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“At the end of the day, you are making order from disorder.”

Anonymous
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Abstract

The cell membrane is a special casing necessary to keep homeostasis for cells
survival. It is a two-dimensional agglomeration of lipids that holds a large
number of membrane proteins with diverse vital functions. The fluid nature of
the membrane makes it difficult to be handled, and requires the development
of ad hoc techniques to investigate its properties and composition.

In this PhD thesis, I developed a method to isolate the apical cell membrane
of single cells. Taking advantage of the Atomic Force Microscope (AFM), I
imaged and probed the mechanical properties of these isolated patches of mem-
branes. I also extensively performed AFM-based single-molecule force spec-
troscopy to unfold the membrane proteins from the native membranes, collect-
ing hundreds of thousands of unfolding curves. I analyzed these data with a
custom software able to find the recurrent pattern of unfolding in the data, and
I developed a Bayesian inference method to assign these unfolding curves to
a limited number of membrane proteins. The underlying motivation of these
experiments is to bring AFM technologies a step closer to an application in
biomedicine.

This work demonstrates that i) the cell membrane can be reliably isolated
from single cells; ii) AFM can be used to characterize the membrane topography
and mechanical properties of the cells of interest (e.g. I found that neural
cell membranes are thicker and stiffer than membranes of brain cancer cells);
iii) it is possible to record the unfolding pathways of the membrane proteins
contained in the cell membranes and to identify them with the cross-matching
of proteomic databases, and iv) the population of unfolding curves obtained
with SMFS reflects the actual population of membrane proteins obtained with
Mass Spectrometry.
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Chapter 1

Introduction

Atomic Force Microscopy in biology

In this introductory chapter I will provide some background information which
will be useful to appreciate the goals and the challenges that have guided my
PhD work.

1.1 Background

The progress of science is usually a graded process, but once in a while it
happens to show discontinuities due to some disruptive revolutions. In physics
there have been mostly conceptual revolutions: theories that allows to link
experimental results that were previously uncorrelated; in modern biology, on
the contrary, there have been mostly technological revolutions: techniques that
enable (previously) unthinkable experiments.

The invention of the Atomic Force Microscope (AFM [1]; Figure 1.1 a) is
one of these revolutions.

Fig. 1.1: a: picture of the first AFM built in 1985 by Binnig and colleagues [1].
b: sketch of an AFM probe moving on top of the imaged surface (adapted from
ref. [2]). c: basic scheme of a AFM device (adapted from ref. [2])
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1.2 AFM is an enabling technology still under

development

1.2.1 AFM is a special kind of microscope

The word microscope derives from the Greek words mikros—“small”—and
skopein—“to look”. If we took literally this definition, it wouldn’t be right
to call the Atomic Force Microscope really a ‘microscope’, because AFMs are
metaphorically much closer to touch than to sight. Indeed, the basic working
principle of the AFM is that of a tip that touches and moves on top of a surface
(Figure 1.1 b).

The working principle is simple, but the necessary technology to bring it
to sub-nanometric precision is all but not trivial. Broadly speaking, the goal
is to raster scan the surface of the sample with a tiny probe (cantilever tip),
to record the scanned information as X-Y-Z coordinates, and to reconstruct
this map into a topographical image true to the original sample. A modern
AFM [3] is constituted by a micrometric cantilever with a sharp tip on one side,
and connected to a cantilever holder on the other (Figure 1.1 c). The cantilever
holder is fixed to a piezo tube (a piezoelectric crystal fused in a tubular volume)
necessary to move the cantilever tip in the X-Y-Z directions. The piezo tube is
a key element because it uses the special property of piezo crystals to deform in
a very accurate manner under high electric voltages, thus to move the cantilever
with sub-nanometric precision. The forces to which the cantilever is subjected
are constantly monitored through a laser beam that points to the cantilever
and reflects into a photodetector (Figure 1.1 c): in this way, even the smallest
deflections of the cantilever are detected by the photodetector as movements
of the laser spot. Moreover, in the regime of small deflections, the cantilever
behave like a spring, therefore the AFM can not only be used to raster scan a
surface, but also to measure forces applied to an extremely small area (i.e. the
apex of the tip). The power of the AFM comes from the fine intercombination
of these elements and from the miniaturization that started in the 60s, on the
wave of the silicon revolution.

To summarize, an AFM is the combination of three advanced technologies:
piezoelectric crystals, microfabrication for the cantilever tip, laser and electron-
ics for the control device. In the following, I will briefly review the advancements
in microfabrication and electronics that represent the domains of major gain of
AFM performance of the last few years.

1.2.2 ‘Make it smaller and faster’
(microfabrication & electronics)

The resolution of the AFM depends on the size of the probe that is used to
scan the surface of interest. In order to follow nanometer features, tips with an
apex with nanometer radius of curvature are essential. Moreover, if the sample
presents densely packed hills and holes, the tip necessitates to enter the holes
and follow every detail in order to generate a faithful topographical representa-
tion of the sample (Figure 1.2 a). For these reasons, scientist developed methods
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Fig. 1.2: a: comparison between a standard tip vs an ultra-sharp tip [4]. b:
scanning electron microscopy image of an ultra-sharp tip (with carbon nanotube
grown on top of a silicon tip; adapted from ref. [5]). c: top views of modified
cantilevers for enhanced temporal resolution (adapted from ref. [6]). d: scheme
of the electronic devices necessary for a high-speed AFM (adapted from ref. [5]).

to grow on top of the cantilever—or on top of the cantilever tip itself (Figure
1.2 b)—an additional ultra-sharp tip made of carbon atoms. This additional
tip can be several µm high and can have a radius of curvature of 1-2 nm [4], so
to follow the finest details of the sample.

But it is not only a matter of tips, indeed the quality of the topographical
reconstruction depends also on the size of the cantilever. As a general princi-
ple, the smaller the better, because a small lever is softer (less invasive) and
lighter (less inertia). The challenges were a) to manufacture small and precise
levers and b) to adapt the AFM accordingly. The advancements in microelec-
tronics allowed to have the right technology to build small probes, and these
small probes were also modified (sculptured) with Focused Ion Beams to make
them even softer and lighter (Figure 1.2 c) [6]. Once small probes were made,
a standard AFM became inadequate, in particular in the laser-photodetector
coupling. In order to focus the laser beam onto these new small probes, the
AFMs were customized with an optical objective necessary to focus the light
onto the smaller reflection area of the new levers. Now that all the ingredients
for better AFMs were ready, the last step was to make them faster. An AFM
image used to require several minutes to be recorded. Therefore, AFMs were
equipped with special ultra-fast electronics giving birth to what is now called
High-speed AFM (HS-AFM) (Figure 1.2 d), which can be considered a second
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revolution in the field [5].

1.3 AFM is a microscope for unlabeled molecules

Biology and modern medicine make extensive use of imaging techniques, and
in particular of fluorescence microscopy [7, 8] (Figure 1.3 c). The general
idea underlying fluorescence microscopy is to obtain signals from the specific
biomolecule of interest, and to associate it with its spatial distribution in the
sample, hopefully also for quantitative assessments. The biomolecule of inter-
est is in almost all cases not fluorescent—i.e. invisible—therefore it needs to
be labeled with another fluorescent molecule to be detected. In any case, with
the exception of particular applications of Forster Resonance Energy Transfer
(FRET), no structural information of the biomolecules can be obtained with
fluorescence microscopy.

To obtain structural information, structural biology and pharmacology use
X-ray crystallography, NMR, and more recently cryo-EM to investigate the
internal structure of the biomolecule of interest [9, 10] (Figure 1.3 a). With
these techniques it is possible to reach sub-nanometer resolution of the 3D
arrangements of the amino acids in the case of proteins, which is very relevant in
drug design. To gather these structural information there are some experimental
steps which include the purification of the biomolecule, or its freezing, that
necessarily does not allow to keep the molecules in a physiological (not even
almost-physiological) environment.

Fig. 1.3: Comparison of imaging techniques for biomolecules and their
domains of application, a: for structural, high-resolution, imaging . b: for
intermediate molecular imaging with dynamics (adapted from ref. [11]). c: for
cellular imaging of biomolecules localization.

There are situations, or scientific prerequisites, where either the label cannot
be applied, or the project necessitate structural and dynamical information
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of the biomolecule in an almost-physiological environment. For these kind of
situations, the AFM is the ideal microscopy technique because it sits exactly in
between fluorescence microscopy and crystallography/cryo-EM (Figure 1.3 b).

1.3.1 Purified proteins reconstituted in membranes

Despite of being the target of about 50% of modern drugs [12], structural studies
was particularly complicated with membrane proteins that are not prone to
crystallization because they have a biphasic surface (hydrophilic at the poles
and hydrophobic at the equator to accommodate the membrane) and therefore
it is difficult to measure the structural effect of a ligand.

In the late 80s, the newborn AFM that was invented for applications on semi-
conductors and insulators entered also the biology departments, and the first
pioneering studies on membrane proteins began. The first membrane protein for
which it was developed a protocol for AFM imaging was bacteriorhodopsin [13]
(Figure 1.4 a), a membrane protein that form 2D crystal called purple mem-
branes. Some years later it was possible to reach sub-molecular resolution and
compare the AFM topographs with the atomic model derived from electron
microscopy [14] (Figure 1.4 b). The real AFM advantages over electron mi-
croscopy started to be evident at this point: indeed AFM could be operated
in liquid, i.e. emulating the physiological conditions of the membrane proteins
environment. For instance, Muller et al. [14] showed that by changing the pH of
the imaging solution, the purple membrane displayed conformational changes
in its structure. Later studies demonstrated also that the application of forces
induced changes in the bacteriorhodopsin structure [15] opening the way for
“multidimensional” molecular imaging. In this regard, a more recent study of
bacteriorhodopsin mechanical response [16] reached such a high level of preci-
sion that allowed the authors to determine which are the stiffest and which are
the softest domains within the single protein. But the class of membrane pro-
teins that is the most natural subject of investigation for a technique that allows
to measure forces are the mechanosensitive proteins, e.g. PIEZO channels. In
mechanosensitive proteins, the application of forces is thought to be responsible
of key structural changes (like channel gating). This is exactly what a recent
study searched for in a combination of cryo-EM and AFM experiments, where
authors were able to propose a mechanisms that translate the forces applied to
the membrane to channel gating [17].

What was lacking in these experiments was a dynamical point of view in
the time-scale of seconds. The slow operation mode of conventional AFMs was
boosted starting from the year 2010 when T. Ando and his group introduced
the technical improvements described in section 1.2.2 and built the first High-
Speed AFM, which could acquire several frames per second. The fast frame rate
enabled the visualization of fast molecular mechanisms, for instance, the first
direct imaging of thee movements of myosin [20] or the diffusion of membrane
proteins in membranes [18] (Figure 1.4 c).

I believe that HS-AFM will become increasingly prominent for practical
applications in drug discovery because it allows to directly probe the structural
effects of ligands on the membrane protein of interest with a relatively simple
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Fig. 1.4: a: AFM line scans of purple membranes in 1988 [13]. b:
sub-molecular resolution of purple membranes in 1995 [14]. c: HS-AFM of
membrane protein diffusion in a synthetic membrane [18]. d and e: HS-AFM of
conformational changes of an homolog of CNG channel in presence of cAMP
and cGMP [19].

machine [19] (Figure 1.4 d and e). In the next section I will describe how AFM
has been applied to real cell membranes.

1.3.2 Native cell membranes (from electron microscopy
to AFM)

The question “How does a real cell membrane look like?” started to be answered
only from the 70s when the first rudimentary technique to break the cells and
to create membrane-only samples was developed [21]. Given the length-scale of
the membrane features, the only microscopy technique available for their inves-
tigation was electron microscopy. This microscopy technique was extensively
adopted in the following years, in particular thanks to a radical change in the
preparation method that made the sample preparation more reliable: the use of
sonic waves to break the cells to obtain the so called “unroofed” membranes [22].
From these investigations we learned how the membrane skeleton is arranged
by looking directly into it from the cytoplasmic side of the membrane (Figure
1.5 a). For instance, it was possible to shed light on how the actin filaments
arrangements partition the plasma membrane decreasing the lateral diffusion of
lipids and proteins [23].

The versatility of AFM discussed also in the previous section comprises a
relatively simpler instrument compared to the electron microscope and, more
importantly, the possibility to operate at room temperature with the sample
under the physiological medium. Despite of these theoretical advantages on
paper, the AFM was applied to native membranes relatively late, and starting
with special compartments of the cell constituted just by membrane (Figure
1.5 b). An example of these applications is the rod outer segment disc, key for
vision and rich in Rhodopsin [24]. AFM was able to resolve the macromolecular
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structures of Rhodopsin in discs that forms nano-domains with an average size
of 500 nm2 [25,26].

Only more recently, a group in Japan revisited the unroofing technique de-
veloped for electron microscopy [27] and used these samples, after fixation, with
AFM obtaining molecular resolution at room temperature (Figure 1.5 c and d).

After having tested many of these methods, I can safely say that one of the
major disadvantages of using AFM with native cell membranes is the fact that
the position of the membrane itself is difficult to be found, and requires time
consuming scanning of the sample that affect also the quality of the tip. For this
reason, inspired by ref. [28], I developed un unroofing method that breaks only
one single cell (or a few) on the very corner of a triangular coverslip [29] (Figure
1.5 e and f). In this way, the identification of the position of the membrane is
straightforward, and the membrane seems to be isolated without the membrane
skeleton that was observed with other techniques. The very last goal in this
case would be to image single membrane proteins with sub-molecular resolution
in their complex macromolecular organization, but not even the latest AFMs
seem to be able to reach such a resolution on this dirty environment.

How the information coming from the topology of native membranes could
be transferred to applications in nano-medicine is discussed in chapter 3.

Fig. 1.5: a: electron microscopy of actin filaments that form boundaries on the
membrane [23]. b: AFM imaging of rod outer segment discs [25]. c & d:
unroofing preparation through sonic waves and AFM imaging of actin filaments
and clatrin [27]. e & f: single cell unroofing through the gentle squeezing of a
single cell and the resulting isolated membrane [29].
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1.4 AFM as a force probe for cells and cell

membranes

In the previous sections I discussed the imaging capabilities of the AFM, but
we cannot forget that the AFM is also an instrument able to measure forces at
the micro- and nano-scale level. In the next sections I will present the major
results of the past two decades obtained with the application of AFM-based
force spectroscopy to biological materials.

1.4.1 Single-cell force spectroscopy

Cells are soft objects that ranges from 1 to 50 microns in size. As opposed
to inanimate objects, cells are active entities constituted by a complex internal
structure, since they can duplicate and mix with other cells forming tissues, and
finally organisms. The biochemical signals that the cells use to communicate and
function have been the subject of investigation of molecular biology which made
an enormous progress in the last 70 years. Different cell types are characterized
by different biochemical signatures, and a question that one may ask is: are
different cells characterized by different mechanical properties?

AFM can answer this question as the AFM tip can be used to indent a
cell while recording the cantilever deflection. The recorded curve is informative
of the cell stiffness and from the same curve it is possible to extrapolate con-
ventional mechanical properties like the Young modulus [30]. There is a vast
scientific literature on this topic which focused very early on the attempt to find
biomedical applications, in particular for cancer cell detection [31,32]. The gen-
eral conclusion of these studies is that cancer cells (lung, breast, pancreas [33],
ovarian [32]) are softer and with a narrower standard deviation of the Young
modulus compared to non-malignant cells of the same body cavity. Being softer
may help cancer cells to be more dynamic and therefore successful in infiltrating
tissues, but a definitive explanation of the problem is still to come.

More recently, people developed also some alternative operating mode to
expand the range of mechanical properties that AFM can investigate. Yango el
al. [34], for instance, introduced cycles of indentation and relaxation to measure
both the Young modulus and the internal viscosity of the cell. An interesting
advancement is the one introduced by Rigato et al. [35] where they measured
the cell viscoelastic properties at different time scales, stimulating the cells
from 1 Hz to 100 kHz. This is important because the cell is an active object
which constituents (e.g. cytoskeleton filaments) can rearrange at different time
scales, therefore defining the ‘mechanical fingerprint’ can help to sort cells more
accurately.

Being able to uniquely identify cancerous cells (or specimens) just by probing
their mechanics, so without the use of biochemical markers, seems to be a
challenge that may be completed in relatively few years.
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1.4.2 Nanomechanics of lipid bilayers: from synthetic to
native membranes

The mechanical properties of the lipid bilayer—i.e. the component that sepa-
rates the cell interior from the external environment—were not accessible with
the standard biochemical techniques available until the invention of the AFM.
AFM opened the way for the direct investigation of the strength of molecu-
lar interactions among lipids in supported membranes. In these experiments,
synthetic lipids (e.g. DPPC, DOPC) are mixed in solution and deposited on
atomically flat surfaces (e.g. cleaved mica), then they are imaged with AFM to
confirm their correct assembly, and finally indented with the AFM tip to probe
the nanomechanical properties of the membrane. The prototypical indentation
curve recorded by the AFM shows an initial elastic behavior of the membrane
(deformation of the bilayer), until the compression force of the AFM tip reaches
a critical value that causes the breakage of the bilayer. After the breakage, the
tip is retracted while the membrane self-assembles back, closing the hole.

To my knowledge, the first experiments on lipids nanomechanics were per-
formed in 1999 by Dufrene et al. [36]: they demonstrated the versatility of AFM
to probe the chemical and physical properties of lipid membranes. After these
pioneering studies, many labs around the world started to apply atomic force
microscopy to membranes, characterizing their behavior in many different con-
ditions of physiological relevance. For instance it was shown that the stiffness
of the membrane increases by reducing its temperature [37] or by increasing the
percentage of cholesterol [38], with important consequences for our understand-
ing of the dynamic of processes at cellular and sub-cellular level. It is surprising
how, from relatively crude indentations and enough statistics, it is possible to
extrapolate very detailed physical quantities of the bilayer like the line tension
and the spreading pressure [39,40], quantities that are essential in coarse grain
simulations of the cell.

I would like to mention two noteworthy recent experimental advancements
in the field. Goncalves et al. [41], instead of studying supported membranes,
developed a substrate with sub-micrometric holes where the membrane could
remain free-standing, emulating a real cell surface. In this way, they were
able to precisely measure the breaking point of a membrane that could bend
under the AFM tip push. While Al-Rekabi et al. [42], similarly to Rigato
et al. [35] as described in the previous section, introduced a multifrequency
AFM mode that allows to capture the viscoelastic properties of the membrane
and demonstrates how cholesterol concentration is a key ingredient in changing
membrane properties from viscous to elastic.

One of the goals of this thesis is to transfer the application of the power-
ful methods described above (and benchmarked with synthetic membranes) to
native cellular membranes in order to gather information of the real nanome-
chanics generated by the native complexity.
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1.5 AFM as a force probe for single proteins

Measuring the mechanical properties of cells or cell membranes is definitely a
technological leap, but it does not represent a conceptual breakthrough, in the
sense that these results could be somehow expected. What really represents
a practical revolution for an unsolved problem in biology is the possibility to
record the un-folding of single proteins—one at a time—with AFM-based single-
molecule force spectroscopy (SMFS).

In fact, the physico-chemical process that guides a linear sequence of amino
acids into the 3-dimensional precise structures that (almost-)every protein shows
may be taken for granted, but it is a puzzle since the 50s [43]. The number of
variables that should be taken into account to simulate with atomic resolution
the folding of a protein is simply intractable for modern computational power,
and therefore, in the past years many computational “shortcuts” have been
invented to tackle the problem in an approximate manner (e.g. [44]). On the
other hand, from the experimental point of view, the only way to study protein
folding and unfolding was by chemical denaturation [45], thus at the ensemble
level and not at the single-molecule level. There was no certain mechanistic
understanding of how the dynamics of protein folding should work.

This is the context where SMFS, starting from the late 90s, revolutionized
the way people study protein folding. The experimental setup consists in a
AFM cantilever tip that, instead of being used for imaging as discussed in
section 1.3.1, is approached and retracted form a flat sample onto which many
copies of the same protein of interest were deposited. The AFM tip push the
sample and binds one of the terminus end of the underlying protein. Then the
tip is retracted while recording the force experienced by the cantilever, so that
it is possible to form a force vs distance spectrum (F-D curve). If the other
terminus of the protein is bounded to the sample surface, the tip will literally
stretch the protein, forcing it to denaturate. The prototypical unfolding curve
of a sequence of immunoglobulin domains was observed for the first time by Rief
et al. in 1997 [46] (Figure 1.6 a) showing the so called saw-tooth like shape,
i.e. a sequence of rising phases followed by vertical jumps to the baseline at
zero-force.

How can we describe this behavior? The rising phases can be fitted with the
worm-like chain model, i.e. a model developed in polymer physics that describes
the stretching of an ideal semi-flexible chain [48]. The sudden jump to zero-force
are instead representative of the abrupt unfolding of a complete protein domain,
and this was unexpected. The unfolding of the protein does not happen in a
continuous way, but rather in a all-or-none fashion. This two-state behavior
(folded vs unfolded) is typical for the majority of globular proteins investigated
so far, e.g. GFP, Xylanase, Fibronectin and many others [49]. Moreover, these
globular proteins tends to fold back into their original 3D structure even in
vitro [46].

Membrane proteins, and in particular trans-membrane proteins are topo-
logically very different from globular proteins because, instead of being fully
immersed in the cytosol, they perform their function embedded in the cell mem-
brane. They are also more difficult to be studied since they are laborious to be
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Fig. 1.6: a: unfolding curve of a tandem of globular protein [46]. b: unfolding
curve of a trans-membrane protein [47] and AFM image of the membrane after
unfolding. c: hidden unfolding intermediates resolved with special AFM
probes [55]. d: microfluidic-AFM platform to express proteins and to probe
them with SMFS [49].

purified and they don’t crystallize well (it is often necessary to study homolo-
gous proteins that are easier to be handled). The fact that they operate across
the membrane introduces an additional complex ingredient to the problem of
folding, indeed it was discovered that trans-membrane proteins needs the help
of other proteins (translocon) to be correctly folded into the membrane [50].

