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Introduction

Physics aims to describe the behaviour of systems due to the interaction between them. When

two systems interact, their state changes, and the effect of this interaction is reflected in cor-

relations. The nature of the correlations can be either classical or quantum. Understanding

quantum correlations, i.e., correlations that cannot be realised in classical systems, is a funda-

mental question in physics. Quantum entanglement is the most famous manifestation of this

phenomenon, and its interpretation has been widely discussed since the early days of quantum

mechanics [1, 2]. Nowadays, it has become a powerful resource in quantum information since

it allows us to perform tasks that would be otherwise impossible, or inefficient, in a classi-

cal setting such as quantum teleportation [3] and quantum error correction [4]. Quantifying

entanglement of a quantum state became an essential task that has been solved for bipartite

systems in pure states. In that case, the good measure of entanglement is the entanglement

entropy [5], i.e., the von Neumann entropy of the reduced density matrix obtained by tracing

over the degrees of freedom of one of the two subsystems.

Entanglement entropy has revealed unexpected connections between quantum entangle-

ment and the most disparate areas of Physics. The first example is the black-hole physics,

where this quantity seems to play a fundamental role in understanding the origin of the

Bekenstein-Hawking entropy of black holes [6–9]. In 1986 Bombelli, Koul, Lee and Sorkin

[10] computed the entropy associated with the reduced density matrix obtained by tracing

over the degrees of freedom of a quantum field that are inside the horizon, and they inter-

preted that quantity as a contribution to the total Bekenstein-Hawking entropy. On the other

hand, Srednicki [11] showed that the entanglement entropy of a sphere is proportional to the

area of the boundary also for fields in flat spacetime. This result enhanced the belief that

entanglement entropy could be the way to understand and compute the black hole entropy.

Entanglement entropy is a divergent quantity that must be regularized in some way. By

employing a UV regulator, the divergence structure, whose the area law term represents the

leading contribution, has been extensively studied [12–16]. However, the great interest in the

entanglement entropy in the high-energy context came to a sudden halt after the discovery

of D-branes [17], which triggered a new and more efficient way to compute the black-hole

entropy [18].

On the contrary, the interest in this quantity has grown in condensed matter and statistical
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physics (see [19–21] for some reviews) because it turned out to be a very effective method to

probe quantum phase transitions [22]. This kind of transitions occurs at zero temperature and

is characterised by the appearance of long-range correlations, which are not due to thermal

fluctuations but to the structure of a strongly entangled ground state. In particular, in

(1 + 1)−dimensions the entanglement entropy in systems at criticality shows a logarithmic

violation of the area law driven by the central charge [13, 23, 24]. This critical behaviour

makes the entanglement entropy a good quantity to infer the universality class of spin chains

from numerical computations. Furthermore, more recently, some experimental groups have

conducted pioneering experiments to capture some features of quantum entanglement [25–27].

In (2+1)−dimensional systems, the entanglement entropy of a region A is SA = aPA/ε−FA+

O(ε) where ε is the UV cutoff. In the area law term, PA is the perimeter of the entangling

curve, which divides A from the rest of the system, and a is a non-universal quantity. The

subleading term FA is finite as ε → 0 whenever the region is smooth, while it diverges

logarithmically if corners in the entangling surface occur [28]. This subleading term, being

non-local, provides a universal characterization of the many-particle quantum entanglement

in the ground state of topologically ordered systems with a mass gap [29, 30].

In the seminal works [31, 32], Ryu and Takayanagi redeemed the entanglement entropy

in the study of black holes and quantum gravity. In the context of the AdS/CFT duality

conjectured by Maldacena [33], they proposed a way to compute the entanglement entropy of a

spatial region in field theories which admit a holographic dual. Such theories can be described

in terms of a gravitational theory with an additional dimension whose boundary is the manifold

in which the field theory is defined. The great advantage lies in the fact that, in the strong

coupling and large N regime, the gravitational theory becomes classical. In this framework,

the entanglement entropy is given by the area of the minimal surface in the gravity theory

anchored to the spatial region defined on the boundary. The Ryu-Takayanagi (RT) formula

(and its covariant generalization [34] due to Hubeny, Rangamani, and Takayanagi (HRT))

turned out to be extremely useful for two different purposes. On one side, it provides a very

powerful tool to quantify the entanglement in strongly coupled field theories. On the other

one, the RT formula can be interpreted as a generalization of the Bekenstein-Hawking entropy

of black holes, revealing a renewed connection between entanglement and gravity. In [35–37] it

has been argued that the essential building block of the spacetime geometry should be related

to the entanglement structure of the quantum state in the QFT. In particular, Maldacena and

Susskind [38] observed that the Einstein-Rosen bridge (ER) is related to the entanglement

structure suggested by the Einstein-Podolsky-Rosen (EPR) gendanken experiment coining

the equality ”ER=EPR”. Successively, in [39–41], entanglement has been shown to be a

fundamental feature for the bulk-reconstruction program in AdS/CFT initiated in [42, 43].

