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Abstract

The goal of this thesis is to study the effects of stellar rotation onto the
evolution of stars. To this purpose, I have dedicated a good part of my
PhD to study and implement the main rotation effects on our stellar evo-
lutionary code PARSEC (PAdova tRieste Stellar Evolutionary Code). The
first project in which I was involved was to investigate the possible con-
currence between the convective core overshooting phenomenon and the
rotation in intermediate-mass stars. For such study, I analyzed a sam-
ple of double-line eclipsing binaries (DLEBs, with very well determined
masses radii and metallicities) by means of a Bayesian method and the
new PARSEC v2.0 rotating tracks. This study allowed me to calibrate the
overshooting efficiency in the code and to conclude that a constant effi-
ciency of overshooting in concurrence with a star-to-star variation of the
rotational mixing might be crucial in the interpretation of intermediate-
mass stars observations.

The second project consisted of a study of the effects of rotation in the
stellar photometry. As the rotation grows the star becomes more and more
oblate, this induces a thermal imbalance between the poles and the equa-
tor that is known as the Von Zeipel effect. Rotating stars do not have a
constant effective temperature along the surface and for higher rotational
velocity such difference increases. Since the temperature is proportional
to the emitted flux, a fast-rotating star will look very different if observed
at the pole or at the equator (this is also called gravity darkening). In this
work, we developed a tool to compute the rotating isochrones with the
gravity darkening. This work is fundamental to interpret the observed
stellar clusters CMD and their features that are emerging thanks to the
recent excellent photometry provided by the Hubble Space Telescope (HST).

These two projects have been fundamental steps in the building of
a new collection of tools to study stellar clusters populations. My third
project was the first attempt to use these tools to analyze the Large Mag-
ellanic Cloud (LMC) stellar cluster NGC 1866. Instead of looking at in-
dividual features in the CMD, like the split main sequence (MS), eMSTO,
and evolved stars, we seek to reinterpret the entire available data, in par-
ticular exploiting Cepheids that have accurate pulsational mass determi-
nations. I found that four Cepheids out of five, belong to a young (of
176 ± 5 Myr) and slowly rotating (ωi < 0.3) population, while the fifth
belongs to an older population (of 288± 20 Myr) of rapidly rotating stars
(ωi ∼ 0.9). Later, I fitted the observed CMD of the cluster with isochrones
with selected ages and initial rotations obtained from the Cepheids anal-
ysis and corrected with the gravity darkening effect. I found that the two
isochrones well fit the split-MS and the cluster turn-off. This study goes in
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the direction to confirm that some young clusters like NGC 1866 harbour
multiple populations, but gives also hints on its formation.



v

List of publications

In this Thesis I present the main results of my research during my Ph.D. In
the following there is the list of paper published or submitted to refereed
journals:

- Costa G., Girardi L., Bressan A., Chen Y., Goudfrooij P., Marigo P.,
Rodrigues T. S., Lanza A. (2019), “Multiple stellar populations in
NGC 1866. New clues from Cepheids and Colour Magnitude Dia-
gram”. Accepted in A&A. https://arxiv.org/abs/1909.01907.

- Girardi L., Costa G., Chen Y., Goudfrooij P., Bressan A., Marigo P.,
Bellini A. (2019), “On the photometric signature of fast rotators”.
In: MNRAS 488, 696G. DOI: https://doi.org/10.1093/mnras/
stz1767.

- Costa G., Girardi L., Bressan A., Marigo P., Rodrigues T. S., Chen
Y., Lanza A., Goudfrooij P. (2019), “Mixing by overshooting and ro-
tation in intermediate-mass stars”. In: MNRAS 485, 4641. DOI:
https://doi.org/10.1093/mnras/stz728.

Here follows the list of works, developed during the PhD, but not included
in this Thesis:

- Nataf D.M., Horiuchi S., Costa G., Wyse R.F.G., Ting Y.S., Crocker R.,
Federath C., (2019), “The Predicted Properties of Helium-Enriched
Globular Cluster Progenitors at High Redshift”. In prep.

- Chen Y., Girardi L., Fu X., Bressan A., Aringer B., Dal Tio P., Pastorelli
G., Marigo P., Costa G., Zhang X., (2019), “YBC, a bolometric correc-
tions database with variable extinction coefficients: an application to
PARSEC isochrones”. Submitted to A&A.

- Mirouh G.M., Angelou G.C., Reese D.R., Costa G., (2019), “Mode
Classification in Fast Rotating Stars using a Convolutional Neural
Network”. In: MNRAS 483L, 28M. DOI: https://doi.org/10.
1093/mnrasl/sly212.

- Spera M., Mapelli M., Giacobbo N., Trani A., Bressan A., Costa G.,
(2018), “Merging black hole binaries with the SEVN code”. In: MN-
RAS 485,889S. DOI: https://doi.org/10.1093/mnras/stz359.

- Goudfrooij P., Girardi L., Bellini A., Bressan A., Correnti M., Costa
G., (2018), “The Minimum Mass of Rotating Main-sequence Stars
and its Impact on the Nature of Extended Main-sequence Turnoffs in
Intermediate-age Star Clusters in the Magellanic Clouds ”. In: ApJ
864L, 3G. DOI: https://doi.org/10.3847/2041-8213/aada0f.

https://arxiv.org/abs/1909.01907
https://doi.org/10.1093/mnras/stz1767
https://doi.org/10.1093/mnras/stz1767
https://doi.org/10.1093/mnras/stz728
https://doi.org/10.1093/mnrasl/sly212
https://doi.org/10.1093/mnrasl/sly212
https://doi.org/10.1093/mnras/stz359
https://doi.org/10.3847/2041-8213/aada0f


vi

- Costa G., Orlando S., Peres G., Argiroffi C., Bonito R. (2017), “Hy-
drodynamic modelling of accretion impacts in classical T Tauri stars:
radiative heating of the pre-shock plasma”. In: A&A 597, A1. DOI:
https://doi.org/10.1051/0004-6361/201628554.

https://doi.org/10.1051/0004-6361/201628554


vii

Acknowledgements
First of all, I would like to thank my supervisor Prof. Alessandro Bres-

san, who followed me constantly and actively during my PhD. I learned
a lot from his knowledge, experience and enthusiasm on studying stellar
astrophysics problems. A big thank goes also to Dr Léo Girardi and Dr An-
tonio Lanza for all the discussions and the work done together. Another
thank goes to all the collaborators that allowed me to do great science
during these years! They are Paola, Thaìse, Yang, Paul, Michela, Mario,
Alessandro, Xiaoting, Giovanni and David.

I would like to thank all my doctoral colleagues for these four years
together. I thank Chiara and Giulia, Riccardo, Anirban, Tommaso, Farida,
Gabriele, Andrea and the others for the good time spent at SISSA.

Many thanks to all the staff of the SISSA astrophysics group and to the
administrative staff for having created this very important reality which is
SISSA.

I thank my group for playing great music thanks to our extraordinary
lead guitarist Paolo, our talented singer Fiamma, our drummer Ivan for
his perfect tempo and our skilled rhythm guitarist Ulisse. I really had fun
with you guys!

I want to thank the SISSA Basketball Team, for all the time spent to-
gether in training and winning (sometimes) and losing (more often) cham-
pionship matches. It was a lot of fun to play with all of you and join the
post-game dinners!

A big thank you to my old friends from Palermo for all the time spent
together in endless conversations about everything! Thank you, Renato,
Nicolò, Salvo and Marcello! Now we are scattered all over the world, but
one day we will be back in the same city.

I also want to thank my closest friends in Trieste, Rossana, Andrea,
Simone, Francesco, Belen, Wendy, Vittoria and all the others (I’m sorry,
you are too many). Trieste was a beautiful city thanks to you guys!

Finally, I wish to thank my parents and my sister for having always
encouraged and supported me in my life and for allowing me to follow
my dreams. Thanks.

Last but not least, a big thank to my girlfriend Chiara for all the love
and the support she gave me during these four wonderful years! I love
you so much.





ix

Contents

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 Brief historical introduction on stellar structure and evolution 1
1.2 Stellar rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Stellar structure 7
2.1 Equations of stellar structure . . . . . . . . . . . . . . . . . . 8
2.2 Equation of state and opacity . . . . . . . . . . . . . . . . . . 9
2.3 Mass loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The new scheme for mixing and nuclear reactions . . . . . . 11
2.5 Methods and boundary conditions . . . . . . . . . . . . . . . 13

2.5.1 The atmosphere . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 The envelope . . . . . . . . . . . . . . . . . . . . . . . 15

3 Stellar rotation 17
3.1 Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Properties of the isobars . . . . . . . . . . . . . . . . . . . . . 19
3.3 Surface shape of isobars . . . . . . . . . . . . . . . . . . . . . 20
3.4 Hydro-static equilibrium equation . . . . . . . . . . . . . . . 22
3.5 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Transport of energy . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.1 Radiative equilibrium . . . . . . . . . . . . . . . . . . 25
3.7.2 Convective transport . . . . . . . . . . . . . . . . . . . 25
3.7.3 Equation of energy transport . . . . . . . . . . . . . . 25

3.8 Equations of stellar structure with rotation . . . . . . . . . . 26
3.9 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Calculation of the form parameters . . . . . . . . . . . . . . . 28

3.10.1 Surface of an isobar . . . . . . . . . . . . . . . . . . . . 28
3.10.2 Average effective gravity . . . . . . . . . . . . . . . . 29
3.10.3 Computing the form parameters . . . . . . . . . . . . 30



x

3.10.4 Calculating volume inside the isobar . . . . . . . . . . 30
3.10.5 Re-computing the polar radius . . . . . . . . . . . . . 31

3.11 Von Zeipel effect and the surface temperature . . . . . . . . . 32

4 Transport of angular momentum 37
4.1 Meridional circulation . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Shear instability . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Mixing and transport of angular momentum . . . . . . . . . 42
4.4 Mass loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Calibration of parameters . . . . . . . . . . . . . . . . . . . . 46
4.6 Preliminary comparison with other authors . . . . . . . . . . 51

4.6.1 Structure evolution and interior profile . . . . . . . . 52
4.6.2 HR diagram comparison . . . . . . . . . . . . . . . . . 52

5 Mixing by overshooting and rotation 63
5.1 General background . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 DLEB data . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 The Bayesian method . . . . . . . . . . . . . . . . . . 65

5.3 PARSEC version 2.0: The input physics . . . . . . . . . . . . 67
5.4 The effect of core overshooting alone . . . . . . . . . . . . . . 67

5.4.1 Evolutionary tracks and isochrones at varying over-
shooting parameter . . . . . . . . . . . . . . . . . . . . 68

5.4.2 Interpretation with models with overshooting . . . . 71
5.5 Effects of rotation . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Evolutionary models with rotation . . . . . . . . . . . 80
5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . 85

6 Photometric signatures of rotation 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Computing the spectra . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 The special case of non-rotating stars . . . . . . . . . 97
6.2.2 The case of rotating stars . . . . . . . . . . . . . . . . . 98
6.2.3 Consistency and accuracy checks . . . . . . . . . . . . 102
6.2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.5 BC tables for rotating stars . . . . . . . . . . . . . . . . 106

6.3 Results and applications . . . . . . . . . . . . . . . . . . . . . 106
6.3.1 General behaviour of the spectra and colours . . . . . 106
6.3.2 Comparison with other approaches . . . . . . . . . . 107
6.3.3 An example: fast rotators in NGC 1866 . . . . . . . . 109

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Multiple populations in NGC 1866 115
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.1 The NGC 1866 photometry . . . . . . . . . . . . . . . 116
7.2.2 Cepheids data . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.3 The Bayesian statistical analysis . . . . . . . . . . . . 119

7.3 The PARSEC models with rotation . . . . . . . . . . . . . . . . 120
7.3.1 New prescriptions . . . . . . . . . . . . . . . . . . . . 120



xi

7.3.2 Evolutionary tracks and isochrones . . . . . . . . . . 122
7.3.3 Gravity Darkening and Color-Magnitude Diagram . 127

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.1 Bayesian analysis . . . . . . . . . . . . . . . . . . . . . 127
7.4.2 Colour Magnitude Diagram . . . . . . . . . . . . . . . 135

7.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . 138

8 Conclusion 143

A My contribution to other projects 147
A.1 YBC, a bolometric corrections database . . . . . . . . . . . . . 147
A.2 Merging black hole binaries with the SEVN code . . . . . . . 147
A.3 Mode classification in fast-rotating stars . . . . . . . . . . . . 149
A.4 The Minimum Mass of Rotating Main-sequence Stars . . . . 150
A.5 Helium-Enriched Globular Cluster Progenitors . . . . . . . . 150
A.6 Accretion on CTTSs . . . . . . . . . . . . . . . . . . . . . . . . 151





xiii

List of Figures

1.1 HR of stars in the solar neighborhood . . . . . . . . . . . . . 2
1.2 Distribution of v sin i . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sketch of the grid adopted in our models. The star interior
is divided in N mesh points. The envelope is connected to
the first point of the internal structure (M1), and the atmo-
sphere is integrated from τ = 2/3 to infinite (see text for
details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Radius of an isobar vs. colatitude and rotation rate . . . . . . 21
3.2 Isobar surface shape . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 The angle ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Solid of revolution . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Percentage of variation of Teff(ω)/Te f f (0) . . . . . . . . . . . 33
3.6 Star surface and Teff reconstruction . . . . . . . . . . . . . . . 34

4.1 Eddington-Sweet circulation . . . . . . . . . . . . . . . . . . . 39
4.2 Meridional circulation of a differentially rotating star . . . . 40
4.3 3D model of the meridional circulation . . . . . . . . . . . . . 41
4.4 Diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Tracks with various combination of the fc and fµ parameters 47
4.6 Calibration parameters degeneracy . . . . . . . . . . . . . . . 49
4.7 HR diagram and structural properties of a 5 M� model . . . 50
4.8 Interior profiles of a 5 M� model . . . . . . . . . . . . . . . . 54
4.9 Interior profiles of a 13 M� model . . . . . . . . . . . . . . . 55
4.10 Interior profiles of a 15 M� model . . . . . . . . . . . . . . . 56
4.11 Interior profiles of a 20 M� model . . . . . . . . . . . . . . . 57
4.12 Comparison in the HR diagram of 13 M� models . . . . . . 60
4.13 Comparison in the HR diagram of 15 M� models . . . . . . 61
4.14 Comparison in the HR diagram of 20 M� models . . . . . . 62

5.1 Sets of tracks and isochrones with Z = 0.002 and with a vary-
ing λov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Sets of tracks and isochrones with Z = 0.02 and with a vary-
ing λov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 2D-JPDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 λovvs. Mi result from the cJPDF method . . . . . . . . . . . . 73
5.5 Corrected JPDFs for α Aurigae and TZ Fornacis . . . . . . . . 74
5.6 λov vs. Mi, with the corrected JPDF method . . . . . . . . . . 76
5.7 λov vs. Mi, with the corrected JPDF method and with aver-

aged values of [Fe/H] . . . . . . . . . . . . . . . . . . . . . . 77



xiv

5.8 Sets of tracks with and without rotation, with Z = 0.002 . . . 78
5.9 Sets of tracks with and without rotation, with Z = 0.02 . . . . 79
5.10 Comparison between the convective core extension vs. time

with Z = 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.11 Comparison between the convective core extension vs. time

with Z = 0.014 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.12 ωi vs. Mi, using the corrected JPDF method . . . . . . . . . . 84
5.13 ωi vs. Mi, using the corrected JPDF method, and with aver-

aged [Fe/H] values . . . . . . . . . . . . . . . . . . . . . . . . 84
5.14 Comparison between tracks with no overshooting and with

different ωi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.15 Comparison between data of α Aurigae and TZ Fornacis,

and selected tracks . . . . . . . . . . . . . . . . . . . . . . . . 93
5.16 Comparison between data of α Aurigae and TZ Fornacis,

and selected tracks . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Stellar surface quantities vs. the colatitude, θ . . . . . . . . . 100
6.2 Teff and µ′ from different points of view . . . . . . . . . . . . 101
6.3 Spectra for different ω and i . . . . . . . . . . . . . . . . . . . 103
6.4 Teff and log g values for which Iλ is available . . . . . . . . . 104
6.5 CCD of rotating stars . . . . . . . . . . . . . . . . . . . . . . . 107
6.6 CCDs of simulations with the SYCLIST code . . . . . . . . . 108
6.7 CMD of the NGC 1866 cluster and selected isochrones . . . . 110
6.8 CCD of the NGC 1866 cluster . . . . . . . . . . . . . . . . . . 112

7.1 CMD of the LMC star cluster NGC 1866 . . . . . . . . . . . . 117
7.2 Comparison between tracks computed with and without

mass loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Initial rotation rate in the PMS . . . . . . . . . . . . . . . . . . 121
7.4 Tracks with different rotations . . . . . . . . . . . . . . . . . . 123
7.5 Tracks and Cepheids . . . . . . . . . . . . . . . . . . . . . . . 124
7.6 Tracks and isochrones adopted in this work, with Z = 0.004 . 125
7.7 Tracks and isochrones adopted in this work, with Z = 0.01 . 126
7.8 CMD of selected isochrones with the gravity darkening effect128
7.9 Resulting of marginalized JPDFs on age and [Fe/H] . . . . . 129
7.10 Resulting 2D corrected JPDF of the Cepheid HV12198 . . . . 131
7.11 Comparison between the Cepheids (HV12197 and HV12198)

data and selected isochrones . . . . . . . . . . . . . . . . . . . 133
7.12 Comparison between the Cepheids (We2 and V6) data and

selected isochrones . . . . . . . . . . . . . . . . . . . . . . . . 134
7.13 Resulting 2D-JPDF of the Cepheid HV12199 . . . . . . . . . . 135
7.14 Comparison between the Cepheids HV12199 data and se-

lected isochrones for the two solutions . . . . . . . . . . . . . 136
7.15 CMD of the NGC 1866 cluster and selected isochrones . . . . 137

A.1 HR diagram of the pure He-star . . . . . . . . . . . . . . . . . 148



xv

List of Tables

3.1 Equatorial radius . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Rotation dimensionless parameters . . . . . . . . . . . . . . . 31

4.1 Chemical compositions of MW, LMC and SMC . . . . . . . . 48
4.2 Comparison between the surface N ratio enrichments . . . . 48
4.3 Main properties of the 13 M� and 15 M� models . . . . . . . 58
4.4 Main properties of the 20 M� models . . . . . . . . . . . . . 59

5.1 Chemical abundances of the models . . . . . . . . . . . . . . 68
5.2 Results for α Aurigae and TZ Fornacis systems . . . . . . . . 74
5.3 Results for all the binaries . . . . . . . . . . . . . . . . . . . . 86
5.3 Continuation of the previous Table . . . . . . . . . . . . . . . 87
5.3 Continuation of the previous Table . . . . . . . . . . . . . . . 88
5.3 Continuation of the previous Table . . . . . . . . . . . . . . . 89

7.1 Parameters of the Cepheids sample . . . . . . . . . . . . . . . 118
7.2 Results of the Bayesian analysis . . . . . . . . . . . . . . . . . 132





xvii

List of Abbreviations

ACS Advanced Camera for Surveys
AGB Asymptotic Giant Branch
BH Black Hole
CCD Color Color Diagram
CHeB Core Helium Burning
cJPDF corrected Joint Probability Density Function
CJPDF Combined Joint Probability Density Function
CMD Color Magnitude Diagram
DLEB Double-Line Eclipsing Binary
eMSTO extended Main Sequence Turn Off
EB Eclipsing Binary
EOS Equation Of State
HB Horizontal Branch
HR Hertzsprung-Russell
IMF Initial Mass Function
JPDF Joint Probability Density Function
LMC Large Magellanic Cloud
LTE Local Thermodynamic Equilibrium
MLT Mixing Length Theory
MS Main Sequence
MW Milky Way
PARSEC PAdova-tRieste Stellar Evolution Code
PDF Probability Density Function
PMS Pre-Main Sequence
RGB Red Giant Branch
SMC Small Magellanic Cloud
TAMS Terminal Age Main Sequence
TO Turn Off
WFC Wild Field Camera
WR Wolf Reyet
ZAHB Zero Age Horizontal Branch
ZAMS Zero Age Main Sequence





xix

Dedicated to my family





1

Chapter 1
Introduction

Stars have fascinated men since the earliest times of humanity, but only
in the last century, have been discovered the main physical processes that
power them and let them shine over time. This thanks to the efforts of
many scientists and technological improvement.

1.1 Brief historical introduction on stellar structure
and evolution

Studies on the star structure have started at the beginning of the 20th
century. Emden (1902) showed that the sun (and than the stars) could
be considered as a sphere of gas that obeys to the laws of the gas ther-
modynamics and to the hydrostatic equilibrium, giving the first clues on
the stellar structure interiors. Later, the work by Hertzsprung (1911) and
Russell (1914) have laid the foundations for the study of stellar evolu-
tion. They found separately that exists a correlation between the observed
brightness and the spectral type of stars in plots that nowadays are called
Hertzsprung-Russell (HR) diagrams. They discovered that the stars do
not randomly populate the diagram, but populate well determined re-
gions, such as the main sequence (MS). In the twenties, further steps were
done in the comprehension of the internal structure of stars by the studies
of Sir A. Eddington. He completed and elaborated a coherent theory of
the internal structure of stars, by adding the equations of energy genera-
tion and transport to the previous system of equations solved by Emden
(1902). Bethe (1939) found the basic nuclear reactions that power the stars
during the MS. They are the famous proton-proton cycles that transform
the Hydrogen into Helium and release energy. Thanks to this discovery,
it was possible to relate the chemical evolution of the stellar matter to the
evolution of the star itself.

A recent example of a HR diagram is shown in Figure 1.1. The plot
shows stars magnitudes and colors in the solar neighborhood with an in-
creasing distance from the sun, from the panel (a) to the (c) (Gaia Collab-
oration et al., 2018). It is clearly visible that the bulk of the stars are in the
MS (with magnitude of 16 < MG < 11 and a color 0 < GBP − GRP < 5).
As we include more and more stars, the other regions of the diagram start
to be populated, and the most apparent are the white dwarf sequence (less
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FIGURE 1.1: Color-magnitude diagram of stars in the so-
lar neighborhood. In panel (a) there are 3724 stars at 25 pc,
in panel (b) 29 683 stars at 50 pc; in panel (c) 212 728 stars
at 100 pc from the sun. The colour scale represents the
square root of the relative density of stars. The darker re-
gions indicate lower density of stars. Image from the Gaia

Collaboration et al. (2018).

bright, 16 < MG < 11 and bluer, GBP −GRP < 2, than the MS) and the red
giant branch (RGB, with MG < 4 and GBP − GRP ∼ 1.5), phase in which
the stars burn the Hydrogen in a thin shell above their Helium core.

Up to the first decades of the 20th century, all the calculations were per-
formed by hand and, as stated by Schwarzschild, “a person can perform
more than twenty integrations steps per day”, so that “for a typical single
integration consisting of, say, forty steps, less than two days are needed”
(Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss, 2012). A big step
forward was done thanks to the incoming of the first computers. Already
in the fifties, the first stellar evolution simulations have begun to appear
in literature, such as the model of the Sun published by M. Schwarzschild,
Howard, and Härm (1957). During the sixties, the innovative methods
developed by Henyey, Forbes, and Gould (1964) allowed to numerically
solve the equations of the internal star structure. Further improvements
to these methodologies have been done by the pioneering work of R. Kip-
penhahn, A. Weigert, and Hofmeister (1967), that developed the precur-
sor of the modern stellar evolution codes. Thanks to such efforts, great
progress of knowledge has been achieved in many astrophysical fields.
For instance, now it is well known that almost all the chemical elements in
the universe have been created in stars or in processes that directly involve
them, such as the dramatic (and beautiful) supernova explosions and the
recently discovered merge of neutron stars.

All the new generation stellar evolution codes are based on the R. Kip-
penhahn, A. Weigert, and Hofmeister approach to model and solve the
stellar problem. Some of them are GARSTEC (Achim Weiss and Schlattl,
2008), MESA (Paxton, Schwab, et al., 2018), GENEC (Eggenberger et al.,
2008), FRANEC (Limongi and Chieffi, 2018), KEPLER (Heger, N. Langer,
and Woosley, 2000), STERN (Brott, de Mink, et al., 2011) and PARSEC (A.
Bressan, P. Marigo, et al., 2012). These codes are widely adopted to build
sets of evolutionary tracks and isochrones, which are used to study many
astrophysical problems such as, to understand the stars themselves, to



1.2. Stellar rotation 3

study the interaction star-planets and to get host star parameters for exo-
planets (Maldonado, Affer, et al., 2015; Maldonado, Villaver, et al., 2019;
Gallet and Delorme, 2019), to study dust formation (Nanni et al., 2019),
to derive the main parameters of star clusters (Milone, Marino, D’Antona,
Bedin, Piotto, et al., 2017; Gossage et al., 2018), to study the final fates of
the stars and their yields (Limongi and Chieffi, 2018), to derive black hole
mass when observing gravitational wave (Spera, Mapelli, and Alessandro
Bressan, 2015; Spera, Mapelli, Giacobbo, et al., 2019), etc.

In the last decades, the comparisons between observations and mod-
els showed the necessity to include new physical phenomena in the evo-
lutionary codes and, two of them are the core overshooting and the mass
loss. Another phenomena that is nowadays under investigation and fre-
quently included in the codes, is the rotation. In the past, it has been often
considered to play only a second role on the stellar evolution, but recently
it has been introduced as the possible explanation to many not yet fully
understood phenomena. Such as, the abundance anomalies seen at the
stellar surface (Mokiem, de Koter, Evans, et al., 2006; Mokiem, de Koter,
J. S. Vink, et al., 2007; Hunter et al., 2009) or the split-MS and the extended
MS turn-off (eMSTO) of many stellar clusters (Milone, Marino, D’Antona,
Bedin, Piotto, et al., 2017; Cordoni et al., 2018).

1.2 Stellar rotation

It is a matter of fact that all the stars rotate, as any other object in the
universe. From simple considerations, it easy to see that using the conser-
vation of the angular momentum (i.e. Ωr2 = const.), a newborn star with
a radius of ∼ 1011 cm formed from the collapse of a very slow rotating
molecular cloud with a typical radius of about 0.1 pc (1017 cm), should be
an extremely fast rotator.

The rotation of stars is a well known evidence since the early times of
the twentieth century. But, even before, already Galileo knew that the Sun
rotates (trough the observations of the sunspots). In the 1877, Abney sup-
posed that maybe we can observe rotation in stars through the Doppler
shift of the spectrum lines. But, only in 1909 Schlesinger was able to de-
tect the shift and derive for the first time the rotational velocity of a star,
that was δ Librae (Shajn and Struve, 1929). Recent theoretical and observa-
tional studies performed in the last two decades have shown that rotation
plays a not negligible role in the evolution of stars, affecting every phase
of stars, from the formation to the death. Rotating stars evolve differently
with respect to the non-rotating ones. In general, they are more luminous
and colder, the main sequence lifetimes are longer, the surfaces are en-
riched by products of the H-burning and, moreover, they build up bigger
cores with a resulting differentiation of the final fates. This different evo-
lution results from several effects induced by rotation. How pointed out
by many authors (as R. Kippenhahn and Thomas, 1970; Endal and Sofia,
1976; J.-P. Zahn, 1992; Meynet and A. Maeder, 1997), these are

1. Centrifugal forces reduce the effective gravity at any point not on the
axis of rotation;
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FIGURE 1.2: Distribution of v sin i as a function of the
spectral type. The solid grey line is the variation of the
average per spectral type. In the inset there is the density
of points in the same diagram, and the darker tones indi-

cate higher densities. Image from Royer (2009).

2. Since the centrifugal force is not, in general, parallel to the gravity,
equipotential surfaces are no longer spheres;

3. Because the radiative flux varies with the local effective gravity (the
so-called Von Zeipel effect von Zeipel, 1924), the radiative flux is not
constant on an equipotential surface;

4. Rotation induces mixing processes.

Rotation has been observed in all the different types of stars and, for
instance, Figure 1.2 shows the projected rotation velocity as a function of
the stellar spectral type (Royer, 2009). The plot shows that all the stars
in the sample are rotating, moreover it shows that there is an intriguing
dichotomy between hot (from O5 to F5) and cool (from F5 to M5) stars.
The mechanism beyond the difference between these two subgroups is
not fully understood yet, but it is likely connected to the stars magnetic
field and the coupling with the stellar winds. This shows that still much
efforts must be done to improve our knowledge on stars.

1.3 Thesis outline

This Thesis is structured and organized as follows.
In Chapter 2, I briefly review the basic “classic” equations and method-

ologies adopted in our stellar evolutionary code PARSEC.
In Chapter 3, I discuss the fundamental assumptions to model stellar

rotation in a 1D stellar evolutionary code, and I present the equations in-
cluded in PARSEC to treat the structure and thermal distortion induced by
rotation.
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Chapter 4 is focused on the transport of angular momentum and the
extra-mixing of chemical elements lead by rotational instability. It is also
presented how the calibration of the rotations efficiency parameters is per-
formed.

In Chapter 5, I use the new PARSEC v2.0 to investigate about the pos-
sible concurrence between the extra-mixing provided by the core over-
shooting and the one due to the rotational mixing. This Chapter is based
on Guglielmo Costa, Léo Girardi, Alessandro Bressan, Paola Marigo, et al.
(2019).

Chapter 6 is based on Léo Girardi et al. (2019), and it is focused on the
photometric effects induced by the rotation. I describe how we compute
and correct the stellar spectra as a function of the rotation rate and the
inclination angle of the stellar rotation axes with the line of sight. These
effects are inserted in our TRILEGAL code to compute isochrones and sim-
ulations.

In Chapter 7 I use all the developed tools to study the intermediate-age
stellar cluster NGC 1866. In this study, I analyze a sample of well-studied
Cepheids of the cluster to get their age and initial rotation rate. Then, I
compare such results with the CMD of the cluster. This Chapter is based
on Guglielmo Costa, Léo Girardi, Alessandro Bressan, Yang Chen, et al.
(2019).

In Chapter 8, I summarized the main results of this Thesis and discuss
the possible future developments of PARSEC and the next projects.
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Chapter 2
Stellar structure

The theory of stellar evolution is the backbone of many theories that try
to solve the Universe mysteries. One of them is the theory of stellar pop-
ulation, used to study the stellar clusters, that are the basilar components
of galaxies. Thanks to these theories, we can estimate the ages and the
composition of the stars in the clusters, the star formation rates and then
the star formation histories, that are all fundamental ingredients to study
galaxies and the whole Universe history. Continuously testing and im-
proving the stellar evolution theory it is necessary because different phys-
ical prescriptions can change significantly the stellar models and thus, can
deeply change the interpretations of the observed data and all the other
studies based on it. Several physical phenomena take place in stars and
the models should include atomic and nuclear physics , thermodynamics
and matter-radiation interaction in a wide range of physical conditions,
from tenuous gases to extremely high densities in degenerated stars cores.

In this Chapter, I introduce the basic physics that is implemented in
our stellar evolutionary code PARSEC (the PAdova-tRieste Stellar Evolu-
tionary Code; A. Bressan, P. Marigo, et al., 2012). In Section 2.1 I present
the structure equations. I discuss how the equation of state and the opacity
are treated within the code in Section 2.2. In Section 2.3, I discuss the mass
loss prescriptions. In Section 2.4 I present the new scheme adopted for the
mixing and the nuclear reactions network in the new version of PARSEC.
Finally, in Section 2.5 I briefly introduce the methods and the boundary
conditions adopted to solve the structure equation.
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2.1 Equations of stellar structure

Following Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss (2012),
the Lagrangian formulation of the stellar structure equations is given below

∂P
∂M

= − G M
4π r4 , (2.1)

∂r
∂M

=
1

4π r2ρ
, (2.2)

∂L
∂M

= εn − εν + εg, (2.3)

∂T
∂M

= − G M
4π r4

T
P

min [∇ad,∇rad] . (2.4)

with
∇ad =

Pδ

T ρ cP
, (2.5)

∇rad =
3

16π acG
κL P
M T4 , (2.6)

where for each shell of the star (that are the equipotential surfaces), M
is the independent variable and it is the mass enclosed by the shell of
radius r, with a local pressure P,a local density ρ, a luminosity L and a
temperature T. εn is the nuclear energy generation rate, εν is the neu-
trinos energy rate and εg is the gravitational energy rate. The ∇ad and

∇rad are the adiabatic and radiative gradients, δ =
(

∂ ln ρ
∂ ln T

)
P,µ

is a thermo-

dynamical derivative, cP is the specific heat capacity at constant pressure,
κ is the opacity of the material. Finally, G = 6.6738× 10−11 m3 kg−1 s−2 is
the gravitational constant, a = 7.5657× 10−16 J m−3 K−4 is the radiation
constant and c = 2.9979× 108 m s−1 is the light velocity.

To close the system of equations (Eqs. 2.1 – Eqs. 2.4), we need to in-
clude the equation of the nuclear reactions, that gives the variation of the
chemical elements with time. It can be generally written as

∂Xi

∂t
=

Ai

ρ

(
∑ rij −∑ rik

)
, i = 1, . . . , I, (2.7)

where Xi is the mass fraction of the i-th element of the nuclear reactions
network, and ∑i Xi = 1 for each shell of the star. Ai is the atomic mass
of the i-th element, rij and rik are the rates of the nuclear reactions that
create and destroy the i-th element, respectively. I is the total number of
elements considered in the nuclear network. In Section 2.4 is described in
detail how the the nuclear network is handled within the code.

Eq. 2.5 and Eq. 2.6 are the temperature gradient in the case the energy
is totally transported by convection or radiation, respectively. From the
analysis of the dynamical instability, a layer of the star is stable if

∇rad < ∇ad +
ϕ

δ
∇µ, (2.8)

where ϕ =
(

∂ ln ρ
∂ ln µ

)
P,T

is a thermo-dynamical derivative, and ∇µ = ∂ ln µ
∂ ln P is
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the molecular weight gradient. This is the Ledoux criterion. In case of a
chemical homogeneous region,∇µ = 0 and the stability criterion becomes

∇rad < ∇ad. (2.9)

This is the so-called Schwarzschild criterion.
In the following sections I describe the physics prescriptions adopted

in PARSEC.

2.2 Equation of state and opacity

The set of structure equations is completed with the addition of the equa-
tion of state (EOS) of the stellar matter, that puts in relation the quantities
T, ρ, P and the stellar matter composition Xi, and the opacities, κ, that is a
function of ρ, T and Xi. These quantities are computed under the assump-
tion of the local thermodynamic equilibrium (LTE).

The EOS are computed using the publicly available package FREEEOS

and released by Irwin (2012). The package allows the computation of
the thermodynamic quantities of interest (e.g. density, mean molecular
weight, entropy, specific heats and their derivatives) in a wide ranges of
temperatures and pressure. In PARSEC, the EOS can be computed on-the-
fly or, alternatively, read by precomputed tables. Since the precomputed
tables are sufficently accurated for most of the stellar tracks, this second
method is the standard option in the code (A. Bressan, P. Marigo, et al.,
2012). The tables are computed taking into account various chemical el-
ements, from the Hydrogen to the Nickel, and different values of Z are
considered for any distributions of heavy elements. In PARSEC we divide
two different “regimes” for the stellar matter, when it is ‘H-rich’ and when
it is ‘H-free’. The two regimes consist in different EOS tables, that are 10
for the first H-burning phase, and 31 for the advanced burning phases.
At each time-step, before solving the structure equations, PARSEC inter-
polates such tables to obtain the thermodynamic quantities for each mesh
point of the star.

The opacity is a physical quantity that describes how the radiation in-
tensity is dumped in the propagation path by the matter. Thus, it deter-
mines at which rate the light goes out from a star. The stellar opacities are
mainly due to:

• electron scattering;

• free-free interactions;

• bound-free transitions, including H− absorptions;

• bound-bound transitions;

• molecules band transitions.

In PARSEC, the standard procedure to treats opacities consists in an intepo-
lation of pre-computed tables of Rosseland mean opacities, κRoss, function
of density, of temperature and of the chemical composition. It is defined
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as
1

κRoss
=

∫ ∞
0

1
κν

uνdν∫ ∞
0 uνdν

, (2.10)

where κν is the absorption coefficient as a function of the frequency ν, uν

is the radiation energy density. Such averaged value over the frequency is
used to evaluate the global effect of the interaction between the radiation
field and the stellar matter. The opacities tables covers a wide range of
temperatures and densities, for each chemical abundance distributions (as
done for the EOS A. Bressan, P. Marigo, et al., 2012). The tables are comp-
tuded with two different codes for different temperature regimes. They
are:

• the Opacity Project At Livermore (OPAL) code (Iglesias and Rogers,
1996) for the high temperature (4.2 ≤ log Teff ≤ 8.7);

• the AESOPUS tool by P. Marigo and Aringer (2009) for temperatures
in the range 3.2 ≤ log Teff ≤ 4.1;

• in the transition interval 4.0 ≤ log Teff ≤ 4.1 a linear interpolation
between the opacity tables derived from the two codes is adopted.

In PARSEC are includeded also conductive opacities following Itoh et al.
(2008). The tables are pre-loaded by PARSEC before the computation of
each track, to follow in detail any significant change of the local opacity
due to the variation of the local metal content due to mixing processes
or dredge-up episodes. For each different partition of chemical elements
(such as the solar-scaled mixture by Caffau et al. (2011) or the Large Mag-
ellanic Cloud partition computed for the calibration of rotation in Chap-
ter 4), both the EOS and opacity tables should be recomputed before the
computation of sets of tracks.

2.3 Mass loss

Another effect that is treated separately from the structure equations is the
mass loss. The mass loss results from stellar winds driven by the radiation
pressure, that pushes out the most external stellar matter. The main con-
tribution to the total acceleration of the wind in due to the lines absorption
of the stellar radiation. The momentum is mainly trasferred by UV pho-
tons in resonance lines of the Fe and the CNO elements (A. Maeder, 2009).
Thus, mass loss plays a crucial role particularly in the massive stars, since
they are more luminous of the low and intermediate mass stars. For a low
mass star such the sun, the mass loss rate is Ṁ = 10−14 M�/yr, and the
related timescale τMloss is larger than the nuclear timescale τnuc, hence the
evolution is not affected by the winds and the mass loss can be neglected
in the models. The mass loss phenomenon starts to dominate the evolu-
tion for stars with an initial mass Mi ≥ 30 M�.

In PARSEC, the mass loss is activated for models with Mi > 12 M�, and,
there are implemented different prescriptions for the various phases of the
stars. As summarized by Y. Chen, A. Bressan, et al. (2015), the adopted
prescriptions are:
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• from J. S. Vink, de Koter, and Lamers (2000) and Jorick S. Vink, de
Koter, and Lamers (2001) are used for blue supergiant phase with
Teff ≥ 12000 K, with a metallicity dependence as Ṁ ∝ (Z/Z�)0.85 M�
yr−1 is adopted;

• the (de Jager, Nieuwenhuijzen, and van der Hucht, 1988) formula-
tions are used for red supergiant phase (so for Teff< 12000 K), with
the same metallicity dependence as for the Vink mass loss;

• for Wolf-Rayet (WR) stars, the Nugis and Lamers (2000) formalism
is used, in which a metallicity dependence is also provided.

Once the Ṁ is known from the previous relations, at the beginning of
each time step, PARSEC compute the mass to be removed as:

Mnew = Mold − ∆M = Mold − Ṁ ∆t, (2.11)

where the Mnew in the mass at the new timestep, Mold is the mass of the
star at the previous timestep, ∆M is the mass lost and ∆t is the time step in
years. After, the mass lost is extracted by a simple removal of the external
mesh points of the star. However, since the mass loss timescale is bigger
than the thermal one (i.e. the Kelvin-Helmholtz timescale, τKH), the ther-
mal structure is not changed by the mass loss, and is assumed to remain
the same.

2.4 The new scheme for mixing and nuclear reactions

In the present release of PARSEC, there are two different schemes to treat
the mixing of elements and the nuclear reactions. In the first one, adopted
in the previous versions, the nuclear reactions network and the transport
of elements are solved separately in two steps. Firstly, all the abundances
are solved together with a semi-implicit extrapolation scheme, without
any assumption for the nuclear equilibria. As clearly explained by P. Marigo,
L. Girardi, C. Chiosi, et al. (2001), the choice of the semi-implicit method
to solve the nuclear network, is motivated by the search for a convenient
compromise between the higher accuracy typical of the explicit scheme,
and the better stability of the implicit one. In general, implicit methods
converge to the true equilibrium solutions of the nuclear network for rel-
atively large time steps, whereas purely explicit methods would require
extremely short time steps to both find the solution and maintain stabil-
ity. The second step of this scheme, consists in the mixing of the elements.
They can be transported by the microscopic diffusion in the stable zones of
the star, or by the turbulent convection in the unstable regions. The micro-
scopic diffusion is treated as an advective process and is modeled as de-
scribed by Thoul, Bahcall, and Loeb (1994). While, the elements in the con-
vective zones are “instantaneously” homogenized within the evolutionary
time-step (Salasnich, Alessandro Bressan, and Cesare Chiosi, 1999).

The second method, implemented in the last version of PARSEC, con-
sists in a diffusive scheme in which the nuclear reactions and the mixing
are solved at the same time. In this scheme the microscopic diffusion is not
inserted yet. The general equation that describes the change of a element i,
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represented by the mass fraction Xi (Sackmann, Smith, and Despain, 1974)
is given by

∂Yi

∂t
=

1
ρr

∂

∂r

(
r2ρD

∂Yi

∂r

)
±∑

j
Yjλk(j)±∑

j≥k
YjYk[jk], (2.12)

where Yi = Xi/Ai, D is diffusion coefficient in the unstable regions, and
it is computed within the Mixing Length Theory (MLT) framework, thus,
D = DMLT = (1/3) v l, where l = αMLTHP is the mixing length and v is the
velocity. The second term of the right-hand part of the equation describes
the local change of the i element caused by single body decays from i to k
in case of negative sign and from j to i in case of positive sign. The third
term describes the two body reactions, and for the reaction j + k→ i + z is

YjYk[jk] =
niρ

1 + δjk
YjYkNA〈σv〉jk, (2.13)

where ni is the number density, δjk = 1 if j = k, NA is the Avogadro
Number and 〈σv〉jk is the reaction rate per particle pair. In the case of a
triple body encounter (as in the triple He reaction), there is an other term
such as YjYkYl [jkl]. To solve this system of equations, we adopt a full im-
plicit method. It is known that this kind of treatment for the mixing, pro-
duces chemical profiles that fulfill the conditions imposed by the different
timescales, namely the evolutionary, the convective and the nuclear. The
latter timescale depends on the particular chemical element under consid-
eration.

Both schemes for the treatment of the mixing and nuclear reactions,
can still be activated for comparison purposes. For this work of Thesis, I
adopt the second approach.