SMFS have what it takes to be very powerful when applied to membrane pro-
teins, possibly being informative also of membrane protein structure. The first
experimental observation dates back to the year 2000 when Oesterhelt et al. [47]
used AFM-based SMFS to unfold bacteriorhodopsin. The unfolding curve of
bacteriorhodopsin (see Figure 1.6 b) resembles the unfolding of a tandem of
globular proteins (Figure 1.6 a) but it has a slightly different interpretation. As
opposed to what happens to the majority of globular proteins that unfold in
an all-or-none fashion, in bacteriorhodopsin the different domains unfold sepa-
rately and consecutively, one after the other. A general empirical observation
is that these domains correspond to pairs of alpha helices (or beta hairpin).
This observation is actually quite robust given that further studies of other
membrane proteins tend to support this empirical “rule”, also in beta-barrel
membrane proteins: aquaporin [51], sodium-proton antiporter [52], FhuA [53],
etc. The unfolding behavior of membrane proteins is somehow reminiscent of
the mechanistic intuition of how these proteins should exit the membrane when
pulled. However, thanks to a recent improvement in resolution of the AFM
probes, it has been shown that the single and separated peaks of unfolding that
was reported in the past, and that corresponds to the unfolding of pairs of alpha
helices, are actually decorated by a rich series of minor unfolding events indi-
cating that the complexity of the process is still highly unresolved [55] (Figure
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1.6 c).
With SMFS it is possible to test not only the detailed physics of folding,

but also to obtain biological insights on the structure-function of specific pro-
teins, both related to folding or not. An example is the work by Serdiuk et al.
where they directly observed the action of chaperon proteins acting on mem-
brane proteins that were previously unfolded, showing that without the help of
these chaperons, a membrane protein cannot autonomously fold back into the
membrane [56].

In the previous paragraphs I described how SMFS can be used to explore the
problem of protein folding, but I strongly believe that the major applications
of SMFS are to problems at the intersection with biomedicine. SMFS can be
exploited to investigate proteins behaviors where other techniques cannot be
applied. I will now report some applications in this direction. One way to use
SMFS to tackle a biomedical problem is to study the differences of a membrane
protein and a mutated one that may be involved in a disease. Kawamura et
al. [58] took a similar direction studying the differences between rhodopsin and
opsin, which is the same protein not bounded to the chromophore that enable
vision. In this case they detected slightly differences in the unfolding behavior,
showing that SMFS can resolve these changes. Another approach is to study
the mechanical differences induced by the binding of a ligand to a membrane
protein, and how it affect the structure [59]. But what seems a highly unex-
plored area of research is the one touched by Otten et al. [49] (Figure 1.6 d),
i.e. trying to change the scale and the throughput of the SMFS experiments.
They developed an interesting platform that can express proteins in vitro, and
then screen them in order to create a SMFS resource to test the most various
hypothesis related to protein mechanics or folding, for instance malfunction due
to misfolding.

In chapter 2 I will present the experimental results of my PhD work which
primary goal was to study the unfolding of membrane proteins in native mem-
branes, but that turned out to require also the development of special experi-
mental and computational techniques. In chapter 3 I will discuss the conclusions
of the thesis.



15

Chapter 2

Results

In this chapter are presented the research papers that contains the results of
my PhD work. I substantially contributed to the design and to the writing of
all these articles.

1. In the first article Fodis: Software for Protein Unfolding Analysis [60] I
developed a software for the analysis of Force-Distance curves that rep-
resent the unfolding of single proteins, either pulled by AFM or optical
tweezers. The software was also released to the public on the GitHub
repository.

2. In the second article Single-cell unroofing: probing topology and nanome-
chanics of native membranes [29] I invented a technique to break and
isolate the cell membrane of single cells, in order to probe the cell mem-
brane with Atomic Force Microscopy.

3. In the third article Automatic classification of single-molecule force spec-
troscopy traces from samples containing heterogeneous mixtures of pro-
teins I contributed to the design of a pipeline that allows to identify the
recurrent protein unfolding curves within a dataset, without knowing in
advance the number and the shape of these unfolding curves.

4. In the fourth article Unfolding and identification of membrane proteins
from native cell membranes [61] I performed AFM-based SMFS exper-
iments on native cell membranes isolated from neurons. By the cross-
matching of proteomic databases (ProteomeXchange, Uniprot, PDB), I
proposed and verified a Bayesian inference method to find the identity
of the Force-Distance curves generated during the experiments. I also
proved that the combination of SMFS and the automatic data selection
that we developed generates proteomic information comparable to the
Mass Spectrometry performed on the same cell types, but with several
order of magnitude fewer cells (1:1,000,000).
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ABSTRACT The folding dynamics of proteins at the single-molecule level has been studied with single-molecule force spec-
troscopy experiments for 20 years, but a common standardized method for the analysis of the collected data and for sharing
among the scientific community members is still not available. We have developed a new open-source tool—Fodis—for the
analysis of the force-distance curves obtained in single-molecule force spectroscopy experiments, providing almost automatic
processing, analysis, and classification of the obtained data. Our method provides also a classification of the possible unfolding
pathways and the structural heterogeneity present during the unfolding of proteins.

INTRODUCTION

The investigation of proteins has been greatly advanced
from the recent technical improvements of cryo-EM,
which have allowed the determination of the structure of
many proteins by avoiding the bottleneck of crystallization
(1). However, fundamental single-protein properties, such
as their folding and/or unfolding dynamics and structural
heterogeneity, have to be addressed with other experi-
mental methods like single-molecule optical methods
(single-molecule fluorescence and single-molecule fluores-
cence resonance energy transfer) or single-molecule
force spectroscopy (SMFS) (2). SMFS is an application
of atomic force microscopy and of optical tweezers
(Fig. 1, A and B) in which the force F required to unbind
a ligand or unfold a polymer is measured as a function of
the length d at piconewton and nanometer resolution. The
obtained force-distance (F-d) curves are composed of a se-
ries of force peaks characterizing the unfolding of struc-
tural segments. A force peak occurs during the unfolding
of an a-helix and/or b-sheets followed by an unfolded
segment. When a protein changes its conformation, the
force peaks of F-d curves change their location and ampli-
tude; from these changes, structural information of the

molecular rearrangements is obtained. The location of
a force peak is obtained by fitting the experimental
F-d curve with the worm-like chain model, providing the
values of the contour lengths (Lc). From the value of
the Lc, it is possible to estimate the number of amino
acids of the segment unfolded between the occurrence of
two consecutive force peaks, and to probe its structural
heterogeneity from the distribution of the force peaks at
different pulling rates (3).

Recent improvements allow the collection of more
data and with higher quality (4), but there is no uni-
versal ready-to-use data sharing platform for the analysis
of obtained F-d curves. Several algorithms to reduce
manual intervention have been published (5–7), but the
analysis has not been fully automated yet and still requires
a significant amount of decisions to be taken by the
researcher.

We developed Fodis (force-distance software) (Fig. 1 C),
an open-source software providing an all-in-one environ-
ment with several tools for the analysis of F-d curves
from raw curves to data representations and, to our knowl-
edge, novel analytical methods.

MATERIALS AND METHODS

Fodis filters the F-d curves according to a few set parameters (Figs. S1

and S2) that consist mainly of the expected distance of the fully stretched

molecule (i.e., Lc-maximum). Fodis aligns automatically filtered F-d

curves (Figs. 2 A and S3) and provides a thorough statistical character-

ization of their variability (Fig. 2, B and C; Fig. S4). Filtered F-d curves

with similar values of Lc-maximum are heterogeneous, but Fodis
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identifies clusters of similar F-d curves with similar force peaks. These

clusters, depending on the experiment under consideration, correspond

to the unfolding of different molecules, to the same molecule in

different states, or to different unfolding pathways (Fig. 2 E; Fig. S5).

Fodis can open raw data files from different atomic force microscope

manufacturers (JPK Instruments, Carpinteria, CA; Bruker Instruments,

Billerica, MA) and also the ASCII matrices of F-d values (Supporting

Materials and Methods). The software is designed to assist the user

in the most common and critical steps with a reversible workflow,

allowing the user to keep track of the original information. Fodis can

save working sessions, export curve selections, and extract graphical

data representations.

RESULTS AND DISCUSSION

As a testbed, we processed F-d curves obtained from
SMFS experiments on oocyte membranes after the overex-
pression of the cyclic nucleotide-gated CNGA1 channels
(8) (Supporting Material). On a typical notebook computer
(4 GB memory, 2.0 GHz central processing unit), Fodis
loads 1000 F-d curves in 5 s and performs a filtering
routine in less than 20 s. Filtering depends on the type
of analyzed data, and in Fig. S2, results from a 1-day
experiment are presented. F-d curves selected from several
experiments can be automatically aligned for statistical
analysis; for this purpose, we implemented the method
developed by Bosshart et al. (7) with some modifications
(see Fig. S3 and Supporting Materials and Methods). All
F-d curves are coded as strings into a global matrix

(GM), a binary representation of the position of detected
force peaks (see Fig. 2 D). From the GM, different statis-
tical tests and graphical representations are generated, and
users can integrate new and ad hoc analyses and tests. The
global histogram of maxima (Fig. S4) counts the fre-
quency of occurrence of force peaks with a value of Lc
in a given range. The global histogram of maxima can
be fitted by a multi-Gaussian distribution to identify the
most probable Lc positions of unfolding events. Fodis cre-
ates cumulative scatterplots of peak populations that can
be selected on the basis of their position (Lc) or force
and then individually analyzed to extract force and posi-
tion distributions (Fig. 1, B and C). The Lc-DLc plot
shown in Fig. 1 B is an example of how we can extract in-
formation about the periodicity of peak occurrence from
the GM (Fig. 2 D).

Fodis allows also the identification of different clusters
of F-d curves (path plot: Figs. 1 E, S5, and S6) by
coding F-d curves on the basis of the number of force
peaks and their corresponding value of Lc. The path
plot algorithm is used for a graphical representation
of different unfolding pathways, generalizing previous
methods for unfolding-pathway determination and selec-
tion presented by Schönfelder et al. (9), Yu et al. (2), or
Thoma et al. (10).

CONCLUSIONS

In Fodis, we implemented relevant published and, to our
knowledge, new algorithms for SMFS analysis. Fodis
provides a toolbox to the SMFS community for the develop-
ment and sharing of analytical methods in an all-in-one
open-source software. It has been developed to meet the
needs of a broad audience, both for researchers with no
programming skills and for those who could contribute to
Fodis’s future versions.

Software availability

Fodis is available under the Apache License, version 2.0.
Source code, executables, datasets, and full documentation
are available for download from GitHub at https://github.
com/nicolagalvanetto/Fodis. The latest release, version
1.2, is archived in Zenodo: Digital Object Identifier:
10.5281/zenodo.841277.

SUPPORTING MATERIAL

SupportingMaterials andMethods, six figures, and one data file are available

at http://www.biophysj.org/biophysj/supplemental/S0006-3495(18)30207-8
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FIGURE 2 (A) Superimposition of 104 F-d

curves as a density plot, after the automatic align-

ment (Fig. S3). (B) A scatterplot shows all detected

peaks from the population of the 104 curves. The

x-dimension is the contour length (Lc), and

the y-dimension reports the difference between

the considered peak and the previous force peak

(DLc). Point density is color coded according to

the bar on the right. (C) A scatterplot shows the

unfolding events between 120 and 140 nm (triangle

in A) and the histograms of force and Lc distribu-

tion. (D) At the top, a representative F-d curve is

shown. At the bottom, a cumulative histogram

counts the number of peaks along the Lc coordinate

and the global matrix (an N � B matrix, where N is

the number of traces (rows), and B is the number of

bins along the Lc coordinate. Detected peaks are

here plotted as black pixels). Colors identify the

different unfolding groups. (E) The path plot

algorithm (Figs. S5 and S6) splits the population

of curves in homogeneous groups representing

different unfolding pathways. tss, tip sample sepa-

ration. To see this figure in color, go online.
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Supplementary Figure 1 
Preprocessing of F-d curves 
(a) Example of a Force-distance curve (F-d) obtained by a commercial AFM (JPK), 
representing the relation between the force exerted by the cantilever tip vs tip-sample-
separation (tss). (b) the same curve after  smoothing with Savitzky-Golay (1) filter, which 
preserves discontinuity. This filter reduces noise enhancing peaks detection. Dotted red 
lines: fit of the rising phases of the curve with the Worm-like chain (WLC) model (2) (fixed 
persistence length p=0.4 nm and free contour length (Lc), see equation (1) in 
Supplementary Note 2 for more details). (c) Transformation of the F-d curve in the (F,Lc) 
plane using equation (2) in Supplementary Note 2. Only points with a value of F larger than 
30 pN were considered. The cyan line is the Force Profile, and it is used for the automatic 
detection of the peaks (see Supplementary note 2). (d) Histogram of the values of Lc  shown 
in (c), also called “barrier position histogram”(3). Red bars represent the position of detected 
peaks.  



 
 

Supplementary Figure 2  
Automatic filtering of F-d curves 
(a) starting from a dataset of ~10,000 curves (Supplementary data), 3 steps are used to find 
the appropriate curves.  Filtering step 1 tests the fully stretched condition (i.e. the total length 
of the primary structure of the protein). This condition excludes curves that are longer or 
shorter than expected value of Lc. The length of the trace corresponds to the position of the 
last peak in the contour length histogram (Fig S1 d). The expected length of a protein is 
equal to the number of amino acids (N of a.a.) times the single a.a. length (~0.4 nm (4)). 
The measured length, estimated in the in the contour length histogram, highly depends on 
the value of persistence length (p; commonly set to 0.4 nm (5)), but which can vary between 
0.3 nm and 0.8 nm (4). Because of all these uncertainties, we suggest to use a filtering 
window centered in the value of the expected length, and large at least ±30% of that value. 
The expected length for the CNG channel is ~280 nm (690 a.a. x 0.4 nm). The green window 
in (a) is 210-360 nm and determines the Lc region within which the trace must end. The 
filtering step 1 is intended to be a coarse tool for excluding curves with a wrong length. 
(b) filtering step 2 discards curves that display high non-specific adhesion at the very 
beginning of the unfolding  (curves with forces over 150 pN in the first 70 nm were discarded 
(6)).  
(c) filtering step 3 finds groups of similar curves. We define similarity as the value of cross 
correlation between the contour length histograms (Fig. S1 d) of two curves (see 
Supplementary note 3, equation 3). If N is the number of curves, a symmetric N x N similarity 
matrix is formed containing all the correlation values for each couple of curves. The resulting 
matrix is ordered with the symmetric approximate minimum permutation algorithm(7) 
(symamd MATLAB function) to obtain clusters of similar curves. Those clusters can be 
opened, inspected, and compared with a candidate trace or with control experiments. More 
details about the similarity matrix can be found in the user guide of the software. 



 
Supplementary Figure 3 
Automatic alignment  
(a) example of 2 misaligned curves. White circles indicate the zero of the of the tss (i.e. the 
z-position of the sample). (b) cross-correlation curve (blue line) between two contour length 
histograms. The maximum value of the correlation is highlighted by the blue diamond at 
lag=+2 nm; the vertical dotted line is positioned at 0 lag (i.e. where the zeros of the two 
curves coincide). The Gaussian distribution (red area) weights the cross-correlation curve 
(see Supplementary note 3, equation (3) and (4)). (c) superimposition of 106 curves 
automatically aligned with original Bosshart’s algorithm (8). This algorithm does not prevent 
curves to be shifted from the origin by excessive large values. (d) the same superimposition 
automatically aligned with Bosshart’s plus the weighted correlation curve (b) and in this way 
large shifts are reduced and almost eliminated.   

 



 
Supplementary Figure 4 
Analysis of the distribution of contour lengths (Lc) 
Statistical analysis of selected curves. (a) The Global Histogram is the sum of all Lc 
histograms (Supp. Fig. 1d) normalized to the maximum bin value. The peak sharpness 
indicates a high homogeneity of F-d curves. (b) Global ΔLc histogram counts all increase 
of the values of Lc between two consecutive peaks. (c) Global histogram of maxima counts 
the values of the Lc of all detected peaks. The distribution can be fitted with multi Gaussians 
to determine the position and frequency of persistent unfolding events (see Supplementary 
Note 4 for the Gaussian mixture model). (d) probability, contour length (Lc) and standard 
deviation of the Gaussian curves displayed in (c). 

 

 

 

 

 

 



 
Supplementary Figure 5 
Pathplot construction 
The Pathplot is generated in 5 steps and is used to find clusters of curves with force peaks 
with similar values of Lc. (a) Curves are fitted with the WLC model, transformed into Lc 
histograms and grouped in the Global Histogram as described in Figure S4 a. (b) The Global 
Histogram is divided in intervals according to the  ensemble of events so to obtain a partition 
of the Lc coordinates in regions with distinct maxima. (c) Following the aforementioned rule, 
in this explanatory panel, we selected 5 intervals corresponding to the intervals 90-118,118-
155,155-200,200-247,247-285 nm. (d) On the basis of this division, each trace is coded in 
a binary string of 5 digits: 0 is assigned if no force peak is detected within the interval, 1 is 
assigned if at least one event is detected. From each string, we created two additional 
sequence: # and Pn. # is the sequence referred to the order of appearance of the force 
peak along the trace (in a trace with 2 peaks, the 1st peak has #=1 and the 2nd peak has 
#=2). Pn refers to the interval position occupied by a peak (a peak that fall within the 3rd 
interval has Pn=3). (e) Coded curves are plotted as broken lines into an orthogonal #-Pn 
space, the line-width is proportional to the number of curves that follow the same path.  
This algorithm generalizes the previous proposed methods (9, 10) providing a 
representation able to distinguish different unfolding behaviors/clusters of a given set of 
curves, based on the number and position of occurrence of unfolding events. 



 
Supplementary Figure 6 
Pathplot of CNGA1 curves 
(a) a F-d curve from the unfolding of CNGA1 channels (11). (b) Global Histogram of Maxima 
(Fig. S1 d) applied to the population of 106 curves of CNGA1 (Supplementary dataset). The 
major peaks of the histogram are highlighted with different colors. (c) the Pathplot applied 
to this set of curves with Lc intervals congruent with (b): 90-118,118-155,155-200,200-
247,247-285,285-320 nm. The legend on the right shows the number of curves belonging 
to the different pathways. (d) examples of identified clusters with the corresponding set of 
F-d curves and the Lc histograms. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary notes 

 

Note 1 

Data Import 

Fodis has been designed to open raw data files from JPK and Bruker. To allow other users to operate 
with Fodis, but also to facilitate the portability of datasets, it can load (and export) data in ASCII format 
as explained in the User Guide section 1.2. 

Open Samples  

The open samples option opens .jpk-force raw files and .txt files generated by JPK’s Data Processing 
software. 
The open samples option opens .spm, .xyz (e.g. .084, .017 etc.) raw files and .txt generated by Bruker’s 
NanoScope (more details can be found in the User guide section 1.2.2). Support for other formats can 
be requested at the dedicated section of the web site https://github.com/nicolagalvanetto/Fodis/issues. 

Import Curves 

Fodis imports .txt files of space separated numbers. The files should be organized in columns of Force 
and Distance values. F1 X1 F2 X2 F3 X3 … FN XN is the order of the columns, where F1 is the first 
trace Force values, X1 is the tip sample separation of the first trace and so forth until the N-th trace. For 
more details check the User Guide section 1.2.1 and the Supplementary data files. 

Note 2 

Curves pre-processing, curves transformations and peaks detection 

-Pre-processing 

Force-distance curve in Fodis must have in the x-axis the Tip Sample Separation in meters (TSS) with 
the contact point on the left, and in the y-axis the force in Newton (baseline corrected). 

The imported data may not be already formatted for the analysis (wrong units, TSS transformation 
needed, etc). The tool Absolute height to TSS has been developed for this scope. It can perform 6 
different types of transformations: 

 Geometrical Adjustment: the mirroring option inverts the values of the Force. The rotation 
option swaps the coordinates. 

 X-axis Adjustment: the x-axis values are multiplied by the constant Height multiplier (which is 
automatically read in the import files when present). This is necessary when the imported files 
contain only the non-corrected Height channel (e.g. in JPK files) 

 Y-axis Adjustment: if the vertical deflection of the cantilever is imported in Volts, the curves 
need to be rescaled with the Sensitivity constant and the Spring constant. If the vertical 
deflection of the cantilever is imported in meters, the curves need to be rescaled with the Spring 
constant. (The constants are automatically read in the imported files when present). 

 Subtract Baseline: if the Force values need to be vertically shifted, this option finds the baseline 
averaging the final part of the curve (red patch in the tool). The starting point and the ending 
point of the patch can be changed in the edit boxes. 

 Find contact point: it finds the first positive value. 
 From piezo height to TSS: it transforms the x-coordinate in tip sample separation (TSS). (The 

constant is automatically read in the import files when present). 



-WLC-based transformations 

F-d curves were first smoothed with Savitzky–Golay filter to reduce white noise (Fig. S1 b). Smoothed 
F-d curves were  converted into a plot of force and contour lengths (F, Lc) (3, 8) (Fig. S1 c). The Worm-
like chain approximate equation used to perform curves transformation is (2): 
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Here, the contour length is represented by Lc, the persistence length by p, the extension is represented 
by d, the external force is represented by F, and kb and T are the Boltzmann constant and the absolute 
temperature. A persistence length (p) of 0.4 nm was used to compute the Lc value for each 
corresponding tip-sample separation (d or TSS) value, by solving the third order polynomial:  

43 +  2 –  1 =  0 (2) 

where  = 1 - d/Lc and  = 4F(d,Lc)/ - 3 and  = kbT/p. This equation had three roots and the root of 
interest was the real root * such that 0 < * < 1. In this manner, each point of the F-d curve (F, d) was 
transformed into a corresponding point (F, Lc), and each F-d curve was transformed into an (F, Lc) plot 
(Fig. S1 c). Owing to this transformation, each portion of the F-d curve that was fitted perfectly by a 
constant Lc in the WLC model was mapped to a perfect vertical segment. The transformation of an F-
d curve was therefore a relation (set of point) in the (F, Lc) plane rather than a function in the plane, 
and it was also not a continuous curve. Given the F-Lc values, the histogram of the counts/bin of Lc 
values (Lc histogram) was computed (Fig. S1 d). The Lc axis of the (F, Lc) plot was first divided into 
bins. All points with a value of F larger than 30 pN were counted in the corresponding bin and summed.  

