control framework to quantify pa-
rameters for these models imposing outflow boundary conditions for human aorta. Their
approach is a pioneer attempt in this direction along with assimilation of the boundary
conditions with phase contrast MRI measurements, however, it faces the limitations of
high computational cost and lack of patient-specific phyiological data assimilation. Tiago
et al. [I06] have made a similar attempt by approximating Dirichlet inflow conditions
through the optimal flow control problems with focus on data assimilation, that is, match-
ing known data with the fluid flow variables. They have utilized realistic geometries for
cerebral aneurysms and the authors claim to have a major drawback of high computational
cost. Furthermore, Koltukluoglu et al. [63] have extended the approach implemented in
[106] to data assimilation in glass replica of human aorta. They have used artificially gen-
erated data to validate the approach in simplified geometry and denoised 4D-flow MRIs
data in the glass replica of human aorta. However, their approach has not been extended
to patient-specific biomedical problems and requires large computational effort.

In this chapter, we will discuss the problem formulation and solution strategies for such
problems with the aim to address the above mentioned issue for coronary artery bypass
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graft surgery. Our focus will be on quantification of outflow conditions through pressure
control (Neumann conditions), required to match presumably known patient-specific clin-
ical data in patient-specific cardiovascular configurations. This chapter is arranged in the
following order: in the first and the second sections, we will discuss continuous formulation
of optimal flow control problems and derivative based optimization strategies, respectively.
In the third section, we will discuss the optimality condition and afterwards, we will cast
the problem in a monolithic-structured coupled optimality system through saddle-point for-
mulation and first order sufficient optimality conditions. The discussion will be extended
to optimal flow control problems with the state modeled by Stokes and Navier-Stokes equa-
tions. We will also show some preliminary numerical tests for both cases and in the last
section, we will extend the applications to cardiovascular geometries. We remark that in
this work we have used both FEniCS [73], [10] and multiphenics [I], an internally developed
Python-based library for easy-prototyping of multiphysics problems in FEniCS, for numer-
ical approximation of the optimal flow control problems through Galerkin finite element
methods. We further remark that the numerical tests to be discussed in this chapter, were
carried out in multiphenics [1J.

2.1. Optimal flow control problems

Let us denote state variables modeling the physical characteristics of fluid flow, such as
velocity and pressure by s and unknown control variables governing behavior of fluid flow
by u. Furthermore, let us consider Hilbert spaces S and U such that s € S and w € U and
an observation space @ 2 S. In this work, we will consider minimization of a quadratic
objective functional J : @ x U — R subject to linear/non-linear state governing equations.
We will use superscript asterisk (*) to denote dual space and the residual of the state
equations will be given by F : § x U — S*. Then, the textbook definition of an optimal
flow control problem [71), 52), 46] 108, [87] reads:

Problem 2.1. Find optimal pair (s,u) € Saq X Usq such that

min 7 (s,u) subject to F (s,u) =0, s € Sad,w € Ugg, (2.1)
(s,u)eSxU

where Sqq € S and Uyq C U are the spaces for admissible solutions.

Existence and uniquess of solution to this problem is established by the following the-
orem given by Hinze et al. [52](section 1.5.2, theorem 1.45):

Theorem 2.1. A unique solution (s,u) € S x U to problem [2.1] will exist if the following
assumptions hold true:

1. Sea €8S and Uyq C U are convex and closed,

ii. G#0, where G ={(s,u) € SxU | F(s,u) =0} is the feasible set,
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11i. State governing equations are continuous and well-posed, that is, for every u € U,
F (s,u) admits a unique corresponding solution s (u),

. For any sequence {(s,u);},cy € S X U — (s,u) € S x U, the objective functional

satisfies J (s,u) < li>m inf 7 ((s,u),).

We consider the optimization problem unconstrained with respect to state and control
variables, that is, Sqg = S and U,y = U and F (s, u) to be the residual of Stokes or Navier-
Stokes equations, respectively. Now, we introduce the Lagrangian formulation of problem
to cast the problem constrained by state equations into an unconstrained problem by
imposing the state constraints through Lagrange multipliers. Thus, equation [2.1| can be
re-written in a composite Lagrange function £ : S x U x S** — R, defined as:

L(s,u,z)=J(s,u)+ (F(s,u),z), (2.2)

where z € S** is the Lagrange multiplier. Furthermore, let us rename S** as Z and owing to
reflexivity of Hilbert spaces we remark that Z = S. Since the Lagrangian formulation casts
the constrained problem into an unconstrained one by introducing additional variables, that
are the Lagrange multipliers, the dimensions of the problem increase, however rendering
it into an easier one as compared to the original constrained problem. Thus, problem
can now be re-directed as to solve the Lagrangian for critical points (s, u, z).

2.2. Derivative-based optimization

In this work, we will focus on derivative-based optimization techniques and make the
following assumptions:

(1). J:SxU—=Rand F:S xU — S* are twice continuously Fréchet differentiable.
(7). F: S8 x U — S* has bounded inverse.

(7i1). The derivative of state equations with respect to state variables, that is Fs (s (u) ,u),
is invertible.

We re-write the problem [2.1| with reduced objective functional J (u) := J (s (u),u) as:

Problem 2.2. )
min J (u)
ue

==}

such that 3
vueU={uelU|F(s(u),u)=0, (s(u),u) e SxU}.

Differentiating the objective functional, we get,

(T (w),0) = (Ta (s (w) . 0). &' () 0) + (Tus (5 () ) 0) (2:3)
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The derivative of state variables with respect to control appearing in equation (2.3 is
sensitivity, that is to be calculated whenever complete derivative of reduced objective
functional is required. In literature, two approaches [52], 46], 26, ?] can be implemented
to deal with it, namely, sensitivity analysis and adjoint approach. We give an overview of
these approaches below:

2.2.1 Sensitivity analysis

The simpler method of calculating sensitivity s’ (u)wv is through the state constraints.
Differentiating F (s (u),u) = 0 yields:

Fs(s(u),u)s (u)v+ Fy (s(u),u)v=0. (2.4)
=
Fs(s(u),u)s (uw)v=—Fy,(s(u),u)v. (2.5)

Thus, s’ (u) v can be obtained by solving equation and the derivative of the reduced
objective functional can then calculated through equation . This approach requires
to compute the complete sensitivity operator s’ (u) in all directions v € Up, where Up
is a basis for U. Therefore, in this approach, the computational effort will increase with
respect to dimensions of U.

2.2.2 Adjoint approach

An alternative approach to deal with sensitivity operator is to re-formulate equation ([2.3)),
such that J' (s (u),u) is calculated through so-called adjoint equation. We re-write equa-

tion as:
(T (u),0) = ({s' ()" T (s (u) ,u) + Tu (s (u) , u)} )
or equivalently, }
J () = 8" (u)" Ts (s () u) + Tu (s (u), u) (2.6)

Evidently, the only unknown required in equation (2.6) is s’ (u)* Js (s (u),w) which can
be calculated through differentiation of the state equation. Thus, from equation (2.4]), we
can write 8" (u) = —F (s (u),u) " Fy (s (u),u).

=
s’ (u)" Ts (s (u),u) = —Fu (s(u) ,u)" Fs (s (u),u) " Ts (s (u),u), (2.7)

where superscript (*) denotes dual operator. Now we consider z = z (u) to be solution of
the following equation, also known as adjoint equation:

(Ts (s (u),u),s (u)v) + (Fs(s(u),u),s (u)vz) =0, (2.8)
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then, z = z (u) :== —Fs (s (u),u)” " Js (s (u) ,u). Thus, equation (2.7)) can be re-formulated
as:

s (u)" Ts (s (u),u) = Fy(s(u),u) 2 (u), (2.9)

From an algorithmic point of view, one first needs to solve adjoint equation for
the Lagrange multipliers z (u), which are also known as adjoint variables now. Then,
s'(u)" Js (s (u),u) can be calculated through equation and finally, can be
utilized to calculate J' (u). Through this approach, the operator s’ (u) is not needed to
be calculated explicitly, thus computational cost is lower.

2.3. Optimality equation and Karush-Kuhn-Tucker optimality system

In this section, we will introduce the optimality equation, satisfied by the optimal solution
to problem We will derive the optimality equation in Lagrangian framework and
further cast the optimal flow control problem in a coupled optimality system residing upon
state, adjoint and optimality equations.

2.3.1 Optimality equation
The optimality condition for problem is given by the following theorem:

Theorem 2.2. Assume J to be convez, then, a local minimum @ € U to problem will
exist iff the variational form of minimum principle or optimality condition is satisfied, that
18,

(7' (@), 0-a)>0,¥Yvel. (2.10)
For proof of the theorem we refer the reader to [52]. Furthermore, the local minimum
u € U will also be global minimum if the objective functional J is convex. It is to be
noted that the inequality constraint in optimality equation is replaced with equality

constraint if U = U. Now, to derive the optimality constraint for the Lagrangian (2.2)), let
us re-write the Lagrangian as:

L(s(u),u,z)=J u)+ (F(s(u),u),z). (2.11)

We suppose that a local minimum w € U exists for this Lagrangian. Differentiation of the
Lagrangian yields:

(L' (5(u),u,2),v) = (Ls(s(u),u,2),s (u)v) + (Ly (s (u),u,z),v)
= <j,(u),’v>—|—<.7’:'(s(u),u),vz>7

where

(T (), 0) = (Ta (5 (u)  u), 8 (u)v) + (T (5 (u) ), v) and
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(F'(s(u),u),vz) = (Fs(s(u),u),s (u)vz) + (Fy(s(u),u),vz).
Now, we consider z = z (u) to be solution of the following equation:
(Ls(s(u),u,z),s (u)v) =0, (2.12)
which is essentially equivalent to the adjoint equation . Then,
<j' (u) ,v> = (Lo (s (w),u,2),0) = (Tu (s (w),u) + Fy (s (u),u)" 2,v).
Thus, theorem can be re-stated in terms of Lagrangian as:

Theorem 2.3. If a local minimum @ € U exists for problem then, it satisfies the
following optimality equation:

(Lq(s,u,z),v—u) >0, VveU, (2.13)

or equivalently, .
(Ja (s,a) + Fg(s,a) z,v—u) >0, VveU. (2.14)

Here, we reiterate that the inequality in optimality conditions (2.13) and (2.14) is replaced
by equality if U = U.

2.3.2 Karush-Kuhn-Tucker optimality system

Next, we cast the optimal flow control problem in a coupled optimality system, derived
from first order sufficient optimality conditions, also known as Karush-Kuhn-Tucker (KKT)
optimality conditions, provided by following theorem:

Theorem 2.4. If the solution (s,u,z) € S x U x Z exists for problem 2.9 then it satisfies
following conditions:

F(s,u) =0,
(A) \78 (s,u)+.7-"s (S7u)*z:07
<ju (s,u) + Fo (s,u)" 2,0 — u> > 0.

(A) is the coupled Karush-Kuhn-Tucker (KKT) optimality system comprising of state,
adjoint equations, and optimality equations in the unknowns s, z and wu respectively. For
the Lagrangian, the KK'T optimality system can be derived by satisfying first order opti-
mality conditions for the Lagrangian. Thus,

Theorem 2.5. Let (s,u) € S x U be the solution of optimal control problem then
there exists Lagrange multiplier z € Z such that

VL(s,u,z)[€,7,k]=0, V(& T1,k) €S XU X Z, (2.15)
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or equivalently,
(L (s,u,z),k)=0,VKEZ
(Ls(s,u,2),6)=0,VEeES
(Lo (s,u,2),7) >0, VTeU,

or equivalently,
(F(s,u),&)=0,VEeS
(Ts (8,u) + Fs(s,u)" z,k) =0, Ve € Z
<j’u, (s,u) + Fu (s,u)" z,’r> >0,VTel.

The KKT optimality system can be solved through one-shot approach (see for example,
[46,198]), that targets for directly solving the system for all the unknown variables. However,
such direct solution of such coupled systems can be complicated and therefore, require
implementation of numerical approximation schemes. Thus, in the upcoming sections, we
will solve the optimal flow control problem with optimize-then-discretize strategy, hence,
dividing the solution process into two steps: optimization, that is, deriving coupled KKT
optimality system, and discretization, that is, implementing numerical methods to solve the
KKT system. Alternatively, one can opt for discretize-then-optimize approach, however,
the choice is problem dependent.

2.4. Saddle-point framework for boundary control problems

In this section, we will implement the optimization step in the optimal flow control problems
constrained by linear and non-linear primal equations, that are Stokes and Navier-Stokes
equations respectively. In both cases, we consider a bounded domain Q C R%,d € {2,3}
with Lipschitz boundary 0€2. We divide 02 into three parts, that are, I';,, the opening
from which fluid enters €2, I',, the opening from which fluid leaves €2 and I'y,, the lateral
walls of 2. Moreover, we assume 'y, to be rigid and non-permeable.

Here, we will focus on derivation of the KKT optimality system from saddle-point
definition of boundary control problems, to be introduced in the upcoming discussion and
we will exploit the stability theory developed by Brezzi [30] and Babuska [I5] for the
saddle-point problems. In the next section, we will utilize the block-structure arising in
such problems in implementation of the numerical schemes. We remark that in boundary
control problems, the control is defined at the boundary (952) or parts of boundary, whereas,
the distributed control problems quantify the control in entire computational domain (£2)
or its parts. We remark that although the formulation is similar in both cases, the former
provides with an opportunity to quantify the unknown boundary conditions needed to
match desired data in cardiovascular problems, which is the ultimate objective of this
work.
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2.4.1 Stokes constrained optimal flow control problem

Let us first consider steady-state Stokes equations modeling fluid flow in €2. These state-
constraints are defined in strong form as:

—nA = in Q

V-v=yg, in €,

where v is velocity of the fluid, p is the pressure, f are body forces, n > 0 is kinematic
viscosity and g = 0 leads to incompressible fluids case. We impose an arbitrary known
velocity wv;, in Dirichlet sense at the inlets I';, and owing to the non-permeability of Iy,
we assume no-slip conditions there. Furthermore, we rely on simple Neumann conditions at
the outlets and to quantify these conditions, we propose control implementation in them.
Thus, with u representing control variables and n representing the outward normal to the
outlets, the boundary conditions can be written as:

vV = Vi, on [y,
v =0, on I'y, (2.17)
—n(Vv)n+pn=u, onl,.