The nuclear reactions network has been also updated with respect to
the previous releases of the code. Now it contains up to 33 isotopic el-
ements from Hydrogen to Zinc, including the reverse reactions of the α-
captures. In total there are 72 reactions. The rates and the Q values of each
reaction are taken from the JINA REACLIB data base (Cyburt et al., 2010),
with their April 6, 2015 recommendations. The electron screening factors
are from Dewitt, Graboske, and Cooper (1973) and Graboske et al. (1973).

In the models computed in this work, I adopt the Schwarzchild cri-
terion (Martin Schwarzschild, 1958) to define the convective unstable re-
gions (Eq. 2.9), on top of which the overshooting phenomenon takes place.
In the overshooting regions the velocity is computed with the ballistic
approximation1 (A. Maeder, 1975; A. G. Bressan, C. Chiosi, and Bertelli,
1981), also known as penetrative overshooting. In this scheme, the over-
shooting parameter (actually λov×HP) is the mean free path that can be
traveled by bubbles in the full convective region before dissolving (i.e.
also across the border of the unstable region ). Convective elements are
accelerated in the unstable region and decelerated in the stable overshoot-
ing zone. The acceleration imparted to convective elements is derived in

1A treatment of convective overshooting similar to that described by Freytag, Ludwig,
and Steffen (1996) is also implemented, but it is not used in this work.
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the framework of the mixing length theory so that the corresponding ve-
locity field can be obtained. For an easy comparison with other existing
models in literature we keep track of the overshooting distance, i.e. the
extension of the overshooting region above the Schwarzschild border dov,
during the evolution. For example, during H burning, we find that, ap-
proximately, dov/HP ' 0.5 λov, with a small dependence on the initial stel-
lar mass. During the He-burning phase, we adopt the same prescription.
However since as the helium burning proceeds the core grows giving rise
to a distinct molecular weight barrier and associated mixing phenomena
like semi-convection and breathing pulses of convection, the above simple
scaling looses its validity. Further discussion on the method can be found
in A. Bressan, Bertelli, and C. Chiosi (1986) where details on the core over-
shooting, during the central He burning phase, are also given.

In general, the mixing of the chemical elements in non-rotating stars,
happens prevalently in the convective regions of the star. In the radiative
zones there is no exchange of matter between different mass shells, if it is
possible to neglect the microscopic diffusion (as in the case of the interme-
diate and massive stars).

2.5 Methods and boundary conditions

The equations of the stellar evolution cannot be solved in general analyt-
ically, even more because the EOS, the opacity and the nuclear reaction
rates are given as data tables. Thus, we must rely on numerical solutions.

To numerically solve the structure equations (Eqs. 2.1 – Eqs. 2.4), we
adopt the Henyey method (see Henyey, Wilets, et al., 1959; Henyey, Forbes,
and Gould, 1964; R. Kippenhahn, A. Weigert, and Hofmeister, 1967; Rudolf
Kippenhahn, Alfred Weigert, and Achim Weiss, 2012, for details) and the
initial and the boundary conditions are described in the following.

The initial condition coincides with the structure of the star at the pre-
vious time-step. While, the boundary conditions are two: the one at the
stellar center and the other at the stellar surface. At the center, the radius
and the mass are null, so r = 0 and M = 0, but in order to obtain the cen-
tral pressure Pc and the central density ρ, we need to know the behaviour
of the four quantities (r, M, P and ρ) in the proximity of the center of the
star. Thus, the above equations (Eqs. 2.1 – Eqs. 2.4) are approximated by
expanding in powers of M, with M→ 0, and the four equations become

P = Pc −
G
2

(
4π

3

) 1
3

ρ
4
3
c M

2
3 , (2.14)

r =
(

3M
4πρc

) 1
3

, (2.15)

Lc = εc M, (2.16)

T4 − T4
c = − κεc

2 a c

(
3

4π

) 1
3

ρ
4
3
c M

2
3 (radiative case) (2.17)

ln T − ln Tc = −
(π

6

) 1
3 G

Pc
ρ

4
3
c M

2
3∇ad (radiative case). (2.18)
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FIGURE 2.1: Sketch of the grid adopted in our models. The
star interior is divided in N mesh points. The envelope is
connected to the first point of the internal structure (M1),
and the atmosphere is integrated from τ = 2/3 to infinite

(see text for details).

where εc = (εn − εν + εg)c is the total energy rate at the center mesh point
of the star. In PARSEC, the variation of the temperature is simplified in

T − Tc = ∇(P− Pc) (in any case). (2.19)

The boundary condition at the atmosphere is a bit more tricky, because
in PARSEC the star is subdivided in three zones as shown in Figure 2.1 (fol-
lowing the R. Kippenhahn, A. Weigert, and Hofmeister, 1967, approach).
The zones are:

1. the inner structure, described by the equations above mentioned
(Eqs. 2.1 – Eqs. 2.4);

2. the envelope, in which there are no nuclear reactions, thus the lumi-
nosity is assumed constant;

3. the atmosphere, in which the mass is equal to the whole star mass.

The structure is connected to the envelope at the so-called fitting point.
In turn, the envelope extends from the fitting point to the photosphere,
in which the optical depth is τ = 2/3. In the following sections I will
describe with further details these two zones of the star.

In PARSEC, an adaptive mesh is used in the inner structure. The code
adds or remove points in order to better follow the physical quantities and
the chemical elements profiles in the structure. Thus, the number of points
varies in different phases, for instance we have about 1500 points during
hydrogen burning, 3000 during He burning and 5000 during the thermally
pulsing AGB (TP-AGB) (A. Bressan, P. Marigo, et al., 2012).

2.5.1 The atmosphere

In PARSEC the external part of the star is divided in two, the envelope and
the atmosphere. The latter one is a layer in which the mass, the luminosity
and the radius are assumed constant. Then, to describe the remain phys-
ical quantities (i.e. the pressure and the temperature) we need only two
equations. From the hydrostatic equilibrium we have that

dP
dR

= −ρ g, (2.20)
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where ρ is the density in the atmosphere and g is the surface gravity of
the star. Using the definition of the optical depth, namely dτ = ρκdr, we
obtain the first of the two equations to solve, it writes as

dτ

d log P
=

κP
g

ln 10, (2.21)

in which we used d log P = dP/P ln 10. The equation is integrated to ob-
tain τ from the infinite (r = ∞) to τ = 2/3, that is the definition of pho-
tosphere. At the infinite the pressure is only due to the radiation, thus
P(∞) = Prad = 1

3 aT4, where a = 7.57× 10−15 erg cm−3 K−4 is the radia-
tion density constant. For the atmosphere, the plane-parallel grey model
is adopted, and the temperature stratification is given by a modified Ed-
dington approximation for the radiative transport, that is

T4(τ) =
3
4

T4
e f f (τ + q(τ)), (2.22)

where Te f f is the effective temperature of the star and q(τ) is the Hopf
function. This is the second equation to solve to model the atmosphere.

2.5.2 The envelope

Among the inner structure and the atmosphere, there is the envelope. Its
upper boundary is the point in which τ = 2/3, i.e. the photosphere, while
the lower boundary is the fitting point. This point is defined using the
mass coordinate and can be regulated on the temperature of the mesh-
point or can be set as a constant parameter. Usually, in PARSEC v1.2 (A.
Bressan, P. Marigo, et al., 2012), it is set to M/MTot = 1− 10−5. Such a
choice prevents to have temperatures high enough to ignite the nuclear
reactions in this part of the star. Thus, the luminosity is constant, and the
physical quantities to derive are only three (r, P, ρ). Since the mass varies
so little in the envelope, we use the pressure P as independent variable,
and the structure equations become

∂ ln r
∂ ln P

= − Pr
GρM

(2.23)

∂ ln M
∂ ln P

= −4πr4P
GM2 (2.24)

∂ ln T
∂ ln P

= min[∇ad,∇rad] (2.25)

The methods to treat the envelope and the atmosphere are fully described
in (R. Kippenhahn, A. Weigert, and Hofmeister, 1967).
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Chapter 3
Stellar rotation

In this chapter, I present the basic assumptions to model in a one dimen-
sional (1D) scheme, the complex three dimensional (3D) effects induced
by rotation in stars, in Section 3.1. Then, in Section 3.2 and 3.3 I discuss
the isobars properties and derive the isobars shape as a function of the
angular rotation rate, respectively. In Section 3.4, 3.5, 3.6 and 3.7 I derive
the stellar structure equations for the rotating stars one by one, and I list
them in Section 3.8. In Section 3.9 I derive the corrected equations for the
boundary conditions for a rotating star. In Section 3.10 I show the deriva-
tion of the form factors, parameters that depends only on the rotation and
that are used to correct the star structure equations. Finally, in Section 3.11
I discuss the Von Zeipel effect that strongly modifies the surface effective
temperature of rotating stars.

3.1 Basic assumptions

R. Kippenhahn and Thomas (1970, here after KT) and later Endal and Sofia
(1976) developed a methodology to include the geometric distortion of the
star, due to the centrifugal forces, in the structure equations of stellar mod-
els. The main idea is to change the spherical stratification of the star with
a deformed one, in case of rotation. Though to treat in a consistent way
the effects of rotation would require a full 3D scheme, under the proper
assumptions (and approximations), it is possible to model these effects in
a 1D scheme. The four assumptions adopted in the KT scheme are:

1. The star is divided in shells, that are equipotential surfaces as in the
non-rotating case, but no longer spherical;

2. In each shell, the angular velocity (Ω) has a cylindrical symmetry;

3. The Ω is constant along the colatitude (θ) of the shells;

4. The Roche approximation is used to compute the shape of the equipo-
tentials.
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Unfortunately, the feasibility of the scheme is limited to stars with a solid
body rotation, since the combination of the second and the third assump-
tions imply that the only possible solution for the angular velocity distri-
bution throughout the star is the solid body one. Thus, the scheme can-
not be applied to differential rotating stars. Further steps to solve this
problem have been done by J.-P. Zahn (1992) and Meynet and A. Maeder
(1997). The first author investigated in detail on the interaction between
the so-called meridional circulation (a macro-circulation of material in the
star, see below for further details) and the turbulence in rotating stars. J.-P.
Zahn (1992) proved that, in a internal star shell, the horizontal (tangen-
tial) turbulence is much stronger than the vertical (radial) one, thus Ω is
“instantaneously” mixed along the shell (horizontally), but is not between
two nearby shells (radially). The J.-P. Zahn (1992) interpretation supports
the third assumption by KT, that is also called the internal “shellular” ro-
tation law. In this scenario, the star shells are no longer equipotentials, at
variance with the KT scheme, but isobars, surfaces in which the pressure,
P, keeps a constant value.

Meynet and A. Maeder (1997) completed the puzzle to model differ-
ential rotating stars. They adopted the KT scheme, the shellular rotation
law and dropped the second KT assumption, the cylindrical symmetry of
the angular velocity. In this new scheme, each shell is defined by an isobar
and it can rotate with its own Ω, constant along the colatitude, θ. From
the practical point of view, the two schemes by KT and by Meynet and A.
Maeder (1997) are the same.

The final set of assumptions let us to define and compute the shape of
the isobars of the star, calculate the effective gravity and the other quanti-
ties related to the rotation. Remarkably, the adopted scheme allows us to
keep the same form of the classical non-rotating stellar structure equations
(the Eqs. 2.1 – 2.4). Only two “form factors” ( fP and fT) are introduced in
the structure equations to take into account the thermal and the mechani-
cal distortion due to rotation. Obviously, since the physical quantities are
not constant along the isobars, with the exception of the pressure and of
the angular velocity, we must re-interprete the physical quantities that ap-
pear in the 1D structure equations (Eqs. 2.1 – 2.4). As described in the
following, the quantities that appear in the new set of structure equation
are proper averages along the isobars.

This scheme is currently adopted by most stellar evolutionary codes
that treat rotation, such as MESA (Paxton, Bildsten, et al., 2011; Paxton,
Cantiello, et al., 2013; Paxton, Marchant, et al., 2015; Paxton, Schwab, et
al., 2018), GENEC (Eggenberger et al., 2008), FRANEC (Chieffi and Limongi,
2013; Chieffi and Limongi, 2017), KEPLER (Heger, N. Langer, and Woosley,
2000; Heger and N. Langer, 2000), STERN (Petrovic et al., 2005; Yoon and
Langer, 2005; Brott, de Mink, et al., 2011), and now PARSEC v2.0.

In the next sections, following the description by Meynet and A. Maeder
(1997) and A. Maeder (2009), I describe the derivation of the form factors
and of the updated version of the structure equations.
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3.2 Properties of the isobars

In a differentially rotating star, it is not possible to define the centrifugal
forces from a potential, thus, it is a non-conservative case. However, in
analogy with the conservative case, we can define the surface of a shell, Ψ,
as follow

Ψ = Φ− 1
2

Ω2 r2 sin2 θ = constant (3.1)

where Φ = −V, V is the gravitational potential, r is the radius, Ω is the
angular velocity of the shell and θ is the colatitude (θ = 0◦ at the pole).
The hydrostatic equilibrium implies that

~∇P = −ρ~ge f f (3.2)

where ρ is the density and ~ge f f is the effective gravity that, in spherical
coordinates, its components can be expressed as

ge f f (r) =
∂Φ
∂r

+ Ω2 r sin2 θ (3.3)

ge f f (θ) =
1
r

∂Φ
∂θ

+ Ω2 r sin θ cos θ. (3.4)

The components of the gradient of Ψ in polar coordinates (r, θ) are

∂Ψ
∂r

=
∂Φ
∂r

+ Ω2 r sin2 θ + r2 sin2 θ Ω
∂Ω
∂r

(3.5)

1
r

∂Ψ
∂θ

=
1
r

∂Φ
∂θ

+ Ω2 r sin θ cos θ + r2 sin2 θ Ω
1
r

∂Ω
∂θ

. (3.6)

Comparing Eq. 3.5 to Eq. 3.3 and Eq. 3.6 to Eq. 3.4, one can write

~ge f f = ~∇Ψ− r2 sin2 θ Ω ~∇Ω. (3.7)

From the above equation, it is clear that this is a non-conservative case and
Ψ is not a potential. In this case the star is said to be baroclinic. On the con-
trary, the star is barotropic, and the isobars coincide with the equipotentials.
This happens in the case of a solid body rotation.

We can rewrite the expression for the hydrostatic equilibrium (Eq. 3.2)
as

~∇P = −ρ
(
~∇Ψ− r2 sin2 θ Ω ~∇Ω

)
. (3.8)

Since Ω is constant on an isobar, the vector ~∇Ω is parallel to the vector
~∇P. So, this equation implies that the ~∇Ψ is parallel to ~∇P and hence,
that the surfaces defined by Ψ = const are the isobars. We can assume that

~∇Ω = −α~∇Ψ, (3.9)

where α =
∣∣∣ dΩ

dΨ

∣∣∣ is a scalar quantity which depends only on Ψ. It is useful
to defining the quantity dn as the average distance between two neighbor-
ing isobaric surfaces, Ψ = constant and Ψ+ dΨ = constant (thus, dn ∼ dr).
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Replacing ~∇Ω in Eq. 3.7, we obtain that the modulus of the effective grav-
ity is

ge f f =
(
1− r2 sin2 θ Ωα

) dΨ
dn

. (3.10)

This is a useful equation that will let us to rewrite the stellar structural
equations accounting for the rotation distortions.

3.3 Surface shape of isobars

As suggested by KT, to calculate the surface of an isobar we adopt the
Roche approximation. So, the gravitational potential associated to the
mass enclosed by the radius, r, is not distorted by rotation and it is the
same as if the whole mass is concentrated in the central point of the star.
Using Eq. 3.1, we can reconstruct the shape of an isobar, adopting as con-
stant value the gravity potential at the pole of the star. It remains constant
and independent from the angular velocity1, since the centrifugal forces
are null. Then, the equation of an isobar can be expressed as

G M
R

+
1
2

Ω2 R2 sin2 θ =
G M
Rpol

, (3.11)

where G is the gravitational constant, M is the mass enclosed by the isobar,
R = R(θ) is the radius as a function of the colatitude, Rpol is the polar
radius2. Rewriting the equation, we obtain

1
2

Ω2 R3 sin2 θ + G M
(

1− R
Rpol

)
= 0. (3.12)

At this point it is convenient a change of variables, namely x = R(θ)
Rpol

that

is the dimensionless spatial coordinate and ω = Ω
Ωc

that is the rotation
rate, where Ωc is the critical angular velocity or break-up velocity of the
shell. The critical angular velocity is the angular velocity at which the
centrifugal force balances the gravitational force at the equator. It can be
easily obtained, and it writes as

G M
R2

eq,crit
= Ωc

2 Req,crit =⇒ Ωc =

√
G M

R3
eq,crit

(3.13)

where Req,crit is the equatorial radius at the critical rotation. If we introduce
Ωc in Eq. 3.11, at the equator (hence with θ = 90◦)we obtain

G M
Req,crit

+
1
2

G M
R3

eq,crit
R2

eq,crit =
G M
Rpol

=⇒
Req,crit

Rpol
=

3
2

(3.14)

1This is true within few percentage of variation in cases of high rotation, as demon-
strated by Ekström, Meynet, et al. (2008).

2Obviously, Rpol = R(θ = 0◦)
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FIGURE 3.1: The ratio x = R/Rpol in percentage, as a func-
tion of the colatitude, θ. In different colors varying rotation

rates, ω.

Substituting this last equation in Eq. 3.13, we obtain the definition of the
critical angular velocity as a function of the polar radius, that is

Ωc =

(
2
3

) 3
2
√

G M
R3

pol
. (3.15)

In this computations, we are assuming that Rpol is not changing in case
of rotation. This is not always true, but it is a good approximation when
we are not “near” the critical velocity. Ekström, Meynet, et al. (2008) found
that Rpol (ω) can change of about the 5 per cent in case of maximal rotation.

Now, using R = x Rpol and Ω = ω Ωc = ω
( 2

3

) 3
2

√
G M
R3

pol
in Eq. 3.12, we

obtain
1
2

8
27

G M
R3

pol
ω2 x3 R3

pol sin2 θ + G M (1− x) = 0 (3.16)

4
27

ω2 x3 sin2 θ − x + 1 = 0. (3.17)

This last equation is a pure geometrical expression and the independent
variables are the colatitude (with possible values between 0 ≤ θ ≤ π/2)
and the angular rotation rate (ω, that rages between 0 and 1). Eq. 3.17 is
an algebraic equation of the third degree, and exists only one physical root
(among the three) that describe the surface of the star for a fixed rotation
rate, ω. I solve the equation numerically with a simple Newton-Rapson
method. The physical solution, x(θ) has values in the interval 1 < x(θ) <
1.5. Figure 3.2 shows the variation of the radius with respect to Rpol in
percentage, as a function of the colatitude. In the case of critical rotation,
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ω Req/Rpol

0.00 1.000
0.10 1.002
0.20 1.006
0.30 1.014
0.40 1.026
0.50 1.042
0.60 1.064
0.70 1.095
0.80 1.141
0.90 1.216
0.95 1.281
0.99 1.390
1.00 1.500

TABLE 3.1: Values of the ratio Req
Rpol

= x(90◦) as a function
of the rotation rate, ω.

the equatorial radius is the 50 per cent times larger than the polar one.
Table 3.1 lists the values of the ratio Req

Rpol
as a function of different ω. From

the values of x(θ) we can reconstruct the shape of the shell surface as a
function of the θ, that is shown in Figure 3.6.

3.4 Hydro-static equilibrium equation

Once the shape of the shells is known, we can write the stellar structure
equations on them. Following the method of KT, we define the “volumet-
ric radius”, rP, as

VP =
4π

3
r3

P (3.18)

where Vp is the volume inside an isobar. As discussed in Sec. 3.1, if we
want to write the stellar structural equations in one dimension, we need
to re-interpret all the quantity that are not constant over an isobar. Hence,
for any quantity, q, which is not constant,we take the averaged value over
the isobar surface, that is defined by

〈q〉 = 1
SP

∫
Ψ=const

q dσ (3.19)

where SP is the surface of the isobar and dσ is an element of the surface.
Combining Eq. 3.10 and the equation of hydro-static equilibrium (Eq. 3.8),

we obtain
dP
dn

= −ρ
(
1− r2 sin2 θ Ωα

) dΨ
dn

(3.20)

From the above equation, we notice that the quantity ρ
(
1− r2 sin2 θΩα

)
is

constant on an isobar.
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To compute MP, the mass inside the isobar, we use Eq. 3.10, and obtain

dMP =
∫

Ψ=const
ρ dn dσ = dΨ ρ

(
1− r2 sin2 θ Ωα

) ∫
Ψ=const

1
ge f f

dσ, (3.21)

and using the definition in Eq. 3.19, we obtain

dΨ
dMP

=
1

ρ
(
1− r2 sin2 θ Ωα

)
〈g−1

e f f 〉SP
. (3.22)

Using Eq. 3.20, the equation becomes

dP
dMP

=
−1

〈g−1
e f f 〉SP

. (3.23)

Finally, if we define a “form” factor as

fP =
4π r4

P
G MPSP

1
〈g−1

e f f 〉
, (3.24)

which is equal to 1 for a non-rotating star, we can rewrite the equation of
hydro-static equilibrium in Lagrangian coordinates as

dP
dMP

= −G MP

4π r4
P

fP. (3.25)

Apart from the “form” factor fP, the equation maintains the same form as
in the non-rotating scheme (see Eq. 2.1).
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3.5 Continuity Equation

As done before, we can compute the equation of the mass conservation.
Starting from the computation of the volume between two isobars, that is

dVP = 4π r2
P drP =

∫
Ψ=const

dn dσ, (3.26)

and using Eq. 3.10 and Eq. 3.19, we obtain

dVP = dΨ SP

[
〈g−1

e f f 〉 − 〈g
−1
e f f r2 sin2 θ〉Ω α

]
. (3.27)

This expression with Eq. 3.26 and Eq. 3.22, leads to

drP

dMP
=

1
4π r2

Pρ
. (3.28)

This equation has the same form of the continuity equation in the non-
rotating case (Eq 2.2), with the exception of the meaning of the quantities.
In particular, ρ is not equal to 〈ρ〉, that is the average density on an isobar,
but is the average density in the element volume between two isobars. It
is defined as

ρ =
ρ
(
1− r2 sin2 θ Ωα

)
〈g−1

e f f 〉
〈g−1

e f f 〉 − 〈g
−1
e f f r2 sin2 θ〉Ω α

. (3.29)

Note that when mass steps are very small the difference between the two
becomes negligible.

3.6 Conservation of energy

The net energy outflow dLP from a shell comprised between two isobars
is given by

dLP =
∫

Ψ=const
ε ρ dn dσ (3.30)

where ε = εn − εν + εg is the total rate of energy production in the shell,
composed by the nuclear, neutrino losses and gravitational energy rates,
respectively. Using Eq. 3.10 and Eq. 3.22 we obtain the equation of energy
conservation, that can be expressed as

dLP

dMP
=
〈
(
εn − εν + εg

)
g−1

e f f 〉
〈g−1

e f f 〉
, (3.31)

We can approximate these averages by

〈
(
εn − εν + εg

)
g−1

e f f 〉
〈g−1

e f f 〉
≈ εn

(
ρ, T

)
− εν

(
ρ, T

)
+ εg

(
ρ, T

)
, (3.32)

where the ρ and T quantities are the average density and temperature in
the element volume between two isobars, respectively. Since the above
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approximation, we can write the equation of conservation of the energy as

dLP

dMP
= εn − εν + εg. (3.33)

3.7 Transport of energy

3.7.1 Radiative equilibrium

Locally, the equation of vertical radiative transfer writes

F = −4a c T3

3κρ

dT
dn

= −4a c T3

3κρ

dT
dMP

ρ〈g−1
e f f 〉SP ge f f , (3.34)

where κ is the opacity, a is the radiation constant and c the light velocity.
In the previous passage we used the fact dT

dn = dT
dMP

dMP
dΨ

dΨ
dn and Eq. 3.10,

Eq. 3.22. Integrating over an isobar surface, we obtain

LP = −4a c
3
〈g−1

e f f 〉S
2
P〈

T3 ge f f

κ

dT
dMP

〉, (3.35)

which expresses the radiative transfer in rotating stars.

3.7.2 Convective transport

In a convective region at a given point on an isobar, the gradient of tem-
perature is

d ln T
d ln P

= ∇ad. (3.36)

Taking the averages on an isobar and approximating, we can write

〈∇ad〉 = 〈
d ln T
d ln P

〉 ≈ d ln T
d ln P

(3.37)

Using Eq. 3.25, we can rewrite the equation obtaining

d ln T
dP

dP
dMP

P = −G MP

4π r4
P

fP∇ad =⇒ d ln T
dMP

= −G MP

4π r4
P

1
P

fP∇ad (3.38)

3.7.3 Equation of energy transport

The equations of energy transport are written with these mean values of
density and temperature, as done before, we can make the following ap-
proximations

〈
T3ge f f

κ

dT
dMP

〉 ≈
T3〈ge f f 〉
κ
(
ρ, T

) dT
dMP

, (3.39)

This approximation and the previous used in Eq. 3.33 are not severe, since,
as stated by Meynet and A. Maeder (1997), we are adopting the “shellu-
lar rotation law” and the strong horizontal turbulence responsible for the
constancy of Ω on isobars will likely homogenize the chemical composi-
tion and reduce the differences in densities and temperatures on isobars.



26 Chapter 3. Stellar rotation

Thus, Eq. 3.35 becomes

LP = −4a c
3
〈g−1

e f f 〉S
2
P

T3〈ge f f 〉
κ
(
ρ, T

) dT
dMP

. (3.40)

From Eq. 3.25 we obtain dMP = 4π r4dP/ (GMP fP), and replacing it in
Eq. 3.40 one finds

LP = −4a c T3G MP

3κ
(
ρ, T

) S2
P〈g
−1
e f f 〉〈ge f f 〉
4π r4

dT
dP

fP = −16 π a c T3G MP

3κ
(
ρ, T

) dT
dP

fP

fT
,

(3.41)
where

fT =

(
4π r2

SP

)2 1
〈g−1

e f f 〉〈ge f f 〉
, (3.42)

is the second “form” factor. Rewriting Eq. 3.41 one obtains the radiative
gradient for a rotating star, given by

d ln T
d ln P

= − 3κ

16 π a c G
LP P

MP T4
fT

fP
= ∇rad

fT

fP
. (3.43)

Directly follow that

d ln T
dMP

= −G MP

4π r4
P

1
P

fP∇rad
fT

fP
. (3.44)

Applying the Schwarzschild criterion for convection one gets, from Eq. 3.38
and Eq. 3.44,

d ln T
dMP

= −G MP

4π r4
P

1
P

fP min
[
∇ad,∇rad

fT

fP

]
. (3.45)

3.8 Equations of stellar structure with rotation

With these changes of variables and these approximations we recover the
complete set of stellar structure equations with corrections for the rotating
case:

∂P
∂MP

= −G MP

4π r4
P

fP, (3.46)

∂rP

∂MP
=

1
4π r2

Pρ
, (3.47)

∂LP

∂MP
= εn − εν + εg, (3.48)

∂ ln T
∂MP

= −G MP

4π r4
P

1
P

fP min
[
∇ad,

fT

fP
∇rad

]
. (3.49)

with
∇ad =

Pδ

T ρcP
, (3.50)
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∇rad =
3

16π acG
κLP P

MP
, (3.51)

fP =
4π r4

P
G MPSP

1
〈g−1

e f f 〉
, (3.52)

fT =

(
4π r2

P
SP

)2 1
〈g−1

e f f 〉〈ge f f 〉
, (3.53)

where δ =
(

∂ ln ρ
∂ ln T

)
P,µ

is a thermo-dynamical derivative. Quantities in the

brackets, such as 〈x〉, are averaged on the isobar surface (Eq. 3.19), while
x are averages in the volume separating two successive isobars. The index
P refers to the isobar with a pressure equal to P. Partial derivatives have
replaced total derivatives to allow for the fact that the quantities depend
not only on mass but also on time. Eqs. 3.46 – 3.49 are used to model
rotating star in hydrostatic equilibrium and, as anticipated before, they
keep the same form of the classical structure equations (Eqs 2.1 – 2.4). The
only difference is the introduction of the form factors fP and fT, to keep
rotation into account.

3.9 Boundary conditions

As discussed in Section 2.5, in PARSEC the star is subdivided in three zones,
the inner structure, the envelope and the atmosphere. The envelope equa-
tions are also corrected by the form factors, to take into account rotation,
so the equations become

∂ ln rP

∂ ln P
= − P rP

ρ G MP

1
fP

(3.54)

∂ ln MP

∂ ln P
= − 4πr4

PP
G M2

P fP
(3.55)

∂ ln T
∂ ln P

= min[∇ad,
fT

fP
∇rad] (3.56)

The atmosphere is also deformed by rotation, and adopting the equation
corrected by the form factors, we can derive the new equations, that are

dτ

d log P
=

SP〈g−1
e f f 〉

4πr2
P

κ P ln 10, (3.57)

T4(τ) =
3
4

T4
e f f

(
SP

4πr2
P

fP τ + q(τ)
g
〈ge f f 〉

)
, (3.58)

Where g = G MP
r2

P
is an average gravity. As concern the center bound-

ary condition, we have that, in the center the radius is null so the angu-
lar momentum is null, however the condition for the angular velocity is(

dΩ
dr

)
c
= 0. Thus, even with rotation, we keep the same equations adopted

for the classical non rotating case (i.e. Eqs. 2.21 and 2.22).
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FIGURE 3.3: The angle ε is the angle between the vector
radius and the effective gravity vector. From A. Maeder

(2009).

3.10 Calculation of the form parameters

3.10.1 Surface of an isobar

In order to calculate the two form factors (given in Eq. 3.52 and Eq. 3.53),
we need to know the values of the surface of an isobar, SP, the averaged
effective gravity, 〈ge f f 〉, its inverse, 〈g−1

e f f 〉, and the “volumetric” radius,
rP. Since we know the shape of the star (x(θ), solving Eq. 3.17), we can
calculate the surface of the isobar by the integral

SP =
∫ 4π

0
dσ, (3.59)

where dσ is the element of the surface of a rotating star and is given by

dσ =
R2 (θ) sin θ dθ dϕ

cos ε
(3.60)

where ϕ is the longitude angle, ε is the angle between the ge f f and r, be-
cause generally in a rotating star the normal to the surface does not coin-
cide with the radial direction (see Figure 3.3). The angle ε is small, it is
zero only at pole and equator, and it is defined by

cos ε =
ge f f · r∣∣ge f f

∣∣ |r| . (3.61)

Now, as done before, it is useful to rewrite the previous equation with the
dimensionless variables; so, making simple passages, integrating over ϕ,
and applying the substitution R (θ) = x (θ) Rpol , one obtains

SP = 4πR2
pol

∫ π
2

0

x2 (θ) sin θ

cos ε
dθ = 4πR2

pol S′ (3.62)

where we have defined S′ = S′(ω) =
∫ π

2
0

x2(θ) sin θ
cos ε dθ as a dimensionless

surface which is only function of ω.
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To calculate the surface we need to know cos ε and the effective gravity
vector, that is given by Eqs. 3.3 – 3.4. Using the unity vectors, êr and êθ , we
can rewrite effective gravity vector as

~ge f f =

[
− G MP

R2 (θ)
+ Ω2 R (θ) sin2 θ

]
êr +

[
Ω2 R (θ) sin θ cos θ

]
êθ . (3.63)

The modulus is

∣∣ge f f
∣∣ = [(− G MP

R2 (θ)
+ Ω2 R (θ) sin2 θ

)2

+
(
Ω2 R (θ) sin θ cos θ

)2
] 1

2

.

(3.64)
By using R (θ) = x (θ) Rpol and Ω2 = ω2 Ω2

crit = ω2 ( 2
3

)3 G M
R3

pol
, we obtain

∣∣ge f f
∣∣ = G MP

R2
pol

[(
− 1

x2 +
8

27
ω2 x sin2 θ

)2

+

(
8
27

ω2 x sin θ cos θ

)2
] 1

2

.

(3.65)
For convenience, I define

Age f f = −
1
x2 +

8
27

ω2 x sin2 θ

Bge f f =
8
27

ω2 x sin2 θ cos θ

(3.66)

and, using Eq. 3.65 with Eq. 3.61, one obtains

cos ε =
Age f f[(

Age f f
)2

+
(

Bge f f
)2
] 1

2
. (3.67)

It is worth noting that cos ε is a pure geometrical factor only function of ω
and θ, and it is independent from MP and R. We are now able to calculate
the dimensionless surface, S′, and the physical surface of an isobar using
Eq. 3.62. Table 3.2 lists the S′ values for different ω, and to obtain the total
surface of a rotating shell, the corresponding value of the table should be
multiplied by the non rotating spherical surface value, i.e 4πR2

pol .

3.10.2 Average effective gravity

Using the above formulation, the average of the effective gravity are given
by

〈ge f f 〉 =
1

SP

∫ 4π

0

∣∣ge f f
∣∣ dσ =

4πR2
pol

SP

∫ π
2

0

∣∣ge f f
∣∣ x2 (θ) sin θ

cos ε
dθ (3.68)

Rewriting and using Eqs. 3.65 – 3.67, we obtain

〈ge f f 〉 =
G MP

R2
pol
〈gad〉, (3.69)
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where 〈gad〉 is the dimensionless average gravity, that using the definition
in Eq. 3.66 is

〈gad〉 =
1
S′

∫ π
2

0

[(
Age f f

)2
+
(

Bge f f
)2
] 1

2 x2 (θ) sin θ

cos ε
dθ. (3.70)

Doing the same for the average of the inverse effective gravity, one obtain

〈g−1
e f f 〉 =

1
SP

∫ 4π

0

1∣∣ge f f
∣∣ dσ =

4πR2
pol

SP

∫ π
2

0

1∣∣ge f f
∣∣ x2 (θ) sin θ

cos ε
dθ. (3.71)

Rewriting we obtain

〈g−1
e f f 〉 =

R2
pol

G MP
〈g−1

ad 〉, (3.72)

where

〈g−1
ad 〉 =

1
S′

∫ π
2

0

[(
Age f f

)2
+
(

Bge f f
)2
]− 1

2 x2 (θ) sin θ

cos ε
dθ. (3.73)

3.10.3 Computing the form parameters

We are now able to calculate the form factors using Eq. 3.52 and Eq. 3.53,
but, as done for the other quantities, is useful to rewrite them using Eq. 3.62,
Eq. 3.69 and Eq. 3.72. Thus, we obtain

fP =
4π r4

P
G MPSP

1
〈g−1

e f f 〉
=

(
rP

Rpol

)4 1
S′〈g−1

ad 〉
, (3.74)

and

fT =

(
4π r2

P
SP

)2 1
〈g−1

e f f 〉〈ge f f 〉
=

(
rP

Rpol

)4 ( 1
S′

)2 1
〈g−1

ad 〉〈gad〉
. (3.75)

It is evident that they are pure geometrical quantities, that depend only on
the rotation rate, ω. Table 3.2 lists the values of the two “form” parameters
for different ω.

3.10.4 Calculating volume inside the isobar

Since we know the shape of the surface of an isobar, namely the physical
root obtained from Eq. 3.17 times the polar radius Rpol, we can calculate
the volume enclosed by it through a rotational integral (as shown in Fig-
ure 3.4)3. From the numerical integration we obtain the volume V of the
isobar, hence, we can define the dimensionless volume as

V (ω) =
4
3

πR3
pol V ′ (ω) , (3.76)

that is only function of the rotation rate ω. The values obtained for dif-
ferent rotation rates are listed in Table 3.2. Combining Eq. 3.18 with the

3Among the various method, I used the Pappus-Guldino’s formulas and the cylindrical
shell method.
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FIGURE 3.4: Schematic view of the rotation around y axis
of a general function f (x).

ω S′ V ′ fT fP V ′ω2

0.00 1.000 1.000 1.000 1.000 0.000
0.20 1.008 1.012 1.000 0.992 0.040
0.40 1.034 1.051 0.999 0.966 0.168
0.50 1.056 1.084 0.997 0.943 0.271
0.60 1.086 1.130 0.992 0.912 0.407
0.70 1.127 1.193 0.982 0.869 0.585
0.80 1.186 1.285 0.960 0.804 0.823
0.90 1.282 1.434 0.900 0.694 1.162
0.95 1.363 1.558 0.821 0.593 1.406
0.99 1.485 1.733 0.622 0.413 1.698
1.00 1.580 1.826 0.000 0.000 1.826

TABLE 3.2: The dimensionless parameters as a function of
the rotation rate ω = Ω/Ωcrit. S′ is the surface, V′ is the
volume, fT and fP are the “form” parameters and V′ω2 is

defined in Eq. 3.79.

previous equation we obtain

V =
4
3

πr3
P =

4
3

πR3
pol V ′, (3.77)

Thus

rP = Rpol
(
V ′
) 1

3
. (3.78)

This relation connects the volumetric radius, used in the structural equa-
tions, with the polar one, that is constant as the rotation changes.

3.10.5 Re-computing the polar radius

The quantities that I computed so far, are useful to get the form parameters
that enter in the equations of the structure as dimensionless corrections.
However, at each time-step during a simulation, the code works with the
averaged physical quantities, and to derive and update the form factors it
is necessary to know the polar radius, Rpol . To find it, we need to have a re-
lation that links the physical quantities to the dimensionless variables. We
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find such relation combining the Eq. 3.14 and the Eq. 3.77, thus obtaining

V ′ω2 =
27
8

Ω2r3
P

G MP
. (3.79)

This is an interesting equation from which we can obtain the dimension-
less values (in the left-hand term) from the physical variables that are used
in the structure equations (in the right-hand term). Since the dimension-
less volume, V ′ = V ′ (ω), is only a function of ω, the product V ′ω2 is
unique for each couple of V ′ and ω. In Table 3.2 are shown the V ′ω values
for different ω. At each time-step, for each shell identified by the mass MP,
enclosed in a volumetric radius rP and that rotates with an angular veloc-
ity Ω, I obtain the rotation rate, ω, using the Eq. 3.79. Once ω is known,
I can derive all the dimensionless quantities needed to evaluate the form
factors and correct the structural equations.

I note that, the value V ′ω2 is related to the useful quantity discussed
by A. Maeder (2009) through the following relation

Ω2

2πGρM
=

Ω2V
2πGMP

=
ω2Ω2

critV
2πGMP

= (3.80)

=
ω2

2πGMP

4
3

πR
3

polV
′ 8

27
G MP

R3
pol

=
16
81

ω2V ′, (3.81)

where ρM = MP
VP

is the average density on the volume of an isobar, Ω2

2πGρM

is a dimensionless quantity, that is of the order of the ratio between the
centrifugal acceleration and the gravity at the equator and it is a measure
of the “strength” of the rotation. Table 3.2 lists the values obtained from
our integration as a function of the rotation rate. This quantity is used to
compute the effective mass, i.e. the mass which would produce the same
gravity if there would be no centrifugal force, that is defined as

M∗P = MP

(
1− Ω2

2πGρM

)
. (3.82)

3.11 Von Zeipel effect and the surface temperature

The Von Zeipel theorem (von Zeipel, 1924) states that the emitted radiative
flux of a rotating star is proportional to the local effective gravity. It writes

~F (ωs, θ) = − L
4π G M∗

~ge f f (ωs, θ) , (3.83)

where ωs is the surface angular velocity of the star, M∗ is the star effec-
tive total mass, defined by Eq. 3.82 and ge f f (ωs, θ), is the surface effective
gravity of the star. From the Von Zeipel theorem it is immediately clear
that the flux emitted by a rotating star depends from both the rotation rate
and the inclination angle of the rotation axes of the star with respect to the
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FIGURE 3.5: The ratio Te f f (ω)/Te f f (0) in percentage as a
function of the colatitude θ for various rotation rates, in
different colors. This is the gravity darkening due to the

geometrical distortion of a rotating star.

line of sight. From the above equation we can derive effective tempera-
ture, that is

Te f f (ωs, θ) =

(
L

4π σ G M∗

) 1
4 [

ge f f (ωs, θ)
] 1

4 . (3.84)

Both ge f f and Te f f vary over the surface of a rotating star and influence the
emergent spectrum of the star. It is convenient to derive the ratio between
the effective temperature in case of rotation and the effective temperature
at ω = 0, Te f f (0), that is constant along the surface, so

T4
e f f (ωs, θ)

T4
e f f (0)

=
1(

1− ω2
s

2πGρM

) ∣∣ge f f (ωs, θ)
∣∣∣∣ge f f (0)
∣∣ (3.85)

where ge f f (0) = G M
R2

pol
is the classical formula for the gravity acceleration.

Using Eq. 3.65 we obtain

T4
e f f (ωs, θ)

T4
e f f (0)

=

[(
Age f f

)2
+
(

Bge f f
)2
] 1

2(
1− ω2

s
2πGρM

) , (3.86)

where Age f f and Bge f f are defined in Eqs. 3.66.
Figure 3.5 shows the percentage variation of the effective temperature,

Te f f (ωs, θ), with respect to the Teff(0) of the correspondent non rotating
star. In case of rotation, the equatorial regions are fainter and cooler than
the polar ones, which are brighter and hotter. As the rotation rate increases
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FIGURE 3.6: Reconstruction of the effective temperature
on the star surface for different rotation rates, ω. In differ-
ent colors the effective temperature. I adopted the Roche
approximation to compute the surface shape and the Von
Zeipel theorem to obtain the effective temperature. To note
that in cases with rotation, the poles are hotter than the

equatorial region of the star.

the differences become bigger. This effect is usually called the gravity
darkening.

Adopting the Roche approximation and using the Von Zeipel theorem,
we can reconstruct the surface of a rotating star and the distribution of
the effective temperature along it. An example is shown in Figure 3.6 for
different rotation rates, ω. In the computation I assumed that the non-
rotating star (the top left-hand panel) has an effective temperature of 7000
K. As the rotation grows, the star becomes more and more oblate and the
Teff distribution changes with the colatitude, θ. In the case of critical rota-
tion, the star has a equatorial radius the 50 per cent bigger than the polar
one (as shown in Table 3.1) while the effective temperature at the pole is
almost two times the Teff at the equator.

It is worth to note that, recent interferometric observations of rapidly
rotating stars (Domiciano de Souza et al., 2014) have found that if we
model the gravity darkening as F(θ) ∼ g4β

e f f , then the coefficient is β ≤
1/4. And, in particular, Domiciano de Souza et al. (2014) found a decreas-
ing trend of the exponent as the rotation rate grows. Theoretical studies
by Espinosa Lara and Rieutord (2011) and Espinosa Lara and Rieutord
(2013) are in line with the above results. They give a different analytical
description for the gravity darkening, that is in agreement with 2D mod-
els of rotating stars performed with their 2D ESTER code. Adopting the
Von Zeipel theorem takes to an over-estimate of the Teff differences in case
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of high rotation rates (ω ≤ 0.6). In Chapter 5, I will discuss with more
details about the derivation of stellar spectra and photometry of rotating
stars, also using the more accurate Espinosa Lara and Rieutord (2011) the-
oretical description of the gravitational darkening.
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Chapter 4
Transport of angular

momentum

In non rotating (classical) models, usually, the mixing of elements take
place only in the convective regions of the star. The chemical elements
in the radiative zones are not mixed (if the microscopic diffusion is ne-
glected). On the other side, in rotating stars, the mixing takes place also
in the radiative regions of the stars. Besides the geometrical distortion of
the star structure, rotation induces instabilities that lead to a redistribu-
tion of the chemical elements and the angular momentum throughout the
star. Depending on the rotation rate, this extra-mixing may strongly affect
the evolution of the star. Thanks to several studies performed in the past
decades on this subject, it is now well known that the two main rotation
instabilities that cause the extra-mixing are:

• The meridional circulation, as known as the Eddington-Sweet circu-
lation (Eddington, 1929; Sweet, 1950), is a macro motion of the stellar
material from poles to the equator or the reverse, due to the thermal
imbalance of a rotating star;

• The shear instability, due to the different rotation velocity of two
nearby shells of the star, drives to turbulent mixing of the chemical
elements between the layers.