-Peaks detection 

The automatic detection of peaks (i.e. unfolding events) was done operating on the Contour length (Lc, 
Fc) plot (Fig. S1 c). A Force Profile is created dividing the Contour length (Lc, Fc) in bins, and taking 
the maximum force value in each bin. Then, Fodis uses the MATLAB function findpeaks( ) on the 
Force Profile, and it detects every maxima of the profile. Fodis allows to tune the Force Profile 
operating on the smoothing, on threshold N points (i.e. number of points to neglect for each bin) and 
the minimum peak proximity (see user guide, section 1.5.4). The default parameters are optimized to 
detect the force peaks of the CNG unfolding trace. A shorter F-d curve will require a smaller minimum 
peak proximity. Binary strings containing the information of peaks position are plotted as red bars in Lc 
histogram view (Fig. S1 d) and are grouped together in the Global Matrix (Fig. 1 e of the main text). 

 

Note 3 

Cross-correlation and automatic alignment  

F-d curves to be compared to each other may require horizontal alignment. The main cause of the lateral 
shift are the different attachment points between the protein terminus and the tip, but also other effects 
may be present. Bosshart and colleagues (8) developed a reference free alignment method consisting of 
4 steps. Starting from the contour length histogram of every trace (Fig. S1 d), they:  

 subdivided the curves into groups of homogeneous curves (i.e. curves with the same number of 
peaks); 

 recursively aligned curves into the same group with the maximum correlation principle, 
building an average contour-length reference for each group; 

 formed a global reference (Fig. S3 c); 
 aligned all the curves of the dataset to the global reference. 



This procedure is suitable for identical globular multidomain proteins where force peaks generally 
occurred within conserved Lc values. Instead, in the case of soluble and complex proteins or membrane 
proteins, the occurrence of unfolding events may be variable due to the stochastic nature of the process, 
or because of the multiplicity of the unfolding pathways that may be accessed by the protein. For this 
reason, we introduced two additional features to their procedure: 

1. In addition to the contour-length histogram, we assign to every trace a zero-point, that is the 
point of tip-sample contact. Given the correlation curve (C; equation 3) of two curves, we then 
multiply the correlation curve with a Gaussian curve centered at the point in which the zero-
points of the two curves match with each other (equation 4; Fig. S3 b). The idea is to apply a 
“potential well” to reduce the maximum displacement of the two zeros. 

2. Group division proposed by Bosshart and colleagues works only if all the curves with the same 
number of peaks have the peaks in the same position, but this is not generally true for F-d curves 
of the same protein. Therefore, we used a group division following the method described in Fig 
S5. In this way, we imposed two constrains for a given trace to be part of a given group: to have 
a specific number of peaks and to have these peaks in a specific position.  

In Fodis, the correlation curve C is computed between each couple of Lc histograms with xcorr 
MATLAB function, that is: 

𝐶[𝑙𝑎𝑔] = ෍ ℎଵ[𝑙𝑎𝑔] ℎଶ[𝑙𝑎𝑔 + 𝑖]

௠௔௫೗ೌ೒

௜ୀ௠௜௡೗ೌ೒

(3) 

where lag is the relative shift between the two curves, h1 and h2 are the Lc histograms of the two curves, 
and minlag and maxlag are the minimum and maximum allowed shifts. In order to minimize the 
displacement of the curves from the origin, we weighted the cross-correlation C with a Gaussian 
distribution G centered in the point of zero relative shift (see Fig. S3 b): 

𝐶௙[𝑙𝑎𝑔] = 𝐶[𝑙𝑎𝑔]  𝐺[𝑙𝑎𝑔] (4) 

The best relative shift was the lag corresponding to the maximum value of Cf. Finally, the weighted 
contour length reference used for final re-alignment was “binarized” to avoid depletion of rare but 
statistically relevant peaks (Fig. S3 c). 

Note 4 

Multi Gaussian Fitting of Global Histogram of Maxima (GHM) 

GHM shows the distribution of unfolding events (peaks) along the Lc coordinate. In 2013 it has been 
shown by Kawamura and colleagues (12) that an ideal GHM can be fitted by a Gaussian mixture model 
to determine the probability of occurrence of a certain unfolding event (likely corresponding to a stable 
structural segment). The fitting implemented in Fodis uses fitgmdis MATLAB function over 100 
iterations. To determine the correct number of Gaussian bells that best fit the distribution, we computed 
N different distribution of Gaussian mixtures {g1, … , gN} where g1 has 1 Gaussian bell, and gN has N 
Gaussian bells. The best distribution gX is the one that minimize the Akaike Information Criterion (AIC) 
(13). A real GHM is characterized by a distribution that is the sum of Gaussian bells, plus a constant 
background noise (12). To overcome this problem, Fodis divides the Lc values relatively to the selected 
bin size, and within each bin it randomly removes one point of Lc distribution. In this way, by setting 
different bin sizes it is possible to tune the background noise and enhance peak detection and fitting. 
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A B S T R A C T

Cell membranes separate the cell interior from the external environment. They are constituted by a variety of
lipids; their composition determines the dynamics of membrane proteins and affects the ability of the cells to
adapt. Even though the study of model membranes allows to understand the interactions among lipids and the
overall mechanics, little is known about these properties in native membranes. To combine topology and na-
nomechanics analysis of native membranes, I designed a method to investigate the plasma membranes isolated
from a variety of single cells. Five cell types were chosen and tested, revealing 20% variation in membrane
thickness. I probed the resistance of the isolated membranes to indent, finding their line tension and spreading
pressure. These results show that membranes isolated from neurons are stiffer and less diffusive than brain
cancer cell membranes. This method gives direct quantitative insights on the mechanics of native cell mem-
branes.

1. Introduction

When the first observation of the bi-layered nature of cell mem-
brane was made using the electron microscope in 1959 [1], the notion
that it was composed of lipid layers had already been accepted for
decades [2,3]. Since then, much has been discovered in terms of
membrane composition and function, mostly thanks to biochemical
approaches.

The direct imaging of a native membrane remained challenging for
years because of its fluid nature. Major advancements occurred only in
the Seventies when various techniques showed their potential and gave
birth to what is now broadly called ‘cell unroofing’.

They involved the separation of cell cortices by violent mechanical
treatments [4], combined with electron microscopy. To observe the
membrane isolated from the cytosolic environment, the cells were
firstly deposited on a surface coated with a “glue” (e.g. poly-L-lysine or
Alcian blue), and then broken. The aim is to isolate the cell membrane
adherent with the substrate from the rest of the cell. Three are the main
strategies that can be applied. The first strategy is to expose the cells to
a strong lateral flux of medium: this will break the cells leaving residues
of membranes attached to the substrate [5]. The second is fracturing: it
consists on sandwiching the cells, freeze and separate the sandwich
[6,7]; this allowed to achieve a more natural, life-like appearance of the
samples. A variant of the fracturing method is the recently developed
iMEM [8] that consist of isolating the cell membranes during the

blotting step of a Cryo-EM grid preparation. The third uses sonic waves
to break the body of the cells: in this way only the layer of membrane in
contact with the substrate remains [9]. The preparation usually ends
with a physical fixation of the sample and the investigation with the
electron microscope.

Looking directly to the cytosolic side of the membrane expanded our
knowledge on the internal architecture of the cell membrane that be-
fore was simply not accessible [10,11].

Another natural instrument of investigation with sub-nanometer
precision is the atomic force microscope (AFM). AFM has a big ad-
vantage compared to light or electron microscopy, in fact the sample
doesn't require neither fluorescent labels nor metal coating or cryo-
fixation. Some recent studies [12–16] unraveled a detailed architecture
of the cytoskeleton on the inner face of fixed membranes with a re-
solution of ~5 nm.

However, the preparation of these samples requires a considerable
know-how to be successful and to become reproducible in large scale
[13]; moreover the aforementioned treatments act on the entire cul-
tures without any fine control of the process. In fact, the studies that
required the manipulation of lipid membranes and vesicles con-
centrated mostly on synthetic preparations of mixtures of lipids
[17–19]. Model membranes are in particular suitable for the study of
lipids interactions [20–23] and to test how the membranes behave in
their physiological environment. These studies demonstrated that the
strength of the bilayer is enhanced by lowering the temperature
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[24,25], or when exposed to high ion concentrations [26] or in a
mixture with cholesterol that mimic lipid rafts [27,28].

Here I present a method that allows the direct study of native
membranes in buffer solution and under ambient pressure and tem-
perature. I present an AFM topography analysis that depicts heights
differences in the membrane of different cell types. I measured their
breaking forces which allowed to determine the line tension and the
spreading pressure, through the indentation of the bilayers with the tip
of the AFM. Furthermore, I discuss future improvements to obtain sub-
molecular resolution of membrane proteins in their native environment
and the requirements for in vivo applications.

2. Materials and methods

2.1. Overview of the setup for sample preparation

The setup was based on an AFM (JPK Nanowizard III) mounted on
an inverted optical microscope (Olympus IX71) as sketched in Fig. 1A
and Fig. S1. The three central elements of Fig. 1A consist of a cell
culture coverslip, mounted on a holder, and squeezed with a triangular
glass (see the next Sections for the details). During the sample pre-
paration process, the AFM was used just as a motor with micrometer
precision, indeed it was obtained the same results squeezing the cells
with a water three-axis micromanipulator.

2.2. Cell cultures

The method was tested with 5 cell types: U87, U251, HEK293,
primary hippocampal neurons, primary dorsal root ganglia (DRG)
neurons.

The preparation of the glass coverslip was identical for all the five
cell types: glass round coverslips (12mm in diameter, 200 μm in
thickness) were plasma cleaned for 15 s, coated with 0.5 mg/ml poly-D-
lysine (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 37 °C and washed
3 times in deionized water. The coating is necessary to create a strong
adhesion between the cells and the substrate because they must resist
the compression and the laceration.

Hippocampal and DRG neurons from Wistar rats (P2-P3) were
prepared in accordance with the guidelines of the Italian Animal
Welfare Act, and their use was approved by the Local Veterinary
Service, the SISSA Ethics Committee board and the National Ministry of
Health (Permit Number: 2848-III/15) in accordance with the European
Union guidelines for animal care (d.l. 26, March 4th 2014 related to
2010/63/UE and d.1. 116/92; 86/609/C.E.). The animals were an-
esthetized with CO2 and sacrificed by decapitation, and all efforts were
made to minimize suffering. Dissociated cells were plated at a con-
centration of 4×104 cells/ml. The medium used for hippocampal
neurons is in Minimum Essential Medium (MEM) with GlutaMAX sup-
plemented with 10% Fetal Bovine Serum (FBS, all from Invitrogen, Life
Technologies, Gaithersburg, MD, USA), 0.6% D-glucose, 15mM Hepes,
0.1 mg/ml apo-transferrin, 30 μg/ml insulin, 0.1 μg/ml D-biotin, 1 μM
vitamin B12 (all from Sigma-Aldrich), and 2.5 μg/ml gentamycin
(Invitrogen). The medium used for DRG neurons is Neurobasal medium
(Gibco, Invitrogen, Milan, Italy) supplemented with 10% Fetal Bovine
Serum (FBS, from Invitrogen, Life Technologies, Gaithersburg, MD,
USA). The experiments were performed from two to five days after
dissociation.

The human HEK293, U87 and U251 cell lines were cultured with
Dulbecco's modified Eagle's media (DMEM, Gibco) supplemented with
antibiotics (100 U/ml penicillin, 100 μg/ml streptomycin, Gibco),
GlutaMax Supplement (2mM, Gibco), and 10% fetal bovine serum
(Biowest, USA). All the cells were grown under standard culture con-
ditions (37 °C and 5% CO2).

2.3. Cell culture holder

The scope of the cell culture holder is to connect the cell culture (i.e.
a coverslip) to a device that moves it with micrometer precision. The
holder was designed for an AFM JPK Nanowizard III mounted on an
Olympus IX71 optical microscope (but previous trials were successfully
performed with a water three-axis manipulator). In Fig. S1 is shown the
comparison between the original cantilever holder and the cell culture
holder: the two share the same bayonet couplings. The cell culture
holder is a cylinder that allows to glue the coverslip with Vaseline in the
base of the cylinder. The cell culture holder was drawn in Solidworks
and printed in resin (visijet m3 black) with a Projet 3510 HD 3D system
(see Fig. S1 for more details; for the Solidworks file please contact the
corresponding author). With the adaptation of the bayonet couplings,
an equivalent coverslip holder can be used on every AFM-Inverted
microscope setup.

2.4. Triangular coverslips preparation (glass arrows)

Glass coverslips (24mm in diameter, 200 μm in thickness) were
plasma cleaned for 15 s and broken in 4 quarter with the use of the
hands. This passage is crucial and better explained in Fig. S2. It is worth
noting that the coverslips cannot be cut with a diamond tip because the
fracture must be sharp. The resulting quarters (called glass arrows) was
immersed in 0.5mg/ml poly-D-lysine (Sigma-Aldrich, St. Louis, MO,
USA) for 30min. The glass arrows were immersed in deionized water
for 10 s before use.

2.5. Cell squeezing

The cell squeezing was performed bringing in contact two parts: the
arrow and the cell culture (Fig. 1B–G).

Lower part: tilted arrow. The cover of a petri dish was filled with
Ringer solution (2ml). The arrow was placed tilted of 7–15 degrees (see
Fig. S1) in the middle of the cover. The cover of the petri dish was then
fixed on the stage of the AFM.

Top part: the cell culture was glued with Vaseline to the holder, and
they were mounted on the AFM head stage (Fig. S1). The Head Stage
was put on top of the AFM in measurement position. Gradually, the cell
culture was immersed into the solution, by lowering the head stage
with the electrical motors of the AFM. The distance between the cell
culture and the arrows was controlled with the help of the optical mi-
croscope. Once the distance reached ~50 μm, I chose the target cell,
centering the apex of the arrow. I set the focus of the microscope in the
position of the arrow and I brought the cell in contact with the arrow
2 μm at a time. When the cell touches the arrow, it enlarges. I continued
to approach until the cell doubled its area. I kept it in contact for 3min
and then I rapidly lifted the coverslip. Nothing, or just few cellular
debris can be visible in the contact region, otherwise the preparation
will result contaminated. The arrow was then laid down and fixed (see
Fig. S1 D and E). The medium was replaced slowly, without drying
completely the solution (the isolated membrane should not come out of
the solution).

2.6. AFM imaging and force spectroscopy

AFM imaging and force spectroscopy were performed with a
Nanowizard III system (JPK) mounted on an inverted optical micro-
scope (Olympus IX71), using Hydra NGG (Appnano) cantilevers with
nominal spring constant of 0.084 N/m. AFM images were taken in in-
termittent contact mode applying the lowest possible force during
imaging (cantilever free oscillation amplitude was set at 18–20 nm, the
surface was approached and scanned at ~75% of the free amplitude).
Force-distance curves were acquired at a rate of 2000 nm/s. AFM
imaging and force spectroscopy were performed in Ringer's solution
(NaCl 145mM, KCl 3mM, CaCl2 1.5mM, MgCl2 1mM, Glucose
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10mM, HEPES 10mM adjusted to pH 7.4 with NaOH) at 24C. The AFM
height sensor was calibrated with the TGZ01 calibration grid before and
after the series of experiments.

2.7. Data analysis

The AFM images were processed with the open source software
Gwyddion [29]. The height measure (for each topographical image)
was calculated as described in Fig. S3: briefly, the resulting height of
the membrane is here defined as the difference between the mean of the
z-position of the substrate and the mean of the z-position of the mem-
brane (~10,000 z-positions for each level). Then, the mean of three
height measures for each cell type is computed and reported in Fig. 2F
(n=~10,000/3 z-positions/samples). The error bars represent the
standard error of the mean. The roughness was defined as the root mean
square (RMS) of the height distribution, and calculated in Gwyddion.
The force-distance curves and the force maps were analyzed with a
modified version of the open source software Fodis [30] that auto-
matically detects the baseline and the Breakthrough force. Break-
through force averages of 800–1000 force spectra were calculated for
each cell type and reported in Fig. 3B. The error bars represent the
standard deviation of the distributions. The nucleation model was ap-
plied to the breaking force distributions and fitted with an add-on
module of Fodis following the procedure described by Chiantina et al.
[31]. The modified version of Fodis is available at https://github.com/
nicolagalvanetto/Fodis.

3. Results

3.1. Upper membrane separation

I developed a method that allows the combination of topographical
and mechanical investigations of native cell membranes. For this, I
needed to make a preparation of exposed native membranes, separated
from the entire cell, and arranged on a neutral support.

The method was designed to fit two additional requirements: i) the
operation had to be simple and reproducible; ii) the membrane had to
be localized easily (it is not visible by bright-field microscopy).

For this purpose, I designed a cell culture holder (see Fig. 1A and

Fig. S1) to connect the cells to a motor with micrometer precision, and a
new protocol to prepare optically-sharp arrows from common glass
coverslips (Fig. S2). The target cell is brought in contact with the apex
of the arrow and squeezed for ~3min. Then, the cell culture is rapidly
moved away. The membrane that went in contact with the arrow is torn
from the cell as a consequence of the interaction between the mem-
brane itself and the polylysine coating of the arrow.

Remarkably, the membrane remains on top of the flat corner of the
arrow, like the footprint of the squeezed cell. The extracted membrane
is therefore poised for various investigations, in fact it is exposed to the
buffer which can include specific ligands that can activate membrane
proteins involved in signal transduction, or in metabolic and bioener-
getics processes.

I tested 5 cell types of various shapes and dimensions: one human
epithelial cell line (HEK293), two human brain cancer cell lines (U87,
U251) and two types of primary neurons (Hippocampal and dorsal root
ganglia neurons (DRG) from rats). The proposed method was successful
for all but the HEK293. The method fails with cell types that do not
adhere well to the cell culture coverslip, so that they remain attached to
the arrow after compression, without breaking. Improving the adhesion
of the cells to the cell culture will expand the usable cell types for this
method. The success rate, i.e. the production of samples suitable for
AFM investigations, was ~80%.

3.2. Topographical characterization of native membranes at room
temperature

A natural instrument of investigation that operate in almost-phy-
siological conditions is the AFM, but a non-trivial task is the localization
of the region of interest when it is optically invisible. In the method
presented here the localization is straightforward: in fact, the mem-
brane is in the very same corner of the arrow (Fig. 2A and B).

I performed AFM imaging of the intracellular side of the membrane
of U87, U251, Hippocampal and DRG cells using cantilevers with spring
constant of 0.08 N/m in intermittent contact mode. The isolation
method worked unexpectedly well with Hippocampal neurons, the AFM
image (Fig. 2C) revealed that the upper membrane is completely se-
parated from the cell, and it covers the area where the cell got in
contact with the arrow. The membrane surface is highly flat and it

Fig. 1. (A) Scheme of the apparatus: the cell culture holder is mounted on the head-stage of the AFM which moves the cell culture downward against the fixed glass
arrow. The process is controlled using the optical microscope. (B-C-D) Exemplificatory draws of the compression of one cell (the scheme is upside-down, and the cell
is enlarged for clarity). (E-F-G) images of the compression of the target cell. (B-E) before compression, (CeF) during compression the cell is squeezed, (D-G) after
compression. (G) The cell was stained with a fluorescent membrane dye (DII) to identify the membrane with the fluorescent image.
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displayed no cytoskeletal feature within the investigated dimensions
(10 nm-10 μm range) unlike previously reported with other methods or
cell types [10,14]. A higher resolution image indicate the presence of
30 nm-size complexes, most likely of proteic nature [16] (Fig. S4).
DRG's membrane surfaces are qualitatively similar to Hippocampal
ones, with the exception that the isolated membranes form island of
~2 μm2 (Fig. 2D) instead of a continuous and complete layer of
~50 μm2. U87 and U251 membranes showed an intermediate behavior:
continuous regions interspersed with more fragmented islands (Fig. S4).
The reasons of these different behaviors may be ascribed to a different
membrane composition, or a different anchoring to the cytoskeleton
that prevents a complete separation. Even with the same cell type there
was some variability in the way the cell membrane is torn. For instance,
the membrane near the border that did not adhere well to the poly-
lysine, showed to favor a multi-bilayer conformation (Fig. 2E) rather
than floating freely in the solution. The dynamics of the membrane
transfer is complicated, but it is clearly the behavior of a fluid layer that
adapts to the shape of the support, differently from a crystalline
membrane of comparable thickness [32].

I perform also extensive characterization of the polylysine coated
glass, which resulted to be affected by the violent separation of the
membrane. In particular I tested the glass roughness (see Section 2.7) in
three conditions: i) before the isolation, ii) after the isolation far from
the membrane, iii) after the isolation in proximity of the membrane.
Condition (i) and (ii) didn't show particular differences, while condition
(iii) showed a 2-fold increase in the measured roughness. As suggested
by Heuser [9], polylysine attracts the freely floating proteins in the
solution. The hypothesis is that after the breakage of the cell, the cy-
tosolic proteins diffuse around the site of the breakage, adhering to the
coated glass and forming a layer on top of the polylysine. This hy-
pothesis is supported by the Fig. S4 which shows a portion of flat glass

close to a region of more rough glass. The flat small region can be in-
terpreted as an area that was shielded during the breakage. Therefore,
the blob-like features on top of the membrane are presumably authentic
and due to protein complexes, but they cannot be further resolved with
the reported experimental conditions.

