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Introduction

Polymers are macromolecules made up by repeated simple units called monomers

that are strung together with covalent bonds. They can be classified in several ways:

homopolymers, composed by the same type of monomers, or heteropolymers when

monomers are chemically diverse; they can be linear or circular, as well as branched.

Polymers are ubiquitous in everyday life and, like macroscopic ropes, can become

spontaneously entangled. In the case of linear polymer chains, knots can be untied

by a suitable motion of the filaments and this non permanent entanglement is re-

ferred to as physical knots. On the other hand, if the polymer ends are joined, the

geometrical self-entanglement becomes trapped permanently in the form of a proper

mathematical knot, whose topology cannot be changed by any geometrical rearrange-

ment of the polymer except by cutting it.

Spontaneus knots have been reported in biopolymers too. Although no knots have

yet been found in naturally occurring RNAs [1], they have been documented in pro-

teins [2–10] and in DNA filaments, both in vivo and in vitro [11–23]. Indeed, it

has long been known that genomic DNA can be highly entangled due to the high

packing degree that it attains in all organisms, from eukaryotic chromosomes [24]

down to minimalistic viral genomes [15, 25]. For instance, the µm-long genome of

bacteriophages is packed inside capsids having diameter of about 50 nm. Such tight

packing has been shown to introduce abundant and complex DNA knots [26,27].

In addition, it is also known that the incessant DNA processing involved by replica-

tion, transcription and recombination can lead to the (statistically inevitable) emer-

gence of DNA knots (and links too) [28,29].

On the other hand bacterial DNA, which is circular, has to be kept unknotted and

unlinked at the very end of the replication; failing to do so would be fatal for the cell

as the replicated genetic material would not be separable into the two daughter cells.
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More in general, because of the intimate connection between structure and function

in biomolecules [30], there is the biological necessity to maintain a tight control on the

degree of entanglement of these biomolecules in vivo. Therefore, many efforts have

been spent to understand both the mechanisms leading to the emergence of knots in

biomolecules as well as their impact on biological functionality.

In bacteria and eukaryotic cells, the detrimental consequences of DNA entanglement

are avoided via active mechanisms, based on topoisomerase enzymes, to remove DNA

knots and links [13,28,31–34].

Detecting DNA topological state is most commonly achieved via gel electrophore-

sis that can efficiently separate charged polymers having different length, molecular

weight, level of supercoiling and topology [35–37]. Note however that such topolog-

ical profiling is limited of DNA lengths ≤ 12 Kbp. Recent breakthroughs in single-

molecule techniques have pushed this upper bound to 150Kbp, though they are not

standarly used yet [38].

The experimental efforts that, over the decades, have provided such a comprehensive

picture of biopolymer knotting, have been complemented by an equally intense the-

oretical and computational activity. This has been aimed at understanding both the

incidence of knots in specific proteins or DNA systems, as well as the more general

underlying physical principles.

For the latter, we recall that several studies have systematically investigated how the

intrinsic properties of polymers affect their equilibrium knotting probability.

Arguably, the first and best known of such studies is the seminal work of Frisch,

Wasserman and Delbruck [39], that first conjectured how the knotting probability

increases with a polymer’s contour length. Later studies have addressed the impact

on entanglement of spatial confinement as well as of the thickness of the polymer

itself (an effect relevant for DNA where it can be modulated by the concentration of

counterions) [21,40–43].

In addition to this, several other works have taken a complementary standpoint, and

examined how the presence of knots influences, in turn, the physical properties of

polymers, such as the metric and dynamical ones [44,45].

Interestingly, one general aspect that has so far eluded an in-depth investigation is
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how the knotting probability is affected by a polymer’s bending rigidity at fixed con-

tour length.

This open questions has motivated the first part of the work that is presented in this

thesis where, starting from a general model of flexible chains I systematically consider

how the knotting probability depends the bending rigidity. As I discuss, the results

is quite surprising: as one goes from the fully flexible to the rigid case, the decreas-

ing compactness of the chains is not accompanied by an analogous decrease of their

knotting probability. Consequently, the equilibrium incidence of knots is strongly

non-monotonic.

The second part of my thesis is motivated by the intriguing interplat of DNA knots

and supercoiling. These, in fact, can both be simultaneously present in bacterial

DNA in vivo, and as already mentioned, can impact the funtionality of the cell. In

earlier work [46] this interplay has been addressed for the simplest knot types. Here,

I will extend consideration to more complex knots, and in addition use molecular

dynamics simulations and oxDNA [47], an accurate mesoscopic DNA model, to get

a detailed structural and dynamical insight too. In this case too, the results were

unexpected: essential tangles of the supercoiled DNA knot are very long-lived, and

remain persistent over timescales that are much longer than the metric relaxation

times.

The overall organization of the thesis is as follows:

In chapter 1, I introduce a general coarse-grained model for semiflexible rings, as well

as the Monte Carlo method that I used to sample its canonical conformational space.

Secondly, I describe the oxDNA model and the Langevin dynamics used to simulate it.

In chapter 2, I provide a brief introduction to knot theory, which sets a reference for

concepts used in the thesis, describe how we detect knot types and locate knotted

portions in closed chains. I will also briefly survey concepts related to link theory

and on which we rely to profile of properties of supercoiled dsDNA.

In chapter 3, I present a computational and theoretical study to explore how the knot-

ting probability of ring polymers depends on its bending rigidity. As anticipated, I
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found a non-monotonic profile for the knotting probability, as well as for the length

of the knotted region. I will also discuss how thermodynamic reweighting techniques

can be used to compute the free energies of knotted and unknotted rings, their en-

tropic and energetic contributions and to explore how the enthalpic-entropic interplay

is regulated by the bending rigidity. The insight will give a better understand of the

non-monotonic behaviour from a physical perspective.

In chapter 4, I will build on the results of chapter 3, and extend them with an approx-

imate analytical approach. To do so, I will introduce and use a heuristic mapping

between semi-flexible chains and self-avoiding polygons, another widely used polymer

model. As I discuss, the mapping confirms and extends the results on knotting prob-

ability for previously unexplored combination of chain lengthh and bending rigidities.

In particular up to length ≥ 20000 the knotting probability behaviour switches from

unimodal to bimodal.

In chapter 5, I move on the second main topic and discuss the effect of entangle-

ment and supercoiling in DNA rings. The analysis relies in part on the capability

of identify plectonemically-wound DNA region, and I will accordingly describe the

algorithmic approach that I developed to thhis purpose.As I discuss, the presence

of topological constraints, together with supercoiling, due to torsional stress, affects

very significantly the dynamics of the ring. In particular, when both are present they

freeze, for time-scale larger then our simulation time, the diffusion of knotted and

plectonemically-wound regions along the ring, an effect with possible implications for

topoisomerases action.

In chapter 6, I study another type of interplay between supercoiling and knots., mo-

tiveted by the recent breakthrougs results [24], that showed that eukaryotic DNA can

be knotted in vivo. The result also motivated a collaborative project with the group

of prof. Roca of Structural Biology Unit of Barcelona, with aiming of studying the

effect of positive supercoling on the knotting of yeast minichromosomes. We show,

via computer simulation and using a simple model, that the level of compactness

comparable with that expectedly introduced by positive supercoiling, can enhance
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the knotting probability and complexity similarly to the experimental results.

Finally, in chapter 7, I will overview the aforementioned results for a common per-

spective and outline possible directions for future studies.

The above results have been presented in the following publications, on which this

thesis is based:

• L. Coronel, E. Orlandini, C. Micheletti.
Non-monotonic knotting probability and knot length of semiflexible rings: the
competing roles of entropy and bending energy
Soft matter, 13 (23), 4260-4267

• L. Coronel, A. Suma, C. Micheletti.
Dynamics of supercoiled DNA with complex knots: large-scale rearrangements
and persistent multi-strand interlocking
Nucleic Acids Research, Volume 46, Issue 15, 7533-7541

• E. Uehara, L. Coronel, C. Micheletti, T. Deguchi.
Bimodality in the knotting probability of semiflexible rings suggested by map-
ping with self-avoiding polygons
REACT, Volume 134, Pages 141-149

• A.Valdés, L. Coronel, B. Mart́ınez-Garćıa, J.Segura, S.Dyson, O.Diaz-Ingelmo,
C. Micheletti, Joaquim Roca.
Transcriptional supercoiling boosts topoisomerase II-mediated knotting of in-
tracellular DNA
Nucleic Acids Research, Volume 47, Issue 13, 26 July 2019, Pages 6946-6955.
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Models and methods

1.1 Introduction

In this chapter I describe the main models and methods that are used in the remainder

of the thesis. The material is organized as follows: first, I present a general coarse-

grained model for semiflexible chains and the Monte Carlo method used to sample

its canonical conformational space, as discussed in Chapter 3. Next, I will overview

oxDNA, an accurate mesoscopic DNA model and the molecular dynamics simulation

that have been used for the study presented in Chapter 5.

1.2 Coarse-grained model for semiflexible rings

1.2.1 Model

To explore the impact of a polymer’s bending rigidity on its equilibrium knotting

probability, we resorted to a general model of rings on N touching spherical beads.

We will indicate with~bi the bond vector connecting the centers of consecutive touching

beads, see Fig. 1.1, and with b their length, which is equal to the beads diameter.

The potential energy of the ring consists of two terms:

U = Ue.v + Ubend (1.1)

The first term, Ue.v, accounts for the excluded volume interactions: we assign infinite

energy to configuration when overlaps of beads occur and zero-energy otherwise.
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Figure 1.1: Typical snapshot of a ring of beads and insert with detail of the beads.

The second term is the bending energy and is defined as:

Ubend = κbB = κb
∑
i

(
1−

~bi ·~bi+1

b2

)
= κb

∑
i

(1− cos(θi)) (1.2)

where κb is the bending rigidity coefficient, B the total bending, and θi is the angle

between two consecutive bond vectors, see Fig. 1.1.

The model corresponds to a discretised self-avoiding worm-like chain or, equiva-

lently, a self-avoiding Kratky-Porod chain. Despite its simplicity it is not analytically-

soluble, because of the non-local effects introduced by the excluded-volume interac-

tions.

If we neglect the latter, and retain only the local bending potential, the model reduces

to a freely-jointed chain (FJC). This model is exactly soluble and, as we discuss here-

after, it allows for an exact calculation of the bond-orientation correlation function.

In the FJC model, such correlation is obtained by computing the expectation value

of the scalar product of two consecutive bonds:

〈~bi ·~bi+1〉 =
1

Z

∫ N−1∏
i=1

d~bid~bi+1
~bi ·~bi+1e

−βUbend (1.3)

where β = 1/KBT , with KB the Boltzmann constant. It is possible to define the

partition function as:

Z =

∫ ∏
i=1

d cos(θi)e
−βκb(1−cos(θi)) =

∏
i=1

∫ 1

−1
d cos(θb)e

−βκb(1−cos(θb)) =
∏
i=1

Zi (1.4)
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Zi = e−βκb
2 sinh (βκb)

βκb
(1.5)

Therefore, considering eq. 1.5 and eq. 1.3:

〈~bi ·~bi+1〉 = b2〈cos(θi)〉 =
b2

Z

∫ N−1∏
i=1

d (cos θi) cos θie
−βκb(1−cos(θi)) (1.6)

=
b2

Zi

∫ 1

−1
d (cos θi) cos θie

−βκb(1−cos(θi)) (1.7)

=
b2

Zi

(
∂Zi

∂(βκb)
− Zi

)
(1.8)

= b2
(
∂log(Zi)

∂(βκb)
− 1

)
(1.9)

Finally, using the Langevin function L(βκb) = coth(βκb)− 1
βκb

, eq. 1.3 can be written

as:

〈~bi ·~bi+1〉 = b2L(βκb) (1.10)

Because the bending angles are statistically independent, the correlation function of

two bonds at sequence separation l can be factorised, yielding an exponential decay:

〈~bi ·~bi+l〉 = b2(L(βκb))
l ≈ b2e−l·b/lp (1.11)

The decay length, lp, is termed the persistence length, and it is equal to:

lp = −b/ log

[
coth

(
κb
KBT

)
− KBT

κb

]
, (1.12)

which, in the limit of κb � KBT , simplifies to

lp = bκb/KBT . (1.13)

The persistence length is often used to define the Kuhn length, lKuhn ≡ 2 lp, which

is the bond length of a, equivalent random walk having the same contour length and

mean square gyration radius (see below) of the FJC.
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1.2.2 Metric Properties

Gyration Radius The quantity that we used to characterize the typical size of the

polymer is the mean square radius of gyration, defined as:

R2
g ≡

1

N + 1

∑
i

(~ri − ~rCM )2 (1.14)

where ~rCM ≡ 1
N

∑
j ~rj , is the position of the center of mass. In general, R2

g scales

asimptotically as Nν , where ν is called Flory exponent, which is equal to 0.5 for ran-

dom walks and is approximately 0.59 for self-avoiding ones in three-dimensions [48].

1.3 Monte Carlo

We model ring polymers as semi-flexible rings of beads, described by the potential

energy 1.1. In order to study the influence of stiffness on the topological properties,

we explore different combination of length N and bending rigidity κb. This allows

to study the system from fully-flexible to rigid polymers. For each combination, we

generate a set of independent and equilibrated configurations using a Monte-Carlo

technique, as detailed below.

Sampling The Monte-Carlo (MC) method allows one to generate a series of mi-

crostates of a statistical ensemble. Starting from a given state ΓA with energy EA,

a new state ΓB is stochastically chosen. The new configuration will be accepted or

rejected following a criterion satisfying detailed balance:

ΠA→BPA = ΠB→APB (1.15)

where PA(B) is the canonical probability of occurrence of state A(B) and ΠA→B is

the transition rate from A to B. In actual numerical implementations of the Monte

Carlo sampling scheme the transition rate subsumes two distinct algorithmic steps:

a stochastic modification of state A to generate the new state, B, also termed the

trial state, and the stochastic acceptance or rejection of the newly-generated state.
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Accordingly, the transition rate can be written as:

ΠA→B = t(A→ B) · a(A→ B) , (1.16)

where t(A→ B) is the probability to generate trail state B from A, and a(A→ B) is

the probability to accept it as the new system state. The detailed balance condition

of eq. 1.16 becomes:

PB
PA

=
t(A→ B)a(A→ B)

t(B → A)a(B → A)
. (1.17)

For systems in canonical equilibrium, as in our case, PA is given by

PA =
e−βE(A)

Z (1.18)

where β = 1
KBT

, E(A) is the energy of state A and Z is the partition function. Hence,

eq. 1.17 yields the constraint that has to be satisfied by the acceptance rates, a, in

order to respect detailed balance:

a(A→ B)

a(B → A)
=
PBt(B → A)

PAt(A→ B)
=
t(B → A)

t(A→ B)
e−β(EB−EA) . (1.19)

This expression simplifies if, as in our case, the stochastic deformation rules used to

generate state B are independent of A. Under such conditions, t(B → A) = t(A →

B), and the detailed balance condition reduces to:

a(A→ B)

a(B → A)
= e−β(EB−EA) . (1.20)

The above relationship leaves some freedom of choice for the acceptance rates between

two states, as it only specifies their ratios. A common choice is the well-known

Metropolis criterion:

a(A→ B) = min

(
1,
t(B → A)PB
t(A→ B)PA

)
(1.21)

which means that if the ratio is bigger than one the new state B is accepted, otherwise

is accepted with probability equal to the ratio of the canonical probabilities. The

latter condition is implemented by extracting a uniformly-distributed random number
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A) B)

Figure 1.2: Example of crankshaft (A) and local crankshaft (B) in a ring of beads. In this
representation, the beads are smaller than necessary and disconnected for the only purpose of
visual clarity.

r ∈ [0, 1] and accepting the trial configuration if r < e−β(EB−EA). Otherwise, the

previous configuration is retained, and the Monte Carlo time is incremented.

Crankshaft Moves Because we are dealing with closed rings, our deformation

rules consist of the so-called crankshaft moves or, better, of a combination of global

and local crankshaft moves, see Fig. 1.2. These moves, in fact, preserve bond lengths

and guarantee the ergodic sampling of conformational.

The global moves involve picking randomly any two distinct beads of the ring, and

rotating one of the resulting arcs by a random angle α ∈ [0, 2π] around the axis

joining the picked beads’ centers. The local moves differ for the choice of the beads,

which is restricted to beads at sequence separation equal to 2. For every global move

we perform a sweep of N local moves. The combination of local and global moves

allows for an efficient sampling of conformational space as it balances the pros and

cons of the two types. In fact, global moves are advantageous because they can alter

significantly a conformation, which is desirable for the breadth of visited conforma-

tional space, but at the same time it can excessively increase the energy and hence be

frequently rejected; the converse is true for local moves [49]. We apply these moves,

within the Metropolis Monte Carlo scheme, starting from a perfectly circular ring

conformation.

Note that, consistently with the ergodicity condition, crankshaft moves do not nec-

essarily preserve the initial topology (knot type) of the rings, as they allow for bond

crossings (though the sampled conformations are necessarily self-avoiding).
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Figure 1.3: Model representation of a duplex. Image from [52].

Autocorrelation Time The duration of the Monte Carlo simulation was set from

the target number of independent conformations we wished to sample. For the char-

acteristic time-interval separating independent conformations, we used the autocor-

relation time of the radius of gyration, which we computed in preliminary runs. We

recall that the autocorrelation function of a general observable x is given by:

Cx(τ) =
〈(x(t)− x) (x(t+ τ)− x)〉

σ2
≈ e−τ/τc (1.22)

where x is the average on the ensemble of x, and the variance is σ2 = 〈(x(t)x)2〉. The

characteristic autocorrelation time, τc, is given by the value where Cx drops to 1/e.

1.4 Coarse-grained model for double strands DNA rings

In the second part of the thesis we studied the interplay of supercoling and knotting

in DNA rings. For such investigation we used oxDNA [47, 50, 51], an accurate meso-

scopic model that allows for representing each of the two strands in dsDNA filament.

This, in turns, makes it possible to account for torsional effects in a transparent and

straightforward manner (unlike when e.g. a single chain of beads is used to model

dsDNA).

The oxDNA is a mesoscopic coarse-grained model of DNA where each nucleotide is

represented by three beads, one for the backbone and the other two for the base and

sugar groups, see Fig. 1.3. The relative positions of the three interaction centers are

fixed and hence the beads form a rigid unit with precise geometry.

Potential Energy Properties such as chain connectivity, bending rigidity, pair-

wise, stacking and screened electrostatic interactions are all included in the potential
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energy:

V =
∑
nn

(
Vbackbone + Vstack + V

′
exc+

)
+

∑
otherpairs

(VHB + Vcstack + Vexc.) (1.23)

In this expression the index nn is related to the nearest-neighbours on a strand.

Quoting verbatim from ref. [50], the potential energy terms are described as follows:

Vbackbone is a finitely extensible non linear elastic (FENE) spring [...], with

an equilibrium length of 6.4Å representing the covalent bonds which hold nu-

cleotides in a strand together.

Vstack represents the tendency of bases to form coplanar stacks: it is a smoothly

cut-off Morse potential between base- stacking sites, with a minimum at 3.4Å.