Within this program, another quantity whose interest is growing during the recent years is

the holographic complexity [44–48], emerged to understand the growth of the Einstein-Rosen

bridge for AdS black holes in terms of quantum complexity [49–51] in the dual boundary

CFT. Many interesting works have been done to extend the holographic dictionary with this

quantity [52–55].

From the point of view of the field theory, a very interesting question is the study of the
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shape dependence of the entanglement entropy. In its expansion in terms of the UV cutoff, the

leading term of the entanglement entropy is proportional to the area. On the other hand, in

general, other subleading terms may occur. These terms depend on the dimensionality of the

spacetime and the shape of the region. It turns out that different information can be extracted

by studying the shape dependence. For instance, when the subsystem is a (hyper)sphere it

has been shown that the subleading term leads to define a quantity which monotonically

decreases along the renormalization group flow [56–62]. Moreover, when the region contains a

conical singularity, the entanglement entropy provides the coefficient characterising the two-

point function of the stress-energy tensor [63–66]. However, studying the shape dependence

is a formidable task, even in free theories.

In the framework of AdS4/CFT3 the computation is simplified by the RT (and HRT)

formula, and interesting results have been obtained for small perturbations about circular

regions [65, 67–74]. In the holographic framework, when A has a generic shape, analytic

expressions for FA can be written where the Willmore functional [75] plays an important role.

The first result has been found in [76] for the static case where the gravitational background

is AdS4. This analysis has been further developed in [77] and then extended to a generic

asymptotically AdS4 spacetime in [78].

In this thesis, we study the shape dependence of entanglement entropy in holographic

theories which are dual to three-dimensional conformal field theories with boundary (BCFT3),

and to three-dimensional field theories which displays anisotropic scale invariance (called

Lifshitz theories) and violation of the hyperscaling relations.

Conformal field theories in the presence of boundaries (BCFTs) have been largely studied

in the literature [79–81] in (1+1)−dimensional systems, and also in higher dimensions [82–85].

In the former case, the subleading term of entanglement entropy is related to the boundary

entropy introduced by Affleck and Ludwig [86], which is a monotonically decreasing quantity

along the boundary RG flow [86, 87]. In three dimensions, the effective action of a BCFT

contains divergent logarithmic terms that are related to conformal anomalies localised on

the boundary. For this dimensionality, there are two independent anomalies: one depends

on the intrinsic curvature of the boundary, while the other one depends on the extrinsic

curvature. The coefficient of the former represents the analogous of the boundary entropy

since it decreases along the boundary RG flow [88], while the interpretation of the other

one is not clear so far. In this case, understanding the role of entanglement entropy is still

an open problem, and one of the aims of this thesis is to take a step forward these issues

by employing the holographic setup. The holographic dual of BCFTs (AdSd+2/BCFTd+1)

has been proposed by Takayanagi in [89] and studied further in [90, 91]. In this setup, the

boundary of the BCFT is extended into the bulk of the gravitational spacetime, and this

extension represents an additional boundary of the gravitational dual. The spacetime metric

and the extended boundary are determined from the extremization of a gravitational action

which also contains some matter field localized on the additional boundary. The matter

content has the role of fixing the boundary conditions in the BCFTd+1. Also, we mention

that boundaries can be viewed as a special case of defects. Quantum field theory in the

presence of defects is a very interesting subject both from a theoretical point of view [92–96]
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and for the applications in statistical and condensed matter physics. For instance, it allow

us studying the Kondo effect [97, 98], quantum wires [99, 100], and the topological state of

matters [101–103]. Holography in the presence of defects has been studied also in [104–106],

and then applied to condensed matter problems in [107–112]

Many condensed matter systems at the critical point of a quantum phase transition exhibit

a critical behaviour with anisotropic scaling characterised by the Lifshitz exponent ζ [113–117]

and hyperscaling violation [118]. In recent years, there has been a certain attempt to study

this kind of critical points within the AdS/CFT correspondence. Bottom-up approaches have

been employed to obtain gravitational backgrounds capturing the anisotropic Lifshitz scaling

[119–121] and the hyperscaling violation [122–126]. Further studies have been performed also

in [127–139]. Interestingly, in [125] the authors have observed that for a precise value of

the hyperscaling exponent (see Sec. 1.5.2 for details) the holographic entanglement entropy

displays a logarithmic violation of the area law, even in dimensions higher than two. Since

this behaviour has been associated with the presence of a Fermi surface for weakly-interacting

fermionic systems [140, 141], gravitational backgrounds with hyperscaling exponents are also

good candidates to describe systems with a Fermi surface at strong coupling. By employing

the RT formula, the holographic entanglement entropy has been studied in many works, both

in static backgrounds [125, 126, 142–146] and in Vaidya spacetimes [147–151]. However, we

remark that spherical regions and infinite strips are the only smooth regions considered in

these studies. In the last chapter of this thesis, we will study the holographic entanglement

entropy for generic shapes, performing both analytical and numerical computations.

This thesis is organized as follows.