I measured the membrane height of the four cell types according to
the procedure explained in Section 2.7. The height distribution of the
membrane in a single sample is typically Gaussian (Fig. S3). The height
measures are then averaged over 3 samples: mean and standard error of
the mean is reported in Fig. 2F. The height of hippocampal and DRG
membranes are of 8.2 nm and 8.3 nm respectively, they are ~2 nm
thicker than the U87 (6.2 nm) and U251 (6.6 nm). The measured
membrane heights are between 50% and 100% thicker than the well
characterized model membranes dipalmitoylphosphatidylcholine
(DPPC) or dioleoylphosphatidylcholine (DOPC) [24] that are 4–5 nm
thick, and more similar to purple membrane [33].

3.3. Nanomechanical properties of the membranes

After a precise determination of the position of the membrane, I
could perform the puncturing of the bilayer, recording the resulting
force-distance curves. The shape of the approach curves showed an
initial elastic deformation (Fig. 3A blue arrow) followed by an abrupt
jump (5–8 nm; Fig. 3A red arrow). The reversible compression of the
bilayer only partially accounts for the reported elastic deformation,
other contributions are probably due to some soft layer deposited on
the tip and collected during scanning. The jump, on the other hand,
clearly represents the membrane rupture that displays a step compar-
able with the height of the membrane.

I observed the presence of an additional rupture event in a non-
negligible percentage of force curves (sometimes up to 20%, Fig. S5),

Fig. 2. (A) Scheme of the imaging process. (B) Hippocampal neuron during compression, the red area represents the area imaged in (C) on the glass arrow, after the
removal of the cell culture (scalebar 15 μm). (C) AFM topography image of the upper membrane of a hippocampal neuron (scalebar 4 μm) and the z-profile under the
dotted line. (D) AFM topography and phase image of a DRG membrane (scalebar 1 μm). (E) AFM image of a hippocampal membrane showing three different levels: L0
glass, L1 single bilayer, L3 triple bilayer (folded). (F) the histogram reports the average membrane height and the standard error of the mean of n= 10,000/3 z-
positions/samples for each cell type (see Section 2.7 for the detailed procedure).
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which is due to an extra lipid bilayer formed on top of the cantilever tip
[26]. The curves showing two rupture events were not considered in the
quantitative analysis.

Fig. 3B shows the average Breakthrough force of 800–1000 spectra
for the four cell types and the standard deviation of the force dis-
tribution. To minimize the variability induced by the tip changes, new
cantilevers were used in each experimental session. Hippocampal
membranes revealed to pierce at force values distributed around 7.7
nN, that is almost twice the force necessary to pierce the U87 mem-
branes which break at 4.6 nN. DRG and U251 pierce at values in be-
tween, 6.9 nN and 5.4 nN respectively. The full-width half maximum
(FWHM) of the four force distributions is, on the other hand, more si-
milar among cell types showing 20% absolute variation at most.

This isolation method in combination with a new module for the
software Fodis [30] (see Section 2.7), can generate also force-map
images for a multiparametric characterization of the membranes
(Fig. 3C and D). The analysis that I performed at 24 °C revealed a single
Gaussian distribution of the piercing forces for all the cell types, sug-
gesting the presence of a unique liquid phase [27].

The Breakthrough force is just a proxy of the thermodynamic
quantities of the lipid bilayer. For a more detailed analysis of the bio-
physical parameters of these native membranes, I applied the nuclea-
tion model [21] that was originally developed for synthetic prepara-
tions [27,31]. Thanks to the method presented here, the nucleation
model can now be applied to native membranes, for quantifying the
real line tension Γ and spreading pressure S. The line tension Γ is
measured in pN and it indicates the energy per unit of length (i.e. the
unsaturated bonds of the periphery of the membrane), while the
spreading pressure S is the combination of the interfacial energies per
unit of area of the membrane. In a configuration like the one presented
here, where the pieces of membranes are exposed to the solution from
one side and to the polylysine from the other, Γ is the quantity that is
minimized when the patches are circular (i.e. reducing the perimeter),
while S is a measure of the tendency of spreading on the surface. The
two neuron types have higher line tension compared to the two tumor
cell lines but less than a half spreading pressure (values reported in
Fig. 3B), indicating that a higher line tension is related to a lower
tendency to diffuse. These measurements provides values in the range
of previous experiments [27,34], and particularly close to model

membranes of mixtures of lipids (DOPC/sphingomyelin/cholesterol),
but not to pure DOPC or DPPC which have 2-to-3 fold lower line tension
and spreading pressure. Furthermore, this comparison shows that the
experiments that involve model membranes should be performed pre-
ferentially with mixtures of lipids when the precondition is to mimic the
nanomechanics of real cell membranes.

4. Discussion

I developed a new approach for imaging the cytoplasmic side of the
cell membrane and for quantifying its nanomechanical properties. In
this approach, the upper cell membrane is separated from the entire
cell, therefore it is poised for various investigations. I used the AFM to
characterize the topology and to probe the mechanics of these native
preparations.

The approach was in this way applied to an endothelial cell type,
two brain tumor cell lines and two neuron types, and it has proved to be
successful for all the cells that attach well to the culture coverslip.
Specific culturing protocols are required for those cells that only loosely
bind to the substrate.

Overall, these measurements are consistent with previous reports on
synthetic membranes, but they provide additional information on the
native state that are now easily accessible.

The average membrane thickness reveals to be constant within the
same cell type, but it differs by some nanometers over the tested cell
types. The presence of extracellular matrix residues that may affect the
height measure cannot be excluded a priori, but their presence in the
upper part of the cultured cells should be modest if not negligible. The
height of the two tumor cell lines is similar to the well characterized
purple membrane, and 25% thinner than the neuron cell membrane.

The topological features are only partially corrupted by the sub-
strate roughness, but to reach the goal of imaging diffusive single
proteins in their native membrane it is necessary to use High speed-
AFMs in serial dedicated investigations [35–37].

The Breakthrough force is higher in the neural cell types compared
to the tumor cells, which suggests a higher rigidity of the membrane.
This is in agreement with the measurements on synthetic lipid mixtures
[28] and the higher cholesterol content of the neurons [38].

The single peak of the Breakthrough force distributions suggests the

Fig. 3. (A) Force-distance indentation curves of U251 and the
distribution of the rupture events. (B) average rupture forces and
standard deviation of the distribution. The table presents the line
tension Γ and the spreading pressure S calculated with the nu-
cleation model (see Section 2.7). (C) AFM topographical image of
DRG membrane before the (D) force map of the rupture events in
the same region (scalebar 1 μm, 0 pN is intended for regions
where no Breakthrough force was detected).
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presence of a unique liquid phase in all the tested cells, as opposed to
what has recently been shown in T-cells and HeLa cells where both the
liquid ordered and liquid disordered phase was identified through
fluorescence microscopy techniques [39]. It cannot be excluded that the
AFM puncturing approach is not precise enough to resolve the coex-
istence of the two close phases (in terms of Breakthrough force) [28].

The nucleation model applied on native membranes allows to gather
precise information on membrane packing, stability as well as inter-
molecular interactions among lipid molecules and proteins. The ob-
tained values indicate that the neural membrane is more compact if
compared to a more diffusive tumor membrane. In this regard, it is
important to point out that the native membrane is deeply different
from the model membranes that were tested in the past. Half of the
weight of a native membrane is indeed due to membrane proteins [40].
The environment is highly diverse, therefore the biophysical para-
meters that was obtained here consider the overall contribution of li-
pids and proteins, leading to more robust values for computational li-
pidomics. To my knowledge, the sample preparation has always been
problematic in previous unroofing techniques [13]. The single-cell
method proposed here minimizes the sources of variability like large
scale sonication or blotting, giving a success rate around 80%. The
success rate becomes even more important when the unroofing needs to
be operated ex/in vivo. To date, this method can directly be tuned for
application on ex vivo thin tissues, but it is not immediately applicable
in vivo. To overcome this problem, in the preparation process, the AFM
should be substituted by a micromanipulator and the cells of interest
should be accessible by the glass arrow. This kind of improvements
could lead to an interesting tool for fast screening purposes of diseases
that affect the cell membranes.

There could be interesting applications also in complementary fields
like single-molecule force spectroscopy (SMFS) or bioactive surface
studies. Müller and collaborators has indeed recently found that we can
expect a different behavior in the unfolding of proteins in a native
environment [41], therefore this single-cell unroofing could be an ideal
platform for such unfolding investigations. While having the possibility
to deposit a real membrane on top of the desired artificial nanostructure
could help to study some microscopic phenomena at the nanoscale, for
instance, the antimicrobial activity of nanodots [42].

In conclusion, the method described here can be used to study
membrane topology and mechanics at the nanoscale level, the scale at
which important processes such as mechanosensing and membrane
fusion take place, providing clues on their biophysical constraints.
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Supplementary Figure 1 

Details of the Setup 

(A) photo of the setup used: the Olympus microscope and the JPK AFM. (B) magnification 
of the components drawn in (D). (C)  configuration of the tilted glass arrow and glass slice 
in (D). (D) scheme of the experiment during compression of the cells. (E) scheme of the 
configuration during AFM imaging or Force Spectroscopy. (F) 3D printed cell culture holder 
in comparison with (G) the cantilever holder.  



 

 

 
 

Supplementary Figure 2 

Glass Arrows Preparation 

(A) the 3 steps for the preparation of the glass arrow from a 24 mm coverslip (see Materials 
and Methods). Step 1 ((A) left): the round coverslip is broken in 2 pieces pushing with the 
thumb in the middle of the coverslip. Step 2 ((A) center): the half-coverslip is broken in other 
2 pieces pushing with the thumb in the middle of the half-coverslip. Step 3 ((A) right): the 
sharpness of the apex is checked with the microscope (C). (B) scheme of the coverslip 
stages during the preparation in (A). (C) the apex of the glass arrow results to be optically 
sharp, as opposed to a cut with the typical diamond pen that shows 5 µm-size scratches 
along the edge. 

 

 



 

 

 
Supplementary Figure 3 

Height Measurements 

(A) AFM image (scalebar 1 µm) and corresponding (B) height distribution in Gwyddion. The 
reported height in Figure 2F is the difference between the means of the two bells. 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Supplementary Figure 4 

AFM Imaging 

(A) AFM image of a U251 cell membrane (scale bar 4 µm). (B) AFM image of a U87 cell 
membrane (scale bar 4.5 µm). (B) AFM image of a Hippocampal cell membrane (scale bar 
2 µm) displaying three different surface features (D): (blue) surface of the membrane, 
(green) rough glass and (orange) smooth glass. I interpret the roughness in the green 
portion as the deposition of the cytosolic proteins of the broken cell, the orange portion was 
instead shielded during the unroofing process. (E) High resolution AFM image and (F) error 
signal of a Hippocampal membrane border (scale bar 500 nm).  



 

 

 
 

Supplementary Figure 5 

Two-step Spectrum 

Force-distance curve showing a two-step curve that indicate the presence of an extra bilayer 
of lipids. 
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Abstract

New experimental techniques allow harvesting millions of single molecule force spectroscopy (SMFS)
traces from patches of a native cell membrane, potentially providing substantial information about its
protein composition. However, extracting such information is a non-trivial data analysis challenge: only
a small fraction of the recorded traces corresponds to the unfolding of a protein, the number of different
protein types may be of the order of hundreds, and limited prior knowledge (if any) about the identity
of the proteins is available. Here, we introduce a data analysis pipeline which filters out irrelevant traces
(typically, 99% of the total), and finds among the remaining ones clusters of similar traces, plausibly
associated with the unfolding of specific membrane proteins. We illustrate the performance of our method
on a dataset of ∼ 400,000 traces extracted from a patch of rod membrane. Despite a daunting signal-to-
noise ratio in the data, we are able to identify ∼ 20 clusters of traces, two of which likely correspond to
Rhodopsin and the CNG channel - two proteins that are known to be present in the rod membrane.

1 Introduction

Atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) is a pow-
erful tool for studying proteins at the single molecule level. In a typical AFM-SMFS experi-
ment, the protein is bonded on one side to a surface, and attaches on the other side to the
AFM tip [1]. As the tip retracts from the surface, the protein gets stretched and unfolded.
The resulting force and extension values are stored in the form of a force-extension (F-x)
curve. In a single experimental session, thousands of F-x curves are generated, therefore
a dataset can easily contain more than 105 curves. F-x curves, also called traces, are di-
rect representations of the protein unfolding pathway and can be used to fingerprint specific
proteins [2, 3, 4]. Labor intensive sample preparations allowed to perform AFM-SMFS on
non-purified proteins directly in their native cell membranes [5, 6]. These methods nor-
mally aim at studying one single specific protein at a time. More recently, new methods
seem to offer the possibility to analyze the native membrane environment as a whole on a
wide range of cell types [7]. In these experiments, the majority of traces do not represent
meaningful unfolding events, and if they do, they likely represent the unfolding of different
proteins, since a native membrane hosts hundreds of different proteins. Available data anal-
ysis tools [8, 9, 10, 11], which work well for AFM-SMFS traces coming from experiments
performed in controlled conditions with purified proteins, perform poorly when applied to
set of traces of unknown protein composition like those collected from native cell membranes.
The most important stumbling block is possibly trace selection, because in the case of mem-
brane proteins, complete unfolding is observed in less than 1% of the traces [10].
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In this work, we introduce a procedure which allows the classification of highly heteroge-
neous SMFS datasets. The core idea in our procedure is detecting sets of traces with recurrent
F-x patterns, emerging in a vast population of traces corresponding to statistically isolated
events. To find these patterns we used density-peak clustering [12], an approach which allows
detecting the maxima in multidimensional probability distributions using as input only the
distance between each pair of data points (the traces, in the case of this work). We estimate
the distance between pairs of traces using a modified version of the metric introduced by
Marsico et al [9].The procedure we developed is fully automatic. In addition, it allows the
processing of large amount of data in a reasonable computational time. It takes ∼ 9 minutes
to process 105 traces on a workstation with 16 CPUs.

We first show that our method can discriminate a single set of meaningful traces, corre-
sponding to the unfolding of a protein, from a set of traces containing noise. We then show
that the approach can discriminate between different types of meaningful traces, correspond-
ing to the unfolding of different proteins. To this aim we first analyze a dataset containing
subsets of traces corresponding to the unfolding of four different proteins. Next, we test our
method on a highly-heterogeneous dataset of ∼ 400,000 traces from experiments performed
in the native plasma membrane of the rod outer segment under physiological conditions.

2 Results

2.1 Algorithm overview and workflow.

The workflow of the algorithm we developed consists of the four major blocks depicted in
Figure 1. The first block, ”Cutting & filtering”, aims at removing the physically irrelevant
parts of the original trace, clearing the space to meaningful unfolding events. The filtering
consists in discriminating spurious traces (Figure 1b). In the second block, a quality score
is computed for each trace based on the features of its contour length (Lc) histogram. De-
pending on the score, a trace selection is performed, significantly reducing the total number
of traces. For each pair of the remaining traces, a similarity distance, almost identical to the
one used by Marsico et al [9], is computed and density-peak clustering is applied to classify
the emerging recurrent F-x patterns into separate clusters (Figure 1d). In what follows, we
provide a detailed description of each block of the algorithm.

2.2 Cutting and filtering.

Initially, each F-x curve is processed in order to remove all irrelevant parts of the signal.
Typically, a F-x curve contains a contact and a non-contact part. The contact part comes
from the interactions between the AFM tip and the membrane surface. This part starts with
highly negative forces due to the upwards bending of the cantilever in the beginning of the
retraction cycle. The non-contact part (or the tail) is noise coming from the free motion of the
cantilever that is no longer in contact with the surface. This part is used to set the baseline of
zero force. We remove the negative contact part and the tail of each trace as follows. For each
trace, we find the first point at extension larger than 0 nm, followed by ncont = 20 (all the
parameters and their values are listed in Table 1) consecutive force measures having positive
values. We mark this point as the starting point because this is where the positive contact
part begins. We exclude from the analysis the signal preceding the starting point. In order
to identify the non-contact part, we start from the end of the trace and move backwards until
the force exceeds the range compatible with the free motion of the cantilever. In detail, we
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Figure 1: Block scheme of the algorithm.
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estimate the standard deviation of the force σNOISE in 10 manually selected tails. This gives
σNOISE = 5.67 pN. We then perform a linear fit to the last 8 nm of each trace, extending the
window stepwise in the backward direction by 2 nm (hence considering the last 10 nm, 12
nm, 14 nm, etc.; see Figure S1) . At each step we compute the standard deviation from the
fit and check whether it exceeds the cutting threshold, σcut = 4σNOISE. If not, we continue,
otherwise we stop and cut the trace there. We assume that at this point the last force peak
has been reached and the non-contact part has ended. In our procedure, the position of the
last force peak determines the trace length.

At this point we store the traces on a regular grid with width ∆xinterp = 1 nm, and we
perform filtering, which aims at selecting only traces which are likely to correspond to the
unfolding of a protein. In Figure S2 we show some examples of traces discarded by our
procedure. A trace is discarded if it does not contain a detectable contact point, e.g. if the
starting point of the contact part is blurred; if the points occupy an anomalously wide force
range; if after the tail removal, the trace is shorter than a minimal length Lmin = 50 nm
and if the trace contains abnormal deflection points (with values larger than xabn = 5000 nm
or/and Fabn = 5000 pN), namely if the entire signal is shifted upwards with respect to the
zero force baseline. The non-contact part in relevant traces is normally flat with fluctuations
of the force compatible with σNOISE. By detecting the position of the last force peak, we
obtain the total length of the non-contact part. This allows to compute its standard deviation
from a horizontal zero-force line. If this deviation exceeds the threshold σtail = 2σNOISE, the
trace is considered spurious and is discarded.

2.3 Quality score.

We then compute a quality score which we use for further selecting the meaningful F-x curves.
The score we propose quantifies how well the experimental data satisfy the worm-like chain
(WLC) model, which is the standard model used for the analysis of F-x curves [2, 3, 4, 6].
This choice excludes possibly meaningful traces corresponding to an unfolding not described
by this model. In future applications one can consider removing or modifying this filter.
According to the WLC model, a F-x curve represents the unfolding of different domains,
each unfolding curve (each ”tooth” in the pattern) being described by

F (x) =
kBT

lp

(
1

4

(
1− x

Lc

)−2
+

x

Lc
− 1

4

)
(1)

where F is force, x is extension, kB is Boltzmann’s constant, T is temperature, lp is the
persistence length and Lc is the contour length of the domain. Usually, the WLC model
is assumed and one retrieves the Lc corresponding to different domains by means of an Lc
histogram [10, 11]. The WLC equation is inverted to find an Lc value for any x, and the
resulting Lc values are plotted in a histogram. Ideally, the Lc histogram should consist of
narrow peaks centered at the Lc values corresponding to the contour lengths of each domain.
Thus, the Lc values corresponding to the maxima of the histogram are taken to be the
contour length values for each domain. Lc histograms of meaningful traces are characterized
by the presence of a few maxima, well separated by deep minima. We will define a score that
quantifies how well the data agree with this expectation.

For each point in the F-x curve we compute Lc value by solving Equation 1. We use a
persistence length lp = 0.4 nm, which is considered appropriate for membrane proteins [3].
The Lc is computed in this manner in the force range from FWLC

min = 30 to FWLC
max = 500 pN

which is the range of validity of the model [10].
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A critical parameter for our algorithm is the bin width used for computing the histogram.
Since the Lc value estimated by Equation 1 is unavoidably affected by noise, if the bin width
is too small, the histogram is noisy. On the opposite, if the bin width is too large, peaks
corresponding to the unfolding of different domains get merged. We have chosen a rather
large bin size of 8 nm, a value corresponding to approximately 20 a.a., which is close to the
typical length of a single transmembrane helix in membrane proteins [13]. The choice was
also guided by visual inspection of the Lc histograms of proteins of known structure. We
discuss how the results depend on the choice of this parameter in the Materials and Methods
section.

Once we have the histogram, we find all maxima and minima. A maximum is considered
meaningful if it is generated by more than 5 points and it includes more than 1% of the force
measures of a trace.

Next, we compute score W quantifying the consistency of each maximum with the WLC
model. We assume that a high quality peak has its two surrounding minima falling under
1
2

of the peak height. We define fleft = Pleft/Pmax, fright = Pright/Pmax where Pmax, Pleft
and Pright are the probability densities of the maximum, of the minimum at its left and of
the minimum at its right. The ideal trace will yield f = 1

2
(fleft + fright) ∼ 0. We embed

this requirement by estimating the score of the peak as W = exp (−2f 2). If, for example,
Pleft = 1, Pright = 2 and Pmax = 16 one gets W = 0.98. If instead Pleft = 13 and Pright = 14,
the peak has a low quality and one gets W = 0.24. In Figure S3 we provide a few examples
of F-x curves, their Lc histograms and the W -score for some peaks.

Subsequently, we assign the corresponding peaks scores to all points in each trace. A score
is assigned to a point in two steps: we assign the peak’s score to all points in the Lc histogram
belonging to the peak. If a point has a force smaller than 30 pN it is not assigned to any
peak, since the WLC model is not valid for small forces. We therefore assign to it the same
score of the first successive point whose force is larger than 30 pN. We apply this criterion
only for points that are within 75 nm from the last point assigned to the peak (Figure S4).
We selected this value by visual inspection of the traces, estimating the maximum widths of
force peaks.

Finally, we sum up the scores for all points and we obtain the global score or the quality
score of the trace, Sw. The higher the global score, the higher the overall quality of that
trace. The ratio between the global score Sw and the trace length L is used to select high
quality traces for subsequent analysis. If this ratio is smaller than 0.5, the trace is discarded
(Figure S2 f). This is the same as saying: if more than half of the trace is inconsistent with
the WLC model, it is a low quality trace and we are not interested in analyzing it. On the
contrary, if more than half of the trace is consistent with the WLC model, it is possibly a
meaningful trace. We will see that the final results we obtain are quite robust with respect
to small variations in the value of this parameter. Therefore, the score/length threshold is
not a critical parameter of our approach.