It is modulated by angular terms which favour the alignment of normal vec-

tors, and the alignment of the normal vectors with the vector between stack-

ing sites. As such, the interaction encourages coplanar stacks, separated by a

shorter distance than the equilibrium backbone length, leading to helical struc-

tures. Right-handed helices are imposed through an additional modulating factor

which reduces the interaction to zero for increasing amounts of left-handed twist.

Vexc and V
′

exc, representing the excluded volume of nucleotides, prevent the cross-

ing of chains and provide stiffness to unstacked single strands. The lack of ex-

plicit angular or dihedral potentials along the backbone allows single strands to

be extremely flexible. For non-nearest neighbours, smoothly cut-off (and purely

repulsive) Lennard-Jones interactions are included between all repulsion sites on

the two nucleotides. For nearest neighbours, the backbone/backbone site interac-

tion is not included because the distance between sites is regulated by the FENE

spring.

VHB , representing the hydrogen bonds which lead to base pairing, is a smoothly

cut-off Morse potential between hydrogen-bonding sites, modulated by angular

terms which favour the anti alignment of normal vectors and a collinear alignment

of all four backbone and hydrogen-bonding sites. VHB is set to zero unless the

two bases are complementary (AT or GC). Together with Vstack, VHB causes the

formation of antiparallel, right-handed double helices for complementary strands.

Vcstack
represents cross-stacking interactions between a base in a base pair and

nearest-neighbour bases on the opposite strand, providing additional stabiliza-

tion of the duplex. We incorporate it through smoothed, cut-off quadratic wells,

modulated by the alignment of base normals and backbone- base vectors with
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the separation vector in such a way that its minimum is approximately consistent

with the structure of model duplexes.

The parameters of the potential were optimally set so to reproduce measurements

from thermal denaturation, unzipping and stretching experiments. In particular, they

reproduce the pitch (10.34bp per turn), and persistence length (∼ 50nm) of B-form

DNA at room temperature [50].

1.5 Molecular dynamics

The dynamical evolution of oxDNA rings was integrated numerically within a Langevin

dynamics framework.

We recall that the Langevin dynamics of a particle is described by the following

stochastic differential equation:

m~̈r = −γ~̇r −∇U + ~η (1.24)

where m is the mass of the particle, ~r is its vector position, γ is the friction coefficient,

and ~η is a Gaussian noise term. The friction and noise terms both account for the

solvent, which is not modelled explicitly. On the one hand, the particle motion

through the solvent is dissipative (an effect captured by the friction term) and, on

the other hand, the solvent acts as a heat-bath for the particle (an effect captured by

the noise terms). The connection between these two different solvent-induced effects

is embodied by the fluctuation-dissipation relationships that γ and ~η have to satisfy:

〈ηi,α(t)〉 = 0 (1.25)

〈ηα(t)ηβ(t′)〉 = 2KBTγδαβδ(t− t′) (1.26)

where α, β represent the Cartesian coordinates; δ (t− t′) the Dirac delta which means

that the force at time t is uncorrelated with the force at time t′ 6= t. For a multi-

particle system, the above equations are complemented by the condition that the

noise terms of different particles are independent at all times.

The integration of the Langevin dynamics for the oxDNA system was carried out
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within the LAMMPS simulation package using the default model parameters for the

particle’s masses and the friction coefficient [53,54].
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A compendium of Knot Theory

2.1 Introduction

In this section I provide a basic introduction to knot theory, focusing of those aspects

that are of direct relevance to the topics presented in this thesis. We are all familiar

with knots that spontaneously arise in ropes, cables and filaments. Such entangle-

ments affect, in turn, the physical properties of the strings - such as the resistance

to rupture or sliding friction - and, in fact, they are purposedly used for various

tasks, from binding multiple ropes, to producing textile structures or simply used as

ornaments.

2.2 Definition of a knot

In topology, a knot is an embedding of a closed curve in 3-dimensional Euclidean

space. Figure 2.1 shows a series of knots of increasing complexity starting from

trivial one, a planar circle, which is termed the unknot.

All knots in Figure 2.1 belong to different topological classes, as they cannot be

converted from one type to another through a series of ambient isotopies. The latter

are manipulations of the space in which the knot is embedded and correspond to

continuous deformation of a knotted string except for cutting it, passing it through

itself, see Fig. 2.3 or that shrink the curve to a point, see Fig. 2.2.

Instead of considering curves in 3-dimensional space, is is often convenient to restrict

considerations to their planar representations, the so-called knot diagrams, where

crossings are graphically represented by breaks in the underpassing portions.

Of particular importance are the minimal diagrams, which are obtained when the

number of crossings is the smallest possible for the given knot topology. All knots in
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Figure 2.1: Knot table. Image taken from wikipedia.org

Figure 2.2: Image taken from ref. [55].

Fig. 2.1 are represented by minimal diagrams.

It is also possible to assign an orientation to a knot diagram and hence associated a

conventional sign to each crossing based on the right-hand rule applied to the oriented

over- and under-passing segments, see Fig. 2.4.

Reidemeister moves The deformations of a knotted curve through ambient iso-

topies are clearly reflected as deformations of the projected planar diagram. It can be

shown that all such diagrammatic deformations can be described as a succession of

three types of (topology-preserving) elementary moves, termed Reidemeister moves:

• twist an arc in either direction to produce a loop

• move one arc over another

• move a strand completely over/under a crossing ,

as shown in Fig. 2.5.
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A) B)

Figure 2.3: A). Trival knots 01: they are both unknots, it is evident that the ring can be
easly obtain by deforming the second one. The B) panel shows the first non-trivial knot, with
non trivial crossings, that is called trefoil knot, 31. It is not possible to obtain the unknot from
the trefoil without cutting the curve. Most of the figures of knots of this chapter are made
using the Knotplot software [56]

+1 -1

Figure 2.4: Positive and negative crossings defined with the right-hand rule.

Figure 2.5: Reidemeister moves, in order from left to right: 1) Twist: for a twist in the knot
its possible to put in or take out the twist; 2) poke/unpoke: its possible to add two crossings
or remove two crossings; 3) slide: its possible to slide a strand of the knot from one side of a
crossing to the other side of the crossing.
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A) B)

twist clasp

Figure 2.6: 51 and 52 knots shows as A) torus knot, and B) Twist knot, respectively.

Classification of knots Customarily, the number of crossings in the minimal dia-

gram, the crossing number, is almost universally as the primary index of knot com-

plexity. All knots in Fig. 2.1 are, in fact, ranked for increasing crossing number. In

the standard nomenclature, knots are labelled by two integers, Ci, where C is the

crossing number and while i is a conventional enumerative index introduced to dis-

tinguish different knots with the same nominal complexity, i.e. for a knot of C = 5

crossings we have two topologically different knot, which are indicated as 51, 52, see

Fig. 2.1.

The 5-crossings knots shows also how knot of same complexity can be classified in

different families, for instance, based on notable or distinctive features of their mini-

mal representation: the torus knots, which include all prime knots that can be drawn

as a simple closed curve on the surface of a torus, and the twist knots, which includes

all knots that can be obtained by repeatedly twisting an unknotted ring and then

clasping the two ends together, see Fig. 2.6.

Writhe We introduced the diagrammatic representation of knots, the concept of

oriented curve and signed crossing. Another informative geometric observable is the

writhe, Wr, which is the sum of the sign over all the crossings and averaged over all

projections.

Heuristically, the writhe is a measure of how much a curve wraps around itself. It is a

geometric quantity because it depends on the specific geometry of the curve at hand,

and not only on its knot topology. Indeed, consider that for a given projection, the

sum of signed crossings is unaffected Reidemeister moves Type II and Type III, but

Reidemeister moves of Type I increases or decreases it by 1. The rigorous definition
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(+)(-)

Figure 2.7: A trefoil knot 31 and its mirror image. The two enantiomers are left-handed and
right-handed

.

of writhe is give by the Gaussian integral of a curve C:

Wr =
1

4π

∫
C

∫
C
d~r1 × d~r2 ·

~r1 − ~r2

|~r1 − ~r2|3
(2.1)

where ~r1, ~r2 are points on C. In Chapter 6, where we model yeast minichromosomes

with a beads-on-a-string model, we shall compute the writhe from the average sum

of the crossings sign. Instead, in Chapter 5, where we use an explict double-stranded

representation for DNA, we will naturally compute the writhe through an approxi-

mation of the Gauss integral done by Langowski and Klenin [57].

Chirality Knots can also be chiral: a property for which there exist no deformation

that brings an embedding of the knot to its mirror image. The two images of the

knot are called enantiomers, see Fig. 2.7. If such ambient isotopy exists, the knot is

called amphichiral, an example is shown in Fig. 2.8. Amphichiral knots are relatively

rare, indeed among the ones show in Fig. 2.1 the 01, 41, 63 are amphichiral.

For prime knots up to 7 crossings, the enantiomers can be distinguished by computing

the balance of left- and right-handed crossings in the minimal diagram. Notice that

the standard knot nomenclature does not distinguish between the enantiomers of

chiral knots.
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I               II                 III                 IV               V               VI 

I                     VI 

Figure 2.8: Example of amphichiral knot 41. Step I → II: deformation of the purple arc;
step II→ III: flip of the purple arc; step III→ IV: rotation of 180◦; step IV→V: deformation
of the dotted line and black one; step V → VI: manipulation of all the curves.

2.3 Topological invariants

In principle, the knotted curve could be classified by using ambient isotopies in three-

dimensions (or Reidemeister moves on its diagram) to manipulate it and establish its

topological equivalence with a set of reference knot types, such as those in Fig. 2.1.

Such procedure, however, is non-deterministic and hence of limited, or no practical

use. Most commonly, knots are classified by computing topological invariants.

Topological invariants are fingerprints of knots, they are the same for all knots of a

given class of equivalence, and they represent a powerful tool to analyse efficiently

the topology of thousands of configurations generated in numerical contexts. In par-

ticular, we mainly use the Alexander polynomial as topological invariant.

Alexander polynomials The Alexander polynomial is defined for a knot dia-

gram in terms of a single variable t and can be computed using the following algorithm:

• Assign an orientation to the diagram and for each crossing establish the sign

following the right-hand rule.
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• Assign a progressive numbering index to the n arcs, going from an under- cross-

ing to the next one, and to the n crossings in the diagram, see Figure 2.9.

• Define the matrix M with n rows corresponding to the number of crossings

and n columns in accord to the number of arcs. To compute the entries of the

matrix consider the xth crossing and rename the three arcs involved as i, j and

k in the assumption that the ith arc passes over the others, then:

if the crossing x is positive: M(x, i) = 1 − t,M(x, j) = −1,M(x, k) = t, and

the remaining elements equal to zero;

if the crossing x is negative: M(x, i) = 1 − t,M(x, j) = t,M(x, k) = −1, and

the remaining elements equal to zero;

• Iterate for all the crossings.

Consider now the minor of M : any minor of order n−1 of the matrix M obtained by

deleting any one of the rows and columns. This minor of M is the so-called Alexander

polynomial ∆(t). An example is shown in Fig. 2.9.

Since the size of the matrix and hence the determinant depend on the number of

crossings and therefore on the details of a given diagrammatic representation, the

Alexander polynomial is not uniquely defined for a given knot type. However, the

polynomials of two diagrams of a knot can differ by a quantity ±tm,m ⊂ Z. Therefore,

multiplying by ±tm will define the (irreducible) Alexander polynomial ∆(t, Ci).

The irreducible Alexander polynomial is independent of the knot diagram used to

calculate it. As in many computational studies, to identify the knot type, we compute

the Alexander polynomial values in t = −1 and t = −2, ∆(−1;Ci) and ∆(−2;Ci).

Note that that these two values depend on the knot representation respectively by a

factor (−1)m and (−2)m (as a consequence of the ±tm dependence mentioned above).

Finally, it is important to stress that exchanging positive and negative crossings for

all crossings, does not change the resulting Alexander polynomial, which is unable to

distinguish between two enantiomers of a chiral knot.

Notice that, even if, the Alexander polynomial is the same for each knot of the

class, so no move can change it, there is no guarantee that knots that are genuinely

different must have a different polynomial. Indeed, such degeneracy does occur for

the Alexander polynomial and other types of invariants too.
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A)

B)
1− t 0 0 t −1
t −1 0 1− t 0
0 1− t t −1 0
0 t −1 0 1− t
−1 0 1− t 0 t

 7−→


1− t 0 0 t
t −1 0 1− t
0 1− t t −1
0 t −1 0


2t3 − 3t2 + 2t 7−→ 2t2 − 3t+ 2 (2.2)

Figure 2.9: A) Each Xi is drawn separately in order to define a sign with the right-hand
rule, and compute the elements of the matrix. B) Deleting one row and one column we obtain
the Alexander matrix and consequently the Alexander polynomial given by the determinant
of the matrix. Image adapted from ref. [55]

2.4 Knots in open chain and length of the knotted por-

tion

So far, given the definition of knot, we only considered closed knotted curve. Indeed,

for a knot in a open curve, no matter how complex the knot can be, it is always pos-

sible to define a set of moves, not involving strand crossings, that transform it into a

linear, hence unknotted, segment. However, even if topologically trivial, knots tied on

an open chain can have mechanical effects not entirely negligible, for instance, knot in

a rope can lower the mechanical resistance. Hence, these kind of knots, even thought

they lack a strict mathematical definition, are relevant and are usually referred to as

physical knots.

Intuitively, to characterize the degree of entanglement of an open chain it is possible

to join the two ends with an auxiliary arc (in this way the topology is fixed and

the physical knot trapped in the ring) and measure the Alexander polynomial. The

closure procedure is a key element and it must be chosen appropriately and robustly
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Figure 2.10: examples of the closure schemes. Image from [58]. (a) Stochastic closure at
infinity, (b) direct bridging, (c) minimally-interfering closure.

to ensure that it does not itself introduce spurious entanglement to the chain, which

could offset the complexity of the detected physical knot.

Here we recall two main ways of closure: the stochastic closure to infinity and the

minimally-interfering closure [58].

In the first procedure, the stochastic closure to infinity, the two ends are joined

together, with two segments, on a random point taken on a sphere. The sphere

is centered around the chains center of mass and has radius much larger than its

gyration radius, see Fig. 2.10a. Different random points will generally yield different

types of knots, so for this reason one can take the most common topology out of the

many closures as the representative one. This procedure provides a more complete

statistics on the possible topologies of the chain, but needs the calculation of many

knot invariants.

The second procedure, called minimally-interfering closure, compares the arc lengths

introduced by two different closure schemes. The first scheme joins the two ends with

a straight line, and is hence called direct bridging, see Fig. 2.10b. The second scheme

prolongs the ends to their respective closest point at the convex hull and then joins

them together with an arc at infinity, see Fig. 2.10c.

The scheme with the shortest total arc length (excluding the closure at infinity for

the second scheme) is selected, in order to introduce the least amount of spurious

crossings. We use the latter method for computational effectiveness.
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Length of the knotted portion Alongside with the identification of the knot

type, we are interested also in locating the knotted portion of a given chain. We de-

fine the length of knot as the shortest portion of a curve that, after a suitable closure

has the same topology of the entire ring.

The tool we use is given by ref. [58], and it can be done via a bottom up or top-down

search of the knotted region.

In the first case, the search starts with dividing the curve in short portions. For

each of them, it is checked that: (i) the topological state is the same as the whole

chain, and (ii) that the complementary closing arc is unknotted. If the criteria are not

satisfied, the length of the considered portion is increased, until the aforementioned

criteria are satisfied.

The top-down approach, instead, considers all the possible arcs of given length, start-

ing from the maximum possible one (the whole chain), and identifies the arcs that

have the same topology as the entire chain. Only the arcs satisfying this criterion will

be then subdivided in smaller arcs of length decreased of a unit, while the others will

be discarded. The new candidate arcs will be again checked with the same criterion,

and the arcs satisfying it will be selected and further subdivided.

The procedure ends if, after a subdivision, no one of the arcs has the same topology of

the entire chain. Then, the arc that survived the previous iteration will be considered

the shortest continuously-knotted portion of the ring.

We use, in our case, the bottom-up approach. The algorithm for knot location used

in this thesis has been implemented in the Kymoknot software package [59].

2.5 Links

In this thesis, we focus on knots, that occur in DNA rings, and their properties.

However there are some concepts, that emerges in the context of links that can be

useful to characterized properties of dsDNA rings, where two strands are wound

around each other. To this aim, we need some tools that are beyond the one described

for knots.

We define link a set of knotted loops all tangled up together [60]. Some simple

examples are shown in Fig. 2.11. Two links are considered to be the same if we can



2.5. Links 21

deform one link into the other link without ever having any one of the loops intersect

itself or any of the other loops in the process tied together. For our purpose, we

use links of two components, each being on of the strands in dsDNA ring. A way

to quantify how linked up two components are is to count how many time one curve

wraps around the other. More precisely, is to compute the so called Gaussian linking

number.

Linking number The linking number, Lk, is an invariant that describes the

linking of two closed curves in three-dimensional space.

Lk is defined as the sum of the sign over all the crossing between two oriented curves

average over all possible projections. The sign of each crossing is defined accordingly

with the right-hand rule of Fig. 2.4.

The outcome will always be an integer number, either positive or negative depending

on the orientations on the two components. Notice that the only considered cross-

ings are the ones between the two curves and not the ones that one component does

with itself. However, the self-crossing of one curves can influence the resulting link-

ing number: for example, consider the Whitehead link shown in Fig. 2.11c, it has

four crossings. Because of the crossing present in one component, each underpass is

followed by an overlapp and the resulting linking number is 0. It is not isotopic to

the unlink, but it is link homotopic to the unlink, which means that is allowed to

move, through regular homotopy, each component of the extended link, knotting or

unknotting itself, but is not allowed to move through other component.

The linking number was firstly introduced by Gauss in the form of the linking inte-

gral [61]: given two non-intersecting differentiable curves γ1, γ2:

Lk =
1

4π

∮
γ1

∮
γ2

d~r1 × d~r2 ·
~r1 − ~r2

|~r1 − ~r2|3
(2.3)

The linking number remain constant for ambient isotopies of the curves, but the

spatial displacement of the two components does have consequences in the geometrical

properties of the link. In particular, the coiling and twisting of the link component:

writhe Wr, which we have defined before, and twist Tw. They are related to the
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A) B) C)

Figure 2.11: Simple links. A) the unlink. B) the Hopf link. C) Whitehead link.

linking number in the following way:

LK = Tw +Wr (2.4)

This equation implies that any twist added to the curve, will be exactly balance in

changes of writhe.

Knots and Linking number Let consider now the centerline of the two

curves of a given link, and consider the case in which the centerline is topologically

unknotted. When placing the centerline on a plane, the writhe is equal to zero and the

twist will be equal to the linking number according to eq. 2.4. However, if the curve

is knotted it cannot possibly attain perfectly planar configurations due to its essential

crossings and, in fact, its writhe will typically be different from zero. This intrinsic

writhe must be properly discounted when using the linking number to compute the

amount of excess or deficit twist in a knotted DNA ring.
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Knotting probability of semiflexible rings:

numerical results

Non monotonic dependence on bending rigidity

3.1 Introduction

Since the ’70s [12, 14, 62], the spontaneous knotting of biological polymers has been

studied both from mathematical and physical point of view. In particular, the de-

scription of the types of the entanglements, their abindance and formation mechanism

are questions of direct biological relevance since several studies have found knotted

DNA in all organism, from eukaryotes, to bacteria, to viruses [11,15].