Moreover, we introduce quadratic tracking type objective functional J in our problem
formulation, defined as:

1 «
J (w.p,u) = lv— Vollpe) + §Hu\l?f(ro)7 (2.18)

where the first term describes the aim of the problem, that is to match v with wv,, the
observation/desired velocity in Hilbert space @ 2 V. Moreover, > 0 will be manually
tuned for to regularize the energy of control and the norms for fluid velocity, pressure
and control are considered in respective Hilbert spaces V, P and U. Furthermore, it
is to be noted that since we only wish to investigate the control at the outlet I',, we
define U := U (T',) and we assume equivalence between state and adjoint spaces, that
is, S = (VxP) =Z = (Zy x Zp). We define the Lagrangian by equation (2.2)), where,
(F (s,u), z) denotes residual of weak form of state constraints, given below:

{a(vvw)_f_b(p,w)—kc(u,’w):<f7’w>, VweV, (2.19)

b(Q7v)2<97Q>7 VqEP

Here the bilinear formsa: V xV - Rand b: V x P — R are defined as:

a(v,w):n/V'v-V'w ds, b(q,’v):—/q(V-v) ds, (2.20)
Q
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and ¢ : U x V — R is the bilinear term arising from non-homogenuous Neumann boundary
conditions and is defined as:

c(u,w)=— [ w-w dl,. (2.21)
/

Furthermore, the objective functional J (s, u) can be re-written as:

J(s,u) = %m (v — 5,0 —v,) + %n (u,u), (2.22)

where, m: V xV — Rand n: U x U — R, defined below:

m (U — Vo, &y — UO) = (U — Vo, &y — UO)Q(Q) , 1 (u, Su) = (u7 E’U)U(Fo) y . (2'23)
The Lagrangian L (s,u, z) can, thus, be written as:

1
L(s,u,z)= §m(v—vo,v—vo)—i—%n(u,u)—i—a(v,w)—i—

b(p7w) +b(Q7v) +C(U,’UJ) - <f7w> - <g7Q>
The coupled KKT optimality system can be derived by requiring the first order optimality

condition (2.15)) for all (§ = (§v,&p) &u, K = (Kw,Kq)) € S X U x Z and the problem can
be re-formulated as:

Problem 2.3. Find (s = (v,p),u,z = (w,q)) € S x U x Z that satisfies the following
optimality system:

m(v,&) + a(w, &) + b(q,&) = m(Vops, &v),
b (&, w)

an (u, &) + ¢ (§u, w)
a(v,kw)+ b(p,Kw)+ c(u,Ky)
b (kg v)

)

0
0

(2.24)

9
7’4‘"w>’

 Kq) -

=
=

In the system of linear equations , the first two equations account for adjoint
equations, the third equation is the optimality condition and the last two equations are
weak form of state constraints. Now, we cast the optimal flow control problem in a
saddle-point framework. For this purpose, we introduce X = S x U equipped with the
inner product (-, -) v, defined below:

(Xay)X = (S7YS)S+(uaYu)U1 Vy: (YS7YU) EX'
Then the state-constraints (2.19)) can be reformulated as below:

B (Xa Z) - <ga Z> =0, (2.25)
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where, the operator B : X x Z — R is defined as:
B(x,2) = a (v,w) + b (p,w) + ¢ (u,w) + b (g, v), (2.26)
and (G, z) = (f,w) + (g, 9).

Moreover, the objective functional (2.22)) can be re-written as:
1
J (X) = 5"4 (X7 X) - <H7 X> ) (227)

where A (x,y) = m (s,ys)+on (u,yu) and (H,y) = m (Sops, ys) forally = (ys = (Yo, ¥p) , yu) €
X. We can re-write the optimal flow control problem [2:3]as the following saddle-point prob-
lem:

Problem 2.4. Find the saddle-points (x,z) € X X S of the following Lagrangian:
L (X7 Z) =J (X) +B (X7 Z) - <g7 Z> ) (228)

or equivalently,

find (x,z) € X xS such that,

{A(x,y)—i—B(z:}’)— (Hy), VyeX, (2.29)

B(x,k) =(G,K), VekeZ

The coupled optimality system in saddle-point structure is given by equation , which
is derived by satisfying first order Karush-Kuhn-Tucker optimality conditions for the La-
grangian . We recall that the optimality system can be solved directly for the
state, control and adjoint variables through one-shot approach [46, [98]. Next, we will give
some results for existence and uniqueness of the solution to the saddle-point problem

Theorem 2.6 (Brezzi’s theorem). A unique solution to the saddle-point pmblem will
exist if the following conditions are satisfied,

(i) A: X x X — R is continuous and satisfies,

A (x,x)

Jag >0, such that  inf 5
xeXo\{0} HXHX

< aop,

where, Xo = {x € X such that B(x,k) =0V k € Z}.
(1) B: X x Z — R is continuous and satisfies the following inf-sup condition,

d b9 >0, such that inf sup M > bg.
weZ\{0} xex\ {0} Xl x %]l z
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Proof. To prove Brezzi’s theorem, let us make a few assumptions on the bilinear forms
defining A and B. Let us assume that m: S xS - R and n: U x U — R are continuous
and symmetric, moreover, m is positive and n is coercive, where S = V' x P. Furthermore,
let us assume that a : V x Z, — R and b : V x Z, — R are continuous such that a is
coercive over Vy = {v € V such that b (¢,v) =0V ¢ € Zp}. Finally, let ¢: U x Z,, — R be
symmetric and bounded, representing the action of the control. Then the continuity of A
and B follows from the continuity of the bilinear operators appearing in their definitions.
Next we will prove the coercivity of A over Xy and the inf-sup condition for B.

By definition, A (x,x) = m (s, 8) + an (u,u). Now, owing to coercivity of n for C; > 0
we can write,
aCy

2

Now, let us consider x = (s,u) € Xy, then, B(x,k) = 0, Vk € Z. Owing to strong
coercivity of a over kernel of b and using Lax-Milgram lemma, from the above equation we
get ||ul|y > Csl|s|ls, C2 > 0. Furthermore, using the positivity of m, we can write,

OéCl 2 OéCl
> - -
Al x) 2 55 lslls +

aCy

A(x,x) 2 m (s, s) +aCillu* =m(s,s) + — =~ |ul* + QHMR

el -

Now, if we consider ag = O‘Tclmaq: {1,C%} > 0, then,
A(x,x) > ao|x|%,
or equivalently,

3 ag > 0, such that  inf Ax %)

———= > ag.
xexo\{o} [x[%

Now to prove the inf-sup condition, let us consider a (s, z) =a(v,z)+b(p,z), Vz € Z.

Then,
B

sup (x,2) _ sup a(s,z)+c(u,z)

xeX, x20 [Xlx  x=(sujex=sxv, x#0 (|2 + |[ul|?)

1 -
2

Now, thanks to our earlier assumption of equivalence of state and adjoint spaces, that is,
S = Z, we can consider the supremum at (s,u) = (z,0). Hence,

B(x, z) a(z,z)

sSup Z(s,u)=(2,0) HZHS )

x€X, x#0 HXHX
and since a is coercive over kernel of b, that is, there exists bg > 0 such that

. a(z, z)
in 5 >
veVp\{0} HzHS

bOa

we can write,
B(x, z)
sup ———

> bol|z[|s = bol[z] z-
xEX, x40 x| x
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2.4.2 Navier-Stokes constrained optimal flow control problem

Now, in case of steady Navier-Stokes equations modeling fluid flow in Q C R, d € {2,3},
we write the state constraints in strong form as below:

{—UAU +(v-V)v+Vp=Ff, inQ, (2.30)

V.-v=yg, in Q.

The boundary conditions in this problem are defined by equations and the tracking-
type cost functional defined by equation . Moreover, we consider the Hilbert state
and adjoint spaces, S () =V (Q) x P(Q) = Z(Q) = Z, (Q) x Z, () and the control
space, U (T',), then the state-constraints can be written in weak formulation as:

(2.31)

{a(v,w)+b(p,w)+e(v,v,w)+c(u,w) =(f,w), VweJZ,
b(q,v) = {g,9), VqeZ,

Here, e (v, v, w) is non-linear convection term, defined as:

e('v,v,w):/(v'V)v-'wdQ,
Q

anda:V xV >R b:VxP—-Randc:V xU — R are given in equations (2.20) and
(2.21). The cost functional (2.18) can be reformulated as in equation (2.22)) and we define
the Lagrangian, £ (s,u,z) : S x U x Z — R, as below:

1 o
L(s,u,z)= 5m(v—vob5,v—vob5)+§n(u,u)+a(v,w) + e(v,v,w) +

+ b(p,w) + b(g,v) + c(u,w) — (f,w) - (9,9

First order KKT optimality conditions will give rise to the following coupled optimality
system:

m (v, &y) + e (&, v, w) +e(v,&, w) +a(w, &) +b(q,8w) =m (veps, &),

b (&, w) =0,

am (u, &) + ¢ (€y,w) =0, (2.32)
e(V,V,Ky) +a(V,Kyw) + b (P, Kw) + ¢ (U, Ky) = (f,Kuw),

b(”/"’q"v) :< 7’4Q>7

for all (§ = (£v,&p)  &us K = (Kw, Kq)) € S x U x Z such that e (&, v, w) and e (v, &, w)
are trilinear terms arising in adjoint equations.

Now, to put the problem in a saddle-point framework, we proceed in a similar way as for
Stokes constrained problem and consider the bilinear functional B : X x Z — R, defined
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by equation (2.26) and the bilinear functional A4 : X x X — R, defined as, A(x,y) =
m(s,ys) +an(u,yu), ¥y = (¥s = (Yo, ¥p) ,Yu) € X. Then, Navier-Stokes constrained
optimal flow control problem in saddle-point form reads:

Problem 2.5. Find the saddle-points (x,z) € X X Z of the following Lagrangian:
ﬁ(X,Z) :J(X)+B(x,z)+e(v,v,w)—<g,z>, (233)

or equivalently,

Find (x,z) € X X Z, such that,

{A(x,y) +B(y,z) +e(yo,v,w) +e(v,yo,w) = (Hy), VyeX, (2.34)

B(x,k) +e(v,v,ky) = (G,K), VeelZ

The system of equations (2.34]) is the non-linear KKT optimality system, arising from
satisfying the optimality conditions for the Lagrangian (2.33)).

2.5. Numerical approximations

In this section, we will introduce the discretization step, or in other words, Galerkin finite
element (FE) approxzimations of the optimal flow control problems constrained by Stokes
and Navier-Stokes equations, discussed in sections and respectively. Let us
consider discretization 7y, of the domain € with size 0 < h € RT < oo, such that 7;, = U;S;,
where, S; corresponds to ith-simplex. Furthermore, let us consider finite-dimensional state,
control and adjoint spaces S, = Vi, x P, C S, U, C U and Z; C Z. We will denote
dimensions of these spaces by N along with corresponding variable in subscript. Thus,

dim (Sp,) = dim (V3,) + dim (Py) = Ny + N, and dim (Up) = No.

Furthermore, we keep the assumption S, = Zj, then, dim (Z;) = dim (Sy) and global
dimensions of these finite element spaces will thus be N' = 2N, + N,. The subscript h
indicates that N = N (h).

2.5.1 Galerkin FE approximation of Stokes constrained ootimal flow con-
trol problem

Consider X}, = (S, x Uy) C X, then discretized form of Stokes constrained optimal flow
control problem ([2.29)) reads:

Problem 2.6. Find (xp,zn) € X, X Zp, such that

{A(Xh7}’h) + B (zn,yn) = (H,yn), YV yne Xn, (2.35)

B (xp, k1) = (G, k) V Ky € Zy,.
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Let ¢, 1, 0 denote the basis functions such that,
N,
Vi =span{éii,  Py=span{yy}p2y, Uy =span{oh (2.36)

Then, for 1 <i < MN,, 1 <I<Ngand 1<k < Np, the bilinear forms A : X}, x X;, -+ R
and B : Xj, X Zp — R in system (2.35)), are defined as:

Ny Noy
A (th Yh) = 21 U}jlm (d)ja d)l) +a Zl u?ln (o-jv Ul) y
j= j=

No . No . No . Np
B (zn,yn) = '21 wha (¢j, ¢i) + '21 wib (Y, ;) + '21 wic (o, ¢j) + '21 ab (5, i),
j= j= j= j=

No . Np . Nu . No .
B (xp, kpn) = 21 vha (¢j, ¢i) + leib (), pi) + '21 upc (0, i) + '21 upb (Y1, ¢;) -
j= j= j= j=

(2.37)

Thus, expanding the optimality system (2.35)), we get,

L L &

21 v m (d)]vd)z) + Z:l Wy, & (d)]ad)z) + Z:l th (¢]7¢Z) = <H7¢l> ’

N " ”

> wib (. ) =0,

TN No

a Zl uyn (o, 07) + '21 wyc (o, ¢j) =0, (2.38)

J= j=

Zl /U?La (¢]> d)l) + 'Zl piLb (11b]a ¢Z) + Zl UiLC (a-ja (z)l) = <.f7 ¢l> )
j= j= j=

No .
Zlvib (Yr, @;) = (9, Vx) -
]:
Let us define the bijections V}, +> ]RN”, P, RM» and Uy + ]RN“, such that
1,2 No\ T &
v = (Uh, Vhs 0 vh”> oy = valqu € W,
j=1
1 2 N T &
W = (wh’ Wi, ", wh”) & wp = Zw%(ﬁj € W,
j=1
Np
N\ T '
p=(ph PR, -+ B)7) © o= Pl € P,
j=1
Np
N\ T j
a=(ah @& - @F) o= qv; < P,

Jj=1
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and
A S
u:<u,ll, u,%, cee uh“) Huh:Zu%UjeUh.
Jj=1

Then the system ([2.38)) can be algebraically written as:

M 0 0 A Bl |v h
0 0 0o BT of|p 0
0 0 N C 0f|u|=]0], (2.39)
A BT ¢ 0 of|w f
B 0 0 0 O0]|q g

where
(M);; =m (g, ¢i), (N),;=n(oj,00), (h),=MH,¢i), );=(f¢i), (240
(A)ij =a(¢i@;), (B)yp=br i), (C)y=clondi), (8),=1(9 k. (241)

Existence of a unique solution to problem [2.6) will be ensured by satisfying Brezzi’s theorem
at the numerical level too. The finite dimensional version of Brezzi’s theorem is given below:

Theorem 2.7. A unique solution to the saddle-point problem 2.6 will exist if the following
conditions are satisfied,

(i) A: Xp x X, — R is continuous and satisfies,

3 ap, > 0, such that inf A (xp, Xn)

2 ap,
xn€Xno\ (0} [1xnll%, v

where, Xp, = {xn € X}, such that B (xp,kp) =0V Ky € Zp}.

(13) B : Xp x Zp — R is continuous and satisfies the following inf-sup condition,

B
3 by, > 0, such that inf sup M
20 €2 \0} x,ex,\ {0} 1Xnllx;, 120l Z,

> bp,-

Furthermore, to ensure uniqueness of pressure and avoid any corresponding spurious
nodes, we need to ensure surjectivity of the divergence operator at the finite element level.
In other words, we need to satisfy the discretized form of Ladyzhenskaya-Brezzi-Babska
(LBB) inf-sup condition, given in the following equation.

3 v > 0, such that inf Su b (Fuw, §p)

p —lwb) 2.42
cwib oy S Trwlou Tl (2.42)

The proof for continuity of bilinear forms A : X x X, — R and B : X x Z;, — R,
and coercivity of A : X;, x X; — R over X}, required in theorem can be replicated
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Figure 2.5.1: (a). Domain (€2), (b). Triangular mesh on boundary (952), (c). Tetrahedral
volume mesh, clipped view.

from the proof of the continuous form of Brezzi’s theorem (see theorem [2.6). The inf-sup
condition in theorem [2.7|(ii), also known as Brezzi’s inf-sup condition, will be satisfied if
Sy, = Zj, which is our earlier assumption. Moreover, LBB inf-sup condition will be satisfied
for example, for stable finite element spaces such as Taylor-Hood pair P2 — P1 with generic
Lagrangian bases elements. In case, one utilizes unstable P1 — IP1 pair, the stability of
pressure can be ensured through stabilization techniques [8], 9].

2.5.2 Numerical results: Stokes constrained optimal flow control prob-
lem

In this section, we will demonstrate the numerical results for the application of Stokes
constrained optimal flow control framework. In this test problem, we will deal with a three-
dimensional geometry, comprising of three cylinders connected in the shape of alphabet
Y. Each cylinder corresponds to a subdomain, denoted by €;,7 = 1,2,3 and is marked
with different color (see figure 2.5.1f(a)), thus, Q = U;Q;,i = 1,2,3 . We discretize 2 in
Tr, = U;S;, where, S; are tetrahedrons (see figure (c)), thus, 0€) comprise of triangular
elements (see figure [2.5.1(b)). The flow will enter Q through the tops of Qs and Q3 and
will leave through the bottom of €. Thus, I';,, will denote the openings at the top of {29
and 3, and I', will correspond to the opening at the bottom of €2;. The domain €2 can
be considered as an idealized model of a blood vessel connected with another vessel, in the
shape of Y.