2.4 Compute distances.

The final goal of our procedure is finding in an automatic manner meaningful F-x curves
bearing a specific unfolding pattern and grouping them into clusters based on their similarity
to each other. We use the distance introduced by Marsico et al [9], which is based on dynamic
programming alignment score, to evaluate the similarity between two traces. The distance
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between traces a and b, denoted by dab is:

dab = 1− SD(Na, Nb)

Nmax

(2)

where SD(Na, Nb) is the global alignment score, Na is the length of trace a, Nb is the length of
trace b, and Nmax = max(Na, Nb). In our method, we modified the original scoring function
used to evaluate match/mismatch score as follows:

M(i, j) =





1− |Fa(i)−Fb(j)|
Fscoring

if |Fa(i)− Fb(j)| < Fscoring

− |Fa(i)−Fb(j)|
Fscoring

otherwise
(3)

where Fa(i) and Fb(j) are the forces in points i and j in traces a and b, and Fscoring = 4σNOISE.
The difference between this scoring function and the one used in ref. [9] is that in the latter
the force difference was divided by the average of the maximum force values ∆Fmax in the
two traces, and not by a single value Fscoring, equal for all the traces. If this choice is made,
when two widely different traces both have high ∆Fmax, their difference may be weighted less
than the difference between two similar traces with low ∆Fmax. In other words, the distance
magnitude depends on ∆Fmax, leading to low distance values for traces with high ∆Fmax.
Note that in ref. [9] this problem was absent, since the ∆Fmax values were approximately
uniform for all traces in the dataset. We are using the same gap penalties δ1 and δ2 like in
ref. [9] (Table 1).

In order to make the method computationally more efficient, we compute the distance
only between traces that differ by no more than 2 peaks in their Lc histograms or by no more
than 20 % in terms of their trace length difference.

2.5 Density peak clustering.

To group the traces in clusters, we use the density peak clustering (DPC) algorithm [12]. In
the datasets we are analyzing meaningful clusters correspond to small subsets of the traces,
while most of the traces are statistically isolated events. In such a situation, partitioning
algorithms like K-means are not fully appropriate, as classify in clusters all the traces, in-
cluding isolated ones. DPC is suitable because it exclude automatically the outliers, which
by definition do not belong to a density peak. The algorithm can be summarized in the
following steps:

1. First, one computes the densities, representing the density of data points in the neigh-
borhood of each point. The densities are computed with the k-nearest neighbor (k-NN)
density estimator [14], as the ratio between k and the volume occupied by the k nearest
neighbors:

ρ̃i =
k

ωdrdk,i
(4)

where d is the intrinsic dimension (ID) of the dataset [15], ωd is the volume of the
d-sphere with unitary radius and rk,i is the distance of point i from its k-th nearest
neighbor. In DPC, the cluster membership of a data point is determined uniquely by
the rank of its density, and not by the exact value of the density. Therefore, without
loss of generality, instead of estimating the density by Equation 4, we estimate it as:

ρi = − log rk,i (5)
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It is easy to verify that the rank of ρi is equal to the rank of ρ̃i, as the two are related
by a simple monotonic transformation. Using this definition of the density we are not
required to estimate the intrinsic dimension of the dataset. In addition, we multiply ρi
by the score-length ratio of trace i. By doing so we assign bigger weight to the traces
which satisfy better the WLC model.

2. One then finds the minimum distance between point i and any other point with higher
density, δi:

δi = minj:ρj>ρi(dij) (6)

where dij is the distance between points i and j. This will be used to idenitify local
maxima of ρi.

3. Next, one finds the cluster centers, identified as density peaks, namely points with high
values of ρi and δi. To identify the peaks, following ref. [12] we compute for each point
γi = ρiδi. Points with high values of γi are good cluster center candidates. One then
sorts in descending order all points by the value of γi. The first point is a cluster center.
The second point is also a cluster center, unless if it is at a distance smaller than rcut
from the first center, where rcut is a free parameter of the approach (see below). One
then considers the third point, which is a cluster center, unless if it is at a distance
smaller than rcut from the two points with higher γ. This test is then performed for all
the points, finding in this manner all the cluster centers, which, by construction, will be
further than rcut from all the points with a higher γ.

4. Subsequently, following ref. [12] all points that are not centers are assigned to the same
cluster of the nearest point with higher density.

In the standard implementation of DPC the distance between a cluster member and the
cluster center can be arbitrarily large, if the density peak has an elongated shape. This
is not appropriate for the analysis of SMFS traces, where the similarity between all the
traces belonging to a cluster is essential. We therefore assume all the clusters are spherical,
and consider meaningful the assignation to a cluster of a trace only if its distance from the
cluster center is smaller than rcut and smaller than its distance to any other cluster center.
To determine an appropriate value for the parameter rcut we performed a careful visual
inspection on sets of traces characterized by an increasing distance from a high-quality trace.
We concluded that at distances larger than 0.3 we can no longer be confident that two traces
are likely to correspond to the same protein. We therefore fix rcut = 0.3 and determine the
size of the cluster core accordingly. In the following, to simplify the description of the results,
we discard from the analysis clusters with less than 10 members.

2.6 Benchmark on the dataset ’Oocyte’

Dataset Oocyte contains 4,128 traces, 101 of which were selected based on their contour length
and visual inspection and attributed to the unfolding of the membrane protein CNGA1 [4]
thanks to molecular tags (see Materials and Methods for details). After filtering the traces
with our procedure, their number was reduced to 459, which is approximately 11% of the
total amount of traces. 67% of the previously selected CNG traces passed the filters. The
traces were divided into 9 clusters. All selected CNG traces were found in cluster 2 and
therefore, cluster 2 is the CNG cluster. With the data that are available, we cannot relate
the remaining 8 clusters to proteins or further investigate their molecular origin.
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Figure 2: Graphical representation of the CNG cluster content. a. The cluster members are ranked by
density in descending order. The blue area shows the manually selected CNG traces with 5 or 6 force peaks;
the green area - manually selected CNG traces with 4 peaks; the red area - traces with contour length greater
than 350 nm; the gray area corresponds to all traces assigned to the cluster. b. Representative traces for the
different groups in panel a. The painted dot in the top right corner indicates the group affiliation.

We then analyzed more in detail the content of the CNG cluster. In Figure 2a we plot the
cluster members ranked by their density in a descending order. The highest density traces
are the CNG traces with 5 to 6 peaks (the blue area) followed by the CNG traces with 4
peaks (the green area). In Figure 2b we represent each group with a single F-x curve. When
we looked more closely to the highest density region in Figure 2a, we noticed a thin gray
line representing high density traces that haven’t been included in the selection. We looked
at these traces and found out that they are very similar to the cluster center of the CNG
cluster (Figure S5). Therefore, these traces can be considered CNG traces which escaped
manual selection. Remarkably, our procedure was able to detect previously unknown CNG
traces and group them together in the right cluster.

2.7 Benchmark on the dataset ’Mixed’

Dataset Mixed contains four groups of selected F-x curves, representing the unfolding of four
different proteins (see Materials and Methods for details). Each group is depicted in Figure
3a. Since all the traces of this dataset are manually selected, 77% of the traces passed the
filters. In Figure 3b we show the distribution of the traces in the two-dimensional space
of two representative descriptors, commonly used to discriminate among F-x curves: the
maximum contour length (approximately the total length of the curve from the contact to
the detachment of the polymer) and the average force of the peaks. This representation does
not allow distinguishing the four groups: indeed, the traces belonging to groups 2, 3 and 4
occupy approximately the same region in that space of these descriptors.

Figure 3c shows that with our procedure the vast majority of traces belonging to each
group was correctly assigned to a separate cluster. Our approach is therefore capable of
reconstructing the ground truth classification in a group of traces which are not discriminated
by standard descriptors. More in detail, the total number of clusters we obtained was 5.
Cluster 1 contains the traces belonging to group 2, representing the unfolding of the tandem
globular polyprotein Alpha3D+4xNUG2. Cluster 2 contains the CNG traces belonging to
group 1. In cluster 3 we find the traces belonging to group 4. Only one or at most two traces
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from each group were misassigned. The traces from group 3 are split in two clusters: ∼ 70%
are found in cluster 4 and ∼ 25% in cluster 5 (Figure S6). Given that the force pattern is the
same in the two clusters and the cluster core is more robust in cluster 4, cluster 4 should be
considered as the cluster matching group 3. These results demonstrate that our algorithm is
able to distinguish different unfolding patterns arising in the same dataset and to properly
assign the corresponding F-x curves to different clusters without knowing a priori the protein
composition.

2.8 Analysis of the dataset ’Rod’

Dataset Rod motivates our work since it poses a challenge to the traditional methods for
AFM-SMFS data analysis. The analysis of this dataset can be considered blind, since the
traces are collected in experiments performed in the plasma membrane of the rod outer
segment (rod OS) under native conditions, and no preprocessing or selection was performed
on the traces before our analysis. It contains 386,912 F-x curves, two orders of magnitude
more than the dataset ’Oocyte’. After the removal of the non-contact part of each trace,
filtering and score-based trace selection, the total number of traces is reduced to 14,910,
∼ 4% of the initial amount of data.

With our approach we find 18 clusters. The nine most populated clusters are shown
in Figure 4b. The other nine clusters are shown in Figure S7. In order to visualize the
distribution of the most abundant traces in the relevant clusters, we used also here the
maximum contour length and the mean peaks’ force as descriptors (Figure 4a). In dataset
’Rod’, by using these descriptors it is impossible to discriminate the different clusters, since
they form a continuous distribution.

On the contrary, different patterns emerge in our clusters depicted in Figure 4b. Cluster
1 hosts traces with 3 to 4 major peaks and contour length Lc ∼ 80 nm. In cluster 2 we find
traces with 4, up to 6, force peaks and Lc values in the range 200-220 nm. Compared with
the other clusters, cluster 3 hosts the longest traces with Lc ∼ 240-250 nm and 4 to 5 major
force peaks. The traces in cluster 7 are shorter, Lc ∼ 130-140 nm, and have 3 to 4 force
peaks. Cluster 9 contains traces with 2 to 3 major peaks and Lc ∼ 130-140 nm. Cluster 13
includes traces with Lc in the interval between 130 and 150 nm and 3 peaks. In cluster 14,
the traces have 3 to 4 main force peaks and contour length 120-130 nm. The contour length
of the traces in cluster 15 is ∼ 100 nm and the main peaks are 3. Cluster 18 includes traces
with Lc ∼ 180-190 nm and up to 3 force peaks.

Since two of the manually selected groups in dataset Mixed are originally from dataset
Rod, we would like to see if these traces still form separate clusters. Indeed, some of the
traces included in group 3 are found in the core of cluster 7. Instead, traces from group 4 are
not found in any cluster core, which is consistent with the low quality of cluster 3 in dataset
Mixed (Figure 3c).

Given that two of the dominant proteins in the plasma membrane of the rod OS are
rhodopsin and the CNG channel, one might expect to find a rhodopsin cluster and a CNG
cluster. The contour length of rhodopsin with the intact S-S bond is ∼ 95 nm while it is ∼
120 nm when fully stretched [16]. With our procedure we found two clusters with maximum
contour length values between 100 and 120 nm: clusters 14 and 15 (Figure 4b), which might
correspond to the unfolding of rhodopsin. The wild type CNGA1 channel of the Xenopus
has a slightly different sequence than the bovine one overexpressed in the oocytes [4]. We
expect the contour length of the fully-stretched CNG channel in the rod OS to be around
260 nm. The most likely candidate for the CNG cluster is cluster 3 which includes traces
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Figure 3: Results of the cluster analysis in dataset Mixed. a. F-x curves (black) and density plots (colored)
of the four groups of traces included in dataset Mixed. The different colors indicate different groups of traces,
i.e. different proteins. In blue, the traces representing the unfolding of the CNGA1 channel (Group 1); in
red, the traces representing the unfolding of the globular tandem Alpha3D+4xNUG2 (Group 2); in yellow
and green, two groups of traces with intra-group high level of similarity by visual inspection, associated with
the unfolding of two unknown proteins extracted from dataset Rod (Group 3 and Group 4). b. 2D scatter
plot representation of the traces in dataset Mixed: maximal contour length vs. average force of the peaks.
c. Cluster assignation of the traces in dataset Mixed according to our procedure. The colors are the same as
in plot a. Gray points represent all cluster members. Colored points represent only the cluster members at
maximum distance 0.3 from the cluster center. Panel c illustrates that the clusters found by our approach
are almost fully consistent with the ground truth classification in four groups, which are separated by the
horizontal lines.
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Figure 4: Results of the cluster analysis in dataset Rod. a. Isoline density plot of the ∼15,000 traces that
survived the quality filter. The blue numbers indicate the position of the representative trace shown in panel
b. b. Representative trace (solid lines) of each cluster with other traces belonging to the cluster (points) in
the nine most populated clusters. The different color (red, brown, black) indicates the different cluster size.
Red corresponds to the most populated clusters, brown to the one with intermediate size and black to the
lowest populated clusters. The blue numbers in the top left corner indicate the cluster number. The cluster
core size is given in the top right corner of each panel.
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Figure 5: a, b, c. Various representations of cluster 2,9 and 18 found in dataset Rod. Contour length
histograms showing the most frequent unfolding barriers (top); example of traces belonging to the clusters
(middle); density plot of the clusters (enriched with the fingerprint-roi tool in Fodis [11]) (bottom). i) and
ii) present all the relevant peaks while iii) and iv) show alternative unfolding pathways that are clustered
together.

with Lc values up to 250 nm (Figure 4b).
In Figure 5, we show traces with unknown molecular origin, assigned to clusters 2, 9 and

18. The traces in cluster 2 (Figure 5a) are ∼200 nm long and they have 5 major unfolding
peaks with spacing around 25 nm. The peaks show a certain variability in the occurrence,
particularly in the range 100 nm < Lc < 170 nm. Figure 5b displays the traces in cluster
9 with a highly conserved peak at Lc=130 nm and two minor peaks at 105 nm and 75 nm.
As opposed to cluster 2, cluster 9 shows conservation of high force peaks at small Lc values
(< 50 nm) suggesting the presence of important unfolding events at the very beginning. We
can’t resolve them very well because they are hidden by the typical non-specific adhesion in
the initial part of the curves. Cluster 18 (Figure 5c) instead shows three highly conserved
peaks at Lc values 95, 120 and 190 nm, with force peaks occasionally appearing below 50
nm. The 50 nm gap between the second and the third peak is quite unusual in membrane
proteins unfolding.

These results demonstrate that our method is capable of grouping into clusters traces
with clean and well-defined force peaks (like in Figure 5a i) and ii)), as well as traces which
might represent alternative unfolding pathways of the same protein (Figure 5a iii) and iv)).
Of course, obtaining these clusters opens the problem of their biochemical interpretation,
which in a complex environment such as a native membrane can be a non-trivial task. We
therefore hope that this work will stimulate a dedicated research effort.
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3 Discussion

To the best of our knowledge, no automatic procedure which allows the unsupervised clas-
sification of AFM-SMFS traces is currently available. The method proposed here is a step
forward in this direction. Our approach is designed to face a specific challenge: analyzing
the huge amount of data obtained by AFM-SMFS experiments on native membrane patches.
Our method does not require any previous knowledge on the sample composition and the
proteins contour length. In previous approaches [8, 9, 10, 11], the most significant filtering
step is based on the expected contour length of the protein under investigation. Such an ap-
proach requires knowledge of the sample composition. It reduces tremendously the number
of analyzed traces but is not suitable for data obtained from native cell membranes.

An important step in our procedure is trace selection based on a quality score which
measures the consistency of each trace with the WLC model. By filtering traces according to
this criterion one can miss some meaningful patterns that deviate from the WLC. If a model
characterizing the force-extension features of these patterns was available, one could retain
also traces consistent to that model. Dedicated experiments in controlled conditions like the
ones performed by Takahashi et al [17] may offer a route to study these deviations. We also
remark that by using a bin width of 8 nm for computing the Lc histograms, we are allowing
for significant deviations of the persistence length [19], such that anomalous patterns may
still survive the filtering. In other words, traces not perfectly adhering to the WLC model
but still exhibiting the sawtooth pattern with well-defined peaks will survive the filter.

Following ref. [9], we use dynamic programming alignment to measure how similar to
each other two traces are. In order to group similar traces into clusters, we use density-peak
clustering [12]. The major advantages of this approach are that it does not require knowledge
on the number of clusters in advance, and is able to distinguish ”density peaks” formed by
sets of similar traces from the background noise, formed by traces associated with isolated
unfolding events.

We benchmarked our method on a data set containing a manually selected sample of
CNG traces and ∼ 40 times more unevaluated traces. Our method successfully detected
the CNG traces and grouped them in a separate cluster. Furthermore, the method proved
to be able to distinguish between four groups of traces corresponding to the unfolding of
four different proteins. Finally, we analyzed a dataset consisting of ∼ 400,000 traces of
unidentified molecular origin from experiments in the plasma membrane of the rod outer
segment. Our program turned out to be efficient taking only ∼ 30 minutes to process the
entire data set revealing several unknown unfolding patterns calling for further molecular
identification.

It is important to underline that the method is mainly aimed at finding statistically
meaningful sets of similar traces which are likely to correspond to the unfolding of the same
protein. After a meaningful pattern has been found, it is useful to adopt more conventional
methods based on fingerprinting (like in Fodis [11]) to enrich the clusters with other traces,
that can be initially discarded due to the filtering procedure.

We should also underline that the method is not designed to distinguish different unfolding
pathways of the same protein. The filtering and the clustering procedure are by far too coarse
for this scope. After the clusters have been found, one can further investigate them by one
of the approaches in refs. [8, 9, 10, 11], which are much more appropriate for this scope.

In short, the present manuscript describes a method capable of extracting from a large
amount of SMFS traces – in the order of millions – subsets of traces with a high reciprocal
similarity. Despite limitations, the approach outperforms visual/manual selection, which
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would be inconceivable for datasets of this size.

4 Materials and Methods

4.1 Experimental data

We tested our procedure on three sets of traces.

4.1.1 Dataset ‘Oocyte’

The first data set contains 101 traces ascribed to the unfolding of the CNGA1 channel and
4,027 other traces generated in the same experiments. CNGA1 channels were expressed
in Xenopus laevis oocytes with sample preparation, experimental procedure and selection
described in ref. [4]. SMFS experiments were performed in the oocytes membrane with
the AFM (NanoWizard 3, JPK). The cantilever was calibrated before the start of each
experiment; its spring constant was ∼ 0.08 N/m. The AFM tip was pushed into the surface
and a force of 1 nN was applied for 0.5 s to enhance the non-specific binding to the proteins.
The tip was retracted from the surface at pulling speed 500 nm/s. The selection of the CNG
traces was based on two criteria: the contour length of the curves and their force pattern:
according to the interpretation of the experimental data made in ref. [4], the last peak in the
CNG traces has a Lc value larger than 220 nm and all CNG traces share a common unfolding
fingerprint. The unfolding fingerprint consists of a peak at Lc around 100 nm corresponding
to the unfolding of the cyclic nucleotide-binding (CNB) domain attached to the C-terminus;
3 or 4 force peaks between Lc 120 nm and 250 nm corresponding to the unfolding of the six
transmembrane helices and the detachment peak. The 101 CNG traces include traces that
satisfy these criteria and some other traces that miss a peak in the middle or the last peak
assuming different unfolding pathways as suggested in ref. [4].

4.1.2 Dataset ’Rod’

The second data set comes from pulling SMFS experiments performed in the native plasma
membrane of the rod outer segment (OS) of Xenopus laevis retinas. A detailed experimental
protocol is provided in ref. [6]. Briefly, the AFM (NanoWizard 3, JPK) was used with can-
tilever with spring constant 0.08 N/m. The cantilever was calibrated before each experiment.
The AFM tip was pushed into the sample surface with 1 nN force and held for 0.5 s. It was
then retracted at constant speed 500 nm/s.

The plasma membrane hosts a variety of membrane proteins among which the CNG
channels and rhodopsin are the most common [6]. As a consequence the dataset is highly
heterogeneous and poses a challenge to traditional analysis tools. The entire dataset contains
386,912 F-x curves of unidentified molecular origin.

4.1.3 Dataset ’Mixed’

The third data set contains a mixture of four manually selected groups of F-x curves corre-
sponding to the unfolding of different proteins.

1. Group number 1 includes the 101 manually selected CNGA1 traces included in dataset
Oocyte.
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2. Group number 2 includes 38 F-x curves representing the unfolding of a tandem globular
polyprotein (Alpha3D + 4xNUG2) [20]. These experiments were performed by Marc-
Andre LeBlanc and are available online on Dryad [21].

3. Group number 3 includes 131 traces from dataset Rod representing the unfolding of
an unknown protein. To build this group we selected a template trace belonging to
the dataset by visual inspection, and used the tool ’Fingerprint ROI’ in the software
Fodis [11] to mark the sawtooth pattern of the template, and find traces similar to that
template.

4. Group number 4 includes 43 traces from dataset Rod representing the unfolding of
another unknown protein and was made following the same protocol used for group
number 3.