In chapter 1, we introduce the basic concepts needed to understand the subsequent chap-

ters. After a brief discussion of entanglement and entanglement entropy, we will focus on

conformal field theories reviewing the divergence structure of entanglement entropy in terms

of the UV cutoff and discussing in detail the three-dimensional case. After that, we introduce

boundary conformal field theories, and we will discuss the entanglement in two and three

dimensional flat spacetimes in the presence of boundaries. Particular attention is paid to the

holographic computation of entanglement entropy and the AdS/BCFT setup introduced by

Takayanagi. Holographic theories with Lifshitz dynamical exponents and which display a vi-

olation of the hyperscaling relations are presented. Finally, we will discuss the numerical tool

we employ throughout this thesis, namely Surface Evolver [152, 153], an open-source program

able to find an approximation of the minimal surfaces once boundary conditions and a simple

ansatz are given.
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The subsequent chapters 2, 3 and 4 contain the original contributions of this work, and

are based on the following articles

• D. Seminara, J. Sisti and E. Tonni, “Corner contributions to holographic entanglement

entropy in AdS4/BCFT3,” JHEP 1711 (2017) 076 [arXiv:1708.05080 [hep-th]] [154]

• D. Seminara, J. Sisti and E. Tonni, “Holographic entanglement entropy in AdS4/BCFT3

and the Willmore functional,” JHEP 1808 (2018) 164 [arXiv:1805.11551 [hep-th]] [155]

• G. Cavini, D. Seminara, J. Sisti and E. Tonni, “On shape dependence of holographic

entanglement entropy in AdS4/CFT3 with Lifshitz scaling and hyperscaling violation,”

[arXiv:1907.10030 [hep-th]] [156]

In chapter 2, based on [154] and [155], we study the shape dependence of holographic

entanglement entropy in AdS4/BCFT3 for smooth regions disjoint from the boundary. One of

the main results is the analytic formula for the subleading term FA given in terms of the normal

vector to the minimal surface. This result, valid for any extremal surface in an asymptotically

AdS4 spacetime bounded by a generic boundary, generalizes the ones of [76, 78], and when

the spacetime is AdS4 bounded by a boundary it reduces to the Willmore functional with an

appropriate boundary term. The other important results are the explicit computation of the

holographic entanglement entropy corresponding to strips parallel to flat boundaries and disks

disjoint from flat or circular boundaries in the vacuum of the BCFT3. We observe transitions

between extremal surfaces depending both on the distance of the region from the boundary and

on the boundary condition (parametrized by the matter content). More interestingly, these

results show that for certain boundary conditions the entanglement entropy is not affected by

the presence of the boundary. Finally, numerical results corresponding to elliptic regions are

presented, which are also needed to check the various analytical formulas.

In chapter 3, based on [154] and [155], we study the case in which the entangling regions

are non-smooth and, in particular, intersect the boundary at some isolated points. In this

case, there is an additional subleading term which diverges logarithmically as the UV cutoff

vanishes. Its coefficient is a universal function of the angles of intersection between the

entangling curve and the boundary, and it encodes some information about the underlying

BCFT. In particular, it depends on the boundary conditions. We obtain the analytic result

for this boundary corner function within the AdS4/BCFT3 setup by employing two particular

domains, i.e., the half-disk attached to the boundary and the infinite wedge with one edge

on the boundary. This result generalizes the corner function of Drukker-Gross-Ooguri [157],

which is recovered in the special case of vanishing matter field on the additional spacetime

boundary. We will present a very appealing result in the expansion of the boundary corner

function about the orthogonal intersection: the quadratic order of this expansion provides

a coefficient that is proportional to the coefficient that appears in the one-point function of

the stress-energy tensor. Since this result, obtained in the Takayanagi setup [89], does not

hold if other proposals are employed [158–161], we hope that future studies of the boundary
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corner functions in BCFTs could give constraints on the validity of the different proposals.

Furthermore, in this case, Surface Evolver has been employed to provide numerical checks of

our analytic results.

In the last chapter 4, based on the work [156], we will present results on the shape depen-

dence of the holographic entanglement entropy in four-dimensional gravitational backgrounds

having a non-trivial Lifshitz scaling and a hyperscaling violation exponent. In particular, we

will find how the divergent terms get modified by the hyperscaling exponent, showing that

all the divergences depend on the geodesic curvature of the entangling curve. Also in this

case, we obtain an analytic expression for the subleading term, which turns out to be finite

whenever the entangling curve is smooth. The numerical tool Surface Evolver is employed to

check our analytic results and to study the holographic entanglement entropy corresponding

to ellipses in the vacuum state and in the thermal state.

All the details of the various computations are reported in the appendices A, B and C.
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Chapter 1
Basic Concepts of Entanglement and

Holography

In this chapter, we introduce the concept of entanglement entropy as a measure of the bi-

partite entanglement of pure states. After the general discussion of Sec. 1.1, we will focus on

entanglement in conformal field theories (CFTs) in Sec. 1.1.1. We are mainly interested in

(2 + 1)−dimensional systems, and in particular, the subleading term in the expansion of the

entanglement entropy will be studied. In Sec. 1.2, we will place special emphasis in boundary

conformal field theories (BCFTs), namely CFTs living in manifolds with boundaries. Further-

more, this thesis is devoted to studying some aspects of entanglement entropy in holographic

field theories, which are field theories defined on the boundary of a gravitational spacetime.