The state constraints, in this case, are modeled by Stokes equations (2.16) and the
boundary conditions are defined by equations (2.17). In equations (2.17)), v;, is the
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Poiseuille velocity imposed at inlets I';;, in Dirichlet sense and is defined as below:

2
v = — 1 (1 - T) Nin, (2.43)

where, 1 is constant viscosity, R;, is the maximum radius of the circular inlets, n;, corre-
sponds to outward normals to the inlets I';,, Re = 300 is Reynolds number and r is the
distance between center of an inlet and corresponding mesh nodes. The control is imple-
mented over the outlet I',, and restriction of control function u over mesh nodes of T, is
illustrated in figure [2.5.2)(a).

At the continuous level, we consider H* () for velocity such that the Dirichlet boundary
conditions are interpreted in the sense of trace operators. Thus,

V(@)= [a o, @] = [oe HQP: vlr, =vinand vl =0, (2.44)

Moreover, pressure, p and control u are considered in P () = L? () and U = [L2 (T,)]?,
respectively. Furthermore, let us denote the axes of the cylinders €2; by t; for i = 1,2, 3.
Then, in this test case, we will consider the tracking-type objective functional , where
the goal is to match desired velocity v, € Q () = [L? (Q)]g, defined through following

parabolic expression:
2

Vo = Veonst (1 - ;2> ti, ic{1,2,3). (2.45)
i

Here, R; corresponds to maximum radius of €2;, veonst 18 the magnitude of velocity and r

is the distance between the mesh nodes and the points on t;. We consider desired velocity

distributed through equation (2.45) across 2, with magnitude veonst = 400 mm/s (see

figure [2.5.2b)). The optimal flow control problem [2.1] can be stated as:

Problem 2.7. Find (v,p) € HIl“inUFw (Q) x L?(Q) and u € [L* (FO)]3 such that objective
functional (2.18]) is minimized subject to F (v,p,u) = 0 and boundary conditions (2.17),
where, F (v,p,u) : S x U — S*, S* = H 1 (Q) x L?(Q) denotes the residual of Stokes

equations (2.16)).

Moreover, we consider the adjoint variables or Lagrange multipliers z = (w,q) € Z = S.
The discretized coupled KKT optimality system can be derived following the algorithm
discussed earlier and is given by equations or equivalently, by the system . We
have utilized multiphenics [I] to solve this optimality system with Taylor-Hood (P2 — P1)
spaces for state and adjoint velocity and pressure and P2 for control, leading to the total
degrees of freedom (N) to be 225248. Initially, the uncontrolled solution, that is, the
solution to Stokes equations with homogenuous Neumann outflow conditions is calculated
and the uncontrolled Stokes velocity is shown in figure (a). The velocity achieved
through implementation of the optimal flow control framework is shown in figure (b)
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and the boundary control attained in this case is illustrated in figure [2.5.3(c). Moreover, we
report that it takes 120.7 seconds to develop the controlled solution from the uncontrolled
Stokes solution and for computational details, we refer the reader to table 2.1]

2.5.3 Galerkin FE approximation of Navier-Stokes constrained optimal
flow control problem

Now, let us turn our attention towards the approximation of Navier-Stokes constrained op-
timal flow control problem through Galerkin finite element methods. We consider the finite
element discretized spaces X, C X and Zp C Z as before, then the nonlinear optimality
system can be written in discretized form as:

B (xp, kn) + € (Vp, Up, Koy,) = (G, Kh) YV Ky, € Zy,
(2.46)
where, A (xn,y1), B (¥n, z1) and B (xp, kp,) are defined in equations , e (v, Vn, Ku),)
is non-linear convection term in state equations, and e (ys,, , vp, wy) and e (vp, Yo, , wh) are
corresponding trilinear adjoint terms
Considering V;, = span{qbl}z %, Py = span {'t,bk}k 1, and Uy = span {Ul}l t, these
non-linear and trilinear terms can be expanded as below:

{A(Xh,Yh) + B (Y, zn) + € (Yo, Vn, wh) + € (Vn, Yo, wn) = (H,yn), YV yn€ Xy,

No No
€ (vhvvha K"Uh) = Z Z vzvﬁe (d)]) ¢k) ¢2) )
j=1k=1
Ny Ny No Ny
(Y'Uh) ’Uh, wh Z Z thhe ¢k7 ¢]7 ¢Z) a‘nd € (vha Y'vhy wh Z Z whvhe ¢k7 ¢]7 ¢Z) :
j=1k=1 j=1k=1

This yields the following expansion of the optimality system ([2.46)), similar to ([2.38)).

Ny
) vim (5, i) + Z wha (¢)J7 ¢i) + 21 kzl vjwke (o, ;. bi) +
Jj= J
Ny Ny
y lkz hvhe (¢k7¢j)¢l) + Z qib (¢j7¢1) = <H7¢2> 5
]: =
No
Z:l ‘171 (kaa(ﬁj) = 07
TN No
a 21 win (o, 00) + 21 wyc (o, ;) =0,
N Ny Ny Ny Ne
Z }77. (¢]7¢1) Z ’U{vae(¢ju¢k7¢i)+ Zpib (¢j7¢z)+ Z U%C(O'pqsz) = <.f7¢)i>u
JJ\71 j=1k=1 j=1 j=1
21 b (i, ¢;) = (9, ¥x) -
]:

(2.47)
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Now, let us define the bijections V}, +» ]RN”, P, RM> and Uy, < RNw in a similar way as
before, then we can write the optimal flow control problem in following algebraic form:

Problem 2.8. Find (v,p,u,w, q)T € Xy, X Zy,, such that

M+E(w) 0 0 Aad+E.q(v) Bug| [v h

0 0 0 BT, 01|p 0

0 0 N o 0| |u]|=]0], (2.48)
A+E(v) BT C 0 0| |w f

B 0 0 0 0 q g

where

N’U N’U
(B W)y =Y vk e(dr.0).¢1) and (E(w)) =3 wf e(dr.;.6)
k=1 k=1

The optimality system (2.48) is non-linear in state and owing to block structure, can
be solve in one-shot through iterative numerical schemes, such as Newton method, which
we will summarize in the next section.

2.5.4 Newton method

Let us write K, = X; x Z; and WN = (v,p,u,w,q)T € Kj. Then, Navier-Stokes
constrained optimal flow control problem [2.8| reads:

Problem 2.9. Find Wy € Kj,, such that
W (Wy) =0, (2.49)
which is essentially equivalent to algebraic non-linear optimality system (2.48)).

Problem can be solved through Newton method. Thus, given an initial guess Wﬁ[,
we tend to solve the following system at any generic (k)™ iteration:

AW (Wﬁ;l) Wy = —W (Wﬁv—l) , (2.50)

where, 5WN = W]\“/ — Wf\“fl is the increment and dW (WN) is the Jacobian matrix.

*It is to be noted that the owing to S, = Zp, we can take the adjoint terms, with subscript ad with the
same bases functions as for the state terms. Thus, in the discussion henceforth, we will omit the subscript
ad, unless the equivalence assumption between the state and adjoint spaces does not hold true.
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Figure 2.5.4: (a). Case II: desired velocity v, (mm/s), (b). Uncontrolled velocity (mm/s),
(c). Controlled velocity (mm/s).

2.5.5 Numerical results: Navier-Stokes constrained optimal flow control
problem

Next, we will apply the Navier-Stokes constrained optimal flow control framework to the
3-D Y-shaped geometry, used in previous numerical example (see figure a)). With
the state constraints defined by equations and the boundary conditions , we
consider the problem to match v, with v through objective functional . For the
purpose, the flow at inlets is generated by Re = 140 and magnitude of the desired velocity
is 300 mm/s (see figure 2.5.4{(a)). Although chosen arbitrarily, these values fall with in
the range used in modeling coronary artery flow in literature [24, 29]. We consider the
following solution spaces:

Vo) = [#,ur, (@) = {oc [ @] oI, = v ok, 0],

P(Q)=I*(Q), and U(T,)=[1(,)]".

We solve the optimality system , equivalently in multiphenics [I] and report
the uncontrolled and controlled velocities in figures [2.5.4(b) and [2.5.4(c), respectively.
Furthermore, in this case, we have utilized P2 — P1 for state and adjoint velocity and
pressure respectively, and P! for the control at finite element level, thus, N' = 152501.
We report the CPU time to be 371.6 seconds to develop the controlled system from the
uncontrolled, reaching convergence in 6 Newton iterations (see table .
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Case 1 Case 11
Tetrahedral mesh size 15901 —
Degrees of freedom (dof) 225248 152501
Reynolds number 300 140
Veonst 400 mm/s 300 mm/s
CPU time 120.7 seconds | 371.6 seconds

Table 2.1: Computational details for case I: Stokes constrained optimal flow control prob-
lem and case II: Navier-Stokes constrained optimal flow control problem, applied to Y-shape
geometry

2.6. Applications to patient-specific coronary artery bypass grafts

In this section, we will extend application of the optimal flow control framework to patient-
specific cardiovascular geometries, reconstructed from medical images as shown in chapter
In these applications, we will consider Newtonian nature of blood, owing to diameter
of coronary artery bypass grafts. It is well-known that blood exhibits non-Newtonian
rheology, however, the non-Newtonian nature of blood is dominant in smaller vessels with
diameter < 1 mm such as capillaries [38]. The coronary artery bypass grafts considered
in this work have diameter in the range of 1 mm to 2.2 mm, hence, we can fairly assume
that the size of blood particles such as red blood cells, white blood cells and platelets
suspended in plasma, is smaller compared to the diameter of corresponding vessel itself.
Thus, the viscosity will be considered constant and is low at low shear stress. In such case,
Navier-Stokes equations can be considered to model blood flow [76] [41], [61, 38].

In these numerical examples, we will consider three different geometries, shown in fig-
ure We will divide this section in three parts, where in the first subsection, we will
consider the optimal flow control problem constrained by Stokes equations with a tracking-
type objective functional. Then, in the second subsection we will apply the optimal flow
control problem constrained by Navier-Stokes equations to minimize a vorticity-based ob-
jective functional in Q, (see figure [2.6.1fa)). The third subsection will demonstrate three
three sub-cases, dealing with Navier-Stokes constrained optimal flow control problem for
velocity-matching objective functional in geometries single and double grafts connections,
respectively. The application of optimal flow control framework shall automatically quan-
tify the outflow conditions, needed to minimize the vorticity or match certain desired
velocity in patient-specific coronary artery bypass grafts.

2.6.1 Stokes constrained optimal flow control problem: velocity match-
ing

In the first numerical test, we will solve Stokes constrained optimal flow control problem
over domain Q, (see figure a)), in which right internal mammary artery (RIMA)
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Figure 2.6.1: (a). Single graft connection: between right internal mammary artery (RIMA)
(red) and stenosed left anterior descending artery (LAD) (blue). (b). Single graft con-
nection: between saphenuous vein (SV) (red) and stenosed first obtused marginal artery
(blue). (c). Two graft connections: between right internal mammary artery (light blue)
and stenosed left anterior descending artery (LAD) (dark blue), and between saphenuous
vein (SV) (light red) and stenosed first obtused marginal artery (OM1) (dark red).

(red) is grafted to stenosed left anterior descending artery (LAD) (blue). We mark the
top openings of RIMA and LAD as the inlets, denoted by I';;, and the bottom opening of
LAD as the outlet, denoted by I',. In this case, the boundary conditions are defined by
equations , where wv;, is Poisuille velocity defined below:

Re r2

Here, Re = 80 is Reynolds number, R;;, is the maximum radius of an inlet, r is the distance
between mesh nodes of the inlet and corresponding center, and n;, denotes outward normal
to the inlet. The goal of this test case is to match an arbitrary desired velocity with Stokes
velocity and we define this desired velocity in §2, through following expression:

7‘2 .
Vo = Vconst (1 - ﬁ tci’ (S {1’ 2}7 (252)

)

where R; denotes maximum radius of a vessel, ¢, denote the tangents to the points of

centerline of a vessel, in the axial direction and r is the distance between mesh nodes and

nearest point on the centerline of a vessel. Moreover, we consider veonst = 350 mm/s.
The mathematical problem is given by problem[2.3] At the continuous level, we consider
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Figure 2.6.2: (a). Uncontrolled state velocity (mm/s), (b). Controlled state velocity
(mm/s), (c). Boundary control (mm?/s?).

the following Hilbert spaces for velocity, pressure and control respectively:

3
V(Q4) = HE or () = [U € [H' Q)] : vlr,, = vin and v|r,, = o} :

P(Q) = 1), and U (T,) = [12(T,)]".

We solve the coupled discretized optimality system in multiphenics [I] and report the
uncontrolled and controlled state velocities, and control in figures [2.6.2((a), [2.6.2(b) and
2.6.2(c) respectively. In this case, the degrees of freedom are N’ = 639448 and the CPU
time taken is 254 seconds. We remark that at the discretized level, we have solved the
problem with S, = P2—P1 = Z; and therefore, at this level both Brezzi’s inf-sup condition
and LBB inf-sup condition are satisfied.

2.6.2 Navier-Stokes constrained optimal flow control problem: vorticity
minimization

In the second numerical example, we will demonstrate Galerkin finite element approxima-
tion of a vorticity minimization problem with Navier-Stokes state constraints, defined over
Qq (see figure[2.6.1f(a)). The purpose of this test case is to illustrate the order of reduction
achieved for the objective functional through the proposed one-shot optimal flow control
methodology, in patient-specific geometrical models of cardiovascular system. From a clin-
ical perspective, anomalous flow in coronary artery bypass grafts can be induced by high
vorticity or dissipation regions. Therefore, when also considering boundary layers in the
cardiovascular problem, vorticity minimization can be of interest to propose an optimal
graft designs [67].

Thus, we consider the following objective functional, comprising of a vorticity mini-
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Figure 2.6.3: State velocity v (mm/s) approximations for vorticity minimization problem.

mization term and a control term,

1
T (v,0) = ; / v x o0+ 5 / (u|2dT,, (2.53)
Qa Iy

and we define the optimal flow control problem as below:

Problem 2.10. Find (v,p,u) € V x P x U such that (2.53)) is minimized subject to
equations (2.30) and (2.17)).

At the continuous level, we consider the solution spaces defined in the previous section
and the inflow velocity defined by equation (2.51f). The non-linear discretized optimality

system is given by (2.47), where,

i (s, (v 3p)) = 5 [ (V% 0)(Tx 30, and (s, 3,) = 0.
Q

Considering P2 — P1 pair for velocity and pressure, and P1 for control, Galerkin finite
element method attains N' = 433195 degrees of freedom. The uncontrolled objective func-
tional is 287484477.44 and is decreased to 287483300.44. We show the uncontrolled and
controlled velocities in figures a) and (b) respectively. Furthermore, computa-
tional time of 1144.87 seconds is taken to solve an uncontrolled problem (that is, for w = 0)
and to develop controlled solution from it by solving system .

2.6.3 Navier-Stokes constrained optimal flow control problem: velocity
matching

In the next numerical examples, we will apply the Navier-Stokes optimal flow control frame-
work with tracking-type objective functional. We will consider three different geometries,
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shown in figure 2.6.1] Assume v, to be physiological data extracted from 4D-flow MRIs
[33], then, the idea is to implement the numerical optimal flow control framework to match
this data in corresponding patient-specific geometries and automatically quantify required
boundary conditions, specifically outflow conditions. For the sake of simplicity, we have
relied on Neumann boundary conditions in this work and the numerical tests henceforth
are proof of concept of the proposed idea.

Case I(a): single graft connection between RIMA and LAD

In the first case, we consider domain €, (figure [2.6.1{a)) in which graft connection is
between right internal mammary artery (RIMA) and stenosed left anterior descending
artery (LAD). The saddle-point optimal flow control problem is defined in problem
We define v;,, at inlets by equation , where, Re = 80. Furthermore, we consider the
same solution spaces at the continuous as before, that is,

3
V(Q4) = Hp, op. (Q4) = [U e [H' Q)] s vlr,, = vin and v|r, = o} ,

P(Qu) = I*(). and U (T,) = [L*(T,)]"

and with veonst = 350 in equation , we consider the observation velocity v, €
[L? (Qa)}g. We solve the full order problem using P2 — P1 for velocity and pressure and P2
for control and attain N = 433288 degrees of freedom. Furthermore, one such simulation
requires 1213.3 seconds. The uncontrolled and controlled velocities and control magni-
tude are shown in figure [2.6.4(case I(a))(a), (case I(a))(b) and (case I(a))(c), respectively.
Furthermore, the fractional flow reserve (FFR), that is pressure drop over the stenosis, is
measured to be 0.18.