Other physical instabilities are acting in rotating stars that lead to the
transport of both the chemical elements and the angular momentum, but
their contribution is of the second-order than the above mentioned two.
The two cited rotation instabilities have a sort of hierarchical dependence,
in fact, as stated by Meynet and A. Maeder (1997), rotation takes to the
geometric distortion of the star that implies meridional circulation, which
in turn induces the differential rotation which produces shear instabilities.
Also, the mass loss plays an important role in the transport of the angu-
lar momentum since it is the main way in which single stars lose their
momentum after the zero-age main sequence (ZAMS).

Depending on the initial rotation rate in the ZAMS, stars may evolve
in a very different way. Mainly because, during the evolution, the rotation
mixing provides fresh fuel to the burning cores of the stars and transports
the processed material from the cores to the stellar surfaces.
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This Chapter is divided as follows. I describe the meridional circu-
lation in Section 4.1. In Section 4.2 I present the basic equation to treat
the shear instability and in Section 4.3 the transport equation is given. In
Section 4.4 I describe the prescriptions adopted to treat the mass loss en-
hancement due to rotation. Finally, in Section 4.5 I discuss the calibration
of the mixing parameters.

4.1 Meridional circulation

The meridional circulation is a macro motion of material triggered by the
thermal imbalance generated by the rotationally deformed geometry of
the star. From the Von Zeipel theorem (Eq. 3.83, von Zeipel, 1924), we
know that the radiative flux depends on the effective gravity, hence, a ro-
tating star cannot be in hydrostatic and radiative equilibrium at the same
time. The imbalance generated by the different effective gravity between
the equator and the poles takes to this large scale motion of material (i.e.
the Eddington–Sweet circulation). In the case of a solid body rotation, the
matter in the deep radiative layers of the star rises at the pole and descends
at the equator, as shown in Figure 4.1. While, in case of a differential rotat-
ing star, even two counter rotating circulation cells could appear, as shown
in Figure 4.2. Figure 4.3 shows an example of the 3D structure of the cir-
culation cells for a 20 M� differentially rotating star model. More detailed
simulations of fast rotating stars, show that the circulation of the mate-
rial may be more complicated than that shown in figures 4.1, 4.2, 4.3 (for
instance see Espinosa Lara and Rieutord, 2013).

From the theory developed by J.-P. Zahn (1992), and improved by An-
dre Maeder and Jean-Paul Zahn (1998), the main quantity that character-
izes the meridional circulation is the velocity, U, that can be decomposed
into two components, the horizontal and the radial one. The latter is given
by

U (r) =
P

ρg cP T
[
∇ad −∇rad +

( ϕ
δ

)
∇µ

] { L
M∗

(
EΩ + Eµ

)
+

cPT
δ

∂Θ
∂t

}
,

(4.1)
where the quantities ρ, g, T are averages on the isobars, L is the total lu-
minosity that arises from an isobar, M∗ is the effective mass defined by
Eq. 3.82, cP is the specific heat capacity at constant pressure, ∇ad and ∇rad
are the adiabatic and radiative gradients, respectively, defined by Eqs. 3.50
and 3.51,∇µ = d ln µ

d ln P is the mean molecular weight gradient, δ = ( ∂ ln ρ
∂ ln T )P,µ

and ϕ =
(

∂ ln ρ
∂ ln µ

)
P,T

are thermodynamic derivatives1, Θ = ρ̃
ρ = 1

3
r2

g
dΩ2

dr is

the baroclinic equation, that is a measure of the differential rotation in the
radial direction. In this definition, the density is expanded around its av-
erage on an isobar up to the second order of the Legendre polynomials,
P2 (cos θ)2. In case of solid body rotation, the quantity Θ is null.

1These derivatives are defined from the general form of the equation of state, that is
dρ
ρ = α dP

P − δ dT
T + ϕ

dµ
µ .

2The Legendre polynomials are a set of functions orthogonal each other, used to solve
the Laplace equation (∇2Φ = 0) in spherical coordinates. The second order polynomial is
P2(x) = 1

2 (3x2 − 1).
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FIGURE 4.1: A schematic section of a rotating star in which
the black lines represent the meridional circulation in the
case of a solid body rotation. The black circle is the convec-
tive core of the star, while the white region of the sketch,
including the lines of the circulation, is the radiative enve-
lope of the star. The image has been taken and readapted

from Sweet (1950).

EΩ and Eµ are terms that depend on the Ω- and µ-distributions. The
second one, the main molecular weight distribution, may act as a barrier
and inhibit the circulation. We redirect the reader to A. Maeder (2009) to
find the full expressions for the two term. Here we provide the expression
of EΩ in the case of a uniform rotation, that is

EΩ = 2
[

1− Ω2

2πGρ
−

εn + εg

εm

]
g̃
g

, (4.2)

where εm = LP/MP is the sum of the nuclear and gravitational energy
produced within radius rP, εn is the averaged nuclear energy production
rate, εg is the gravitational energy rate, g̃

g represents the fluctuations of the

mean gravity on an isobar, and the ratio is of the order of Ω2 r3
0

G M , where r0
is the radius in which P2(cos θ) = 0. An interesting quantity that appears
in the EΩ expression, is the Gratton-Opik term,

(
1− Ω2

2πGρ

)
3. This term

becomes important in the outer layers of the star, where the local den-
sity starts to be very small. In those regions, the ratio Ω2

2πGρ may become
bigger than 1, changing sign to the meridional circulation radial velocity.
A positive value of U(r) means a current that is going up along the po-
lar axis and descend near the equatorial plane, as illustrated by the inner
loop in Figure 4.2, thus transporting angular momentum inward. While,
a negative value makes an inverse motion of the current that takes to an

3It is worth to note that, this term is different with respect to the one in the effective
mass expression given in Eq. 3.82. In fact, here, the density is averaged in the volume
between two isobars.
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FIGURE 4.2: Circulation currents in a 20 M� differentially
rotating star, in the middle of the H-burning (MS) phase.
The initial rotation velocity is 300 km/s. The inner loop
(the blue lines) is raising along the polar axis, while the
outer loop (the red lines) is going up in the equatorial
plane. The external cell is also called the Gratton Opik
circulation cell. The figure has been taken and readapted

from A. Maeder (2009).

outward transport of angular momentum, it corresponds to the external
loop in Figure 4.2.

The horizontal component of the circulation, U(θ), can be derived from
U(θ) = V(r) dP2(cos θ)

dθ and V(r) can be obtained from

1
r

d
dr
[
ρ r2 U(r)

]
− 6ρ V(r) = 0, (4.3)

once U(r) is known.
Since, numerical difficulties in the implementation and computation

of the full equation for the velocity of the meridional circulation (Eq. 4.1),
in PARSEC I have implemented three different simplified expressions for
U(r). These are:

• the classical expression for rigid rotation (Sweet, 1950; A. Maeder
and Meynet, 2000; Rudolf Kippenhahn, Alfred Weigert, and Achim
Weiss, 2012) reads as

UKip =
8
3

k2 L
Mrg

γ− 1
γ

1
∇ad −∇

(
1− Ω2

2πGρ

)
(4.4)

where k2 =
Ω2r3

p
G Mr

is the local ratio of centrifugal force to gravity and
γ is the ratio of the specific heats CP/CV . This expression is obtained
assuming the conservative case of rotation (i.e. solid body rotation),
it ignores the molecular weight barriers, and diverges at the surface
of the star (A. Maeder and Meynet, 2000);



4.2. Shear instability 41

FIGURE 4.3: View of the different meridional circulation
cells in a rotating 20 M� model, at the beginning of the
MS with vini = 300 km s−1. In the upper hemisphere on the
right section, matter is turning counterclockwise along the
outer stream line and clockwise along the inner one. The
inner sphere is the convective core. Image from Meynet

and A. Maeder (2002).

• The same expression as before, but corrected by a “stabilizing” circu-
lation velocity due to the molecular weight barrier. Following Heger,
N. Langer, and Woosley (2000) we have that

UHeg = max{|UKip| − |Vµ|, 0}, (4.5)

where Vµ = HP
τKH

ϕ∇µ

δ(∇−∇ad)
is the molecular weight current and τKH is

the local Kelvin-Helmholtz timescale. This term stabilizes the cur-
rent in the internal layers of the star in which there is a molecular
weight gradient;

• An approximate form of the general expression in Eq. 4.1, in the case
of stationary and uniform rotation, given by A. Maeder (2009) and
Potter, Tout, and Eldridge (2012). It reads as

UMaed =
P

ρg cP T[∇ad −∇rad + ( ϕ
δ )∇µ]

L
M∗
×

×
[

1− Ω2

2πGρ
−

εn + εg

εm

]
Ω2 r3

G M

(4.6)

This formulation take into account for the molecular barrier, and
does not diverge in the external layers of the star.

In this work, I adopted this latter prescription.

4.2 Shear instability

The shear instability starts to arise when two different layers in a stratified
fluid, have different velocities. In the case of a rotating star, the differ-
ential rotation is generated by the meridional circulation, that transport
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the angular momentum between the shells. The shear instability occurs
according to the Richardson criterion, that reads as

Ri =
N2

(dv/dr)2 < Ric =
1
4

, (4.7)

where N2 =
ge f f δ

HP

(
∇ad −∇rad +

ϕ
δ∇µ

)
is the Brunt-Väisälä frequency, and

v is the tangential rotation velocity. In case of shellular rotation the deriva-
tive becomes dv

dr = r sin θ( dΩ
dr ). In the Eq. 4.7, the criterion does not take

into account of thermal effects and of the horizontal diffusion. Without the
inclusion of the latter, the derived diffusion coefficient for the shear insta-
bility results totally suppressed in regions in which there is a µ-gradient.
Talon and Jean-Paul Zahn (1997) showed that including the horizontal
diffusion in the Richardson criterion, the effect of suppression by the µ-
gradient is reduced, allowing the shear mixing in those regions. They pro-
vided the following expression to compute the diffusion coefficient of the
shear instability in a 1D scheme

Ds.i. =
8
5

Ric (r dΩr/dr)2

N2
T/(K + Dh) + N2

µ/Dh
, (4.8)

where the Brunt-Väisälä frequency has been split into two quantities, namely
N2

T =
(

gδ/Hp
)
(∇ad −∇rad) and N2

µ =
(

gϕ/Hp
)
∇µ, Ric is the critical

Richardson number, K = 4acT3/3Cpkρ2 is the thermal diffusivity, Dh '
|rU| is the coefficient of horizontal turbulence (J.-P. Zahn, 1992). In PAR-
SEC, I introduced Ds.i. following the Talon and Jean-Paul Zahn (1997) for-
mulation to treat the shear mixing. Other formulation for the shear insta-
bility diffusion and for the horizontal turbulence diffusion coefficients can
be found in literature (for instance see Heger, N. Langer, and Woosley,
2000; A. Maeder, 2009; Ekström, Georgy, et al., 2012; Potter, Tout, and
Eldridge, 2012).

4.3 Mixing and transport of angular momentum

The transport of angular momentum due to rotation instabilities could be
treated as an advective-diffusive process (Andre Maeder and Jean-Paul
Zahn, 1998; Eggenberger et al., 2008; Potter, Tout, and Eldridge, 2012; Chi-
effi and Limongi, 2013). In this case, the equation for the transport is

ρ r2 dr2Ω
dt

=
1
5

∂

∂r

(
ρr4U(r)Ω

)
+

∂

∂r

(
ρr4Ds.i.

∂Ω
∂r

)
, (4.9)

where Ω is the angular velocity, U(r) is the radial component of the ve-
locity of the meridional circulation, Ds.i. is the shear instability diffusion
coefficient given in Eq. 4.13. In the right side of this equation, the first
term is related to the advection, due to the meridional circulation. While,
the second term is the diffusion, that is due to the shear instability.

The advective-diffusive scheme is adopted by many stellar evolution-
ary codes, like GENEC (Eggenberger et al., 2008), ROSE (Potter, Tout, and
Eldridge, 2012) and FRANEC (Chieffi and Limongi, 2013).
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Another way to treat the angular momentum transport is with the
pure diffusive scheme. This is a simplification of the more sophisticate
advective-diffusive one. However, as shown by Chieffi and Limongi (2013),
adopting the advection scheme, in most cases, the redistribution of angu-
lar momentum goes in the direction of flattening the Ω profile over time,
as in the pure diffusive scheme. Moreover, Georgy, Ekström, et al. (2013)
apply in GENEC the advection scheme only during the MS phase, since in
later phases the advection has no time to efficiently transport the angu-
lar momentum, due to the shorter evolutionary time-scales. Hence, they
use the pure diffusion approximation, for the more evolved phases of the
star, gaining in computational simplicity and efficiency. This methodology
to solve the angular momentum transport is adopted by various codes
and, some of these are KEPLER (Heger, N. Langer, and Woosley, 2000),
STERN (Yoon and Langer, 2005), MESA (Paxton, Smolec, et al., 2019), and
now PARSEC v2.0. The pure diffusive equation for the angular momentum
transport writes as

ρ r2 dr2Ω
dt

=
∂

∂r

(
ρr4D

∂Ω
∂r

)
, (4.10)

where the total diffusion coefficient D is given by the sum of different
instabilities, namely

D = DMLT + Ds.i. + Dm.c., (4.11)

in which

1. DMLT is the diffusion coefficient in the convective zones of the star.
To computed it, in PARSEC, we adopt the mixing length theory (MLT)
by Böhm-Vitense (1958). It is given by DMLT = 1

3 v∗ lMLT, where v∗ is
the average velocity of the plasma bubbles that are rising or sinking
in the convective regions, lMLT = αMLTHP is the mixing length, αMLT
is the MLT parameter and HP is the pressure scale height. The coef-
ficient is non-zero only in the unstable zones of the star and in the
overshooting regions.

2. Ds.i. is the diffusion coefficient due to the shear instability. We use
the formulation by Talon and Jean-Paul Zahn (1997) given in Eq. 4.8.

3. Dm.c. is the diffusion coefficient due to the meridional circulation.
We use the approximation provided by J.-P. Zahn (1992)

Dm.c. '
|r U(r)|2

30Dh
(4.12)

where U(r) is the radial component of the meridional circulation ve-
locity. This formulation for the meridional circulation diffusion co-
efficient is valid when the horizontal diffusion is much larger than
the vertical one (i.e. Dh � Ds.i.), that is the “shellular” approxi-
mation law (see Sections 3.1 and 3.2). As discussed in Section 4.1,
I have included three possible choices for U(r) in the code, these
are: (1) the simpler expression given by Rudolf Kippenhahn, Alfred
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FIGURE 4.4: The diffusion coefficients in the interior of
a star model of 20 M� in the MS. The model has an ini-
tial chemical composition of Hydrogen, Helium, and met-
als in mass fraction of X=0.728, Y=0.263 and Z=0.008, re-
spectively. The current Hydrogen content is X=0.5. The
blue dotted line indicate the convective coefficient, DMLT,
the dashed orange line is the meridional circulation coeffi-
cient, the green solid line indicate the shear instability one,
the dashed dotted line is the thermal diffusivity coefficient
and the black thin solid line indicate the total diffusion co-

efficient.

Weigert, and Achim Weiss (2012) (Eq. 4.4); (2) the same expression
corrected by a “stabilizing” circulation velocity due to the molecu-
lar weight barrier following Heger, N. Langer, and Woosley (2000)
(Eq. 4.5); and (3) an approximate form of the more general expres-
sion of Andre Maeder and Jean-Paul Zahn (1998), for stationary and
uniform rotation, given by A. Maeder (2009) and Potter, Tout, and
Eldridge (2012) (Eq. 4.6). I adopt this latter prescription in the com-
putation of the new sets of evolutionary tracks presented and used
in this Thesis, i.e. U(r) = UMaed.

Figure 4.4 shows the diffusion coefficients versus the mass of a 20 M�
model when the star central Hydrogen content is 0.5 in mass fraction. In
this phase, in the inner radiative region, the shear instabilities coefficient is
few orders of magnitude lower than the meridional circulation one. While
in the outer layer of the star, they have about the same order of magnitude.
The convective diffusion coefficient is non zero only in the convective and
in the overshooting regions of the star.

The mixing of the chemical elements is treated as discussed in Sec-
tion 2.4, hence solving the system of equations given in Eq. 2.12. The extra
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mixing induced by rotation instabilities is taken into account by express-
ing the total diffusion coefficient as a weighted sum of the different con-
tributions:

Dtot = DMLT + fc × (Ds.i. + Dm.c.) . (4.13)

Here, the rotation diffusion coefficients are scaled by a factor fc, used to
calibrate the efficiency of the rotation extra mixing (the calibration of this
parameter is discussed in a following Section).

It is worth mentioning that, a more complete treatment should account
for interactions between the above mixing processes that could possibly
affect their efficiency, as described e.g. in A. Maeder, Meynet, et al. (2013).
These effects are generally not included in literature also because the total
mixing coefficient already contains parameters that need to be calibrated
on observations.

At each time step, we take care to conserve the angular momentum
along the structure and in the atmosphere of the star, hence assuring the
conservation of the total angular momentum with age. In this context, I
recall that the parameter characterizing our evolutionary tracks regards
the initial angular rotation rate, ωi, that is the ratio between the surface
angular velocity (Ω) and the star break-up angular velocity (Ωcrit), in the
ZAMS of the star.

4.4 Mass loss

Another important effect in the angular momentum transport is the mass
loss. In previous releases of PARSEC evolutionary tracks (without rotation),
the mass loss was activated only for stars more massive than 12 M�, which
are the only ones to be significantly affected by this process during their
main nuclear burning phases. However, in the case of rotating stars the
mass loss must be taken into account also at lower masses, for the follow-
ing reasons. Firstly, rotation takes to an enhancement of the mass loss due
to the lower effective gravity, caused by the centrifugal forces. Secondly,
the mass loss removes angular momentum from the star, assuring the sta-
bility of the angular momentum transport and of the evolution of the star.
This is particularly true in cases of fast rotating stars (e.g. ω ≥ 0.90).

To include this effect in stellar models we used the prescription pro-
vided by Heger, N. Langer, and Woosley (2000), who modify the mass
loss rate as follows

Ṁ(ωS) = Ṁ(ωS = 0)
(

1
1− vS/vS,crit

)ξ

, with ξ = 0.43 (4.14)

where ωS is the surface rotation rate of the star, Ṁ(ωS = 0) is the mass loss
rate in case of no rotation, computed using the prescriptions provided by
de Jager, Nieuwenhuijzen, and van der Hucht (1988) for low-intermediate
mass stars, and with the prescriptions described in Y. Chen, A. Bressan,
et al. (2015) for massive stars. vS is the surface tangential velocity of the
star, and vS,crit is the surface breakup velocity, that is

v2
S,crit =

GM∗
rPhot

(1− ΓE) , (4.15)
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where M∗ is the total mass of the star, rPhot is the photospheric radius of
the star and ΓE is the Eddington factor. During the evolution, stars with
high initial rotation rates (ωi ≥ 0.90) may reach the critical rotation (typ-
ically at the end of the MS). In that case, the surface effective gravity at
the equator is zero due to the centrifugal forces, and the most external
layers become detached from the star. This is usually called mechanical
mass loss. As suggested by Georgy, Ekström, et al. (2013), we may expect
that this phenomenon happens mainly in the equatorial region of the star,
and the super-critical layers escape in such a way to maintain the surface
at the critical velocity or slightly below it. The mass loss by winds (also
called radiative mass loss) computed so far using Eq. 4.14, may not be
enough to extract the momentum required for keeping the external shells
below the critical velocity. To treat this, the code computes the mechan-
ical mass loss starting from the angular momentum excess found in the
the super-critical shells. This excess is the difference between the actual
angular momentum of the super-critical shells and their critical one, de-
fined as Lc = Ωc I, where I is the momentum of inertia of each shell. From
the excess momentum we estimate the mass that should be removed to
keep the star below its critical rotation. Because of numerical difficulties,
we define a maximum angular rotation rate, that is ωmax = 0.998. After
these calculations the code selects the largest mass loss between the two,
and removes it from the star. We carefully treated the mass loss enhance-
ment and the mechanical mass loss, taking particular care to the angular
momentum conservation over time. At each time step, the sum of the cur-
rent angular momentum of the star plus the total momentum lost by the
wind is equal to the initial angular momentum given to the star. In this
work, we do not take into account of longitudinal anisotropy of the wind
and coupling with the magnetic field of the star. Other prescription for
the mass loss enhancement by rotation are provided by A. Maeder and
Meynet (2000) and Georgy, Meynet, and A. Maeder (2011) and Georgy,
Ekström, et al. (2013).

4.5 Calibration of parameters

Current implementations of rotation require the use of two parameters to
calibrate the diffusion coefficients in the mixing equations. They are fµ and
fc, which control the molecular barrier “strength” and the chemical mix-
ing efficiency, respectively (Heger, N. Langer, and Woosley, 2000; Yoon
and Langer, 2005; Brott, de Mink, et al., 2011; Potter, Tout, and Eldridge,
2012; Chieffi and Limongi, 2013; Paxton, Cantiello, et al., 2013; Limongi
and Chieffi, 2018). The fc parameter, already introduced in Eq. 4.13, mul-
tiplies the rotational diffusion coefficients in the chemical diffusion equa-
tion. While, the fµ parameter multiplies the molecular weight gradient,
hence the effective molecular gradient becomes

∇eff
µ = fµ ×∇µ. (4.16)

Figure 4.5 shows the effect of various combinations of the two calibration
parameters, in a 20 M� star model, rotating with an initial rotation rate
ωi = 0.60. In the HR diagram (the top panel) are clearly visible the effects
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FIGURE 4.5: In the top panel is shown the evolutionary
tracks of 20 M� models, with different combinations of
the calibrating parameters, fc and fµ. The black solid line
indicates the common PMS of the models. At the ZAMS
the rotation rate is ωi = 0.60 for all the models. The blue
lines indicate models with a fixed value for the fc param-
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respondent surface Nitrogen enrichment for each model.
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TABLE 4.1: Hydrogen (X), helium (Y) and metals (Z)
mass fractions adopted for the models of massive stars in
the Galaxy (MW) and in the Large and Small Magellanic

Clouds (LMC, SMC). From Brott, de Mink, et al. (2011).

X Y Z
MW 0.7274 0.2638 0.0088
LMC 0.7391 0.2562 0.0047
SMC 0.7464 0.2515 0.0021

TABLE 4.2: Surface Nitrogen enrichment ratio measured at
the main sequence termination, for different metallicities
and masses, as predicted by PARSEC V2.0 with fc = 0.17,
fµ = 0.45. Comparison values are from Brott, de Mink,

et al. (2011), for similar initial rotational velocities.

Mass [M�] Nsup

N0
sup

MW PARSEC v2.0 Brott+11
12 3.87 3.25
15 4.66 2.65
30 13.31 13.55

LMC
12 4.05 4.82
15 5.64 5.67
30 13.34 11.70

SMC
12 5.52 6.27
15 6.82 9.39
30 13.93 16.16

of the two parameters in the evolution of the models. As the fµ parameter
grows, the mixing is more and more inhibited by the molecular weight
gradient. High values of fµ take the models to be less luminous, because
the processed elements (mainly Helium) remain in the stellar cores, and
the surface chemical abundances remain almost unchanged. On the con-
trary, high values of the fc parameter lead to enhance the mixing. In gen-
eral, an higher mixing takes the star to be more luminous and to build up
bigger cores at the terminal age of the main sequence (TAMS), with effects
on the evolved phases.

The calibration of the mixing efficiency due to rotation is still an open
problem. There are different ways to find acceptable values of these two
parameters, for instance, the method adopted by Heger, N. Langer, and
Woosley (2000) consists in setting up the two parameters to reproduce the
ratio between the surface Nitrogen abundance at the TAMS, and that at the
ZAMS, for 10 – 20 M� stars of solar metallicity. An example of how the
Nitrogen enrichment changes with different combination of the calibra-
tion parameters is shown in the bottom panel of Figure 4.5. The surface
Nitrogen enrichment is probably one of the best observational probes of
rotationally induced mixing in stars during the MS phase. This because,
the Nitrogen – the main product of the CNO cycle during the MS – is not
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FIGURE 4.6: Relation between the two parameters. Each
combination of the two values in the dashed line repro-
duces a ratio N surface enrichment of about 5,7, for the
SMC 15 M� models. The red cross indicates the adopted

values for the two parameters.

destroyed once created, at variance with other products of the Hydrogen
burning. In fact, lighter elements as Lithium and Boron, are depleted at
relatively low temperatures. The Nitrogen, once created, is then extracted
from the cores and transported throughout the star by the rotation mix-
ing. The ratio adopted by (Heger, N. Langer, and Woosley, 2000) was
Nsup/N0

sup = 2− 3 for stars of 10 – 20 M� where Nsup is the surface Ni-
trogen at the end of the MS and N0

sup is the surface Nitrogen in the ZAMS.

A second method was developed later by Brott, de Mink, et al. (2011)
and Brott, Evans, et al. (2011), who used the observed Nitrogen surface
abundances of a sample of stars from the LMC VLT-FLAMES survey to
calibrate their models. Their first step was to adopt a suitable initial chem-
ical composition to model the Small and Large Magellanic Clouds (SMC,
LMC), to properly compare the surface abundances. Then, they calibrated
the core overshooting parameter trying to reproduce the surface gravity
and the projected rotation velocities (Veq sin i, where i is the inclination
angle between the star rotation axes and the line of sight) of the observed
data. Finally, they calibrate the parameters ( fµ and fc) aiming to reproduce
the observed Nitrogen surface abundances and the projected rotational ve-
locity of the selected fast rotating stars of their data sample. This method
has been adopted in the recent work by (Limongi and Chieffi, 2018) to
re-calibrate their stellar evolutionary code (FRANEC), that before was cali-
brated with the simpler Heger, N. Langer, and Woosley (2000) method.

In this Thesis, I calibrate the two mixing parameters by comparing the
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FIGURE 4.7: Panel (a): HR diagram of stellar models
with different combination of the calibration parameters,
with 5 M�, the SMC composition (see Table 4.1) and with
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Panel (c): Convective core extension (mass fraction) versus
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surface N enrichment ratio of massive stars found by Brott, de Mink, et
al. (2011) with corresponding models. To be consistent in the compari-
son, I computed the models with a similar chemical abundances partition,
and with the same initial metallicity, as reported in Brott, de Mink, et al.
(2011) and listed in Table 4.1. Before the calibration of fµ and fc, I calibrate
the overshooting parameter (λov) using eclipsing binaries, and adopting
the chosen value of λov = 0.4. This is discussed in detail in Chapter 5.
As a preliminary calibration, our best values for the two parameters are
fc = 0.17 and fµ = 0.45. Table 4.2 shows the surface Nitrogen enrichment
ratios of our models compared with the values found by Brott, de Mink,
et al. (2011), for models with similar rotation rates in the ZAMS.

It is worth noting, that different combination of the two parameters
may give similar surface Nitrogen enrichment for a models with equal
metallicity, mass and initial rotation rate. An example of such degener-
acy is shown in Figure 4.6, in which the dashed line indicates the different
combinations of the two parameters that give the same enrichment for a
15 M� model, with ωi = 0.60 and with the SMC chemical composition.
However, I note that this degeneracy relation is not strictly unique, but it
differs between models with different masses, metallicities and ωi. The
panel (a) of Figure 4.7 shows the HR diagram of three models of a 5 M�
star with ωi = 0.60, with three different combinations of the mixing param-
eters chosen from the relation shown in Figure 4.6. The three models do
not reproduce the same surface Nitrogen ratio, and noticeably they pro-
duce different blue loops extension. The blue loops extension looks to be
strongly correlated to the core dimensions in the TAMS, as shown in the
panel (c). Bigger cores takes to smaller loops. This Figure clearly shows
that fµ directly affects the growth of the core, while fc affects the transport
of elements in the radiative region, hence, the surface enrichment of the
star. Panel (b) shows that, during the MS, the surface velocity of the star is
not affected much by the different configurations of the two parameters.
Panels (b) and (c) show also that, obviously, the MS lifetime depends on
the efficiency of the mixing, because depending on that less or more fresh
fuel (Hydrogen) is provided to the burning core.

Better calibration will be performed before the next release of the new
sets of rotating tracks (Costa et al., in prep.), likely adopting the method
by Brott, de Mink, et al. (2011).

4.6 Preliminary comparison with other authors

In this section, I make and discuss a preliminary comparison of our new
rotating tracks with models computed with other authors. In the first part,
I show the structure profile at different phases of 5, 13, 15 and 20 M�
rotating PARSEC models. In the second part, I compare the HR diagram of
models with masses of 13, 15 and 20 M� computed with PARSEC, GENEC4

(Georgy, Ekström, et al., 2013) and FRANEC5 (Chieffi and Limongi, 2017).

4Tracks taken from the SYCLIST online database at https://www.unige.ch/
sciences/astro/evolution/en/database/syclist/

5Tracks taken from the ORFEO online database at http://orfeo.iaps.inaf.it/

https://www.unige.ch/sciences/astro/evolution/en/database/syclist/
https://www.unige.ch/sciences/astro/evolution/en/database/syclist/
http://orfeo.iaps.inaf.it/
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4.6.1 Structure evolution and interior profile

During the MS, the rotational mixing – induced by the shear friction and
the meridional circulation – provides fresh fuel to the burning core, and
extracts the products of the H burning from the core, transporting them
into the envelope, eventually up to the surface of the star. Figures 4.8, 4.9,
4.10 and 4.11 show the interior profiles of 1H, 4He and 14N, and of selected
quantities related to rotation, for rotating models with ωi = 0.60 and an
initial mass of 5, 13, 15 and 20 M�, respectively. From these plots it is
clearly visible how the 1H, 4He and 14N profiles are modified by rotation
at different stages of the core H-burning. The profiles are smoothed by the
rotational mixing, and in the left panels can be appreciated the 14N surface
enrichment in the TAMS. In all the models shown, at the end of the MS
the stars have higher angular velocities in the cores than in the surfaces, in
agreement with models computed with other codes, e.g. in the Figure 11.6
by A. Maeder (2009) and in the Figure 7 by (Limongi, 2017). As far as
the diffusion coefficients are concerned, in all the models the meridional
circulation is the dominant effect in the inner part of the star, while the
shear instability is more efficient in the outer layers. This trend has been
observed also in models computed with the FRANEC code (Limongi, 2017).

4.6.2 HR diagram comparison

Figure 4.12 shows the comparison of our new PARSEC tracks with the
GENEC and FRANEC tracks in the top and bottom panels, respectively, for
a 13 M� star, with ωi = 0.0, 0.6 and 0.9. In the top panel, the non rotating
tracks show a similar core H-burning phase, they start from the same lo-
cation in the diagram and then diverge during the evolution likely due to
the different adopted mixing efficiency. At the terminal age MS (TAMS),
the non rotating PARSEC model results to be slightly colder and more lu-
minous than the GENEC one. This behaviour is due to the different mix-
ing length and core overshooting parameters assumed in the two codes.
In the GENEC models the mixing length parameter is αMLT = 1.6 and the
core overshooting parameter is λov = 0.1, while in the PARSEC models they
are αMLT = 1.74 (A. Bressan, P. Marigo, et al., 2012, solar-model-calibrated
mixing length by) and λov = 0.4 (value taken across the convective border,
that correspond to 0.2 in the GENEC code), as suggested by the analysis
performed and described in Chap. 5 of this Thesis. An higher convec-
tive mixing efficiency leads the models to have longer MS lifetimes (as
listed in Table 4.3) and to build up bigger He cores at the end of the H
burning phase. These differences affect also the post-MS phases. As far
as the rotating models are concerned, their starting positions on the HR
diagram (the ZAMS) are very similar, and also the main rotating prop-
erties are in agreement between the models computed by the two codes
(as shown in Table 4.3). During the evolution the models follow different
path in the diagram, due to the different convective mixing (as discussed
before) and also to the different rotational mixing efficiencies adopted in
the two codes. By looking at the HR diagram at different MS times, it ap-
pears that the PARSEC models produce a more efficient rotational mixing
than the GENEC models, and the tracks at the TAMS are more luminous
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and colder with respect to the corresponding GENEC models. The last col-
umn of Table 4.3 shows the relative increment of the MS-lifetimes with
respect the non-rotating case in percentage, for the models of each author.
It is worth to be noted that GENEC treats the angular momentum transport
with the advective-diffusive equation shown in Eq. 4.9, while in PARSEC is
treated with a full-diffusive approach (Eq. 4.10). This makes the compar-
ison of the rotational mixing efficiency more difficult since the calibrating
parameters are not the same. In the bottom panel of Figure 4.12, I show
the comparison with FRANEC tracks. While the non-rotating tracks are in
good agreement, the FRANEC rotating tracks show a higher rotational mix-
ing efficiency respect the PARSEC one. The FRANEC model with an initial
equatorial velocity of 300 km/s corresponds to the PARSEC ωi = 0.60 model
in the ZAMS (see in Table 4.3), but the higher rotational mixing adopted
in FRANEC shifts the track to luminosities similar to the ωi = 0.90 PARSEC

model.
In Figure 4.13 I compare the MS of 15 M� evolutionary tracks com-

puted with PARSEC, GENEC and FRANEC. From these plots I find again that
the non rotating PARSEC model has a more efficient mixing than the GENEC

ones, but similar to the one of the FRANEC model. As far as the rotating
models are concerned, I find that the mixing efficiency of PARSEC mod-
els is larger than that of GENEC ones but lower than that of the FRANEC

models. The main rotational properties at the ZAMS of the models with
different initial rotation rates are listed in the bottom part of Table 4.3. The
MS-lifetimes and the relative increment with respect to the MS-lifetimes
of the non rotating models are listed in the last two columns. Finally, Fig-
ure 4.14 shows the comparison of the MS of 20 M� tracks, computed with
PARSEC and FRANEC. I find the same trend found for the lower masses.
The main rotation properties and MS lifetimes are listed in Table 4.4.

A deeper and extended comparisons between our models and others
computed with different codes will be performed and published with the
next release of the new sets of rotating tracks (Costa et al., in prep.).
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FIGURE 4.8: Left panels: interior profiles of 1H, 4He and
14N in black, blue and orange lines, respectively, for 5 M�
models. The continuous lines refer to the rotating models
while the dotted to the non-rotating ones. Right panels: in-
terior profiles of selected quantities of the rotating model
at the correspondent phase indicated by the left panels.
The shear instability and the meridional circulation diffu-
sion coefficients are the blue and orange lines, respectively.
The red dashed line indicates the angular velocity and, the
purple and black lines indicates the fP form parameter and
the ratio fT/ fP, respectively. From the top to the bottom,
there are tree different MS phases. These are the ZAMS,
the central H mass fraction ∼ 0.5 and the TAMS. For each

phases ωS indicate the actual surface rotation rate.
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FIGURE 4.9: Same as in Figure 4.8, but for a 13 M� model.
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FIGURE 4.10: Same as in Figure 4.8, but for a 15 M�model.
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FIGURE 4.11: Same as in Figure 4.8, but for a 20 M�model.
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FIGURE 4.12: Top panel: Comparison in the HR diagram
of tracks with a mass of 13 M� computed with the PARSEC
and GENEC codes, in solid and dashed lines, respectively.
The color code indicates different ωi. Bottom panel: com-
parison between models computed with the PARSEC and

FRANEC code.
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FIGURE 4.13: As in Figure 4.12, but for the 15 M� models.
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FIGURE 4.14: As in the bottom panels of Figure 4.12, but
for the 20 M� models.
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Chapter 5
Disentangling mixing by

convective overshooting and
by rotation

Chapter based on:
Costa G., Girardi L., Bressan A., Marigo P.,

Rodrigues T. S., Chen Y., Lanza A., Goudfrooij P.,
“‘Overshooting and rotation in intermediate mass stars”, 2019

MNRAS 485, 4641. DOI: https://doi.org/10.1093/mnras/stz728

In this Chapter, I investigate about the possible combined effect of
core overshooting and rotation extra-mixing in intermediate-mass stars.
For this purpose, I analyze Double-line eclipsing binaries (DLEBs) using
a Bayesian method and new PARSEC tracks that account for both con-
vective core overshooting and rotational mixing. The DLEBs are perfect
laboratories to study the mixing in stars because thanks to their binary na-
ture, we know with a very good precision their masses, luminosities and
effective temperatures.

This Chapter is organized as follow. In Section 5.1 I introduce the con-
test about the main interpretative problems about the mixing in intermediate-
mass stars. In Section 5.2 I describe the adopted DLEBs data sample and
the general method used for the statistical analysis. In Section 5.3 I de-
scribe the physics adopted in PARSEC to allow to deal with mixing by rota-
tion and overshooting. In Section 5.4 I perform the analysis using models
with overshooting alone and I discuss the corresponding results. Since
with overshooting alone I cannot fit the data with a fixed value of the
overshooting parameter, I test the hypothesis, in Section 5.5, that rotation
may cause the additional mixing required. I also derive a quantitative es-
timate of the initial rotational velocity required to fit the data. Discussion
and conclusions are drawn in Section 5.6.

https://doi.org/10.1093/mnras/stz728
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5.1 General background

Convection is one of the most uncertain processes in stars. In the context
of 1D models of stellar evolution, the most widely used theory of convec-
tion is the Mixing Length Theory (MLT, Böhm-Vitense, 1958) described by
the MLT parameter, αMLT, which is the distance travelled by convective
eddies before dissolving, in units of the pressure scale-height, HP. Addi-
tional prescriptions are needed to define the borders of convective zones
(usually defined by the Schwarzschild or Ledoux criteria) and to treat the
so-called overshooting process. The latter effect happens when a rising
(sinking) eddy of plasma crosses the border of a convective zone due to its
inertia, and is commonly described by the overshooting distance dov, in HP
units. Changes in the αMLT and dov parameters will result in different evo-
lutionary tracks, and different amounts of mixing of the chemical elements
throughout the star, as it evolves. Hence, both effects can be calibrated to
fit a variety of observations. The αMLT parameter is usually calibrated with
the Sun, and a fixed value is commonly adopted in stellar evolution codes
(Achim Weiss and Schlattl, 2008; Brott, de Mink, et al., 2011; A. Bressan,
P. Marigo, et al., 2012; Choi et al., 2016; Spada et al., 2017; Hidalgo et al.,
2018), although some codes use a slightly varying αMLT depending on the
stellar mass (Ekström, Georgy, et al., 2012).

Different approaches are used to constrain the dov parameter, using
various types of data, such as: color-magnitude diagrams of star clusters
(e.g. Woo et al., 2003; Rosenfield et al., 2017), bump Cepheids (Keller and
Wood, 2006), asteroseismology of either OB (Moravveji et al., 2015) or red
clump (Bossini et al., 2017) stars, or detached double-lined eclipsing bi-
naries (DLEBs; Stancliffe et al., 2015; A. Claret, 2016; Valle et al., 2016; A.
Claret and G. Torres, 2017; Valle et al., 2017; J. Higl and A. Weiss, 2017;
Antonio Claret and Guillermo Torres, 2018; Higl et al., 2018; Constantino
and Baraffe, 2018). A series of works (e.g. Demarque et al., 2004; Pietrin-
ferni et al., 2004; Mowlavi et al., 2012; A. Bressan, P. Marigo, et al., 2012)
suggest that there is a transition regime of the overshooting process: its
efficiency should grow from 0 for stars with radiative cores (initial mass
Mi ∼ 1 – 1.2 M�), up to a constant value for stars with a mass Mi ≥ 1.6 –
2 M�. Stars in that constant range are considered to have a fully-efficient
overshooting process. This suggestion is reinforced by A. Claret (2016),
A. Claret and G. Torres (2017), and Antonio Claret and Guillermo Torres
(2018), who analyze the properties of 38 DLEBs to calibrate the strength
of core overshooting, finding a clear indication for a plateau in the over-
shooting efficiency for masses Mi > 2 M�.

However, other studies using similar data, do not find the same plateau.
In particular, Stancliffe et al. (2015) model 12 EBs from the sample of G.
Torres, Andersen, and Giménez (2010), not finding any trend of the dov
parameter with mass. J. Higl and A. Weiss (2017) studied a sample of
stars mainly in the main sequence phase, finding no strict constrain on the
overshooting value. In a sequence of papers regarding a few specific sys-
tems, Valle et al. (2016) and Valle et al. (2017) call attention to the increased
errors when other variables, such as the initial Helium content, are fit to-
gether with the overshooting efficiency. More recently, Constantino and
Baraffe (2018) analyze 8 binary systems selected from the 38 DLEBs in the
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A. Claret (2016), A. Claret and G. Torres (2017), and Antonio Claret and
Guillermo Torres (2018) sample, finding a large dispersion in the results,
even concluding that DLEBs cannot be used to constrain overshooting.
Therefore, the DLEB results are still controversial.

5.2 Data and methods

5.2.1 DLEB data

The stars used in this work are selected from the sample of detached double-
lined eclipsing binaries studied by A. Claret (2016), A. Claret and G. Torres
(2017), and Antonio Claret and Guillermo Torres (2018). The authors pro-
vide 38 DLEBs with very well determined masses and radii, with uncer-
tainties below 3 per cent, and also precise values of effective temperatures,
with uncertainties below 6 per cent and metallicity, with [Fe/H] absolute
uncertainties below 0.2 dex. The stars are analyzed by means of stellar
evolution models that account for different mixing efficiencies, caused by
different values of the core overshooting parameter (λov, see Sec. 2.4), and
by different initial rotational velocities. In both cases, various mixing effi-
ciencies for models with a given mass and composition, correspond to dif-
ferent locations in the HR diagram and different evolutionary timescales.
The DLEBs sample allow to precisely test stellar models by comparison
with the predicted location of both components in the HR diagram at a
common time, which is that of the individual binary system. The adopted
methodological approach is described below.