When a CFT is dual to a gravitational theory in the classical regime, the entanglement en-

tropy can be computed as the area of the minimal surface anchored to the bipartition living on

the boundary of the spacetime. Holography and holographic entanglement entropy (HEE) are

introduced in Sec. 1.3. In Sec. 1.4, the AdS/BCFT duality is considered, and the holographic

entanglement entropy in this setup is discussed. Then, in Sec. 1.5, we consider theories with

Lifshitz scaling and hyperscaling violation, which are interesting because they provide a dual

for some condensed matter systems, and for a certain value of the hyperscaling exponent their

characteristics are compatible with systems that have a Fermi surface. The last section 1.6

is dedicated to the software Surface Evolver, a numerical tool able to find a very accurate

approximation of the minimal surfaces, and which will be employed throughout this thesis.

1.1 Entanglement Entropy

In this section, we define the concept of entanglement and entanglement entropy in quantum

mechanics. After a general introduction, we focus on entanglement in quantum field theory.

For a more detailed discussion we refer to [19–21, 162, 163].

Consider a generic quantum system described by a pure state |Ψ〉 normalized to unity

with density matrix ρ = |Ψ〉 〈Ψ|. Suppose also that the Hilbert space H associated to the

system can be factorized in two parts A and B, i.e., H = HA ⊗HB, of dimension dA and dB.

10



Chapter 1. Basic Concepts of Entanglement and Holography

For example, |Ψ〉 may correspond to the state of two different particles or spins A and B, or

to the ground state of a lattice system where A and B represent a bipartition of the whole

system. The Schmidt decomposition theorem allows us writing the pure state |Ψ〉 as

|Ψ〉 =
∑

i

ci |i〉A ⊗ |i〉B (1.1.1)

for a particular choice of orthonormal vectors {|i〉A} ⊂ HA and {|i〉B} ⊂ HB with i =

1, . . . ,min[dA, dB]. Notice that the choice of these orthonormal sets is state-dependent,

namely if we consider another pure state then also the vectors in the Schmidt decomposi-

tion will change accordingly. Another property of (1.1.1) is that the coefficients ci, which

are constrained to satisfy the normalization condition
∑

i |ci|2 = 1, can be chosen real and

non-negative.

The two subsystems A and B are said entangled if there are at least two non-vanishing ci,

while is not entangled otherwise, i.e. if it exist i = ī such that cī = 1 and ci = 0 for any i 6= ī.

Out of the decomposition (1.1.1), it is possible to define the non-negative quantity SA|B ≡
−∑i |ci|2 log |ci|2. This quantity vanishes if and only if cī = 1 and ci = 0 for i 6= ī, and it

acquires its maximum value when all the ci are equal. This observations suggests to consider

SA|B as a measure of the entanglement between A and B.

For any pure state |Ψ〉, it is possible to rewrite SA|B in a basis-independent form as it

follows. First, one defines the reduced density matrix associated with the subsystem A (or,

equivalently to B) as

ρA = TrBρ (1.1.2)

where TrB is the trace over the degrees of freedom of the subsystem B. Then, one computes

the von-Neumann entropy associated to ρA (or ρB):

SA = −TrAρA log ρA. (1.1.3)

In the literature, this quantity is known as entanglement entropy [10–13, 22, 23]. Entanglement

entropy is a good measure of the amount of entanglement of bipartitions in pure states,

and in particular is a decreasing quantity under local operations on A and B and classical

communication between A and B (LOCC) [19]. Furthermore, it is also straightforward to

notice that for pure states SA = SB = SA|B.

However, for mixed states, entanglement entropy is not a measure of entanglement because

it is sensible also to classical correlations. Moreover, in this case SA 6= SB. For mixed states,

other quantities can be studied to provide a measure of the amount of entanglement like the

negativity [164, 165] and the entanglement of purification [166].

Another quantity of interest related to entanglement entropy is the mutual information

I(A : B) = SA + SB − SA∪B (1.1.4)

Entanglement entropy has a certain number of remarkable inequalities valid for any state:

• Positivity:

SA ≥ 0 (1.1.5)

11
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Figure 1.1: Example of bipartition of a spatial-slice at constant time of the manifold Md+1 (in this

figure d = 2). The two regions A and B are separated by the entangling surface Σ, which in this case

is the red curve.

• Subadditivity:

I(A : B) ≥ 0 (1.1.6)

• Strong subadditivity:

SA + SB ≥ SA∪C + SA∩C (1.1.7)

• Araki-Lieb:

|SA − SB| ≤ SA∪B (1.1.8)

where we have supposed that the Hilbert spaceH admits the factorizationH = HA⊗HB⊗HC .

Generalization of the entanglement entropy (1.1.3) are the so-called Rényi entropies de-

fined as

S
(n)
A =

1

1− n log TrA ρ
n
A (1.1.9)

which reduce to (1.1.3) in the limit n→ 1. Rényi entropies are extremely interesting quantities

because knowing them for any integer value of n up to the dimension of the subsystem

A is equivalent to know the spectrum of the reduced density matrix ρA (the entanglement

spectrum), which in general is much more difficult to exploit. Furthermore, the usual method

to compute the entanglement entropy in quantum field theory is to find the Rényi entropies

for any integer n, and then perform the analytic continuation to real values of n to take the

limit n → 1 [12, 23]. This procedure, which is described in the next section, is called replica

trick, and it has been introduced for the first time in the context of spin glasses [167].