Case I(b): single graft connection between SV and OM1

In the second case, we will apply Navier-Stokes constrained optimal flow control problem
to another coronary artery bypass graft geometry. In this case, we label the computational
domain by €2, and take it to be saphenuous vein grafted to stenosed first obtuse marginal
artery (OM1) (figure [2.6.1[b)). Moreover, we consider the velocity v, to be generated
by Re = 50 at I';,, through equation and observation velocity to be distributed
across {1 by equation with veonst = 350 mm/s. The solution spaces in this case
remain the same as case I(a), while being considered over €}, and we utilize P2 — P1 — P2
for velocity, pressure and control respectively in multiphenics [I] to solve the problem
In this case, we report Galerkin finite element degrees of freedom (N) to be 280274 and
the computational time to be 634 seconds. The uncontrolled and controlled velocities and
boundary control are shown in (case I(b))(a), (case I(b))(b) and (case I(b))(c), respectively,
of figure [2.6.4] The pressure drop over the stenosis in this case is measured to be 0.26.
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Case II: two grafts connections

We further apply the reduced order optimal flow control framework to €. (see figure
2.6.1|(c)) comprising of two grafts connected to two separate stenosed arteries. It is to
be noted that Q. = Q, U € and mathematical problem is similat as considered for sin-
gle graft connections, with the number of inlets and outlets doubled. We label the inlets
of right internal mammary artery (RIMA) and left anterior descending artery (LAD) as
Iin, and the inlets of saphenuous vein (SV) and first obtuse marginal artery (OM1) as
Iin,. Similarly respective outlets are marked as I',, and I',,. In this case, we consider the
following boundary conditions:

UV = Vin,y, on Fin17
v = Uin27 on Fin27 (2 54)
v =0, on I'y,

—n(Vvo)n+pn=u, onl, UT,,,

where,

Re r2 Re r2
Vin1 (H1) = _ e (1 — R2> Nin, Vina (M2) = e (1 R ) Nin, -

Rinl iny Rinz ing

Furthermore, we consider Re; = 80 and Res = 50, and the following solution spaces for
velocity, pressure and control respectively:

3
V (QC) = H%inluringupw (QC) = |:’U € |:H1 (QC):| : ’U|F7,n1 = Vin1, v’anQ = Uin2 a‘nd U|F’LU = 0:| ’

and

P(Q)=L*(Q), and U(Ty UT,,) =L (Iy U FOQ)}3

The desired velocity in this case is v, € [L? (QC)]3, with veonst = 350 mm/s. In this
test problem, we consider P2 — P1 for state and adjoint velocity and pressure and P2 for
control, attaining N’ = 715462. The CPU time taken to solve this problem in multiphenics
is 1848.13 seconds and the uncontrolled and controlled velocities together with control are
shown in case II (a), case II (b) and case II (c) in figure [2.6.4 The control in this case is
the energy per unit length for both outlets I',, (shown on left side in the figure (case
II(c))) and 'y, (shown on right side in the figure [2.6.4] (case II(c))). Moreover, we report
the computational details for all three cases with application of Navier-Stokes constrained
optimal flow control problem with velocity matching objective in table Furthermore,
we remark that in these three numerical tests, we have satisfied Brezzi’s inf-sup conditon
and LBB inf-sup condition at the numerical level by utilizing Sy = P2 — P1 = Zj,.
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Case I(a) Case I(b) Case II
Tetrahedral mesh size 42354 27398 605451
Degrees of freedom (dof) 433288 280274 715462
Reynolds number 80 50 (80, 50)
Veonst 350 mm/s 350 mm/s 350 mm/s
CPU time 1214.3 seconds | 634 seconds | 1848.13 seconds

Table 2.2: Computational details for case I(a), case I(b) and case II.

Concluding remarks

In this chapter, we have introduced the general optimal flow control problems and the
derivative-based optimization algorithms, implemented for their solution. We summarize
the chapter as below:

(4)

(i)

We have seen that the general optimal flow control problems can be put in a cou-
pled system, known as Karush-Kuhn-Tucker optimality system, making the solution
appraoch to be more direct and easier.

The saddle-point derivation of KKT optimality system comprises of two nested
saddle-point problems, where one is the primal saddle-point problem and the other
comprises its combination with the adjoint and optimality equations. The problem
structure arising from this formulation is block form, rendering it easier to view the
problem in algebraic structure.

To ensure the existence of a unique solution to the quadratic optimal flow control
problem constrained by Stokes or Navier-Stokes equations, we need to satisfy the
assumptions made in Brezzi’s theorem and LBB inf-sup condition.

Our solution approach has been optimize-then-discretize, where we tend to first cast
the problem in KKT optimality system and then solve it using Galerkin finite element
methods. We have shown some preliminary results in this regard and we remark
that the accuracy of such methods rely on the degrees of freedom and hence on
the discretization size h. The finite element degrees of freedom can be very large
for larger mesh sizes, as has been shown in sections and Hence,
the computational cost can be relatively higher, as we have shown that using stable
finite element spaces, we need to spend at least O (102) seconds of CPU time. This
computational time can be considered unbearable when dealing with parametrized
problems, where simulations are performed in repetitive environment.

Lastly, we remark that in the last section, we have applied the optimal flow control
framework to patient-specific coronary artery bypass grafts and have verifiably shown
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that through this framework, we can minimize the difference between physiological
measurements and numerical measurements and can quantify the outflow boundary
conditions needed for this purpose.

Extracting from (iv) and (v), we remark that in patient-specific computational hemo-
dynamics modeling, one has to consider many-query scenarios, which are modeled by some
parameters and in such cases, the simulations are needed to be carried out in a repetitive
environment. Such real-life applications require sufficiently fine mesh size, as has been
shown in section thus the computational cost of O (102) might be acceptable for one
simulation but it is very high for the repeated simulations. Therefore, implementation
of the high-order numerical methods such as Galerkin finite element methods only is not
sufficient in real-life applications and inevitably, one needs to construct numerical methods
that can lower the computational cost while retaining the accuracy of high-order numerical
methods. We will focus on this part in the next chapter.
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In this chapter, we will combine the numerical pipeline for optimal flow control problems
constrained by Stokes and Navier-Stokes equations, discussed in chapter [2| with reduced
order methods in parametrized settings. The framework will be constructed with applica-
tions in patient-specific computational hemodynamics modeling in mind, with the aim to
match clinical measurements through numerical simulations and automated quantification
of outflow boundary conditions for the purpose. Such real-life applications require to take
into consideration different scenarios, modeled by tuning some parameters, for example,
one can study the effect on blood flow pattern corresponding to different viscosity or inlet
flow velocity scenarios, or different flow rates or pressure drop, etc. by tuning the Reynolds
number or one can also consider different shape parameters, such as angle of the bypass
grafts leading to different grafts designs. Some work in the latter direction can be found
in [3, 4, 90, 18, 17].

Numerical methods approximate the solutions to such problems with reliable accuracy,
as we have shown in chapter [2] section 2.6 however, the computational cost of these
methods depends upon the discretization size, which needs to be sufficiently large to achieve

53



54  Chapter 3. Reduced order methods for parametrized optimal flow control problems

accurate solution in real-life applications, specifically in cardiovascular applications. In
parametrized settings, the computations are performed in repetitive environment, hence
the computational cost is usually very large. Thus, the goal of this chapter is to combine
the parametrized numerical framework with projection-based reduced order methods that
cast the high-order numerical solution manifold onto a low-dimensional manifold, where
one can explore the solution for different tunings of the parameters, in an inexpensive and
reliable manner.

This chapter is arranged in the following order: in the first section we will introduce the
parametrized version of Stokes constrained optimal flow control problems and will further
show the construction of reduced order framework, based upon proper orthogonal decom-
position (POD) and Galerkin projection. The second section will demonstrate preliminary
numerical results for the application of the reduced order framework on the idealized Y-
shaped geometry. The reduced order framework will then be extended to parametrized
Navier-Stokes constrained optimal flow control problems in the third section and finally we
will demonstrate some corresponding preliminary numerical results. In the next chapter,
we will show application of the reduced order frameworks for both Stokes and Navier-Stokes
constrained optimal flow control problems in patient-specific cardiovascular modeling.

3.1. Parametrized Stokes constrained optimal flow control problem

In the first section, we will introduce the parametrized version of optimal flow control
problems constrained by Stokes equations, discussed in chapter [2] section[2.4.1] For details,
we refer the reader to aforementioned section and here, we will give a general summary of
the problem. For the purpose, let us consider a d—vector of parameters and denote it by
D C R%,d € N, such that the physical and /or geometrical parameters pu € D. Furthermore,
we consider a domain Q C R3, with Lipschitz boundary 09 = I';, UT,, UT,, where I';,
denotes the inlet boundary, I'y, represents the lateral walls and I', stands for outlets.
We remark that in general Q2 can be parametrized, that is, Q = Q(u) (see for example,
[8, 19, 181, [82], 188,149, 99] ), however, for simplicity sake, specifically in applications to patient-
specific cardiovascular geometries, we are considering fixed 2. Then, the parametrized
Stokes constrained optimal flow control problem reads:

Problem 3.1. Given p € D, find (s (p),u(p)) € S x U such that

1 «
J (s,usp) = 5\‘3 (p) — SoH2Q(Q) + 5”“(#) HQU(Fo)v (3.1)
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s minimized subject to,

—nAv (p) +Vp(p) = f (1), in §Q,

Vv (p)=g(p), in €,

v (p) = vin (1), on Tin, (3.2)
v(pu) =0, on Ty,
—n(Vo(p))n+ppu)n=u(p), onl,.

Here, s = (v,p) denotes state variables, that are velocity and pressure, and u denotes
the control variables. Moreover, the state and control spaces are denoted by S (§2) =
V(Q) x P(Q) and U (I',) respectively, f are the body forces, V - v is the divergence
operator, 7 > 0 is the kinematic viscosity and s, € Q 2 S is the state desired to be
observed or presumably known state data, desired to be matched. Moreover, J is the
tracking-type objective functional.

Now, the parametrized state equations can be written in weak form as below:

{a(v(u),w;u)+b(p(u),w;u)+C(U(u),w;u)=<f(u)7w>7 VweV, g
b(q,v(p);p) =(9(p),q), VgeP
where,
a(v,w;p) = n/Vv -Vw d9, b(q,v;p) = —/q(V-v) dQ, (3.4)
Q Q
and
c(u,w;p) := —/u~w dr,. (3.5)

To
We consider the adjoint spaces Z = Z, x Z, such that z = (w, q) € Z are the adjoint
variables and S = Z. Then, taking X = S x U, the parametrized version of the saddle
point problem [2.4] can be written as:

Problem 3.2. Given p € D, find (x(p),z(p)) € X xS such that,
{A(X(u),y;u)JrB(z(u),y;u) = (H(pw),y), VyeXx,
B(x(p), k) = (G (1), k), VkeEZ,
where, for ally = (ys = (Yu,¥p) ,Yu) € X and for all K = (Kw, Kq) € Z,
A(x,y;p) =m (s, ys; p) + an (u, yus 1),
B(z,y;p) = a(yv, w; p) + b (yp, wi ) + ¢ (Yu, w; ) + b (¢, yvi 1) ,
B(x,k;p0) = a (v, K 1) + b (D, Kaw; i) + ¢ (U, Kaw; 1) + b (kg, v5 )

and
(H(p),y) =m(so(p),ys), (G(u),k)=(f(r)+g(p), K.
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Here, m: V xV — Rand n: U x U — R are the bilinear forms associated to objective
functional (3.1]) and are defined as:
m (3 (/J') —80,Ys = So; l'l') = (S (/J’) — S0,¥Ys — SO)V(Q) and n (U (IJ’) yYus H) = (u (/J’) :yu)U(I‘o)

Furthermore, we recall that a unique solution to the saddle-point problem [3.2] will exist if
following assumptions of Brezzi’s theorem hold true:

Theorem 3.1 (Brezzi’s theorem). A unique solution to the saddle-point pmblem will
exist if the following conditions are satisfied,

(i) A: X x X — R is continuous and satisfies,

J ag > 0, such that  inf A(X’i};’“)
\{oyeXo  Ix[I%

where, Xo = {x € X such that B(x,k;u) =0V Kk € Z}.

> ao, VMGDa

(1i) B: X x Z — R is continuous and satisfies the following inf-sup condition,

3 by >0, such that inf sup M >bg, YV peD.

2M{0}eZ x\qopex Xl x2]l2

The theorem can be proven in a very similar way as before, (see the proof of therorem
in section for details), specifically the inf-sup condition will be satisfied if S = Z.

Truth approximations

We will summarize the parametrized version of Galerkin finite element approximations of
Stokes constrained optimal flow control problems, discussed in chapter [2 section [2.5.1]
These numerical approximations of the continuous problem will serve as building blocks
in the construction of reduced order spaces, discussed in next section, where we will re-
fer to these solutions as truth solutions or high-fidelity solutions. Let us consider the
discretization 75, 0 < h € RT < oo of Q and the corresponding finite element spaces
Xy = (Vi x P, xUy) C X and Zj, C Z such that S, = (Vj, X Py) = Zy, then the discrete
counter part of the problem [3.2] reads:

Problem 3.3. Given p € D, find (xp, (), zn (1)) € X X Zy, such that,

{A(Xh (1), yn; ) +B(zp (1), yni ) = (H (), yn), YV yn€ X,

(3.7)
B(Xh (“)a”h;y’) = <g (l")vﬁ'h>v V Kp € Zp,

where, for all yp, = (Ys, = (Yo, Ypn)» Yus) € X and for all K, = (Kw,, Kq,) € Zh,

A(Xp,yn; ) = m(Sp, ¥s,; 4) + on (Un, Yu,; 1) ,
B (zh7yh; ’J’) =a (y'llh7 Wp; IJ‘) + b (yphv Wp; IJ‘) +c (YUh7wh; ”) + b (Qh7Yvh§ ”) )
B (th Kh; N) =a (vhn K”wh; l’l‘) + b (ph7 K/th l'l/) +c (u’h7 K”wh; lJ’) + b (K/qh,'Uh; M) .
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With
N’v i NP ) Nu .
vy =Y Ui € Vi, ph= Y D)t € P, up =Y upo; € Uy,
No No o
wp, =Y wid; €Vy, and qn =Y qith; € Py,
j=1 j=1

we write the algebraic form of the optimality system given in equations (3.7) as below:

M(p) 0 0 A(p) B(w)] [v(w) h(p)
0 0 0 B'(p) 0 ||p(w 0
0 0 N Cm o0 u(p)|=| 0 |, (3.8)
A(p) B'(p) C(pw) 0 0 | |w(w) f (1)
B(p) 0 0 0 0 q(p) g(p)

where, for a given p, (v (p),p (@), u(p),w (p),q(p))’ is the vector of finite element
coefficients and M (u), A (u) € RNo>Ne N (u) € RN«*Nu B () € RV*Ne and C (u) €
RNu>Nv are the mass matrices associated to discretized versions of operators m (-, -; ),
a(,5p),n(,5wm), b, and c(-,-; p) respectively and are defined by equations
and . We reiterate that the system (3.8)) can be directly implemented in finite ele-
ments based programming libraries, such as FEniCS and multiphenics.

Some preliminary numerical results for an idealized Y-shaped geometry are shown in
chapter [2] section and further application of this framework to patient-specific coro-
nary artery bypass grafts has been shown in chapter [2 section These results show
that a single simulation using Galerkin finite element methods attains O (105) degrees of
freedom and requires the computational time of O (10%) to O (10%) seconds. Thus, in
parametrized settings if we tend to implement only high-order numerical methods, we will
need to spend at least O (10?) seconds for each different value of .