Knots can be detrimental for the cell [63]: when occur in DNA or RNA, they affect

the correct in vivo processing of the biopolymer, such as replication or transcription,

as well as its translocation through biological pores. Indeed, knots introduce strong

constraints which affect the properties of polymers, such as their metric properties,

their mechanical response or their dynamics. Therefore, with the aim of understand-

ing these effects, several knot-related equilibrium properties have been systematically

studied over the past years using theoretical and computational means.

For instance, one physical property that affects knotting probability, Pk, is the length

of the polymer. In this case, we already recalled in the introduction, the Frisch,

Wasserman, and Delbruck (FWD) conjecture that can be applied to self-avoiding lat-

tice walks, for which can be proved that almost all sufficiently long self-avoiding walks

on the 3D simple cubic lattice contain a knot [64]. In further studies [65], numerical

simulations have shown that this result holds also in random polymers, in particular,
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the asymptotic probability that the chain is unknotted, Punknotted = 1−Pk, decreases

exponentially with the number of polymers segments, see Fig. 3.1a.

Other elements that strongly affect Pk are the confinements of the polymer [21], the

quality of the solvent [66,67], the applied mechanical load at the chain ends [68].

Nevertheless, some features are still underexplored, for instance the role played by

polymer bending rigidity. To our knowledge no systematic survey of the interplay

of chain length, bending rigidity and knotting has been reported so far. The need

of such systematic study emerges also through the difficulty of rationalising results

available in literature under a simple, unifying framework.

For example, for the semi-flexible chain regime we recall the study on phage P4

DNA by Rybenkov et al. [43]. They investigated, experimentally and numerically,

the abundance of knots produced by random cyclization. In particular, considering

P4 DNA molecules of 10Kbp, cyclized in 1 M of NaCL, the knotting probability is

∼ 5.5%. They also modelled the P4 DNA with ring of cylinders, and reproduced the

experimental data via computer simulations. In particular, they fixed the thickness

equal to 2.5nm, the contour length equal to 3.4µm, and included, via the bending

rigidity, the persistence length, which is 50nm for DNA.

Consider now the case of fully-flexible chains. Indeed, in the case of zero rigidity,

one can explore the knotting probability of polymers modelled as fully-flexible ring of

cylinders, as it as been done, for instance, in the study of ref. [69]. In the latter the

unknotting probability was found to decrease, as expected, with the number of cylin-

ders, and to increase with the cylinder’s radius. The combined effect yields knotting

probability profile of Fig. 3.1b.

Consider the contour length and thickness of the P4 DNA, since the persistence length

of the DNA is 50nm the Kuhn length is equal to 100nm (see chapter 1). The genome

of P4 thus consists of 34 Kuhn segment, and can be mapped to rings of 34 cylinders

of unit length and radius equal to 0.01. The estimate probability of unknotting is

≥ 97% as shown in Fig. 3.1b.

The resulting knotting probability for fully-flexible rings is ∼ 3%, which is unexpect-

edly lower than aforementioned knotting probability of equivalent (P4 DNA) rings

which was ∼ 5.5%. Therefore, on one hand the aforementioned comparison leads to

the overall suggestion that the knotting probability increases with rigidity. On the
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a) b)

Figure 3.1: (a) Unknotting probability of random polygons versus the step number N ,
in semi-log scale. The unknotting probability decays exponentially. Image from [65]. (b)
Unknotting probability versus the step number N for self-avoiding polygons with different
values of radius r, in semi-log scale. The unknotting probability grows with the thickness of
polygon.Image from [69].

other hand is known that, when rigidity goes to infinity, the probability of knotting

goes to zero.

This apparently contradictory result has not been addressed, and suggests that the

behaviour of knotting probability for semiflexible rings is more complex than ex-

pected. The closest related investigations are the study of ref. [70] on lattice rings

with corner penalties, and the one of ref. [71] off-lattice open phantom and self-

avoiding chains of 150 segments. Given the absence of systematic results, we decided

to undertake the elucidation of the problem.

In this chapter, we describe how the knotting probability of a semi-flexible polymer

depends on its bending rigidity. In particular, we systematically address this prob-

lem by applying Monte Carlo sampling and thermodynamic reweighting techniques

to semiflexible rings of up to 1000 beads, for different bending rigidities.

The content of this chapter is mainly based on the work published in ref. [72].

3.2 Model and Methods

3.2.1 Model

We use a minimalistic, coarse-grained polymer model that incorporates only salient

physical properties of a polymer, such as chain connectivity, excluded volume effects

and bending rigidity. The model consists in ring of N identical and spherical touching
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a) b)

Figure 3.2: (a) Starting configuration; circular ring. (b) Evolved configuration of N = 500
beads.

beads, as described in chapter 1.2.1. We considered ring in equilibrium at tempera-

ture T so that the nominal persistence length is lp = bκb/KBT . Notice that in the

following discussion KBT and the bond length, b, are taken as unit of energy and

length, respectively, and all the shown quantities are expressed in these units or their

suitable combinations.

Total bending and total curvature The model is characterised by the bending

energy U = κbB, where κb is the bending rigidity and B is the total bending, as

defined in chapter 1.2.1. This physical quantity is linked to the total curvature.

Among the studies that investigate the connection of knotting properties and chain

curvature, we wish to recall to works of Fary (1949) [73] and Milnor (1950) [74]; they

have independently proved that the total curvature of a knot in three-dimensional

space must be ≥ 4π, meaning that the curve must complete at least two loops in

order to be knotted. This result sets the lower bound for the total curvature, and

hence, total bending of a knot.

3.2.2 Monte Carlo

The sampling of the conformational space is done with the Monte Carlo method

described in chapter 1.3. We explore different contour lengths, considering rings of

N = 100, 200, 500, 1000 beads and vary the bending rigidity in the 0 < κb < 40 range
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with typical increments equal to 2: from fully-flexible to rigid polymers.

The rings, initially prepared in an exactly circular arrangement of touching beads,

are evolved using a Metropolis Monte Carlo scheme based on unrestricted crankshaft

moves, see Fig. 3.2. In particular, the global crankshaft is picked with probability

∼ 90%.

For each combination of N and κb we collect no less than 105 uncorrelated config-

urations. To define the number of MC steps needed to have two independent con-

figurations, we use the gyration radius as observable to establish the autocorrelation

time τc, defined in Chapter 1.3, and we save one configuration each 10N and check a

posteriori that the configurations are uncorrelated.

Of the various chain lenghts, we particularly focus on chains with N = 500 beads.

This choice is motivated by the necessity of keeping a reasonable computational time

and yet collect enough statistics of knotted rings. We sample at least 106 configura-

tions varying in the same range of bending rigidity with typical increments equal to

0.5.

The topology of each sampled configuration is determined by computing the Alexan-

der polynomial. For rings of non-trivial topology we identified and measured the

length of the knotted portion, lk as described in Chapter 2.

Free-Energy and Entropy Calculation To have better understanding of the

mechanism that underpins the system behaviour, we need to study independently

how the energy and the entropy of the system behaves in function of κb. This is

done by analysing the collected data with a thermodynamic reweighting technique,

as detailed below.

The κb-dependent free energies, F , of knotted and unknotted rings and their

entropic, T · S, and energetic, U , contributions can be computed via the following
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Figure 3.3: Number of configuration at given value of total bending, topology and temper-
ature, for different value of bending rigidity κb, with decreases from left to right.

equations:

F (κb, τ) = − log(
∑
i

W (Bi, τ) e−κbBi) , (3.1)

U(κb, τ) =

∑
i κbBi W (Bi, τ) e−κbBi∑

iW (Bi, τ) e−κbBi
, (3.2)

T · S(κb, τ) = U(κb, τ)− F (κb, τ) , (3.3)

where τ labels the topology, i labels the discretised values of B and, W (Bi, τ) is the

density of states with total bending Bi and topology τ .

3.2.3 Thermodynamic reweighting techniques

The method presented here is the weighted histogram technique of Ferrenberg and

Swendsen [75], which is customary used to compute the density of states W (E) with

given energy E. This quantity, in turn can be used to compute the average number

of states n(E) as:

n(E) =
NW (E)e−βE∑
EW (E)e−βE

=
NW (E)e−βE

ZT (E)
(3.4)

where β = 1/KBT and KB is the Boltzmann constant, and, the total number of

states is:

N =
∑
E

n(E) (3.5)
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by inverting the 3.4, the density of states as function of E is:

W (E) =
n(E)

N
eβE (3.6)

To combine the density of state at different temperatures, the eq. 3.4, can be rewritten

as:

nj(E) = NjWj(E)e−βj(E−F (Tj)) =
NjWj(E)e−βjE

ZTj (E)
(3.7)

and the density of states can be obtained by combination of the data Wj(E) provided

by the simulations at temperature Tj :

W (E) = Σjpj(E)Wj(E) = Σjpj(E)
nj(E)

Nj
eβj [E−Fj(Tj)] (3.8)

where Σjpj(E) = 1. For each value of E is possible to assign a weight pj that depends

on the accuracy of the information of the histogram Wj . The criteria is given by the

least squares method, and leads to:

pi =

1
εr2(Wj)

Σjεr2(Wj)
(3.9)

Variance To estimate the variance, ε2r(Wj), we consider the number of configura-

tions at given E, nj(E) as events of a Poission distribution and therefore ε2r(nj(E)) =

nj(E), and it’s possible to compute:

ε2r(Wj) =
ε2r(nj(E))

N2
j

e2βj [E−F (Tj)] = (3.10)

= nj(E)

[
e2βj [E−F (Tj)]

Nj

]2
(3.11)
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Substituting the last result in 3.9 and combining 3.8 and 3.7, we obtain that the

approximation of the density of states is:

W (E) =
ΣiNie

−βi(E−F (Ti))

Σj
Nj

nj(E)e
−βj(E−F (Tj))Nje−βj(E−F (Tj))

= (3.12)

=
Σi

ni(E)
W (E)

Σj
1

W (E)Nje−βj(E−F (Tj))
= (3.13)

=
Σini(E)

ΣjNje−βj(E−F (Tj))
(3.14)

Once the density of states is calculated, up to a multiplicative constant, it is possible

to obtain the free energy which is established up to an additive constant. For instance,

our purpose is to compute the density of states to obtain the free-energy profile, in

particular:

e−F (Tj)/Tj =
∑
E

W (E)e−βjE (3.15)

Notice that, this result, is easily improved by adding more data in the regions of

E in which the overlap is lacking.

Multidimensional case The method can be extended to multidimensional cases:

consider a system described by its energy and topology: τ . The density of states is

W (E, τ), and
∑

τ W (E, τ) = W (E). Since ΣEW (E) = 1, also W (E, τ) is normalized:

∑
τ

W (E, τ) =

(∑
E′

W (E′)e−βiE
′

)∑
τ n(E, τ, Ti)

Ni
eβiE (3.16)∑

τ n(E, τ, Ti)

Ni
=
n(E, Ti)

Ni
=

W (E)e−βiE∑
E′W (E′)e−βiE′

(3.17)∑
τ

W (E, τ) = W (E) (3.18)

Collecting data from the nt simulations at different temperatures, the density of states

is:

W (E,µ) =
1

nt

∑
i

[(∑
E′

W (E′)e−βiE
′

)
n(E, τ, Ti)

Ni
eβiE

]
(3.19)

where 1 ≤ i ≤ nt.
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Errors The errors on these quantities are estimated from their semi-dispersion com-

puted by doubling and halving the bin size, as well as by using only the first and

second half of the sampled conformations at each considered value of κb.

Application We applied this framework in our study to compute the density of

states of rings of N = 500 beads. Specifically, we computed the density of states,

W (B, τ) as a function of two properties of the rings: total bending, B, and topology,

τ . The total bending B, was discretised in steps of width 0.5, while the inherently

discrete topological classes were encoded in a binary form, with τ = 0 or 1 for un-

knotted and knotted rings, respectively.

For each value of κb we computed the two dimensional histogram, n(B, τ), see

fig. 3.3. Clearly n(B, τ) is proportional to the sought W (B, τ) and to the Boltzmann

weight exp(−κbB). This relationship allows for recovering W (B, τ), up to a multi-

plicative constant, from n(B, τ) by inverting the Boltzmann weight. Due to inevitable

sampling limitations, the recovered W will be reliable in the neighbourhood of the

most probable values of B. By combining, via eq. 3.19, the reweighted histograms

collected at different κb’s, one can obtain the density of states, W (B, τ), throughout

the relevant parameter range.

3.3 Results

3.3.1 Knotting probability

The probabilities of non-trivial knots, collected for N = 100, 200, 500 and 1000 show

tricking behaviour as function of bending rigidity, see Fig. 3.4a. We see that as κb

increases the knotting probability grows, reaching a peak in the range 4 < κb < 10,

and then it decreases to zero. It is possible to notice that the enhancement of Pk

from the fully flexible case, κb = 0, to the peak value is very large: more than a factor

of 40 for the longest considered chains, N = 500 and 1000.

This result is unexpected and counter-intuitive; in particular it leads to the fact that

is more probable to have a knot in a polymer with a finite value of rigidity than in a

fully-flexible one.
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Figure 3.4: (a) Knotting probability as a function of κb for rings of different lengths. Esti-
mated statistical errors (shown) are typically smaller the symbol size. (b) Pile up represen-
tation of the abundance of knots with 31 or other non-trivial topologies in rings of N = 500
beads for different values of κb.
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Figure 3.5: Percentage of 31 knot for all the rings of N beads for different values of κb.

To confirm that the non-monotonic behaviour is a genuine effect which does not arise

from a complex interplay between the types of knots, we compute the abundance of

knots with 31 and other non-trivial topologies in rings of N = 500 beads for different

values of κb, in Fig 3.4b . Indeed, we find that trefoil knots are by far the dominant

non-trivial topology. In fact, for any combination of κb and N they account for no

less than 80% of non-trivial knots as shown in Fig. 3.5

3.3.2 Metric Description

To have a comprehensive description of the previous result we study the behaviour

of metric properties; in particular, averages of the gyration radius, 〈Rg〉 (defined

as eq. 1.14 in Chapter 1.1), and the total bending, 〈B〉 (see Chapter 3.2.1), both

computed on the entire set of sampled rings.
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Figure 3.7: Average gyration radius of knotted and unknotted rings as a function of κb.

Gyration Radius In Fig 3.6 it is shown the behaviour of 〈Rg〉 as function of

κb: the size of the polymers monotonically increases with bending rigidity. However,

even considering large value of rigidity, there still enough conformational freedom to

sample some knotted configurations.

We next proceed looking at the difference between the knotted rings and the un-

knotted one.

As mentioned before, we limit the analysis to rings of N = 500 beads. Firstly, we

established that the average 〈Rg〉 grows differently with κb for the two topology, see

Fig. 3.7. Unknotted rings are larger than knotted ones, especially for large values

of rigidity. This is because a portion of the contour of knotted rings is used up to

maintain their non-trivial topology, more precisely to form crossings in the ring, a

portion of it has to fold to form the crossing. This reduce the possible extension of
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ring, and therefore the average size at fixed ring-length is smaller for knotted ring. In

addition, increasing the rigidity, knots will require a even larger portion to be bent,

this is clear looking that the distance between the two curve of 〈Rg〉 increases with

κb, see Fig. 3.7.

Knot’s length The second observable of interest in the characterization of the sys-

tem is the length of the knotted region, lk. Surprisingly, the behaviour as function of

bending rigidity is non-monotonic. For κb ≥ 2.4 the behaviour follow the intuition:

a progressive chain stiffening implies that the knots grow in contour length, up to

one third or more of the ring contour. However, for small values of bending rigidity,

κb < 2.4, the knotted region expands as the ring becomes more flexible.

This non-monotonicity is also found in the ratio of 〈Rg〉 for knotted and unknotted

rings, see Fig. 3.8a. The ratio is unimodal with κb and with the maximum at κb < 2.4

which is less than one third of the κb-value of the Pk maximum ( marked with a blue

line in the figure). Comparing the two results shown in Fig 3.8a, it is clear that there

exists an anti-correlation between 〈lk〉 and 〈Rg〉.
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Figure 3.8: (a) UP: Average gyration radius of knotted and unknotted rings as a function
of κb. BOTTOM: Ratio of the average gyration radii of knotted and unknotted rings and
(c) average knot length as function of the bending rigidity. Data refer to rings of N = 500
beads. The vertical red and blue lines mark respectively the position of the lk minimum and
Pk maximum for N = 500 (see Figure 3.4). Statistical errors (shown) are typically smaller
than the symbol size.
b) Central panel: Contour maps of the probability distribution P (Rg, lk) of knotted rings of
N = 500 beads for three selected values of κb: 0.6, 8.8 and 40.0. The coloured filled circles
mark the average values of 〈Rg〉 and 〈lk〉 at the selected values of κb. The black curve is the
locus of points corresponding to the averages of 〈Rg〉 and 〈lk〉 at all considered values of κb.
The side-panels show the marginal distributions of Rg and lk.
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Statistical errors (shown) are typically smaller than the symbol size.

Anticorrelation between gyration radius and knot length The same figure,

in panel b, shows the interplay between lk and Rg and bending rigidity. The central

panel shows the P (Rg, lk) for three value of κb, while the side panels, provide the

corresponding marginalized probability distributions of lk and Rg.

At fixed κb, the contour lines of P (Rg, lk) reflect the anticorrelation of knot length

and ring size.

This effect is arguably the cause for the initial decrease of lk with κb observed at

small bending rigidities in Fig. 3.8a. In fact, an increase of κb always yields a larger

gyration radius, see Fig. 3.6, which in turn translates in a decrease of lk. Note that

as κb increases, the degree of anticorrelation between lk and Rg is reduced and the

marginalized distribution of lk narrows and shifts towards larger values, see the blue

line on the side panel of Fig. 3.8b.

This property was previously established for fully-flexible chains without excluded

volume interactions, where it was rationalized as follows: reducing the knot length is

equivalent to increasing the length of the complementary unknotted arc and, because

this enjoys a larger conformational freedom, it ultimately reflects in a larger gyration

radius of the ring [76].

Finally, we also profile lk for other ring lengths, namely N = 200, 500 and 1000

beads to verify that the non-monotonicity of lk exists for these chain length too, see
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Fig. 3.9. Indeed, the minimum of < lk > exists and is not appreciably displaced by

varying N unlike the location of the Pk peak, which visibly depends on N .

3.3.3 Knotting and bending energy

The intriguing aspect of the non-monotonic behaviour lies in the expectation that a

progressive decrease of bending rigidity translates into a decrease of bending energy.