1.1.1 Entanglement entropy in quantum field theory

As discussed above, entanglement entropy quantifies the entanglement between two com-

plementary subsystems. From now on, we will consider only spatial bipartitions, namely the

subsystems A and B are meant to be complementary subsets of a Cauchy slice of the spacetime

12
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manifoldMd+1, see Fig. 1.1. The two regions A and B are separated by a (d−1)−dimensional

hypersurface which will be called entangling surface Σ ≡ ∂A ∩ ∂B.

Here we discuss the usual approach to the computation of entanglement entropy in quan-

tum field theory, which relies on the replica trick. For this reason, by following [12, 13, 23, 24]

we describe the procedure to compute the Rényi entropies (1.1.9).

Let us consider a (d+ 1)−dimensional quantum field theory in the Euclidean formulation

defined on a manifold Md+1 and described by a path integral over the field ϕ(tE ,x) with

action S. The field ϕ can represent a collection of different fundamental fields. In the path

integral formulation, the density matrix corresponding to the ground state ρ reads

ρϕ+ϕ− =
1

Z[Md+1]

∫ tE→+∞

tE→−∞
Dϕ

∏

x

δ (ϕ(+0,x)− ϕ+(x))
∏

x

δ (ϕ(−0,x)− ϕ−(x)) e−S[ϕ]

(1.1.10)

where Z[Md+1] is the partition function needed to enforce the normalization Trρ = 1. The

products of delta functions enforce the boundary condition on the field ϕ at the Euclidean

time tE = 0, while the minus and plus correspond to the ket and bra, respectively.

Now, the reduced density matrix ρA can be written in this formalism by merely restricting

the product of deltas to the region x ∈ A. We obtain

ρA,ϕ+ϕ− =
1

Z[Md+1]

∫ tE→+∞

tE→−∞
Dϕ

∏

x∈A
δ (ϕ(+0,x)− ϕ+(x))

∏

x∈A
δ (ϕ(−0, x)− ϕ−(x)) e−S[ϕ].

(1.1.11)

The quantity TrρnA is obtained by taking the product of the n copies of (1.1.11) ρ
A,ϕ

(i)
+ ϕ

(i)
−

for

i = 1, . . . , n, and tracing over all the {ϕ(i)
+ ϕ

(i)
− } subjected to the constraints ϕ

(i)
− = ϕ

(i+1)
+ for

i = 1, n− 1 and ϕ
(1)
+ = ϕ

(n)
− . It is possible to realize that this construction is equivalent to the

computation of the partition function on a manifold Mn,d+1, which is the n−fold branched

cover ofMd+1. For d = 1 these manifolds have the structure of n−sheeted Riemann surfaces

and, for the single interval, the resulting manifold is depicted in Fig. 1.2.

Thus, the Rényi entropies (1.1.9) in quantum field theory are given by

S
(n)
A =

1

1− n log

(
Z[Mn,d+1]

Z[Md+1]n

)
. (1.1.12)

As it was anticipated above, the knowledge of (1.1.3) or (1.1.12) in field theory leads us to

obtain the entanglement entropy by taking the limit n→ 1. In general, analytic continuations

may be very complicated and even not unique. However, the Carlson’s theorem ensures that

a function f = f(n) defined on integers and that, in addition, is bounded by f < ceπ|n| for

Re(n) > 1/2 admits a unique analytic continuation [168]. This allows us to use the replica

trick method in most of the situations.

Entanglement entropy as defined by the analytic continuation of (1.1.12) is typically a

UV-divergent quantity, which has to be regularised by introducing a short-length scale cutoff

ε. On a physical ground, the divergence is due to the short-range correlations that characterize

any state in a local quantum field theory. Since we took a spatial bipartition of the manifold

Md+1, we expect that the leading contribution to the divergence comes from the EPR pairs

13
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Figure 1.2: Illustration of the replica trick for the 2-dimensional case. Left: Cartoon of the path

integral representation of the reduced density matrix ρA,ϕ− ϕ+ when A is a single interval. Right:

Picture of the n−sheeted Riemann surface corresponding to the single interval A and n = 3. This

figure is a modification of Fig. 1 of [32].

that bestride the entangling surface. Since the number of such EPR pairs is proportional to

the area of the entangling surface, the main contribution to the entanglement entropy follows

the well-known area law [11, 12]

SA = ad−1
Area[∂A]

εd−1
+ . . . (1.1.13)

where ad−1 is a dimensionless coefficient depending on the regularization scheme employed.

We mention that a rigorous proof of the area law in gapped two-dimensional systems has been

proved in [169].