3.2. Reduced order methods for parametrized Stokes optimal flow con-
trol problems

In this section, we will present a reduced order framework to approximate the solution to
discrete version of problem for different tunings of parameters p, in a time-efficient
and reliable manner. The computational efficiency of reduced order methods arises from
two factors, (7). the reduced dimensional solution manifold, and (i7). decomposition of the
procedure into expensive and inexpensive phases, where only latter is needed in repetitive
computing environment. Thus, the goal of this section is to construct a low dimensional so-
lution manifold My = {dx (1), 6§ = v,p,u, w,q, p € D} for the optimality system (3.7)),
from the high dimensional solution manifold M, = {d, (n), 6§ = v,p,u,w,q, pu € D}.
Then, for different values of u, one only needs to perform the Galerkin projection of d; on
My to yield dy ~ 8y, and this can be done in the inexpensive phase.
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In literature, one can rely on atleast two methods to construct the reduced order spaces,
namely greedy algorithm [49, 8] and proper orthogonal decomposition(POD)-Galerkin
[19, [49, [65] [79]. The former requires apriori knowledge of error estimators to construct
nested reduced order spaces while the latter can be seen as a singular value decomposition
algorithm, which constructs the reduced basis by capturing energy of full order solutions.
In this work, we will utilize the latter and will construct the reduced order solution spaces
from the information captured by snapshots, that are high order solutions to the truth
problem Both techniques have been utilized in the optimal flow control problems
[16, 135, 60], 82] 1] [99] and in computational cardiovascular modeling [14) [17, [I§].

3.2.1 Proper orthogonal decomposition (POD)—Galerkin approximations

Let us consider a finitely sampled subset A of the parameter set D as the training set.
Then, to construct the reduced order spaces, we first collect the snapshots by solving the
truth problem for all g € A through Galerkin finite element methods. Let us write the
snapshot matrices as below:

Xy = [vh (ul) v (uQ) . (“\A\ﬂ | o
o= [ () o (42) - ()] T

Xy = [pn (1) o (12) - pn (1)),

= o (1) 0 4) o ().

= o () o 4) ()], 1<

Then, to construct the POD basis, we solve the following eigenvalue problems:

1< h <N,

and

Aép? :A?p;sa 1= 17"'7‘/\’7 (39)

for the correlation matrices A% = ﬁ%g%a for 6 = v, p, u, w, g such that the eigenvalues are
arranged in the descending order. We keep n = 1,..., Ny, < |A] eigenvalue-eigenvector
pairs (A", p™), for which the relative energy of eigenvalues is greater than certain prescribed
tolerance,
Nmaz N
=1’
[A|

4]
> Al

J=1

>1—¢€o1, 0 < €9 <1, 6§ =v,p,w,u,q. (310)
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We remark that if the eigenvalues are arranged in decreasing order, then the first n =
1,+ -+, Niae eigenvalues will satisfy the relation (3.10). Orthonormal POD bases are con-
structed from the retained n eigenvectors and are defined as below:

1 1

ng = \/)\T,Lfvp% Ph = \/)\T;:{ppfm
GY = ﬁf{upﬁ, (3.11)
G = g Xeps  Cl= FaXerh.

The reduced order spaces are generated by the POD bases, and we will denote them with
subscript N. Thus, if Sy = Vn X Py corresponds to reduced order state spaces, Un denotes
the reduced order control space and Zn = Zy,y X Zp, are the reduced order adjoint spaces,
then, with Xy = SN x Uy, the reduced order parametrized Stokes constrained optimal flow
control problem reads:

Problem 3.4. Given p € D, find (xx (), 2n8 (1)) € Xn X SN such that,
{A(XN (), yn; ) + B (zn () yns ) = (H(p),yx)
B (xn (1), kn; ) = (G (1) kN)

It is to be noted that up until now, the dimensions of the reduced order spaces are
N,nae €ach, thus total dimensions of the reduced order problem are N = N, + N, +
Ny + Ny + Ny = 5Nz

Next, to consider algebraic structure of the problem we consider the following
bijections in a similar way as for Galerkin finite element variables (see chapter |2 section
2.5.1) :

VyN EXN,

(3.12)
v KN € ZN,

Nmaa:

T .
_ 1 2 Nmaz — J
VN—(UN, N, o, Uy ) HvaZvN(b;’EVN,
Jj=1
T Nmaz
1 2 Nomaz j =
WN = (wN7 W, wNmaz) & wN = Z w]NC;” c Z,UN’
Jj=1
T Nma:ﬂ
_ (.1 2 Nmaz _ j 27,P
pr = (ks PRy oo D) opn = Y AP € Py,
=1
T Nma.’z
_ (1 2 Noinaz _ J Fa
qN_(QN7 N, “ 5 4N ) < gN = Z QNCJ eZpNu
=1
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and

N T Nmaz .
uy = (ull\h u2N7 ceey, uNmuw> — UN = Z U‘{\I&;" (= UN)
j=1

Furthermore, with the reduced bases matrices, defined as below:

Vo=@ B -] ve= (B ] ve=letay s,

I - T - - - T
Vo= |G - ] and 9= [T CL
the reduced order coefficients are calculated through Galerkin projection, such that,
v(p) ®Dovn (1), P(p)=Yppx (1), u(p) = Yuux (),

w(p) ~ Dwwn (1), and q(p)~Ygan (u).

Now, we can write the algebraic form of the parametrized reduced order problem , similar
to the discretized algebraic system (3.8]), as below:

My (p) 0 0 Ax(p) By()] [v~ () hy (p)

0 0 0 Bi(mw 0 PN (B) 0

0 0 Nx(p) On(m) O un(p)| =] O (3.13)
Ax(p) Bi(m) Cn(p) O 0 w (1) fx (1)
Bn(pw) 0 0 0 0 an (k) gn (1)

Here, the entries of the left hand side matrix are the reduced order mass matrices, defined
below:

My (,U) = QJZM (N) 2, € ]RviNv7 Ny ('u) _ QJZN (ll') Vo € RNuxNu7

Ax (1) = DDA (1) Dy € RN No | By (1) = DT B (1) sy € RN N,
and Cn (1) = DLC (1) D € RN»*Nu Moreover,

hy (p) =Yoh (), fx(p) =5f () and gy (p)=Die(w).

3.2.2 Aggregation of spaces and supremizers enrichment

We recall that to ensure the existence of a unique solution to problem we need to
satisfy Brezzi’s theorem at the reduced order level. However, since we are utilizing the
saddle-point problem at snapshots level too, therefore, we need to satisfy the assumptions
of Brezzi’s theorem both at truth level and reduced order level. Thus, for all u € A, at the
truth level we need to satisfy the assumptions of theorem given in chapter [2] section
and at the reduced order level, the following theorem shall be satisfied:
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Theorem 3.2. A unique solution to the saddle-point problem 3.4 will exist if the following
conditions are satisfied,

(1) A: Xn x Xx — R is continuous and satisfies,

Jdan, > 0, such that inf A (xn, Xx; 1)

>an,,V €D
av\{0yexn,  [lxnll% o

where, Xn, = {xn € Xn such that B (xn,kn;p) =0V kN € Zn}-

(17) B: XN X Zn — R is continuous and satisfies the following inf-sup condition,

B .
3 by, > 0, such that inf su (%N, 2N; 1)
ZN\{O}GZN xN\{O}GXN HXNHXNHZN”ZN

> bNO, vV ueD.

We know that the continuity of A and B, and the coercivity of A over kernel of B will
be satisfied for the finite element discretized spaces, X, C X and Z; C Z, as they hold
true for the continuous spaces X and Z (see the proof of theorem [2.6). Furthermore, we
recall that the continuous inf-sup condition for B is satisfied if the equivalence assumption
between state and adjoint spaces holds true. Since we are choosing the finite element
spaces such that S 2 S, = Z;, C Z, we claim that the discretized inf-sup condition will be
satisfied at the truth level.

Now, at the reduced order level, we can prove the continuity and coercivity of A over
kernek of B and continuity of B in a similar way as has been done for the continuous
and finite element cases, and we remark that to ensure the stability of optimal solution
(xn, 2N), we need to also satisfy the inf-sup condition for B. However, the required crucial
assumption of equivalent state and adjoint spaces is not trivially guaranteed by the way
reduced order spaces are constructed and in this case, the inf-sup condition will not hold
true. In this case, we can strongly consider the equivalence between Sy and Zy through
aggregation of spaces, that is, we consider the following reduced order state and adjoint
spaces:

SN:{~n7 ~£7 ~71:7757%7 nzlv T, Nmaz}EZN-

Furthermore, as already discussed in chapter [2] section [2.5.1] to avoid appearance of
spurious pressure modes, we need to satisfy the LBB inf-sup condition, in other words, we
need to ensure that the dimensions of velocity spaces are larger than the pressure spaces.
At truth level, we ensure this by utilizing stable Taylor-Hood spaces P2 — P1, however, the
condition does not necessarily hold true for the reduced order spaces resulting from truth
approximations. We give the LBB inf-sup condition at the reduced order level as below:

b .
3 N, > 0, such that inf (R, S 1)

sup >y, YV ED. (3.14)
RwN\{O}GZvN pr\{O}GPN HF""wN HZ’UN ngNHPN ’
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To satisfy the condition (3.14]), we enrich the velocity spaces with the solutions of divergence
equation [I9 49, 4], that is, we define the supremizers operator 73;1 : Zp, — Vp and
Tlijh : Py, — Zy, defined as:

(ﬁhqh,vh) =b (Qh»vh§ﬂi)» i=1, -, |A], (3.15)

and

(mhphvwh) =b (ph,wh;ui), i=1, -+, |Al (3.16)

Then, performing POD on the supremizers, we retain N4, supremizer modes (;Aﬁz, 1/3};’ for
state velocity and adjoint velocity respectively. The supremizers enriched and aggregated
state and adjoint spaces are thus given as:

SN=(WaTY) X Px X (Z'vN D TN’) % Zpy = 4N (3.17)

We remark that after supremizers enrichment the dimensions of state and adjoint velocity
spaces are increased by 2 times, thus,

dim (Vx) = 2Nz = dim (Zyy ) , dim (Px) = Nypge = dim (Zpy ) , dim (Un) = Nppaa-

Moreover, after the aggregation of spaces, the dimensions of state and adjoint reduced
order spaces is given as:

dim (Sy) = dim (Vx) + dim (Zyy ) + dim (Py) + dim (Z,) = dim (Zx),
thus,
N = dim (SN) + dim (ZN) + dim (UN) = 13Nnaz-

We remark that 13N, < N, while attaining almost same accuracy as Galerkin finite
element methods, as will be shown by the numerical results in the next section.

3.2.3 Offline-online phase decomposition

Next, we will discuss the decomposition of computational procedure into two phases,
namely, offline phase and online phase. The phase decomposition relies on the crucial as-
sumption of affine decomposition, that is, we assume the each operator can be component-
wise divided into parameter-dependent and parameter-independent parts. Thus, we as-
sume,

in QII Qa
M(p)=> 01, () M9, N9(pu)=> 0% (u) N, A(p)=>_ 0% (p) A%,
q=1 q=1 q=1

Qv Qc Qn
B(p)=> 05w BY C(p)=>Y 64 (m)C% h(p)=> 0} (u)h
q=1 q=1 q=1
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Qs Qg
F(p)=> 0% (u)f? and g(p)=> 02 (u)g’,
q=1 q=1

for the algebraic optimality system . Then the computational procedure will be per-
formed in two stages, the pu-independent phase and p-dependent phase. The former phase,
also known as the offline phase, comprises of performing POD and construction of reduced
order spaces. In this stage the p-independent matrices, shown above, are assembled and
stored. Thus, the computational cost of offline phase depends upon the truth dimensions,
that is the cost relies on O (N) times |A|. The second stage, that is the online stage
comprises of calling the stored theta-independent matrices for a given parameter u, assem-
bling reduced order terms, solving the reduced order problem including evaluation of
reduced order coefficients through Galerkin projection. Since this phase is performed for
a single parameter value, thus, the computational cost of this phase depends only on the
dimensions of reduced order problem, that is, O (N) and is therefore, very low.

3.3. Test cases: parametrized Stokes constrained optimal flow control
problem

In this section, we will apply the reduced order framework for Stokes constrained optimal
flow control problem to the test problem given in chapter [2] section Thus, the com-
putational domain is the Y-shape geometry shown in figure (a), with boundary mesh
elements and volume mesh elements shown in figures [2.5.1(b) and [2.5.1)(c) respectively. We
will consider physical parametrization, that is Reynolds number, to study the flow pattern
corresponding to different inlet flow velocities. Thus, u = Re € D = [100, 300] defining the
velocity at the inlets through the following expression:

2
Vip = — e <1 — 7’) Nin, (318)
Rin

where, 71 is constant viscosity, R;, is the maximum radius of inlets, n;, corresponds to
outward normals to the inlets I';,, and r is the distance between center of an inlet and
corresponding mesh nodes.

Moreover, we consider the tracking-type objective functional with desired velocity
v, distributed across 2 through equation with veonst = 400 mm/s. Thus, the
parametrized optimal flow control problem can be expressed by problem definition [3.1],
with the objective to match v, with v (u), given p € D.

We randomly sample a training set A of 100 parameter values and solve the truth
problem for all 4 € A. As shown in chapter [2| section for a single parameter
value, for example, for u = 300, the Galerkin finite element problem yields N = 225248
degrees of freedom and takes 120.7 seconds, thus for different values of p, with Galerkin
finite element approximations only, we will need to spend 120.7 seconds for each simulation.
However, with POD-Galerkin, we consider N,,,, = 10 and therefore 79 reduced bases
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Figure 3.3.1: Stokes constrained optimal control problem: (a). state velocity (mm/s). (b).
boundary control magnitude (mm?/s?).

and the solution in the reduced order spaces generated by these bases can be calculated
in only 5.3 seconds. In this case, we report the state velocity and boundary control in
figures [3.3.1(a) and [3.3.1(b) respectively. Furthermore, in this a maximum speedup of
O (10%) is achieved by POD-Galerkin for both the approximated solution variables and
the objective functional (see figure [3.3.2(b)). The computational details in this case are
shown in table m(a) which shows that the offline phase takes O (10%) seconds which is
expensive, however, once this phase is finished, we only need to pay the computational cost
of O (10°) seconds instead of O (10?) seconds required by full-order simulations.

3.4. Parametrized Navier-Stokes constrained optimal flow control prob-
lem

In this section, we will extend the reduced order framework introduced for Stokes con-
strained optimal flow control problems in section [3.1] to parametrized version of the Navier-
Stokes constrained optimal flow control problems, discussed in chapter [2 section [2.4.2
Thus, first let us write the parametrized version of problem [2.5] For the purpose, we
consider physical parameters g € D C R% d € N, computational domain  C R? with
Lipschitz boundary 092 = I';, U 'y, U T, then the continuous version of parametrized
Navier-Stokes constrained optimal flow control problem is given as:
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Mesh size 15901
D [100, 300]
|A] 100
Offline phase | 3002.42 seconds
Online phase 5.3 seconds 26l oo
Table 3.1: (a). 2 s s é"é 7 s s B

Figure 3.3.2: (a). Table demonstrating computational performance of POD—-Galerkin for
Stokes constrained optimal control problem in Y-shaped geometry. (b). Mean and maxi-
mum speedups for solution and objective functional achieved by POD—-Galerkin for Stokes
constrained optimal control problem in Y-shaped geometry.