4.2 Robustness of the approach with respect to variations of the parameters

Parameter Reference value Description

Cutting and filtering
ncont 20 Minimum number of points with positive force values

used to find the starting point in the contact part
σNOISE 5.67 pN Standard deviation of the force where it is considered

noise
σcut 4σNOISE Threshold used for non-contact part removal
σtail 2σNOISE Threshold used to detect spurious tails
Lmin 50 nm Threshold on the trace length used to discard short

traces
xabn 5,000 nm Extension values above xabn are considered abnormal
Fabn 5,000 pN Force values above Fabn are considered abnormal
∆xinterp 1.0 nm Grid spacing used to represent the traces

Estimating the WLC quality score
lp 0.4 nm Persistence length
FWLC
min 30 pN Lower bound limit of the WLC force range
FWLC
max 500 pN Upper bound limit of the WLC force range
Ppeak 1 % Threshold for considering relevant a peaks in the Lc

histogram
bin width 8 nm Lc bin width used for the Lc histogram
Score threshold 0.5 Threshold on the quality score-length ratio

used for trace selection

Computing distances
δ1 0.002 ∆xinterp Gap penalty in the first 10 nm of a trace;

used in the dynamic programming alignment
δ2 0.8 ∆xinterp Gap penalty in the rest of the trace;

used in the dynamic programming alignment
Fscoring 4σNOISE Match/mismatch threshold

used in the distance computation

Clustering
k 6 Number of nearest neighbors in the density estimator
rcut 0.3 Cutoff distance. Only traces closer than rcut to a

cluster center are assigned to a cluster.

Table 1: Parameters appearing in the different blocks of the algorithm in Figure 1 and their corresponding
reference values.
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In Table 1 we list all the parameters in our method with their reference values. We
performed extensive tests on the relevance of these parameters and in what follows we describe
the effect of changing some of them. The results are summarized in Table 2. In this Table,
we report the results obtained with our algorithm by varying one parameter at a time. We
report in each case the number of common traces and the Normalized Mutual Information
(NMI) between the reference clustering partition (obtained with the parameters in Table 1)
and the clustering partition obtained by varying the parameter in the first column. The NMI
plays the role of a correlation coefficient between clustering partitions: is equal to 1 if two
partitions are fully consistent, except for a permutation of the cluster labels.

A first important parameter is σNOISE, the variance of the force in the non-contact part
of a trace. σNOISE is used to define several other parameters: σcut, used to remove the non-
contact part of a trace, σtail, used to detect traces with problematic tails and Fscoring, used
in the distance computation. We remind that σNOISE is not a free parameter, since it can
be computed directly from the traces. It mostly depends on the cantilever spring constant.
Thus, it varies between different experiments. As shown in Table 1, if one varies it from 6
pN to 8 pN the number of common traces is only 260, approximately one third of the total.
The small number of common traces indicates that it is important estimating the value of
σNOISE properly. The NMI is 0.917, a value which indicates that the clustering classification
of the common traces is consistent.

We also tested the dependence of the results on the σcut value. By increasing σcut we
are making the cutting criterion more strict, which might lead to incorrect non-contact part
recognition, namely to removal of relevant parts of the spectra. As a result high quality
traces selected in the reference might get discarded. In fact, we find 440 common traces with
the reference. Also in this case, the NMI is very high, indicating that the common traces are
classified basically in the same manner.

Next, we considered the ”peak width” parameter, used to assign score to all points be-
longing to a peak properly. We changed it from 75 to 50 nm. By making the peak width
smaller, the overall global score decreases. As a result, the number of traces passing the
score-based selection slightly decreases. Consistently, we observe a decrease in the number of
common traces. The NMI remains quite high indicating good correlation between the final
clustering results.

The persistence length is a key parameter in the WLC model. The reference value, 0.4
nm is the one most commonly used for membrane proteins, even if in the literature there are
examples of SMFS data analysis using different lp values, from 0.2 nm up to 0.9 nm [18, 19].
To test the dependence of the final results on the lp value, we changed lp to 0.5 nm. As a
consequence, we observe more significant deviations of the final results from the reference,
which is not surprising given that the choice of lp alters the quality of the WLC fit.

Another important parameter in our approach is the bin width of the Lc histogram. The
choice of the reference value, 8 nm, is commented in the Results section. Here, we performed
tests with bin widths 7 and 9 nm. The number of common traces is 374 in the first case and
515 in the second case. The NMI values remain high. The traces that are selected change
if one varies Lc, but the cluster classification is remarkably robust also with respect to this
parameter.

Our procedure is also robust with respect to variations in the score-based threshold used
for trace selection, the value of kNN used in the density estimation, and the cutoff radius
used for clustering. In all these cases the number of common traces is well preserved and the
NMI indicate that the clusters are practically unchanged with respect to the reference.
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Parameter N. traces N. common NMI

Reference 781
σNOISE = 8 pN 823 264 0.917
σcut = 5σNOISE 740 440 0.964

peak width=50 nm 688 350 0.993
lp = 0.5 nm 804 398 0.962

bin width=7 nm 764 374 0.953
bin width=9 nm 787 515 0.968

kNN = 4 742 540 0.980
kNN = 8 757 652 0.994
kNN = 10 902 645 0.994

Score threshold=0.4 1009 712 0.988
Score threshold=0.6 673 619 0.99803

rcut = 0.4 629 613 0.993

Table 2: Normalized mutual information and number of common traces measured for different parameters
setup and the reference setup of Table 1.
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Figure S1: A schematic representation of the removal procedure of the non-contact part of a F-x curve. a.
A drawing of a F-x curve. The last 8 nm in the non-contact part of the tail are highlighted in yellow. The
following extension of 2 nm is highlighted in pink. b. The green line represents the linear fit to the last 8
nm (highlighted in yellow) of the tail plus three extensions of 2 nm each (highlighted in pink). The standard
deviation of the noise is denoted as σNOISE and the threshold used to cut the traces is 4σNOISE . The
highlighted blue area shows the upcoming 2 nm window in which the standard deviation of the point i, σi
is compared to the 4σNOISE threshold. σi is smaller than 4σNOISE and the procedure continues. c. The
standard deviation of the point j, σj is larger than 4σNOISE and the procedure stops. The point j is the last
point included in the trace. All points coming after j are removed.

Figure S2: Discarded traces. a. A trace with undetectable contact point; b. A recording failure of a trace; c.
A trace shorter than 50 nm after the removal of the non-contact part (highlighted in gray); d,e. Traces with
abnormal deflection of the baseline; f. A trace with score-length ratio smaller than 0.5. The points which
can be adequately described by the WLC model are shown in blue.

19



Figure S3: Examples showing the relation between the original F-x curves, their Lc histograms and the
peaks WLC consistency scores, W . Panels a,c and e are showing three F-x curves. The dotted line crosses
the curves at the 30 pN threshold set by the WLC model. All points above the line (the black points) are
used to compute the corresponding Lc histograms, shown in panels b, d and f. Panels b, d and f show
the corresponding Lc histograms, and the W -score of the peaks highlighted in red and blue, both in the
histograms and in the original curves.

Figure S4: A scheme representing the second step in the score assignation process. At this step the peak
score, depicted in pink is assigned also to points belonging to the peak but with forces below 30 pN and at
distance 75 nm from the last peak point (the yellow area). The 30 pN threshold is set by the WLC model
limitations. The 75 nm range was chosen based on visual inspection of the traces, looking at the maximum
extension of relevant force peaks.

20



Figure S5: Potential CNG traces, which escaped the visual inspection of the traces in dataset ’Oocytes’. From
top to bottom: three high density traces (depicted in black) assigned to the CNG cluster by our procedure
plotted with the CNG cluster center (depicted in gray).

Figure S6: Graphical representation of clusters 4 and 5, which encompass the traces from group 3 in dataset
’Mixed’.
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Figure S7: Low population clusters found in dataset Rod. Cluster representative trace (solid lines) with a
cloud of similar cluster members (with points). The cluster number is indicated on top of each plot; the
cluster core size is given in the top right corner of each panel.
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Abstract    
 Is the mechanical unfolding of proteins just a technological feat applicable only to synthetic 

preparations or is it applicable to real biological samples? Here, we describe a method 
providing all the necessary steps to deal with native membranes, from the isolation of the 
plasma membrane of single cells, to the characterization and identification of the embedded 
membrane proteins. We combined single-molecule force spectroscopy with an automatic 
pattern classification of the obtained Force-distance curves, and we provide a Bayesian 
identification of the unfolded proteins. The Bayesian identification is based on the cross-
matching of Mass Spectrometry datasets with proteomic databases (Uniprot, PDB). We 
applied this method to four cell types where we classified the unfolding of 5-10% of their total 
content of membrane proteins. The ability to mechanically probe membrane proteins directly 
in their native membrane enables the phenotyping of different cell types with almost single-
cell level of resolution. 

 
 
Introduction    
Much of what we know about the mechanics of cell membranes1–3 and polymers4,5 comes 

from atomic force microscopy (AFM) and to its ability to work at the nanoscale. Single-
molecule force spectroscopy (SMFS) in particular uses an AFM to apply a force able to unfold 
directly a single molecule or a protein. The obtained force-distance (F-D) curves encode the 
unfolding pathway of the molecule, allowing the identification of folded and unfolded regions 
from the analysis of the sequence of force peaks8.  SMFS has been mostly used to study the 
mechanics of purified proteins in solution or reconstituted in a lipid bilayer. However, the 
information that is possible to extrapolate from the F-D curves (e.g. mechanical stability9,10, 
structural heterogeneity11) depends on the physical and chemical properties of the cell 
membrane12,13, therefore it is desirable  to unfold membrane proteins in their original 
membrane. 

 The obvious questions are:  is the mechanical unfolding of proteins just a technological 
feat applicable only to synthetic preparations or is it applicable to real biological samples? If 
this is technically feasible, how can we identify the molecular structure of the unfolded protein 
among the plethora of native membrane proteins? What additional information can we get? 

In the present manuscript we describe a methodology, both experimental and theoretical, 
to unfold and recognize membrane proteins obtained from native cell membranes (Fig. 1 a). 
Firstly, we developed a technique to extract the membrane from single cells. Secondly, by 
using AFM-based SMFS we obtained hundreds of thousands of F-d curves in experiments 
using real biological membranes. Thirdly, we developed a filtering and clustering procedure 
based on pattern recognition that is able to detect clusters of similar unfolding curves among 
the thousands of F-d curves. Fourthly, we implemented a Bayesian meta-analysis of mass 
spectrometry libraries that allowed us to identify the candidate proteins. This Bayesian 
identification is further refined by cross-analyzing additional databases so to have very few 



candidates for the obtained clusters of F-d curves. We focused on native membrane proteins 
from hippocampal neurons, dorsal root ganglia (DRG) neurons, and the plasma and disc 
membrane of rod outer segments, which represent the only native sample that were 
approached in the past14. We validate the identification using the known unfolding of two 
proteins from rod OSs: cyclic nucleotide gated (CNG) channels12 and rhodopsin molecules15.  

Besides the identification, the proposed methodology generates as by-product the 
phenotyping of the membrane proteins content of specific cells that may become relevant in 
biomedical applications. 

 
 
 
Results    

 
Figure 1 | Experimental method for single-cell membrane isolation and protein 

unfolding. a, workflow of the method in four steps: isolation of the apical membrane of single 
cells; AFM-based protein unfolding of native membrane proteins; identification of the 
persistent patterns of unfolding and generation of the mechanical phenotype; Bayesian protein 
identification with mass spectrometry, Uniprot and PDB. b, side view and c, top view of the 
cell culture and the triangular coverslip approaching the target cell (red arrow) to be unroofed. 
d, positioning of the AFM tip in the region of unroofing. e, AFM topography of the isolated cell 
membrane with profile. f, cartoon of the process that leads to SMFS on native membranes. 
Examples of F-D curves of g, no binding events; h, membrane tethers that generate constant 
viscous force during retraction; i, sawtooth-like patterns, typical sign of the unfolding of a 
protein.  
 

Unfolding proteins from isolated cell membranes. 
In order  to study the unfolding of membrane proteins from their native environment, we 

optimized an unroofing method16 to isolate the apical part of cell membranes containing 
primarily membrane proteins with negligible contamination of cytoplasmic proteins 
(Supplementary Fig. 1). We sandwiched a single cell or neuron between two glass plates, i.e. 
the culture coverslip and another mounted on the AFM itself (see Fig. 1b-c, triangular 



coverslip). The triangular coverslip is coated with polylysine which favors membrane adhesion. 
When adhesion is reached, a rapid separation of the plates, driven by a loaded spring, permits 
the isolation of the apical membrane of the cell (see Fig. 1d-e, Supplementary Fig. 1). The 
method is reliable (n=42, ~80% success rate) with cell types grown on coverslips (epithelial 
cells and neurons). With non-adherent cells, like freshly isolated rods, we isolated the 
membrane with a lateral flux of medium17 (see Methods).  

After membrane isolation, we imaged the membrane with the AFM (Fig. 1f) and we verified 
that the isolated membrane patches have a height of 5-8 nm with rugosity in the order of 1 
nm. Then, we performed standard SMFS18 with non-functionalized tips collecting 301,654 
curves on the hippocampal membrane, 213,468 curves on DRG, 386,128 on rods and 221,565 
on rod discs. Of the obtained curves, the ~90% shows no binding (Fig. 1 g), ~5% shows 
plateau ascribable to membrane tethers19(Fig. 1 h), while the remaining >5% displays the 
common sawtooth-like shape that characterizes the unfolding of proteins18,20(Fig. 1 i). Indeed, 
F-D curves representing unfolding events are constituted by a sequence of rising concave 
phases followed by vertical jumps, where the rising phases fit the worm-like chain (WLC) 
model with a persistence length of ~0.4nm indicating the stretching of an unstructured 
aminoacidic chain21. In these cases the AFM tip binds non-specifically the underlying proteins 
through physisorption8. 

 
The architecture of membrane proteins and their unfolding.  
The Protein Data Bank (PDB) contains 8662 entries that are also annotated in the 

Orientation of Proteins in Membrane (OPM)22,23 providing the information of the position of 
each aminoacid relative to the cell membrane. The OPM is therefore a useful resource from 
which we extrapolated statistics on the architecture of membrane proteins. We categorized all 
these 8662 proteins in eight different classes based on their architecture (Fig. 2 a, see 
Methods for details). 53% of the resolved membrane proteins are peripheral membrane 
proteins anchored to the membrane, of which the two thirds are located extracellularly (class 
VIII of Fig. 2 a), thus not accessible by the AFM tip in our experiments (Fig.1). The intracellular 
peripheral membrane proteins (class VII) can be unfolded only if they tightly bound to the 
membrane. The remaining 47% of these proteins are transmembrane proteins of which only 
the 7% have both the C- and the N-terminus in the extracellular side (class VI). Of the eight 
classes shown in Fig. 2 a, five (I-V) have already been investigated in purified 
conditions12,14,18,24,25 and the obtained F-d curves display the usual sawtooth-like, i.e. the 
piece-wise WLC behavior that is present also in our F-d curves. Class VIII is not expected to 
be present in our experiments as it cannot attach to a cantilever approaching from the 
intracellular side, while proteins of Class VI and VII can be pulled by a cantilever approaching 
from the cytoplasmic side.  
 

Analysis of SMFS data from native cell membranes 
Membrane proteins, when pulled, generate their own characteristic pattern of unfolding 

which is used for their selection26,27. Visual inspection shows that the obtained F-d curves 
contain recurrent patterns of unfolding similar to those obtained in purified conditions when 
pulled from either  the C or N-terminus18,24,25. However, the attachment to either the C and N-
terminus and the resulting complete unfolding of a single protein is not the only possible event 
that occur in our experiments. On the basis of the architectural analysis, we have considered 
three additional cases: i) the simultaneous attachment of two or more proteins to the tip28, ii) 
the incomplete unfolding of the attached protein14, iii) the binding of the AFM tip to a loop of 
the protein instead of to a terminus end (Fig. 2 c-f).  

i) Attachment of multiple proteins (Fig. 2 d): the blind movements of the tip apex (radius of 
curvature 10-20 nm) leads the tip landing in random configurations on the sample so that it 
could bind simultaneously to multiple proteins. Since the ratio between non-empty curves over 
all curves is ~ 5 %, it follows that the binding probability is also close to 5%: the probability to 
bind 2 proteins at the same time is therefore its square (~0.25%). The attachment of multiple 
proteins occurs 20 times less frequently than the single attachment, and it will happen with 
combinations of different protein species and the resulting F-d curves will not have a recurrent 



pattern. Furthermore, when the two chains are unfolded together, the resulting spectrum is 
the sum of the two individual spectra: that causes deviations of the measured persistence 
length in the part of the curve where both chains are stretched (Supplementary Fig. 2). The 
simultaneous unfolding of multiple proteins is also characterized by the doubling of the peaks 
and evident changes in the range of the forces and persistence length (Fig. 2 d and g, 
Supplementary Fig. 2).  

ii) Incomplete unfolding of the protein (Fig. 2 e): if the tip prematurely detaches from the 
terminus, the resulting F-d curve will display a similar but shorter pattern compared to a 
complete unfolding (Fig. 3 c). The fraction of curves that prematurely detaches is reported to 
be ~23% of the fully unfolded proteins14, but this value could vary from protein to protein. 

iii) Binding of the AFM tip to a loop (Fig. 2 f):  the unfolding from a loop is equivalent to the 
attachment of multiple proteins because the tip unfolds two chains at the same time. However, 
if the attachment of the cantilever tip to a loop occurs with some consistency—like with the C- 
or the N-terminus—we will obtain a recurrent pattern with the features described in case i) 
(deviation of persistence length during intersection, 2 major levels of unfolding force). 

We have heuristics to identify all these cases (see also Supplementary Fig. 2), and in 
particular case i) and ii) are expected to be governed by stochasticity so that the corresponding 
F-d curves occur without recurrent patterns and therefore we focused on the detection of F-d 
curves with clear recurrent patterns. 

 

 
 
 

Figure 2 | Membrane proteins architectures. a, eight classes of membrane proteins and 
their fraction over all resolved proteins present in the PDB-OPM. b, position of the termini 
relative to the center cell membrane along the axis perpendicular to the membrane. Cartoon 
representing c, complete unfolding of a membrane protein and its F-D curve, d, simultaneous 
unfolding of two proteins and the balance of the forces involved. e, incomplete unfolding of a 
protein, f, unfolding from a cytoplasmic loop. g, prototypical F-D curves of a multiple unfolding/ 
unfolding from a loop.      



 
 
Finding the unfolding patterns of native membrane proteins. 

The ideal methodology to find the recurrent patterns of unfolding in the data coming from 
native membranes is an unsupervised procedure able to filter out the stochastic events, and 
to identify clusters of dense patterns of any shape without setting their number a priori. For 
this purpose, we designed a pattern classification pipeline combining the density peak 
clustering29 benchmarked for SMFS data {Ref. to Nina’s thesis} with a final pattern recognition 
method used to determine the cluster population. This pipeline can detect statistically-dense 
patterns of unfolding within large datasets with a desktop computer (see Methods). This 
pipeline does not require to pre-set neither the number of clusters to be identified nor the 
dimension of the F-d curves and can be applied without prior knowledge of the sample 
composition.  

 
Figure 3 | Unfolding clusters in native cell membranes. Bright field image of a, dorsal 
root ganglia neuron; b hippocampal neuron; c rot before unroofing (scale bar 15 µm). d, 
AFM error image of an isolated disc (scale bar 1 µm).  e, f, g, h, superimposition of clustered 
F-D curves plotted as density maps. i, j, k, l, unfolding phenotype in the compact 
representation of all the clustered F-D curves in maximum contour length vs. average 
unfolding force space (DRG: n = 1255; hippocampus: n = 563; rod: n = 1039; disc: n = 703). 
 

We found 15, 10, 8 and 5 clusters (Fig.3 e-h) of F-d curves from DRG, hippocampal 
neurons, rod outer segments and rod discs membranes respectively. We identified four major 
classes of clusters based on their unfolding behavior. Short curves with increasing forces: 
DRG12, H5, H8 and R3 shows repeated peaks (ΔLc 10-20 nm, distance between consecutive 
peaks) of increasing force that reaches also 400 pN in force; these clusters resemble the 



unfolding behavior of tandem globular proteins4. Long and periodic curves: R6, H7 or DRG10 
display periodic peaks of ~100 pN and with a ΔLc of 30-40 nm whose unfolding patterns are 
similar to what seen in the LacY20. Short curves: the majority of the identified clusters like 
DRG1, H3, R8 and all clusters from the rod discs have curves less than 120 nm long and with 
constant or descending force peaks. The F-d curves of these clusters share various features 
with the opsin family proteins unfolded in purified conditions8, e.g. a conserved unfolding peak 
at the beginning (at contour length < 20 nm) associated to  the initiation of the denaturation of 
the protein. We found also “unconventional” clusters such as DRG7, DRG8 and R7: DRG8 
exhibiting initial high forces and with variable peaks followed by more periodic low forces; while 
cluster R7 has a conserved flat plateau at the end of the curve of unknown origin. This last 
class displays features in common with the hypothesized unfolding from a loop or from multiple 
proteins. 

The clustering allows also a representation of the output of the experiments in a single and 
compact display (Fig. 3 i-l) defining what we call the ‘unfolding phenotype’ of a specific cell 
membrane, which is peculiar of the cell type. We assigned to each F-D curve different 
parameters related to the geometrical features that are physically relevant (maximal contour 
length (Lc max), average unfolding force, average ΔLc, etc.). In this way, it is possible to 
phenotype the membrane protein landscape across cell types by visualizing the ensemble of 
all the clusters (see Supplementary Fig. 4).   

 

 
Figure 4 | Likelihoods and priors for the Bayesian identification. a, workflow of the 

Bayesian steps: selection due to total length and abundance (mass spectrometry), 
refinement with structural and topological information (PDB and Uniprot). b, Comparison of 
the real length of the protein vs. the measured maximal contour length of the F-D curves in 
14 SMFS experiments on membrane proteins. c, Likelihood function of the observed 
maximal length of the clusters obtained from b. d, Comparison of the force necessary to 
unfold beta sheets and alpha helices in 22 SMFS experiments.  e, Likelihood function of the 
observed unfolding forces obtained from d. f, example of table entries resulting from the 
combination of mass spectrometry, Uniprot and PDB (Supplementary data). 