5.2.2 The Bayesian method

Given a star with a set of measured data y, the posterior probability dis-
tribution of their intrinsic quantities x can be expressed as

p(x|y) ∼ p(y|x)p(x), (5.1)

where the relationship between y and x, y = I(x), is given by a set of stel-
lar models that spans the entire possible range of parameters; p(y|x) is the
likelihood function, which is the probability of the observed data y given
a set of model parameters x; and p(x) is the prior distribution, i. e., the
distribution of how a given model parameter should behave. Assuming
that the measured data can be described as a normal distributions, with
mean y′ and standard deviation σy′ , the likelihood function is

p(y′|x) = ∏
i

1√
2πσy′

× exp

(
−(y′i − yi)

2

2σ2
yi

)
. (5.2)

For each component in the sample of the eclipsing binaries, I have as mea-
sured data

y = {M, R, Teff, [Fe/H]} (5.3)

where the mass and radii come from the analysis of the light and veloc-
ity curve, whereas Teff and [Fe/H] come from spectroscopic analysis of at
least one of the components. I am interested in determine the following
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parameters
x = {t, λov} (5.4)

that is, the stellar age (t) and overshooting parameter (λov). In this work,
t is used only for a visual check of the best fitting isochrones, whereas λov
is the parameter I am actually looking for.

For the Bayesian analysis, I adopt:

1. a flat prior on age t, that is, all ages between a minimum and a max-
imum values of 5× 107 yr and 13× 109 yr are assumed to be equally
likely;

2. similarly, a flat prior on the overshooting parameter λov, between
the minimum and maximum values of 0 and 0.8;

3. an assumed mass distribution given by the initial mass function from
Kroupa (2002).

We then implement this Bayesian method as an extension in the PARAM
code - that is described in da Silva et al. (2006a) and T. S. Rodrigues et
al. (2014a) and Thaíse S. Rodrigues et al. (2017) - to treat the binary mea-
sured data. As theoretical models, I use stellar evolutionary tracks and
isochrones described in Section 5.4.1. Thus the code computes the joint
probability density function JPDF(t, λov, [Fe/H]) for each star in the sam-
ple, i.e., a 3D distribution map of t, λov, and [Fe/H].

Since I am dealing with binary systems, I have an additional power-
ful constraint: the age, t, and the metallicity, [Fe/H], should be the same
for both components. Therefore I can compute the JPDFs separately for
components 1 and 2, and hence combine the probabilities to get the con-
strained value of λov. The common way to proceed is to assume that the
two stars have the same λov, either because they have almost the same
mass or because the overshooting distance seems to saturate above a given
initial mass, for stars with Mi > 1.6− 2 M�. In this way the combined
JPDF is simply CJPDFbinary = JPDF1× JPDF2 (as done by Valle et al., 2017).
Using the CJPDF is equivalent to take a sort of average between the two
λov of the two stars. However, I note that finding the trend of the over-
shooting as a function of the mass should be a result of the study, and not
a bias introduced by the adopted methodology. To prevent this bias, I pre-
fer to use a different procedure that, starting from the JPDF(λov,t) of each
component, allow me to account also for the common age of the system,
as described in the following.

1. I first compute the marginalization of the JPDFi(λov,t) on age, i.e. the
sum of all λov values, obtaining the probability density function of
the age (PDFi(t)) for both the stars.

2. Then, I obtain the corrected JPDF of one star as the product cJPDFi(λov,t)
= JPDFi(λov,t) × PDFj(t), where i and j 6= i refer to any two compo-
nents.

In this way, I obtain the new corrected cJPDFs of the two stars, by us-
ing only the common age of the binary system without any prior on the
overshooting parameter. I assume that the best values for the age and
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the overshooting parameter for each component is the mode of the corre-
sponding marginalized distributions. The credible interval (CI) associated
to the best value is calculated as the shortest interval including the 68 per
cent of each marginalized distribution, as suggested by T. S. Rodrigues
et al. (2014a).

I remark that the present approach is fundamentally different from
the method recently applied by Constantino and Baraffe (2018). Mine is
a fully Bayesian approach that weights every small piece of the derived
isochrones according to its likelihood, eventually giving little weight not
only to the stellar models which are far from the properties of the ob-
served stars, but also to isochrones sections corresponding to fast evolu-
tionary stages. This does not happen in the Constantino and Baraffe (2018)
method, which give equal weight to all models crossing the 1σ region of
the observed values – which may explain the larger error bars they derive.

Before discussing the results obtained with this method, I introduce
the adopted evolutionary models computed with the new PARSEC in the
next Section.

5.3 PARSEC version 2.0: The input physics

There are three major differences in the code with respect to the previous
version (PARSECv1.2, extensively described in A. Bressan, P. Marigo, et al.,
2012; Y. Chen, L. Girardi, et al., 2014; Y. Chen, A. Bressan, et al., 2015; Tang
et al., 2014; Fu et al., 2018). The first two concern the nuclear reaction net-
work and the mixing treatment. As described in Section 2.4, the elements
in the turbulent regions are mixed by solving a system of diffusion equa-
tions coupled with the nuclear reaction rates for each chemical element.
In this analysis, I adopted a nuclear reaction network that contains up
to 30 isotopic elements from Hydrogen to Silicon, solved with a fully im-
plicit method. The method is much faster than the previously adopted one
(semi-explicit scheme). As mentioned above, the current analysis makes
use of PARSEC models with rotation, that is the third major update. Its
implementation is described in detail in Chapters 3 and 4.

A few models before the ZAMS, the code computes the rotation rate
Ω that corresponds to a given ωi, and assigns this angular velocity uni-
formly throughout the star. This ingestion of initial angular momentum is
completed before 1 per cent of hydrogen has been burned in the core. Af-
terwards, the current rotational velocity at the surface generally decreases
as the star ages. The core overshooting is calibrated using the λov param-
eter (see Section 2.4 for further details).

5.4 The effect of core overshooting alone

I first assume that the core overshooting is the only responsible of the
eventual extra mixing in intermediate mass stars. The analysis of the data
is performed using the corresponding non-rotating stellar evolutionary
tracks with varying overshooting parameter.
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TABLE 5.1: X, Y and Z mass fractions adopted for the
models, and the correspondent [Fe/H] values.

X Y Z [Fe/H]
0.746 0.252 0.002 −0.89
0.740 0.256 0.004 −0.58
0.729 0.263 0.008 −0.27
0.713 0.273 0.014 −0.02
0.696 0.284 0.020 +0.14

5.4.1 Evolutionary tracks and isochrones at varying overshoot-
ing parameter

For this purpose I computed different sets of evolutionary tracks, with
a range of masses between 1 and 5 M� with the following values for
the overshooting efficiency: λov = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. I
adopt scaled-solar mixtures based on Caffau et al. (2011) solar composi-
tion, with initial metal content Z = 0.002, 0.004, 0.008, 0.014, 0.020 and
initial helium content given by Y = ∆Y

∆Z Z + YP = 1.78× Z + 0.2485 (Ta-
ble 5.1), as obtained from the solar calibration performed by A. Bressan,
P. Marigo, et al. (2012). The corresponding values of [Fe/H] can be ob-
tained using the relation [Fe/H] ' [M/H] = log((Z/X)/0.0207) (A. Bres-
san, P. Marigo, et al., 2012) and are listed in Table 5.1. Finer grids of evo-
lutionary track in the parameters are obtained by interpolation. Tracks
are interpolated within “equivalent mass intervals” in which the evolu-
tion is similar, following the scheme described in Bertelli et al. (2008) for
the case of grids of models computed at varying metal and helium con-
tent. I refer to that paper for a detailed explanation – just recalling that,
in our case, the varying helium content is replaced by a varying λov (or
ωi with a fixed λov, later in Sec. 5.5). Just to give a general idea of how
this works, let us mention, as an example, that all tracks which develop a
convective core in the MS and a degenerate core after the MS, define one
of “equivalent interval of mass”, even if their minimum and maximum
masses, M1 and M2, occur at different values for different [Fe/H] and λov.
Tracks for intermediate values of [Fe/H] and λov are interpolated, inside
the mass range defined to be equivalent, by using the mass fraction inside
this range, (M−M1)/(M2 −M1), as the independent variable. The inter-
polation between any two tracks then uses the concept of “equivalent evo-
lutionary sections” within the tracks: all stellar quantities are interpolated
between pairs of evolutionary stages considered to be equivalent, using
the age fraction inside these intervals as the independent variable. The
whole process ensures a smooth interpolation between tracks. Interpola-
tions performed for a given age then provide well-behaved isochrones. I
also check that, by removing intermediate values of λov from the interpo-
lations, grids of interpolated tracks can be built for the same λov, that look
very similar to the actually-computed ones. This gives me confidence that
the present grid of computed λov values is sufficient for my goals.

I recall that mass loss is not taken into account, since I am dealing only
with low and intermediate-mass stars in the stages well below the tip of
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FIGURE 5.1: Overview of the data and models used in
this work. The points linked by dotted lines are the
stars in binaries, grouped into three broad metallicity bins
(SMC, LMC, and MW, with black, red and blue points re-
spectively). Tracks and isochrones are over-plotted with
Z = 0.002, for the extreme values of overshooting available:
in the top panel λov = 0.0, in the bottom panel λov = 0.8.
Tracks (the black and gray solid lines) cover the mass
range from 1 to 5 M�. The isochrones illustrated with
dashed lines are equally spaced in log t, covering the age
range from 108 (upper blue dashed line) to 1010 yr (bottom

red dashed line).
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FIGURE 5.2: As in Figure 5.1, but for tracks and isochrones
computed with Z = 0.02.
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the RGB, for which no significant mass loss is expected to take place. Fi-
nally, I stress that a unique solar-model-calibrated mixing length parame-
ter αMLT = 1.74 is adopted for all the computed evolutionary tracks, as in
A. Bressan, P. Marigo, et al. (2012). Following their approach, we do not
include the microscopic diffusion in stars that develop a convective core,
hence in which the core overshooting process takes place. Since I am inter-
ested in studying such stars, even our 1 M� models are computed without
the microscopic diffusion. I redirect the reader to A. Bressan, P. Marigo, et
al. (2012) and Stancliffe et al. (2016) for a detailed comparison between
models of low mass stars with and without the microscopic diffusion.

5.4.2 Interpretation with models with overshooting

The HR diagrams of Figures 5.1 and 5.2 compare the observed data with
some of the new tracks with variable overshooting parameter, and the
derived isochrones at a few selected ages. They show that the range of
parameters adopted for the models is wide enough to represent all the
observed binary components.

After interpolating tracks for all the intermediate values of the two
parameters Z and λov, I used the corresponding isochrones to obtain the
3D JPDF of age, λov, and [Fe/H] (as discussed in Section 5.2.2 for each star.

After verifying that the JPDFs dependence on [Fe/H] has negligible
effects on the results, I further decide to marginalize the 3D JPDFs on the
metallicity so obtaining a 2D JPDF on age and λov. Two examples of the
resulting 2D JPDF are shown in Figure 5.3, specifically for the systems
α Aurigae and TZ Fornacis.

To allow an easy comparison with previous studies (e.g. Valle et al.,
2017) I first show the results obtained using the method of the combined
JPDFs (CJPDFsbinary), as described in Section 5.2.2. This method assumes
not only that the binary stars must have the same age, but also that the
agent of the extra mixing is the same. While the first assumption does
not require further justification, the second condition is adopted because
I am considering overshooting as the only source of extra mixing, and I
will exclude from our discussion systems with mass ratios significantly
different from unity, because overshooting may have a dependence on the
stellar mass below a certain threshold mass.

The two plots show the superposition of three different JPDFs: one for
the primary, one for the secondary, and the combined one. These three
JPDFs are normalized to their respective peak values. The colored regions
delimit JPDF contours levels of 50 per cent (the darker), 10 per cent (the
intermediate) and 1 per cent (the lighter) of the correspondent maximum
density value. I stress that the values of these levels are arbitrarily chosen
and do not correspond to the 2D credible intervals.

To assign best values and the correspondent credible intervals, I pro-
ceed as described in Section 5.2.2. Each map is marginalized in the two
parameters to obtain two 1D probability distributions, one in age t and
the other in λov. The best values are the peak values (the mode) of the 1D
marginalized distributions, while, the credible interval of each parameter
corresponds to the smallest interval around its mode corresponding to a
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FIGURE 5.3: Two-dimensional JPDF maps as a function
of the age, t, and the overshooting parameter, λov, of the
selected binary systems α Aurigae (top panel) and Z For-
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to the primary (companion) star of the system, and the
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FIGURE 5.4: Resulting overshooting parameter λov as a
function of the stellar mass for the 38 DLEBs, obtained
from the combined JPDF method. The best values (the
modes) and the corresponding 68 per cent credible inter-
vals and are colored with the same color code used in Fig-
ure 5.1, to divide stars of different galaxies. The black
dashed lines are drown for an easier reading. The gray
line is the fit curve of the fov parameter found by Antonio
Claret and Guillermo Torres (2018) with the errors (gray
areas) scaled by a multiplicative factor. The green line
and area, describe the λov parameter used in A. Bressan,

P. Marigo, et al. (2012). See the text for more details.

probability of 68 per cent. The best values are represented by squares with
the same darker color of the corresponding 2D distribution.

The values of the λov and age parameters I derive for α Aurigae and
TZ Fornacis are listed in Table 5.2. Here, I show the parameters for the
distributions of the individual components (superscript 1 and 2) and for
the combined distribution (superscript C).

Applying the same method to all the binary systems in the sample, I
obtain the results shown in Figure 5.4, in which the λov parameters of the
combined distributions (CJPDFs) are plotted as a function of the average
mass of each binary system.

The plot also shows the results found by Antonio Claret and Guillermo
Torres (2018) represented by their fit curve (their equation 2, the gray line).
Their fit describes the overshooting efficiency by means of the parameter,
fov, that enters the velocity scale-height in the overshooting region. To
plot this curve in Figure 5.4, I first express their fit as a function of λov us-
ing their relation between fov and their overshooting distance parameter
(αov = dov/HP), αov/ fov ∼ 11.36 (A. Claret and G. Torres, 2017), and then
I use my finding that dov/HP ' 0.5λov. The uncertainties introduced by
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TABLE 5.2: Resulting values of age and λov for two se-
lected binary systems.

Systems α Aurigae TZ Fornacis
M1 [M�] 2.5687±0.0074 2.057±0.001
M2 [M�] 2.4828±0.0067 1.958±0.001

JPDFs mode values
λov

1 0.54+0.07
−0.23 0.46+0.08

−0.00
λov

2 0.52+0.07
−0.10 0.56+0.16

−0.05
λov

C 0.54+0.01
−0.08 0.51+0.01

−0.03
Age1 [Gyr] 0.676+0.001

−0.087 1.15+0.03
−0.05

Age2 [Gyr] 0.631+0.015
−0.069 1.23+0.03

−0.03
AgeC [Gyr] 0.646+0.001

−0.029 1.20+0.00
−0.05

Corrected JPDFs mode values
λov

1 0.55+0.07
−0.16 0.46+0.07

−0.00
λov

2 0.54+0.06
−0.09 0.55+0.10

−0.06
Age1 [Gyr] 0.65+0.02

−0.04 1.23+0.00
−0.06

Age2 [Gyr] 0.65+0.02
−0.04 1.23+0.00
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FIGURE 5.5: Selected JPDFs as a function of the age, t, and
the overshooting parameter, λov, for the two stars of the
binary system α Aurigae. In the top panels there are two
single star JPDFs, as in Figure 5.3. In the bottom panels
there are new corrected JPDFs that constrain the age of
the system, as described in the text. The purple (orange)
contours represent the primary (companion) star corrected
JPDF. The points indicate the maximum of the marginalize

distribution with their corresponding CIs.
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this scaling process are well below the errors of the data. The darker and
lighter gray areas describe the error bars of 0.003 and 0.004 (Antonio Claret
and Guillermo Torres, 2018), respectively, multiplied by the same factors.
The green area and the green line are the overshooting parameter adopted
in A. Bressan, P. Marigo, et al. (2012). The overshooting parameter, which
represents the extra mixing probed by our analysis, may depend on the
initial mass, as found by other studies. From the comparison, I may iden-
tify two overshooting regimes in the plot: the growing one, in which over-
shooting increases from its null efficiency at about Mi = 1 M�, up to a mass
of ∼ 1.5 M�; and then the constant one, for larger masses, that indicates a
regime of full efficiency. However, the big errors obtained in the low mass
range do not let us to clearly identify the growing region. This growing
efficiency with mass is commonly adopted by model builders (e.g. Demar-
que et al., 2004; Pietrinferni et al., 2004; Mowlavi et al., 2012; A. Bressan,
P. Marigo, et al., 2012). The average scale of overshooting determined by
this procedure, in the constant region, is λov = 0.5.

However, the striking characteristics of the plot in Figure 5.4 is that the
overshooting parameter, in the full efficiency regime, shows a large dis-
persion that is, in many cases, larger than the associated uncertainty. More
specifically, this analysis of stars in binary systems suggests that the over-
shooting parameter for masses above about Mi = 1.5 M� has a minimum
value of λov = 0.3 – 0.4 but, at the same initial mass there can be values as
large as the maximum value adopted in the models, λov = 0.8. This disper-
sion is difficult to explain in the framework of the commonly used models
of the overshooting process which, in this regime, adopt a fixed efficiency.
Furthermore, this results is also at variance with my previous assumption
that justifies the combined JPDF, i.e. that the overshooting parameter is
fixed in the full efficiency regime. It is easy to repeat the analysis by relax-
ing this assumption and using only the condition on the age, as described
in Section 5.2.2.

In Figure 5.5 I show, as an example, how the JPDF contours maps
change when I adopt this new method for the α Aurigae system. In the
top panels I show the single star JPDFs obtained from the PARAM code,
before applying the condition on the age. In the bottom panels I show
the corrected JPDFs (cJPDFs) resulting from the application of the com-
mon age constraint. These corrected distributions have independent λov
parameters but share the same age distribution. The best values of the cor-
rected JPDF distributions for α Aurigae and TZ Fornacis are shown in the
bottom part of Table 5.2.

To show the effect of this new method I repeat the statistical analysis
for all the stars of the sample, and plot the λov parameter as a function of
the mass in Figure 5.6. The latter is similar to Figure 5.4, but in this case
each star has its own mass and λov parameter. The dispersion of the points
is similar to the one obtained with the CJPDFs method, and again, there
are several cases in which the values of λov are not unique in a given mass
bin, in particular looking at masses larger than ∼ 1.5 M�. The credible
intervals, in Figure 5.6,are slightly larger than those plotted in Figure 5.4.

As a further check I perform another analysis assuming a constant
value of [Fe/H] for the stars belonging to the same galaxies. This al-
low me to check how the metallicity affects the observed dispersion in
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FIGURE 5.6: Same as in Figure 5.4, but with the new
method to constrain the age of the system. Thus, the over-
shooting parameter λov is shown as a function of the stel-

lar mass for each star of our sample.

λov. Averaging the observed values of stars in different groups I obtain
[Fe/H] = −0.89 ± 0.15, −0.48 ± 0.1, −0.14 ± 0.1, for the stars belonging
to the SMC, LMC and MW, respectively. The results of the analysis per-
formed with mean [Fe/H] values are shown in Figure 5.7. The plot is not
significantly different from the former one. Some stars have different val-
ues of λov, but the global trend remains very similar.

I note that, in all cases, the error bars at the lower mass end are larger
than those associated to the higher masses. This is likely due to the fact
that the lower mass sample contains several stars that are still on the early
main sequence where the effects of overshooting are less evident and thus
the models degenerate more.

In summary this analysis shows the following results:

1. In the mass range below 1.5 M�, the λov distribution populates all
values explored in the analysis (from λov = 0.0 to λov = 0.8), and it is
not possible to find a clear trend as a function of the mass.

2. In the mass range above 2 M�, the λov parameter shows a large scat-
ter, even for similar initial masses. For these stars I find an average
value of λov ∼ 0.45.

3. In this latter range, there is also an evident lack of points below
λov ∼ 0.3 – 0.4, in agreement with the Antonio Claret and Guillermo
Torres (2018) distribution. The only points to populate this region
(in Figure 5.6) are the two components of OGLE-LMC-ECL-25658 at
Mi ' 2.23, for which the derived λov present extremely large er-
ror bars, and the secondary of OGLE-051019.64-685812.3, with Mi =
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FIGURE 5.7: Same as in Figure 5.6, but results from the
statistical analysis using the averaged metallicity for stars

of the three different galaxies.

3.179± 0.028 and λov = 0.110.12
0.11, which is only marginally inconsis-

tent with the λov > 0.3 limit. In contrast, the sample presents 52
other stars with Mi ≥ 1.5 M� and derived λov > 0.3.

The dispersion I find is certainly larger than that obtained by A. Claret
and G. Torres (2017) and Antonio Claret and Guillermo Torres (2018) who
analyzed the same data with different models and a different procedure.
However it is important to note that, in their analysis, they allow the Mix-
ing Length Parameter, αMLT, to change and their best fits are characterized
by a significant star to star variation in the adopted αMLT. This likely ab-
sorbs some of the scatter that I find in my results with a fixed αMLT. A
star to star scatter of the αMLT is surprising and at variance with common
findings from both observational and theoretical sides (Achim Weiss and
Schlattl, 2008; Ekström, Georgy, et al., 2012; Magic, Achim Weiss, and As-
plund, 2015; Arnett et al., 2018). On the other hand, a large scatter of λov at
the same initial mass is difficult to explain within the current convection
theories that adopt fixed values for the mixing parameters (including the
MLT).

I speculate here that, the observed scatter above the minimum thresh-
old, suggested by my analysis, is a signature of an additional source of
extra mixing on top of that caused by core overshooting. The most natu-
ral candidate is stellar rotation because it is known to be a source of extra
mixing and it has a stochastic nature since stars with similar masses may
rotate at different speeds. In the next section I will explore the additional
effect of rotation.
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FIGURE 5.8: Overview of the data and evolutionary tracks
with rotation used in this work. The points united by the
dotted lines are the stars in binaries, grouped as in Fig-
ure 5.1. In the top panel, tracks with fixed λov = 0.4 with-
out rotation (in black), and with rotation, with ωi = 0.6
(in red) are over-plotted, for Z = 0.002. In the bottom col-
umn, tracks with λov = 0.4 and ωi = 0.6 (in red), are over-
plotted with tracks with λov = 0.8 without rotation (in
black). All the sets of tracks cover the mass range from 1
to 5 M�. All intermediate values of ωi and Z are available.
I recall that tracks with rotation and Mi < 1.9 M� are not

used in the analysis.
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5.5 Effects of rotation

In the previous section I have shown that the values of λov in Figures 5.4,
5.6 and 5.7, are suggestive of a minimum overshooting parameter between
0.3 and 0.4, for stars with Mi ≥ 1.5 M�. I have also stated that the excess
mixing clearly shown by data above this overshooting threshold, could be
due to another effect that I speculate to be the rotational mixing. Here, I
check this hypothesis by means of the new rotation models of PARSEC.
However, I restrict the study to stars with mass greater than 1.9 M� be-
cause, being in advanced phases of evolution, they should have expe-
rienced the induced mixing by rotation during the previous hydrogen-
burning phase. Some of these stars are in the core He-burning (CHeB)
and, as mentioned in Sec. 5.3, the overshooting is treated in the same way
as in the H-burning phase. Nevertheless, the core overshooting process
in this phase is less critical, since what matters is the core mass at which
stars enter into the CHeB phase, which is determined by the overshooting
on the main sequence. Moreover, since they should be slow rotators now,
they should not be significantly affected by geometrical distortions and
their position in the HR diagram should not depend on the inclination of
their rotation axes with respect to the line of sight.1

5.5.1 Evolutionary models with rotation

To study the combined effect of overshooting and rotation, I have com-
puted sets of models with masses between 1 M� and 5 M�, with a fixed
overshooting efficiency of λov = 0.4. This value of λov is only a preliminary
choice dictated, on one side, by the paucity of stars below this value (see
e.g. Figure 5.6) and, on the other, by the large values derived for a few ob-
jects in the previous analysis. Concerning rotation (described in detail in
Chapters 3 and 4), I explore a wide range of initial rotation rate parameter
ωi = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.70, 0.75, 0.80, at the ZAMS. All the
other stellar evolution parameters are kept unchanged. As in the previous
analysis, the grids of stellar tracks are interpolated to produce finer grids
of tracks as a function of [Fe/H] and ωi. Selected sets of tracks with dif-
ferent values of ωi and overshooting are shown in Figures 5.8 and 5.9. In
the top panels of the two Figures, I show the tracks with constant value of
λov = 0.4 with and without rotation, over-plotted to the data. The selected
rotation rate is ωi = 0.6. In the bottom panels, I compare tracks with large
overshooting, λov = 0.8 and without rotation, with tracks with λov = 0.4
and with ωi = 0.6. These Figures allow to make an immediate comparison
between the effects of large overshooting and those of mild overshooting
and rotation. For example I note that, for the above parameters, the non
rotating tracks of Mi = 5 M� and Mi = 4 M� run almost superimposed
in the HR diagram to their corresponding models with mild overshooting
and rotation. This already suggests that objects for which I have deter-
mined a large overshooting parameter without rotation, could be simply
explained by mild overshooting and additional rotational mixing. In sup-
port of this suggestion I show, in Figures 5.10 and 5.11, the evolution of

1This was verified a posteriori, see for instance the cases of α Aurigae and TZ Fornacis
commented in Sect. 5.6.
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FIGURE 5.10: Comparison between the convective core
extension (mass fraction) versus time (year) of different
models. The solid lines are models with varying over-
shooting parameter (λov = 0.0, 0.4, 0.8) and no rotation,
while the dashed lines are models with a fixed overshoot-
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the border of the convective core (in mass fraction) during the Hydrogen
burning phase, for the models with 2, 2.6 and 4 M�, and for two metal-
licities (Z = 0.002 and 0.014). In each panel there are three models with
core overshooting and no rotation (the solid lines), and three models with
fixed λov parameter (λov = 0.4) and different rotation rates (ωi, the dashed
lines), as indicated in the figure. I note that the sizes of the cores of the
models with fixed overshooting (λov = 0.4) and varying initial rotational
velocities decrease more slowly that of the corresponding model without
rotation. This effect is more pronounced for larger rotational velocities
and for larger masses. It also depends slightly on the metallicity. For both
the metallicities, in the case of Mi = 4 M�, the final core of the fastest
rotating model becomes larger than that of the non rotating model with
λov = 0.8. This effect is due to the increase of the mean molecular weight
induced by rotational mixing, that directly affects the stellar luminosity.
This effect is less evident in models with masses below about 2 M�, that
instead, are more sensitive to the overshooting process. Eventually larger
rotation rates are needed to obtain bigger effects. In the case of Z = 0.014
and Mi = 2 M�, the age differences (∆age) are still appreciable. In partic-
ular, at the end of the main sequence, the ∆age between the model with
λov = 0.4 and without rotation, and the model with λov = 0.4 and ωi = 0.8
is ∼ 24 Myr.

These facts are in line with the choice to restrict this study to stars with
mass greater than 1.9 M�. In the next Section I show the results of the
statistical analysis performed with the new models with rotation, in this
mass range.

5.5.2 Results

In Section 5.4.2 I applied the Bayesian analysis to obtain the JPDF of age
and λov parameters for the components of our binary systems. Here I re-
peat the same procedure to the models with fixed overshooting, λov = 0.4,
and variable rotation parameter, ωi. Moreover, I limit the analysis to initial
masses Mi ≥ 1.9 M� because our goal is to study the effects of rotation in
the mass range where overshooting has eventually reached its maximum
efficiency. This simplifies the problem because it allows me to work with
only two independent parameters, age and ωi, since λov is fixed. The re-
sult of this analysis is displayed in Figure 5.12. In the figure I plot for each
component the derived mode and credible intervals (CIs) of the initial ωi
as a function of the initial mass. In this analysis I have adopted the ob-
served values of [Fe/H]. A similar plot, but made adopting the average
value of [Fe/H] for each group of binary stars depending on the parent
galaxy, is shown in Figure 5.13. To better compare the results obtained
adopting variable overshooting in one case and fixed overshooting plus
rotation in the other case, I also list in Table 5.3 the derived parameters for
the analyzed binary components, in the two cases. I note that, indepen-
dently from the method used to determine the metallicity, rotation is actu-
ally able to explain the varying extra mixing observed in stars with similar
masses. The results show a certain degree of stochasticity that now can be
simply explained by different initial rotational rates, from very small to
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FIGURE 5.12: Resulting initial angular rotation rate, ωi,
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Mi ≥ 2.0 M�, with the correspondent 68 credible inter-
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ure 5.4. Results from the analysis performed with the ob-
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stars of each galaxy.
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quite large values. I remind that in objects with very small initial rota-
tional rates the extra mixing is produced only by mild core overshooting
(λov = 0.4). On the other hand, objects that in the previous analysis re-
quired a high overshooting mixing, are now well fitted by high rotational
rates on top of the same amount of overshooting (λov = 0.4).

Concerning the ages, the other parameter derived from this analysis, I
note that they are almost independent of the adopted mixing scheme used
in the models to match the stellar properties (see Table 5.3). The largest
difference in the ages is |δAge/Ageω| ∼ 12 per cent, for the system TZ For-
nacis (without taking into account of OGLE-LMC-ECL-25658 and OGLE-
051019.64-685812.3 systems, which are evident outliers) but, in general the
average difference is below ∼ 5 per cent. Thus, the two different mixing
schemes are actually able to reproduce the same radius, Teff, mass and
age of an observed star indicating that, at the end, they produce the same
global mixing.

5.6 Discussion and Conclusions

In this Chapter, I analyze the concurrence between convective core over-
shooting and rotation in low and intermediate mass stars. Both processes
may cause extended extra mixing in the central regions of the stars. There
is a large debate in literature concerning the efficiency of these two pro-
cesses. While overshooting is widely recognized as an important process
affecting the evolution of all stars with sizable convective cores (as well
the ages assigned to all stellar populations up to ages of a few Gyr), ro-
tation has been considered relatively less important, at least for low and
intermediate-mass stars. There is growing evidence, however, that fast ro-
tators are reasonably common and may significantly affect the CMDs of
young and intermediate-age clusters in the Magellanic Clouds and in the
Galaxy (see e.g. Brandt and Huang, 2015b; Marino, Milone, et al., 2018;
Marino, Przybilla, et al., 2018). Here, I aim at shedding light on the rel-
ative importance of these two processes by analyzing a sample of well
studied double lined eclipsing binaries. The accurate determinations of
their masses, radii, luminosities, effective temperatures and metallicities,
together with the constraint imposed by the common ages of the systems,
provide a unique opportunity to test stellar evolution models with dif-
ferent mixing schemes. For this purpose I consider the two most com-
mon extra mixing schemes, overshooting and rotational mixing. I adopt
a Bayesian approach that allows to properly weight all the models with
stellar properties close to the observed ones, and to derive the PDFs and
credible intervals for the model parameters.

In the first part of this analysis (Section 5.4), I consider the hypothe-
sis that only overshooting is responsible of the extra mixing and I try to
reproduce the observed data by varying the overshooting efficiency pa-
rameter, λov, in the models. Because of the significant scatter and the er-
ror bars, I do not find a clear trend of the λov parameter, but I may ex-
pect that it grows from zero to its full efficiency regime in the mass do-
main between 1 and ∼1.5 M� and, thereafter, it remains constant, up to
about Mi ∼ 5 M�. Furthermore, the analysis clearly shows that, above
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FIGURE 5.14: Same as in Figure 5.8. But on the top panel,
tracks with fixed λov = 0.0 and without rotation (in black),
and with rotation of ωi = 0.6 (red lines). On the bottop
panel, tracks with λov = 0.4 without rotation (in black), and
tracks with λov = 0.0 and rotation, with ωi = 0.6, in red.
All the sets of tracks cover the mass range from 1 to 5 M�,

with Z = 0.004.
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Mi ∼ 1.5 M�, the overshooting parameter is generally confined between
λov ≥ 0.3 – 0.4 and λov ≤ 0.8. Such a large scatter of the extra mixing is
difficult to explain in the framework of the usually adopted models of con-
vection that instead predict a constant efficiency for a given mass. In other
words, the result of the analysis would require an overshooting parameter
with a large stochastic variation in the range of intermediate mass stars. I
infer, from the distribution of the λov parameter as a function of the initial
mass depicted in Figure 5.6, that there may be an concurrence between
overshooting, that sets a constant minimum threshold extra mixing, and a
further effect, that adds extra mixing in a stochastic way. This could be ob-
tained by changing other stellar parameters, such as the adopted Mixing
Length Parameter (A. Claret, 2016; A. Claret and G. Torres, 2017; Antonio
Claret and Guillermo Torres, 2018), the Helium content (Valle et al., 2017)
and even the inclusion of some mechanisms which may distort the ob-
served luminosities and effective temperatures like stellar spots (see e.g.
J. Higl and A. Weiss, 2017).

I suggest, instead, that rotation provides a more reasonable explana-
tion for this stochastic extra mixing. In the second part of the analysis, I
explore this hypothesis with models with fixed overshooting parameter
and at varying initial rotation rates. The results, shown in Figure 5.12,
indicate that initial rotation rates in the interval 0 ≤ ωi ≤ 0.8, combined
with a mild overshooting distance of λov = 0.4, may easily reproduce all
the observed data above Mi ∼ 1.9 M�. I stress that most of the stars in
the sample, that are in this mass range, are now observed in an evolved
phase and as slow rotators, thus they are not affected by other effects such
as gravity darkening.

It is also possible to check if rotation is the only agent of extra mix-
ing. To this purpose I compute sets of models with no overshooting and
variable rotation rate. The right panel of Figure 5.14 shows a comparison
between tracks with a mild overshooting (λov = 0.4) and without rota-
tion, and tracks with no overshooting and with rotation (ω = 0.6). I note
that, irrespective of the mixing scheme adopted, models with initial mass
between 2.8 M� and 5.0 M� cross the Hertzsprung gap at the same lu-
minosity, indicating a similar global mixing during the main sequence.
Thus, in order to reproduce a minimum extra mixing corresponding to
λov = 0.4, the threshold value in Figure 5.6, all objects with initial mass
Mi ≥ 1.9 M� should have been fast rotators in the early main sequence,
with at least ωi ≥ 0.6. While such a possibility cannot be excluded for bi-
nary stars, I recall that most of our components reside in detached systems
(A. Claret, 2016). Thus this possibility is unlikely given that many single
stars in this mass range are observed to possess small initial rotational ve-
locities (Goudfrooij et al., 2018).

I conclude our discussion by considering in more detail the case of
α Aurigae and of TZ Fornacis, two of the best studied objects in our sam-
ple. Observed quantities of individual components (Guillermo Torres et
al., 2015; Gallenne et al., 2016), in particular rotational velocities, can be
compared to the predictions of our analysis. To this purpose I compute
evolutionary tracks with initial parameters appropriated for the binary
components that result from the analysis performed with fixed overshoot-
ing and variable rotation. The comparisons with α Aurigae and with
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TZ Fornacis are shown in Figures 5.15 and 5.16. All the models are com-
puted with λov = 0.4. As far as the initial rotational velocities are con-
cerned, I adopt ωαA1 = 0.68 for the primary star of α Aurigae and ωαA2 = 0.73
for the secondary, while for TZ Fornacis I adopt ωTZ1 = 0.75 and ωTZ2 = 0.40
for primary and secondary, respectively (Table 5.3). I note that, since I
am dealing with evolved stars, fully accounting for geometrical distor-
tions will not significantly affect our results. Indeed, the adopted initial
values of ωi imply a values smaller than 0.5 for the present secondary of
α Aurigae, which translate into deviations from sphericity, 1− Req/Rpol,
smaller than 4 per cent, and a maximum temperature excursion of 240 K
from equator to the pole. For TZ Fornacis the secondary have a present
ω = 0.32, which implies 1 − Req/Rpol = 1.5 per cent and 100 K of Teff
excursion. Other stars in the Mi > 1.9 M� sample present even smaller
deviations since they correspond to more evolved stars. A more detailed
investigation of individual objects with high rotational rates, including
less evolved stars with Mi < 1.9 M�, should take into account geomet-
ric distortion and gravity darkening effects, and they are pursued in the
following Chapter.

The top panels in Figure 5.15 and 5.16 show the evolution of stellar
radius, plotted as a function of the effective temperature. For the pri-
mary component of α Aurigae, it is difficult to distinguish if the star is
on the ascent of the Red Giant Branch or on the Helium Burning phase.
However, an inspection of the evolutionary track together with the uncer-
tainties in the best fit parameters indicate that the star is in the Helium-
burning phase. The plots also indicates that its companion is at the end
of the Hertzsprung gap. As for the TZ Fornacis system, I find that the
primary component is in the He-burning phase, while the secondary, for
the adopted best fit value of ωi and accounting for the uncertainties in the
radius, effective temperature and age, turns out to be just at the beginning
of the post-main sequence. In the bottom panels, I show the comparison
between the tangential velocities of the models and the observed values
of the projected velocity. Given that the latter values constitute only lower
limits to the real equatorial velocities, I see that the analysis provides ini-
tial rotational velocities in good agreement with the observations.

Of particular interest are the secondary components of the two sys-
tems because they are in the sub-giant phase, and still, keep the memory
of the initial rotation rate. The best fit of α Aurigae predicts a current sur-
face equatorial velocity of Veq(αA2) ∼ 66 km s−1 while the observed value
is V sin i (αA2) = 35 km s−1. At face value it implies an inclination angle
of the star pole with respect to the line of sight of i ∼ 32◦. My models
with rotation indicate that in order to to obtain Veq(αA2) > 40 km s−1 an
initial rotation rate of ωi > 0.5 should have been necessary. The result of
this analysis, based only on spectro-photometric properties of the compo-
nents without any prior information on the rotational velocity, and sug-
gesting that the secondary component of α Aurigae was a fast rotator with
ωi ∼ 0.73, is thus reinforced by the independent observation of its current
rotational velocity. For the secondary component of TZ Fornacis, the best
fit predicts a current equatorial velocity of Veq(TZF2) ∼ 53 km s−1. The
observed value is V sin i (TZF2) = 46 km s−1 implying an inclination angle
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FIGURE 5.15: Comparison between the observed quanti-
ties (red points) and evolutionary tracks (continuous lines)
for the α Aurigae system. The top panel shows the Radius
vs. the logarithm of Teff. The bottom panel presents the
equatorial tangential velocities of the stars vs. Teff. Blue
and orange lines are the tracks aimed to represent the pri-

mary and secondary components, respectively.

i ∼ 60◦. Thus, also the secondary star of TZ Fornacis provides direct inde-
pendent evidence that the initial rotation rate of the secondary component
was not negligible (see also Higl et al., 2018), even if not as high as that of
α Aur2.

It is worth noticing that the predicted current equatorial velocity for
TZ For2 is near the minimum of its possible value. Using an overshoot-
ing distance significantly larger than λov = 0.4, would result in a lower
initial ωi, thus producing a tension with the current observed value. This
is already suggested by the plot in Figure 5.6. Thus the test of TZ For2
strongly supports my independent finding that the threshold efficiency of
the overshooting process is λov ∼ 0.4.

Finally, I can conclude that this study provides an insight on the extra
mixing processes in stars, and gives strong suggestions that there is a con-
currence between the overshooting effect and rotation in low-intermediate
mass stars.

In summary I conclude that the spectro-photometric properties of de-
tached double-lined eclipsing binaries are well reproduced by assuming
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FIGURE 5.16: Comparison between the observed quanti-
ties and evolutionary tracks as in Figure 5.15, but for the

TZ Fornacis system.

a threshold core overshooting distance, in the A. G. Bressan, C. Chiosi,
and Bertelli (1981) scheme, of λov ∼ 0.4 with an additional effect of rota-
tion that, by its nature, introduces a significant star to star variation of the
global mixing.
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Chapter 6
Analysing photometric

signatures of fast rotators in
color-magnitude diagram of

star clusters

Chapter based on:
Girardi L., Costa G., Chen Y., Goudfrooij P.,

Bressan A., Marigo P., Bellini A.
“On the photometric signature of fast rotators”, 2019

MNRAS 488, 696G. DOI: https://doi.org/10.1093/mnras/stz1767

In this Chapter, I discuss and study how the rotation impacts on the
observables of stars. In particular, we evaluate the distinctive spectra and
distributions in colour-magnitude and colour-colour diagrams that follow
from the presence of a substantial range in effective temperatures across
the surface of fast rotators. This because, rapidly rotating stars have been
recently recognized as having a major role in the interpretation of colour-
magnitude diagrams of young and intermediate-age star clusters in the
Magellanic Clouds and in the Milky Way.

The calculations are inserted in a formalism similar to the one usually
adopted for non-rotating stars, which allows us to derive tables of bolo-
metric corrections as a function not only of a reference effective tempera-
ture, surface gravity and metallicity, but also of the rotational speed with
respect to the break-up value, ω, and the inclination angle, i.

In Section 6.2, we describe the input data, methods for the spectral
computations and the formalism for the inclusion of such tables into isochrones
and stellar population codes. Some properties of the derived spectra and
colour-colour relations are illustrated in Section 6.3, together with a couple
of practical applications/considerations which are independent of stellar
evolutionary models. Section 6.4 presents a few final comments and con-
clusions.

https://doi.org/10.1093/mnras/stz1767
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6.1 Introduction

The existence of rapidly rotating stars has been known for long, espe-
cially in the form of Be stars and among field A-type stars in the Milky
Way (Royer, 2009; van Belle, 2012, and references therein). However, it
was only recently recognized that they could be playing a very impor-
tant role in determining the photometric properties of other commonly-
studied stars, namely those born in populous star clusters in the Magel-
lanic Clouds and in Milky Way open clusters. Indeed, fast rotators have
been identified spectroscopically in both the Large Magellanic Cloud clus-
ters NGC 1866 and NGC 1818 (Dupree et al., 2017; Marino, Przybilla, et al.,
2018, respectively) and in the Galactic open cluster M 11 (Marino, Milone,
et al., 2018), and seem to be linked to the presence of extended main se-
quence turn-offs (see e.g. Brandt and Huang, 2015b) and/or split main
sequences (e.g. Milone, Marino, D’Antona, Bedin, Da Costa, et al., 2016;
Milone, Marino, D’Antona, Bedin, Piotto, et al., 2017) in these objects.
Since the same clusters have often been used to calibrate non-rotating
stellar models, the neglect of rotation might have had important conse-
quences. For instance, it might have caused systematic errors in the age
estimates of well-studied clusters (Brandt and Huang, 2015a; Gossage et
al., 2018), and an overestimation of the amount of convective core over-
shooting needed to reproduce the luminosity of post-main sequence stars
(as shown in Chapter 5).

With this in mind, it is very important that we expand the previous sets
of stellar models by including the effects of rotation, in a way suitable to
the study of such clusters, as well as to the multitude of field stars which
likely started their nuclear-burning lives as fast rotators. In the present
work, we make a step in this direction, by evaluating the distinctive spec-
tra and distributions in colour-colour space that follow from the presence
of a substantial range in effective temperatures across the surface of fast
rotators. We recall that similar computations have been performed a few
times in the past literature. While many authors have concentrated their
efforts on detailed calculations of changes in line profiles and equivalent
widths in order to inform spectroscopic studies (e.g. Slettebak, Kuzma,
and Collins, 1980; Frémat et al., 2005), the works by A. Maeder and Peytre-
mann (1972), Collins and Sonneborn (1977), Pérez Hernández et al. (1999)
and Lovekin, Deupree, and Short (2006) are especially insightful about the
effects of rotation on the photometry.