Problem 3.5. Given p € D, find (s (p),u(p)) € SxU such that the objective functional
(3.1) is minimized subject to,

—nAv (p) + (v (p) - V)v (u) +Vp(p) = f(n), inQ,

Vev(p) =g, in €,

v () = v (1), on Tip, (3.19)
v(p) =0, on Ty,

0 (Vo () n+p () n = u (), on T,

where s = (v,p) € S () =V () x P () denotes state variables and u € U (I',) denotes
the control variables. Moreover, f are the body forces, n > 0 is the kinematic viscosity, g =
0 will lead to incompressible fluids and (v (@) - V) v () is the convection term. We recall
that with the adjoint variables or Lagrange multipliers z = (w, q) € Z () = Z, (Q)xZ, (Q?)
and X = S x U, the problem can be cast in the following saddle-point form:

Problem 3.6. Given p € D, find (x(p),z(p)) € X x Z, such that,
{A(X(u),y;u)JrB(y,Z(u);u)+e(yvvv(u),w(u);u)+e(v(u)7yv,w(u);u)—<H(u)7y>, VyeX,
B(x (), k1) +e((p),v(p),ke; 1) = (G (1), k), VK€ Z,

where A: X x X - R and B: X x Z — R are defined in problem[3.3 and

e('Ua’U,f%;H) :/

(0 V)0 kD e lyov,wi ) = [ (o V)v-wde,
Q Q

and

e(v,yv, w; ) = /Q (v-V)y, - wds.
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Truth approximations

We consider the finite element spaces X; C X and Z;, C Z, such that X, = S, =
(Vi X Pp) x Up, and Zp, = Sp, then we can write the discretized version of the parametrized
Navier-Stokes constrained optimal flow control problem [3.6] as below:

Problem 3.7. Given p € D, find (x5 (1), zn (1)) € X X Zp, such that,

A (1), yn ) + B (yn, zn (1) ;1) + € (Yo, v (1) ,wp (1) 5 18) + e (0 (1), Yop, wn (1) 50) = (H (1) ,yn), Y yn € X,
B (xn (1), &ns ) + e (vn (1) ;v (1) s Kop s ) = (G (1), K1) V Ky € Zy.
(3.21)

where A : Xj, x X, > R and B: X, x Z;, — R are defined in problem [3.3

We denote the dimensions of finite element spaces with Ng for § = v,p, u, w, ¢, then
with the bijections V}, < RNv . Py < RMp and U, < RV», we can give the algebraic form
of problem [3.7] as below:

Problem 3.8. Given pu € D, find (v(p),p (p),u(p),w(p),q(w)’ € X, x Zy, such

that,
M(p)+E(w(p);p) 0 0 AW+EM@w;n) Bw] [viw] [h(w)
0 0 0 BT () 0 p (1) 0
0 0 N(w) C(p) 0 u(p)|=| 0
A +EM(p);p) B () C(w) 0 0 | |w(k) f(p)
B(p) 0 0 0 0 q(p) g (k)
(3.22)
Here, for 1 <i,5 < Ny,
No i No
(B (v (i) 1)y = > ok (1) € (u, @y iz ) and (B (w () 1)) = > wh (1) € (b1, 65, iz ).
k=1 k=1

and furthermore, for 1 <k <N, and 1 <[,r < N,,,
(A(w);; =a(di, djin), (BW)yg=Db@Wr, dip), (C(n)y =clon,diip),

(M (p);; =m(¢i,@j51), (N (), =n(or,on5p),

h(p), =(h(p), i), f(p);= (1), ¢i), and g(p), = (g (1), Px)-

We recall that the optimality system ((3.22]) is nonlinear and can be solved through iterative
numerical schemes such as Newton method (see chapter [2], section [2.5.4]).
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3.5. Reduced order methods for parametrized Navier-Stokes optimal
flow control problems

Next, we will extend the reduced order framework, constructed with POD—Galerkin to
parametrized Navier-Stokes constrained optimal flow control problem, discussed in section
[3-4 For the purpose, let us reiterate that we will built the reduced order spaces from
snapshots that will be the Galerkin finite element solutions to the truth problem
Furthermore, we also reiterate that the goal of constructing such framework is to explore
solution in low-dimensional spaces while retaining the reliability of high-order solution
spaces and decoupling of the computational procedure in two separate phases, where the
one with low computational cost is repeatedly performed for different tunings of p.

In this case, the algorithm is similar to what has been discussed in section Thus,
for all parameter values p! in a finitely sampled subset of parameters A C D, we collect the
truth solutions, or snapshots by solving the optimality system with Newton method.
The snapshot matrices can be written as:

X5 = [5,11 (,u1> o7 (,uQ) ELM (uw” , for § =v,p,u,w,q, and 1 < h < Nj.

Then, by solving i = 1,...,|A| eigenvalues problems, defined by , where A% =
ﬁ%g%ts e RIAXIAL are the correlation matrices, we keep first Nyaz eigenvectors, corre-
sponding to largest eigenvalues. Orthonormal POD bases are constructed from the retained
eigenvectors and are defined by equations . Thus, the reduced order spaces are de-
fined as below:

state spaces := Sy = Vn X Py, such that
VN:{~Z7 TL:L Tty Nmaac}; PN:{";Z7 n:17 M Nmaa:}7

adjoint spaces := ZN = Zyy X Zpy, such that

Z,,N:{E;;’, n=1, ---, Nmax}, ZpN:{E;;, n=1, -.-,Nmax},

and control space := Un = {6%, n=1, -+, Nyar}. Considering Xy = Sy x Uy, the
reduced order parametrized Navier-Stokes constrained optimal flow control problem can
be defined as:

Problem 3.9. Given p € D, find (xn (1), 2n (1)) € XN X Zn, such that,

A(xn (1), yN; ) + B(yn, 2n (1) 5 1) + e (Yon, on (1), wn (1) 1) + e (on (1), Yor, wN (1) 5 ) = (H (1), yn), YV y~n € XN,
B (xn (1), kN5 1) + e (vn (1), on (1), Koy ) = (G (1), KN) V kN € Zn,
(3.23)
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where, xN = (vN, PN, uN) € XN and zy = (wN, gn) € Z, such that,

Nmaz Nmaz

on () = D R () O8 € Vi, px () = Y () Uh € Py,
n=1 n=1
Nmaz ~ Nmaz N

wy () = D wh (1) CY € Zug, an () = D af (1) (1 € Zpy,
n=1 n=1

Nma(l)
and uy (@) = 21 uf (p) a8 € Un.

Then, for 9 = diag (Dv, Vp: Du>Dw,Yq) and 0 = (0,0,0,0, 0)”, the the optimality sys-
tem ([3.23) can be written in the following algebraic form :

DIW =0, (3.24)
where,

(M (1) + B (Quwwn (1) ; 1)) Dovn (1) + (Aad (1) + Faa (Dovx (1) ; 1) Duwwx (1) + BL, (1) Dgan (1) — h ()
Baa (1) Dwwi (1)
W= N (1) Duun (1) + C (1) Duwwx (1)
(A(p) + EQovn (1) ; 1) Dwon (1) + BT (1) Dppn + C (1) Yuun (1) (1) — £ (1)
B (1) Dwvn (1) — g (1)

Thus, the reduced order mass matrices can be defined as:

My (1) = Do M (1) Do, Nx (1) = DN (1) Dy Ax (1) = Vi A (1) Do,
Agdy (1) =D Aad (1) Dw. By =20 B(11)Dv,  Baay =D} Baa (1) Do,
EN ('> 2] p’) = 2)5E (" " p’) 2)'07 EadN ('7 ) ll’) = @zEad (’a ) M) @wu

and

ExCyosm) =D0E (1) Do

For T = (v (1), Py () ux (1), W (), ax ()7, the non-linear optimality system
(3.24) can be solved using Newton method. Thus, at any generic k — th iteration we solve:

W (WE1) oWy = —w (W), (3.25)

where, W (WN) is the residual based optimality system (3.24)), dW (WN) is the Jacobian

matrix and dWx = W{\‘} — Wf{l is the increment at corresponding generic iteration.
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Supremizer enrichment and aggregation of spaces

To ensure uniqueness of pressure, we proceed in a similar way as in the case of Stokes
constrained optimal flow control problem. Thus, we consider the supremizers operators
Toy © Zp, = Vi and Ty, : Py — Zy,, defined by equations (3.15)) and (3.16) respectively.
Then, if we take

,H\Iv:{A57n:17'”aNmax}a %w:{égvnzlv”'7Nmax}

to be the spaces of POD modes for ’E,ih and 7;‘;% respectively, then the supremizer enriched
state and adjoint velocity spaces can be defined as:

VN®m:5pan{~na A:,a n:]-a Tty Nmax}a

ZvNEBTI\?”:span{~7’f, A}L”, n=1, -, Nmam}.

Furthermore, to satisfy Brezzi’s theorem at reduced order level, we need to ensure Sy = Zn.
Considering aggregation of spaces, we can define the supremizer enriched and aggregated
reduced order spaces as:

Sn=W®TN) XPNX(Z’UN @%W)XZPNEZN,

such that the total dimensions of the reduced order spaces are N = 13N, < N.

Offline-online phase decomposition

We recall that to decouple the reduced order framework into two phases, an expensive and
an inexpensive one, we need to make a crucial assumption, namely, affine decomposition.
However, in comparison to Stokes constrained optimal flow control problem, in addition to
the bilinear functionals, A and B, we are dealing with the non-linear and trilinear terms,
that are given in components form with Einstein summation on the indices ¢ and j, as
below:

o0v; O
e (0,0, ma ) = [ 22 a0, e vy ) = [, 20w ) a0,
Q ! a i
Oy,
e(”?Yvy'LU;IJ') :/Ui (N) 8%7 w; (N) dsl.

Q

It is evident that components of the above terms cannot be divided into parameters times
the parameter-independent terms, thus the affine decomposition assumption does not hold
true in this case. In such a case, one can opt for empirical interpolation methods to
approximate the parameter dependent terms. Another option, which we have opted for
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in this work, is to store the non-linear and trilinear terms in third order tensors, which
can be assembled from scratch at each iteration. In this way, the rest of the problem still
obeys affine assumption and therefore, the computational procedure can be performed in
two separate phases with the exception of reassembling the non-linear and trilinear terms
from scratch.

3.6. Test cases: parametrized Navier-Stokes constrained optimal flow
control problem

Next, we will construct the reduced order spaces for Navier-Stokes constrained optimal
flow control problem, applied to Y-shape geometry shown in chapter (2| figure (a). The
mesh elements at the boundaries and inside ) are shown in figures b) and (c)
respectively. We will consider physical parametrization, that is Reynolds number, to study
the flow pattern for different inlet flow velocities. Thus, u = Re € D = [100, 300] defining
the velocity at the inlets through the following expression:

2
Vip = — Ul <1 — T) Min, (326)

R’m Rz2n

where, 71 is constant viscosity, R;, is the maximum radius of inlets, n;, corresponds to
outward normals to the inlets I';,, and r is the distance between center of an inlet and
corresponding mesh nodes. The problem reads:

Problem 3.10. Given p € D, find (v, p, u) such that the following objective functional is
minimized
1 2 @ 2
T wusp) = 5 v (B) = vollz20) + 5 llu (k) 7 (3.27)
subject to the constraints (3.19)).

Here, v, is desired velocity, distributed across 2 through equation (2.45)) with veepst =
mm/s. At the continuous level, we consider the following spaces at continuous level:

v©Q)=[m©@)] = {v e [H' @] | vlr,, = vin Ave, = o},

P@)=I*Q), U)=[1T,)]

We sample a training set A of 100 parameter values, and snapshots are collected by solving
discretized problem for p € A. Results for a single value of parameter, for example,
p = 140 are shown in chapter [2] section [2.5.5] As discussed, the Galerkin finite element
problem has dimensions N’ = 152501 for each parameter, and takes computational time of
371.6 seconds. The offline phase starts with snapshots collection, where, the Galerkin finite
element problem is solved 100 times. In figure|3.6.1] we show the eigenvalues in a decreasing
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-e-velacity
—~4—velocity supremizer
-5 pressure
-3 control

adjoint velocity
= -G adjoint velocity supremizer
10 == T =8 =¥~ adjoint pressure

Figure 3.6.1: Eigenvalues reduction for Navier-Stokes constrained optimal flow control
problem

order on a logarithmic scale for Nj,,; modes. It can be seen that for Ny, = 10 < |A]
POD modes, the energy captured by the arranged eigenvalues for state velocity is decreased
from O (1011) to approximately O (10*5). Thus, 10 eigenvalues successfully capture 99.9 %
energy of the snapshots.

Thus, the reduced order spaces are generated from corresponding eigenvectors and the
total dimension of reduced order problem is N = 13N, = 130 + 1, where an additional
basis is for the lifting for non-homogenuous Dirichlet conditions at the inlets. Furthermore
in figure [3.6.2] we report the controlled velocity and the control achieved by the reduced
order problem, where the former is attained using 41 reduced bases and the latter is
attained using 10 reduced bases, in comparison to N'= O (105). It can be seen that from
the figures [3.6.2(a) and [3.6.2b), that the solution approximated by using reduced order
spaces is almost the same as the Galerkin finite element solution, thus, we can claim that
our reduced order framework retains the reliability of the high order methods.

We also verify this claim through the error plots shown in figures|3.6.3(a) and [3.6.3(b).
Figure [3.6.3(a) shows the plot of error calculated for each solution variable using the
following norms, on a logarithmic scale:

Es = llsn (1) —sn (W) ls()s € = llzn (1) —2n (1) I z()s Eu = llun (B) —un (1) u(r,),
(3.28)
and the figure m(b) shows the total average and relative errors and their attained max-
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Figure 3.6.2: (a). Controlled velocity achieved by POD-Galerkin for i = 140. (b). Control
magnitude achieved by POD—-Galerkin for p = 140.

ima on the logarithmic scale, calculated through the following expression:

Es & Eu

Sre T Zre TP gure T TR (329)
C lsells@ N EAPTO) b o)
1/2
er=(e2+e2+e2) ", (3.30)
Er,, = er (3.31)

1/2?
(sl gy + lunllZ ) + 128030 )

It is evident from the plots that through reduced order framework, using 10 POD modes
for each solution variable and the supremizers and correspondingly attaining 131 reduced
basis, we get the errors in velocity and pressure approximations to be reduced from O (101)
to about O (107%) and from O (10%) to about O (1075) respectively. Furthermore, the
maximum relative error for the solution variables is O (10_1) and is decreased to O (10_7)
as the POD modes are increased from n =1 to n = Np42.

Furthermore, we calculate the difference between Galerkin finite element and POD-
Galerkin approximations of objective functional 7 as below:

Eg =T (xnip) = T (xn; 1) |, (3.32)

and report it in figure for 6 POD modes as afterwards the objective functional ap-
proximated by both Galerkin finite element and POD—Galerkin methods is exactly the
same.
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Figure 3.6.4: (a). Table demonstrating computational performance of POD-Galerkin for
Navier-Stokes constrained optimal control problem. (b). Error between FE and POD-
Galerkin reduction of J for Navier-Stokes constrained optimal control problem.
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Concluding remarks

In this chapter, we have introduced the parametrized version of optimal flow control prob-
lem constrained by Stokes equations and Navier-Stokes equations. Then, we have recon-
structed a reduced order framework based upon POD—Galerkin and we make a few remarks
on the framework, as below:

(4)

(i)

(iid)

(iv)

Our solution approach has been optimize-discretize-reduce, thus the reduced order
framework constructed in this chapter takes in the full order solutions, that are
snapshots, as the building blocks.

The nested saddle-point structure of the optimal flow control problem and hence, the
resulting block structure of the algebraically defined optimality system are preserved
in the reduced order problem.

We remark that to attain a unique and stable reduced order solution, one has to
satisfy both LBB inf-sup condition and Brezzi’s inf-sup condition at the reduced
order level. However, to ensure that the construction of reduced order spaces is
correct and is done without any pollutant, we have to satisfy the aforementioned
conditions at the snapshots level too.

We have shown the numerical results in for Stokes and Navier-Stokes constrained op-
timal flow control problems in sections[3.3]and [3.6], respectively. It is to be noted that
these numerical results show reduction in the dimensions of the spaces from O (10%)
to O (10%) and reduction in the computational time of atleast O (10') seconds.