Conversely bending a rigid ring, in order to form a knot, would be energetically dis-

favoured. Therefore, it is interesting to understand this in more details; in particular

we consider how the entropic and energetic interplay is affected by the increase of

bending rigidity.

Total Bending The bending energy is proportional to κb and to the total bending

of the ring as defined before (see chapter 3.2.1). The average total bending 〈B〉,

which is shown in Fig. 3.10a decreases monotonically with κb. For small value of κb,

〈B〉 reaches very large values and decreases dramatically with the stiffening of the

ring. Much more informative is the difference between the average total bending of

knotted and unknotted rings: see Fig. 3.10, panel b. For large value of κb, knotted

rings confirm our intuition: the ∆B shows a ∼ 0.1 surplus of total bending of knotted

compared to unknotted rings. The asymptotic value of ∆B is also explained by the

mathematical result described in paragraph 3.2.1: the minimum value of total curva-

ture that a curve must have to be knotted is 4π, whereas for unknotted curve is only

2π. For large values of κb, these bounds are viable approximations for the typical

total bending angles of the sampled knots and unknots and the corresponding, for

N = 500, ∆B = 〈B〉rigid knot − 〈B〉rigid unknots = N(cos(2πN ) − cos(4πN )) ∼ 0.12, and

is well in line with the observed value.

Decreasing the bending rigidity, κb < 8, the ∆B becomes negative. This unexpected

result means that knotted rings have, on average, a smaller total bending than un-

knotted ones. The largest bending deficit in knotted rings is found in the fully-flexible

limit, where it is equal to ∆B = −1.3. Note that Pk attains its maximum when ∆B

is approximately equal to 0, and consequently, the lower total curvature of knotted

rings must clearly translate into a more favourable energy compared to unknotted

ones when κb ∼ 8.
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Figure 3.10: (a) Average total bending of knotted (green) and unknotted rings (red) of
N = 500 beads as function of κb; (b) Difference of total bending of knots and unknots, ∆B as
a function of κb. In both panels, the blue (right) and red (left) vertical lines mark the location
of the maximum of Pk and the minimum of lk, respectively. Typical knotted and unknotted
configurations for κb = 2.4 and 35 are shown (not to scale) in the inset. The configurations
are colored according to their local bending angle, see color bar.

The counterintuitive fact that knots are less bent than unknots is well illustrated

by the typical knotted and unknotted conformations at κb = 2.4, as shown in the

insert of 3.10. From the color code, which reflects the degree of local bending, one

notices two features: the unknotted configuration has more points of high bending

(red regions) than the knotted one. Moreover, the knotted region is less locally bent

than the rest of the ring. This effect is not observed in the knotted configuration at

κb = 35.

A more detailed view of the distribution of bending along the ring is made by look-

ing at the probability of a bending angle θ. More precisely, studying the difference
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Figure 3.11: Panel shows P (θ)|knots − P (θ)|unknots, that is the difference of the normalized
probabilities to observe a certain local bending angle, θ, in knotted and unknotted rings at
κb = 2.4.

of the normalized probabilities, P (θ), between knotted and unknotted rings. This

difference, at κb = 2.4, is shown Fig. 3.11. It is clear that small angles are more

likely in knotted rings, while the opposite is true for large angles. The balance of the

probability difference corresponds to a bending deficit ∆B ∼ −1.3 at κb = 2.4.

These observations lead to the conclusion that topological (chain uncrossability) and

excluded volume constraints are so effective on flexible knotted rings that their av-

erage bending is smaller than for unknotted rings. The effect is analogous to the

straightening of knotted strands observed for tightened knots in ref. [77]. For that

system, the effect arose from the mechanical tension applied to the knotted chain,

which caused a tight contact of the entire knotted region. It is remarkable that the

straightening is found in our system too, where no external tension is applied, and

the knot size and tightness are controlled only by thermodynamic forces.

Bending Energy Once analysed the total bending, we study the average energy

difference, ∆U = 〈U〉knots − 〈U〉unknots, see Fig. 3.12, red line. The behaviour is non

monotonic, but more important is that the difference is zero at the point in which

the knotting probability has its maximum.

Indeed, the profile of the average energy difference, ∆U between knots and unknots

changes sign at κb ∼ 8. Note that ∆U is the product of κb and ∆B, which is itself a

function of κb. As a consequence, ∆U , unlike ∆B, is not monotonic and has a global

minimum at κb ∼ 2.4. This is approximately the same bending rigidity for which the
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relative knotted versus unknotted rings size is maximum, and the average knot length

is minimum at all lengths shown in Fig. 3.9, N = 200, 500, and 1, 000. It is therefore

possible that such weak N -dependence of the 〈lk〉 minimum originates from the fact

that ∆B and ∆U at low κb are controlled by the number of essential crossings, which

is effectively equal to three at all the considered chain lengths because trefoil knots

are the dominant non-trivial topology, this is still a speculation and an interesting

point warranting further investigations.

Free Energy and Entropy If the energetic term, ∆U , in Fig. 3.12 gave the main

contribution to the free energy difference, then knotted rings would dominate the

equilibrium ensemble for κb . 8 and would maximally outnumber unknotted rings at

κb ∼ 2.4.

The actual knotting probability profile of Fig. 3.4 shows instead that unknots are the

dominant topology (at the considered N ’s) and that knots are maximally abundant at

κb . 8, when knots and unknots have about equal bending energies. This implies that

the favourable energy bias towards knots must be counteracted by entropic effects.

To address this point quantitatively we used the multiple-histogram technique of

section 3.2.3 to compute the relative density of states of knotted and unknotted rings

and hence their entropy difference. The results are given in Fig. 3.12 and clarify that

as κb is lowered, going from the rigid to the flexible limits, the entropy of knotted

rings is systematically reduced compared to unknots. The variation of T∆S are

concentrated in the 2.4 ≤ κb ≤ 8 range. This interval spans approximately from the

κb associated to the minimum knot length (see Fig. 3.8) to the one associated to the

knotting probability maximum (see Fig. 3.4). A relevant point is that at low κb the

entropic loss eventually outweighs the bending energy gain of introducing knots.

The balance of the entropic and energy terms yields the free energy difference

profile, ∆F , of Fig. 3.12, which has a minimum for κb ∼ 8. The position of the

minimum agrees well with the location of the Pk peak for N = 500 in Fig. 3.4. The

minimum free energy difference itself, ∆Fmin ∼ 4.0 is also consistent with the direct

measurements of the Pk peak, Pmaxk (N = 500) ∼ 1.9 · 10−2.

From these results we can put forward the following explanation for the counter-

intuitive knotting enhancement at intermediate values of κb. Going from rigid to
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Figure 3.12: Top panel: κb dependence of the bending energy ∆U = 〈U〉knots − 〈U〉unknots
and the entropic cost T ·∆S = T (Sknots − Sunknots) required to tie a knot into a semiflexible
ring of contour length N = 500. The estimated relative errors are 2% or smaller. Bottom
panel: free energy difference ∆F = (Fknots − Funknots) between knotted and unknotted rings
as a function of κb. As expected the minimum of ∆F is located at the value of κb at which
the knotting probability is a maximum (right vertical blue line). The estimated relative errors
are 0.5% or smaller.

fully-flexible rings, these become progressively more compact, and so does the knot-

ted region, which shrinks in contour length too. Non-local contacts inside the knotted

region, which are inevitable because of the non-trivial topology, become more prob-

able. The steric hindrance of the contacting strands in the knotted region has two

competing effects. On the one hand it straightens the strands (as occurs in ten-

sioned knotted rings [78]) and lowers their bending energy below average. This gives

knotted rings an energy gain over unknotted ones. On the other hand, the topo-

logical restraints introduce an entropic cost that contrasts and eventually outweighs

the energy gain as the bending rigidity is lowered. This competition produces the

non-monotonic trend of the knotting probability seen in Fig 3.4.
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3.4 Summary and perspectives

To summarize, we studied how the knotting probability of ring polymers varies as a

function of the bending rigidity.

The study was motivated by the leak of previous systematic investigation of the effect

of bending rigidity on the knotting of polymers rings. We accordingly addressed this

problem by using a general model of self-avoiding semiflexible rings, and Monte Carlo

sampling simulations.

We found that, when going from the rigid to flexible limit, we observe that the pro-

gressive compactification of the rings is neither paralleled by a steady increase of knots

abundance, nor of knots size. In fact, the knotting probability, is non-monotonic and

has a maximum at intermediate bending rigidities, when the persistence length is a

few times larger than the bead size.

We thus profiled various metric and topological properties as well as the energetic and

entropic contributions to the free-energy in order to clarify the unexpected result.

We concluded that as the bending rigidity is reduced, and the chain is compactified,

the strands of the knotted region have a significant steric interaction due to the topo-

logical constraints. Such interaction has two opposite effects: on the one hand, it

keeps the knotted region less bent than average, resulting in a bending energy gains.

On the other hand the constraints inevitably decrease the entropy of knotted rings

compared to unknots. It is the competition of the two effects that produces the strik-

ing and counter-intuitive non-monotonicity of the knotting probability.

For sufficiently long chains (of fixed bending rigidity) it is known that the occurrence

of knots is inevitable (Pk → 1) because long unknotted rings are entropically dis-

favoured. In particular, as N →∞ we expect Pk ∼ 1−exp((funknotted(κb)−f(κb))N)

where f(κb) and funknotted(κb) are the limiting free energies per bead of respectively

the set of all rings and the subset of the unknotted ones. It would therefore be

very appealing to analyse the interplay of energy and entropy for long rings and

check whether the non-monotonic dependence of Pk on κb still holds in the large N

limit [64]. As matter of fact, we will extend our study in this direction, in particular,

studying if and how the profile of knotting probability changes for very large N . This

study will be described in Chapter 4.
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Other interesting issues related to the problem of knotting in semiflexible rings are the

effect that the interplay of bending energy and entropy may have on the populations

of knot types (knot spectrum) and the possibility of designing semiflexible knotted

rings with non-homogeneous stiffness to control the size and position along the chain

of the hosted knots, including composite ones.
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Knotting probability of semiflexible rings:

theoretical results

4.1 Introduction

In chapter 3 we discussed how the knotting properties of semiflexible chains have an

unexpected non-monotonic dependence on bending rigidity. The results were based

on numerical simulations of rings of beads.

Another commonly used polymer model is the ring of cylinders, also termed self-

avoiding polygon. A well-known example of its application in knotting contexts is

the work of Rybenkov et al. [43] where it was used to interpret experimental data

on DNA rings in solutions of different ionic strengths. More recently, the group of

T. Deguchi has systematically studied the topological spectrum of SAPs [69,79], and

provided approximate analysic expressions for how the knotting probabilities of the

rings of cylinders depend on their thickness and contour length [80].

In this Chapter, I will discuss how a heuristic model mapping can be used to

adapt the available analytical expressions for the knotting probabilities of self-avoiding

polygons to the case of semiflexible rings-of-beads. This will allow us to extend

the numerical results of the previous chapter, that were obtained for chains of up

to 1, 000 beads, to much longer chain lengths. From such length extrapolation we

obtain a further interesting result, namely that for sufficiently-long contour lengths,

the knotting probability becomes bimodal as a function of the bending rigidity.

The content of this chapter is based on the publication of ref. [81].
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Figure 4.1: Representation of a self-avoiding polygon, or ring of cylinders. The shown case
consist of Ncyl = 10, and characterized by its rcyl and lcyl. Image taken from ref. [81]

4

In the present simulation the number of segments N is
given from 100 to 3, 000 for the cylindrical SAP of zero
thickness (rex = 0), i.e. equilateral random polygons;
from 100 to 3000 for cylindrical SAP with rex = 0.005
and 0.01; from 100 to 4000 with rex = 0.02; from 100 to
5, 000 with rex = 0.03; from 100 to 7, 000 with rex = 0.04;
from 100 to 8, 000 with rex = 0.05; from 100 to 104 with
rex = 0.06, 0.08 and 0.1.

*********************

III. KNOTTING PROBABILITIES OF VARIOUS KNOTS

A. Knotting probability for prime knots

FIG. 2. Knotting probability of the trefoil knot (31) versus
the number of segments N for the cylindrical SAPs with ten
di↵erent values of the cylindrical radius. The plots for the
values of radius rex given by 0.0, 0.005, 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.08 and 0.10, are depicted by circles (red), stars,
upper triangles, diamonds, squares, lower triangles, saltires
or Xs, crosses, circles (blue) and stars (purples), respectively.
The fitted curves have the best estimates of the parameters
of Eq. (1) listed in Table I.

1. Maximum probability of trefoil knot increases as the
excluded volume of SAP increases

Let us denote by the symbol PK(N, rex) the knotting
probability of a knot K for the cylindrical SAP consisting
of N cylindrical segments with radius rex.

In Fig. 2 the knotting probabilities of the trefoil knot
(31) for the cylindrical SAP with radius rex are plot-
ted against segment number N for various values of
cylindrical radius rex. Here we have plotted them for
ten di↵erent values of cylindrical radius such as rex =
0.0, 0.005, 0.01, 0.02 · · · , and so on.

We observe in Fig. 2 that the maximum value of the
knotting probability of knot 31 increases as radius rex in-

creases. The peak height of each plot increases gradually
as radius rex increases, while the peak position, i.e. the
number of segments N at which the knotting probability
gives the maximum value, is shifted to the right as radius
rex increases. The peak position is approximately given
by the characteristic length N31 if we assume eq. (1).
Here we remark that the exponent of trefoil knot, m(31),
is estimated as roughly equal to 1.0, as shown later.

In Fig. 3 the knotting probabilities of the figure-eight
knot (41) for the cylindrical SAP with radius rex are plot-
ted against segment number N for various values of ra-
dius rex. In Fig. 3 the maximum value of the knotting
probability of knot 41 decreases with respect to radius
rex.

The fitted curves in Figs. 2 and 3 are given by formula
(1). They are good, since the �2 values are less than 2.0
for all the curves. Here we remark that the best estimates
of parameters of Eq. (1) are listed in Tables and I and
II for knots 31 and 41, respectively, together with the �2

value per degree of freedom (DF).

FIG. 3. Knotting probability of the figure-eight knot 41 for
cylindrical SAPs with ten di↵erent values of the cylindrical
radius: rex = 0.0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.08 and 0.1. The fitted curves have the best estimates of the
parameters of Eq. (1) listed in Table II.

The knotting probabilities of such prime knots that
have less than or equal to seven minimal crossings for
the cylindrical SAP with radius rex are fitted by formula
(1). The best estimates of the parameters of Eq. (1)
together with the �2 value per DF are listed in Tables
IX and X in Appendix A: for knots 51, 52, 61, 62, and
63 in Table IX; for 71, 72, 73 74, 75, 76 and 77 in Tables
X. The �2 values are smaller than 2.0 for all the fitted
curves.

We can show that the maximum value of the knotting
probability of a knot K is determined by the coe�cient
CK . We shall show it in section IVA by making use of
Eq. (1).

The increase of the maximum value of the knotting
probability for a nontrivial knot with respect to the ex-

Figure 4.2: Knotting probability of trefoil knot, P31(Ncyl), for value of radius equal to
0.0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.6, 0.08, 0.10. The fitted curves are using the eq. 4.3 and
the value of table 4.1. Image taken from ref. [80].

4.2 Model

Self-avoiding polygons Self-avoiding polygons (SAPs) are a circular succession

of freely-jointed cylindrical segments, with radius rcyl and length lcyl, which is taken

as length unit. Excluded volume effects are enforced by preventing any two non-

consecutive cylinders from overlapping. An example is given in Fig. 4.1.

The work of ref. [80], presented a systematic study of the incidence of various knot

types, k, as function of the number Ncyl and radius rcyl of the cylinders. In particular,

it was established that the occurrence probability, Pk, of the simplest prime knots:

31, 41, 51, 52 could be well approximated by the following analytic expression:

Pk(Ncyl, rcyl) = Ck(rcyl)
Ncyl −∆Nk

N0
cyl(rcyl)

e
−
Ncyl−∆Nk

N0
cyl

(rcyl) (4.1)
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Figure 4.3: Observed knotting probability for trefoil knots for various combination of Ncyl

and rcyl, in two-dimensional density map. Image taken from ref. [81]

where the Ck’s are the coefficients listed in table 4.1; ∆NK ’s are finite size correction,

that is of the order of 20− 30, and N0 the characteristic knotting lengthscale [79]:

N0
cyl(rcyl) = 292.0e43.5rcyl (4.2)

We recall, as described in ref. [82], that for on-lattice self-avoiding polygons N0 is

very large, typically of the order of 105. For sufficiently large Ncyl is possible to omit

the finite-size correction. Thus, eq: 4.1 simplifies as:

Pk(Ncyl, rcyl) = Ck(rcyl)
Ncyl

N0
cyl(rcyl)

e
−

Ncyl

N0
cyl

(rcyl) (4.3)

and their results for the incidence of trefoil knots are represented by the curves of

Fig. 4.2. Finally, it is worth to mention another connection with self-avoiding polygons

defined on lattices. Specifically, for SAP thickness about equal to 0.125, i.e. r ∼ 1/8,

it was observed in ref. [80] that the ratios of knot coefficients Ck1/Ck2 for a given

pair of knots k2 and k2 become close to the universal ratios of self-avoiding rings on

a lattice, which were evaluated in ref. [83].

Rings of beads We introduced the ring of beads model in Chapter 1 were we

used it to describe self-avoiding semi-flexible chains. The model parameters were the

radius of the impenetrable beads, b/2, the bending rigidity of the chain, κb and the

number of beads Nbeads. Using this model, as already mentioned, we showed that the

knotting probabilities has a non-monotonic dependency on κb for chain lengths up
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K CK(rcyl) parameters
a0 a1 b1

31 a0 · (1.0− a1 · exp(−b1 · rcyl)) 0.919± 0.003 0.327± 0.002 33.1± 0.8

41 0.1357± 0.0013 8.82± 0.27
51 a1 · exp(−b1 · rcyl) 0.04387± 0.00042 20.81± 0.34
52 0.07741± 0.00046 21.91± 0.22

Table 4.1: Approximate expressions for the dependence of the CK coefficient on the cylinders’
radius, rcyl for the simplest prime knot. Data are from ref. [80].

to 1000 beads, the longest we could sample efficiently, see Fig. 3.4. In the following

section I will introduce an heuristic mapping with the SAP model that will allow to

extrapolate our earlier results for much longer chains.

4.2.1 Mapping

An approximate mapping between chains of cylinders and chains of beads can be

made by matching the length of the cylinders to the nominal Kuhn length of the

chain of beads.

This heuristic mapping lie in the connection between the simple model in which bonds

are free to rotate and bend, freely-jointed chain (FJC) and Kratky-Porod (KP) one,

the latter is a discrete chains with bending rigidity, κb, and no excluded volume

interactions. It is important to stress that the latter case represents an approximation

of the ring of beads model; the implication of this approximation will be described

later.