Our calculations are intended to complement the libraries of evolu-
tionary models for rotating stars based on PARSEC v2.0. As a library of
models intended for stellar population studies, they cover the widest pos-
sible range of parameters – including the mean effective temperature and
surface gravity, metallicity, angular velocity and inclination – and photo-
metric systems as well. As will be shown later, these new computations
are necessary for a proper evaluation of the effects – or signatures – of rota-
tion in the present databases of very accurate HST multi-band photometry
of Magellanic Cloud clusters.
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6.2 Computing the spectra

6.2.1 The special case of non-rotating stars

Before we deal with rotating stars, it is convenient to recall the formalism
and assumptions involved in the computation of synthetic spectra of non-
rotating, perfectly spherical stars.

The energy a stellar surface element of area dA, observed at an inclina-
tion angle θ, emits per unit time dt’ and wavelength dλ, over an element
of solid angle dω′, is

dEλ = IλdA cos θdtdλdω′ (6.1)

where Iλ is the specific intensity. In a plane-parallel atmosphere, Iλ de-
pends only on θ, and integration over the all solid angles provides the
astrophysical net flux

Fλ =
∫

4π
Iλ(cosθ) cos θdω′

=
∫ 2π

0

∫ π/2

0
Iλ(cos θ) cos θ sin θdθdφ (6.2)

where the final integral was limited to the interval [0, π/2], because there
is no incoming radiation from outside the star. The equation can be sim-
plified further, with the definition of µ = cos θ:

Fλ = 2π
∫ 1

0
Iλ(µ)µdµ . (6.3)

This latter equation is actually used to compute Fλ once Iλ is given for
several values of µ, in a plane-parallel atmosphere calculation. Fλ respects
the Stefan-Boltzmann law∫ ∞

0
Fλdλ = Fbol = σTeff

4 . (6.4)

The same symmetry that allows us to convert Eq. (6.2) into Eq. (6.3),
leads to another important consequence: For a sphere of constant Teff ob-
served from a given line-of-sight, the Iλ integrated over all surface ele-
ments in a half sphere, is proportional to the Iλ of an element area aver-
aged over all outgoing lines-of-sight, or, more precisely∫

half−sphere
Iλ(cos θ) cos θdA = R2Fλ (6.5)

which in practice allow us to avoid integrating the flux over the stellar
surface. The monochromatic stellar luminosity becomes

Lλ = 4πR2Fλ, (6.6)
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and the flux observed at a distance d of the star simply scales from the flux
outgoing from a small piece of its surface:

Fobserved
λ =

(
R
d

)2

Fstellarsurface
λ (6.7)

where Fstellarsurface
λ comes from Eq. (6.3).

Equations (6.3) to (6.7) are at the basis of the synthetic photometry
method, and the definition of bolometric corrections (see L. Girardi, Bertelli,
et al., 2002).

6.2.2 The case of rotating stars

For rotating stars there is no spherical symmetry, and the simplification
that leads from Eq. (6.2) to Eq. (6.5) does not apply. The outcoming flux
has to be computed explicitly from integration over the visible surface of
the star.

To describe this surface, let us adopt the spherical coordinates (x, θ, φ),
with θ = 0 aligned with the rotation axis. For convenience, the stellar ra-
dius can be scaled to its polar value, i.e. x = R(θ)/Rpol. For a star of mass
M rotating at an angular velocity Ω, in the Roche approximation, the iso-
bar that defines the surface of radius R as a function of the polar angle θ is
given by Eq. 3.11, which can be converted in Eq. 3.17. Then, it is solved nu-
merically to give x(θ), for any value of the angular velocity with respect to

its critical break-up value, ω = Ω/Ωc, where Ωc = (2/3)3/2
√

GM/Rpol
3.

The local effective surface gravity, geff, follows from computing the grav-
ity and centrifugal forces at x(θ), and can also be easily expressed in terms
of its value at the stellar pole, gpol = GM/Rpol

2 (as shown in Section 3.10).
In addition, the surface radiative flux, hence the local Teff

4(θ), scales with
geff as:

Teff ∝ f (θ, ω) geff
1/4 (6.8)

in which f (θ, ω) is either equal to 1 as in von Zeipel (1924)’s theorem (see
Section 3.11 for detail), or the term coming from the solution of equation
(24) in Espinosa Lara and Rieutord (2011). We adopt the latter formalism
in this work. Unless all stellar quantities are specified (including M and
Rpol), this equation tell us how Teff varies across the surface, but not its
absolute value. To fix the Teff scale, we define the parameter Teff0, which
is the Teff value that a non-rotating star of the same Rpol should have to
produce the same luminosity:

Teff0 =

(
1

4πRpol
2

∫
surface

Teff
4(θ)dA

)1/4

. (6.9)

The right-hand side can be computed without actually specifying Rpol,
and its result is used to re-scale the entire Teff(θ) relation up/down to a
given Teff0.

These approximations and definitions suffice to give us all quantities
of interest – namely x(θ) Teff(θ), and geff(θ) – as a function of our selected
stellar input parameters, ω, Teff0, and gpol. Another important variable is
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ε, defined as the angle between the radial vector and the normal to the
surface (see Figure 3.3). For a “flattened” rotating star, ε is positive for
θ < 90◦, then rapidly falls to null at the equator, then becomes negative
for 90◦ < θ < 180◦. These quantities are illustrated in Fig. 6.1, for a few
values of ω and for Teff0 = 7500 K. It can be noticed that the deviations
from spherical symmetry (or, equivalently, from the polar values) are quite
modest for all ω < 0.5, but increase dramatically as ω approaches 1. With
the coordinate system (x, θ, φ) attached to the rotating star, we can now
move the observer from the pole to the equator, defining a new angle i,
which could be called “viewing angle”, but in reality it is the “inclination
angle” that a rotating star would have as seen on the sky (i = 0◦ when
observing from above the pole, i = 90◦ when observing from the equator).
In addition, let us define a quantity Frot

λ that is similar to the Fλ of Eq. (6.7)
– in the sense that it could be used to compute the flux coming from distant
rotating stars by means of:

Frot,observed
λ (i) =

(
Rpol

d

)2

Frot
λ (i) (6.10)

Since the radius varies with θ, in this later equation we have adopted the
polar radius as the reference one. With this definition, we can write the
analogous of Eq. (6.5) for a rotating star:

Frot
λ (i) =

1
Rpol

2

∫
surface

Iλ(cos ξ) cos ξdA

=
1

Rpol
2

∫ 2π

0

∫ π

0
Iλ(µ

′)µ′(x2/ cos ε) sin θdθdφ , (6.11)

where:

• dA = (x2/ cos ε) sin θ dθdφ is the element of surface area for the
coordinates (θ, φ). Compared to the spherical case of Eq. (6.5), it has
two new multiplicative factors: x2 takes into account the increase in
area due to the variation in x(θ), while (1/ cos ε) takes into account
the increase in area because the surface elements are inclined with
respect to the radial vector.

• ξ is the angle between the normal to the surface ~g and the direction
of the observer~i. The cosine of this angle, µ′, is now used to select
the proper Iλ at every position, and to compute the projected area
with respect to the observer (which is dAµ′). Therefore, µ′ replaces
the former µ used for spherical stars.

• As with the non-rotating case, the integration is performed only for
surface elements in the visible part of the star, i.e. those with µ′ be-
tween 1 and 0.

• Since the total stellar surface also scales with Rpol
2, Eq. (6.11) can be

computed without actually specifying Rpol. Moreover, since the Teff
scale has been rescaled to produce a given Teff0 value, the total stellar
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FIGURE 6.1: The variation of stellar surface quantities with
the angle θ, for stars with Teff0 = 7500 K and several values
of ω. Panels from top to bottom show the stellar radius
scaled to its polar value, the local effective temperature,
the surface gravity with respect to its polar value, and the
angle ε between the radius and the normal to the surface.
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FIGURE 6.2: A star with Teff0 = 5000 K, ω = 0.99, in a
Cartesian system where z coincides with the rotation axis.
Columns at the left, centre, and right show it as seen from
above, side, and front (z > 0, y > 0, x > 0, respectively).
Top row: the surface Teff. The other rows instead show the
values of µ′ = cos ξ (limited to values between 1 and 0)
for observers positioned at several angles, from the pole
to the equator (i = 0 to i = 90◦, in the sequence from top
to bottom). They roughly indicate the level at which every

point of the surface will be visible to these observers.
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luminosity relates simply to the (Rpol, Teff0) properties of our choice:

L =
∫ ∞

0
Lλdλ =

∫
surface

∫ ∞

0
FλdλdA

=
∫

surface
σTeff

4(θ)dA = 4πRpol
2σTeff

4
0 (6.12)

In practice, we compute Eq. (6.11) numerically, by dividing the stellar
surface into several thousands of pieces of size ∆θ × ∆φ not larger than
a few square degrees each. All quantities are evaluated at every point of
the stellar surface, with µ′ values being re-evaluated for every inclination
angle i. Fig. 6.2 shows how these computer-generated rotating stars look
like in Cartesian coordinates, by means of maps of Teff and µ′.

Finally, several Frot
λ (i) are shown in the left panels of Fig. 6.3 for a

rapidly-rotating star of ω = 0.99, and compared to similar quantities ob-
tained for a spherical non-rotating star of same Teff0. It is evident that the
star seen from the pole will be much brighter, and bluer, than when seen
from the equator. The right panels allow us to appreciate these differences
in a magnitude-like scale, by plotting the quantity

∆BCλ = −2.5 log
Frot

λ (ω, i)
Fλ(ω = 0)

, (6.13)

where Fλ(ω = 0) is the flux of the reference non-rotating star.

6.2.3 Consistency and accuracy checks

Given the non-standard procedure adopted to compute these spectra, we
perform a series of consistency and accuracy checks. First, we verify that
our code recovers the Fλ provided by Castelli and Kurucz (2003), for the
case of ω = 0, for a wide range of Teff (or, equivalently, Teff0) values, and
for any value of i. Then, we modify the code so that we use the geometry
from the rotating star, but the Iλ(Teff0) everywhere. In this case, Frot

λ (i)
simply decreases with the projected area, as expected.

Finally, the normalization of Frot
λ (i) can be verified by comparing two

quantities: The first is the mean Frot
λ (i), that is, the average flux seen from

random positions uniformly distributed on the sky:

Frot
λ (i) =

1
4π

∫
sphere

Frot
λ (i)dω′ =

1
2

∫ π/2

0
Frot

λ (i) sin idi (6.14)

(where we use the north-south symmetry of the star to simplify the inte-
gral). The second is the average Fλ(θ) over the stellar surface:

1
A

∫
surface

Fλ(θ)dA =
σTeff

4

4πR2
pol

. (6.15)

We perform these integrals numerically and find them to be nearly iden-
tical, provided that Eq. (6.14) is computed with steps ∆i < 5◦. The out-
coming average spectra are shown with gray lines in Fig. 6.3. It is inter-
esting to note that the mean Frot

λ (i) in general presents an excess flux at
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FIGURE 6.3: Left panels: Frot
λ (i) computed for a sequence

of stars of increasing Teff0 (from 6000 to 12000 K, from
top to bottom panels), and for a fixed ω = 0.99, log gP,
and [Fe/H] = −0.5 dex. Coloured lines show the Fλ ob-
served from various angles from the pole (i = 0, bluer) to
the equator (i = 90◦, redder). The gray line is the mean
Fλ averaged from all possible lines-of-sight, Frot

λ (i) (Sec-
tion 6.2.3). Finally, the dark line is the Fλ computed for
the non-rotating star of same Teff0. Right panels: The same
models but now plotting, in a magnitude scale, the relative
flux of the rotating models compared to the reference non-
rotating star – that is, plotting ∆BCλ = −2.5 log[Fλ(ω =

0.99)/Fλ(ω = 0)].
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FIGURE 6.4: Teff and log g values for which Iλ is avail-
able, from the Castelli and Kurucz (2003) models of solar
metallicity at kurucz.harvard.edu/grids/gridp00/
ip00k0.pck19 (gray dots). We superpose the Teff-log geff
lines spanned by the surface of rotating star models of
Teff0 = [5000, 15000] K and log gpol = [4.5, 2.5], at increas-
ing ω (from blue to red lines, as in the legend). For the
sake of comparison, the dotted lines illustrate the slope
expected from von Zeipel (1924)’s law, β = 0.25, which
coincides with the slope found in our models at the limit
of small ω. As a consequence of using Espinosa Lara
and Rieutord (2011) formalism for gravity darkening, our
models with high ω present variable slopes, with mean

values approaching β ' 0.14 at ω > 0.99.

UV wavelengths, with respect to the reference non-rotating star of same
Teff0, caused by the presence of a hot pole. Nonetheless, the integral of
these spectra over λ turns out to be the same, and they both respect the
Stefan-Boltzmann law for the temperature Teff0.

6.2.4 Limitations

Our calculations reflect a number of approximations in the modeling of
rotating stars. The most fundamental ones consist in using the Roche
model to compute the stellar geometry, and the Espinosa Lara and Rieu-
tord (2011) approximation to derive the surface distribution of Teff. A
number of works reveal that these are quite good approximations, able
to describe both the general behaviour of 2D stellar models, and present
observations of rapidly rotating stars (van Belle, 2012; Espinosa Lara and
Rieutord, 2011; A. Claret, 2016). In particular, the Espinosa Lara and Rieu-
tord (2011) model represents a clear improvement over the classical von
Zeipel (1924) formula, in which Teff ∝ geff

β with β = 0.25. Indeed, Es-
pinosa Lara and Rieutord (2011) models produce β values variable across
the stellar surface, with mean values closer to the expected (and observed;
see van Belle, 2012) β ∼ 0.14− 0.18 for stars with ω close to 1. These slopes
can be appreciated in the Teff versus log g diagram of Fig. 6.4.

Another approximation consists in the adoption of the plane parallel
model atmospheres, which is quite a reasonable assumption for relatively
hot dwarfs. Fortunately, our models are not aimed to describe cool stars
with extended atmospheres and convective envelopes, where the validity
of these assumptions could be easily questioned.

kurucz.harvard.edu/grids/gridp00/ip00k0.pck19
kurucz.harvard.edu/grids/gridp00/ip00k0.pck19
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Apart from the physical assumptions, our calculations are limited by
the available libraries of Iλ, which may not cover the entire possible range
of Teff and log g values found in rotating stars. This is illustrated in Fig. 6.4,
which shows the coverage offered by Castelli and Kurucz (2003) models.
Similar grids are available for metallicity values, [Fe/H], going from +0.5
to −2 dex. Interpolation inside these grids can provide us with any Iλ

comprised in the Teff interval from 3500 to 50000 K, and with log g span-
ning from 5 down to a minimum value which gets larger for higher Teff.
The same plot shows four families of rotating star models at varying ω,
for Teff0 = [5000, 15000] K and log gpol = [4.5, 2.5]. It is easy to see that
models with large ω may exceed the range of validity of the Castelli and
Kurucz (2003) tables. Two particular cases are worth considering:

1. When regions close to the stellar equator assume log geff values smaller
than those included in the table, as in the case of the Teff0 = 15000 K,
log gP = 3.5 modes with ω > 0.99. We decide to use the smallest
available value of log g in these cases, instead of the correct value,
simply because the Iλ change slowly with surface gravity. We check
this with a more extreme experiment, performed for rapidly rotating
stars (ω = 0.99) of log gpol = 4.5 and 3.5: first we compute the Frot

λ (i)
using the correct calculation of log geff(θ), and then we do the same
by setting log g equal to the polar value everywhere; the resulting
Frot

λ (i) change by just ≤ 5% at most. This experiment seems to jus-
tify the approach of adopting the Iλ tables of smaller log g values,
whenever necessary. In addition, we have to consider that this ap-
proximation will only affect hot stars of log gpol ≤ 3.5 and ω ≥ 0.9,
which will be very rare (if not absent) in real simulations, since rota-
tion slows down significantly as dwarfs evolve into giants.

2. Rapidly rotating stars may also exceed the Teff range of the tables,
as it would be the case, for instance, for models with Teff0 ≤ 4000 K
and ω > 0.99, and those with Teff0 approaching the upper limit of
50000 K. In these cases, we simply do not compute the Frot

λ (i). This
is probably less of a problem for cool stars, which are observed not to
be fast rotators anyway. Rapidly rotating stars with Teff0 exceeding
30000 K, instead, will not be considered in the present work.

Another limitation is that we presently do not take into account the
broadening of absorption lines by the Doppler effect in rapidly rotating
stars. Even if consideration of this effect is relatively simple, the main
reasons for this choice are: (1) the computational speed gained by simply
adding spectra in bins of Teff, log g, and µ′ – i.e. without additional bins in
radial velocity space; (2) the advantage of producing results independent
of the actual stellar radius, i.e., as a function of ω only; and (3) the fact that
we are presently interested in the flux changes expected in broad filters,
generally with widths ∆λ > 500 Å, and without sharp edges in the vicinity
of strong absorption lines. In comparison, rapidly rotating stars generally
have v sin i ≤ 400 km s−1 (see e.g. Royer, 2009) which would translate into
a maximum line broadening of ∼ 8 Å in the V band. It is obvious that
the Doppler broadening of absorption lines will have to be considered,
in addition to our present results, whenever one deals with photometric
filters narrower than about ∼ 200 Å.
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6.2.5 BC tables for rotating stars

Setting the equations for Frot
λ (i) as we have done, we can easily derive

bolometric corrections BCSλ
, that will allow us to transform the bolometric

magnitudes, Mbol = −2.5 log(L/L�) + Mbol,�, into absolute magnitudes
as a function of i, MSλ

= Mbol − BCSλ
, for any filter transmission curve Sλ

(cf. Eq. (7) in L. Girardi, Bertelli, et al., 2002):

BCSλ
= Mbol,� − 2.5 log

[
4π(10 pc)2σTeff

4
0/L�

]
+2.5 log

∫ λ2
λ1

λFrot
λ (i)10−0.4Aλ Sλdλ∫ λ2
λ1

λ f 0
λSλdλ

−m0
Sλ

. (6.16)

This equation is generic and could be applied for any set of Frot
λ (i) and

interstellar extinction curves Aλ. For the moment, we simplify the analysis
by setting Aλ = 0.

Then, it is a matter of fact that we have already large tabulations of
the BCs for non-rotating stars, as a function of Teff, log g, and [Fe/H] (e.g.
L. Girardi, Bertelli, et al., 2002; L. Girardi, Dalcanton, et al., 2008). These
grids work quite well in predicting the multi-band photometry of single
stars, and some of them exist in different versions – for instance, with an
improved spectral resolution, or with chemical abundances better match-
ing the stars observed in different galactic samples, etc. Therefore, one
may find it convenient to work with the “changes in BC caused by the
rotation”, rather than with the absolute BCs themselves. For that, we can
simply tabulate the

∆BCSλ
(i, ω, Teff0, log gpol) = 2.5 log

 ∫ λ2
λ1

λFrot
λ (i, ω, Teff0)Sλdλ∫ λ2

λ1
λFλ(Teff0, log gpol)Sλdλ


(6.17)

and apply them to derive the changes in the magnitudes of rotating stars,
as a function of (i, ω, Teff0, log gpol). With this approach, we can use the
∆BCSλ

(i, ω, Teff0, log gpol) computed for limited grids – for instance, in-
cluding just scaled-solar surface chemical compositions, and just a handful
of metallicity values – for a wide variety of rotating stars. This is the ap-
proach we will follow in future applications. A suitable set of ∆BCSλ

tables
are being inserted in the TRILEGAL code (see L. Girardi, Groenewegen, et
al., 2005; P. Marigo, L. Girardi, A. Bressan, et al., 2017) for the production
of isochrones and simulated stellar populations in many different photo-
metric systems. They are also part of the YBC database of BCs and in-
terpolating routines (http://stev.oapd.inaf.it/YBC/;Chen et al., in
prep).

6.3 Results and applications

6.3.1 General behaviour of the spectra and colours

The Frot
λ (i) we derive consist essentially in linear combinations of stellar

spectra covering a limited range in Teff, with minor effects coming from the

http://stev.oapd.inaf.it/YBC/
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FIGURE 6.5: The U − B versus B − V diagram for our
dwarf models of log gpol = 4.5 and [Fe/H] = −0.5 dex
(continuous coloured lines), for several values of ω and for
three different inclinations going from the pole-on (i = 0◦)

to equator-on (i = 90◦) configurations.

coverage of a limited range in log g. Therefore, they evidently resemble the
spectra of non-rotating stars of the same Teff0, with the presence of either
excess flux in the bluer part of the spectrum coming from the hot pole,
or “depleted flux” caused by the cool equator. For stars in which both
the pole and equator are clearly visible, the departures from the spectral
shape of non-rotating stars will be the largest. The situation resembles the
apparent spectrum of unresolved binaries, which often appear as outliers
in colour-colour diagrams, with respect to single stars, due to the different
Teff of the two components.

That said, the colour changes expected for rotating stars are very small
compared to those possible for binaries. They become more evident ex-
actly at the Teff and wavelength ranges in which the spectral features change
more rapidly with Teff. One such situation is around the well-known S-
shaped curve drawn by single stars in the U − B versus B − V colour-
colour diagram (hereafter CCD), which is caused by the appearance of a
prominent Balmer jump in main sequence stars with Teff ≥ 7000 K.

Figure 6.5 illustrates the U− B versus B−V diagram for a subset of our
models. As can be seen, fast rotators are observed to “spread” aside the S-
curve of non-rotating stars, but much more prominently for pole-on stars
than for equator-on. This is because, when clearly observed, the hot pole
quickly dominates the emitted flux (since Fλ ∝ Teff

4), making the star to
resemble a non-rotating, hotter star. For rapidly rotating stars seen at high
inclinations, the S-curve is still very evident, but appears smoother than
the classical one. Only models with ω ≥ 0.9 appear more than 0.01 mag
away from the ω = 0 sequence.

6.3.2 Comparison with other approaches

Detailed modeling of gravity darkening in rotating stars is not a novelty
(see for instance Aufdenberg et al., 2006; Lovekin, Deupree, and Short,
2006; Espinosa Lara and Rieutord, 2011; Espinosa Lara and Rieutord, 2013;
A. Claret, 2016), but few are the extended grids of rotating models aimed at
performing population synthesis of such stars, hence considering wide
ranges of stellar parameters such as Teff0, log gpol, ω, and i, as well as ap-
propriate interpolation and simulation tools.
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FIGURE 6.6: The U − B versus B − V diagram for a Z =
0.006, 108-yr old cluster simulated with the SYCLIST code
(Georgy, Granada, et al., 2014), containing 104 stars with a
uniform distribution of initial ω observed at random ori-
entations. The left-hand panel colour-code the stars ac-
cording to their present ω, whereas the right-hand does

the same according to i.

The currently most popular set of such tools is SYCLIST from Georgy,
Granada, et al. (2014). They follow a different approach to simulate the
photometry of rotating stars: They first derive the apparent luminosity
and effective temperature of the star at several i, which they refer to as
LMES and TeffMES, and then convert these quantities into absolute mag-
nitudes and colours by means of tables of colour-Teff calibration and BC
tables. Their procedure includes corrections for the limb darkening, and
is consistent from the point of view of the energetics. However, they do
not explicitly compute the apparent spectra at several i, and use colour-
Teff calibration and BC tables that were derived for non-rotating stars. As
a consequence, their rotating models cannot present the small deviations
from the colour-colour relations of non-rotating stars that ours do. This
can be appreciated in Fig. 6.6, which illustrates the U − B versus B − V
diagram of a star cluster simulated with SYCLIST and including a signif-
icant star-to-star spread in both ω and i, yet describing a very narrow S
curve.

This is an important point, since present-day HST photometry of Mag-
ellanic Cloud star clusters with broad turn-offs and/or split main sequences,
and suspected to contain rapidly rotating stars, include highly-precise multi-
band photometry of a few clusters (see e.g. Milone, Marino, D’Antona,
Bedin, Da Costa, et al., 2016; Milone, Marino, D’Antona, Bedin, Piotto, et
al., 2017; Goudfrooij et al., 2018). The analysis of their colour-colour plots
can benefit from considering the expected deviations from the standard
colour-colour relations.

Recently, also the MIST project has made available models with rota-
tion and applied them to the detailed modeling of star clusters (Gossage
et al., 2018). From the details provided in Paxton, Smolec, et al. (2019),
we can conclude that their photometry is computed using essentially the
same method as in SYCLIST, that is by first computing projected values
of L and Teff at several i, and then applying bolometric corrections as a
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function of these Teffs.

6.3.3 An example: fast rotators in NGC 1866

As discussed above, present models introduce a new aspect that can be
explored in the identification and study of fast rotators, namely that such
stars should follow colour-colour relations slightly different from those of
non-rotating stars. The effect should be present independently of evolu-
tionary aspects – at least in less evolved stars in which the initial rotation
has not slowed down significantly.

Let us look at one of the best known examples of star clusters con-
taining both fast and slow rotators in their main sequence: the ∼ 200-
Myr old LMC star cluster NGC 1866. A careful study by Milone, Marino,
D’Antona, Bedin, Piotto, et al. (2017) revealed a clearly double main se-
quence in the F336W−F814W versus F814W CMD of this cluster, in the
magnitude range 19 ≤ F814W ≤ 21. Comparison with SYCLIST models
suggested that the blue main sequence (bMS) is caused by slow rotators,
while the red sequence (rMS) is caused by stars rotating as fast as ω = 0.9.
A third, even redder sequence, is also present and likely caused by the
presence of approximately equal-mass binaries. Other aspects of these se-
quences are surprising, as discussed in Milone, Marino, D’Antona, Bedin,
Piotto, et al. (2017): although the ratio between bMS and rMS varies with
magnitude and spatial position in the cluster, nearly 2/3 of the observed
stars were found in the rMS, hence suggesting an extremely high fraction
of very fast rotators in this cluster.

The HST data for this cluster has been reduced independently by us
(F336W, F438W, F555W, and F814W passbands; see Goudfrooij et al., 2018).
Fig. 6.7 shows the F555W versus F336W−F814W CMD for this cluster.
With its long wavelength baseline, the F336W−F814W colour allows to
spread the main sequence features the most. Only stars with photometric
errors smaller than 0.05 mag in all passbands are plotted. For compari-
son, we over-plot PARSECisochrones (see Chapter 5) computed both with-
out rotation (ωi = 0), and with fast rotation (i.e. for an initial value of
ωi = 0.9). The isochrones have been assigned magnitudes directly apply-
ing the BCs we derived in this work (Eq. (6.16)). The ωi = 0.9 isochrones
are plotted for the two extreme values of i (0◦ and 90◦), as well as for
their mean properties when observed at random orientations. Compared
to the models presented in Chapter 5, the present ones are calculated with
an updated version of the PARSEC which takes into account the mass loss
enhancement due to the rotation, following the prescriptions by Heger,
N. Langer, and Woosley (2000), described in Section 4.4. The updated
code, the new tracks and isochrones and the comparison with other codes,
will be presented in the following Chapter 7. Here, suffice it to recall that
the tracks and isochrones include the changes in ω with respect to its ini-
tial value ωi. For stars of intermediate mass, ω generally increases as the
core contracts towards the end of the main sequence, and then sharply de-
creases as the star evolves into a red giant – as can be seen in the figure for
the ωi = 0.9 case. However, in the magnitude interval where the bMS and
rMS are well delineated, the value of ω is essentially identical to ωi.



110 Chapter 6. Photometric signatures of rotation

FIGURE 6.7: HST photometry of the main sequence of
NGC 1866, corrected for a true distance modulus of (m−
M)0 = 18.43 mag and a foreground extinction of AV =
0.28 mag (see Goudfrooij et al., 2018). This particular
CMD presents a striking split main sequence, presumably
caused by the presence of both slow rotators (in blue) and
fast rotators (in red). They correspond to the bMS and rMS
in Milone, Marino, D’Antona, Bedin, Piotto, et al. (2017),
respectively. The continuous lines are PARSEC 250-Myr
old isochrones of metallicity Z = 0.006, computed with
initial values of ωi = 0 (cyan) and ωi = 0.9 (magenta, or-
ange and gray, for i = 0◦, i = 90◦, and for the mean of
stars observed at random orientations, respectively). Stars
in the lower main sequence, with masses smaller than
1.8 M�, are all computed with ωi = 0.The arrow illustrates
the reddening vector corresponding to AV = 0.1 mag.
Dots and labels along the ωi = 0.9 mean isochrone are in-
dicating the changes in the actual ω values as stars move

away from their zero age main sequence.
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Essentially, the plot in Fig. 6.7 reproduces the initial suggestion by
Milone, Marino, D’Antona, Bedin, Piotto, et al. (2017), that the two com-
ponents of the cluster split main sequence indicate two very different ro-
tational velocities: a bMS with ω = 0 and a rMS with ω = 0.9. In the latter
case, i values ranging from 0◦ to 90◦ cause a spread in colour–magnitude
space that runs almost parallel to the main sequence, hence it does not
cause significant broadening of the isochrones unless in its evolved part,
close to and above the turn-off.

However, our spectral models tell more about these different main se-
quences, than can be presumed from the CMD alone: they tell that the fast
rotators should present slightly different colour-colour sequences than the
slow rotators. Therefore, in Fig. 6.8 we present the colours F336W−F438W
versus F555W−F814W CCD, derived by the combination of WFC3/UVIS
and ACS/WFC photometry. This colour-colour combination captures the
best sensitivity we have to changes in the stellar Teff, in the current HST
data for NGC 1866: indeed, while the colour F336W−F438W should be
more sensitive to size of the Balmer jump developing at Teff ≥ 7000 K,
F555W−F814W measures the more gradual change in the slope of the red
part of the spectra, over a much wider range of Teff. This colour combina-
tion also presents the S-shaped sequence characteristic of the classic U− B
versus B−V plot, already shown in Fig. 6.5.

It turns out that the bMS and rMS merge into a single, indistinguish-
able sequence in this CCD, as illustrated in the top panels of Fig. 6.8.
The relative mean shift between these two sequences, as measured at in-
termediate colours (F336W−F438W between −0.3 and −0.1) amounts to
0.01 mag at most.

Let us then interpret the CCD, according to our models. As illustrated
in the middle and bottom panels of Fig. 6.8, the only models to present sig-
nificant displacements from the reference stellar locus defined by slow ro-
tators, are those with ω > 0.95 and observed nearly equator-on (i = 90◦).
Therefore, observing such a narrow CCD sequence means that either the
fraction of fast rotators with ω > 0.95 is negligible, or that these fast rota-
tors are all observed nearly pole-on. This limit on the fraction of very fast
rotators seems in agreement with the Milone, Marino, D’Antona, Bedin,
Piotto, et al. (2017) initial interpretation, which attributed ω = 0 for the
bMS, and ω = 0.9 for the rMS.

Remarkably, the combined constraints from the CMD and CCDs of NGC 1866
point to a significant fraction of fast rotators with velocities close to the
critical value (more specifically, close to ω = 0.9), but at the same time
apparently excluding the values immediately close to it (i.e. excluding the
interval with ω > 0.95, unless for i ∼ 0◦). If we assume that fast rotators
follow a random distribution of inclination angles, this points to a conver-
gence of fast rotators to a very narrow range of ω, which is intriguing to
say the least, considering that we are dealing with main sequence stars
which did not have their radii expanded by evolutionary effects – hence
their initial rotation was not expected to have slow down significantly. It
suggests a careful analysis of the data using both evolutionary tracks and
population synthesis tools, taking into consideration the additional geo-
metric effects described in this work. These steps will be performed in the
following Chapter.
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FIGURE 6.8: The potential effect of rotation in present
CCDs from HST data. The top panels show the photome-
try of NGC 1866 (Fig. 6.7 and Goudfrooij et al., 2018)) cor-
rected by a foreground extinction of AV = 0.28 mag, in the
F555W−F814W versus F336W−F438W diagram, around
its characteristic S-shaped feature. Again, suspected slow
and fast rotators in the cluster main sequence are marked
in blue and red, respectively. The right panel zooms in the
region occupied by bMS and rMS stars (gray box in left
panel), revealing that there is no evident offset between
the two groups of stars in the CCD. The central and bottom
rows show the same diagrams as derived from our mod-
els for different values of ω: the middle row is for i = 0◦,
the bottom row for i = 90◦. All the sequences drawn
with continuous lines are for dwarfs with log gpol = 4.5.
To illustrate the dependence on surface gravity, the dotted
line shows a single sequence of non-rotation models with
log gpol = 3.5. In all panels, the arrow indicates the red-
dening vector corresponding to AV = 0.1 mag, for com-

parison.
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Although the NGC 1866 observations are particularly intriguing, sev-
eral other young LMC clusters also show a similarly bifurcated upper MS
(see, e.g., M. Correnti et al., 2017; Milone, Marino, Di Criscienzo, et al.,
2018). On the other hand, in the CMD of the NGC 1831 cluster in Goud-
frooij et al. (2018), the upper MS is far less bimodal in appearance, sug-
gesting a more uniform distribution of ω at the older age of NGC 1831
(∼ 700 Myr). These aspects will be discussed in more detail in a forthcom-
ing paper (M. Correnti et al., in prep). In all cases, it will be interesting
to check whether colour-colour diagrams for these clusters – whenever
available and of sufficient quality – provide additional constraints to the
distributions of rotational velocities and stellar inclinations.

6.4 Conclusions

In the present Chapter, we propose a formalism for the inclusion of ge-
ometric effects and gravity darkening in models for the synthetic pho-
tometry of rotating stars. We compute the outcoming flux and bolomet-
ric corrections expected for stars spanning a very large range in mean
effective temperature, surface gravity at the pole, metallicity, rotational
velocity, and observed inclination. Although the computations are illus-
trated just for a few filters, they are available for over 50 photometric sys-
tems covering all major instrumentation and surveys, hence extending the
database of such calculations for non-rotating stars in the PARSECdatabase
of isochrones (see http://stev.oapd.inaf.it/cmd). The next step is
to actually apply these models to a new family of PARSEC evolutionary
models with rotation, hence closing the loop. A first study will be pre-
sented in the following Chapter.

Our models inevitably rely in some approximations (e.g. the Roche
model, the Espinosa Lara and Rieutord 2011 formula, the plane-parallel
atmospheres) which can be improved as more realistic grids of rotating
models are built. Despite these approximations, the present approach at
least opens the way for a systematic consideration of the possible colour-
colour effects in population synthesis models, which is still missing in the
study of both Magellanic Cloud and Galactic open clusters. We demon-
strate that our models predict small, but non-negligible deviations of the
fast rotators from the colour-colour relations of non-rotating stars. Identi-
fying these deviations in the highly-precise HST photometry of star clus-
ters might be perfectly possible, especially for very fast rotators seen nearly
equator-on. This was illustrated by comparing our predicted colour-colour
relations with those observed in the main sequence of the LMC cluster
NGC 1866, which is thought to contain a sequence of rapidly-rotating
stars. Our models suggest an upper limit of ω = 0.95 to the rotational ve-
locity of this sequence or, alternatively, that any stars rotating faster than
such a limit are seen nearly pole-on.

That said, the predicted deviations from the colour-colour relations of
non-rotating stars might be identifiable also in other future databases of
high-precision photometry, other than the HST one, at least for stars very
close to their critical break-up rotation. The basic observational require-
ment is having photometry with an accuracy of ∼ 0.01 mag in several

http://stev.oapd.inaf.it/cmd
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filters spanning the maximum possible wavelength range – and possibly
including at least one filter blueward of the Balmer jump, as illustrated
in this work. The future combination of very large databases accurate to
the millimagnitude level, such as Gaia + LSST + Euclid + WFIRST, might
provide such an interesting database for looking for very fast rotators in
the Milky Way. Of course, such a search might deal with a number of
complications, such as the intrinsic colour-colour spread caused by star-
to-star variations in metallicity and extinction, and the more subtle prob-
lem of distinguishing unresolved binaries from rotating stars. Therefore,
searches of these photometric effects should better start in star clusters, to
minimize metallicity and extinction variations.
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In this Chapter, I perform a comprehensive study of the stellar popu-
lations in the young Large Magellanic Cloud (LMC) cluster NGC 1866. I
combine the analysis of its best studied Cepheids with that of a very accu-
rate color-magnitude diagram (CMD) obtained from the most recent Hub-
ble Space Telescope (HST) photometry. I use a Bayesian method based on
new PARSEC stellar evolutionary tracks with overshooting and rotation to
obtain ages and initial rotation velocities of five well studied Cepheids of
the cluster.

This Chapter is organized as follows: In Section 7.2 I present the NGC
1866 data set and the Cepheid sample. In this section I also summarize
the statistical methods used. In Section 7.3 I give a brief description of
the new physics adopted in PARSEC and I present the new evolutionary
tracks and isochrone grids. In Section 7.4, I present the results obtained
from the Cepheids analysis, and compare the observed CMD with selected
isochrones. Finally, in section 7.5 I discuss the results and draw the con-
clusions.

https://arxiv.org/abs/1909.01907
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7.1 Introduction

NGC 1866 is one of the most populous young clusters in the Magellanic
Clouds. Its location in the Northern outskirts of the LMC disk, little af-
fected by interstellar dust and field stars, makes it one of the most inter-
esting clusters for testing intermediate-age stellar populations and, in par-
ticular, stellar evolutionary models with masses close to its turn-off mass
of 4− 5 M�. It contains not only a large number of evolved stars, but also
a extremely high number of Cepheid variables (more than 20, Musella et
al., 2016). Early studies of its CMD (Brocato, Castellani, and Piersimoni,
1994; Testa et al., 1999; Barmina, L. Girardi, and C. Chiosi, 2002) were
concentrated on discussing the efficiency of convective core overshooting
in intermediate-mass stars. More recently, the excellent photometry pro-
vided by the Hubble Space Telescope (HST), revealed new surprises, such
as the presence of extended main-sequence turn-offs (eMSTO) and a split
main sequence. The interpretation of these features are still under debate
in the community, but similar features are observed also in other clusters,
such as NGC 1844, NGC 1856 and NGC 1755 (Matteo Correnti et al., 2015;
D’Antona et al., 2015; Milone, Marino, D’Antona, Bedin, Da Costa, et al.,
2016; N. Bastian et al., 2017).

A recent study by Milone, Marino, D’Antona, Bedin, Piotto, et al. (2017)
demonstrated that these features are real, and can result from an unex-
pectedly high presence of fast rotators in the cluster. Fast rotators were
also detected directly, around the cluster turn-off, by spectroscopic mea-
surements of line broadening (Dupree et al., 2017).

Fast rotation is believed to contribute to the eMSTOs in clusters up to
much larger ages, until about 2 Gyr (Cordoni et al., 2018). There is how-
ever intense debate on whether such populous young and intermediate
age clusters also harbour multiple stellar populations, formed at different
ages (spanning more than a few Myr), and/or with different initial chem-
ical compositions (Niederhofer et al., 2017; Nate Bastian and Lardo, 2018;
Martocchia et al., 2018).

In the present work, I aim at reinterpreting the available data for NGC
1866, in the light of new PARSEC stellar models including rotation. In-
stead of looking at individual features in the CMD, like the split main
sequence (MS), eMSTO, and evolved stars, I seek to reinterpret the entire
available data, in particular exploiting Cepheids that have accurate pulsa-
tional mass determinations.

7.2 Data and methods

7.2.1 The NGC 1866 photometry

The NGC 1866 photometric data have been acquired through the Ultravi-
olet and Visual Channel of the Wide Field Camera 3 (UVIS/WFC3) and
the Advanced Camera for Surveys of the Wide Field Camera
(ACS/WFC) on board of the Hubble Space Telescope (HST). The cluster was
observed in the four passband filters F336W, F438W (from WFC3), F555W,
and F814W (from ACS). The data have been taken in programs GO-14204
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FIGURE 7.1: The F555W versus F336W − F814 CMD for
all the selected stars of the cluster (see text), corrected for
the effective magnitude zeropoints for each band, for a
true distance modulus of (m − M)0 = 18.43 mag and a
foreground extinction of AV = 0.28 mag (Goudfrooij et
al., 2018). The black arrow indicates a reddening vector
corresponding to AV = 0.1 mag for reference. The gray
shaded region indicates the Cepheids instability strip. The
luminosity and the effective temperature of the red and
blue strip are taken from Marconi, Fiorentino, and Caputo
(2004) and have been colored with the new YBC bolomet-
ric database available at http://stev.oapd.inaf.it/
YBC/ (Y. Chen and L. A. . Girardi, submitted to A&A). The
diagram clearly shows the MS split and the extended MS
turn off. The inset shows a zoom of the MS in which the
two main sequences are selected and coloured for indicat-
ing the bMS (in blue) and the rMS (in red, Milone, Marino,

D’Antona, Bedin, Piotto, et al., 2017).

http://stev.oapd.inaf.it/YBC/
http://stev.oapd.inaf.it/YBC/
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TABLE 7.1: Structural parameters of the Cepheids sample,
from Marconi, Molinaro, et al. (2013). [Fe/H] data from

Lemasle et al. (2017).

Name Mass [M�] log L [L�] Teff[K] [Fe/H]
HV 12197 4.6 ± 0.2 3.045 ± 0.012 5950 ± 12 −0.36 ± 0.03
HV 12198 4.2 ± 0.1 3.10 ± 0.01 6050 ± 12 −0.36 ± 0.03
HV 12199 3.5 ± 0.1 2.91 ± 0.01 6125 ± 12 −0.36 ± 0.03

We 2 4.31 ± 0.15 3.00 ± 0.01 5925 ± 12 −0.36 ± 0.03
V6 4.0 ± 0.1 3.03 ± 0.01 6300 ± 12 −0.36 ± 0.03

(PI: A. P. Milone) and GO-14069 (PI: N. Bastian), then, have been down-
loaded from the HST archive and reduced as described in Goudfrooij et
al. (2018). The catalog comprises ∼ 2 × 104 objects. Fig. 7.1 shows the
F555W versus F336W − F814W color-magnitude diagram (CMD). As al-
ready done in Chapter 6, we use of a broad wavelength baseline as colour,
to stretch out the MS and better identify its features, that in this case are:
the split-MS and the eMSTO. The inset shows a zoom of the MS region
with a subdivision of selected stars with photometric errors smaller than
0.05 mag in all filters, for the blue sequence (bMS) and the red one (rMS)
shown in blue and red points, respectively.

As already mentioned, the split-MS is a real feature of the cluster and
seems to be present in many young-intermediate star clusters. The case
of NCG 1866 has been studied recently by many authors (e.g. Milone,
Marino, D’Antona, Bedin, Piotto, et al., 2017; Goudfrooij et al., 2018), and
the common findings are that both rotation and different ages are required
to explain the double MS and the eMSTO at the same time. Rotation or the
spread in age alone are not able to reproduce consistently the data. Dif-
ferent authors found slightly different values for the metal content in the
cluster. Lemasle et al. (2017) in their spectroscopic analysis of a sample of
Cepheids in the cluster, found a very homogeneous chemical composition
of [Fe/H] = −0.36±0.03 dex, in agreement with previous measurement of
the red giant branch stars by Mucciarelli et al. (2011). The MS presents a
third main feature: its extension as a broad strip towards redder colours
and brighter magnitudes (the dark points in the inset of Fig. 7.1). This
feature corresponds to the well-known sequence of nearly-equal mass bi-
naries, which in practice spreads a fraction of the stars from the bMS and
rMS, up to a maximum upward excursion of 0.75 mag (see Haffner and
Heckmann, 1937).