Lastly, we remark that the numerical results show the offline phase to be computa-
tionally expensive, however, it is justifiable since the computational cost of this phase
depends upon cardinality of sampled training set, the cost of high order solutions and
in case of Navier-Stokes state constraints, it also depends upon the cost of reassem-
bly of the non-linear and trilinear operators from scratch and also upon the cost of
iterative numerical methods for non-linear PDEs-dependent problems.

We reiterate the offline phase, although being costly, needs to carried out only once and
thanks to the reduced order spaces, for tuning different parameters we only need to repeat
the online phase with computational cost much lower than both the offline phase and the
high order methods. In the next chapter, we will extend the application of this framework
to cardiovascular problems discussed in chapter [2}
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In this chapter we will extend application of the reduced order model for parameterized
optimal flow control problems, constructed in chapter [3 to the cardiovascular problems
introduced in chapter The aim of this chapter is to address the challenge of high
computational cost arising from implementation of full order methods only in parametrized
settings, in patient-specific hemodynamics modeling. In the discussion henceforth, we will
first recall the clinical case, introduced in chapter [I] and afterwards, we will re-solve the
numerical optimal flow control problem, shown in chapter [2] section [2.6] in the reduced
order framework for different parameter-dependent scenarios. Furthermore, we will make
the comparisons between the implementation of high order and reduced order methods,
regarding the computational cost and we will show that in the implementation of the
proposed reduced order optimal flow control framework, we retain the accuracy of high
order numerical methods.

4.1. Clinical case: an overview; aims and objectives

In this section, we will recall the clinical case of triple coronary artery bypass graft surgery
performed in Sunnybrook Health Sciences Centre, Toronto, Canada. Triple in the previous
sentence is indicative of the surgery been performed to restore blood supply to the cardiac
muscle from three different stenosed arteries that include left anterior descending artery

75



76 Chapter 4. Applications to patient-specific coronary artery bypass grafts
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Figure 4.1.1: (a). Stenosed coronary arteries: left anterior descending artery (LAD) (dark
blue, =;), first obtuse marginal artery (OM1) (light blue, Z3) and posterior descending
artery (PDA) (magenta, Z2). (b). Grafted vessels: right internal mammary artery (RIMA)
(green, =) grafted to LAD, saphenuous vein (SV) (red, Zg) grafted to OM1 and saphenuous
vein (SV) (yellow, =Z5) grafted to PDA.

(LAD), first obtuse marginal artery (OM1) and posterior descending artery (PDA), shown
in figure a), marked with different colors and symbols Z;, i = 1,2,3. Consequently,
the surgeon has made three graft connections using right internal mammary artery (RIMA)
and saphenuous vein (SV) to the blocked arteries separately. We mark these newly con-
nected vessels with =;, ¢ = 4,5,6 as shown in figure (b) and we remark that the
geometries in figure are reconstructed from the CT-scan for corresponding case, fol-
lowing the algorithm discussed in chapter [I}

From a mathematical point of view, presumably if in-vivo physiological measurements
are made using modern imaging techniques, such as 4D flow cardiovascular magnetic res-
onance imaging technique, then it can be of interest to match these physiological mea-
surements through computational hemodynamics models in corresponding patient-specific
cardiovascular geometries. However, as discussed earlier, the accuracy of the numerical
models relies on the quantification of boundary conditions. Although surrogate models are
extensively being used to approximate the boundary conditions [85, [86l [T0T], they are usu-
ally complicated and require manual tuning of parameters until results with user-desired
accuracy are attained [96] 95, [R9]. Therefore, in this work we have been interested in
implementation of such a framework in computational hemodynamics modeling that can
tune the boundary conditions required to match patient-specific physiological data, in an
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automated manner. In chapter 2, we have shown construction of such a framework and its
applications to patient-specific coronary artery bypass grafts. For the sake of simplicity,
we have relied on Neumann boundary conditions.

Furthermore, another challenge in the numerical modeling of hemodynamics in patient-
specific cardiovascular volumes is the high computational cost, arising from sufficiently fine
mesh size; a requirement for stability and accuracy of the numerical techniques, and from
required repeated computations in parametrized settings. To deal with this issue, we
have shown a reduced order framework based upon POD-Galerkin in chapter [3] and have
verified the reduction in computational cost through its applications to idealized geometries.
Moreover, we have shown that these methods retain the accuracy offered by high order
numerical methods in simple 2-dimensional and 3-dimensional idealized geometrical cases.

In the discussion henceforth, we will consider different inflow velocity scenarios gener-
ated by tuning Reynolds number and will try to match the desired velocity with the re-
sulting reduced order simulation velocity in patient-specific coronary artery bypass grafts.
The control in this case is imposed to automatically tune the required outflow conditions.
Furthermore, we will study this problem in three different geometries, comprising of single
graft connections and double graft connections. We remark that these geometries are sub-
geometries of the U;Z;, i =1, -+, 6 (see figure [l.1.1[(b)), reconstructed from the case of
triple coronary artery bypass graft surgery.

4.2. Stokes constrained optimal flow control: single graft connection

In the first numerical test, we consider the single graft connection, between right internal
mammary artery (RIMA) and left anterior descending artery (LAD) and label it by Q,
(see figure M(a)) Moreover, we will solve the Stokes constrained optimal flow control
problem, demonstrated in chapter 2]section [2.6.1] with POD-Galerkin and we will illustrate
the speedup achieved by the reduced order framework. The continuous problem definition
is given in problem [3.1]

Furthermore, we consider veonst, magnitude of the desired velocity to be 350 mm/s and
v, to be distributed across €2, through expression . The parametrization is considered
the velocity profile at the inlets I';, of €, defined by the following expression:

2
Vin (1) = —ZZL (1 - RZQﬂ) Nin, WM ED. (4.1)
Here the parameter g € D is considered to be physical, and more specifically to be Reynolds
number, that is, g = Re € D = [70,80]. Thus, this test case will match Stokes velocity v
with the desired velocity v, for different dfferent inflow velocities v;,, generated by tuning
of Re. Moreover, control is the flux or the energy per unit length at the outlets I',.

The velocity, pressure and control solution spaces at the continuous level are given
below:

3
V(Q) = H%inUFw (Qq) = |:’U € [Hl (Qa)} :v|p,, = Vin, and v|p, =0/,
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Mesh size 42354
D [70, 80]
|A| 100
Offline phase | 4191.32 seconds
Online phase 6.4 seconds
¥
Table 4.1: (a). R 5"5 e e B

Figure 4.2.1: (a). Table demonstrating computational performance of POD—-Galerkin for
Stokes constrained optimal control problem. (b). Mean and maximum speedups for solu-
tion and objective functiona— achieved by POD-Galerkin for Stokes constrained optimal
control problem.

P(Q) = 17(), and U (T,) = [22(1,)]".

In the implementation of POD—-Galerkin, we randomly sample A C D such that A
contains 100 parameter values. The offline phase consists of snapshots construction for
these parameter values by solving truth problem, that is the system , through Galerkin
finite element method. At this level, stable P2 — P1 pair for state and adjoint velocity and
pressure and P2 for control are used. We remark that with the use of equivalent state
and adjoint spaces and the Taylor-Hood pair for velocity and pressure, we guarantee the
satisfaction of Brezzi’s inf-sup condition and LBB inf-sup condition. The offline phase
ends with the construction of reduced order bases using N,,4, = 10 POD modes and takes

4191.32 seconds (see table a)).

We remark that at the reduced order level, to satisfy Brezzi’s inf-sup condition and
LBB inf-sup condition, we take the supremizers enriched and aggregated state and adjoint
spaces. The online phase comprises of solving the reduced order problem for different
values of p chosen from D and takes only 6.4 seconds each time.

We illustrate average and maximum speedups attained in this case through figure
4.2.1b). An average speedup of O (10%) is achieved for both, the output objective func-
tional J and solution variables § = wv,p,u,w,q, as n goes from 1 to N,,4., with the
maximum speedups falling in the same range. Furthermore, in this case, we report the rel-
ative error for POD—-Galerkin approximations of state velocity, state pressure and control
to be O (107°), O (1077) and O (1072) respectively.
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4.3. Navier-Stokes constrained optimal flow control problem

In this section, we will solve the numerical experiments dealing with Navier-Stokes con-
strained optimal flow control, shown in chapter [2] section through POD-Galerkin.
We will deal with the three different geometries shown in figure 2.6.1] and we will divide
these numerical tests into three sub-cases accordingly. Furthermore, in all these numer-
ical tests we will match Navier-Stokes velocity with the desired velocity with magnitude
Veonst = 350 mm /s, defined by the following equation:

7’2 .
Vo = Uconst (1 - ﬁ tcia (S {17 2}7 (42)

(2
where R; denotes maximum radius of a vessel, ., denote the tangents to the points of
centerline of a vessel, in the axial direction and r is the distance between mesh nodes and
nearest point on the centerline of a vessel. Moreover, in these numerical tests the error
plots will be shown on the logarithmic scale and will be calculated through the expressions
given below.

Average error for the variables § = s = (v,p),u, z = (w, q) is defined as:

Es = llsn (1) —sn (1) sy, €= = llzn () —2x (1) | z()s  Eu = [Jun (1) —ux (1) |ur,),
(4.3)

absolute average error and absolute relative error for the variables are calculated by the
following equations:

Es E. Eu

gsre = T gzre = 9 gure = T 44
= Tonlsar” 51 = Tl £ Tanllons 44
1/2
&r = (552 +E2+ 53) / , (4.5)
&
gTrel = T (46)

1727
(lsnllZ gy + lunliZ e, + 2% )

and difference between the output for J achieved by Galerkin finite element method and
POD-Galerkin method is defined as:

Er =T (xn;m) — T (xn;14) |- (4.7)

4.3.1 Case I(a): single graft connection

In the first example, we will consider the graft connection between right internal mammary
artery (RIMA) and left anterior descending artery (LAD). The geometry is extracted from
the triple coronary artery bypass grafts surgery case and it is shown in figure [2.6.1{(a). We
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label the geometry with €, and consider the inlets of both RIMA and LAD as I';,, such
that the blood flow is in the downstream direction. Moreover, we consider the physical
parametrization, p = Relp, € D = [70,80] in inlet velocity profile, defined as below:

2
Vip, = —ZH <1 - ];2> TNip. (4.8)

Here, R, is the maximum radius of an inlet, r is the distance between mesh nodes of
the inlet and corresponding center and m;, denotes outward normal to the inlet. With
Navier-Stokes state equations, the mathematical problem is given by problem [3.5] and at
the continuous level we consider the following solution spaces:

v Q) = [H, o, )] = {v e [2 @)]" | lr,, = vin Avlr, = o} ,

P()=L*(Q), and U(T,)=[L*(T,)]

We randomly sample training set A of 100 parameters and start the offline phase of
POD-Galerkin by collecting the snapshots. The snapshots in this case are the solution
of the Galerkin finite element optimality system for all p € A (see figure .
At this level, we utilize S, = P2 — P1 = Z,, for state and adjoint velocity and pressure
respectively and Uy, = P2 for control. Thus, at the snapshots level the fulfillment of LBB
inf-sup condition is guaranteed and thanks to the equivalence between state and
adjoint finite element spaces, Brezzi’s inf-sup condition (see theorem (m)) is fulfilled too
at this level. Therefore, the stability of the snapshots is ensured and we illustrate it for a
few snapshots of state velocity and control for p = 72.923, 75.073 and p = 78.527 in figure
We have seen in section case I(a) (see table [2.2]case I(a))), that one snapshot
in this case takes 1214.3 seconds. Furthermore, we reiterate that the non-linear optimality
system [2.48] is solved through Newton method for each snapshot.

The POD bases are constructed by solving the eigenvalue problems for the col-
lected snapshots. We report 8 eigenvalues in decreasing order in figure £.3:2] It is evident
that 6 eigenvalues successfully capture 99.9 % energy of the snapshots, thus we can discard
the rest. From N,,q, = 6 POD modes, we generate the supremizer enriched and aggregated
reduced spaces comprising of 79 reduced bases in total, subdivided into 24 bases each for
state and adjoint velocity, 12 reduced bases each for state and adjoint pressure, 6 reduced
bases for control and 1 basis corresponds to the lifting function for non-homogenuous inlet
Dirichlet conditions. We remark the Brezzi’s inf-sup condition (see theorem and LBB
inf-sup condition (see equation (3.14))) are satisfied by the reduced order spaces constructed
in this way. This phase ends with the construction of reduced order spaces and requires
total CPU time of 16, 825.9 seconds.

For the online phase, we take p = 80 and solve the reduced order optimality system
given by equations using Newton method. This phase takes 109.3 seconds only and
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Figure 4.3.2: Case I(a): eigenvalues reduction

the reduced order controlled velocity and boundary control are generated from 49 and 6
reduced bases respectively. We report the reduced order controlled velocity and boundary
control in figures [4.3.3|(a) & (b), respectively. The full order approximations of controlled
velocity and boundary control for p = 80, using 433288 degrees of freedom, are reported
in figure case I(a)(b) & case I(a)(c), respectively. It is evident that both Galerkin
finite element solution and POD—Galerkin solution match each other, hence the accuracy
of Galerkin finite element solutions is retained in this case.

In figure |4.3.4(a), we report the error plots & for § = v,p,u,w,q, calculated using
equation (]4__3'[) &, decreases from 10 to 1075 approximately, &, decreases from 108 to
102 and &, decreases to 107 as n goes from 1 to 6. Error reduction for adjoint variables’
approximations follows similar pattern as the error reduction for state variables. Absolute
average error and absolute relative error are calculated using equations (4.4) — (4.4) and are
reported in figure b). &r reduces from approximately 10% to 1072 forn = 1,- -+, Nypaz
with same behavior for maximum Ep. A reduction from 102 to 10719 is achieved for both
Er.,, and maximum &g, , in this case.

Figure4.3.4{(c) shows the difference between J computed through full order and reduced
order methods. It is calculated using equation (4.7)) and a reduction from approximately
102 to 1078 is observed with similar behavior for relative error as n increases.
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Figure 4.3.3: Case I(a): POD-Galerkin approximation of controlled velocity (mm/s) (left).
POD-Galerkin approximation of boundary control (mm?/s?) (right).

4.3.2 Case I(b): single graft connection

In the second case, we will consider another subgeometry extracted from the triple coronary
artery bypass grafts geometry shown in figure b) and we will label it by €. In this
case, the graft connection is between saphenuous vein (SV) and first obtuse marginal artery
(OM1) (see figure b)) The parameters in this case are Reynolds number at the inlets
of both saphenuous vein and first obtuse marginal artery, which will generate the inlet
velocity through the expression . The mathematical problem is given by problem

3
and we consider V () = {Hll‘mUFw (Qb)} = {'v € [H! (Qb)}?’ | v|r, = vin Av|p, = 0},

P (%) = L? () and U (T,) = [L? (I‘O)]3 at the continuous level.

In this case D = [45, 50] and sample a training set A of parameters such that |A| = 100.
The snapshots are collected by solving problem for all u € A through Newton method.
Since at the snapshots level, we are utilizing stable Tayloor-Hood pair for velocity and
pressure, we remark that the LBB inf-sup condition will be satisfied at the finite element
level. Moreover, we keep Sy, = Zj, at this level to ensure Brezzi’s inf-sup condition. Thus,
the snapshots enclose stable and unique solutions corresponding to p € A (see ﬁgure.
We recall that one snapshot calculation in this case takes 634 seconds of CPU time (see
table case I(b)).