For long Kratky-Porod chains, metric observables such as the radius of gyration are

equivalent to those of freely-jointed (i.e. fully-flexible) chains with the same contour

length, but where bonds have the Kuhn statistical length [48], which is about twice

the chain persistence length, lKuhn ∼ 2κbb. Based on these considerations, a chain

of Nbeads, unitary diameter and bending rigidity κb can be mapped in a ring of Ncyl

cylinders of radius rcyl, that follows three rules:

b→ rcyl = b/2 κb → lcyl = 2κbb Nbeads → Ncyl = Nbeads · b/lcyl (4.4)

which means that, if we conventionally take length of cylinder axis of SAPs as the

unit length for such system, and the beads’ diameter, b, as the one for rings of beads,
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we have the following correspondences: Ncyl = Nbeads/2κb and rcyl = 1/4κb.

Based on this mapping, the expression 4.3 for the knotting probability of SAPs can

be adopted to rings of beads as follows:

Pmapk = Ck
Nbeads

2κbN
0
cyl(1/4κb)

e
− Nbeads

2κbN
0
cyl

(1/4κb) (4.5)

where N0
cyl is given in eq. 4.2 and Ck in table 4.1.

Range of validity We stress that this mapping is expected to hold only approx-

imately because it relies on the notion of Kuhn segments defined for Kratky-Porod

chains, which are free from excluded volume interactions.

As in other contexts, excluded volume effects are too challenging to account for ex-

actly. This is because of their non-local character, as they introduce constraints

between regions at arbitrarily large distance along the sequence.

Local excluded volume effects, instead, are more tractable and can be used to estab-

lish limits of validity for the above mapping.

For instance, in the chain of beads model, the thickness of the beads limits the angle

θ between two bonds ~bi,~bi+1 in [0 : 2π/3] range, otherwise next-neighbouring beads

along the sequence would overlap. Consider now, such angle constraint applied to a

fully-flexible chain, then the average value of cos(θ) is:

〈cos(θ)〉 =
1

Z

∫ −1/2
1

d (cos(θ)) cos(θ) =
1

4
(4.6)

As we mentioned in Chapter 1, the bending angles are statistically independent and

the correlation function of two bonds 〈~bi ·~bi+k〉, at given sequence separation k, can be

factorised and yield an exponential decay. We thus have that the persistence length

lp ∼ b/ln(4). This fix the bound in which the mapping breaks down: indeed, for

κb . 1 the effect of the excluded volume cannot be neglected.

At the same time, large values of the bending rigidity, which correspond to persistence

lengths comparable to the contour length of the rings, should be avoided too.

We recall that the parametrizations underpinning eq. 4.5 are based on extensive

numerical data gathered for SAPs of up to 10 000 cylinders and thickness of up to

0.1 [80]. These therefore, might represent practical additional limits for the scope of
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Figure 4.4: Observed and predicted probabilities of (a) trefoil knots and (b) figure-of-eight
41 knots for rings of 1 000 beads as a function of their bending rigidity, κb. The data points
of the observed probabilities are from the Monte Carlo simulations of Chapter 3. Image taken
from ref. [81]

applicability of the expressions in eq. 4.5.

Finally, we also neglected ∆NK in 4.3; for this reason, the approximation does not

work well below Ncyl ∼ 25, which occurs for κb > Nbeads/50, since typically ∆NK ∼

20− 30.

4.3 Comparison of knotting probabilities

We first apply expression 4.5 to predict the probability of 31 and 41 knots in rings of

1000 beads, and compare it with the knotting probabilities obseserved in simulations

of Chapter 3 and ref. [72].

Predicted and measured knotting probabilities The predicted and measured

knotting probabilities of 31 and 41 in rings of 1,000 beads, are shown in Fig. 4.4.

Expressions 4.4 is able to reproduce the non-monotonicity of the Pk: the curves are

well superposed for small κb that is for equivalent SAPs made of several (and thick)

cylinders. For the case of 31 knots it also reproduces the height of the peak. For

both topologies, there is a good agreement that holds for small values of bending

rigidity, or thick cylinders, in a range of 2 < κb < 20. Then, discrepancy of the

curves increases progressively beyond the peak, due to a systematic overestimate of
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the predicted knotting probabilities. As matter of fact, beyond the upper bound

value, the effective number of cylinder become comparable to the fine size correction,

and, as we discussed in the previous section, this invalidates the use of the asymptotic

expression 4.4.

This corroborates the results presented in Chapter 3 and ref. [72]. It also allows us

to provide a physical explanation behind the non-monotonicity: the qualitative trend

and the mapping show that, when increasing κb two distinct effects arise: on one hand,

there is reduction of the Kuhn segments which suppresses the knotting probability,

but on the other hand, increasing κb also reduces the thickness of the cylinders, and

this instead promotes the knotting propensity at fixed number of cylinders. These

considerations clarify that the non-monotonicity observed in Chapter 3 for rings of

beads can be explained in terms of the competition between the number of cylinders

and their thickness in the corresponding SAP model.

Predicted and measured knotting probabilities comparison with linear

chain results In Fig. 4.5 we provide a further comparison of the knotting proba-

bility profiles with the knotting probabilities of long model DNA linear chains up to

5 · 105 beads . All the detailed of the latter model are available in the work of Rieger

and Virnau [45].

For our model, we took Ncyl = Nbeads/(2lp) = Nbeads/(2κb), with κb = 11.673 and

Ncyl is given by the stated equivalent DNA size, in base pairs, divided by 294 bp,

the number of base pairs in a Kuhn segment of 100nm, as in Riegers model. The

model DNA chains considered were linear, however, the bending rigidity had been set

equal to κb = 11.673 so to reproduce the experimental knotting probabilities of DNA

chains after they spontaneously circularise in solution. Such circularised DNA rings,

are customarily taken as representative of knotting in equilibrium [43]. As shown in

Fig. 4.5, the agreement is very satisfactory, both for P31 and P41 , especially at small

numbers of cylinders, namely < 1000. For longer chains the predicted trefoil knotting

probability is progressively underestimated, while the good accord of the 41 curves

persists.

The overall agreement of the trends of predicted and observed knotting probabilities

in Fig. 4.4 and Fig. 4.5 validates the parametric expressions of eq. 4.5 which thus
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Figure 4.5: The data points from the Monte Carlo study of ref. [45] where linear semi-
flexible chains of beads where parametrised to reproduce the knotting properties observed
in experiments on circular DNA. For such system, the number of nominal Kuhn segments
(corresponding to a chain stretch of 100nm or 294 bp) was taken as the number of equivalent
cylinders, Ncyl, and κb = 11.673. Image taken from ref. [81]

could be of practical use in theoretical and computational contexts. As already men-

tioned, arguably, the most informative use of the mapping of eq. 4.4 is to predict the

knotting properties of semi-flexible rings for previously unexplored combinations of

ring lengths and bending rigidities.

4.4 Bimodal knotting probability

We shall now use the analytic expression of eq. 4.5 to explore the dependence of the

knotting probability on κb for chain lengths much larger than those we could address

with the MC simulation of ref. [72].

4.4.1 Extension to long rings

Firstly, in Fig. 4.6, panel a, we present the predicted knotting probability for rings

of Nbeads = 10000, 20000 and 50000, these are much longer than the ones of ref. [72].

Indeed, we increase of one order of magnitude the largest explored in the ring of beads

model. For Nbeads = 10000 and 20000, the profile probability is unimodal trend, how-

ever it becomes more complex with increasing number of segments.

For rings of Nbeads = 50000 the 31 knots probability is multimodal, with a pronounced

minimum at κb ∼ 10. This minimum falls in the region directly covered by the tested
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parametrizations of ref. [80] (κb > 2.5) and therefore appears to be a genuine, non-

artefactual property of long rings of beads.

Origin of the bimodal knotting probability profile The unexpectedly rich be-

haviour is conveyed more comprehensively by the density map of Fig. 4.6b. One notes

that the color-coded regions, corresponding to various probability intervals, bifurcate

and become bi-lobed as Nbeads is increased above ∼ 25000. This feature precisely

translates in a bimodal knotting probability profile, such as that for Nbeads = 50000

in Fig. 4.6a, since each lobe hosts a local maximum of the knotting probability, and

in the region in between them falls a minimum.

The crossover from unimodal to bimodal profiles is conveniently illustrated by con-

sidering how the trefoil knotting probability of self-avoiding polygons of Fig. 4.2 is

transformed by the model mapping (eqs: 4.4).

The knotting probability manifold of SAPs, shown in Fig. 4.2b, is simpler than the

one of semiflexible rings, shown in Fig. 4.7b, because it is free of bifurcations. In fact,

for a given number of edges, Ncyl, there is a single maximum of the trefoil knotting

probability that occurs for a finite value of the cylinders radii. The locus of points

corresponding to these maxima is marked with circles in the contour map of Fig. 4.7a.

In the same two-dimensional parameter space of the contact map, the locus of points

corresponding to semiflexible rings of beads of given length, Nbeads, and various bend-

ing rigidities, κb, has a simple geometry. Specifically it corresponds to a straight line

of equation rcyl = Ncyl/(2Nbeads).

Two such lines, representative of rings of 5000 and 30000 beads are shown in Fig. 4.7a.

The line with the largest slope corresponds to the shortest ring, and it crosses the

circled curve (the locus of the maxima at fixed Ncyl) in one point only. Consequently,

the corresponding probability profile presents a single maximum as a function of κb.

As the length of the rings of beads is progressively increased, the slope of the line

decreases until it eventually crosses the locus of the maxima twice (but no more), as

it happens for the 30000 beads case. The double crossings clearly reflect in a bimodal

probability distribution as a function of κb, as illustrated in 4.7c.

The analysis of eq. 4.5 for asymptotically-long rings of bead clarifies that the two
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a) b)

 

Detailed plot (contour plot). 

 
 

The knotting probability of the trefoil knot is 
plotted as a function of kb and Nbeads. 

The derivative of the knotting probability with 
respect to kb.  

In the right figure, the contour plot of the derivative of P(kb, Nbeads) with respect to kb is colored with 
blue if the value is negative and with red otherwise. The local maximum or the local minimum is located on 
the border line between red and blue zones. We see that knotting probability has two peaks if Nbeads is larger 
than 25000 or 26000. 

Why two peaks?  
Or why only one peak for small Nbeads? And why does single peak location not shift with Nbeads? 

We expect that the peak location shifts to the right as Nbeads increases because the knotting probability of 
a prime knot has a peak when Ncyl is equal to the characteristic length NK. It means that there exists a 
suitable number of segments to make a prime knot. For example, the knotting probability of 31 knot of 
random polygon with cylindrical radius r=0 has the peak at Ncyl = 257. Here NK is 257.1. So, an ensemble 
of 257gons have the most 31 knots, i. e. have the largest probability of the making the 31 knot.  

When the random polygons have bending energy, we normalize the number of beads with persistent 
length as follows. 

N′ = Nbeads ÷ (2kb). 

If kb is 5, the ensemble of 2571gons should have the most 31 knots. The ratio of N’ to the NK is given by 1 

Figure 4.6: (a)Predicted probability of trefoil knots for rings of 10,000, 20,000 and 50,000
beads as a function of their bending rigidity, κb. (b) Density map of the probability of trefoil
In the right figure, the contour plot of the derivative of P (κb, Nbeads) with respect to κb is
colored with knots for rings of beads as a function of their length and bending ridigity. Image
taken from ref. [81]

maxima of the trefoil knotting probability occur at:

κ∗b ∼ 10.9/ log(Nbeads/6351) (4.7)

κ∗∗b ∼ Nbeads/584 (4.8)

These correspond to rings of, respectively, increasing flexibility and increasing rigidity

as Nbeads gets larger. In the plot of Fig. 4.7a, the first maximum corresponds to the

crossing point at the largest rcyl values. Note, that because the locus of the maxima

(circled line) grows slowly with Ncyl, the location of the extremal value of κ∗of eq. 4.7

will likewise change slowly with Nbeads.

Physical Interpretation A physical interpretation of the crossover from unimodal

to bimodal profiles can be given in terms of the interplay of the equivalent number of

cylinders, Ncyl and the characteristic topological lengthscale, N0, which depends on

the cylinders thickness, see eq. 4.2.

This is best discussed for trefoil knots for which the CK coefficient, has only a mild

dependence on r, see Table 4.1. From eq. 4.2 and 4.3 one has that the maximum

possible incidence of trefoil knots is reached when Ncyl is about equal to N0. In

fact, fewer segments prevent from reaching the target knot complexity, while more

segments favour more complex knot types. The κb-dependence of Ncyl and N0, which

is controlled by the mapping of eq. 4.5, produces a non-monotonic, unimodal profile

of Ncyl/N
0 versus κb.
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Figure 4.7: (a) The curved lines are the contour lines of the probability for trefoil knots in
self-avoiding polygons of radius rcyl and with Ncyl edges. The straight lines are the locus of
points, that in the model mapping of eqs. 4.4, correspond to rings of 5,000 and 30,000 beads
of various bending rigidities, κb. The actual probability profiles as a function of κb are shown
in panels (b) and (c)

When Nbeads . 17, 260, the peak value of Ncyl/N
0 remains below unity and a single

maximum of the knotting probability is observed.

However, when Nbeads is increased beyond 17, 260, the maximum of Ncyl/N
0 becomes

larger than 1. There will then be two increasingly separated values of κb for which

Ncyl matches N0, and each of them will correspond to a peak in knotting probability.

The peak at the larger κb value corresponds to relatively short and thin SAPs, while

the other corresponds to SAPs that are not only longer, but also thicker.

4.5 Summary and perspectives

We used a simple physical mapping to adapt the known asymptotic expressions for

the knotting probabilities of self-avoiding polygons to the case of semiflexible rings

of beads. The mapping thus yielded analytical, though necessarily approximate,

expressions for how the incidence of the simplest knot types, 31, 41, 51 and 52 depends

on the number of chain beads, Nbeads, and bending rigidity, κb. These two parameters

are, in fact, mapped to an effective number of cylinders with an associated effective

thickness in an equivalent self-avoiding polygon model.

We validated the approach by comparing the predicted knotting probabilities with

those established in previous studies where stochastic simulations were used for rings

with 100 - 1,000 beads and for bending rigidities in the 0 ≤ κb ≤ 40 range. The
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observed agreement was very satisfactory except when κb, becomes large enough that

the effective number of cylinders becomes too small for the asymptotic expressions to

hold.

The results are useful in several respects. From a practical point of view, the

mapping can be used to obtain immediate estimates of knotting probabilities in con-

texts where the actual determination by stochastic simulations (molecular dynamics

or Monte Carlo) is particularly onerous, e.g. for semiflexible chains of thousands of

beads. This ought to be particularly helpful when one wishes to precondition a simu-

lations setup and choose the best combination of parameters for a target abundance

or complexity of knots.

More in general, the mapping is useful because it offers further insight into the

knotting propensity of rings of beads by interpreting them in terms of equivalent

polygons of different length and thickness. As an illustration of this, we examined

the non-monotonic κb-dependence of the knotting probability of rings of hundreds of

beads, hat was recently reported by some of us based on Monte Carlo simulations for

rings of up to 1,000 beads [72].

Here, by using the mapping with SAPs, we could extend the study to chains of

tens of thousands of beads and, by doing so, we observed a previously unsuspected

complex phenomenology. Specifically, we found that the non-monotonic profile of the

knotting probability switches from unimodal to bimodal for rings longer than about

20,000 beads. It would be most interesting to verify this prediction in the future, when

computational resources will allow for a systematic exploration of the κb-dependence

of the knotting probability profiles for such long rings.

Finally, we remark that, for simplicity, the results presented here have been pur-

posely based on a minimalistic mapping between the two models. This is an aspect

that can certainly be extended in future investigations, with more precise estimates

for the number of cylinders and their thickness in the equivalent SAP model.
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Knotted supercoiled DNA rings

5.1 Introduction

In the previous chapter I reported on a systematic exploration of how the knotting

probability of polymer rings is influenced by their bending rigidity.

In this chapter, I move on the second main topic of the thesis. I will broaden the

perspective to a more detailed coarse-grained model to study the interplay between

knotting and torsion in closed double-stranded DNA rings. The structural organiza-

tion of bacterial plasmids is profoundly affected by homeostatic catalytic processes

involving DNA transactions such as transcription, replication and recombination.

These are processes which require strands separation of the DNA double helix, and

opening the DNA leads to accumulation of torsional strain ahead and behind the tran-

scriptional machinery. If not relaxed, this torsion can eventually prevent the DNA or

RNA polymerases involved in these processes, and leads to detrimental effects.

The best known example is the level of negative supercoiling, ∼ −5%, found in

vivo in bacterial DNA, which is maintained by a family of enzymes called topoiso-

merases [84–86]. This baseline negative supercoiling creates an interplay between

DNA twist (local winding around the double-helix axis) and writhe (winding of the

double-helix axis around itself), that affects the structural organization of the DNA.

In addition, topoisomerase action can affects DNA entanglement, introducing for ex-

ample knots [13, 17, 87–89] or removing it [89–91]. The type and the aboundance

of knots can vary with experimental conditions, the specific topoisomerase action on

well-defined patterns of crossings [87] as well as DNA length [13, 17, 88, 89, 91–93],

which is also a key determinant of knot complexity in viral [11, 23, 25, 94] and eu-

karyotic DNA [24].
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Figure 5.1: Bacterial topoisomerase I mechanis: breaking one DNA strand, passing the
unbroken strand through the break, then resealing the break. The action of topoisomerase I
lead one strand to turn around the other, hence it changes Lk by a unit. Image taken from
ref. [111].

The structural constraints associated with supercoiling and knotting also have func-

tional implications. Plectonemes, for instance, control the degree of branchedness

of DNA rings [95–98] and this, in turn, affects the contact probability of loci, close

contact, at large genomic separations [95, 99–102]. In addition, the mechanics of

superhelical stress, which can have long-range effects [103,104], can facilitate the un-

zipping of AT-rich regions that are upstream of genes, and thus assist the binding of

promoters [103,105–110].

5.1.1 Topoisomerases

The topoisomerases (topo) are enzymes able to increase or decrease the extent of the

winding of the two DNA strands around each other, and thus control the torsional

stress accumulated during biological processes. The topo activity introduces transient

topological changes in the linking number (defined in eq. 2.3 of Chapter 2). Since the

ability to regulate the latter is essential for cell survival, these enzymes are ubiquitous

in all organisms.

Topoisomerases are classified in two categorises:

• Type I topoisomerases, which introduce transient single-strand breaks and ei-

ther allow one strand to rotate around the other (swivelling) or let the unbroken

DNA strand passes through the broken strand (enzyme-bridge strand passage)

and then reseal the latter. The change of linking number by one unit, see

Fig. 5.1;

• Type II topoisomerases, which cut both strands of the DNA double helix, pass

another unbroken double strand DNA filament through the gap, and then reseal
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Figure 5.2: The hypothesized general mech-
anism of topoisomerase II features the passage
of one intact duplex DNA segment through a
transient double-strand break in another seg-
ment. Image taken from ref. [112]

it. These topoisomerases rely on ATP hydrolysis and change the linking number

by two units, see Fig. 5.2.

Both types of enzymes have been found in all the domains of life. They are further

grouped into subclasses according to the specific mechanism employed to process the

DNA, and to their structure.