7.2.2 Cepheids data

In this work, I adopt two complementary approaches to study NCG 1866.
Firstly, I analyze a sample of five Cepheids of the cluster, selected and
studied by Marconi, Molinaro, et al. (2013), with a Bayesian statistical
method. Later, I will fit the cluster features (the MS split and the eMSTO)
with new PARSEC isochrones described in Sec. 7.3.2 and 7.3.3.

The use of Cepheids is convenient for several reasons. First, these stars
are characterized by pulsational instabilities that have been extensively
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studied in the past decades, and the physical mechanisms behind their pe-
riodical nature are well known. Thanks to very accurate pulsational mod-
els it is possible to derive their intrinsic stellar properties (in particular,
the pulsational mass, the luminosity, the photospheric radius and the Teff)
with a very good precision. Another reason concerns the rotation proper-
ties. Since evolved single stars are in general slow rotators, their surfaces
are not significantly distorted by the centrifugal forces. Hence, the differ-
ence in temperature between the poles and the equator is negligible, and
their position in the HR diagram does not depend on the inclination of
the rotation axis with respect to the line of sight. As shown in Figure 6.1
of Chapter 6, non negligible effects of the rotation in the stellar geometry
start to arise for ω > 0.5, where ω = Ω/Ωc and Ωc is the angular velocity
of rotational break-up.

Table 7.1 lists the intrinsic properties given by the Marconi, Molinaro,
et al. (2013) analysis, performed by a data fitting procedure with non-
linear convective pulsation models. Their models are computed taking
into account a mild core overshooting. Their data are multi-filter pho-
tometric light curves and radial velocity measurements for the selected
Cepheids. The table is complemented with the mean metal content de-
rived by Lemasle et al. (2017) for several Cepheids of NGC 1866.

The data in Table 7.1 show that four Cepheids have a mass slightly
greater than 4 M�, and one has a mass of M = 3.5 M�. Assuming that all
the stars belong to the same stellar population, it is surprising to see such a
large range of masses for evolved stars, taking into account the associated
small errors in the pulsational mass determination. One possible solution
is that HV12199, the star with lower mass, lost part of its mass during its
previous evolution (Marconi, Molinaro, et al., 2013). However this is diffi-
cult to explain in the framework of a common mass-loss rate formulation
for the red giant stars. Alternatively, Cepheid HV12199 could be the result
of a particular binary evolution history. However this would require a
fine tuning for HV12199 to loose only a small fraction (about 0.5 M�) of its
external envelope that, for an evolved star of 4 M�, is of about 3 M�. An-
other possibility is that HV12199 really belongs to a population older than
the other Cepheids and hence it has a lower post main sequence mass. I
will investigate this possibility in more detail in the following sections.

7.2.3 The Bayesian statistical analysis

The Cepheids data are analyzed by means of new stellar evolutionary
models1, using a full Bayesian statistical analysis. I use the PARAM code
(da Silva et al., 2006b; T. S. Rodrigues et al., 2014b; Thaíse S. Rodrigues et
al., 2017) to obtain the posterior joint probability density functions (JPDFs)
that depend only on three parameters, that are the metallicity [Fe/H], the
age, and the initial rotation rate, ωi, of the stars. As prior functions I adopt:

1. a flat prior on age, that is, all ages between minimum and maximum
values of 3.0 × 107 yr and 9.8 × 108 yr are assumed to be equally
likely;

1That will be presented in the next section.
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FIGURE 7.2: Comparison between sets of tracks computed
with and without mass loss, for different initial rotation
velocities. The dotted gray line indicates the sets without
rotation. The dashed lines are the models with ωi = 0.60

and the solid lines indicate tracks with ωi = 0.90.

2. similarly, a flat prior on the initial angular rotation rate parameter
ωi, between values of 0 and 0.95;

3. a mass distribution given by the initial mass function from Kroupa
(2002).

In Section 7.4 I will present the results of the analysis for each star, and
I will discuss about the possible belonging to the same stellar population
of the Cepheids, hence assuming a common age and metallicity content.
In that case, I combine the different JPDFs to obtain the corrected JPDF
(cJPDF). The cJPDF of each star will share the age and the metal con-
tent with the other without having any constraints on their initial rota-
tion rates, ωi. In Chapter 5 there is a detailed description of the statistical
method, and how the computation of the cJPDFs is done.

7.3 The PARSEC models with rotation

7.3.1 New prescriptions

In this analysis, I use the PARSEC V2.0 to compute models of rotating stars.
The detailed descriptions of these features can be found in Chapter 2, 3
and 4. Here, I use the most recent nuclear reaction network implemented
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velocity (see text).

in PARSEC, that now consists of 33 isotopic elements, from Hydrogen to
Zinc, and in total there are 72 reactions.

Since in this work I compute rotating tracks with ωi > 0.90, I take into
account for the mass loss also for models less massive than 12 M�. The
implementation of this effect in PARSEC, is fully described in Chapter 4.
Figure 7.2 shows a comparison between sets of tracks with and without
the inclusion of the mass loss, for ωi = 0.60 and 0.90. For stars below
about 2.4 M�, the tracks show no differences in the HR diagram, while for
models with masses above that value, the differences between the two sets
start to be significant. For these models, the presence or not of the mass
loss does not seem to affect the extension of the blue loops.

At variance with the work presented in Chapter 5, I adopt a new strat-
egy to assign the initial angular rotation rate to the star. In the former
method the initial rotation rate is assigned when the star reaches the zero
age main sequence (ZAMS) in a single time-step. With the new method
the angular velocity is increased in time, starting from few time-steps be-
fore the ZAMS (about 40 time-steps, corresponding to ∼ 2 Myr in case
of a 4 M� star with ωi = 0.60). If the desired ωi is reached before the
ZAMS, I do not allow ω to grow above that value. After that the ZAMS
is reached, this condition is relaxed, and the angular velocity is let free
to evolve. This new approach allows to have tracks that smoothly reach
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the new ‘rotating’ ZAMS without big jumps between the not rotating pre-
main sequence (PMS) and the rotating MS. This is shown in Fig. 7.3 for a
4 M� star. With the new method a 4 M� star at the “rotating” ZAMS with
ωi = 0.60 has ingested an angular momentum that differs less than the 0.3
per cent with respect to the previous method. The following evolution is
not affected by this different approach.

7.3.2 Evolutionary tracks and isochrones

The new sets of evolutionary tracks are computed with a mass range span-
ning from 1.5 M� to 7 M�. I used solar-scaled mixtures based on Caffau et
al. (2011) solar composition, with values of initial metal content Z = 0.004,
0.006, 0.008, 0.01, and with the respective values of helium content being
Y = 0.256, 0.259, 0.263, 0.267. These values and the adopted fixed mix-
ing length parameter, αMLT = 1.74, have been obtained from the solar cal-
ibration performed by A. Bressan, P. Marigo, et al. (2012). The magnetic
braking and the surface magnetic effects are not taken into account in this
work.

For each metallicity set, I computed tracks with varying initial rotation
rate values, that are ωi = 0, 0.30, 0.60, 0.80, 0.90, 0.95. All the tracks are
computed with a fixed core overshooting efficiency parameter, λov = 0.4,
as suggested by the analysis performed in Chapter 5. As discussed before,
the evolutionary tracks are computed with mass loss to handle cases with
high rotation rate (ω > 0.80). The mass loss will not influence the MS evo-
lution in case of low mass and slow rotation rates. For instance, in case of
a 1.5 M� star with ωi = 0.30, the mass at the base of the red giant phase is
0.01 per cent smaller than its initial mass (I find similar values regardless
the metallicities considered). Fig. 7.4 shows a comparison between mod-
els computed with different initial rotation rates, for models with selected
masses and metallicity. Depending on the mass, the effect of rotation is
slightly different. In the case of low mass stars (1.5 M�), the prevailing
effect induced by rotation is the geometrical distortion, that depending on
the ω, takes the track to run in the HR diagram at lower temperatures (dur-
ing the MS) with respect to the non-rotating case. In the giant phase, the
surface angular velocity of the star drops down, due to the conservation of
the angular momentum, and the rotating track runs almost superimposed
to the non-rotating one. In the case of intermediate mass stars, the mixing
induced by rotation starts to play a more and more important role as the
mass and the rotation rate increase. The rotational mixing, acting in the
radiative regions of the stars, provides fresh fuel to the burning core and
transports the processed material to the stellar surface. The extra-mixing
causes the stars to be more luminous and to build up bigger He-cores at
the end of the MS than the correspondent non-rotating models. Thus, the
tracks of rotating stars run on the Hertzsprung gap at higher luminosi-
ties than non-rotating ones, mimicking luminosities of more massive non-
rotating stars. Rotating stars live longer in the MS phase and for instance,
in the case of a 6 M� star model (with Z = 0.004), the MS lifetimes are 62,
74, 82 and 89 Myr for ωi = 0.0, 0.60, 0.80 and 0.95, respectively.

The core He-burning (CHeB) phase is also influenced by the rotation,
for both the different mass of the Helium core (built during the MS phase)
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(Marconi, Fiorentino, and Caputo, 2004).

and the enhanced mixing acting during the phase. I note that from the
models, the position and the extension of the blue loops – typical features
of intermediate mass stars during the CHeB phase – in the HR diagram is
affected by rotation. As ωi increases, the blue loops become less extended
and the CHeB lifetimes decreased. In particular, for the case of the 6 M�
star model (with Z = 0.004), the CHeB lifetimes are 6, 5, 4 and 3 Myr for
ωi = 0.0, 0.60, 0.80 and 0.95, respectively. The extension of the blue loop
due to different rotations plays a crucial role in determining the number
of Cepheids in the CHeB phase. In Figure 7.5 I show selected tracks of a
4.2 M� star, with different rotation rates and with Z = 0.008. The chosen
mass is the average mass of the stars in Table 7.1 excluding HV12199. The
gray shaded area in the plot indicates the Cepheids instability strip, and
it can be easily seen how the blue loops of the tracks cross only once or
multiple times the strip, depending on the ωi. From the comparison, I
may already expect that the number of Cepheids belonging to initially
slow rotating populations, with a turn-off mass and a metallicity similar to
those selected for the plot, should be higher than the number of Cepheids
that belong to an initially fast rotating population. This argument will be
further discussed in Sec. 7.5.

In order to obtain finer grids of tracks to perform our analysis, the sets
are interpolated in metallicity, mass, and ωi. In Chapter 5 and references
therein there are details on the method of interpolation. This method let us
to obtain well-behaved isochrones. Figures 7.6 and 7.7 show an example
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FIGURE 7.7: As in Figure 7.6 but with Z = 0.01.
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of HR diagrams of four selected evolutionary tracks sets over-plotted with
the correspondent isochrones selected in age. These sets of tracks are used
as inputs for the Bayesian analysis.

7.3.3 Gravity Darkening and Color-Magnitude Diagram

As discussed before, rotation induces a distortion of the star shells, which
become more and more oblate as the ω increases. At the critical veloc-
ity, Ωc, the equatorial radius of the star is 1.5 times bigger than the polar
one. This effect is due to centrifugal forces that reduce the effective grav-
ity along the surface, depending on the co-latitude angle, θ (with θ = 0◦

aligned with the rotation axis). Since the local effective temperature is pro-
portional to the local effective gravity, the Teff(θ) of a rotating star is not
constant along the surface. This effect is known as gravity darkening and
was firstly described by von Zeipel (1924). It is discussed in detail in Chap-
ter 3 and 6. Such dependence of the Teff on the co-latitude, introduces a
new variable in the computation of the total flux emitted by a star, i.e. the
inclination angle, i, of the star rotation axis with respect to the observer
line of sight.

To compute the isochrones in the HST/WFC3 photometric system I
use the TRILEGAL code (L. Girardi, Groenewegen, et al., 2005; P. Marigo,
L. Girardi, A. Bressan, et al., 2017), that has been recently updated as dis-
cussed in Chapter 6 and in the work by Y. Chen and L. A. . Girardi (sub-
mitted to A&A), to include the effects of the gravity darkening on rotating
stars. The equations of Espinosa Lara and Rieutord (2011) are adopted to
calculate the emitted flux depending on the current surface ω and inclina-
tion angle of the star. The new tables of bolometric corrections (BC) used
by TRILEGAL, are part of the YBC database and interpolating routines by
Y. Chen and L. A. . Girardi (submitted to A&A). An online version of
the tool can be found at http://stev.oapd.inaf.it/YBC/. Figure 7.8
shows an example of selected isochrones with different initial angular ve-
locity and with two different ages (100 Myr and 300 Myr). The plot shows
the effect of the gravity darkening depending on different rotations. The
most evident feature is the very different brightness and color shown by
highly rotating stars in the turn off. If stars in a cluster do not have a pre-
ferred angle of inclination, but a distribution of various inclination, high
rotating stars could populate such region of the HR diagram creating the
eMSTO, which is a feature commonly observed in young to intermediate-
age star clusters (Milone, Marino, D’Antona, Bedin, Piotto, et al., 2017).
The possible alignment of stellar spins in a cluster (Corsaro et al., 2017) is
still controversial (Mosser et al., 2018).

7.4 Results

7.4.1 Bayesian analysis

The results from the PARAM code are three dimensional (3D) JPDFs of age,
ωi and [Fe/H] for each Cepheid. The JPDFs are returned by our Bayesian
analysis, that is performed adopting the value of σ of each parameter
given in Table 7.1, for each star.

http://stev.oapd.inaf.it/YBC/
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Our first step is to check if the stars belong to the same population,
hence I look at their metallicity and age marginalized 1D-PDFs. Figure 7.9
shows the 1D-PDFs of age and metallicity of the stars in the top and bot-
tom panels, respectively. The PDFs show a good agreement in both age
and metallicity distributions, with the only exception of the Cepheid HV12199.
This star deviates from the trend of the others, and it seems to be older
and metal poorer. Even more, I note that its 1D-PDF in age is clearly bi-
modal. As already anticipated (see Sec. 7.2), HV12199 is the less massive
star in the sample by Marconi, Molinaro, et al. (2013), and it was found
to be slightly more luminous than the luminosity predicted by the theo-
retical mass-luminosity relation (MLR) used as comparison in their work
(see their Figure 10). They ascribed such over-luminosity to possible ef-
fects induced by mass loss. Assuming that all stars belong to the same
population, i.e. same age and metallicity for all the stars, I may compute
the combined PDFs (1D-CPDF) in age and metallicity with the product of
the five 1D-PDFs. It is immediately apparent in the left-hand panel, that
the combined distribution in the case of the age is flat and almost zero at
all ages. In other words, there are no models that can fit at once HV12199
and the other four Cepheids. On the contrary if I exclude HV12199, the
combined 1D-CPDF shows a well defined age peaking at 176 Myr, as
can be seen from the left panel of Figure 7.9. These four stars, that are
younger than the ages provided by the 1D-PDFs of HV12199, will be re-
ferred to in the followings as the young Cepheid population. As far as
the metallicity is concerned, both the combined PDFs (computed with all
the five stars, and the one computed excluding HV12199) peak at about
[Fe/H] = − 0.35, indicating that the observed data are less sensitive to
differences in the metal content. This preliminary analysis already sug-
gests that the Cepheid HV12199 may belong to a different population.

I now marginalize the 3D-JPDFs with respect to the metallicity, in or-
der to obtain the 2D-JPDFs on age and rotation. Then, I constrain the 2D-
JPDFs of the young Cepheid population to follow their combined 4-star
CPDF age distribution shown in the left panel of Figure 7.9. An example
of the resulting 2D corrected JPDF of the Cepheid HV12198 is shown in
the bottom-left panel of Figure 7.10. The coloured contours indicate arbi-
trarily chosen levels of the cJPDF, that are 50 per cent (the darker), 10 per
cent (the intermediate) and 1 per cent (the lighter) of the maximum value
of the cJPDF. The top-left and bottom-right panels show the 1D marginal-
ized PDFs on ωi and age, respectively. As suggested by T. S. Rodrigues et
al. (2014b), I choose the peaks of the marginalized 1D PDFs (the mode, in-
dicated by the dotted lines) as best values and I select the smallest interval
around the mode that contains the 68 per cent of the distributions as the
credible intervals (CIs, indicated by the shaded areas). The best value and
the CIs are represented by the square and the black error bars in the 2D
JPDF plot (the bottom-left panel). I remind that the selected best value is
not the peak of the 2D JPDF, however this point is inside the chosen CIs in
each distribution. The only difference between the age PDF shown in the
bottom-right panel and the combined four stars age distribution shown
in Figure 7.9, is that the first PDF has been obtained from the 2D corrected
JPDF after the normalization to its maximum. Hence, while the absolute
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FIGURE 7.10: An example of selected 2D-cJPDF as a func-
tion of age and ωi for the Cepheid HV12198. In the
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TABLE 7.2: Resulting values of the initial angular rotation
rates and the age for each Cepheid.

Cepheid Name ωi Age [Myr] [Fe/H]
HV12197 0.00+0.24

−0.00 148+26
−3 -0.34+0.02

−0.04
HV12197corr 0.31+0.05

−0.16 176+4
−6 -0.35+0.01

−0.02
HV12198 0.37+0.07

−0.20 164+14
−9 -0.35+0.03

−0.03
HV12198corr 0.37+0.06

−0.05 176+4
−6 -0.35+0.01

−0.02
We2 0.00+0.24

−0.00 180+5
−19 -0.34+0.02

−0.04
We2corr 0.20+0.09

−0.12 176+4
−6 -0.35+0.01

−0.02
V6 0.20+0.10

−0.10 174+6
−6 -0.36+0.02

−0.03
V6corr 0.18+0.11

−0.08 176+4
−6 -0.35+0.01

−0.02
HV12199CS−1 0.13+0.03

−0.09 202+3
−5 -0.40+0.01

−0.03
HV12199CS−2 0.89+0.06

−0.06 288+17
−23 -0.36+0.02

−0.04

values are different, the shape, the derived best value and the credible in-
tervals of the two distributions are exactly the same.

Table 7.2 lists the resulting best values and the correspondent CIs for
the selected Cepheid, both for the non-corrected and the corrected JPDFs
(except for the star HV12199, that will be further discussed below). The
common age of the four Cepheids obtained is 176+4

−6 Myr, and the com-
mon metallicity is [Fe/H] = −0.35+0.01

−0.02. I remark that these four young
Cepheids have slow initial rotation rates (even taking into account the
CIs). Figures 7.11 and 7.12 show the comparison between the Cepheids
data and selected isochrones in age, ωi, metal content and mass (values
and CIs listed in Table 7.2). Each panel shows the best fitting isochrone for
the different stars, excluding HV12199, adopting the best value of [Fe/H]
found in the analysis. The plot shows that the four Cepheids are all in the
Core Helium Burning (CHeB) phase. It is worth noting that the obtained
small rotation rates are also in agreement with the ability of the corre-
sponding models to produce more extended blue loops that can reach and
cross the instability strip, as discussed in Sec. 7.3.2 and illustrated in Fig-
ure 7.5.

As far as the star HV12199 is concerned, in Figure 7.13 I show the 2D-
JPDF, obviously not constrained by a common age. The 2D distribution
displays two well-detached regions (or classes) of solutions, which are an-
alyzed separately. The first one (from now on CS-1) peaks at slow initial
rotation rates with an age of about 200 Myr and metallicity of −0.40 dex
(Z ∼ 0.006). The second region, instead, is centered at high ωi and older
ages (∼290 Myr), with a metallicity of [Fe/H] = −0.36. I will refer to this
solution as CS-2. The best values of the two classes and their correspon-
dent CIs are shown in the lower section of Table 7.2. Both solutions give
ages different from the common age found for the young Cepheid popu-
lation, in particular, the second case (∼ 290 Myr). As concern the metal-
licities, CS-1 peaks at a lower [Fe/H] with respect to the common metallic
content, while CS-2 is in agreement within the CIs.

In Figure 7.14 I compare the location of HV12199 in the HR diagram
with the isochrones corresponding to the two different classes of solutions.
The left-hand panel shows the isochrones selected for the CS-1 case, while
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FIGURE 7.11: Comparison between the Cepheids
(HV12197 and HV12198) data and isochrones selected
from the best values obtained from the Bayesian analysis.
In each panel the red point with the error bars is the se-
lected Cepheid, while the gray points are the other stars.
The error bars are plotted using 3 σ. The blue isochrone
represents the best fitted values from the analysis, with
age and ωi indicated in Table 7.2. The black and orange
lines are the most and less luminous isochrones within the
CIs, respectively. The continuous lines indicate the mass
within 3σ of the errors in Table 7.1, while the dotted lines
indicate the part of isochrones with a mass that is outside
the 3σ interval. To highlight the different evolutionary
speed along isochrones, we plot black vertical markers at

intervals of ∆M = 0.01 M�.
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and V6.
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FIGURE 7.13: 2D-JPDF as a function of age and initial ro-
tation rate for the Cepheid HV12199. The contours are
coloured for different levels of the JPDF as in Figure 7.10.
The squares and the error bars indicates the two mode val-

ues of the two classes of solutions.

the right-hand panel shows the isochrones selected for the CS-2 case. The
isochrones are selected using the best value of [Fe/H] for each solution. In
the CS-1 case HV12199 is in the CHeB phase while, the CS-2 case favours
a position in the Hertzsprung Gap phase. Such analysis explains why in
Figure 7.13, and in the left-hand panel of Figure 7.9, the second solution
(CS-2, with higher ωi, cluster metallicity and older ages) is less likely than
the first one (CS-1, with lower ωi, lower metallicity and younger ages). In-
deed intermediate-mass stars spend the bulk of their post main sequence
lifetime in the CHeB phase. The other advanced evolutionary phases are
much shorter. In particular a 4 M� star spends only a few 105 years on the
Hertzsprung Gap phase, which is about a factor ten shorter than the time
spent on the CHeB phase. I note however that, in our Bayesian analysis
we explore a parameter space of intervals of 3-σ for each value given in
Table 7.1 and, if restrict the computation to only 1-σ around the observed
values, the CS-1 solution disappears leaving only the CS-2 solution.

This said, I will keep both solutions and discuss now the fit of the CMD
data.

7.4.2 Colour Magnitude Diagram

In this Section I analyze the observed CMD of NGC 1866 in the light of
our previous results. In particular I compare isochrones with ages, metal-
licities and initial rotation rates derived from the analysis of the Cepheids
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FIGURE 7.14: As in Figure 7.11. In the top panel there is
the first class of solution (CS-1), with isochrones with slow
initial rotation rates and ages around 202 Myr. The bot-
tom panel shows the second class of solution (CS-2), with
isochrones with high rotations and ages around 288 Myr.
Values selected from Table 7.2. In the right-hand panel the
red vertical markers in the Hertzsprung gap indicate inter-

vals of ∆M = 0.0005 M�.
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shaded area indicates the Cepheids instability strip.
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properties, with the CMD of the NGC 1866 cluster. I stress that our com-
parison is not the result of a best fit procedure to the observed data. In-
stead, I simply superimpose the selected isochrones to the data adopting
distance and reddening as derived by an independent fit performed with
PARSEC V1.2s in a previous paper, (m−M)0 = 18.43 mag and AV = 0.28
mag, (Goudfrooij et al., 2018). I use a young population of slowly ro-
tating stars with age of 176 Myr and metallicity [Fe/H] = −0.35, corre-
sponding to the young Cepheid population. The initial rotational velocity
is the mean value determined for the four Cepheids, ωi = 0.27 (see Ta-
ble 7.2). As for the Cepheid HV12199, I use isochrones corresponding to
the CS-1 and CS-2 solutions. For the CS-1 solution I adopt ωi = 0.13, age
of 202 Myr and metallicity [Fe/H] = −0.40. The CS-2 solution is repre-
sented by ωi = 0.89, age of 288 Myr and metallicity [Fe/H] = −0.36. In all
cases the isochrone are plotted for two extreme values of the inclination
angles, i = 0◦, i = 90◦. However, as shown in Figure 7.8, the effects of the
gravity-darkening below a rotation rate of 0.6 are almost negligible, hence
even though these effects are taken into account and plotted in Figure 7.15,
they produce indistinguishable results in the slow rotating isochrones.

Figure 7.15 shows the comparison of the above selected isochrones
with the observed data in the CMD of NGC 1866. As can be seen from the
figure, the isochrones representing the young Cepheid population (176 Myr,
[Fe/H] = −0.35, i = 0◦, i = 90◦, blue colour) nicely reproduces the bluest
part of the MS. I also see that the bluest part of the MS may be well re-
produced by the isochrone that corresponds to the CS-1 solution. I note
that, as expected, the CS-1 isochrone does not reproduce the location of
the other fours Cepheids simultaneously. The isochrone selected from the
CS-2 solution reproduces very well the turn-off of the cluster and the red
MS but, as it can be seen from the inset, the lower red MS is not reproduced
perfectly.

In summary, I have shown in this Section that, using stellar popula-
tions with parameters determined by the Bayesian analysis of well-studied
Cepheids in NGC 1866, I can nicely reproduce the main features of its
CMD. Better fits could be likely achieved by using isochrones parameters
that represent a range of ωi and/or [Fe/H] values selected within the en-
tire CIs of the solution. This will be done in a future investigation together
with full CMD simulations.

7.5 Discussion and Conclusions

In this Chapter, I analyze the evolutionary properties of five Cepheids in
the young cluster NGC 1866 with extensively studied pulsational proper-
ties. A Bayesian analysis based on new grids of evolutionary tracks shows
that it is very unlikely that all the five Cepheids belong to the same stel-
lar population. The age distribution of HV12199 obtained with normal
single star evolutionary models is clearly differentiated from that of the
other four Cepheids. In order to bring HV12199 in agreement with the
other four Cepheids it should have lost about 0.5-0.7 M�. The mass lost
is too large in the case of single stellar evolution, as shown by the other
four stars. In the case of binary evolution, since the the external envelope
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of a 4 M� is of about 3 M�, the lost mass would require a fine tuning of
the binary parameters. These considerations led us to the conclusion that
the two group of Cepheids are representative of two different populations
harbored by NGC 1866. I find that four Cepheids are likely descendant
of a population of initially slow rotating stars (with ωi ≤ 0.4), an age of
176+4
−6 Myr and a [Fe/H] = − 0.35+0.01

−0.02. Instead, for HV12199 I find that
possible solutions are either a 202+3

−5 Myr old slowly rotating population
with [Fe/H] = − 0.40+0.01

−0.03, or a 288+17
−23 Myr old and initially fast rotating

(ωi ∼ 0.90) population, with [Fe/H] = − 0.36+0.02
−0.04, named CS-1 and CS-2,

respectively.
The existence of such a range of ages for NGC 1866 Cepheids is not

new. In fact, while Musella et al. (2016) favor a single population with an
average age of 140 Myr, significant age differences have been already re-
ported in literature. Lemasle et al. (2017), using the period-age relations
of non-rotating (Bono et al., 2005) models find ages between 95 Myr and
115 Myr while, using rotating models (Anderson et al., 2016), find ages
between 180 Myr to 250 Myr. This differences may be due to the various
prescriptions adopted for the non-rotating models (in their case without
the core overshooting), and for the rotating ones (they adopted a veloc-
ity of ωi = 0.5). Interestingly I note that, the age found in their work for
HV12198 (about 184 Myr) adopting ωi = 0.5, is very close the common
age (176+4

−6 Myr) I have adopted in this work for our four slowly rotating
Cepheids.

Remarkably, the observed CMD has clear signatures of multiple stel-
lar populations. The presence of at least two different stellar populations
in NGC 1866 with different rotational properties has been already sug-
gested e.g. by Milone, Marino, D’Antona, Bedin, Piotto, et al. (2017) and
Goudfrooij et al. (2018), seen in Chapter 6, and corroborated even by direct
spectroscopic observations of the stars in the eMSTO (Dupree et al., 2017).
Here, I find that the isochrone corresponding to the slowly rotating young
Cepheids population reproduces almost perfectly the blue main sequence
of NGC 1866. The isochrone corresponding to the fast rotating population
derived for HV12199 (CS-2) reproduces very well the observed red main
sequence in the CMD. Near the cluster turn-off this sequence widens into
a strip that is nicely fitted by taking into account the gravity darkening
effects caused entirely by the relative inclination of the rotation axis with
respect to the line of sight. The alternative case of a slow initial rotation
for HV12199 (CS-1) corresponds to an isochrone which is almost superim-
posed to the blue sequence. I stress once again that the isochrones shown
in Figure 7.15 are not best fits to observed sequences but simple plots of
the best solutions found for the Cepheids.

A striking feature in the CMD of NGC 1866 is that the red main se-
quence becomes bluer than the model isochrone at decreasing luminos-
ity. Since these stars are not significantly evolved the differences between
non rotating and fast rotating models must originate from the geometri-
cal effects alone. This could be an indication that these effects are not yet
properly modelled or, on the contrary, that the initial rotational properties
depend on the stellar mass (Goudfrooij et al., 2018).

Concerning the inclination angles of fast rotators in NGC 1866, I re-
mind that, in a recent analysis of the two open clusters NGC 6791 and
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NGC 6819, Corsaro et al. (2017) found a strong alignment between the
cluster rotation axes and the stars rotation axes thus claiming that this
could have been a general feature in star clusters. However this was not
confirmed by more recent asteroseismic studies of the same clusters (per-
formed by Mosser et al., 2018) where, instead, a stochastic dispersion of
the stellar inclination angles has been found. I have seen in this work that
the eMSTO of NGC 1866 is very well explained by different inclinations of
the old fast rotating stars, in agreement with what found by Mosser et al.
(2018).

The Bayesian analysis shows that, at maximum, only one over five
Cepheid studied descends from initially fast rotating stars. It is interest-
ing to see whether this is in contrast with the claim that about 2/3 of the
MS stars in NGC 1866 are fast rotators with ωi = 0.90 (Milone, Marino,
D’Antona, Bedin, Piotto, et al., 2017). To this purpose I need to properly
account for the evolutionary time spent by the stars within the instability
strip. In fact, at turn-off masses typical of NGC 1866, evolutionary tracks
with high initial rotations have much less extended blue loops and are
not able to cross the Cepheids instability strip during central He-burning
(see Figure 7.5). In this case the tracks cross the instability strip only dur-
ing the Hertzsprung Gap in timescales that are much shorter than those
of the CHeB phases, disfavouring the Cepheids phase. To better clarify
this point I have quickly estimated the relative number of Cepheids ex-
pected from two stellar populations corresponding to the ones highlighted
by our analysis. I use the two isochrones representative of the slow rotat-
ing young population (with a ωi = 0.27 and with an age of 176 Myr) and of
the the fast rotating old population (the CS-2 solution, with ωi = 0.89 and
288 Myr). The number of stars in a the Cepheid phase can be expressed as

N ∼
K

∑
j=1

∫
∆MJ

Φ(Mi) δMi (7.1)

where K is the number of times that the isochrone crosses the instability
strip, ∆MJ is the interval of mass within the strip for each cross, Φ(Mi)
is the initial mass function (IMF), and Mi is the initial stellar mass. Us-
ing a Salpeter (1955) IMF and taking into account that, following Milone,
Marino, D’Antona, Bedin, Piotto, et al. (2017) the ratio between the two
populations in the MS is 1/2, I find that the ratio between the fast ini-
tially rotating and the slow rotating Cepheids expected in NGC 1866 is
Nfast/Nslow ∼ 1/20, thus showing that initially non rotating Cepheids are
by far more likely to be observed. Thus the paucity of initially fast rotating
Cepheids with respect to the non rotating ones (1/5) I have found, is not
in contrast with the results of Milone, Marino, D’Antona, Bedin, Piotto, et
al. (2017), once proper accounting is done of the evolutionary time spent
within the instability strip.

I have already anticipated that the distance modulus adopted in this
work, obtained by a fitting procedure on more recent HST photometry of
the cluster, is about 0.13 mag smaller than the one obtained by Marconi,
Molinaro, et al. (2013). However, both distance modulus agree within their
total errors, i.e. within the sum of the systematic and the statistic errors
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provided. I remind that the errors adopted in our Bayesian analysis cor-
respond to three times the statistic errors provided by Marconi, Molinaro,
et al. (2013) for the structural parameters of the Cepheids and, from our
analysis, I obtain ages that consistently fit the MS-split and eMSTO adopt-
ing the shorter distance modulus (see Fig. 7.15). It is also worth recalling
that the mass difference between the Cepheid HV12199 and the others, is
independent on the distance modulus obtained by Marconi, Molinaro, et
al. (2013).

I stress here that in order to be fully consistent, the pulsational anal-
ysis should be performed using the same input physics adopted in our
evolutionary models, which however is beyond the goal of this work.
Anyway, to get a first order estimation of the possible effects due to the
adoption of different models for the pulsational analysis, I make use of
the period-mass-luminosity-effective temperature (PMLTeff) relation by
C. Chiosi, Wood, and Capitanio (1993, their equation 4). By differenti-
ating such relation and assuming that the uncertainties in the period and
the Teff are negligible (see Tables 1 and 2 of Marconi, Molinaro, et al., 2013),
I obtain that δ log M

δ log L ∼ 1. For example, a variation of the luminosity of say,
the 10 per cent, due to different input physics such as a different adopted
mixing scheme, different opacities, etc., should correspond to a mass es-
timation that differs of the same order. I also remind here that, in our
Bayesian analysis I adopt an uncertainty on the observed quantities which
is three times the standard deviation given by Marconi, Molinaro, et al.
(2013).

As a final consideration I note that from a Bayesian analysis of Cepheids
data based on a large grid of stellar models with varying initial masses,
rotational velocities and metallicities, I are able to obtain the ages of the
two main populations of NGC 1866 that clearly stand out in its CMD.
The older population is composed of fast rotating stars while the younger
population is made by slowly rotating stars. Their metallicity is almost
identical. First of all this finding shows that, in agreement with Milone,
Marino, D’Antona, Bedin, Piotto, et al. (2017) and Dupree et al. (2017), the
observed properties of NGC 1866, and likely of similar clusters, results
from a complex mixture of physical effects that include both rotation and
age dispersion. A combination of these two effects seems to be a neces-
sary ingredient to correctly interpret the clusters formation and evolution.
Second, the characteristics of the main stellar populations suggest a well
defined evolutionary scenario for the cluster. A first burst generated the
older population that inherited the initial angular momentum from the
progenitor clouds, and now hosts the biggest fraction of the initial global
angular momentum content. After about 130 Myr another generation of
stars forms out of the gas that has already lost memory of the initial an-
gular momentum. The stars of this younger generation are thus mainly
slow rotators. The metallicity remain almost unchanged as can be derived
from the [Fe/H] content of the two populations. A similar scenario has
been already suggested by Dupree et al. (2017), however with a signifi-
cant difference in the age of the older population that in their case is of
about 200 Myr instead of 290 Myr that I have found. It is also interesting
to note that this scenario has similarities with the one suggested for the
formation of multiple populations in old globular clusters by Decressin
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et al. (2007) and Charbonnel et al. (2013). In short, these authors suggest
that the anomalies presently observed in the low-mass stars of old GCs,
result from the ejecta enriched in H-burning products, of a first generation
of fast-rotating massive stars. Indeed, a similar population of fast-rotating
massive stars could also have been present in NGC 1866, but what remains
at the present age is just its related population of intermediate-mass stars,
with ages clearly older than the non-rotating population. Such a first gen-
eration of fast-rotating stars, if confirmed in more clusters, could provide
an interesting avenue for the interpretation of multiple populations as a
whole, including the old globular clusters.

To improve our analysis a first step would be to enlarge the sample
of well studied Cepheids in NGC 1866 possibly exploiting the full popu-
lation of about 24 objects. Furthermore, given the age differences found
by different authors for the stellar populations in NGC 1866, it should be
also important to compare the different models and check whether these
differences can be ascribed only to models or also to some different initial
assumptions, e.g. the amount of convective overshooting, the efficiency of
the rotational mixing or the possible presence of the magnetic braking.

At the same time it could be worthy to perform a full analysis of the
CMD of this and other similar clusters in an attempt to better constrain
the distributions of initial rotational velocities, stars spin alignments, ages,
and metallicities in these clusters.

All those considerations call for further efforts from both the observa-
tional and the theoretical sides.
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Chapter 8
Conclusion

In summary, my work has been developed in a few steps/parts. In the first
one I implemented the main rotation effects into our 1D stellar evolution-
ary code PARSEC. With this new version of PARSEC I can follow the evolu-
tion of rotating stars with a range of masses from 1.5 M� to about 350 M�,
and with initial rotation rates up to ωi = 0.99. In Chapter 3, I discussed how
the geometrical distortion due to the centrifugal forces is included in the
stellar structure equations and the stellar surface equations. In Chapter 4,
I described how the transport of angular momentum and the extra mix-
ing of the chemical elements induced by rotation are included in the code.
The transport of momentum is solved adopting a fully-implicit diffusive
scheme, and the diffusive coefficient is computed taking into account for
the two main rotation instabilities, that is the meridional circulation and
the shear friction instability. Another important effect included in the code
is the mass loss enhancement. Since rotation lowers the surface gravity, the
mass loss of a rotating star is higher with respect to its correspondent non
rotating star. The efficiency of the rotation mixing is controlled trough two
parameters, that has been calibrated using the results of Brott, de Mink,
et al. (2011). Such calibration is a fundamental step since different combi-
nations of the two parameters can significantly change the evolution of a
rotating star with the same initial parameters, as shown in Section 4.5.

In Chapter 5, I investigated on double-line eclipsing binaries (DLEBs)
that have been recently used to constrain the amount of central mixing as
a function of stellar mass, with contrasting results. In this project, I rean-
alyzed the DLEB sample by Antonio Claret and Guillermo Torres (2018),
using a Bayesian method and new PARSEC tracks that account for both
convective core overshooting and rotational mixing. Using overshooting
alone I obtained that, for masses larger than about 1.9 M�, the distribution
of the overshooting parameter, λov, has a wide dispersion between 0.3 and
0.8, with essentially no values below λov = 0.3 – 0.4. While the lower limit
supports a mild convective overshooting efficiency, the large dispersion
derived is difficult to explain in the framework of current models of that
process, which leave little room for large randomness. I suggested that
a simple interpretation of our results can be rotational mixing: different
initial rotational velocities, in addition to a fixed amount of overshoot-
ing, could reproduce the high dispersion derived for intermediate-mass
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stars. After a reanalysis of the data, I found a good agreement with mod-
els computed with a fixed overshooting parameter, λov = 0.4, and initial
rotational rates, ω, uniformly distributed in a wide range between 0 and
0.8 times the break-up value, at varying initial mass. I also found that
our best-fitting models for the components of α Aurigae and TZ Fornacis,
agree with their observed rotational velocities, thus providing indepen-
dent support to our hypothesis. I concluded that a constant efficiency of
overshooting in concurrence with a star-to-star variation in the rotational
mixing might be crucial in the interpretation of such data.

In Chapter 6, I studied how the rotation changes the interpretation of
colour-magnitude and colour-colour diagrams of young and intermediate-
age star clusters in the Magellanic Clouds and in the Milky Way. Taking
into account the geometrical distortion induced by rotation, that is the
gravity darkening, we derived new tables of bolometric corrections as a
function of Teff, log g, [Fe/H], ωi and the inclination angle, i. These tables
are then integrated into the TRILEGAL code, to compute isochrones and
synthetic populations, in different photometric systems. We tried to inter-
pret the photometry of the Large Magellanic Cloud star cluster NGC 1866.
The small dispersion in the CCDs suggests that the fast rotators of the
cluster either have ωi < 0.95, or are all observed pole on. Such geometric
colour-colour effects, although small, might be potentially detectable in
the huge, high-quality photometric samples in the post-Gaia era, in addi-
tion to the evolutionary effects caused by rotation-induced mixing.

In Chapter 7, I studied the LMC star cluster NGC 1866 with a new
approach. I combined statistical Bayesian analysis of a sample of well-
studied Cepheids of the cluster, with the analysis of its CMD features. I
computed new sets of rotating tracks up to ωi = 0.95, with various metallic
content, with a mass range from 1.5 M� to 7 M�. From the Bayesian anal-
ysis, I found that four of the five Cepheids belong to an initially slowly
rotating young population (of 176± 5 Myr), while the fifth one is signif-
icantly older, either 288± 20 Myr for models with high initial rotational
velocity (ωi ∼ 0.9), or 202± 5 Myr for slowly rotating models. The com-
plementary study of the CMD of the cluster, performed by the comparison
with selected isochrones with ages, [Fe/H]and ωi obtained from the sta-
tistical analysis, ruled out the latter solution while strongly supported the
presence of two distinct populations of ∼176 Myr and ∼288 Myr, respec-
tively. Moreover, the observed multiple main sequences and the turn-offs
indicate that the younger population is mainly made of slowly rotating
stars, as is the case of the four younger Cepheids, while the older popula-
tion is made mainly of initially fast-rotating stars, as is the case of the fifth
Cepheid. This work not only reinforces the notion that some young clus-
ters like NGC 1866 harbor multiple populations, but gives also hints that
the first population, the older, may have inherited the angular momentum
from the parent cloud while stars of the second one, the younger, do not.

Finally, my work opens different intriguing perspectives for future
studies. In the following works, I will compute and release new sets of
rotating tracks and isochrones. With these new grids and the methods de-
veloped in this Thesis, comprehensive studies of MCs and MW star clus-
ters can be performed on large scale, to shed light and add new clues on
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the not yet fully understood star cluster formation. Besides, further PAR-
SEC extensions are in the to-do list for the study of different stellar phe-
nomena. Some of these are:

1. the inclusion of the magnetic braking and the coupling of the stellar
magnetic field with the stellar wind;

2. the implementation of the sedimentation (microscopic diffusion) in
the new mixing scheme, to study rotating low and very low mass
stars;

3. the adoption of a new method to model the pre-main sequence, that
consists in starting from a star seed of Mi = 0.01 M�and let it grow
up to the desired Mi by accretion. This may give new clues on the
interpretation of the bottom parts of star clusters CMDs;

4. the inclusion of the rotation in the horizontal branch is a fundamen-
tal step to compute the AGB phase of rotating low mass stars.
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Appendix A
My contribution to other

projects

In this appendix I briefly discuss the projects in which I was involved dur-
ing my PhD, but that are not part of this Thesis.

A.1 YBC, a bolometric corrections database with vari-
able extinction coefficients: an application to PAR-
SEC isochrones

The description of this project is taken from Y. Chen and L. A. . Girardi
(submitted to A&A). In the following a brief description is given.