In figure we show 8 eigenvalues in decreasing order on a logarithmic scale and
notice that 6 eigenvalues capture 99.9 % energy of the snapshots, or in other words, full
order solutions. Thus, POD bases are constructed from N,,,, = 6 retained eigenvectors
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and POD-Galerkin approximations. (c¢). Error between FE and POD-Galerkin reduction
of J.
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Figure 4.3.6: Case I(b): eigenvalues reduction

and the reduced order spaces comprise of N, = 25, N, = 24, N, = 12, N, = 12 and
N, = 6 POD bases. For online p = 50, the reduced order approximation of state velocity
and boundary control are demonstrated in [£.3.7 The Galerkin finite element solution
for p = 50 are shown in figure case I(b)(b) and figure case I(b)(c), respectively.
Comparing the two solutions we note that they are the same, thus, reduced order framework
preserves the accuracy of high order Galerkin finite element methods in this case.

Furthermore, we illustrate the errors in the solution variables v, p, u, w and ¢ in
figure case I(b)(a). We notice that &, decreases from 10! to approximately 10~°
and &, decreases from 10° to approximately 1073. The total average and relative errors
are calculated through expressions — (4.4) and we report that (£7) decreases from
10° to approximately 102 with same order of reduction observed for total relative error
(&1.,,) (see figure case I(b)(b) ). The difference between Galerkin finite element and
POD-Galerkin approximations of 7 is observed to be approximately 10' at n = 1 and is
decreased to 1078 at n = 5 (see figure case I(b)(c)).

4.3.3 Case II: Double graft connections

In this case, we will consider the two geometries shown in the previous examples combined
as one geometry (see figure (c) for details). Here, by combined, we mean that the
mathematical problem will be solved on all the mesh nodes, constituting the two coronary
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Figure 4.3.7: Case I(b): POD-Galerkin approximation of controlled velocity (mm/s) (left).
(b). POD-Galerkin approximation of boundary control (mm?/s?) (right).

artery bypass grafts altogether. Thus, the graft connections are between left anterior
descending artery (LAD) and right internal mammary artery (RIMA), and between first
obtuse marginal artery (OM1) and saphenuous vein (SV). As discussed in case II in chapter
section we will label the inlets of right internal mammary artery (RIMA) and left
anterior descending artery (LAD) as I';,, and the inlets of saphenuous vein (SV) and first
obtuse marginal artery (OM1) as I';,,. Similarly respective outlets are marked as I',, and
I'y,. We consider two physical parameters (g1, pt2), both being Reynolds numbers, that is,
p= (1, p2) = (Re\pml,Relpm) € [70,80] x [45,50] appearing in velocity profiles being
defined at inlets. Moreover, we consider following solution spaces for the velocity, pressure
and control variables respectively at the continuous level:

3
Vv (QC) = Hfl‘imUFmQUFw (QC) - |:U € {Hl (QC)} : ’U‘le = Vin1, 'U’FmQ = Vjny and ’U‘Fw = 0:| )

P(Q)=L*(Q), and U (Lo UT,,) = L (Iy U 1“02)}3

Here,

2 2
nm r Mk r
v; = — 1— —— | nin,, v; =— 1 — —— | nin,,
wmnl (Nl) Rinl ( R127L1> mni mn2 (H?) Ring ( R2 ) mo
and v, € L? (Q).
In this case, our training set A comprises of 100 values of parameters, chosen randomly.
We collect the snapshots by solving the problem ([2.8) with P2 —P1 — P2 discretization and
Newton method for all u € A. We report a few state velocity and control snapshots for
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p = (70.512,45.949), p = (78.709,46.289) and p = (72.212,48.930) in figure [£.3.9] It is
to be noted that in this case, control is not only the outflow conditions needed at either
one of the outlets but the outflow conditions needed at both I',, and I',, altogether, to
match v with v,, defined by equation with veense = 350 mm/s.  The eigenvalues
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Figure 4.3.8: (a). Eigenvalues’ reduction. (b). Average error between FE and POD-
Galerkin approx. of § = v,p,u,w,q. (c). Total error between Galerkin FE and POD-
Galerkin approximations. (d). Error between FE and POD-Galerkin reduction of 7.

arranged in decreasing order in figure [4.3.8|(a) show that 99.9 % energy of full order spaces
is successfully captured in 10 eigenvalues, thus we can generate reduced order spaces from
Ninaz = 10 POD modes. The offline phase finishes with construction of the POD modes
and costs 26, 881.7 seconds.

In the online phase, at a generic k*"—iteration, we solve the reduced order optimal
flow control system given in equation for p = (80,50) and report the reduced
order approximations of state velocity and control in figure [£.3.10] Galerkin finite element
approximations of the state velocity and control for g = (80, 50) are shown in ﬁgurecase
IT (c). Here, we again make the comparison between the Galerkin finite element method
and POD-Galerkin method and remark that the approximated solutions achieved by the
two methods are the same, hence verifying the accuracy of POD—-Galerkin.

We report a reduction from 10? to approximately 10™* and from 10 to approximately
107! in error for velocity and pressure approximations (figure M(b)) &y decreases ap-
proximately to 1076 and a similar behavior is observed for adjoint velocity and adjoint
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Figure 4.3.10: Case II: (a). POD-Galerkin approx. of state velocity (mm/s). (b). Bound-
ary control magnitude (mm?/s?).

pressure (figure M(c)) Total error £ reduces from 10° to approximately 10~! with
a decrease from 107! to approximately 10~% in corresponding total relative error (figure
4.3.8(c)). Furthermore, the difference between Galerkin FE and POD-Galerkin approx-
imations of J decreases to about 10~7 for n = 10 (figure [£.3.8(d)). The computational
performances in the three cases with Navier-Stokes constrained optimal flow control prob-
lem are reported in table

Concluding remarks

In this chapter, we have applied the reduced order framework constructed for Stokes and
Navier-Stokes constrained optimal flow control problems in chapter [3]to the patient-specific
geometrical models of coronary artery bypass grafts. We make a few remarks concerning
the computational performances observed in the numerical results obtained:

(7). In case of Stokes constrained optimal flow control problem, we observe a speed up of
O (104) maximum speed up through POD-Galerkin. In this case, the offline phase
takes O (10%) seconds while the online phase only takes O (10!) seconds. We remark
that the CPU time is reduced by O (102) seconds in this case.

(73). In the case of Navier-Stokes constrained optimal flow control problem, we have con-
sidered three different geometries comprising of single and double graft connections.
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’ | Casel(a) | CaseI(b) | Case II
Mesh size 42354 27398 605451
Galerkin finite element dofs (N) 433288 280274 715462
No. of reduced order bases N 79 79 132
D 70, 80] [45,50] [70, 80] x [45, 50]
A 100 100 100

Galerkin FE 1214.3 seconds 634 seconds 1848.13 seconds

Comp. time offline phase 16825.9 seconds | 12106.8 seconds | 26881.7 seconds

online phase 109.3 seconds 118 seconds 202.27 seconds

Table 4.2: Computational performances for Navier-Stokes constrained optimal flow contol:
case I(a), case I(b), case II.

We observe a reduction of O (102) seconds in computational time as compared to
Galerkin finite element solutions of these cases (see chapter [2] section [2.0)).

(7i7). Furthermore, we remark that the absolute relative error in the solution variables in
all three cases is reduced upto O (107%). A reduction upto O (10714) is observed for
the absolute relative error in the objective functional. Thus, in these applications,
the reduced order methods attain the same accuracy as full-order methods.

(iv). Lastly, we remark that in the case of double graft connections, the control accounts
for the combined outflow conditions at the two outlets I',, and I',.

We remark that in this work, we have utilized arbitrary values for velocity desired to
be matched through the optimal flow control framework in the real-patient cardiovascular
geometries. It is of interest to further assimilate the framework with real-patient physio-
logical data in time acquired from 4D-flow MRIs. We presume this data to be blood flow
velocity or blood flow rate and to be measured in a sub-region of coronary artery bypass
grafts. Then, the clinical problem of interest will be to match the provided medical data
of a specific patient in the geometrical models of the specific patient, reconstructed from
corresponding clinical images. From mathematical perspective, we propose taking different
slices/sections of the domain into account according to the sub-region of interest. Thanks
to the local knowledge of the centerlines, we propose identification of degrees of freedom in
these sections and the physiological measurements can be projected onto solution spaces
and assimilated in the discussed mathematical framework through expression .

In such real-life clinical problems, the full order simulations discussed in chapter 2 can
be used if a single clinical scenario is under consideration, for instance, if the clinicians are
interested in matching the clinical measurements when the exact inflow velocity is known.
Whereas, if the medical problem of interest is to study the effect of different inflow velocities
on flow behavior when matching the desired data, using only full order simulations will
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not be computationally convenient anymore. In such cases, the reduced order framework
introduced in chapter [3| can be applied to attain simulations in time-efficient and reliable
manner.
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5.1. Concluding remarks

In this thesis, we have constructed a projection-based reduced order framework for parametrized
optimal flow control problems and we have shown its applications in the clinical case of
real-life coronary artery bypass surgery. The work presented in this thesis relies on three
parts, that are, (7). construction of geometrical models for patient-specific coronary artery
bypass grafts from clinical images, (77). construction of an optimal flow control framework
with data assimilation proposed for patient-specific physiological data and (ziz). imple-
mentation of reduced order methods in the optimal flow control framework in many-query
parameter-dependent settings. We summarize the thesis below:

e We have covered the first part, that is, the patient-specific geometrical reconstruction
from clinical images, in the chapter [1| for the case of triple coronary artery bypass
grafts surgery. In the section we have briefly summarized the algorithm imple-
mented for the purpose. The steps taken into account include pre-processing, level
sets segmentation, surface generation through marching cube algorithm, extraction
and smoothing of centerlines, maximum inscribed radii polyballs insertion, decapping
and tetrahedral mesh generation. Each step relies on a modeling or a programming
library, for example, the first few steps rely on VMTK [12] [84], the smoothing of cen-
terlines and the polyballs insertion relies on python-based programming in VMTK
and VTK [97], the decapping step is performed with the help of ParaView [5] and
VMTK and finally the mesh generation uses TetGen. Furthermore, the pre-processing
step constitutes of three stages, namely, resampling, smoothing and enhancement. At
the resampling stage we augment the resolution of acquired image to match it with
the image segmentation procedure, for example, level sets segmentation, then at the
smoothing step, we apply anisotropic diffusion filter to remove high-frequency noise
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from the image and at the enhancement step, vessel enhancement filters are applied
to make the vessel-shaped structures more visible.

For the second part, that is, the construction of a numerical optimal flow control
pipeline, we refer the reader to chapter Firstly, we have cast the constrained
problem into and unconstrained problem by introducing new unknown variables, the
Lagrange multipliers or adjoint variables. Then, utilizing first order Karush-Kuhn-
Tucker optimality conditions, we have derived the optimal flow control problem in
a coupled optimality system that comprises of three coupled equations namely state
equation, optimality equation and adjoint equation. Then, we have introduced the
nested saddle-point formulation of Stokes and Navier-Stokes constrained boundary
control problems. The saddle-point framework gives rise to a compact block structure
which eases the formulation and computations in the discretized settings. We have
shown the existence of unique and stable solution to such problems through Brezzi’s
theorem and we have remarked that the theorem will hold true as long as the spaces
are chosen with care and with some restrictions, that is, the equivalence relation
between state and adjoint spaces.

Afterwards, we have numerically approximated the optimal flow control problems
using Galerkin finite element methods. We reiterate that if the finite element spaces
are chosen such that the discrete state spaces are equivalent to the discrete adjoint
spaces, then the existence of unique solution can be guaranteed through Brezzi’s the-
orem. In the last section of this chapter, we have applied the numerical optimal flow
control framework to the case of triple coronary artery bypass grafts surgery, intro-
duced in chapter [II Through these applications, we have shown the computational
cost for a single simulation is at least O (10%) seconds and for mesh size of O (10%)
to O (10°), the finite element degrees of freedom are of O (10°).

The third part, that is, the implementation of reduced order methods in the optimal
flow control framework, has been covered in chapter [3] We have constructed the re-
duced order spaces following POD—Galerkin for Stokes and Navier-Stokes constrained
optimal flow control problems. The construction of these spaces has been based upon
energy of snapshots, which are taken to be Galerkin finite element solutions to the
discrete problem. The parametrization considered in these cases is physical, that is
Reynolds number, as their tuning can generate different flow velocities at the inlets,
which can be considered as different viscosity based scenarios. Furthermore, we have
shown some test cases for idealized Y-shaped geometry, that can be considered sim-
ilar to a Y-graft. These tests are made in comparison to similar tests made by using
only full-order methods in chapter [2|

In chapter [4, we have applied the reduced order framework constructed in chapter
to the clinical case of triple coronary artery bypass grafts. We have considered three
different cases with two dealing with single coronary artery bypass grafts each and
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the third one dealing with two coronary artery bypass grafts. The parametrization
considered in this case is in Reynolds number that generate the inflow velocity. Fur-
thermore, we have made the comparisons in term of computational costs and the
dimensions of solution spaces with the cardiovascular applications demonstrated in

chapter

The numerical results for the application of full-order methods for optimal flow control
problems in patient-specific cardiovascular geometries show that for a sufficiently fine mesh
size, required for the accuracy of these methods, the number of degrees of freedom is usually
large. This is because of the fact that we have additional unknown variables, that are, the
adjoint variables, because of the equivalence condition between state and adjoint spaces
and because of stable finite element pair of spaces for velocity and pressure, that is generic
Lagrange bases comprising of piecewise polynomials of degree 2 for velocity and P1 for
pressure. We also analyze the computational time, which is of O (103) seconds in these
applications. This order of computational effort is not expensive for a single simulation,
however, this is not the case in cardiovascular problems. It is inevitable to consider many
hemodynamics scenarios against different tunings of a flow parameter, to accurately model
the hemodynamics for the specific patient. In such problems, spending a computational
time of O (103) seconds repeatedly is quite expensive.

The reduced order methods implemented to address this issue show a reduction in com-
putational cost in terms of CPU time from O (10%) to O (10') seconds while approximating
the numerical solution in the spaces generated from O (102) bases rather than the spaces
comprising of O (10°) degrees of freedom. These results also showed the reduced order
methods to preserve the accuracy of Galerkin finite element method. Furthermore, thanks
to the affine decomposition assumption, we have decoupled the computational procedured
in offline-online phases. The offline phase required high computational effort but since it
needs to be performed only once, the effort is necessary and bearable for the applications
comprising of parametrized problems. We also remark that the optimal flow control frame-
work satisfactorily quantifies the unknown outflow conditions needed to match the desired
data, as is shown by the results for cardiovascular applications in chapter

5.2. Future perspectives

In this section, we will close this thesis with proposing some possible future directions for
the extension of this work.

e Patient-specific data assimilation. In this work, we have assimilated the optimal
flow control framework with arbitrary desired data for the cardiovascular applica-
tions. A near-future possible extension of this work is to assimilate the reduced order
parametrized optimal flow control framework with patient-specific physiological data
to be acquired from 4D-flow MRIs [33].
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Chapter 5. Concluding remarks and future perspectives

e Time-dependent optimal control problems. Furthermore, in this work, we have con-

structed the reduced order framework for steady state optimal flow control problems
into account, ignoring the time-dependency of coronary flow owing to their small
diameter. A possible extension is to construct a reduced order framework based
upon the monolithic structured optimality system for all-at-once solution of time-
dependent optimal flow control problems [98, [T00]. These problems can be applied to
aorto-coronary bypass grafts cases in which aorta having large diameter is involved.

Surrogate lumped parameter network models in boundary conditions. Another extend-
able direction for this work is to implement the control through surrogate lumped
parameter network models at the boundaries rather than simpler Neumann condi-
tions. We anticipate more accuracy in the reduction of objective functional and better
approximation of hemodynamics variables through this implementation.

Fluid-structure interaction (FSI) problems. Lastly, we remark that in this work we
have considered fixed geometrical models and the vessel walls to be rigid. Thus, this
work does not take into account the fluid-structure interaction, which is necessary to
consider for accurate computational hemodynamics models. Therefore, we propose
that a possible future direction for the extension of this work is towards FSI problems
211, 20].
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