For instance, type I topoisomerases are further divided into three types: Type IA,

which removes only negative supercoiling, (−)S, and does it by an enzyme bridge

strand passage; Type IB and Type IC [113] which remove positive, (+) and (−)

supercoiling through swiveling but differ in structure [114].

The Type II enzymes are Type IIA, which are the only enzymes that can unknot or

unlink DNA [90], and IIB. The latter is comprised by the enzymes of the archaea

domain, and are exclusively able to relax both (−) and (+) supercoiling. Table 5.1

summarizes the salient features of the enzymes.

The combined action of topo I and topo II enzymes sets the level of DNA supercoiling,

unlinks the daughter chromosome in the replication of circular bacterial DNA, and

removes accidentally formed DNA knots. For instance, Type II topoisomerases are

essential for separating the two daughter strands of circular DNA molecules during

the very end of DNA replication, when two single strands are catenated and cannot

separate into the two daughter cells.

Besides this crucial role, they are also responsible for resolving the potential tangle

where two double-stranded DNA cross each other [30,91,115].

Several studies have been modelling the conditions that lead to the simplification of

entanglements: they have suggested that Topo II bind to regions characterized by high
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Type I

enzymes domains

Type IA topoisomerase I, III
Reverse Gyrase

bacteria
archaea
eukarya

Relax only (−) su-
percoiling

Type IB topoisomerase I bacteria
eukarya

Relax both (+) and (−)
supercoiling

Type IC topoisomerase V archaea Relax both (+) and (−)
supercoiling DNA re-
pair

Type II

enzymes domains

Type IIA DNA Gyrase bacteria
archaea

Introduce (−) super-
coiling and removes
knots

topoisomerase II eukarya Relax only (−) super-
coiling

topoisomerase IV archaea Relax only (−) super-
coiling

Type IIB topoisomerase VI archaea Relax both (+) and (−)
supercoiling

Table 5.1: Classification of topoisomerases. There are two main categories: Type I and Type
II. In Type I, there is further classification which divide the topoisomerases that release the
torsion via enzyme-bridge stand passage, form the ones that work through swivelling. In Type
II, the subclasses are mainly due to the recent discovered of topoVI, which are limitated to
archaea domain.

level of torsional stress, where the different portions of DNA filaments are interlocked,

without being chemically bonded. These strands are hooked-juxtapositions and gen-

erally, when the action of Topo II is applied in these regions it leads to elimination of

knots. Therefore, those regions are indentified as fingerprints of knots [34,116–118].

Under these assumptions, the presence of supercoiling ideally increases the occurence

of portions with high level of stress, such as apical loops or juxtapositions, and there-

fore they become ideal targets of topoisomerases [29,34,63,117,119,120].

5.1.2 Knotting in supercoiling DNA

Knots have been mostly associated with detrimental functional effects [13, 88, 121],

such as stalling DNA replication and transcription and yet, their emergence is statis-

tically inevitable.
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Figure 5.3: A) Agarose gel electrophorese.
It shows the separation of the knotted nicked
DNA species with various numbers of nodes
from the unknotted nicked circular form. To
indicate the number of knot nodes, they anal-
yse the bands by electron microscopy. B) Typ-
ical knotted DNA molecules by electron micro-
graphs. Image taken from ref. [122]

The experimental works of Shishido et al. [11, 122], found that, in vitro 1 − 10% of

plasmid DNA is a knotted species. This occurs in presence of negative supercoiling

with defective gyrases. Besides, they have also shown that only the knots with an

odd number of crossings are produced, see Fig. 5.3.

In addition, it has been proved in 1997 by Rybenkov et al. [90], that topo II enzymes

can reduce the fractions of knotted circular DNA molecules compared with the cor-

responding equilibrium values, by more than 80 times.

The general mechanism of DNA entanglement simplification by topoisomerases is still

far from being completely understood, and one open question is how are the topolog-

ical constraints affecting the structure of the DNA.

More precisely, the constraints due to the supercoiling and the ones due to knotting,

affect DNA in similar ways: they modify the linking number and generate deforma-

tions in twist and writhe. In living bacteria, the topoisomerases IV (see table 5.1),

decrease the (−) supercoiling by performing strands passages and introducing knots.

Concurrently, the topoisomerases type I work to adjust the level of supercoiling that

has been changed by the accidental presence of a knot. The key aspect is how topoiso-

merases, that can only sense DNA local structural information, may get hints whether

performing a strand passage in a given place, will succeed at bringing the DNA knot-

ting much below the equilibrium value.

Intriguingly, recent modelling studies by Dietler’s and Stasiak lab, have pointed

to a primary role of supercoiling in the removal of DNA knots, too [46, 123, 124].

The Stasiak’s lab explored the interplay between supercoilng and knotting in DNA

molecules with stochastic simulations of coarse-grained DNA filaments tied in trefoil
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knots, and found also that the systematic accumulation of twist leads to a tightening,

or localization, of the knot. They suggested that the local DNA simplifying action

(recognition and strand passage) of topoisomerases is possible thanks to such knot

localization. In particular, they suggested that strongly localized knotted portions

are characterized by higher curvature than unknotted ones, hence it will be easly

recognized by topo enzymes. The size reduction of the knot is the result of the com-

petition bewteen the energy cost of increasing the bending and the entropy lost of

accessible configurations [46,123,125].

These results add a novel appealing layer to the functional role of supercoiling and

suggest that further and more detailed investigations are needed to explain the suc-

cessful simplification of entanglements. Specifically the interplay of supercoiling and

knots, especially the more complex ones reported in plasmids [122], is largely unex-

plored and key questions are still unanswered.

For instance: how do knots more complex than trefoils affect the branchedness of su-

percoiled rings? Would the latter be increased by the large writhe of complex knots,

or would it be suppressed by the topological constraints? Also, what is the effect of

an intricate topology on the internal dynamics of plasmids, and how does it differ

from the one of supercoiling? Do knots trap the system in long-lived states and, if

so, what are their characteristics?

To address these questions, we consider a mesoscopic model of a DNA duplex and

studied, through molecular dynamic simulation how the interplay entanglement and

supercoiling affects the geometry and the dynamics of the duplex.

The material of this chapter is pubblished in the article of ref. [126].

5.2 Materials and methods

5.2.1 Model

We consider 2kbp-long DNA rings modelled with oxDNA [47, 50, 51], an accurate

model for DNA double filaments based on mesoscopic representation of nucleotides

and their interactions that has been presented in Chapter 1. The oxDNA model

makes it possible to gather multi-ms trajectories for kbp-long DNAs while retaining

the key structural details responsible for the frictional [127] and cholesteric effects [27]
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Figure 5.4: (a) Initial configurations of the supercoiled double-stranded DNA rings for the
three considered topologies, 01, 51 and 52. The latter two are left-handed, i.e. the topological
sign of their projected crossings is negative, as indicated. The 51 and 52 snapshots have been
edited to highlight the over- and underpasses. The mesoscopic structural representation of the
oxDNA model is illustrated in the inset, which shows a magnified portion of one of the rings.
The twist was uniformly adjusted for each of the three cases to yield the same level of negative
supercoiling (-5%). (b-d) Identification of the knotted and the plectonemically-wound regions
for a typical 51-knotted supercoiled conformation, shown in the foreground. (b) The knotted
region (green) is the shortest portion that, after suitable bridging of the termini, has the same
(51) topology of the entire ring. (c) The plectonemically-wound region (blue) is found by using
the contact map to identify long superhelical regions ending in a short apical loop and that
are free of cis or trans entanglement, as in the case of panel (d).

arising from self-contacts in the knotted or superhelical regions.

Specifically, we focus on DNA rings with 5% negative supercoiling, which is the

typical homeostatic level of supercoiling in plasmids as shown in ref [128], and tied in

5-crossings left-handed knots (51 and 52 topologies), a complex form of entanglement

previously reported in 4kbp-long pBR322 plasmids [11,88]. In addiction, we consider

also ring torsionally relaxed and unknotted to use as comparison.

5.2.2 Initial setup

The initial conformations are generated with the following two-tier scheme. First

we produce the centerline of the double-stranded DNA rings by using the KnotPlot

software [56] to create smooth, symmetric forms of 51 and 52 knots. They have the

same complexity but they belong to the torus and twist group, which typically show

different physical behaviour, from mechanical resistance to sliding friction to pore-

translocation compliance [129, 130]. With these more complex (respect to earlier

studies on 31-knotted DNAs) knots we can explore the effects of a larger writhe
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and more numerous minimal crossings on the branchedness and dynamics of DNA

rings. We also consider the unknotted ring, 01, as reference see Fig. 5.4A. To be

consistent with experimental observations on pBR322 plasmids [11, 88] the chirality

of the five-crossing knots is set to be left-handed, i.e. projected crossings have negative

sign. The circular centerlines obtain from KnotPlot, is discretised in 2000 segments,

and are next turned into the oxDNA double-helical representation by a fine-graining

procedure, where each segment is mapped into the six interaction centers of the two

paired nucleotides [127], see inset in Fig. 5.4A. In this fine-graining procedure, the

average twist between consecutive bases is adjusted differently for each topology to

yield the sought level of supercoiling, i.e. 5% , as discussed in detail in ref. [123,131]

and described below.

5.2.3 Linking number

To set the baseline value of supercoiling, first we recall that in torsionally-relaxed

duplex, the double helix makes one complete turn about its axis every ∼ 10.5 base

pairs. For a planar circular (and hence unknotted) DNA ring, the linking number, Lk

is therefore given by an integer close to LC/10.5 were LC is the ring contour length

expressed in base pairs. Because the writhe of a planar circle is zero, by using the

Calugareanu-Fuller relationshhip, Lk = Tw + Wr (eq. 2.4) we have that twist and

linking number coincide, Tw = Lk. The latter expression has to be aptly generalized

in order to be applied to knotted chains. Indeed, a knot cannot be arranged as a planar

circle. As matter of fact, knots are characterized by a non-zero writhe, hence the

number of twists of torsionally relaxed knotted rings is not simply given by LC/10.5

but it is corrected by subtracting a factor equal to 〈Wr0〉K . This value of writhe only

depends on the knot type [132]. For each considered topological state, we accordingly

adjusted the twist uniformly to include the two different cases, torsionally-relaxed

DNA rings and negatively supercoiled ones. We set the twist from the formula:

Tw = Lk −Wr + 〈Wr0〉K (5.1)
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where 〈Wr0〉K is average writhe of torsionally-relaxed rings of knot type K. For 51

and 52 knots, these values are:

〈Wr0〉51
=

50

7
− 6

7
∼ 6.2857

〈Wr0〉52
=

20

7
+

12

7
∼ 5.285

where the rational expression are based on the conjecture of ref [132]. Since the values

of the writhe of a knot and its mirror image differ by a sing flip, thus 〈Wr〉left51
∼

−6.2857, and 〈Wr〉left52
∼ −5.285.

Finally, we set the the relative amount of supercoiling, ∆Lk equal to −0.05, the typical

homeostatic level in bacterial plasmids, by uniformly spreading the global excess of

twist overall the bases.

5.2.4 Molecular dynamics simulations

For each of the six combinations of knot types (01, 51 and 52) and torsional states

(relaxed and negatively-supercoiled) we collected ten different Langevin dynamics

trajectories at T = 300K. The dynamical evolution was integrated with the LAMMPS

package [54], using the implementation of Henrich et al. [53] and default values for

the mass of the interaction centers, m, solvent viscosity, η and of the time step

in the Langevin-type rigid-body integrator [53], 0.01τLJ , where τLJ = σ
√
m/ε is the

Lennard-Jones characteristic time, σ is the length unit, equal to 10−10m = 0.8518nm,

and ε = κB T is the energy unit. Each trajectory had a typical duration of ∼ 2 ×

107 τLJ . For the analysis, we omitted the initial relaxation phase of duration 106τLJ .

The cumulative time span covered by all simulations was 1.2 × 109τLJ and required

about 1.4×106 equivalent CPU hours on the Intel-based high-performance computing

cluster (Ulysses) based in SISSA, Trieste.

5.2.5 Diffusion coefficient and time mapping

In general, because of the concurrent presence of various dynamical regimes at differ-

ent spatial scales, a correspondence between real time units and simulation time in

coarse-grained models can be set only approximately. Here, we established the map-

ping a posteriori by matching the diffusion coefficient of the simulated DNA rings
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Figure 5.5: The thick red line is the mean square displacement (MSD) of the center of mass
of 2kb-long supercoiled unknotted rings, at different time lags. This MSD was calculated
by averaging the MSD curves of 10 different trajectories (colored thin lines). The diffusion
coefficient, computed from the linear best fit (black line), is Dtheory ∼ (6.324 ± 0.005) ×
10−4σ2/τLJ .

with the analogous experimental quantity. This conservative approach is expected

to be more apt for the spontaneous dynamics of large systems than mappings based

on the diffusivity of oligonucleotides [127]. Within the oxDNA setup, the diffusion

coefficients of supercoiled or torsionally-relaxed 2kbp-long unknotted rings at 1M

monovalent salt, Dtheory, is obtained by computing the mean square displacement of

center of mass. Hence, at different lag time and for each trajectory:

MSD = 〈
(
~XCM (τ + t)− ~XCM (t)

)2
〉 (5.2)

where τ is the lag and the average is done on the number of pairs at time lags. Then,

averaging over all the trajectories, it is possible to compute the 〈MSD〉, see Fig. 5.5

(red line). Finally, as result of a linear interpolation of the latter, we compute the

diffusion coefficient: Dtheory ∼ 6.324× 10−4σ2/τLJ , where σ = 0.8518nm [47, 50, 51].

Experimental measurements for DNA rings of similar length yield Dexp ∼ 7× 10−12

m2/s [133]. By equating Dtheory and Dexp:

Dexp ∼ 7× 10−12m2/s = 6.324× 10−4σ2/τLJ (5.3)

one therefore has τLJ ∼ 7× 10−11s.
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5.2.6 Metric observables

As an overall metric observable we used the root-mean-square gyration radius, Rg =√
〈 1
2n2

∑n
i,j=1(ri − rj)2 〉 where i and j run over the n = 4000 nucleotides, ri is the

position of the center of mass of the ith nucleotide, and the 〈〉 brackets denote the

average over the configurations visited in the trajectories.

For the metric relaxation dynamics we computed the time-lagged autocorrelation

function of Rg

C(τ) =
〈(Rg(t+ τ)−Rg)× (Rg(t)−Rg)〉t

〈(Rg(t)−Rg)2〉t
, (5.4)

where Rg(t) is the instantaneous gyration radius at time t, τ is the time lag, and

〈〉t denotes the average taken over simulation time for the various trajectories. The

characteristic timescale was computed as the integral of C(τ). To limit the effects of

the noisy tail of C(τ) the integral was computed from τ = 0 up to when C(τ) drops

below 10−2 for the first time.

5.2.7 Detection of plectonemes

The torsional stress induced by negative supercoiling can leads into folding of the

DNA in the form of a supercoil, called plectonemes. To identify these plectonemically-

wound region, if any, we designed an algorithm based on persistency of subsequent

patterns in the contact maps. We generalized previous approaches [98, 134, 135] and

used the multi-step strategy sketched in Fig. 5.4C-D and Fig.5.6.

We first constructed a contact map for the DNA centreline using a tolerant cut-

off distance of 40σ ∼ 32nm, about three times larger than the typical superhelical

diameter [93], see Fig 5.6A.

Next, to identify superhelical regions, we searched for clusters of contacts form-

ing bands perpendicular to the contact map diagonal. These bands correspond to

dsDNA stretches in spatial proximity and with antiparallel orientation, i.e. opposite

directionality in the an oriented ring.

For each band we then identified its apex, which is the site, i, associated to the longest

uninterrupted ladder of contacts {(i+ ∆, i−∆), (i+ ∆ + 1, i−∆− 1), (i+ ∆ + 2, i−

∆ − 2), ...} starting at a sequence separation, ∆, not larger than 400bp. This value

is an upper bound that we empirically chose to avoid excessively large apical loops.
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Figure 5.6: The identification of plectonemes is based on the distance between the points
of the centreline. Firstly we compute a contact map with a tolerant cutoff of 40σ. Then,
we look for apices, which are identify as the bead from which develops a continuous bands
perpendicular to the diagonal. We classify them according to their length: the persistence of
consecutive contacts. Later, we identify and classify the tight contacts, which are the one closer
in space than 10σ, and that do not have any other strand in the middle. (B) Once identify
the putative apices and all the relative tight contacts we proceed iteratively as summarize in
the panel flowchart.
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Likewise we do not count short range contacts, i.e. contacts at sequence separation

∆ < 100bp since they are spatially and sequencly close and do not provide information

on the 3D structure. In addition, omitting them speed up the computation proce-

dure that requires the computation of the distance between all the pairs. Within each

band with ∆ < 400bp, we then searched for the presence of pairs even closer in space,

we refer to them as close contacts, a signature feature of supercoiling, see Fig. 5.6.

Specifically, we searched for the contacts at distance smaller than 7.5σ(∼ 6nm), and

took the contacting pairs with the smallest and largest sequence distance from the

apex as the endpoints of the putative superhelical region, Fig 5.6A. The putative

plectoneme, formed by this region and the bridging apical loop was then checked to

be free of entanglement, Fig 5.6B, by testing that progressively longer portions of the

plectoneme had no physical linking [136] with the remainder of the ring. If this was

not the case, the distal endpoints (those farthest from the apex) were progressively

backtracked until the region became disentangled. Notice that, this requirement will

exclude all the plectonemes that have their loop entangled in the ring.

The plectoneme assignment was then carried out in an iterative non-overlapping man-

ner by ranking the putative plectonemes by the contour length of the superhelical

region and disregarding instances where the latter was smaller than 300bp,i.e. twice

the persistence length, Fig 5.6C. The region with the longest superhelix was then

assigned as the first plectoneme. Next, the distal endpoints of the remainder putative

plectonemes (if any) were then backtracked to eliminate eventual overlaps with the

sites assigned to the first plectoneme. The length ranking and selection was repeated

and the second plectoneme was assigned so on, until exhaustion of the putative plec-

toneme set.

The iterative scheme allowed for the unsupervised detection of one or more plec-

tonemes in practically all supercoiled configurations except for a small subset (0.5%

of 51-knotted instances and even smaller for 52-knotted and unknotted ones) with

non well formed superhelical regions or atypically large apical loops, see Fig. 5.7.

5.2.8 Topological observables

To locate the knotted region along the ring we used the bottom-up search scheme

described in Chapter 2.
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D)

A B     C                 D

Figure 5.7: Examples of supercoiled conformations for which no plectonemes are identified
by the algorithm described due to excessively large apical loops or non well-formed superhelical
regions. The topologies of the shown conformations are as follows: 51 for panels A and B, 01
for panel C and 52 for panel D.

The procedure has the goal to find the smallest portion of the ring that, after closure,

has the same topology of the entire ring. Firstly, starting from portions of only few

nucleotides and systematically expanding to longer ones.

For closing the considered portion we used the minimally interfering closure scheme

[58], where the termini of the portion are bridged either with a straight segment or

via a path involving the convex hull, depending on their proximity.