Besides the leading divergence (1.1.13), there are other divergent contributions that depend

on the dimensionality. In the following, we restrict, for the sake of simplicity, to the case of

conformal field theories, which have no other scales than the size of the region. In terms of

the UV cutoff, the expansion of SA has the form (see for example [68] for d = 3):

SA =




ad−1

(µ
ε

)d−1
+ ad−3

(µ
ε

)d−3
+ · · ·+ alog log

(µ
ε

)
+O(1) for d odd

ad−1

(µ
ε

)d−1
+ ad−3

(µ
ε

)d−3
+ · · ·+ (−1)d/2FA +O(ε) for d even

(1.1.14)

where µ is a measure of the size of the region A. The coefficients ai in the expansion (1.1.14)

can be written as integrals over the entangling surface Σ of local quantities constructed in

terms of the Riemann curvature of the spacetime and the extrinsic curvature of Σ. While

the ai are all scheme-dependent quantities fixed by the geometry of the entangling surface,

the non-trivial information about the state ρ and the bipartition HA ⊗HB is encoded in the

quantities alog and FA for d odd and even, respectively. In particular, it has been shown in

[56–62] that these coefficients play a fundamental role in defining quantities that decrease

along the renormalization group flow, which generalize the c-theorem in two dimensions [170]

to higher dimensions. In Sec. 1.1.2, we will give more details on the entropic F-theorem valid

in three-dimensional quantum field theories.

14
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From the first expansion in (1.1.14), we notice that in two-dimensional CFTs (d = 1) the

area law is violated by a logarthmic correction. In particular, it has been shown in [13] (see

also [23]) that when A is a single interval of length ` in the vacuum state

SA =
c

3
log

(
`

ε

)
+O(1) (1.1.15)

where c is the central charge of the CFT. Two-dimensional CFTs are the theories where

entanglement entropy can be computed more easily. In [23, 24], results for finite systems and

infinite systems in thermal states has been found. Furthermore, studies when the region A is

made of two disjoint intervals have been done in [171–174]. The entanglement entropy (and

Rény entropies) when A is made of n−disjoint intervals has also been found for the free Dirac

fermion in [175]. When the theory is not conformal, the computation is much more involved

also for free theories, and closed forms cannot be found. Single intervals for free massive

fermions and scalars have been studied in [175, 176].

In this thesis, we are mainly interested in the three-dimensional case (d = 2), and the

entanglement entropy for this case is discussed in the following subsection.

Now, for completeness, we briefly discuss the case d = 3. According to the general

expansion (1.1.14), in four dimensions the leading term is the area law, and the first subleading

term is a logarithmic divergence. Logarithmic divergences are very important terms since

their coefficients are universal quantities, independent of the regularization scheme adopted.

For example, in four dimensions, the coefficient alog is made of two distinct contributions

proportional to the two types of conformal anomalies a and c [68].

The logarithmic terms will occupy a special place in this thesis, and they will be studied

in chapter 3 in the context of AdS4/BCFT3.

1.1.2 Entanglement entropy in CFT3

For three-dimensional systems (d = 2), the entangling surface is a curve, called entangling

curve, and we will refer to its perimeter as PA,B. The expansion of SA in this case is

SA = a1
PA,B
ε
− FA +O(ε). (1.1.16)

The leading term, which depends on the cutoff ε, is the area law term introduced above and the

coefficient a1 is a constant that depends on the regularization scheme. The subleading term

FA, which is finite whenever the entangling curve is smooth, is the quantity of our interest and

will be extensively studied throughout this thesis in the holographic context. In particular,

we will study the shape dependence of FA on the domain A. It turns out that different

configurations may give different information about the underlying CFT. For example, when

the region A is a disk of radius R, FA provides an analog of the Zamolodchikov c−function in

the three-dimensional case when the CFT is perturbed by a relevant deformation [59, 60, 177].

More precisely, in [60] it has been shown that the dimensionless quantity FA = (R∂R − 1)FA

is a monotonically decreasing function along the RG flow, and it is a constant at the fixed

points, i.e., F′A = R∂2
R FA 6 0. Hence, F

(IR)
A 6 F

(UV )
A . We stress that FA depends implicitly

on the regularization scheme, and only differences of FA can be directly related to physical

15



Chapter 1. Basic Concepts of Entanglement and Holography

Figure 1.3: Entangling curve with isolated singularities. The vertices V1 and V2 are made by two

lines which join forming opening angles θ1 and θ2. The vertex W1, characterised by three angles ~φ, is

made by four lines joining at the same point.

quantities. For this reason, in [177] the mutual information (1.1.4) has been considered to

obtain a physical quantity analogous to the c-function. Another important case, which we

discuss in the following, is when the entangling surface is not smooth and isolated corners

occur.

Singular entangling surfaces

The result (1.1.14) is valid only in the case of smooth entangling surfaces. In the presence of

singularities, the structure of the divergences may change.

Here, we focus on d = 2, and we consider entangling surfaces with the two types of corners

depicted in Fig. (1.3). The V−types are corners made by two lines which join at the vertices

Vi and which are fully characterized by the opening angles θk. The W−type are corners

made by four lines joining at the vertices Wi, and they are determined by three angles labeled

in the following with ~φWi . When corners occur, the entanglement entropy shows additional

contributions that logarithmically diverge as ε→ 0+, i.e.