 
 



Bayesian identification of the unfolded patterns. 
Having identified clusters of F-d curves from native membranes, the next question is: which 

is the membrane protein whose unfolding corresponds to the identified clusters in Fig. 3? In 
order to answer to this question, we developed a Bayesian method providing a limited list of 
candidate proteins on the basis of the information present in the data from Mass Spectrometry 
of the sample under investigation and other proteomic databases (Uniprot, PDB). The 
Bayesian identification  (Fig. 4 a.) is based on two steps: firstly, the crossing of information 
between the cluster under investigation and the results of Mass Spectrometry analysis of the 
sample (hippocampal neurons, discs, etc.); secondly, a refinement of the preliminary 
candidates using additional information (structural and topological) present in the PDB and 
Uniprot databases. 

The first step leverages the contour length of the last peak of the clusters (Lcmax; Fig. 4 a 
I). The SMFS-literature contains 14 examples of unfolded membrane proteins allowing a 
comparison between the Lcmax of the measured F-d curves and the real length of the same 
protein completely stretched (Fig.4 b). On the basis of these experiments, we extrapolated the 
first likelihood function of our Bayesian inference (Fig. 4 c) indicating that, on average, the 
Lcmax corresponds to 89% of the real length of the protein (R2=0.98). By searching for proteins 
with this total length in the Mass Spectrometry data from the same samples30–32  and by using 
their abundance (Fig. 4 a II) we obtained a first list in which we could assign a probability to 
each candidate.  

The refinement to the first step (Fig. 4 a III) is obtained by combining the information on the 
molecular structure of the proteins (Fig. 4 a IV) extracted from the PDB and Uniprot. We 
created a table containing all the membrane proteins present in the Mass Spec data from the 
sample under investigation (hippocampal neurons, rods, etc.) reporting their abundance, 
number of amino acids, subcellular location, orientation of the N- and C-terminus, topology, 
fraction of α-helices and β-sheets, and presence of SS-bonds (Fig. 4 f, Supplementary 
Tables). The Bayesian approach assigns to the candidate proteins a probability also based 
on the location of the C- and N-terminus, and on the fact that unfolding β-sheets typically 
requires larger forces than in the case of α-helices (see Fig.  4 d). Indeed, from this force 
distribution we obtained the second likelihood function (Fig. 4 e) of our model.  

There are proteins for which it is available a precise annotation of their topology (usually 
the most abundant proteins), in these cases we can be more precise assigning them an 
effective contour length (Lcmax) based on the real structure, and also identifying whether they 
are unfolded from the C- or the N-terminus. 

 Disulfide bonds (i.e. covalent bonds between non-adjacent cysteines) are known to have 
a high breaking force33, till 1 nN. As a result, the mechanical unfolding of the protein with SS-
bonds is usually not sufficient to break the bonds, generating a cluster with a shorter Lcmax

14,33. 
The effective length of the protein with disulfide bonds is therefore reduced of the length 
enclosed between two consecutive bonded cysteines. The crossing with the Uniprot database 
that contains the information of the disulfide bonds allowed us to recalculate the effective total 
length of the proteins in our lists.  

The framework of the lists is shown in Fig. 4 f, while the tables with all the information can 
be found in the Supplementary data of the article. 

Following the Bayesian inference, we developed a method to estimate the probability of the 
candidate proteins for all the unfolding clusters found in hippocampal neurons, rod membranes 
and discs (Fig. 5 a-c). Starting from no information on the nature of these unfolding events, 
the software provides a list of known proteins which are the candidates of the molecules 
unfolded in the clusters of Fig.3. The software not only provides the candidates, but assign to 
each known protein a probability based on the Bayesian inference (Fig.4). Therefore, by 
simply crossing and exploiting the large information available in various databases, we 
identified a restricted number of molecular candidates for the identified unfolding clusters (Fig. 
5). The more accurate assignations happen when a protein has a very high abundance (e.g. 
rhodopsin in discs and rods) or when there are few proteins of the same mass (length) of the 
identified protein. 

 



 
Figure 5 | Bayesian identification of the unfolding clusters. Most probable candidates 

for the unfolding clusters found in a, hippocampal neurons; b, rods; c, rod discs. 
 
If the available data of Mass Spec from disks is complete—or almost complete—the 

proposed method will identify the proteins corresponding to the identified clusters with a 
probability close to 1.  
To verify this analysis, we looked for an orthogonal validation of the proposed method, based 
on the results of two membrane proteins unfolded in native membranes, i.e. the cyclic 
nucleotide gated channel yet unfolded in semi-purified conditions12 and hypothesized in 
previous experiments in the plasma membrane of rod outer segments34, and the rhodopsin 
unfolded in discs14,34. The unfolding pattern from the C-terminus of the CNGA1 in semi-purified 
conditions12 displays 5 major unfolding barriers starting from 100 nm and with a periodicity of 
~30 nm, which are features similar to those observed in cluster R4. The CNGA1 is a highly 
abundant protein in the rod membrane, and indeed the Bayesian identification assign a 
probability of 29% for cluster R4 mostly due to a combination of the correct Lc window and its 
high abundance. We engineered a chimera of the CNG with N2B on the C-terminus  that we 
overexpressed in the hybrid conditions explained in ref. 12. These experiments generated an 
unfolding cluster with the same unfolding barrier shifted of ~ 85 nm, i.e. the length of the N2B, 
which confirmed also the fact that we were unfolding from the C- terminus (Supplementary 
Fig. 5 a-f). 

With rhodopsin we reproduced the experiments performed in discs in ref. 14,34. In discs we 
obtained 5 unfolding clusters of which DISC1 and DISC3 match the rhodopsin unfolding 
patterns of Tanuj et al. (see Supplementary Fig. 5 g-l), while DISC2, DISC4 and DISC5—



according to our identification—represent alternative unfolding pathways for rhodopsin. The 
identity of these clusters was demonstrated by enzymatic digestion with endoproteinase Glu-
C that caused a truncation in the C-III loop of the rhodopsin molecule. The experiments 
performed after enzymatic digestion showed a 40-fold reduction of the F-D curves with a 
length comparable with rhodopsin, confirming the molecular origin of our unfolding clusters. 

 
 
Discussion 
 
The method here illustrated describes all the necessary steps to obtain F-d curves from 

biological membranes of cell types that grow in adhesion, and provides an automatic way to 
obtain clusters of F-d curves representing the unfolding of the membrane proteins present in 
the sample. We describe also a Bayesian approach able to provide a list of known proteins as 
candidates to be the unfolded protein. The Bayesian approach depends on the information 
present in Mass Spectrometry data and on the PDB and Uniprot databases. Therefore, the list 
of candidate proteins is expected to be refined as these databases will become richer and 
more complete, and the quality of Mass Spectrometry data will be improved. Let us discuss, 
now, the advantages and the weaknesses of the proposed method. 

The possibility to perform SMFS experiments in natural samples obtained from native cells 
provides a clear breakthrough in the field of protein unfolding bypassing purification and 
reconstitution. In addition, the comparison of F-d curves obtained from the same protein in its 
natural environment and after purification will provide new insights on the role of the physico-
chemical environment of the mechanical properties of proteins, a very important issue not yet 
properly investigated. 

 
 

Figure 6 | Comparison of mass spectrometry protein detection vs. SMFS data. 
Number of proteins / number of F-d curves observed for each length interval. a, normalized 
distribution of membrane proteins observed by mass spectrometry (broken lines) and 
distribution of the raw F-d curves.  b, distribution of the clustered F-d curves of Fig. 3 
approximate the distribution of the observed membrane proteins by mass spec. To the 
distributions of the F-d curves was applied the length correction of Fig. 4 c. 

 
  One of the most relevant follow-ups of the method here proposed is the possibility to 

characterize molecules coming from a very limited amount of native material (membranes 
isolated from 1 to 10 cells). The unfolding phenotype is a univocal tool to characterize the 
sample under investigation (see Fig.3 and Supplementary Fig. 4) and this approach could be 



extended to characterize membrane proteins in cells in healthy and sick conditions. Indeed, it 
is remarkable that the distribution of the detected proteins in our SMFS experiments (solid 
lines in Fig.6) is similar to that obtained in the Mass Spec experiments using millions of cells 
(broken lines). This is also an ex post confirmation of the goodness of using the mass 
spectrometry data in the Bayesian inference, and that our clustering method selects correctly 
the protein unfolding events. 
In our experiments we collected a limited number of F-d curves—some hundreds of 
thousands—and by increasing their number by 10- or 100-fold, we expect to improve the total 
number of detected clusters—as those in Fig.3—possibly close to 100. As the total number of 
different membrane proteins from a native sample is on the order of hundreds, we expect to 
detect and characterize a significant fraction of the total membrane proteins present in the 
sample. Improvements of the proposed method, primarily by increasing its throughput, could 
potentially provide a new screening method with clinical applications: indeed, the 
characterization of the changes of the unfolding phenotype caused by a disease will provide 
a better understanding of the malfunction of membrane proteins. Moreover, the proposed 
method is able to explore the variety of proteins present in a sample with an accuracy almost 
similar to that obtained by Mass Spec, but using a much simpler apparatus. 

The proposed method has some inherent limitations: indeed, the molecular identity of the 
unfolded proteins is guessed by a Bayesian estimator, which can be improved, but cannot be 
firmly established as in experiments with purified proteins. A possible way to obtain a better 
and more reliable identification of the proteins in the membrane is to couple the SMFS analysis 
of the native sample with a high-resolution AFM imaging of the same samples or, alternatively, 
we envision the use of the AFM cantilever as a mass sensor35,36 of the unfolded proteins that 
could permit to exclude F-d curves where there is a mismatch between mass and length. 
However, in both cases, current technology is at least one order of magnitude away from the 
resolution needed.  

The proposed method for clustering F-d curves is automatic but it is not fully unsupervised 
indeed Block 3 - in which we evaluate the quality of the F-d curve - assumes that a good F-d 
curve is piece-wise close to WLC. Block 5 of clustering method requires also a refinement 
which is done by the experimenter. The development of an unsupervised and fully automatic 
clustering method is under way.  

Another major limitation of the proposed method—in its present form—is the possibility to 
merge in the same cluster the unfolding of proteins with a different molecular identity: indeed, 
from the Mass Spec data it is clear  that different proteins have the same—or approximately 
the same—molecular weight and the total unfolded length Lc. this issue is rather significant 
for short proteins, I,e, those with values of  Lc between 50 nm and 200 nm. In order to 
overcome this limitation, it will be desirable to couple SMFS with some chemical information 
on the unfolded protein. In our opinion, this will be a desirable achievement, which will make 
a substantial improvement to the method here proposed. 
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Methods 
 
All experimental procedures were in accordance with the guidelines of the Italian Animal 

Welfare Act, and their use was approved by the SISSA Ethics Committee board and the 
National Ministry of Health (Permit Number: 630-III/14) in accordance with the European Union 
guidelines for animal care (d.1.116/92; 86/609/C.E.). 

 
 
Cell preparation and culture. 
Hippocampal and DRG neurons.  
Hippocampal and DRG neurons were obtained from Wistar rats (P2-P3) as described in 

ref. 16. In short, the animals were anesthetized with CO2 and sacrificed by decapitation. The 
dissociated cells were plated at a concentration of 4 × 104 cells/ml onto glass round coverslips 
(170 µm in thickness) coated with 0.5 mg/ml poly-D-lysine (Sigma-Aldrich, St. Louis, MO, 
USA) for 1 h at 37°C and washed 3 times in deionized water. It is fundamental to obtain an 
optimal adhesion of the cells to prevent detachment in the next step (isolation of the cell 
membrane). The medium used for hippocampal neurons is in Minimum Essential Medium 
(MEM) with GlutaMAX supplemented with 10% Fetal Bovine Serum (FBS, all from Invitrogen, 
Life Technologies, Gaithersburg, MD, USA), 0.6% D-glucose, 15 mM Hepes, 0.1 mg/ml apo-
transferrin, 30 μg/ml insulin, 0.1 μg/ml D-biotin, 1 μM vitamin B12 (all from Sigma-Aldrich), and 
2.5 μg/ml gentamycin (Invitrogen). The medium used for DRG neurons is Neurobasal medium 
(Gibco, Invitrogen, Milan, Italy) supplemented with 10% Fetal Bovine Serum (FBS, from 
Invitrogen, Life Technologies, Gaithersburg, MD, USA).  

 
Rods. 
Rod cells were obtained from adult male Xenopus laevis as described in ref. 37. Under 

infrared illumination, the eyes of dark-adapted frogs after anesthesia with MS-222 were 
surgically extracted. Eyes were preserved in the Ringer solution (110 NaCl, 2.5 KCl, 1 CaCl2, 
1.6 MgCl2, 3 Hepes-NaOH, 0.01 EDTA, and 10 glucose in mM; pH 7.8 buffered with NaOH), 
and hemisected under a dissecting microscope. The extracted retina was maintained in the 
Ringer solution.  

 
NG108-15. 
Mouse neuroblastoma NG108-15 cells were obtained from Sigma-Aldrich. The cells were 

grown in Dulbecco's Modified Eagle Medium (DMEM, ThermoFisher) plus 10% Fetal bovine 
serum (FBS, Gibco), 100 U/ml Penicillin and 100 U/ml Streptomycin. The cells were cultured 
into a humidified incubator (5% CO2, 37 °C). 

 
Cell transfection. 
NG108-15 cells were transiently transfected with 300 ng of each cDNA expression 

plasmids by using Lipofectamine 2000 Transfection Reagent (ThermoFisher) according to its 
handbook. Briefly, mTMEM16A-GFP plasmids (with GFP at their C-terminal) expression 
vector peGFP-N1 plasmid and the Lipo2000 were diluted into Opti-MEM Reduced Serum 
Medium (Gibco), respectively. 5 mins later, we added the diluted DNA to the diluted Lipo2000 
to make the plasmid DNA-lipid complexes. After incubating 30 min, we plated the cells on the 
12 mm round coverslips coated with 1x Poly-L-Ornithine (Sigma-Aldrich) in 12 well plate, and 
in the meanwhile, we added DNA-lipid complexes to the cells. We performed membrane 
isolation about 48 hours after transfection. 

 
 
 
 
Isolation of cell membranes.  
Single-cell unroofing (for cell types that grow in adhesion). 



The apical membrane of Hippocampal neurons, DRGs and NG108-15 were isolated with 
an optimized version of the unroofing method16. Briefly, additional empty glass coverslips (24 
mm in diameter, 170 µm in thickness) were plasma cleaned for 15 seconds and broken in 4 
quarters (with the use of the hands) in order to obtain optically sharp edges, as described in 
16. The coverslip quarters were immersed in 0.5 mg/ml poly-D-lysine for 30 minutes, and then 
they were immersed in deionized water for 10 seconds before use. A petri dish was filled with 
Ringer solution (2 ml), where the glass quarter was placed tilted of 7-15 degrees in the middle 
of it, supported by a 10 x 10 x 1 mm glass slice and Vaseline. The cover of the petri dish was 
then fixed on the stage of the AFM-inverted microscope setup (JPK Nanowizard 3 on an 
Olympus IX71).  

The cell culture was then mounted on a 3D printed coverslip holder connected to the head 
stage of the AFM. The AFM head was put on top of the stage in measurement position. The 
cell culture was immersed into the solution and a target cell was identified and aligned with 
the underlying corner of the glass quarter. The cell culture was moved towards the corner of 
the underlying glass with the motors of the AFM until the target cell was squeezed and it 
doubled its area. At this point the cell is kept squeezed for 3 minutes, then a loaded spring 
under the AFM is released to abruptly separate the corner from the cell culture, and break the 
target cell membrane. The glass quarter with the isolated cell membrane was laid down and 
fixed on the petri dish. The medium was replaced with Ringer’s solution without exposing the 
cell membrane to the air. 
 

Membrane isolation of non-adherent cells. 
Cells that do nott grow in adhesion usually do not establish a tight binding with the substrate 

on top of which they are deposited. For these cells (e.g. rod cells), instead of unroofing, it is 
more reliable to break the cells with a lateral flux of medium17.  

Isolated and intact rods were obtained by mechanical dissociation of the Xenopus retina in 
an absorption buffer (150 mM KCl, 25 mM MgCl2, and 10 mM Trizma base; pH 7.5); they were 
then deposited on cleaved mica as described in ref.34. Incubated rods were maintained for 30–
45 minutes over the mica in order to be adsorbed by its negatively charged surface. In the 
meanwhile, the position of the rods in the field of view of the microscope was annotated. The 
absorption buffer was substituted by a solution containing (in mM): 150 KCl, 10 Tris-HCl, (pH 
7.5) and then a lateral flux of medium was applied to the rods until all the cell bodies were 
removed.  

 
Isolation of rod discs. 
Purification techniques with multiple centrifugations are usually required to isolate 

membrane-only organelles like rod discs or outer membrane vesicles13. Rod discs were 
obtained starting from the extracted retina as described in ref. 34. Briefly, discs were separated 
with two series of centrifugations of the sample overlaid on a 15-40% continuous gradient of 
OptiPrep (Nycomed, Oslo, Norway). 40 µl of the sample were diluted with 40 µl of absorption 
buffer, and incubated on freshly cleaved mica for 40 minutes. After 40 minutes, the incubation 
medium was removed and substituted with the solution used in the AFM experiments (150mM 
KCl, 10mM Tris-HCl, pH 7.5). 

 
 
AFM imaging and Single-Molecule Force Spectroscopy (SMFS).  
AFM experiments was performed using an automated AFM (JPK Nanowizard 3) with 50 

µm long cantilevers (AppNano HYDRA2R-NGG, nominal spring constant = 0.84 N/m). We 
calibrated the AFM cantilevers in the experimental medium before each experiment using the 
equipartition theorem38. The AFM experiments of Hippocampal neurons and DRGs were 
performed with Ringer’s solution (NaCl 145 mM, KCl 3 mM, CaCl2 1.5 mM, MgCl2 1 mM, 
HEPES 10 mM, pH 7.4); Rod membrane and discs experiments were performed with 150mM 
KCl, 10mM Tris-HCl, pH 7.5. All experiments were performed at 24 Celsius. 

AFM imaging.  



The position of the cells before unroofing was annotated in the monitor of the computer in 
order to start the AFM imaging where the cells was in contact with the substrate (cell 
membrane is not visible in bright-field). The membrane obtained with single-cell unroofing 
(hippocampal neurons and DRG) can easily be found in proximity of the glass corner (~80% 
success rate). In the case of the rod membrane (non-adherent cells), usually different positions 
need to be scanned before finding a patch of membrane. Rod discs can be identified only via 
AFM imaging. We performed imaging both in contact mode (setpoint ~0.4 nN) and intermittent-
contact mode (lowest possible), but the intermittent-contact mode if preferable because it does 
not damage the border of the patches of membrane. 

 AFM-based SMFS (protein unfolding) 
we performed automated SMFS on top of the imaged membranes by setting grid positions 

for the approaching and retraction cycles of the cantilever. All experiments were performed 
with a retraction speed of 500 nm/s. The membrane proteins present in the sample were 
attached non-specifically to the cantilever tip by applying a constant force of ~1 nN for 1 
second between the AFM tip and the cytoplasmic side of the membrane. This method proved 
to work with different membrane proteins14,24,39, and to allow a higher throughput compared to 
methods that involve a specific attachment between the tip and the protein18,40–42..   

 
 
 
Automatic classification of SMFS data.  
The selection of the F-d curves that represent the unfolding of membrane proteins is usually 

based on the search for a specific pattern of unfolding in the SMFS data, after a filtering based 
on the length of the protein under investigation26,27. In the case of a native preparation (like 
ours) that contains a mixture of unknown proteins a) the filtering based on the distance cannot 
be applied and b) the number of specific patterns to be found is unknown. In order to find 
recurrent patterns of unfolding in a SMFS dataset we developed an algorithm that consists of 
five major blocks (Supplementary Fig. 3 a). In the first block, the parts of the F-d curves not 
related  to the unfolding process are removed, and a coarse filtering aimed at the detection of 
spurious traces is performed. In the second block, a quality score based on the consistency 
of the experimental data with the worm-like chain (WLC) model is computed and assigned to 
each trace. This score is used to select physically meaningful traces for further analysis. In 
the third block, distances between pairs of traces are computed to assess their similarity. The 
distances are used in the fourth block for density peak clustering. The fifth and final block 
consists in the refinement and possibly in the merging of some of these clusters. In what 
follows we provide  a detailed overview of each block. 

 
Block 1: filtering. 
The standard F-d curve preprocessing was applied to all the data within ‘Fodis’43. The zero 

of the force of the curve was determined averaging the non-contact part (baseline after the 
final peak) and subtracted to all the points of the curve. The piezo position was transformed 
in tip-sample-separation considering the contribution of the bending of the tip to the extension 
of the polymer. Given that the F-d curves are subject to noise (due to thermal fluctuations, 
coming from the instrument, etc.), we smooth the original signals through interpolation on a 
grid with width δinterp= 1 nm.  
A curve is discarded if it does not contain a: 

• detectable contact point (i.e. a transition from negative forces to positive forces in 
respect to the baseline set at zero force); 

• if the points occupy force ranges over 5000 pN;  
Some of the F-d curves show deviations from the horizontal zero-force line in the non-

contact part (wavy final part due to imperfect detachment of the polymer or other noise from 
the environment). We detect and discard these traces by computing the standard deviation of 
the tails from the zero-force line. If it exceeds two times σNOISE (average standard deviation of 
the baseline of the batch of curves) the trace is discarded.       

 



 
Block 2: Quality score. 
The quality score is used for refine selection of traces with high information content vs. 

noisy traces. It is based on the description provided by the worm-like chain (WLC) model, 
which is the standard model in the analysis of SMFS data33. The WLC model implies the 
equation: 

𝐹(𝑥) =
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where F is force, x is extension, kB is Boltzmann’s constant, T is temperature, lp is 

persistence length and Lc is contour length. Each unfolding curve in the trace is fitted with the 
WLC equation and a Lc value, corresponding to the length of the unfolded protein domain is 
obtained. The Lc values are computed by solving equation (1) for each x and F. An appropriate 
value for the persistence length lp for membrane proteins is 0.4 nm as reported in ref. 33. The 
WLC model is applicable in the force range 30-500 pN44.  