The ybc database of stellar bolometric corrections (BCs) is available
at http://stev.oapd.inaf.it/YBC. In the database it we homogenize
widely used theoretical stellar spectral libraries and provide BCs for many
popular photometric systems, including the Gaia filters. The database can
be easily extended to additional photometric systems and stellar spectral
libraries. The web interface allows users to transform their catalogue of
theoretical stellar parameters into magnitudes and colours of selected fil-
ter sets. The BC tables can be downloaded or also be implemented into
large simulation projects using the interpolation code provided with the
database. We compute extinction coefficients on a star-by-star basis, hence
taking into account the effects of spectral type and non-linearity depen-
dency on the total extinction. BC tables for rotating stars and tables of
limb-darkening coefficients are also provided.

My contribution to this project was principally devoted to test the new
database. Moreover, I have used the ybc database to colour the new PAR-
SEC rotating isochrones used in Chapter 5 and 6.

A.2 Merging black hole binaries with the SEVN code

The following description is extracted from Spera, Mapelli, Giacobbo, et
al. (2019).

In this project we study the formation and evolution of black hole
binaries (BHBs), because it is essential for the interpretation of current

http://stev.oapd.inaf.it/YBC
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and forthcoming gravitational wave (GW) detections. We investigate the
statistics of BHBs that form from isolated binaries, by means of a new
version of the SEVN population-synthesis code. SEVN integrates stellar
evolution by interpolation over a grid of stellar evolution tracks. We up-
graded SEVN to include binary stellar evolution processes and we used
it to evolve a sample of 1.5× 108 binary systems, with metallicity in the
range [10−4; 4× 10−2]. From our simulations, we find that the mass distri-
bution of black holes (BHs) in double compact-object binaries is remark-
ably similar to the one obtained considering only single stellar evolution.
The maximum BH mass we obtain is∼ 30, 45, and 55 M� at metallicity Z =
2× 10−2, 6× 10−3, and 10−4, respectively. A few massive single BHs may
also form (≤ 0.1 per cent of the total number of BHs), with mass up to ∼
65, 90, and 145 M� at Z = 2× 10−2, 6× 10−3, and 10−4, respectively. These
BHs fall in the mass gap predicted from pair-instability supernovae. We
also show that the most massive BHBs are unlikely to merge within a Hub-
ble time. In our simulations, merging BHs like GW151226 and GW170608,
form at all metallicities, the high-mass systems (like GW150914, GW170814,
and GW170104) originate from metal-poor (Z ≤ 6 × 10−3) progenitors,
whereas GW170729-like systems are hard to form, even at Z = 10−4. The
BHB merger rate in the local Universe obtained from our simulations is
∼ 90 Gpc−3yr−1, consistent with the rate inferred from LIGO–Virgo data.

For this project I computed new sets of non-rotating PARSEC tracks of
pure-Helium stars. These tracks are fundamental to follow the binary evo-
lution of a star that loses all its Hydrogen-rich envelope. Figure A.1 shows
a set of pure-Helium stars with an initial metallicity of 0.02. Further de-
tails on the pure-Helium stars models could be found in (Spera, Mapelli,
Giacobbo, et al., 2019).

A.3 Mode classification in fast-rotating stars using a
convolutional neural network

This project was developed in collaboration with Mirouh et al., and in the
following it is briefly described.

Oscillation modes in fast rotating stars can be split into several sub-
classes, each with their own properties. To date, seismology of these stars
cannot rely on regular pattern analysis and scaling relations. However,
recently there has been the promising discovery of large separations ob-
served in spectra of fast-rotating δ Scuti stars; they were attributed to the
is land mode subclass, and linked to the stellar mean density through a
scaling law. In this work, we investigate the relevance of this scaling rela-
tion by computing models of fast-rotating stars and their oscillation spec-
tra. In order to sort the thousands of oscillation modes thus obtained,
we train a convolutional neural network isolating the island modes with
96 per cent accuracy. Arguing that the observed large separation is sys-
tematically smaller than the asymptotic one, we retrieve the observational
∆ν− ρ scaling law. This relation will be used to drive forward modelling
efforts, and is a first step towards mode identification and inversions for
fast-rotating stars.
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My contribution to this project was to compute the surface and vol-
ume of a model of a 2.5 M� star with different initial rotations, adopting
the Roche approximation. Such result was then compared with the more
detailed and consistent 2D stellar shape and volume computed with the
ESTER code. We found that the Roche model underestimate the stellar vol-
ume by 1.6 per cent for low rotation rates and overestimate it up to about
6 per cent for ω = 0.9.

A.4 The Minimum Mass of Rotating Main sequence
Stars and its Impact on the Nature of Extended
Main sequence Turnoffs in Intermediate age Star
Clusters in the Magellanic Clouds

The description of this project is taken from Goudfrooij et al. (2018), and
it is given in the following. Extended main-sequence turnoffs (eMSTOs)
are a common feature in color–magnitude diagrams (CMDs) of young and
intermediate-age star clusters in the Magellanic Clouds. The nature of eM-
STOs is still debated. The most popular scenarios are extended star forma-
tion and ranges of stellar rotation rates. Here, we study implications of a
kink feature in the main sequence (MS) of young star clusters in the Large
Magellanic Cloud (LMC). This kink shows up very clearly in new Hubble
Space Telescope observations of the 700 Myr old cluster NGC 1831 and is
located below the region in the CMD where multiple or wide MSs, which
are known to occur in young clusters and thought to be due to varying
rotation rates, merge together into a single MS. The kink occurs at an ini-
tial stellar mass of 1.45 ± 0.02 M�; we posit that it represents a lower limit
to the mass below which the effects of rotation on the energy output of
stars are rendered negligible at the metallicity of these clusters. Evaluat-
ing the positions of stars with this initial mass in CMDs of massive LMC
star clusters with ages of∼1.7 Gyr that feature wide eMSTOs, we find that
such stars are located in a region where the eMSTO is already significantly
wider than the MS below it. This strongly suggests that stellar rotation
cannot fully explain the wide extent of eMSTOs in massive intermediate-
age clusters in the Magellanic Clouds. A distribution of stellar ages still
seems necessary to explain the eMSTO phenomenon.

A.5 The Predicted Properties of Helium-Enriched Glob-
ular Cluster Progenitors at High Redshift

This is a work in preparation by Nataf et al., and it has been submitted in
ApJ. A description is given in the following.

Globular cluster progenitors may have been detected by HST, and are
likely to be observed soon by JWST and ground-based ELT’s with adap-
tive optics. This has the potential to elucidate the issue of globular clus-
ter formation and the origins of significantly helium-enriched subpopu-
lations, a problem in Galactic astronomy with no satisfactory theoretical
solution. Given this context, we investigate the predicted observables of
helium-enriched stellar populations in globular cluster progenitors. We
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find that helium-enriched stellar populations similar to those seen in the
most massive globular clusters (∆Y = +0.14), are expected to be 0.28 mag
brighter in V, 0.23 mag redder in (U − V), and 0.27 mag redder (g− r) at
age τ = 20 Myr, fixed metallicity, and fixed stellar mass. For observations
corresponding to wavelengths near λ0 = 1500 Å, ignoring the helium en-
richment could result in an overestimate of the metallicity corresponding
to ∆ log(Z) ∼ 0.40 dex. The bolometric corrections for O-star atmospheres
are predicted to be nearly insensitive to helium and CNONa abundance
variations. The time-integrated increase in ionizing radiation is a negligi-
ble ∼ 5 %, though we show that the Lyman-α escape fraction could end
up higher for helium-enriched stars.

My contribution to this project was to compute tracks with Helium
enriched tracks with the PARSEC v1.2. This set has been computed with
three different initial Helium compositions Y = 0.26, 0.33 and 0.40, and
with masses from 20 to 100 M�. From this set I computed the correspon-
dent isochrones, and I used the Vega magnitudes system to colour them.

A.6 Hydrodynamic modelling of accretion impacts in
classical T Tauri stars: radiative heating of the
pre-shock plasma

This work was mainly developed during my master Thesis, but it was
completed and published during my first year of PhD. In the following
there is a brief description taken from G. Costa et al. (2017).

It is generally accepted that, in Classical T Tauri Stars, the plasma from
the circumstellar disc accretes onto the stellar surface with free fall veloc-
ity, and the impact generates a shock. The impact region is expected to
contribute to emission in different spectral bands; many studies have con-
firmed that the X-rays arise from the post-shock plasma but, otherwise,
there are no studies in the literature investigating the origin of the ob-
served Ultra-Violet emission which is apparently correlated to accretion.
We investigated the effect of radiative heating of the infalling material by
the post-shock plasma at the base of the accretion stream with the aim to
identify in which region a significant part of the UV emission originates.
We developed a one dimensional hydrodynamic model describing the im-
pact of an accretion stream onto the stellar surface; the model takes into
account the gravity, the radiative cooling of an optically thin plasma, the
thermal conduction, and the heating due to absorption of X-ray radiation.
The latter term represents the heating of the infalling plasma due to the
absorption of X-rays emitted from the post-shock region. We found that
the radiative heating of the pre-shock plasma plays a non-negligible role
in the accretion phenomenon. In particular, the dense and cold plasma of
the pre-shock accretion column is gradually heated up to few 105 K due
to irradiation of X-rays arising from the shocked plasma at the impact re-
gion. This heating mechanism does not affect significantly the dynamics of
the post-shock plasma. On the other hand, a region of radiatively heated
gas (that we consider a precursor) forms in the un-shocked accretion col-
umn and contributes significantly to UV emission. Our model naturally
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reproduces the luminosity of UV emission lines correlated to accretion and
shows that most of the UV emission originates from the precursor.



153

Bibliography

Abney, W. De W. (Mar. 1877). “effect of a star’s rotation on its spectrum”.
In: MNRAS 37, pp. 278–279. DOI: 10.1093/mnras/37.5.278.

Anderson, R. I. et al. (June 2016). “On the effect of rotation on popula-
tions of classical Cepheids. II. Pulsation analysis for metallicities 0.014,
0.006, and 0.002”. In: A&A 591, A8, A8. DOI: 10.1051/0004-6361/
201528031. arXiv: 1604.05691 [astro-ph.SR].

Arnett, W. David et al. (Oct. 2018). “3D simulations and MLT: II. RA-ILES
results”. In: arXiv e-prints, arXiv:1810.04659, arXiv:1810.04659. arXiv:
1810.04659 [astro-ph.SR].

Aufdenberg, J. P. et al. (July 2006). “First Results from the CHARA Array.
VII. Long-Baseline Interferometric Measurements of Vega Consistent
with a Pole-On, Rapidly Rotating Star”. In: ApJ 645, pp. 664–675. DOI:
10.1086/504149. eprint: astro-ph/0603327.

Barmina, R., L. Girardi, and C. Chiosi (Apr. 2002). “NGC 1866: A work-
bench for stellar evolution”. In: A&A 385, pp. 847–861. DOI: 10.1051/
0004-6361:20020197. arXiv: astro-ph/0202128 [astro-ph].

Bastian, N. et al. (Mar. 2017). “A high fraction of Be stars in young mas-
sive clusters: evidence for a large population of near-critically rotat-
ing stars”. In: MNRAS 465.4, pp. 4795–4799. DOI: 10.1093/mnras/
stw3042. arXiv: 1611.06705 [astro-ph.GA].

Bastian, Nate and Carmela Lardo (Sept. 2018). “Multiple Stellar Popula-
tions in Globular Clusters”. In: ARA&A 56, pp. 83–136. DOI: 10.1146/
annurev-astro-081817-051839. arXiv: 1712.01286 [astro-ph.SR].

Bertelli, G. et al. (June 2008). “Scaled solar tracks and isochrones in a large
region of the Z-Y plane. I. From the ZAMS to the TP-AGB end for 0.15-
2.5 M�stars”. In: A&A 484, pp. 815–830. DOI: 10.1051/0004-6361:
20079165. arXiv: 0803.1460.

Bethe, H. A. (Mar. 1939). “Energy Production in Stars”. In: Physical Review
55.5, pp. 434–456. DOI: 10.1103/PhysRev.55.434.

Böhm-Vitense, E. (1958). “{Ü}ber die Wasserstoffkonvektionszone in Ster-
nen verschiedener Effektivtemperaturen und Leuchtkr{ä}fte. Mit 5 Textab-
bildungen”. In: ZAp 46, p. 108. ISSN: 1098-6596. DOI: 10.1017/CBO9781107415324.
004. arXiv: arXiv : 1011 . 1669v3. URL: https : / / ui . adsabs .
harvard.edu//?bbbRedirect=1%7B%5C#%7Dabs/1958ZA...
..46..108B/abstract.

Bono, G. et al. (Mar. 2005). “Classical Cepheid Pulsation Models. X. The
Period-Age Relation”. In: ApJ 621.2, pp. 966–977. DOI: 10.1086/427744.
arXiv: astro-ph/0411756 [astro-ph].

Bossini, D. et al. (2017). “Kepler red-clump stars in the field and in open
clusters: constraints on core mixing”. In: MNRAS 469, pp. 4718–4725.
DOI: 10.1093/mnras/stx1135. arXiv: 1705.03077.

https://doi.org/10.1093/mnras/37.5.278
https://doi.org/10.1051/0004-6361/201528031
https://doi.org/10.1051/0004-6361/201528031
https://arxiv.org/abs/1604.05691
https://arxiv.org/abs/1810.04659
https://doi.org/10.1086/504149
astro-ph/0603327
https://doi.org/10.1051/0004-6361:20020197
https://doi.org/10.1051/0004-6361:20020197
https://arxiv.org/abs/astro-ph/0202128
https://doi.org/10.1093/mnras/stw3042
https://doi.org/10.1093/mnras/stw3042
https://arxiv.org/abs/1611.06705
https://doi.org/10.1146/annurev-astro-081817-051839
https://doi.org/10.1146/annurev-astro-081817-051839
https://arxiv.org/abs/1712.01286
https://doi.org/10.1051/0004-6361:20079165
https://doi.org/10.1051/0004-6361:20079165
https://arxiv.org/abs/0803.1460
https://doi.org/10.1103/PhysRev.55.434
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
https://ui.adsabs.harvard.edu//?bbbRedirect=1%7B%5C#%7Dabs/1958ZA.....46..108B/abstract
https://ui.adsabs.harvard.edu//?bbbRedirect=1%7B%5C#%7Dabs/1958ZA.....46..108B/abstract
https://ui.adsabs.harvard.edu//?bbbRedirect=1%7B%5C#%7Dabs/1958ZA.....46..108B/abstract
https://doi.org/10.1086/427744
https://arxiv.org/abs/astro-ph/0411756
https://doi.org/10.1093/mnras/stx1135
https://arxiv.org/abs/1705.03077


154 Bibliography

Brandt, T. D. and C. X. Huang (July 2015a). “Bayesian Ages for Early-type
Stars from Isochrones Including Rotation, and a Possible Old Age for
the Hyades”. In: ApJ 807, 58, p. 58. DOI: 10.1088/0004-637X/807/
1/58. arXiv: 1501.04404 [astro-ph.SR].

— (July 2015b). “Rotating Stellar Models Can Account for the Extended
Main-sequence Turnoffs in Intermediate-age Clusters”. In: ApJ 807, 25,
p. 25. DOI: 10.1088/0004-637X/807/1/25. arXiv: 1504.04375
[astro-ph.SR].

Bressan, A. G., C. Chiosi, and G. Bertelli (Sept. 1981). “Mass loss and over-
shooting in massive stars”. In: A&A 102, pp. 25–30.

Bressan, A., G. Bertelli, and C. Chiosi (1986). “Evolution of low mass stars
with convective overshooting”. In: Mem. Soc. Astron. Italiana 57, pp. 411–
426.

Bressan, A., P. Marigo, et al. (Nov. 2012). “PARSEC: stellar tracks and isochrones
with the PAdova and TRieste Stellar Evolution Code”. In: MNRAS 427,
pp. 127–145. DOI: 10.1111/j.1365-2966.2012.21948.x. arXiv:
1208.4498 [astro-ph.SR].

Brocato, E., V. Castellani, and A. M. Piersimoni (Oct. 1994). “Core over-
shooting and the enigma of NGC 1866.” In: A&A 290, pp. 59–61.

Brott, I., S. E. de Mink, et al. (June 2011). “Rotating massive main-sequence
stars. I. Grids of evolutionary models and isochrones”. In: A&A 530,
A115, A115. DOI: 10.1051/0004-6361/201016113. arXiv: 1102.
0530 [astro-ph.SR].

Brott, I., C. J. Evans, et al. (June 2011). “Rotating massive main-sequence
stars. II. Simulating a population of LMC early B-type stars as a test of
rotational mixing”. In: A&A 530, A116, A116. DOI: 10.1051/0004-
6361/201016114. arXiv: 1102.0766 [astro-ph.SR].

Caffau, E. et al. (Feb. 2011). “Solar Chemical Abundances Determined with
a CO5BOLD 3D Model Atmosphere”. In: Sol. Phys. 268.2, pp. 255–269.
ISSN: 00380938. DOI: 10.1007/s11207-010-9541-4. arXiv: 1003.
1190. URL: http://link.springer.com/10.1007/s11207-010-
9541-4.

Castelli, F. and R. L. Kurucz (2003). “New Grids of ATLAS9 Model Atmo-
spheres”. In: IAU Symposium 210. Ed. by N. Piskunov, W. W. Weiss,
and D. F. Gray, A20. eprint: astro-ph/0405087.

Charbonnel, Corinne et al. (Sept. 2013). “Why the globular cluster NGC
6752 contains no sodium-rich second-generation AGB stars”. In: As-
tronomy and Astrophysics 557, L17, p. L17. DOI: 10.1051/0004-6361/
201322422. arXiv: 1309.2073 [astro-ph.SR].

Chen, Y., A. Bressan, et al. (Sept. 2015). “PARSEC evolutionary tracks of
massive stars up to 350 M� at metallicities 0.0001 ≤ Z ≤ 0.04”. In:
MNRAS 452, pp. 1068–1080. DOI: 10.1093/mnras/stv1281. arXiv:
1506.01681 [astro-ph.SR].

Chen, Y. and L. A. ...... Girardi (submitted to A&A). In: A&A.
Chen, Y., L. Girardi, et al. (Nov. 2014). “Improving PARSEC models for

very low mass stars”. In: MNRAS 444, pp. 2525–2543. DOI: 10.1093/
mnras/stu1605. arXiv: 1409.0322 [astro-ph.SR].

Chieffi, Alessandro and Marco Limongi (Feb. 2013). “Pre-supernova Evo-
lution of Rotating Solar Metallicity Stars in the Mass Range 13-120 M�

https://doi.org/10.1088/0004-637X/807/1/58
https://doi.org/10.1088/0004-637X/807/1/58
https://arxiv.org/abs/1501.04404
https://doi.org/10.1088/0004-637X/807/1/25
https://arxiv.org/abs/1504.04375
https://arxiv.org/abs/1504.04375
https://doi.org/10.1111/j.1365-2966.2012.21948.x
https://arxiv.org/abs/1208.4498
https://doi.org/10.1051/0004-6361/201016113
https://arxiv.org/abs/1102.0530
https://arxiv.org/abs/1102.0530
https://doi.org/10.1051/0004-6361/201016114
https://doi.org/10.1051/0004-6361/201016114
https://arxiv.org/abs/1102.0766
https://doi.org/10.1007/s11207-010-9541-4
https://arxiv.org/abs/1003.1190
https://arxiv.org/abs/1003.1190
http://link.springer.com/10.1007/s11207-010-9541-4
http://link.springer.com/10.1007/s11207-010-9541-4
astro-ph/0405087
https://doi.org/10.1051/0004-6361/201322422
https://doi.org/10.1051/0004-6361/201322422
https://arxiv.org/abs/1309.2073
https://doi.org/10.1093/mnras/stv1281
https://arxiv.org/abs/1506.01681
https://doi.org/10.1093/mnras/stu1605
https://doi.org/10.1093/mnras/stu1605
https://arxiv.org/abs/1409.0322


Bibliography 155

and their Explosive Yields”. In: ApJ 764, 21, p. 21. DOI: 10.1088/0004-
637X/764/1/21.

— (Feb. 2017). “The Synthesis of 44Ti and 56Ni in Massive Stars”. In: ApJ
836, 79, p. 79. DOI: 10.3847/1538-4357/836/1/79. arXiv: 1701.
02914 [astro-ph.HE].

Chiosi, C., P. R. Wood, and N. Capitanio (June 1993). “Theoretical Models
of Cepheid Variables and Their BVI C Colors and Magnitudes”. In:
ApJS 86, p. 541. DOI: 10.1086/191790.

Choi, Jieun et al. (2016). “MESA ISOCHRONES AND STELLAR TRACKS
(MIST). I. SOLAR-SCALED MODELS”. In: ApJ 823.2, p. 102. ISSN: 1538-
4357. DOI: 10.3847/0004-637X/823/2/102. arXiv: 1604.08592.
URL: http://iopscience.iop.org/article/10.3847/0004-
637X/823/2/102/pdf%20http://arxiv.org/abs/1604.08592%
7B%5C%%7D5Cnhttp://dx.doi.org/10.3847/0004-637X/823/2/
102%7B%5C%%7D5Cnhttp://stacks.iop.org/0004-637X/823/i=
2/a=102?key=crossref.c8bcaff12d2e201377565c78953e3392.

Claret, A. (Apr. 2016). “Theoretical gravity darkening as a function of op-
tical depth. A first approach to fast rotating stars”. In: A&A 588, A15,
A15. DOI: 10.1051/0004- 6361/201527336. arXiv: 1606.00834
[astro-ph.SR].

Claret, A. and G. Torres (Nov. 2017). “The Dependence of Convective Core
Overshooting on Stellar Mass: A Semi-empirical Determination Using
the Diffusive Approach with Two Different Element Mixtures”. In: ApJ
849, 18, p. 18. DOI: 10.3847/1538-4357/aa8770. arXiv: 1710.08417
[astro-ph.SR].

Claret, Antonio and Guillermo Torres (June 2018). “The Dependence of
Convective Core Overshooting on Stellar Mass: Additional Binary Sys-
tems and Improved Calibration”. In: ApJ 859, 100, p. 100. DOI: 10.
3847/1538-4357/aabd35. arXiv: 1804.03148 [astro-ph.SR].

Collins II, G. W. and G. H. Sonneborn (May 1977). “Some effects of rotation
on the spectra of upper-main-sequence stars.” In: ApJS 34, pp. 41–94.
DOI: 10.1086/190443.

Constantino, Thomas and Isabelle Baraffe (Oct. 2018). “Significant uncer-
tainties from calibrating overshooting with eclipsing binary systems”.
In: A&A 618, A177, A177. DOI: 10.1051/0004-6361/201833568.
arXiv: 1808.03523 [astro-ph.SR].

Cordoni, G. et al. (Dec. 2018). “Extended Main-sequence Turnoff as a Com-
mon Feature of Milky Way Open Clusters”. In: ApJ 869, 139, p. 139. DOI:
10.3847/1538-4357/aaedc1. arXiv: 1811.01192 [astro-ph.SR].

Correnti, M. et al. (May 2017). “Dissecting the extended main-sequence
turn-off of the young star cluster NGC 1850”. In: MNRAS 467, pp. 3628–
3641. DOI: 10.1093/mnras/stx010. arXiv: 1612.08746 [astro-ph.SR].

Correnti, Matteo et al. (July 2015). “New constraints on the star formation
history of the star cluster NGC 1856”. In: MNRAS 450.3, pp. 3054–3068.
DOI: 10.1093/mnras/stv874. arXiv: 1504.03299 [astro-ph.SR].

Corsaro, Enrico et al. (2017). “Spin alignment of stars in old open clus-
ters”. In: Nat. Astron. 1.March, pp. 1–6. ISSN: 23973366. DOI: 10.1038/
s41550-017-0064. arXiv: 1703.05588. URL: http://dx.doi.org/
10.1038/s41550-017-0064.

Costa et al., ...... (in prep.). In:

https://doi.org/10.1088/0004-637X/764/1/21
https://doi.org/10.1088/0004-637X/764/1/21
https://doi.org/10.3847/1538-4357/836/1/79
https://arxiv.org/abs/1701.02914
https://arxiv.org/abs/1701.02914
https://doi.org/10.1086/191790
https://doi.org/10.3847/0004-637X/823/2/102
https://arxiv.org/abs/1604.08592
http://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/pdf%20http://arxiv.org/abs/1604.08592%7B%5C%%7D5Cnhttp://dx.doi.org/10.3847/0004-637X/823/2/102%7B%5C%%7D5Cnhttp://stacks.iop.org/0004-637X/823/i=2/a=102?key=crossref.c8bcaff12d2e201377565c78953e3392
http://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/pdf%20http://arxiv.org/abs/1604.08592%7B%5C%%7D5Cnhttp://dx.doi.org/10.3847/0004-637X/823/2/102%7B%5C%%7D5Cnhttp://stacks.iop.org/0004-637X/823/i=2/a=102?key=crossref.c8bcaff12d2e201377565c78953e3392
http://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/pdf%20http://arxiv.org/abs/1604.08592%7B%5C%%7D5Cnhttp://dx.doi.org/10.3847/0004-637X/823/2/102%7B%5C%%7D5Cnhttp://stacks.iop.org/0004-637X/823/i=2/a=102?key=crossref.c8bcaff12d2e201377565c78953e3392
http://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/pdf%20http://arxiv.org/abs/1604.08592%7B%5C%%7D5Cnhttp://dx.doi.org/10.3847/0004-637X/823/2/102%7B%5C%%7D5Cnhttp://stacks.iop.org/0004-637X/823/i=2/a=102?key=crossref.c8bcaff12d2e201377565c78953e3392
http://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/pdf%20http://arxiv.org/abs/1604.08592%7B%5C%%7D5Cnhttp://dx.doi.org/10.3847/0004-637X/823/2/102%7B%5C%%7D5Cnhttp://stacks.iop.org/0004-637X/823/i=2/a=102?key=crossref.c8bcaff12d2e201377565c78953e3392
https://doi.org/10.1051/0004-6361/201527336
https://arxiv.org/abs/1606.00834
https://arxiv.org/abs/1606.00834
https://doi.org/10.3847/1538-4357/aa8770
https://arxiv.org/abs/1710.08417
https://arxiv.org/abs/1710.08417
https://doi.org/10.3847/1538-4357/aabd35
https://doi.org/10.3847/1538-4357/aabd35
https://arxiv.org/abs/1804.03148
https://doi.org/10.1086/190443
https://doi.org/10.1051/0004-6361/201833568
https://arxiv.org/abs/1808.03523
https://doi.org/10.3847/1538-4357/aaedc1
https://arxiv.org/abs/1811.01192
https://doi.org/10.1093/mnras/stx010
https://arxiv.org/abs/1612.08746
https://doi.org/10.1093/mnras/stv874
https://arxiv.org/abs/1504.03299
https://doi.org/10.1038/s41550-017-0064
https://doi.org/10.1038/s41550-017-0064
https://arxiv.org/abs/1703.05588
http://dx.doi.org/10.1038/s41550-017-0064
http://dx.doi.org/10.1038/s41550-017-0064


156 Bibliography

Costa, G. et al. (Jan. 2017). “Hydrodynamic modelling of accretion impacts
in classical T Tauri stars: radiative heating of the pre-shock plasma”.
In: A&A 597, A1, A1. DOI: 10.1051/0004-6361/201628554. arXiv:
1609.01059 [astro-ph.SR].

Costa, Guglielmo, Léo Girardi, Alessandro Bressan, Yang Chen, et al. (Sept.
2019). “Multiple stellar populations in NGC 1866. New clues from Cepheids
and Colour-Magnitude Diagram”. In: arXiv e-prints, arXiv:1909.01907,
arXiv:1909.01907. arXiv: 1909.01907 [astro-ph.SR].

Costa, Guglielmo, Léo Girardi, Alessandro Bressan, Paola Marigo, et al.
(June 2019). “Mixing by overshooting and rotation in intermediate-
mass stars”. In: MNRAS 485.4, pp. 4641–4657. DOI: 10.1093/mnras/
stz728. arXiv: 1903.04368 [astro-ph.SR].

Cyburt, Richard H. et al. (July 2010). “The JINA REACLIB Database: Its
Recent Updates and Impact on Type-I X-ray Bursts”. In: ApJS 189.1,
pp. 240–252. DOI: 10.1088/0067-0049/189/1/240.

D’Antona, F. et al. (Nov. 2015). “The extended main-sequence turn-off clus-
ter NGC 1856: rotational evolution in a coeval stellar ensemble”. In:
MNRAS 453.3, pp. 2637–2643. DOI: 10.1093/mnras/stv1794. arXiv:
1508.01932 [astro-ph.SR].

da Silva, L. et al. (Nov. 2006a). “Basic physical parameters of a selected
sample of evolved stars”. In: A&A 458, pp. 609–623. DOI: 10.1051/
0004-6361:20065105. eprint: astro-ph/0608160.

— (Nov. 2006b). “Basic physical parameters of a selected sample of evolved
stars”. In: A&A 458, pp. 609–623. DOI: 10.1051/0004-6361:20065105.
eprint: astro-ph/0608160.

de Jager, C., H. Nieuwenhuijzen, and K. A. van der Hucht (Feb. 1988).
“Mass loss rates in the Hertzsprung-Russell diagram”. In: A&AS 72,
pp. 259–289.

Decressin, T. et al. (Mar. 2007). “Fast rotating massive stars and the origin
of the abundance patterns in galactic globular clusters”. In: Astronomy
and Astrophysics 464.3, pp. 1029–1044. DOI: 10.1051/0004- 6361:
20066013. arXiv: astro-ph/0611379 [astro-ph].

Demarque, Pierre et al. (Dec. 2004). “Y<SUP>2</SUP> Isochrones with an
Improved Core Overshoot Treatment”. In: ApJS 155, pp. 667–674. DOI:
10.1086/424966.

Dewitt, H. E., H. C. Graboske, and M. S. Cooper (Apr. 1973). “Screening
Factors for Nuclear Reactions. I. General Theory”. In: ApJ 181, pp. 439–
456. DOI: 10.1086/152061.

Domiciano de Souza, A. et al. (Sept. 2014). “The environment of the fast
rotating star Achernar. III. Photospheric parameters revealed by the
VLTI”. In: A&A 569, A10, A10. DOI: 10.1051/0004-6361/201424144.

Dupree, A. K. et al. (2017). “NGC 1866: First Spectroscopic Detection of
Fast Rotating Stars in a Young LMC Cluster”. In: Astrophys. J. Lett.
846.1, p. L1. ISSN: 20418213. DOI: 10 . 3847 / 2041 - 8213 / aa85dd.
arXiv: 1708.03386. URL: http://arxiv.org/abs/1708.03386%
7B%5C%%7D0Ahttp://dx.doi.org/10.3847/2041-8213/aa85dd.

Eddington, A. S. (Nov. 1929). “Internal circulation in rotating stars”. In:
MNRAS 90, p. 54. DOI: 10.1093/mnras/90.1.54.

Eggenberger, P. et al. (Aug. 2008). “The Geneva stellar evolution code”. In:
Ap&SS 316, pp. 43–54. DOI: 10.1007/s10509-007-9511-y.

https://doi.org/10.1051/0004-6361/201628554
https://arxiv.org/abs/1609.01059
https://arxiv.org/abs/1909.01907
https://doi.org/10.1093/mnras/stz728
https://doi.org/10.1093/mnras/stz728
https://arxiv.org/abs/1903.04368
https://doi.org/10.1088/0067-0049/189/1/240
https://doi.org/10.1093/mnras/stv1794
https://arxiv.org/abs/1508.01932
https://doi.org/10.1051/0004-6361:20065105
https://doi.org/10.1051/0004-6361:20065105
astro-ph/0608160
https://doi.org/10.1051/0004-6361:20065105
astro-ph/0608160
https://doi.org/10.1051/0004-6361:20066013
https://doi.org/10.1051/0004-6361:20066013
https://arxiv.org/abs/astro-ph/0611379
https://doi.org/10.1086/424966
https://doi.org/10.1086/152061
https://doi.org/10.1051/0004-6361/201424144
https://doi.org/10.3847/2041-8213/aa85dd
https://arxiv.org/abs/1708.03386
http://arxiv.org/abs/1708.03386%7B%5C%%7D0Ahttp://dx.doi.org/10.3847/2041-8213/aa85dd
http://arxiv.org/abs/1708.03386%7B%5C%%7D0Ahttp://dx.doi.org/10.3847/2041-8213/aa85dd
https://doi.org/10.1093/mnras/90.1.54
https://doi.org/10.1007/s10509-007-9511-y


Bibliography 157

Ekström, S., C. Georgy, et al. (Jan. 2012). “Grids of stellar models with ro-
tation I. Models from 0.8 to 120 M at solar metallicity ( Z = 0.014)”.
In: A&A 537, A146. ISSN: 0004-6361. DOI: 10 . 1051 / 0004 - 6361 /
201117751. arXiv: 1110.5049. URL: http://www.aanda.org/10.
1051/0004-6361/201322178%20http://www.aanda.org/10.
1051/0004-6361/201117751.

Ekström, S., G. Meynet, et al. (Feb. 2008). “Evolution towards the critical
limit and the origin of Be stars”. In: A&A 478.2, pp. 467–485. DOI: 10.
1051/0004-6361:20078095. arXiv: 0711.1735 [astro-ph].

Emden, R. (Jan. 1902). “Contributions to the Solar Theory”. In: ApJ 15,
p. 38. DOI: 10.1086/140885.

Endal, A. S. and S. Sofia (Nov. 1976). “The evolution of rotating stars. I.
Method and exploratory calculations for a 7 M sun star.” In: ApJ 210,
pp. 184–198. DOI: 10.1086/154817.

Espinosa Lara, F. and M. Rieutord (Sept. 2011). “Gravity darkening in ro-
tating stars”. In: A&A 533, A43, A43. DOI: 10.1051/0004- 6361/
201117252. arXiv: 1109.3038 [astro-ph.SR].

— (Apr. 2013). “Self-consistent 2D models of fast-rotating early-type stars”.
In: A&A 552, A35, A35. DOI: 10.1051/0004-6361/201220844. arXiv:
1212.0778 [astro-ph.SR].

Frémat, Y. et al. (Sept. 2005). “Effects of gravitational darkening on the de-
termination of fundamental parameters in fast-rotating B-type stars”.
In: A&A 440, pp. 305–320. DOI: 10.1051/0004- 6361:20042229.
eprint: astro-ph/0503381.

Freytag, B., H. -G. Ludwig, and M. Steffen (Sept. 1996). “Hydrodynamical
models of stellar convection. The role of overshoot in DA white dwarfs,
A-type stars, and the Sun.” In: A&A 313, pp. 497–516.

Fu, Xiaoting et al. (2018). “New PARSEC database of alpha-enhanced stel-
lar evolutionary tracks and isochrones I. Calibration with 47 Tuc (NGC104)
and the improvement on RGB bump”. In: MNRAS 16.January, pp. 1–
16. DOI: 10.1093/mnras/sty235/4828398. arXiv: 1801.07137.

Gaia Collaboration et al. (Aug. 2018). “Gaia Data Release 2. Observational
Hertzsprung-Russell diagrams”. In: Astronomy and Astrophysics 616, A10,
A10. DOI: 10.1051/0004- 6361/201832843. arXiv: 1804.09378
[astro-ph.SR].

Gallenne, A. et al. (2016). “The Araucaria Project: High-precision orbital
parallax and masses of the eclipsing binary TZ Fornacis”. In: A&A
586, pp. 1–8. ISSN: 14320746 00046361. DOI: 10.1051/0004-6361/
201526764.

Gallet, F. and P. Delorme (June 2019). “Star-planet tidal interaction and the
limits of gyrochronology”. In: A&A 626, A120, A120. DOI: 10.1051/
0004-6361/201834898. arXiv: 1905.06070 [astro-ph.EP].

Georgy, C., S. Ekström, et al. (Oct. 2013). “Grids of stellar models with
rotation. III. Models from 0.8 to 120 M� at a metallicity Z = 0.002”. In:
A&A 558, A103, A103. DOI: 10.1051/0004-6361/201322178. arXiv:
1308.2914 [astro-ph.SR].

Georgy, C., A. Granada, et al. (June 2014). “Populations of rotating stars.
III. SYCLIST, the new Geneva population synthesis code”. In: A&A 566,
A21, A21. DOI: 10.1051/0004-6361/201423881. arXiv: 1404.6952
[astro-ph.SR].

https://doi.org/10.1051/0004-6361/201117751
https://doi.org/10.1051/0004-6361/201117751
https://arxiv.org/abs/1110.5049
http://www.aanda.org/10.1051/0004-6361/201322178%20http://www.aanda.org/10.1051/0004-6361/201117751
http://www.aanda.org/10.1051/0004-6361/201322178%20http://www.aanda.org/10.1051/0004-6361/201117751
http://www.aanda.org/10.1051/0004-6361/201322178%20http://www.aanda.org/10.1051/0004-6361/201117751
https://doi.org/10.1051/0004-6361:20078095
https://doi.org/10.1051/0004-6361:20078095
https://arxiv.org/abs/0711.1735
https://doi.org/10.1086/140885
https://doi.org/10.1086/154817
https://doi.org/10.1051/0004-6361/201117252
https://doi.org/10.1051/0004-6361/201117252
https://arxiv.org/abs/1109.3038
https://doi.org/10.1051/0004-6361/201220844
https://arxiv.org/abs/1212.0778
https://doi.org/10.1051/0004-6361:20042229
astro-ph/0503381
https://doi.org/10.1093/mnras/sty235/4828398
https://arxiv.org/abs/1801.07137
https://doi.org/10.1051/0004-6361/201832843
https://arxiv.org/abs/1804.09378
https://arxiv.org/abs/1804.09378
https://doi.org/10.1051/0004-6361/201526764
https://doi.org/10.1051/0004-6361/201526764
https://doi.org/10.1051/0004-6361/201834898
https://doi.org/10.1051/0004-6361/201834898
https://arxiv.org/abs/1905.06070
https://doi.org/10.1051/0004-6361/201322178
https://arxiv.org/abs/1308.2914
https://doi.org/10.1051/0004-6361/201423881
https://arxiv.org/abs/1404.6952
https://arxiv.org/abs/1404.6952


158 Bibliography

Georgy, C., G. Meynet, and A. Maeder (Mar. 2011). “Effects of anisotropic
winds on massive star evolution”. In: A&A 527, A52, A52. DOI: 10.
1051/0004-6361/200913797. arXiv: 1011.6581 [astro-ph.SR].

Girardi, L., G. Bertelli, et al. (Aug. 2002). “Theoretical isochrones in several
photometric systems. I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS,
Washington, and ESO Imaging Survey filter sets”. In: A&A 391, pp. 195–
212. DOI: 10 . 1051 / 0004 - 6361 : 20020612. eprint: astro - ph /
0205080.

Girardi, L., J. Dalcanton, et al. (May 2008). “Revised Bolometric Correc-
tions and Interstellar Extinction Coefficients for the ACS and WFPC2
Photometric Systems”. In: PASP 120, p. 583. DOI: 10.1086/588526.
arXiv: 0804.0498.

Girardi, L., M. A. T. Groenewegen, et al. (June 2005). “Star counts in the
Galaxy. Simulating from very deep to very shallow photometric sur-
veys with the TRILEGAL code”. In: A&A 436, pp. 895–915. DOI: 10.
1051/0004-6361:20042352. eprint: astro-ph/0504047.

Girardi, Léo et al. (July 2019). “On the photometric signature of fast rota-
tors”. In: arXiv e-prints, arXiv:1907.00688, arXiv:1907.00688. arXiv: 1907.
00688 [astro-ph.SR].

Gossage, Seth et al. (Aug. 2018). “Age Determinations of the Hyades, Prae-
sepe, and Pleiades via MESA Models with Rotation”. In: ApJ 863.1,
67, p. 67. DOI: 10.3847/1538-4357/aad0a0. arXiv: 1804.06441
[astro-ph.SR].

Goudfrooij, P. et al. (Sept. 2018). “The Minimum Mass of Rotating Main-
sequence Stars and its Impact on the Nature of Extended Main-sequence
Turnoffs in Intermediate-age Star Clusters in the Magellanic Clouds”.
In: ApJ 864, L3, p. L3. DOI: 10.3847/2041- 8213/aada0f. arXiv:
1807.04737 [astro-ph.SR].

Graboske, H. C. et al. (Apr. 1973). “Screening Factors for Nuclear Reac-
tions. II. Intermediate Screening and Astrophysical Applications”. In:
ApJ 181, pp. 457–474. DOI: 10.1086/152062.

Haffner, Hans and Otto Heckmann (Jan. 1937). “Das Farben-Helligkeits-
Diagramm der Praesepe auf Grund neuer Beobachtungen”. In: Veroef-
fentlichungen der Universitaets-Sternwarte zu Goettingen 0004, pp. 77–95.

Heger, A. and N. Langer (Dec. 2000). “Presupernova Evolution of Rotat-
ing Massive Stars. II. Evolution of the Surface Properties”. In: ApJ 544,
pp. 1016–1035. DOI: 10.1086/317239. arXiv: astro-ph/0005110
[astro-ph].

Heger, A., N. Langer, and S. E. Woosley (Jan. 2000). “Presupernova Evolu-
tion of Rotating Massive Stars. I. Numerical Method and Evolution of
the Internal Stellar Structure”. In: ApJ 528, pp. 368–396. DOI: 10.1086/
308158. arXiv: astro-ph/9904132 [astro-ph].

Henyey, L. G., J. E. Forbes, and N. L. Gould (Jan. 1964). “A New Method of
Automatic Computation of Stellar Evolution.” In: ApJ 139, p. 306. DOI:
10.1086/147754.

Henyey, L. G., L. Wilets, et al. (May 1959). “A Method for Automatic Com-
putation of Stellar Evolution.” In: ApJ 129, p. 628. DOI: 10 . 1086 /
146661.

https://doi.org/10.1051/0004-6361/200913797
https://doi.org/10.1051/0004-6361/200913797
https://arxiv.org/abs/1011.6581
https://doi.org/10.1051/0004-6361:20020612
astro-ph/0205080
astro-ph/0205080
https://doi.org/10.1086/588526
https://arxiv.org/abs/0804.0498
https://doi.org/10.1051/0004-6361:20042352
https://doi.org/10.1051/0004-6361:20042352
astro-ph/0504047
https://arxiv.org/abs/1907.00688
https://arxiv.org/abs/1907.00688
https://doi.org/10.3847/1538-4357/aad0a0
https://arxiv.org/abs/1804.06441
https://arxiv.org/abs/1804.06441
https://doi.org/10.3847/2041-8213/aada0f
https://arxiv.org/abs/1807.04737
https://doi.org/10.1086/152062
https://doi.org/10.1086/317239
https://arxiv.org/abs/astro-ph/0005110
https://arxiv.org/abs/astro-ph/0005110
https://doi.org/10.1086/308158
https://doi.org/10.1086/308158
https://arxiv.org/abs/astro-ph/9904132
https://doi.org/10.1086/147754
https://doi.org/10.1086/146661
https://doi.org/10.1086/146661


Bibliography 159

Hertzsprung, Ejnar (Jan. 1911). “Ueber die Verwendung photographischer
effektiver Wellenlaengen zur Bestimmung von Farbenaequivalenten”.
In: Publikationen des Astrophysikalischen Observatoriums zu Potsdam 63.