SA = b
PA
ε
− f̃tot log(PA/ε) +O(1) (1.1.17)

where

f̃tot =
∑

Vk

f̃(θVk) +
∑

Wr

F̃(~φWr) (1.1.18)

are the contributions of the two types of corners. The non-trivial functions f̃(θVk) and F̃(~φWr)

are universal (independent of the regularization scheme), and they depend both on the angles

characterising the corners and on the underlying CFT.

In the following, we consider only the V−type corners postponing the study of the others

to the end of chapter 3, where an holographic discussion of the W−type has been made.

Since for pure states SA = SB, the function f̃(θi) satisfies f̃(θi) = f̃(π − θi) and vanishes in

the smooth limit θi → π. Furthermore, by employing the strong subadditivity on suitable
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domains it has been shown that f̃(θ) must be a positive and convex decreasing function of θ

[178], i.e.,

f̃ ′′(θ) > 0. (1.1.19)

Furthermore, the above properties imply that about the angle θ = π the function f̃(θ) is

quadratic, namely

f̃(θ) =
f̃ ′′(π)

2
(π − θ)2 + . . . (1.1.20)

where f̃ ′′(π) > 0.

Analytic results for f̃ have been found for free bosons and fermions [28, 179, 180], and in

the holographic context [157, 178]. Other interesting studies have been done in [181–186].

A very appealing result relates the corner function f̃(θ) to the stress-energy tensor of the

underlying CFT. More precisely, a universal relation between f ′′(π) in the expansion (1.1.20)

and the coefficient which characterises the two-point function of the stress-energy tensor has

been conjectured in [63, 64]. This relation reads

f ′′(π)

CT
=
π2

12
(1.1.21)

where CT is defined by

〈Tµν(x)Tρσ(0)〉 =
CT
|x|6 Iµν,ρσ(x) (1.1.22)

being Iµν,ρσ(x) a dimensionless tensor fixed by the conformal invariance [187]. The relation

(1.1.21) holds in any conformal field theory, and it can be generalized to higher dimensions

by considering the singular contribution coming from conical singularities in the entangling

surface [64, 188]. The proof of (1.1.21) and its higher-dimensional generalizations have been

given in [65, 66].

In chapter 3, we will study the holographic entanglement entropy for holographic boundary

conformal field theories finding a relation (see equation (3.4.6)) which connects the corner

function corresponding to regions A intersecting the boundary of the BCFT3 and the one-

point function of the stress-energy tensor. This observation, valid in the AdS4/BCFT3 setup

proposed by Takayanagi [89], leads to the conjecture of a possible universal relation in three-

dimensional BCFTs similar to (1.1.21).

We conclude this section by mentioning that in higher dimensions different kinds of sin-

gularities exist and they have been studied in holography and field theories [189, 190], and

also numerically in lattice theories [191, 192].
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1.2 Entanglement and Boundary Conformal Field Theory

Up to now, we have considered systems that extend to infinity or defined on compact mani-

folds. However, systems may be finite or may contain defects that break part of the symmetry

characterizing the bulk. For a recent review on this topic, we refer to [193]. In this section,

we will consider the case of conformal field theory with boundaries.

Boundary conformal field theory was founded by Cardy who studied the two-dimensional

case [79–81], which represents the most known example so far. Besides their simplicity, two-

dimensional BCFTs play an important role both in statistical physics [194] and in string

theory [195–198], where they provide a general framework to study open strings and led to

the discovery of D-branes [17].

We recall that CFTs are completely determined by the spectrum of local primary op-

erators and the OPE coefficients. In fact, in principle by employing the OPE any n-point

correlation function can be expressed as the expectation value of one-point functions, which

are all vanishing except the one corresponding to the identity operator. On the other hand,

the absence of non-trivial one-point functions is due to the translational symmetry (together

with the scaling symmetry), which is partially broken in the presence of a boundary. Hence,

in the presence of a boundary, the one-point functions join the conformal data that specify a

given BCFT.

In most of this thesis, we will consider systems with a plane or a spherical boundary.

This kind of boundaries has the properties to break (once appropriate conditions on fields are

imposed) the least amount of symmetry, i.e., in this case, the conformal group SO(d+ 2, 1) is

broken to the subgroup SO(d+ 1, 1). In the following we consider Euclidean conformal field

theories defined on the manifold Md+1 = R+ × Rd, described by the Cartesian coordinates

yµ = (x,y) with boundary located at x = 0. A systematic study on the form of one and two-

point functions in these theories has been done in [84, 85]. From their analysis, it turns out

that the form of the one-point functions of an operator with scale dimension η is completely

fixed by the conformal symmetry, and it reads

〈O(y)〉 =
CO,α
(2x)η

(1.2.1)

where α label the conformal boundary conditions, and CO,α is non-vanishing only for scalar

operators. In particular, the one-point function of the stress-energy tensor vanishes1, i.e.,

〈Tµν〉 = 0. Boundary conformal field theories are completely determined once all the CO,α
and the (bulk) OPEs coefficients are known. It is therefore of the utmost importance to

classify all the consistent boundary conditions.