Once we compute the Lc values, we can build a Lc histogram. Normally, the Lc histogram 
describing a successful unfolding experiment is characterized by the presence of a few 
maxima separated by deep minima. We implement these features in the definition of our 
quality score to distinguish meaningful F-d curves. 

An important parameter is the bin width of the Lc histogram. If the bin width is too small the 
histogram is noisy; if the bin width is too large, peaks corresponding to the unfolding of different 
domains might be merged. We use bin width 8 nm which is an efficient value for evaluating 
the goodness of a curve and it allows to consider also curves that deviate from the WLC model 
(lp =0.4 nm) but that contain information. Furthermore, the choice of such large bin width is 
based on visual inspection of the histograms of proteins with known structure. Once the Lc 
histogram is built, we detect all maxima and minima. A maximum is meaningful if it is 
generated by more than 5 points and it includes more than 1 % of the force measures of a 
trace.    

For each maximum in the Lc histogram, we compute a score W quantifying the consistency 
of the peak with the WLC model. A high-quality peak is clearly separated from other peaks of 
the histogram, therefore it should be surrounded by two minima. We define 𝑓𝑙𝑒𝑓𝑡 =
𝑃𝑙𝑒𝑓𝑡

𝑃𝑚𝑎𝑥
, 𝑓𝑟𝑖𝑔ℎ𝑡 =

𝑃𝑟𝑖𝑔ℎ𝑡

𝑃𝑚𝑎𝑥
 where 𝑃𝑚𝑎𝑥 , 𝑃𝑙𝑒𝑓𝑡 and 𝑃𝑟𝑖𝑔ℎ𝑡 are the probability densities of the maximum, 

of the left and the right minima. Ideally, 𝑓 ~
1

2
(𝑓𝑙𝑒𝑓𝑡 + 𝑓𝑟𝑖𝑔ℎ𝑡) should go to 0. We define the peak 

score as 𝑊 = 𝑒𝑥𝑝(−2𝑓2). According to this definition, if 𝑃𝑙𝑒𝑓𝑡 = 1, 𝑃𝑟𝑖𝑔ℎ𝑡 = 2 and 𝑃𝑚𝑎𝑥=16, 

W=0.98. Whilst if 𝑃𝑙𝑒𝑓𝑡 = 13, 𝑃𝑟𝑖𝑔ℎ𝑡 = 14, the peak doesn’t fit well with the WLC model and 

W=0.24. 
Once a score is computed for each relevant peak in the Lc histogram, that score is assigned 

to all points in the corresponding trace. This is accomplished in two steps: first, the peak score 
is assigned to all points in the histogram belonging to that peak. Second, to all points with 
force values below 30 pN, for which an Lc values cannot be computed due to the model’s 
limitations. To these points, we assign the score of the first successive point with force larger 
than 30 pN. This criterion applies only to points within 75 nm from the last point assigned to 
the peak. The peak width value is selected by visual inspection of traces, evaluating the 
maximum width of their force peaks. 

The quality score of a trace, 𝑆𝑤, is the sum of the scores for all points in the trace. The 
higher the global score, the higher the trace quality. We use the ratio between the quality score 
and the trace length to select high quality traces. If this ratio is below 0.5, we discard the trace. 
We assume that if more than half of the trace is inconsistent with the WLC model, it is a low-
quality trace and as such we exclude it from the analysis. While if more than half of the trace 
is in good agreement with the WLC model, it is possibly a meaningful trace.   

We point out that the goal of blocks 1–4 is only to find dense recurrent patterns in the SMFS 
data: in block 5 we reevaluate the F-d curves to form the selections shown in Fig. 3 of the 
main text. 



 
Block 3: Computing distances 
In block 3 we quantify the similarity between the traces in order to find the recurrent pattern 

of unfolding within the data. To accomplish this goal, we use a modified version of the distance 
introduced by Marsico et al.26. This distance is defined using the dynamic programming 
alignment score computed for a pair of traces. For two traces, a and b, the distance dab is 
simply: 

𝑑𝑎𝑏 = 1 −
𝑆𝐷(𝑁𝑎 , 𝑁𝑏)

𝑁𝑚𝑎𝑥
 (2)  

where 𝑆𝐷(𝑁𝑎 , 𝑁𝑏) is the global alignment score, Na is the length of trace a, Nb is the length 
of trace b, and Nmax is the maximum length between the two. We have modified the 
match/mismatch scoring function used by Marsico et al as follows: 

𝑀(𝑖, 𝑗) =
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𝐹𝑠𝑐𝑜𝑟𝑖𝑛𝑔
             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3) 

 
where 𝐹𝑎(𝑖) and 𝐹𝑏(𝑗) are the forces in points i and j in traces a and b, and 𝐹𝑠𝑐𝑜𝑟𝑖𝑛𝑔 =

4𝜎𝑁𝑂𝐼𝑆𝐸. In the work done by Marsico et al, 𝐹𝑠𝑐𝑜𝑟𝑖𝑛𝑔 is replaced by ∆𝐹𝑚𝑎𝑥, which is the average 

of the maximum force values in the two traces. When two widely different traces have high 
∆𝐹𝑚𝑎𝑥 their distance will be lower with respect to two traces with low ∆𝐹𝑚𝑎𝑥 but overall higher 
level of similarity. Namely, the distance magnitude depends on the ∆𝐹𝑚𝑎𝑥 value and traces 

with high ∆𝐹𝑚𝑎𝑥 have by definition lower distance values. It is important to note that this 
problem did not occur in Marsico’s work since the ∆𝐹𝑚𝑎𝑥 values were uniformly distributed for 
all traces.  

In order to gain computational efficiency, the distance is computed only for traces which 
differ by no more than 2 peaks in the Lc histograms or by no more than 20 % in their trace 
length difference.  

 
Block 4: Density peak clustering. 
The density peak clustering (DPC) algorithm29 is used for clustering.  This choice is 

appropriate given that a fraction of traces in the analyzed datasets correspond to statistically 
isolated events and DPC automatically excludes the outliers. DPC can be summarized in the 
following steps: 

1. We compute the density of data points in the neighborhood of each point using the k-
nearest neighbor (k-NN) density estimator45. The density is the ratio between k and the 
volume occupied by the k nearest neighbors: 

𝜌̃𝑖 =
𝑘

𝜔𝑑𝑟𝑘,𝑖
𝑑  (4) 

where d is the intrinsic dimension (ID) of the dataset46, 𝜔𝑑 is the volume of the d-sphere 
with unitary radius and 𝑟𝑘,𝑖 is the distance of point i from its k-th nearest neighbor. In DPC 

it is the density rank which is relevant for the final cluster assignation. Therefore, without 
loss of generality, we compute the density using the following equation: 

𝜌𝑖 = − log 𝑟𝑘,𝑖  (5) 
𝜌𝑖̃ and 𝜌𝑖 are related by a simple monotonic transformation and thus, have the same 

rank. By using equation (4) we don’t have to compute the intrinsic dimension of the dataset. 
In order to assign bigger weight to high quality traces, we multiply  𝜌𝑖 by the score-length 
ratio of trace i. 
2. Next, we find the minimum distance between point i and any other point with higher 

density, denoted as 𝛿𝑖: 
𝛿𝑖 = min

𝑗:𝜌𝑗>𝜌𝑖
𝑑𝑖𝑗  (6) 



where dij is the distance between points i and j. 𝛿𝑖 is used to identify the local density 
maxima. 

3. We identify the cluster centers as density peaks, e.g. points with high values of both 
𝜌𝑖 and 𝛿𝑖. For each point we compute the quantity 𝛾𝑖 = 𝜌𝑖𝛿𝑖. Points with high values of 

𝛾𝑖 are good cluster center candidates. We sort all points by the value of 𝛾𝑖 in 
descending order. The first point is a cluster center. The second point is a cluster 
center unless its distance from the first point is smaller than 𝑟𝑐𝑢𝑡 = 0.3 (which 
represents the distance below which on average two traces are considered as the 
same pattern). Regarding the third point, it is a cluster center if it is at a distance smaller 
than 𝑟𝑐𝑢𝑡 from the preceding two points. Following the same logic, all the points are 
assessed and all cluster centers are identified. 

4. All points that are not cluster centers are assigned to the same cluster of the nearest 
point with higher density.  

 
Block 5: Refinement and merging  
The previous blocks, from 1 to 4, were optimized for finding the centers of dense patterns 

of unfolding in the SMFS data, but not for finding the borders of the clusters. To solve this 
issue, i.e. finding the F-d curves that are similar to each pattern of unfolding, we used the 
conventional definition of similarity (degree of superposition of F-d curves in the Force/tip-
sample-separation plane) automated in the Fodis software in the tool ‘fingerprint_roi’43.     

  In brief, we superimposed each cluster center with its two closest neighbors creating the 
effective ‘area of similarity’ (AoS) for each cluster. The AoS is defined as the area generated 
by all the points of the three curves above 30 pN and before the last peak (see Supplementary 
Fig. 3 b), each point forming a square of 5 nm x 5 pN. Then, the SMFS curves are preliminary 
filtered based on their length with their final peak falling between 0.7 x L and 1.3 x L (with L 
length of the cluster center). Each of the remaining F-d curves is compared with the AoS, and 
the number of its points that fall within the AoS is annotated: this number constitutes the 
similarity score. As depicted in Supplementary Fig. 3 c, the plot of the scores in descending 
order interestingly forms a line with two different slopes. The change of the slope empirically 
defines a threshold that reflects the limit of similarity for each cluster. If two clusters share 
more than 40% of the traces above the threshold, they are considered the same cluster, thus 
merged (all the merges are reported in Supplementary Fig. 3 d). 

 
 
Bayesian identification of F-D curves.  
Bayesian inference is widely used in modern science47,48 because it allows to univocally 

determine the level of uncertainty of a hypothesis49. We used the same framework to 
determine the molecular identity of the unfolding clusters. In the most general terms, we 
observed the unfolding cluster 𝐶𝑋, and we want to find the probability that the unfolding of a 
certain protein 𝑃𝑟𝑜𝑡𝐴 corresponds to the unfolding cluster 𝐶𝑋, i.e. we want to find the 

posterior probability 𝑃(𝑃𝑟𝑜𝑡𝐴|𝐶𝑋). In the form of the Bayes theorem: 

𝑃(𝑃𝑟𝑜𝑡𝐴|𝐶𝑋) =
𝑃(𝐶𝑋|𝑃𝑟𝑜𝑡𝐴)𝑃(𝑃𝑟𝑜𝑡𝐴)

𝑃(𝐶𝑋)
 (7) 

 
where 𝑃(𝑃𝑟𝑜𝑡𝐴) is the prior, i.e. the probability of 𝑃𝑟𝑜𝑡𝐴  to be in the sample; 𝑃(𝐶𝑋|𝑃𝑟𝑜𝑡𝐴) 

is the likelihood, i.e. the probability to find a cluster with the features of 𝐶𝑋 coming from the 
unfolding of 𝑃𝑟𝑜𝑡𝐴; and 𝑃(𝐶𝑋) is the normalizing factor. In the case of a classical experiment 
with a single purified protein, 𝑃(𝑃𝑟𝑜𝑡𝐴|𝐶𝑋) is assumed to be equal to 1, but  this is not the case 

for a native environment where there are 𝑃𝑟𝑜𝑡𝐵, 𝑃𝑟𝑜𝑡𝐶, etc. 
The observables of an unfolding cluster for which we determined the likelihood functions 

are the contour length of the last detectable peak 𝐿𝑐𝑚𝑎𝑥,𝐶𝑥 (~ length of the F-d curve), and the 

average unfolding force of the detected peaks 𝐹̅ 𝐶𝑥, but the method is modular therefore it 
could incorporate also other observables. The equation (7) becomes: 



𝑃(𝑃𝑟𝑜𝑡𝐴|𝐿𝑐𝑚𝑎𝑥,𝐶𝑥  , 𝐹̅ 𝐶𝑥) =
𝑃(𝐿𝑐𝑚𝑎𝑥,𝐶𝑥|𝐿𝑐𝑃𝑟𝑜𝑡𝐴) 𝑃(𝐹̅ 𝐶𝑥|𝐹̅𝑃𝑟𝑜𝑡𝐴) 𝑃(𝑃𝑟𝑜𝑡𝐴)

𝑁
 (8) 

where 𝑁 = ∑ (𝑃(𝐿𝑐𝑚𝑎𝑥,𝐶𝑥|𝐿𝑐𝑃𝑟𝑜𝑡𝑖) 𝑃(𝐹̅ 𝐶𝑥|𝐹̅𝑃𝑟𝑜𝑡𝑖) 𝑃(𝑃𝑟𝑜𝑡𝑖)𝑖 ) is the normalizing factor that 

takes into consideration all the proteins 𝑃𝑟𝑜𝑡𝑖 present in the sample. In the next paragraph we 
will describe the determination of the numerator of equation (8). 

 
Determination of prior probability 𝑃(𝑃𝑟𝑜𝑡𝐴) 
The most crucial part of the method is the determination of the list of proteins present in the 

sample, together with all their properties (length, abundance, secondary structure, topology, 
etc.). To do so we combined the Mass Spectrometry results of the cells under investigation30–

32 with other structural and topological information available in Uniprot and PDB. The crossing 
of the databases is done thanks to the unique Uniprot identifier. The complete list of proteins 
of Hippocampal neurons, Rod outer segments and Rod discs with the information necessary 
for the Bayesian inference are shown in the Supplementary Data of the article. In case the 
data of the species of interest are not available, cross species proteomic analysis 
demonstrated that the majority of proteins are conserved in terms of relative abundance50,51. 
𝑃(𝑃𝑟𝑜𝑡𝐴) is the probability of finding 𝑃𝑟𝑜𝑡𝐴 and not 𝑃𝑟𝑜𝑡𝐵, 𝑃𝑟𝑜𝑡𝐶, etc., which corresponds 

to the normalized  relative abundance of 𝑃𝑟𝑜𝑡𝐴 in the sample—a parameter that is usually 
calculated in mass spectrometry analysis. Indeed, in silico calculation of abundances gives 
rather trustworthy values: 

1. the most accurate option is the emPAI52; 
2. if the emPAI is not available, the second best option is the spectra counting for each 

peptide (PSM)53; 
3. if the PSM is not available, the sequence coverage can be used as loose estimation54. 
We used the emPAI for hippocampal neurons and rods; for the discs, the emPAI does not 

give accurate values because of the extreme concentration of Rhodopsin, therefore we used 
the abundances obtained with other quantitative methods55. 

We demonstrated in Supplementary Fig 1 that the isolated paches of membrane contain 
the membrane proteins of the original cells but not the cytoplasmic proteins, therefore we 
created an additional binary variable 𝑖𝑠𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 for each protein equal to 0 if the protein is 
not a membrane protein, 1 otherwise. This information is extracted from the annotation in the 
Uniprot database. The final prior probability is: 

𝑃(𝑃𝑟𝑜𝑡𝐴) = 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝐴 × 𝑖𝑠𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒𝐴 (9) 
 

Determination of the Likelihood function 𝑃(𝐿𝑐𝑚𝑎𝑥,𝐶𝑥|𝐿𝑐𝑃𝑟𝑜𝑡𝐴) 

The F-d curves encode a reliable structural information, that is the total length of the 
unfolded protein18. We revised 14 published unfolding clusters of membrane 
proteins12,18,20,24,25,39,41,42,56–60 that allowed us to create the likelihood function for the observable 
𝐿𝑐𝑚𝑎𝑥,𝐶𝑥  as shown in Fig. 4 b–c. This likelihood is a Gaussian centered at 0.89𝐿𝑐𝑃𝑟𝑜𝑡𝐴 with a 

standard deviation of 0.05𝐿𝑐𝑃𝑟𝑜𝑡𝐴. 

 

Determination of the Likelihood function 𝑃(𝐹̅ 𝐶𝑥|𝐹̅𝑃𝑟𝑜𝑡𝐴) 

The force necessary to unfold a protein domain depends on the stability of the domain itself. 
α-helices and β-sheets are unfolded at different force levels as shown in Fig. 4 d. We revised 

the unfolding forces of 32 proteins and we used as 𝑃(𝐹̅ 𝐶𝑥|𝐹̅𝑃𝑟𝑜𝑡𝐴) the smoothed trend line of 

the distribution (Fig. 4 e of the main text). 
 
All the data and the Matlab functions for the Bayesian inference are present in the 

Supplementary Data of the article. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1 
Membrane proteins remain in membrane after unroofing, cytoplasmic proteins don’t. 
a, (top) cytoplasmic GFP and (bottom) mTMEM16A-GFP overexpressed in NG108-15 
cells. b, bright field and fluorescence images taken during the compression on the inverted 
microscope-AFM system. c, images of the coverslip quarter only after the unroofing 
process taken with the confocal microscope; the rough surface under the glass is due to 
the Vaseline layer used to fix the coverslip quarter. d, AFM images of the area in c 
showing the presence of membrane parches in both cases. 
 

 
 

 

 

 



 
 

 

 

Supplementary Figure 2  
Candidates of multiple unfolding and origin of persistence length deviation. 
a, observed F-d curves with the features of multiple unfolding events shown in Fig 3 g 
(red: long protein, gray: short protein). b, F-d curve with intra-deviations of persistence 
length. c, hypothetical unfolding curve of protein-X (peak 1: Lc=100 nm, F=150pN; peak 2: 
Lc=150 nm, F=150pN) fitted with the WLC model with standard persistence length 
p=0.4nm. d, the force applied by the AFM tip balances the unfolding forces of the two 
proteins during the retraction. e, the effective F-d curve recorded during parallel unfolding 
of two protein-X corresponds to the sum of a single unfolding curve c and is best fitted 
with p=0.2nm. f, relative shift of 2.5 nm and g, 10 nm still result in deviations of the 
measured persistence length and display the doubling of the peaks. 



 
 

 
 

Supplementary Figure 3 
Clustering. 
a, block scheme of the clustering method. b, area of similarity (AoS) for cluster R1 used 
for block 5. c, plot of the scores in descending order. d, table showing the number of 
clusters that was merged to form the final selection of Fig. 3. 

 
 
 



 
 

Supplementary Figure 4 
Alternative visualizations for clusters analysis.  
a, plot of all the F-d curves belonging to the clusters of the rod outer segment plotted with 
different colors in the ‘average unfolding force’ vs ‘maximal contour length’ space. b, 
distribution of representative observables for clusters R3 and R8. c, density plots of 
clusters in a. Comparison of the maximal contour length profiles (d and e) and of the 
average unfolding forces (f and g) of the four cell types investigated.  

 
 
 



 
 

Supplementary Figure 5 
Orthogonal validations of the Bayesian identification. 
a, identification probability for cluster R4. b, scheme of the wild type CNG and of the 
engineered CNG linked to the N2B (unstructured amino acid chain). c, representative F-d 
curves obtained in rod outer segments (blue) and after overexpression of the CNG-N2b-
His (green). d, density plot of R4 (n=68) and e, density plot of the cluster obtained after 
overexpression of CNG-N2b-His (n=64). f, comparison of the global histograms of d and e 
in the contour length space. g and j, identification probabilities of cluster DISC1 and 
DISC3 and their density plots (h and k). i, unfolding of rhodopsin identified by Tanuj Sapra 
et al. (2006) with intact SS-bond and l, with broken SS-bond (figure adapted from Tanuj 
Sapra et al. (2006)). 
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Chapter 3

Conclusions

The general goal of my PhD was to explore native cell membranes and mem-
brane proteins, taking advantage of Atomic Force Microscopy. Extracting us-
able information from a biological native sample is hard, and my work is another
demonstration of how the experimental effort alone is not sufficient to draw con-
clusion, indeed an equal computational effort is needed. The complexity of the
native conditions needs to be taken into account seriously: both in the sample
preparation stage where the experimenter has to develop a sensibility that is
hard to schematize in a comprehensive to-do-list, and in the data analysis stage
where it is necessary to think out-of-the-box and exploit resources that might
have not been created for the desired specific purpose but that demonstrate to
be useful as well.

To study native membrane and membrane proteins with AFM, I first ap-
proached the problem from the data-analysis side. In 2015 there was no com-
prehensive software for the analysis of protein unfolding data able to manage
a large a mount of data and easily deal with it. Therefore, starting from some
Matlab routines in my lab previously wrote by Paolo Fabris, I designed and
developed together with Andrea Perissinotto a software capable of importing
SMFS data from the most popular AFM brands (JPK, Bruker) [60]. This
software—Fodis—is a visualization platform that incorporates common data
representations, and it allows to perform simple, but useful, operations on the
data like a filtering based on geometrical features or a selection based on the
similarity of the traces, besides incorporating alignment and filtering algorithms
previously published [62].

The experimental gap that I faced was the lack of a reliable technique to
produce samples containing isolated patches of membranes (of any cell type)
suitable for AFM investigations. For this purpose, inspired by previous studies
on ‘cell unroofing’, I developed a single-cell unroofing technique that allowed me
to reliably obtain a sample a day in about 20 minutes of preparation time [29].
With this easy access to isolated patches of native membrane, I performed a
serial study on neurons and brain cancer cells, characterizing their topographical
differences and mechanical properties. The optimization of this technique is
still under development, and the final goal is to be able to isolate patches of
membrane from ex vivo tissues, of potential use with biopsies of patients.

Next, I explored the unfolding pathways of the native membrane proteins
with AFM-based Single-Molecule Force Spectroscopy [61]. These investigations
allowed me to obtain the unfolding pathways of different native membrane pro-
teins during the same experimental session. My results show that it is possible to
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classify a cell membrane with what I called the ‘unfolding phenotype’, a multi-
dimensional representation that is a sort of fingerprint for the cell membrane.
Different cell types have different unfolding phenotypes, therefore the combi-
nation of cell unroofing and SMFS could potentially become a new screening
method with clinical applications.
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