Hidalgo, Sebastian L. et al. (Apr. 2018). “The Updated BaSTI Stellar Evolu-
tion Models and Isochrones. I. Solar-scaled Calculations”. In: ApJ 856,
125, p. 125. DOI: 10.3847/1538-4357/aab158. arXiv: 1802.07319
[astro-ph.GA].

Higl, J. and A. Weiss (Dec. 2017). “Testing stellar evolution models with
detached eclipsing binaries”. In: A&A 608, A62, A62. DOI: 10.1051/
0004-6361/201731008.

Higl, J et al. (Sept. 2018). “An analysis of the TZ Fornacis binary sys-
tem”. In: A&A 617, A36. ISSN: 0004-6361. DOI: 10.1051/0004-6361/
201833112. URL: https://www.aanda.org/10.1051/0004-6361/
201833112.

Hunter, I. et al. (Mar. 2009). “The VLT-FLAMES survey of massive stars:
constraints on stellar evolution from the chemical compositions of rapidly
rotating Galactic and Magellanic Cloud B-type stars”. In: Astronomy
and Astrophysics 496.3, pp. 841–853. DOI: 10.1051/0004-6361/200809925.
arXiv: 0901.3853 [astro-ph.SR].

Iglesias, Carlos A. and Forrest J. Rogers (June 1996). “Updated Opal Opac-
ities”. In: ApJ 464, p. 943. DOI: 10.1086/177381.

Irwin, Alan W. (Nov. 2012). FreeEOS: Equation of State for stellar interiors
calculations. ascl: 1211.002.

Itoh, Naoki et al. (Apr. 2008). “The Second Born Corrections to the Electri-
cal and Thermal Conductivities of Dense Matter in the Liquid Metal
Phase”. In: ApJ 677.1, pp. 495–502. DOI: 10 . 1086 / 529367. arXiv:
0708.2967 [astro-ph].

Keller, S. C. and P. R. Wood (May 2006). “Bump Cepheids in the Magel-
lanic Clouds: Metallicities, the Distances to the LMC and SMC, and
the Pulsation-Evolution Mass Discrepancy”. In: ApJ 642, pp. 834–841.
DOI: 10.1086/501115. eprint: astro-ph/0601225.

Kippenhahn, R. and H. -C. Thomas (Jan. 1970). “A Simple Method for
the Solution of the Stellar Structure Equations Including Rotation and
Tidal Forces”. In: IAU Colloq. 4: Stellar Rotation. Ed. by Arne Slettebak,
p. 20.

Kippenhahn, R., A. Weigert, and Emmi Hofmeister (Jan. 1967). “Methods
for Calculating Stellar Evolution”. In: Methods in Computational Physics
7, pp. 129–190.

Kippenhahn, Rudolf, Alfred Weigert, and Achim Weiss (2012). Stellar Struc-
ture and Evolution. Stellar Structure, Evolution: , Astronomy, and Astro-
physics Library. ISBN 978-3-642-30255-8. Springer-Verlag Berlin Hei-
delberg, 2012. DOI: 10.1007/978-3-642-30304-3.

Kroupa, Pavel (Jan. 2002). “The Initial Mass Function of Stars: Evidence for
Uniformity in Variable Systems”. In: Science 295, pp. 82–91. DOI: 10.
1126/science.1067524. arXiv: astro-ph/0201098 [astro-ph].

Lemasle, B. et al. (Dec. 2017). “Detailed chemical composition of classical
Cepheids in the LMC cluster NGC 1866 and in the field of the SMC”.
In: A&A 608, A85, A85. DOI: 10.1051/0004-6361/201731370. arXiv:
1709.03083 [astro-ph.GA].

https://doi.org/10.3847/1538-4357/aab158
https://arxiv.org/abs/1802.07319
https://arxiv.org/abs/1802.07319
https://doi.org/10.1051/0004-6361/201731008
https://doi.org/10.1051/0004-6361/201731008
https://doi.org/10.1051/0004-6361/201833112
https://doi.org/10.1051/0004-6361/201833112
https://www.aanda.org/10.1051/0004-6361/201833112
https://www.aanda.org/10.1051/0004-6361/201833112
https://doi.org/10.1051/0004-6361/200809925
https://arxiv.org/abs/0901.3853
https://doi.org/10.1086/177381
1211.002
https://doi.org/10.1086/529367
https://arxiv.org/abs/0708.2967
https://doi.org/10.1086/501115
astro-ph/0601225
https://doi.org/10.1007/978-3-642-30304-3
https://doi.org/10.1126/science.1067524
https://doi.org/10.1126/science.1067524
https://arxiv.org/abs/astro-ph/0201098
https://doi.org/10.1051/0004-6361/201731370
https://arxiv.org/abs/1709.03083


160 Bibliography

Limongi, Marco (2017). “Supernovae from Massive Stars”. In: Handbook
of Supernovae, ISBN 978-3-319-21845-8. Springer International Publishing
AG, 2017, p. 513, p. 513. DOI: 10.1007/978-3-319-21846-5_119.

Limongi, Marco and Alessandro Chieffi (July 2018). “Presupernova Evo-
lution and Explosive Nucleosynthesis of Rotating Massive Stars in the
Metallicity Range -3 ≤ [Fe/H] ≤ 0”. In: The Astrophysical Journal Sup-
plement Series 237, 13, p. 13. DOI: 10.3847/1538-4365/aacb24. arXiv:
1805.09640 [astro-ph.SR].

Lovekin, C. C., R. G. Deupree, and C. I. Short (May 2006). “Surface Tem-
perature and Synthetic Spectral Energy Distributions for Rotationally
Deformed Stars”. In: ApJ 643, pp. 460–470. DOI: 10.1086/501492.
eprint: astro-ph/0602084.

Maeder, A. (May 1975). “Stellar evolution III: the overshooting from con-
vective cores.” In: A&A 40, pp. 303–310.

— (2009). Physics, Formation and Evolution of Rotating Stars. DOI: 10.1007/
978-3-540-76949-1.

Maeder, A. and G. Meynet (Sept. 2000). “Stellar evolution with rotation.
VI. The Eddington and Omega -limits, the rotational mass loss for OB
and LBV stars”. In: A&A 361, pp. 159–166. arXiv: astro-ph/0006405
[astro-ph].

Maeder, A., G. Meynet, et al. (May 2013). “The thermohaline, Richardson,
Rayleigh-Taylor, Solberg-Høiland, and GSF criteria in rotating stars”.
In: A&A 553, A1, A1. DOI: 10.1051/0004-6361/201220936. arXiv:
1303.3230 [astro-ph.SR].

Maeder, A. and E. Peytremann (Nov. 1972). “Uniformly Rotating Stars
with Hydrogen- and Metallic-Line Blanketed Model Atmospheres”. In:
A&A 21, p. 279.

Maeder, Andre and Jean-Paul Zahn (1998). “Stellar Evolution With Rota-
tion. III. Meridional Circulation With u-gradients and non-Stationarity”.
In: A&A 1006, pp. 1000–1006. ISSN: <null>. URL: http://adsabs.
harvard.edu/abs/1998A%7B%5C&%7DA...334.1000M.

Magic, Zazralt, Achim Weiss, and Martin Asplund (Jan. 2015). “The Stagger-
grid: A grid of 3D stellar atmosphere models - III. The relation to mixing-
length convection theory”. In: A&A 573, A89. DOI: 10.1051/0004-
6361/201423760. arXiv: 1403.1062. URL: http://arxiv.org/
abs/1403.1062%7B%5C%%7D0Ahttp://dx.doi.org/10.1051/
0004-6361/201423760.

Maldonado, J., L. Affer, et al. (May 2015). “Stellar parameters of early-
M dwarfs from ratios of spectral features at optical wavelengths”. In:
A&A 577, A132, A132. DOI: 10.1051/0004-6361/201525797. arXiv:
1503.03010 [astro-ph.SR].

Maldonado, J., E. Villaver, et al. (Apr. 2019). “Connecting substellar and
stellar formation: the role of the host star’s metallicity”. In: A&A 624,
A94, A94. DOI: 10 . 1051 / 0004 - 6361 / 201833827. arXiv: 1903 .
01141 [astro-ph.SR].

Marconi, M., G. Fiorentino, and F. Caputo (Apr. 2004). “Updated pulsa-
tion models for anomalous Cepheids”. In: A&A 417, pp. 1101–1114.
DOI: 10.1051/0004-6361:20040020. arXiv: astro-ph/0401332
[astro-ph].

https://doi.org/10.1007/978-3-319-21846-5_119
https://doi.org/10.3847/1538-4365/aacb24
https://arxiv.org/abs/1805.09640
https://doi.org/10.1086/501492
astro-ph/0602084
https://doi.org/10.1007/978-3-540-76949-1
https://doi.org/10.1007/978-3-540-76949-1
https://arxiv.org/abs/astro-ph/0006405
https://arxiv.org/abs/astro-ph/0006405
https://doi.org/10.1051/0004-6361/201220936
https://arxiv.org/abs/1303.3230
http://adsabs.harvard.edu/abs/1998A%7B%5C&%7DA...334.1000M
http://adsabs.harvard.edu/abs/1998A%7B%5C&%7DA...334.1000M
https://doi.org/10.1051/0004-6361/201423760
https://doi.org/10.1051/0004-6361/201423760
https://arxiv.org/abs/1403.1062
http://arxiv.org/abs/1403.1062%7B%5C%%7D0Ahttp://dx.doi.org/10.1051/0004-6361/201423760
http://arxiv.org/abs/1403.1062%7B%5C%%7D0Ahttp://dx.doi.org/10.1051/0004-6361/201423760
http://arxiv.org/abs/1403.1062%7B%5C%%7D0Ahttp://dx.doi.org/10.1051/0004-6361/201423760
https://doi.org/10.1051/0004-6361/201525797
https://arxiv.org/abs/1503.03010
https://doi.org/10.1051/0004-6361/201833827
https://arxiv.org/abs/1903.01141
https://arxiv.org/abs/1903.01141
https://doi.org/10.1051/0004-6361:20040020
https://arxiv.org/abs/astro-ph/0401332
https://arxiv.org/abs/astro-ph/0401332


Bibliography 161

Marconi, M., R. Molinaro, et al. (2013). “Theoretical fit of Cepheid light
a radial velocity curves in the Large Magellanic Cloud cluster NGC
1866”. In: Mon. Not. R. Astron. Soc. 428.3, pp. 2185–2197. ISSN: 00358711.
DOI: 10.1093/mnras/sts197. arXiv: arXiv:1210.4343v1.

Marigo, P. and B. Aringer (Dec. 2009). “Low-temperature gas opacity. ÆSO-
PUS: a versatile and quick computational tool”. In: A&A 508, pp. 1539–
1569. DOI: 10.1051/0004- 6361/200912598. arXiv: 0907.3248
[astro-ph.SR].

Marigo, P., L. Girardi, A. Bressan, et al. (Jan. 2017). “A New Generation
of PARSEC-COLIBRI Stellar Isochrones Including the TP-AGB Phase”.
In: ApJ 835, 77, p. 77. DOI: 10.3847/1538-4357/835/1/77. arXiv:
1701.08510 [astro-ph.SR].

Marigo, P., L. Girardi, C. Chiosi, et al. (May 2001). “Zero-metallicity stars. I.
Evolution at constant mass”. In: A&A 371, pp. 152–173. DOI: 10.1051/
0004-6361:20010309. arXiv: astro-ph/0102253 [astro-ph].

Marino, A. F., A. P. Milone, et al. (Aug. 2018). “Discovery of Extended
Main Sequence Turnoffs in Galactic Open Clusters”. In: ApJ 863, L33,
p. L33. DOI: 10 . 3847 / 2041 - 8213 / aad868. arXiv: 1807 . 05888
[astro-ph.SR].

Marino, A. F., N. Przybilla, et al. (Sept. 2018). “Different Stellar Rotations
in the Two Main Sequences of the Young Globular Cluster NGC 1818:
The First Direct Spectroscopic Evidence”. In: AJ 156, 116, p. 116. DOI:
10.3847/1538-3881/aad3cd. arXiv: 1807.04493 [astro-ph.SR].

Martocchia, S. et al. (July 2018). “The search for multiple populations in
Magellanic Cloud clusters - IV. Coeval multiple stellar populations in
the young star cluster NGC 1978”. In: MNRAS 477.4, pp. 4696–4705.
DOI: 10.1093/mnras/sty916. arXiv: 1804.04141 [astro-ph.SR].

Meynet, G. and A. Maeder (May 1997). “Stellar evolution with rotation. I.
The computational method and the inhibiting effect of the µ-gradient.”
In: A&A 321, pp. 465–476.

— (Aug. 2002). “Stellar evolution with rotation. VIII. Models at Z = 10−5

and CNO yields for early galactic evolution”. In: A&A 390, pp. 561–
583. DOI: 10.1051/0004-6361:20020755. arXiv: astro-ph/0205370
[astro-ph].

Milone, A. P., A. F. Marino, F. D’Antona, L. R. Bedin, G. S. Da Costa, et al.
(June 2016). “Multiple stellar populations in Magellanic Cloud clusters
- IV. The double main sequence of the young cluster NGC 1755”. In:
MNRAS 458.4, pp. 4368–4382. DOI: 10.1093/mnras/stw608. arXiv:
1603.03493 [astro-ph.SR].

Milone, A. P., A. F. Marino, F. D’Antona, L. R. Bedin, G. Piotto, et al. (Mar.
2017). “Multiple stellar populations in Magellanic Cloud clusters - V.
The split main sequence of the young cluster NGC 1866”. In: MNRAS
465, pp. 4363–4374. DOI: 10.1093/mnras/stw2965. arXiv: 1611.
06725 [astro-ph.SR].

Milone, A. P., A. F. Marino, M. Di Criscienzo, et al. (June 2018). “Multi-
ple stellar populations in Magellanic Cloud clusters - VI. A survey of
multiple sequences and Be stars in young clusters”. In: MNRAS 477,
pp. 2640–2663. DOI: 10.1093/mnras/sty661. arXiv: 1802.10538
[astro-ph.SR].

https://doi.org/10.1093/mnras/sts197
https://arxiv.org/abs/arXiv:1210.4343v1
https://doi.org/10.1051/0004-6361/200912598
https://arxiv.org/abs/0907.3248
https://arxiv.org/abs/0907.3248
https://doi.org/10.3847/1538-4357/835/1/77
https://arxiv.org/abs/1701.08510
https://doi.org/10.1051/0004-6361:20010309
https://doi.org/10.1051/0004-6361:20010309
https://arxiv.org/abs/astro-ph/0102253
https://doi.org/10.3847/2041-8213/aad868
https://arxiv.org/abs/1807.05888
https://arxiv.org/abs/1807.05888
https://doi.org/10.3847/1538-3881/aad3cd
https://arxiv.org/abs/1807.04493
https://doi.org/10.1093/mnras/sty916
https://arxiv.org/abs/1804.04141
https://doi.org/10.1051/0004-6361:20020755
https://arxiv.org/abs/astro-ph/0205370
https://arxiv.org/abs/astro-ph/0205370
https://doi.org/10.1093/mnras/stw608
https://arxiv.org/abs/1603.03493
https://doi.org/10.1093/mnras/stw2965
https://arxiv.org/abs/1611.06725
https://arxiv.org/abs/1611.06725
https://doi.org/10.1093/mnras/sty661
https://arxiv.org/abs/1802.10538
https://arxiv.org/abs/1802.10538


162 Bibliography

Mirouh, Giovanni M. et al. (Feb. 2019). “Mode classification in fast-rotating
stars using a convolutional neural network: model-based regular pat-
terns in δ Scuti stars”. In: MNRAS 483.1, pp. L28–L32. DOI: 10.1093/
mnrasl/sly212. arXiv: 1811.05769 [astro-ph.SR].

Mokiem, M. R., A. de Koter, C. J. Evans, et al. (Sept. 2006). “The VLT-
FLAMES survey of massive stars: mass loss and rotation of early-type
stars in the SMC”. In: Astronomy and Astrophysics 456.3, pp. 1131–1151.
DOI: 10.1051/0004-6361:20064995. arXiv: astro-ph/0606403
[astro-ph].

Mokiem, M. R., A. de Koter, J. S. Vink, et al. (Oct. 2007). “The empir-
ical metallicity dependence of the mass-loss rate of O- and early B-
type stars”. In: Astronomy and Astrophysics 473.2, pp. 603–614. DOI: 10.
1051/0004-6361:20077545. arXiv: 0708.2042 [astro-ph].

Moravveji, E. et al. (2015). “Tight asteroseismic constraints on core over-
shooting and diffusive mixing in the slowly rotating pulsating B8.3V
star KIC 10526294”. In: A&A 580, A27, A27. DOI: 10.1051/0004-
6361/201425290. arXiv: 1505.06902 [astro-ph.SR].

Mosser, B. et al. (Oct. 2018). “Period spacings in red giants IV. Toward a
complete description of the mixed-mode pattern”. In: A&A 618, A109,
A109. DOI: 10.1051/0004-6361/201832777.

Mowlavi, N. et al. (May 2012). “Stellar mass and age determinations . I.
GMowlavi2012rids of stellar models from Z = 0.006 to 0.04 and M =
0.5 to 3.5 M�”. In: A&A 541, A41, A41. DOI: 10.1051/0004-6361/
201117749. arXiv: 1201.3628.

Mucciarelli, A. et al. (2011). “NGC 1866: A milestone for understanding
the chemical evolution of stellar populations in the Large Magellanic
Cloud”. In: Mon. Not. R. Astron. Soc. 413.2, pp. 837–851. ISSN: 00358711.
DOI: 10.1111/j.1365-2966.2010.18167.x. arXiv: 1012.1476
[astro-ph.SR].

Musella, I. et al. (2016). “The Cepheids of NGC 1866: A precise benchmark
for the extragalactic distance scale and stellar evolution from modern
UBVI photometry”. In: Mon. Not. R. Astron. Soc. 457.3, pp. 3084–3095.
ISSN: 13652966. DOI: 10.1093/mnras/stw151. arXiv: 1601.06628.

Nanni, Ambra et al. (July 2019). “The mass-loss, expansion velocities, and
dust production rates of carbon stars in the Magellanic Clouds”. In:
MNRAS 487.1, pp. 502–521. DOI: 10.1093/mnras/stz1255. arXiv:
1904.06702 [astro-ph.SR].

Niederhofer, F. et al. (Mar. 2017). “The search for multiple populations in
Magellanic Cloud clusters - II. The detection of multiple populations
in three intermediate-age SMC clusters”. In: MNRAS 465.4, pp. 4159–
4165. DOI: 10.1093/mnras/stw3084. arXiv: 1612.00400 [astro-ph.SR].

Nugis, T. and H. J. G. L. M. Lamers (Aug. 2000). “Mass-loss rates of Wolf-
Rayet stars as a function of stellar parameters”. In: Astronomy and As-
trophysics 360, pp. 227–244.

Paxton, Bill, Lars Bildsten, et al. (Jan. 2011). “Modules for Experiments in
Stellar Astrophysics (MESA)”. In: The Astrophysical Journal Supplement
Series 192, 3, p. 3. DOI: 10.1088/0067-0049/192/1/3. arXiv: 1009.
1622 [astro-ph.SR].

Paxton, Bill, Matteo Cantiello, et al. (Sept. 2013). “Modules for Experi-
ments in Stellar Astrophysics (MESA): Planets, Oscillations, Rotation,

https://doi.org/10.1093/mnrasl/sly212
https://doi.org/10.1093/mnrasl/sly212
https://arxiv.org/abs/1811.05769
https://doi.org/10.1051/0004-6361:20064995
https://arxiv.org/abs/astro-ph/0606403
https://arxiv.org/abs/astro-ph/0606403
https://doi.org/10.1051/0004-6361:20077545
https://doi.org/10.1051/0004-6361:20077545
https://arxiv.org/abs/0708.2042
https://doi.org/10.1051/0004-6361/201425290
https://doi.org/10.1051/0004-6361/201425290
https://arxiv.org/abs/1505.06902
https://doi.org/10.1051/0004-6361/201832777
https://doi.org/10.1051/0004-6361/201117749
https://doi.org/10.1051/0004-6361/201117749
https://arxiv.org/abs/1201.3628
https://doi.org/10.1111/j.1365-2966.2010.18167.x
https://arxiv.org/abs/1012.1476
https://arxiv.org/abs/1012.1476
https://doi.org/10.1093/mnras/stw151
https://arxiv.org/abs/1601.06628
https://doi.org/10.1093/mnras/stz1255
https://arxiv.org/abs/1904.06702
https://doi.org/10.1093/mnras/stw3084
https://arxiv.org/abs/1612.00400
https://doi.org/10.1088/0067-0049/192/1/3
https://arxiv.org/abs/1009.1622
https://arxiv.org/abs/1009.1622


Bibliography 163

and Massive Stars”. In: The Astrophysical Journal Supplement Series 208,
4, p. 4. DOI: 10.1088/0067- 0049/208/1/4. arXiv: 1301.0319
[astro-ph.SR].

Paxton, Bill, Pablo Marchant, et al. (Sept. 2015). “Modules for Experiments
in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions”.
In: The Astrophysical Journal Supplement Series 220, 15, p. 15. DOI: 10.
1088/0067-0049/220/1/15. arXiv: 1506.03146 [astro-ph.SR].

Paxton, Bill, Josiah Schwab, et al. (Feb. 2018). “Modules for Experiments
in Stellar Astrophysics (MESA): Convective Boundaries, Element Dif-
fusion, and Massive Star Explosions”. In: The Astrophysical Journal Sup-
plement Series 234, 34, p. 34. DOI: 10.3847/1538-4365/aaa5a8. arXiv:
1710.08424 [astro-ph.SR].

Paxton, Bill, R. Smolec, et al. (Mar. 2019). “Modules for Experiments in
Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Con-
vective Boundaries, and Energy Conservation”. In: arXiv e-prints, arXiv:1903.01426,
arXiv:1903.01426. arXiv: 1903.01426 [astro-ph.SR].

Pérez Hernández, F. et al. (June 1999). “Photometric parameters for rotat-
ing models of A- and F-type stars”. In: A&A 346, pp. 586–598.

Petrovic, J et al. (2005). “Which massive stars are gamma-ray burst pro-
genitors?” In: A&A 435.1, pp. 247–259. ISSN: 0004-6361. DOI: 10.1051/
0004-6361:20042545. arXiv: 0504175 [astro-ph]. URL: https:
//www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.
pdf%20http://www.aanda.org/10.1051/0004-6361:20054030%
20http://www.aanda.org/10.1051/0004-6361:20042545.

Pietrinferni, Adriano et al. (Sept. 2004). “A Large Stellar Evolution Database
for Population Synthesis Studies. I. Scaled Solar Models and Isochrones”.
In: ApJ 612, pp. 168–190. DOI: 10.1086/422498.

Potter, Adrian T, Christopher A Tout, and John J Eldridge (2012). “To-
wards a unified model of stellar rotation”. In: MNRAS 419.1, pp. 748–
759. ISSN: 00358711. DOI: 10.1111/j.1365-2966.2011.19737.x.
arXiv: arXiv:1109.0993v1.

Rodrigues, T. S. et al. (Dec. 2014a). “Bayesian distances and extinctions for
giants observed by Kepler and APOGEE”. In: MNRAS 445, pp. 2758–
2776. DOI: 10.1093/mnras/stu1907. arXiv: 1410.1350 [astro-ph.SR].

— (Dec. 2014b). “Bayesian distances and extinctions for giants observed
by Kepler and APOGEE”. In: MNRAS 445, pp. 2758–2776. DOI: 10.
1093/mnras/stu1907. arXiv: 1410.1350 [astro-ph.SR].

Rodrigues, Thaíse S. et al. (May 2017). “Determining stellar parameters of
asteroseismic targets: going beyond the use of scaling relations”. In:
MNRAS 467.2, pp. 1433–1448. DOI: 10.1093/mnras/stx120. arXiv:
1701.04791 [astro-ph.SR].

Rosenfield, P. et al. (June 2017). “A New Approach to Convective Core
Overshooting: Probabilistic Constraints from Color-Magnitude Diagrams
of LMC Clusters”. In: ApJ 841, 69, p. 69. DOI: 10.3847/1538-4357/
aa70a2. arXiv: 1705.00618 [astro-ph.SR].

Royer, F. (2009). “On the Rotation of A-Type Stars”. In: The Rotation of Sun
and Stars. Vol. 765. Lecture Notes in Physics, Berlin Springer Verlag,
pp. 207–230. DOI: 10.1007/978-3-540-87831-5_9.

Russell, H. N. (May 1914). “Relations Between the Spectra and Other Char-
acteristics of the Stars”. In: Popular Astronomy 22, pp. 275–294.

https://doi.org/10.1088/0067-0049/208/1/4
https://arxiv.org/abs/1301.0319
https://arxiv.org/abs/1301.0319
https://doi.org/10.1088/0067-0049/220/1/15
https://doi.org/10.1088/0067-0049/220/1/15
https://arxiv.org/abs/1506.03146
https://doi.org/10.3847/1538-4365/aaa5a8
https://arxiv.org/abs/1710.08424
https://arxiv.org/abs/1903.01426
https://doi.org/10.1051/0004-6361:20042545
https://doi.org/10.1051/0004-6361:20042545
https://arxiv.org/abs/0504175
https://www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/10.1051/0004-6361:20054030%20http://www.aanda.org/10.1051/0004-6361:20042545
https://www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/10.1051/0004-6361:20054030%20http://www.aanda.org/10.1051/0004-6361:20042545
https://www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/10.1051/0004-6361:20054030%20http://www.aanda.org/10.1051/0004-6361:20042545
https://www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/10.1051/0004-6361:20054030%20http://www.aanda.org/10.1051/0004-6361:20042545
https://doi.org/10.1086/422498
https://doi.org/10.1111/j.1365-2966.2011.19737.x
https://arxiv.org/abs/arXiv:1109.0993v1
https://doi.org/10.1093/mnras/stu1907
https://arxiv.org/abs/1410.1350
https://doi.org/10.1093/mnras/stu1907
https://doi.org/10.1093/mnras/stu1907
https://arxiv.org/abs/1410.1350
https://doi.org/10.1093/mnras/stx120
https://arxiv.org/abs/1701.04791
https://doi.org/10.3847/1538-4357/aa70a2
https://doi.org/10.3847/1538-4357/aa70a2
https://arxiv.org/abs/1705.00618
https://doi.org/10.1007/978-3-540-87831-5_9


164 Bibliography

Sackmann, I. -J., R. L. Smith, and K. H. Despain (Feb. 1974). “Carbon and
eruptive stars: surface enrichment of lithium, carbon, nitrogen, and 13C
by deep mixing.” In: ApJ 187, pp. 555–574. DOI: 10.1086/152666.

Salasnich, Bernardo, Alessandro Bressan, and Cesare Chiosi (Feb. 1999).
“Evolution of massive stars under new mass-loss rates for RSG: is the
mystery of the missing blue gap solved?” In: A&A 342, pp. 131–152.

Salpeter, E. E. (Jan. 1955). “The Luminosity Function and Stellar Evolu-
tion.” In: ApJ 121, p. 161. DOI: 10.1086/145971.

Schwarzschild, M., R. Howard, and R. Härm (Jan. 1957). “Inhomogeneous
Stellar Models. V. a. Solar Model with Convective Envelope and Inho-
mogeneous Interior.” In: ApJ 125, p. 233. DOI: 10.1086/146297.

Schwarzschild, Martin (1958). Structure and evolution of the stars. Princeton,
Princeton University Press, 1958.

Shajn, G. and O. Struve (Jan. 1929). “On the rotation of the stars”. In: MN-
RAS 89, pp. 222–239. DOI: 10.1093/mnras/89.3.222.

Slettebak, A., T. J. Kuzma, and G. W. Collins II (Nov. 1980). “Effects of
stellar rotation on spectral classification”. In: ApJ 242, pp. 171–187. DOI:
10.1086/158453.

Spada, F et al. (2017). “The Yale-Potsdam Stellar Isochrones (YaPSI)”. In:
ApJ. ISSN: 15384357. DOI: 10.3847/1538-4357/aa661d. arXiv: 1703.
03975. URL: http://iopscience.iop.org/article/10.3847/
1538- 4357/aa661d/pdf%20http://arxiv.org/abs/1703.
03975%7B%5C%%7D0Ahttp://dx.doi.org/10.3847/1538-4357/
aa661d.

Spera, Mario, Michela Mapelli, and Alessandro Bressan (Aug. 2015). “The
mass spectrum of compact remnants from the PARSEC stellar evolu-
tion tracks”. In: MNRAS 451.4, pp. 4086–4103. DOI: 10.1093/mnras/
stv1161. arXiv: 1505.05201 [astro-ph.SR].

Spera, Mario, Michela Mapelli, Nicola Giacobbo, et al. (May 2019). “Merg-
ing black hole binaries with the SEVN code”. In: MNRAS 485.1, pp. 889–
907. DOI: 10.1093/mnras/stz359. arXiv: 1809.04605 [astro-ph.HE].

Stancliffe, R. J. et al. (Mar. 2015). “Confronting uncertainties in stellar physics:
calibrating convective overshooting with eclipsing binaries”. In: A&A
575, A117, A117. DOI: 10 . 1051 / 0004 - 6361 / 201425126. arXiv:
1501.05322 [astro-ph.SR].

— (Feb. 2016). “Confronting uncertainties in stellar physics. II. Exploring
differences in main-sequence stellar evolution tracks”. In: A&A 586,
A119, A119. DOI: 10.1051/0004-6361/201527099. arXiv: 1601.
03054 [astro-ph.SR].

Sweet, P. A. (Jan. 1950). “The importance of rotation in stellar evolution”.
In: MNRAS 110, p. 548. DOI: 10.1093/mnras/110.6.548.

Talon, Suzanne and Jean-Paul Zahn (1997). “Anisotropic diffusion and
shear instabilities.” In: A&A 317.1, p. 749. arXiv: 9609010 [astro-ph].
URL: http://adsabs.harvard.edu/abs/1997A%7B%5C&%7DA...
317..749T.

Tang, J. et al. (Dec. 2014). “New PARSEC evolutionary tracks of massive
stars at low metallicity: testing canonical stellar evolution in nearby
star-forming dwarf galaxies”. In: MNRAS 445, pp. 4287–4305. DOI: 10.
1093/mnras/stu2029. arXiv: 1410.1745 [astro-ph.SR].

https://doi.org/10.1086/152666
https://doi.org/10.1086/145971
https://doi.org/10.1086/146297
https://doi.org/10.1093/mnras/89.3.222
https://doi.org/10.1086/158453
https://doi.org/10.3847/1538-4357/aa661d
https://arxiv.org/abs/1703.03975
https://arxiv.org/abs/1703.03975
http://iopscience.iop.org/article/10.3847/1538-4357/aa661d/pdf%20http://arxiv.org/abs/1703.03975%7B%5C%%7D0Ahttp://dx.doi.org/10.3847/1538-4357/aa661d
http://iopscience.iop.org/article/10.3847/1538-4357/aa661d/pdf%20http://arxiv.org/abs/1703.03975%7B%5C%%7D0Ahttp://dx.doi.org/10.3847/1538-4357/aa661d
http://iopscience.iop.org/article/10.3847/1538-4357/aa661d/pdf%20http://arxiv.org/abs/1703.03975%7B%5C%%7D0Ahttp://dx.doi.org/10.3847/1538-4357/aa661d
http://iopscience.iop.org/article/10.3847/1538-4357/aa661d/pdf%20http://arxiv.org/abs/1703.03975%7B%5C%%7D0Ahttp://dx.doi.org/10.3847/1538-4357/aa661d
https://doi.org/10.1093/mnras/stv1161
https://doi.org/10.1093/mnras/stv1161
https://arxiv.org/abs/1505.05201
https://doi.org/10.1093/mnras/stz359
https://arxiv.org/abs/1809.04605
https://doi.org/10.1051/0004-6361/201425126
https://arxiv.org/abs/1501.05322
https://doi.org/10.1051/0004-6361/201527099
https://arxiv.org/abs/1601.03054
https://arxiv.org/abs/1601.03054
https://doi.org/10.1093/mnras/110.6.548
https://arxiv.org/abs/9609010
http://adsabs.harvard.edu/abs/1997A%7B%5C&%7DA...317..749T
http://adsabs.harvard.edu/abs/1997A%7B%5C&%7DA...317..749T
https://doi.org/10.1093/mnras/stu2029
https://doi.org/10.1093/mnras/stu2029
https://arxiv.org/abs/1410.1745


Bibliography 165

Testa, Vincenzo et al. (Dec. 1999). “The Large Magellanic Cloud Globu-
lar Cluster NGC 1866: New Data, New Models, New Analysis”. In:
AJ 118.6, pp. 2839–2864. DOI: 10.1086/301148. arXiv: astro-ph/
9909417 [astro-ph].

Thoul, Anne A., John N. Bahcall, and Abraham Loeb (Feb. 1994). “Element
Diffusion in the Solar Interior”. In: ApJ 421, p. 828. DOI: 10.1086/
173695. arXiv: astro-ph/9304005 [astro-ph].

Torres, G., J. Andersen, and A. Giménez (2010). “Accurate masses and
radii of normal stars: Modern results and applications”. In: A&A Rev.
18.1-2, pp. 67–126. ISSN: 09354956. DOI: 10.1007/s00159-009-0025-
1. arXiv: 0908.2624.

Torres, Guillermo et al. (2015). “CAPELLA ( <i>α</i> AURIGAE) REVIS-
ITED: NEW BINARY ORBIT, PHYSICAL PROPERTIES, AND EVO-
LUTIONARY STATE”. In: ApJ 807.1, p. 26. ISSN: 1538-4357. DOI: 10.
1088/0004-637X/807/1/26. URL: http://stacks.iop.org/
0004-637X/807/i=1/a=26?key=crossref.10407c75838131bf36868755ceb48892.

Valle, G et al. (2016). “Calibrating convective-core overshooting with eclips-
ing binary systems”. In: A&A 587, A16. ISSN: 0004-6361. DOI: 10.1051/
0004-6361/201527389. arXiv: 1601.01535. URL: https://www.
aanda.org/articles/aa/pdf/2016/03/aa27389- 15.pdf%
20http://www.aanda.org/10.1051/0004-6361/201527389.

— (2017). “Statistical errors and systematic biases in the calibration of the
convective core overshooting with eclipsing binaries”. In: A&A 600,
A41. ISSN: 0004-6361. DOI: 10.1051/0004-6361/201628240. arXiv:
1612.07066. URL: https://www.aanda.org/articles/aa/pdf/
2017/04/aa28240-16.pdf%20http://arxiv.org/abs/1612.
07066%7B%5C%%7D0Ahttp://www.aanda.org/10.1051/0004-
6361/201628240.

van Belle, G. T. (Mar. 2012). “Interferometric observations of rapidly rotat-
ing stars”. In: A&A Rev. 20, 51, p. 51. DOI: 10.1007/s00159-012-
0051-2. arXiv: 1204.2572 [astro-ph.SR].

Vink, J. S., A. de Koter, and H. J. G. L. M. Lamers (Oct. 2000). “New theo-
retical mass-loss rates of O and B stars”. In: Astronomy and Astrophysics
362, pp. 295–309. arXiv: astro-ph/0008183 [astro-ph].

Vink, Jorick S., A. de Koter, and H. J. G. L. M. Lamers (Apr. 2001). “Mass-
loss predictions for O and B stars as a function of metallicity”. In: As-
tronomy and Astrophysics 369, pp. 574–588. DOI: 10.1051/0004-6361:
20010127. arXiv: astro-ph/0101509 [astro-ph].

von Zeipel, H. (June 1924). “The radiative equilibrium of a rotating sys-
tem of gaseous masses”. In: MNRAS 84, pp. 665–683. DOI: 10.1093/
mnras/84.9.665.

Weiss, Achim and Helmut Schlattl (Aug. 2008). “GARSTEC—the Garching
Stellar Evolution Code. The direct descendant of the legendary Kip-
penhahn code”. In: Ap&SS 316, pp. 99–106. DOI: 10.1007/s10509-
007-9606-5.

Woo, J.-H. et al. (2003). “Testing Intermediate-Age Stellar Evolution Mod-
els with VLT Photometry of Large Magellanic Cloud Clusters. II. Anal-
ysis with the Yale Models”. In: AJ 125, pp. 754–769. DOI: 10.1086/
345959. eprint: astro-ph/0208142.

https://doi.org/10.1086/301148
https://arxiv.org/abs/astro-ph/9909417
https://arxiv.org/abs/astro-ph/9909417
https://doi.org/10.1086/173695
https://doi.org/10.1086/173695
https://arxiv.org/abs/astro-ph/9304005
https://doi.org/10.1007/s00159-009-0025-1
https://doi.org/10.1007/s00159-009-0025-1
https://arxiv.org/abs/0908.2624
https://doi.org/10.1088/0004-637X/807/1/26
https://doi.org/10.1088/0004-637X/807/1/26
http://stacks.iop.org/0004-637X/807/i=1/a=26?key=crossref.10407c75838131bf36868755ceb48892
http://stacks.iop.org/0004-637X/807/i=1/a=26?key=crossref.10407c75838131bf36868755ceb48892
https://doi.org/10.1051/0004-6361/201527389
https://doi.org/10.1051/0004-6361/201527389
https://arxiv.org/abs/1601.01535
https://www.aanda.org/articles/aa/pdf/2016/03/aa27389-15.pdf%20http://www.aanda.org/10.1051/0004-6361/201527389
https://www.aanda.org/articles/aa/pdf/2016/03/aa27389-15.pdf%20http://www.aanda.org/10.1051/0004-6361/201527389
https://www.aanda.org/articles/aa/pdf/2016/03/aa27389-15.pdf%20http://www.aanda.org/10.1051/0004-6361/201527389
https://doi.org/10.1051/0004-6361/201628240
https://arxiv.org/abs/1612.07066
https://www.aanda.org/articles/aa/pdf/2017/04/aa28240-16.pdf%20http://arxiv.org/abs/1612.07066%7B%5C%%7D0Ahttp://www.aanda.org/10.1051/0004-6361/201628240
https://www.aanda.org/articles/aa/pdf/2017/04/aa28240-16.pdf%20http://arxiv.org/abs/1612.07066%7B%5C%%7D0Ahttp://www.aanda.org/10.1051/0004-6361/201628240
https://www.aanda.org/articles/aa/pdf/2017/04/aa28240-16.pdf%20http://arxiv.org/abs/1612.07066%7B%5C%%7D0Ahttp://www.aanda.org/10.1051/0004-6361/201628240
https://www.aanda.org/articles/aa/pdf/2017/04/aa28240-16.pdf%20http://arxiv.org/abs/1612.07066%7B%5C%%7D0Ahttp://www.aanda.org/10.1051/0004-6361/201628240
https://doi.org/10.1007/s00159-012-0051-2
https://doi.org/10.1007/s00159-012-0051-2
https://arxiv.org/abs/1204.2572
https://arxiv.org/abs/astro-ph/0008183
https://doi.org/10.1051/0004-6361:20010127
https://doi.org/10.1051/0004-6361:20010127
https://arxiv.org/abs/astro-ph/0101509
https://doi.org/10.1093/mnras/84.9.665
https://doi.org/10.1093/mnras/84.9.665
https://doi.org/10.1007/s10509-007-9606-5
https://doi.org/10.1007/s10509-007-9606-5
https://doi.org/10.1086/345959
https://doi.org/10.1086/345959
astro-ph/0208142


166 Bibliography

Yoon, S.-C and N Langer (2005). “Evolution of rapidly rotating metal-poor
massive stars towards gamma-ray bursts”. In: A&A 443.2, pp. 643–
648. ISSN: 0004-6361. DOI: 10.1051/0004-6361:20054030. arXiv:
0508242 [astro-ph]. URL: https://www.aanda.org/articles/
aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/
10.1051/0004-6361:20054030.

Zahn, J.-P. (Nov. 1992). “Circulation and turbulence in rotating stars.” In:
A&A 265, pp. 115–132.

https://doi.org/10.1051/0004-6361:20054030
https://arxiv.org/abs/0508242
https://www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/10.1051/0004-6361:20054030
https://www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/10.1051/0004-6361:20054030
https://www.aanda.org/articles/aa/pdf/2005/44/aa4030-05.pdf%20http://www.aanda.org/10.1051/0004-6361:20054030

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Brief historical introduction on stellar structure and evolution
	Stellar rotation
	Thesis outline

	Stellar structure
	Equations of stellar structure
	Equation of state and opacity
	Mass loss
	The new scheme for mixing and nuclear reactions
	Methods and boundary conditions
	The atmosphere
	The envelope


	Stellar rotation
	Basic assumptions
	Properties of the isobars
	Surface shape of isobars
	Hydro-static equilibrium equation
	Continuity Equation
	Conservation of energy
	Transport of energy
	Radiative equilibrium
	Convective transport
	Equation of energy transport

	Equations of stellar structure with rotation
	Boundary conditions
	Calculation of the form parameters
	Surface of an isobar
	Average effective gravity
	Computing the form parameters
	Calculating volume inside the isobar
	Re-computing the polar radius

	Von Zeipel effect and the surface temperature

	Transport of angular momentum
	Meridional circulation 
	Shear instability
	Mixing and transport of angular momentum
	Mass loss
	Calibration of parameters
	Preliminary comparison with other authors
	Structure evolution and interior profile
	HR diagram comparison


	Mixing by overshooting and rotation
	General background
	Data and methods
	DLEB data
	The Bayesian method

	PARSEC version 2.0: The input physics
	The effect of core overshooting alone
	Evolutionary tracks and isochrones at varying overshooting parameter
	Interpretation with models with overshooting

	Effects of rotation
	Evolutionary models with rotation
	Results

	Discussion and Conclusions

	Photometric signatures of rotation
	Introduction
	Computing the spectra
	The special case of non-rotating stars
	The case of rotating stars
	Consistency and accuracy checks
	Limitations
	BC tables for rotating stars

	Results and applications
	General behaviour of the spectra and colours
	Comparison with other approaches
	An example: fast rotators in NGC 1866

	Conclusions

	Multiple populations in NGC 1866
	Introduction
	Data and methods
	The NGC 1866 photometry
	Cepheids data
	The Bayesian statistical analysis

	The parsec models with rotation
	New prescriptions
	Evolutionary tracks and isochrones
	Gravity Darkening and Color-Magnitude Diagram

	Results
	Bayesian analysis
	Colour Magnitude Diagram

	Discussion and Conclusions

	Conclusion
	My contribution to other projects
	ybc, a bolometric corrections database
	Merging black hole binaries with the SEVN code
	Mode classification in fast-rotating stars
	The Minimum Mass of Rotating Main-sequence Stars
	Helium-Enriched Globular Cluster Progenitors
	Accretion on CTTSs