Once we obtain a closed curve we establish the topology using Alexander polynomials

evaluated at t = −1 and t = −2.

5.3 RESULTS

5.3.1 Conformational variability

We provide in Fig. 5.8A typical snapshots, representative of the various degrees of

branching found in the 51- and 52-knotted DNA rings, along with instances without

knots (01 case). Our simulations reveal that the conformational variability of knotted

supercoiled DNA rings is significant, it explore various degrees of branching, up to

3 branches, for all the topologies. This large conformational variability is consistent

with ref. [106], indeed the latter study shows how wide is conformational variability

of minicircles of unknotted DNA containing 336bp, it is remarkable that the DNA

was able to adopt such a wide variety of conformations despite the short-length and

the accumulated torsion of due to supercoiling, even varying the latter in a range of
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Figure 5.8: a) Typical snapshots of supercoiled DNA rings for the three considered topologies.
The conformers are grouped by the number of plectonemes (in italics), which increases from
left to right, and are shown in colors of different saturation for visual clarity. b) Normalised
histogram of the number of plectonemes observed for each topology.
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Figure 5.9: Probability distributions of the plectonemes’ length, lplc and gyration radius, Rg,
for supercoiled rings with (A) unknotted and (B) 51 topologies. The conditional probabilities
for 1 to 3 plectonemes are shown with coloured histograms, see legend, while the normalised
combined distribution is shown in grey. (C) Normalised joint probability distribution of Rg

and knot length, lk. (D) Marginal probability distribution of lk.

−6 < ∆Lk < +3.

In ref. [95] it has been shown via Monte Carlo Methods, that even relatively short

DNA molecules, < 3 kilobases, increasing the supercoiling results in the formation

of unbranched, rodlike plectonemic conformations in order to accommodate torsional

stress due to DNA underwinding. Therefore, it is interesting to examine the rela-

tionship between knottedness and the number of branches, or plectonemically-wound

regions, because of the competing elements that govern it.

The lobes, apices and clasps inherent to complex knots can favour plectonemes by

serving as nucleation points, while the conformational restrictions of the topological

constraints can inhibit plectonemes formation. The histograms in Fig. 5.8B clarify

that, at this contour length, unknotted DNA rings are actually somewhat richer in

plectonemes than knotted ones; in particular, instances with 3 or more plectonemes

are practically found in unknotted rings only.

More conspicuous differences related to topology are found in the distributions of

plectoneme lengths, lplc, and gyration radius, Rg, see Fig. 5.9A,B, for the unknotted

rings and 51 ones and Fig. 5.10 for the 52 topology. In particular, the conditional

distributions of lplc for the common single- and double-plectoneme states are little

superposed for unknotted rings, but overlap substantially for knotted ones.

The length of the plectonemes is also different across the 2kbp-long knotted and

unknotted rings. For examples, plectonemes longer than 1500bp are common in

uknotted rings but rare in 51-knotted ones (50.7% and 0.05% of the populations,
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Figure 5.11: Scatter plot of knot length, lk, versus gyration radius, Rg, for 2kbp-long su-
percoiled rings tied in 51 knots. The best linear fit (black line) has correlation coefficient
r = −0.36.

respectively). Conversely, conformers with only one plectoneme, and shorter than

1000bp, are uncommon in unknotted rings but abundant in 51-knotted ones (6.3%and

22% of the populations, respectively).

These differences could be of practical relevance, since they could be exploited in

imaging, e.g. cryo-em, experiments to tell apart knotted from unknotted plasmids

when supercoiling is present. Such discrimination is generally beyond the scope of gel

electrophoresis, the method of choice for DNA topological profiling (but for a notable

exception see [137]).

Knot length,lk, plectoneme length and gyration radius are metric quantities that

are correlated due to the fact that the size of the ring is fixed. The interplay is

presented in Fig. 5.9C-D. The joint probability distribution in panel C shows that lk

and Rg are anticorrelated, a property observed in other polymer systems too [72,76].
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Figure 5.12: Normalised probability distribution of the knot length, lk for 2kbp-long super-
coiled 52-knotted DNA rings.

In Fig. 5.11 the anticorrelation is shown in a scatter plot of lk and Rg, for the 51

topology. The argument presented in Chapter 3 can be applied also here: shrinking

the knot size leads to an increase of the unknotted portion of the ring, which will

be characterize by large value of Rg. What is specific of supercoiled knotted DNA

rings is, instead, the presence of two peaks in the joint lk − Rg distribution. The

peaks’ origin is clarified by their marginal (projected) lk distributions subdivided for

number of plectonemes, see Fig. 5.9D. Specifically, the dominant peak, for lk ∼ 700bp,

is mostly associated to single-plectoneme states, while the peak at larger knot lengths

(lk ∼ 1100bp), corresponds to states with two or more plectonemes. Analogous results

for the 52 topology are shown in Fig. 5.12.

The inverse correlation of lk and the number of plectonemes is understood by

noting that the knotted region, which is the shortest uninterrupted portion of the

ring accommodating the essential crossings (or essential tangles), must also include

all intervening loops between the crossings except for the longest one. In supercoiled

rings this remainder loop typically coincides with a plectoneme. Because the average

plectoneme length decreases as their become more numerous, one has that lk is shorter

for states with a single plectoneme.

Overall, we can consider the equilibrium ensemble dominated by two different states:

conformers with single-large plectoneme, and a localized knot, and conformers with

two short plectonemes. These two are well characterized by the distributions of the

metric observables, that allows for discerning between the two conformes types.
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Figure 5.13: (A) Typical temporal traces of the length of the knotted region, lk and the
gyration radius, Rg, from a trajectory of supercoiled 51-knotted ring. The background is
coloured according to the instantaneous number of plectonemes, see legend. (B) Semi-log
plot of the autocorrelation functions, based on data from all trajectories, of Rg, lplc and lk of
supercoiled 51-knotted rings (B) and of Rg, lplc for unknotted ones (C).

5.3.2 Time evolution of metric and knot-related properties

The oxDNA model allows us to perform molecular dynamics simulation, which gives

as the opportunity to look at the time of evolution of metric and topological proper-

ties. The data shown in Fig. 5.13A are a kinetic counterpart to the static, or ensemble,

view given above of the interplay of the knotted region, the number of plectonemes

and the gyration radius.

One notes that over the typical duration of a trajectory (2.2× 107τLJ corresponding

to about 1.5ms) both lk and Rg have significant fluctuations, and clearly of opposite

sign. These are accompanied by several changes in the number of plectonemes, as

conveyed by the colored background.

A more quantitative analysis of the characteristic timescales of these variations is

given in Fig. 5.13B,C. These panels present the autocorrelation curves of Rg, lk and

of lplc. The latter, was used in place of the number of plectonemes (on which it

clearly depends) for its broader range of values, which makes it more amenable to

the autocorrelation analysis. By integrating the autocorrelation curves, one has that

the characteristic times of lk and Rg are respectively equal to 1.03 × 106τLJ and

0.53 × 106τLJ , while for plectonemes’ length it is 0.69 × 106τLJ . Consistent with

visual inspection, these timescales are all of the same order, about 106τLJ , which is

much shorter than the duration of each simulated trajectory.

It is interesting that unknotted rings have a somewhat slower internal kinetics than

knotted rings, cf. panels B and C in Fig. 5.13. In fact, the characteristic times of Rg

and lplc are, respectively 80% and 35% longer for unknotted rings (the same holds for
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Figure 5.14: The autocorrelation functions, based on data from all trajectories, of Rg and
lk of supercoiled knotted rings.

Rg in the torsionally-relaxed case, see Fig. 5.14).

The result is not obvious, as one might expect a slower internal dynamics for knotted

rings due to the friction of their self-contacts. It can be explained by considering that

a finite portion of topological constraints necessarily uses up a finite portion of the

chain, and therefore knotted rings have a shorter effective contour length than un-

knotted ones and a smaller gyration radius too (see Fig. 5.9). This, in turn, reflects in

a reduced breadth of the relevant conformational space and hence a faster relaxation

kinetics.

From the above analysis of overall metric and topological properties we conclude

that, at physiological supercoiling, 2kbp-long knotted rings have enough conforma-

tional freedom to fluctuate spontaneously between two main states, related to the

peaks in Fig. 5.9C, differing by knot size as well as the length and number of plec-

tonemes. The characteristic timescale of these variations is ∼ 3×106τLJ , correspond-

ing to about 0.02ms, see Fig. 5.15.

5.3.3 Slowly-moving boundaries of the knotted region

To understand the kinetics of the concerted variations of knot size and the number

of plectonemes, we decouple entanglement and supercoiling by studying the time

evolution of DNA rings where either the knot or supercoiling were present, but not

both of them, as in the kymographs of Fig. 5.16 panel A and B, for the torsional

relaxed knotted ring and the supercoiled unknotted one, respectively.

Considering that the trajectory covers a timespans of 2 × 107τLJ ∼ 1.5ms, it is
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Figure 5.15: Temporal traces of the length of the knotted region, lk, and the gyration
radius, Rg, for 2kbp-long supercoiled rings with (A) 51 and (B) 52 topologies. The color-
coded background reflects the number of plectonemes present: orange for 1 plectoneme, green
for 2 plectonemes, as in the legend of Fig.5.13A.
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Figure 5.16: Kymographs showing the typical time evolution along the ring contour of
knotted and plectonemically-wound regions, see legend for color code. The two kymographs
are for: (A) torsionally-relaxed 51-knotted rings and (B) supercoiled unknotted rings.

clear that the contour motion of the knotted region occurs over timescales that are

comparable to those discussed previously. These, we recall, were the relaxation time

of the gyration radius and knot length, of about 106τLJ , and the changes between

the tight and delocalised knotted states, which occur at intervals of about 3×106τLJ ,

see Figs. 5.13B. Likewise, the diffusion of supercoiled regions along the ring has the

same characteristics: the diffusion occurs on timescale comparable with the one of

Figs. 5.13C.

However, the interplay of the knots’ constraints and supercoiling in the ring changes

dramatically the time evolution of these regions: the kymograph clearly indicates

that there exists an additional relevant kinetic process besides those discussed before,

namely a surprisingly slow stochastic motion of the knot along the ring contour.

Note, in fact, that the region covered by the knot at the beginning of the simulation

in Fig. 5.17A (bp600-bp1800) still has not moved appreciably by the end of the

trajectory (bp700-bp2000).

We thus conclude that in supercoiled DNA rings, the contour motion of the knot-

ted region is slower than these other processes by an order of magnitude (and likely

more since the practical bound is the duration of the simulated trajectories).

Besides the knot, Fig. 5.17A shows the concurrent evolution of plectonemically-

wound regions, too. Note that most of the time, there is a single long plectoneme that

spans the ring portion complementary to the knotted region; but the latter can occa-

sionally nest a plectoneme too. The kymograph clarifies that such nested instances

have the following properties: (i) they occur in addition, and not in substitution, of
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A Supercoiled 51

B Torsionally relaxed 51

C Supercoiled 01

Figure 5.17: Kymographs showing the typical time evolution along the ring contour of
knotted and plectonemically-wound regions, see legend for color code. The three kymographs
are for: (A) supercoiled 51-knotted rings, (B) torsionally-relaxed 51-knotted rings and (C)
supercoiled unknotted rings. The boundaries of the knotted and the main plectonemically-
wound regions of case (A) are noticeable stabler than for case (B) and (C) due to persistent
interlocking of multiple strands. This is illustrated in the snapshots above panel (A), where
the same region at the knot-superhelix boundary (bp1000-bp1200, highlighted in red in the
insets) remains entangled with other ring portions throughout the trajectory. The midpoint
of this region is marked with a red bead in the insets and with a dotted red line in panel A.

the typically longer ”dominant” plectoneme that complements the knotted region;

(ii) their characteristic lifetime is 7 × 105τLJ and (iii) consecutive appearances are

separated by intervals of highly variable duration.

Overall, the several observed fluctuations of plectonemes’ number and length dur-

ing the entire trajectory are in line with the relatively fast relaxation dynamics of

Rg and lplc of Fig. 5.13. Strikingly, these variations are accompanied by a notice-

able persistence of the plectoneme boundaries, which mirrors the one of the knotted

region.

These features are ubiquitous across the collected trajectories for both 51 and 52

topologies, as shown in other examples of Fig.5.18. One concludes that, irrespective of

their torus (51) or twist (52) character, these supercoiled knotted rings have persistent

boundaries between knotted and plectonemically-wound regions. This, in turn, poses

the question of which of these two components, knots or plectonemes, is the primary
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Figure 5.18: Kymographs showing the contour motion of the knotted and plectonemically-
wound regions. Data are for different trajectories of 2kbp-long supercoiled rings with 51 or
52-knots, as indicated. Notice the persistence of the boundaries between the knotted and the
main plectonemically-wound region.

cause for the slow evolution of these boundaries.

5.3.4 Persistent interlockings

As mentioned in the previous paragraph the properties that emerges when we consider

torsionally-relaxed knotted rings and supercoiled unknotted one, are in stark contrast

with those of panel A, where knotting and supercoiling are both present. In fact one

observes that neither the boundaries of the knotted region (without supercoiling)

nor those of plectonemes (without knotting) are inherently persistent. In fact, in

both cases the boundaries vary on the same relatively fast timescales of the metric

relaxation, i.e. ∼ 106τLJ .

We thus conclude that it is precisely the synergistic action of complex topology and

supercoiling that is responsible for the locked boundaries, and the latter disappears

when either of them is missing.
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Figure 5.19: Example of interlocking. The ring is knotted and supercoiled. The insert shows
how the strands are arranged in the so called persistent interlockings.

To clarify the mechanism underpinning this effect we inspected in detail the dy-

namical evolution of the rings. We thus established that the persistent boundaries

correspond to specific points of tight and complex self-contacts of the knotted region,

a typical example is given in Fig. 5.19.

A large number of self-contacting loci are clearly introduced by supercoiling in any

DNA ring, regardless of its topological state. In knotted rings, due to the tightening of

the intrinsic essential crossings, these loci typically involve several clasped or hooked

double strands, as highlighted in the snapshots of Fig. 5.17A. We observed that,

similarly to what happens during the pore translocation of knotted filaments [38,129,

130,138], the topological friction at these points is so high that the DNA strands are

locally pinned while other parts of the chain can still reconfigure.

This effect accounts for the observed separation of timescales between the metric

relaxation time and the contour motion of the clasped points, at the boundary of the

knotted region.

Incidentally, we note that the relevance of these persistent regions of self-contacts

reinforces a posteriori the necessity to use models, such as oxDNA, where the spatial

description is sufficiently fine to capture the internal friction that develops when two

tightly interacting DNA strands slide against each other. For this reason, we sur-

mise that the observed sliding hindrance of contacting strands would be even higher

in atomistic or more fine-grained models at this same high salt conditions. At the

same time, the friction between DNA strands could be relieved by increasing their

electrostatic repulsion with a lower salt concentration. We believe these would be
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worthwhile points to address in future modelling studies and possibly also experi-

mentally, e.g. using setups akin to those of ref. [139].

Importantly, not all intrinsic (or essential) crossings of the knots create persistent

interlockings, but only a subset of them. This is visible in the snapshots of Fig. 5.16A

where one notes that the two boundaries of the five-crossing knot are pinned by their

high local physical entanglement and yet, the DNA strands can slide, despite the

several points of pairwise contacts. It is precisely this internal sliding that creates

the possibility for plectonemes to form transiently, but repeatedly, within the knotted

region. As a matter of fact, the persistent interlocking appears in either of the two

qualitatively different conformers populated by supercoiled knotted rings (i.e. those

with local or non-local knots in Fig. 5.9.

In this regard, it is relevant to recall the seminal work of Liu et al. [34, 117], who

pointed out that hooked DNA juxtapositions are an ideal target substrate of topoII

enzymes because local strand passages at these point generally produces a simpler

topology. The kinetic persistence of these multi-strand interlocking adds a novel tem-

poral dimension to other, more thermodynamical effects of supercoiling, such as knot

localization, that are credited to favour the local, yet globally-disentangling action,

of topo II. The present results, in fact, complement the insight from earlier ther-

modynamic sampling [124, 125], by showing that once hooked or multiply-clasped

juxtapositions are formed, they are long-lived. This, we speculate, is key for making

such forms of local entanglement persistent enough to be recognised and processed

by topo II enzymes.

5.4 Conclusions

To summarize, we used molecular dynamics simulations and the oxDNA mesoscopic

model to study the effect of complex, five-crossing knots, on the conformational and

kinetic properties of 2kbp-long plasmids with the typical 5% negative supercoiling

found in bacterial plasmids. We particularly focussed on whether and how complex

topologies, with their numerous points of high curvature and self-contact, can al-

ter the branchedness of supercoiled plasmids and the dynamical evolution at long

timescales.
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On both accounts, we found that the interplay of knotting and supercoiling has major

consequences that would have been difficult to anticipate a priori.

For the structural properties, we found that the conformational ensemble explored

during the spontaneous dynamical evolution is largely dominated by two qualitatively-

distinct states. They differ both by knot size and degree of branching. This fact,

noteworthy per se, is accompanied by two intriguing kinetic effects. The first is that

spontaneous fluctuations between these two states occur on timescales that are com-

parable to metric relaxation times of unknotted rings. The second is that certain

boundaries separating the knotted and plectonemically-wound regions are very long-

lived: they remain persistent throughout the 1.5ms-long simulated trajectories, and

hence vary over much slower timescales. The relaxation times are much longer - ar-

guably by at least an order of magnitude - than the metric relaxation times which

is about 0.3ms. This complex phenomenology is shown to arise exclusively from the

cooperative action of supercoiling and topological constraints; removing either of the

two suffices to remove the persistent boundaries. The latter are shown to occur in cor-

respondence of loci where multiple strands become interlocked. The interlockings have

a local geometry that is analogous to the so-called hooked juxtapositions [34,117,118],

argued to be ideal local targets for the topoisomerases’ knot simplifying action. We

accordingly surmise that their long-lived character, besides their structural features,

could also be instrumental to favour their recognition by topoisomerases. We believe

this would be a noteworthy problem to address in future studies, for instance using

mesoscopic models incorporating the interaction of DNA and proteins, which would

be essential for a realistic description of DNA organization and processing in vivo.

In addition, we expect that the incidence and long-lived character of multi-strand

interlockings could also be probed with advanced single-molecule manipulation tech-

niques such as pore translocation that, having been successfully applied DNA rings

with either knots or supercoiling [38, 60, 127, 140–143], is ideally suited to address

their concurrent effects. In addition to previously established conformational fea-

tures such as hooked juxtapositions or tight knots [34, 117, 118, 123], the long-lived

character of these regions could aid the recognition, and hence knot simplification,

by topoisomerases.
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Knotting probability of intracellular DNA

6.1 Introduction

In Chapter 5 we discussed how negative supercoiling, combined with complex topolo-

gies, affects static and dynamical properties of DNA rings. Knotting and supercoiling

arise from the incessant action of various DNA-processing enzymes, particularly RNA

polymerases plus Topo I and Topo II enzymes.

As noted in the previous chapter, the DNA strands separation operated by the RNA

polymerase causes the accumulation of positive supercoiling, (+)S, ahead of the poly-

merase and negative supercoiling, (−)S, behind, see Fig. 6.1, which are next relaxed

by topoisomerase enzymes to prevent the stalling of the transcription process. Note

that the two oppositely-directed types of supercoiling are produced at the same rate,

which is typically of 10 turns/s, but are relaxed with different efficiency by Topo I and

Topo II enzymes. In bacterial DNA, it is this interplay of creation and differential

relaxation of (+)S and (−)S that leads to the overall negative level of supercoiling at

steady state. In eukayotic DNA, the chromatin architecture itself can strongly affects

the way that supercoiling is introduced, relaxed or propagated. As matter of fact the

DNA wrapping around histones can act as a buffer for the torsional stress, and adds

a further level of complexity in supercoiling homeostasis.

Besides, topoisomerases act differently in different chromatin regions: in particular,

Topo II preferentially relaxes the denser DNA regions organised by histones, whereas

Topo I acts preferentially on the proteins-free ones.

It is important to stress that both types of topoisomerases are involved in the tran-

scription process but the latter can be stalled only by inhibiting Topo II, not Topo

I [144]. Therefore, the entanglement features capable of hindering transcription must
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Figure 6.1: Illustration of how the strands-separation accumulates positive and negative
supercoiling.

a) b)

Figure 6.2: Yeast minichromosomes DNA. Image and caption are from ref. [24]. a) in vivo
DNA sample of YRp4 was enzymatically nicked and loaded in a 2D gel for analysis of DNA
knotting. Gel lanes show 1:1 and 1:10 dilutions of the sample. Left and right panels show,
respectively, short (2 min) and long exposures (100 min) of the gel-blot. b) Total DNA knot
probability and of knots 31, 41, 51 + 52, and knot species of 6 to 8 crossings (Kn6, Kn7,
Kn8) in the indicated yeast minichromosomes. The plots show the mean and SD of three
experiments. [24]

be strongly related to the different properties of the substrates processed by Topo I

and Topo II, such as the number of strand passages, see chapter 5.1.1.

This necessary role of the Topo II leads to the question of assess the extent to which

DNA knots, which cannot be relaxed by Topo I, are associated to the positive super-

coiling that accumulated ahead of the RNA polymerase.

This question is reinforced by the recent seminal study by Valdés et al. [24] that has

shown, for the first time, that eukaryotic DNA can be knotted in vivo. They used

minichromosomes YRp4 of 4.4 kb, which were nicked and analysed via 2D gel elec-

trophoresis, see Fig. 6.2a. The gel bands indicate that 31 knots are the most probable,

but not the sole, topology and that the overall knotting probability of these minichro-

mosomes is ∼ 0.02− 0.03. The later value clearly sets the baseline for DNA knotting

in minichromosomes in vivo.

They also hypothesized that, in vivo, the observed knotting probabilities are explica-

ble by a possible hierarchical structural organization of chromatin. The interpretation
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Figure 6.3: Image and caption adapted
from ref. [24]. Model of chromatin archi-
tecture inferred from DNA knotting probabil-
ity. (A) Intricate folding of nucleosome ar-
rays favours topo II-mediated knotting of in-
tracellular DNA. Knotted fractions are reduced
when nucleosomal clusters unfold during DNA
transcription. (B) Uninterrupted expansion
of nucleosomal fibers would produce propor-
tional scaling of DNA knot formation (orange
dashed line). Fractalization of the chromatin
architecture minimizes instead the potentially
harmful scaling of DNA entanglements (green
line). The kPCHR data supports a fractal
model, in which the beads on a string archi-
tecture of the 10 nm nucleosomal fiber reiter-
ates in its next level of organization by forming
clusters of about 20 nucleosomes.

that Valdés et al. provide for these results is that intramolecular DNA segments are

much more juxtaposed due to the high flexibility of nucleosomal fibers compared to

naked DNA. Notice that the flexibility arises thanks to the free segments between

nucleosomes, which are called linkers. They behave like rigid sticks completely free

to bend. The DNA knotting probability shows to be proportional to the number of

nucleosomes, at least up to ∼ 20 nucleosomes, see Fig. 6.3. Valdés et al. show that

for high flexibility of nucleosomal fibers the DNA knotting grows with length however

some mechanism minimizes the scaling of DNA knot formation throughout intracel-

lular chromatin. They also postulate that the controlling mechanism is related to

architecture of chromatin, and in particular to its compactness.

As matter of fact, in vitro studies have shown that topo II produces abundant and

complex knots when there are several DNA strands that are brought close together

due to DNA condensation [145,146]; and computer simulations [21,147,148] of poly-

mer chains have largely investigated the effect of DNA compaction on knot abundance

and complexity. Moreover studies [149, 150]have also shown that introducing (+)S

can cause the rapid compatification of nucleosomal fibers.

Overall, these results point at a connection between the knotting observed in eukary-

otic DNA in vivo and its compactness and supercoiling properties.

Here I will report on the use of a minimalistic model of minichromosome as a first

step to clarify the interplay of these three elements. The material presented here is

mostly based on the study published in ref. [151], which resulted from a collaboration
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with Prof. Roca’s experimental lab at the University of Barcelona.

6.2 Model and Methods

Model We represent YRp4 minichromosomes with a strings and beads model. The

YRp4 DNA is ∼ 4.4kb-long and is wrapped around 25 nucleosomes. The latter are

modelled by spherical beads of diameter D, and the DNA duplex linkers between

them are described by infinitely-thin straight segments of length L + D connecting

the centers of consecutive beads, see Fig. 6.4. Note that free portion of a segment,

describing the DNA linker has length L. For YRp4 minichromosome, D is about

10nm, and the length of the linkers can vary between 10 to 20nm. Here, for simplicity,

we assume all linkers to be of the exactly the same length.

We tune the ratio D/L in order to reproduce the baseline knotting probability of

∼ 0.02. The beads are impenetrable and the excluded volume effect is introduced

by assigning infinite energy to configurations with overlapping beads and zero energy

otherwise.

The model has the following limitations: is not possible to properly define the torsion

and perform a systemic study on it. It is possible, instead, to use the confinement as

observable, which enable to investigate the effect on knotting and writhe. We recall

that the latter, is a measurement of the amount of winding of the axis of a double-

strands and it is described in Chapter 2.4.

Another important point to stress is that, for simplicity, we will assume for simplicity

to be in equilibrium, even thought the processes results from the concurrent dynamic

(out-of-equilibrium) action of RNA polymerase and topoisomerases (and hence do not

account for effects related to their concentration in solution, DNA binding affinities,

efficiency etc.)

Monte Carlo A Metropolis Monte Carlo scheme based on unrestricted crankshaft

moves is used to sample the conformational space, see Chapter 1.3. The moves allow

the linkers to cross so that the sampled space corresponded to torsionally relaxed and

topology unrestricted minichromosomes. For different combinations of the D/L ratio

in the [0 : 1] range, we collect no less than 105 uncorrelated conformations: they are
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a) b)

D

L

Figure 6.4: a) Representation DNA wrapped in 1.67 left-handed superhelical turn (∼ 146
bp) around an histone. Image adapted from Shmoop Editorial Team. (2008, November 11).
b) Model of minichromosomes of 4.4kbp represented by ring of beads and linkers.

picked at time intervals larger than the autocorrelation time of the radius of gyration

radius, Rg.

Methods We consider different combinations of the D/L ratio in the [0÷ 1] range

to tune the optimal ratio that reproduce the value of basal knotting probability ob-

served in ref. [24]. For each of them we collected over 106 independent conformations

(i.e. picked at time intervals larger than the autocorrelation time of the radius of

gyration radius, Rg) which were topologically-profiled. This has been done by com-

paring the Dowker code of their 2D projections against tabulated values using the

Knotscape software [152]. The ∼ 2% knotting probability observed experimentally

for torsionally relaxed YRp4 rings was recovered for D/L ∼ 0.47, see Fig. 6.5, which

is plausible based on the aforementioned nominal histone diameter and linker lengths

in YRp4 (nucleosomes diameter of 10 and linkers of about 10− 20).

6.3 Results

Computational results Firstly, we address the role of compactification on the

knotting probability at fixed value of D/L = 0.47. We collect an extensive set of

∼ 4 ∗ 106 conformations. The packing is introduced by resampling a posteriori the

conformations to retain only those with gyration radius, normalised to the uncon-

strained average value R0
g, smaller than a maximum threshold value, max Rg/R

0
g. By

varying the latter in the [0.55÷ 1.8] we obtain equilibrated ensembles of conformers

with different upper bound for their diameter.
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Figure 6.5: Knotting probability as function of the ratio D/L. The dotted line is the target
experimental knotting probability.

Fig. 6.6B illustrates the effect of increasing compactification, the knotting probability

increases, reaching ∼ 50% for strong packing, i.e. when the Rg is < 60% of the average

unconstrained gyration radius R0, which correspond to a 5-fold volume compaction.

Notice that knotting, in the strongest compactification achieved, is enhanced ∼ 20

times, compared with the baseline of 0.02 for unconstrained rings.

This boost varies with the complexity of the knot, as clarified by the profiles for the

enhancement of 31, 41 and 51 + 52 knot types. These are enhanced by a factor of 10

,25 and 60 times, respectively.

Secondly, we tackle the question of the interplay between the compaction level and the

DNA supercoiling. Because torsion cannot be inserted in this minimalistic minichro-

mosome model, it is not possible to study directly the effects of supercoiling. As a

proxy, we instead consider the average unsigned writhe, |Wr| of the rings. A heuristic

rationale for this is that DNA is characterized by large torsional rigidity persistence

length ∼ 80nm, and hence the introduction of torsion is mostly converted in writhe

rather than DNA twist [153].

Experimental results Here, I briefly recall the main experimental findings ob-

tained in Roca’s Lab using minichromosomes YRp4 and E. Coli TopA; they accumu-

late positive supercoiling by inactivation of topo II while TopA is kept active, thus can

relax (−)S. Instead, the accumulation of (−)S is obtained by of thermal inactivation
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Figure 6.6: (A) Model that simulates nucleosomal fibers. (B) Effect of compaction of knot
probability. PKn values (N = 25, D/L = 0.47) are plotted as a function of the gyration
radius (Rg). Each point computes the PKn of those configurations of Rg below a cutoff value
(maxRg) relative to the average gyration radius of the entire distribution of conformers (R0

g).
(C) Enhancement of individual knot populations by the effect of compaction. (D) Reduction
of 〈Rg〉/R0

g as a function of the absolute writhe (|Wr| ). Image adapted from ref. [151].

of topo II.

2D-gel electrophoresis is then used to quantify Lk and hence the level of supercoil-

ing. Finally, after properly nicking the YRp4 minichromosomes DNA and using a

different 2D-gel electrophoresis setup, they examine the incidence of knots and their

complexity.

The results are shown in Fig. 6.7 panels C and D. The 2D-gel electrophoresis clearly

shows that is DNA knotting increases strongly with the accumulation of (+)S (Fig. 6.7D),

instead, in the accumulation of (−)S (Fig. 6.7C) there are no appreciable differences

in the gel runned before and after the accumulation of (−)S. As a result of the in-

crease of (+)S, the enhancement of P kn is ∼ 10 − fold, increasing from ∼ 0.02 to

∼ 0.2, see Fig. 6.7F.

The emergence of knots is directly due to the residual activity of topo II when there

is an unbalance between the two directions of supercoiling. The experimental data
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Figure 6.7: DNA knotting probability during (+) and () supercoiling of chromatin. (A)
Lk distribution of DNA topoisomers in a 2D-gel electrophoresis; N, nicked DNA circles; L,
linear DNA. (B) Relative position of unknotted (N) and knotted nicked DNA circles (Kn) in
a 2D-gel electrophoresis. (C and D) DNA topology of YRp4 in top1 top24 (C) and in top1
top24 TopA+ (D) cells. (E) Incubation of the nicked DNA sample of (+)S YRp4 (no E) with
topo I and topo II activities in vitro. (F) DNA knotting probability (PKn) of YRp4 in the
four conditions analyzed in panels (C) and (D). Image from ref. [151].

collected by Roca’s Lab indicate that transient DNA knots, which are present in in-

tracellular chromatin, are strongly enhanced by positive supercoiling.

In Fig. 6.8B, is possible to see how the knotting probability starts increasing when

the (+)S is accumulating, and it affects half of the supercoilied population after

20− 40min (green bars), see ref. [151] for more details.

The boost of knotting also affects the knot spectrum. Indeed, the enhancement of

individual knot population increases accordingly to the complexity of the knot see

Fig. 6.8D: the trefoil knot which is the most abundant, increases its incidence by

∼ 12 times compared to the torsionally-relaxed case, the enhancement is 25-fold for

41 knots and 60-fold for the combined population of 51 and 52 knots .

6.4 Discussion

The YRp4 minichromosome model provide a first valuable insight into the structural

properties that are likely responsible for the enhancement of knots observed experi-

mentally during transcription.

First, we found that the 20-fold knot enhancement can be accounted for by a sub-

stantial compactification of the minichromosome, namely a 5-fold reduction of the
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Figure 6.8: (A) DNA supercoiling and knotting of YRp4 in top1 top24 TopA+ cells sam-
pled at different time points (min) after shifting the cultures to 37C. (B) Comparison of the
accumulation rate of (+)S (red), PKn values relative to total DNA (yellow) and PKn values
relative to the fraction of (+)S DNA (green). (C) Probability of individual knot populations
in cells sampled at 0 min (relaxed chromatin, blue) and after shifting them to 37C for 100 min
((+)S chromatin, orange). (D) Enhancement of individual knot populations shown in panel
(C) upon accumulation of (+)S. Image and caption from ref. [151].

occupied volume.

Second, the packing effect is compatible with the accumulation of supercoiling. In

fact, we observe that a progressive compactification of the model minichromosome

reflects in a systematic increase of the unsigned writhe, see Fig. 6.6D.

Finally, the properties of the model aptly complement the experimental ones for hav-

ing insight on the simplifying action of topoisomerases. More precisely, Roca’s Lab

was able to detect the transient knotting probability that arises during the accumu-

lation of supercoiling and the action of topoisomerases.

As already mentioned in Chapter 5, the DNA disentangling action of topoisomerase

has long been investigated because it poses the conundrum of how the necessarily

local action of these enzymes can be reconciled with the capability to remove global

forms of entanglement. Over the years several appealing explanations have been sug-

gested, including active biological mechanisms that promote the tightening and hence

localization of knots, [19,123]the temporal persistence of essential crossings [126], and

the fact that knots are accompanied by characteristic local geometric features, such

as hooked DNA juxtapositions [63].

The transient enhancement of knots observed in Roca’s lab points, instead, to an

apparently contradicting and opposite effect, namely that topoisomerases introduce



92 Chapter 6. Knotting probability of intracellular DNA

rather than remove knots. This opposite effect can, however, be rationalised too with

the same framework based on hooked juxtapositions that can account for topoiso-

merase disentangling action. The apparent contradiction is, in fact, solved by noting

that the compactification caused by the transient accumulation of supercoiling will

inevitably cause the juxtaposition of several DNA strands.

The strand-passage action of topoisomerases on these supercoiling induced juxtapo-

sitions on an initially unknotted DNA, will lead to introducing knots. Eventually, the

torsional relaxation that accompanies these strand-passages will lower the incidence

of supercoiling-induced juxtapositions in favour of the juxtapositions that were in-

troduced by knotting. At this stage, the action of topoisomerases will be directed on

topologically-induced juxtapositions, thereby leading to an overall simplification of

DNA topology. This mechanism can account for the experimentally transient boost

of knotting that accompanies transcriptional supercoiling.

One interesting aspect to study in the future would be how the efficiency rates of

topoisomerases, controlled by the chromatin architecture, affect the resulting topo-

mediated knotting. At the same time, the presence of the entanglement itself carries

question on possible functional aspect of the knotting that can be studied too.
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The common theme through the chapters of this thesis was how intrinsic physical

properties of polymers, such as their bending or torsional ones, affect and constrain

the emergence of knots and their dynamics too.

The first part of the thesis was focussed on the interplay between knotting propen-

sity and bending rigidity of equiibrated rings polymers. We started by using a general

model of semi-flexible self-avoiding rings of up to 1000 beads and systematically pro-

filed the knotting probability versus bending rigidity.

We found a surprising result: the equilibrium incidence of knots has a strongly non-

monotonic dependence on bending, with a maximum at intermediate flexural rigidi-

ties. We next provided a quantitative framework, based on the balance of bending en-

ergy and configurational entropy, that allowed for rationalizing this counter-intuitive

effect.

We next extended the investigation to rings of much larger number of beads, via an

heuristic model mapping between our semiflexible rings of beads and self-avoiding

rings of cylinder. The latter model was chosen because earlier studies had provide for

it approximate analytical expressions for their knotting probability as a function of

the number and thickness of cylinders. By these mapping, we not only confirmed the

unimodal knotting profile for chains of 1,000 beads, but further found that chains

of > 20, 000 beads are expected to feature a bi-modal profile. We believe it would

be most interesting to direct future efforts to confirm this transition from uni- to

bi-modality using advanced sampling techniques for very long polymer rings.

The second part of the thesis focused on the interplay of DNA knots and su-

percoiling which are typically simultaneously present in vivo. We first studied this

interplay by using oxDNA, an accurate mesoscopic DNA model and using it to study
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rings of thousands of base pairs tied in complex knots and with or without negative

supercoiling (as appropriate for bacterial plasmids). By monitoring the dynamics of

the DNA rings we found that the simultaneous presence of knots and supercoiling,

and only their simultaneous presence, leads to a dramatic slowing down of the system

reconfiguration dynamics. In particular, the essential tangles in the knotted region

acquire a very long-lived character that, we speculate, could aid their recognition and

simplification by topoisomerase.

Finally, motivated by the recent experimental breakthrough that detected knots in

eukaryotic DNA, in the last chapter, we investigated the relationship between the

compactness, writhe and knotting probability. The model was tuned to capture some

of the salient properties of yeast minichromosomes, which were shown experimentally

to become transiently highly knotted during transcription (work done by our collab-

orator group of Prof. Roca in Barcelona). The model, with its designed simplicity

helped clarify the connection between chromatin compactification, knotting and su-

percoiling, and further suggested possible mechanisms for the transient increase of

knots promoted by topoisomerases. Again, we believe this would be an worthy topic

to study further with more accurate models, possibly incorporating the action of

topoisomerases too.

Each project presented has provided new information about the interplay of knot-

ting probability and geometrical properties of polymers, helping in the clarification

of the spontaneous emergence of knots as well as the behaviour of the proprieties

related. The results presented in this manuscript underscore the fact that suitable

coarse-grained models, such as rings of beads or oxDNA, and simulation techniques

can be used to elucidate the complex interplay of structure, function and entangle-

ment of DNA filaments in vivo. They give an unique insight on the mechanisms

whereby the knots form or are suppressed, inaccessible by experimental techniques.

Finally, as we already mentioned, all the obtained results offer a valuable starting

point for future extensions towards theoretical and computational characterizations

of DNA with even more detail and realistic properties.
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