In two-dimensions Cardy initiated this task writing constraints that the coefficients of the

one-point function must satisfy (Cardy constraints) [80, 81]. Solving those constraints is in

general very hard, and complete sets of possible boundary conditions can be found only in

special cases, like in rational CFTs (RCFTs). In this thesis, we will not consider this topic,

and we refer the interested reader to the exhaustive reference [198]. Besides the one-point

1We recall that the one-point function of the stress tensor is the variation of the effective action W with

respect to the background metric, in Euclidean signature 〈Tµν〉 = − 2√
g
δW
δgµν .
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functions, another very interesting quantity, which can be defined in 2-dimensional BCFTs,

is the boundary entropy [86]. This represents the entropy associated to the boundary states

|Bα〉, i.e. gα = 〈0|Bα〉, and it is has been argued in [86] and proved in [87] to be a decreasing

quantity along the boundary RG flow. Thus, it is a measure of the boundary degrees of

freedom, and it plays the same role of the central charge c for the bulk of the system. In

Sec. 1.2.1, we will discuss the analogue of the boundary entropy in the three-dimensional

case.

In contrast to the one-point functions (1.2.1), the form of the two-point functions is not

fixed by symmetry, and analogously to 4-point function on the infinite space, it depends on

undetermined functions of conformal ratios. For example for scalar fields one obtains [84, 85]

〈Oi(y)Oj(y′)〉 =
1

(2x)ηi(2x′)ηj
fij(ξ) ξ =

(y − y′)2

4xx′
(1.2.2)

where the functions fij depend on the specific BCFT we consider.

As an example, we consider the free massless scalar field in (d + 1) dimensions on the

upper half-space. The action reads

I =

∫

M
dd+1yL =

1

2

∫

M
dd+1y ∂µϕ∂µϕ (1.2.3)

whose extremization leads to the equation of motion and the two possible conformal boundary

conditions

∂2ϕ = 0




ϕ|∂M = 0 Dirichlet b.c.

∂⊥ϕ|∂M = 0 Neumann b.c.
(1.2.4)

where ∂⊥ represents the derivative in the direction perpendicular to the boundary. The

two different boundary conditions lead to different field theories, which both show different

aspects with respect to the theory in the infinite space. For instance, the two-point function

is modified and shows a dependence on the boundary conditions

〈ϕ(y)ϕ(y′)〉 =
1

Sd

1

d− 1

(
1

|y − y′|d−1
± 1

|y − ỹ′|d−1

)
(1.2.5)

where Sd is the volume of the hypersphere in d dimensions and ỹ = (−x,y). In (1.2.5),

the ± sign corresponds to the two different boundary conditions, i.e., + for Neumann and

− for Dirichlet. We note that (1.2.5) is in agreement with the general result (1.2.2) with

fϕϕ = ξ(d−1)/2 ± [ξ + 1](d−1)/2. More interestingly, imposing boundary conditions on x = 0

implies that the one-point functions do not vanish, because the translational symmetry in

the direction perpendicular to ∂Md+1 is broken. The limit x → x′ of (1.2.5) and the usual

subtraction of the divergences leads to2 [84]

〈ϕ2(y)〉 = ± 1

Sd

1

d− 1

1

|2x|d−1
(1.2.6)

in agreement with the general result (1.2.1) with Cϕ2 = ±[Sd(d− 1)]−1.

2We notice that the one-point function 〈ϕ(x)〉, and more in general any one-point function given by an odd

power of the fundamental field ϕ(x), vanishes since both the action (1.2.3) and the boundary condition (1.2.4)

are Z2 invariant.
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1.2.1 Curved boundaries and boundary quantum anomalies

So far, we have discussed the case of flat boundaries, for which the one-point function of the

stress-energy tensor vanishes. Here, we consider the case of deformed boundaries and how

this deformation affects 〈Tµν〉.
A generic codimesion-one surface is characterised by the first (induced metric) and second

(extrinsic curvature) fundamental forms

hµν = gµν − nµnν kµν = hαµh
β
ν∇αnβ (1.2.7)

where nµ is the normal vector to the hypersurface. When the boundary is curved, also the

residual symmetry is in general broken, and we cannot conclude that the one-point function

of the stress tensor vanishes. In fact, it turns out to be a function of the geodesic distance

from the boundary X. In this case, the whole form of the one-point function is not fixed by

symmetry consideration. However, it is possible to study its near-boundary behaviour [199]

〈Tµν(y)〉 =
AT
Xd−1

κµν + . . . (1.2.8)

where κµν = kµν − k/(d− 1)hµν is the traceless part of the extrinsic curvature kµν . The dots

stand for the subleading pieces in the expansion in terms of X κµν . Notice also that since κµν

is traceless, the stress-energy tensor is traceless as well (at leading order). The coefficient AT

has been found for free theories in four dimensions [199], and in any dimension for the free

scalar [200]. The holographic computation has been done in our work [154], and it will be

discussed in detail in Sec. 3.3.

The presence of a boundary also modifies the conformal anomaly of the theory. In a

CFT the conformal anomaly is the non-vanishing of the expectation value of the trace of

the stress-energy tensor due to quantum effects. For an extensive discussion of anomalies

in quantum field theory we refer to [201–204]. In this thesis, we are interested in anomalies

that arise when a gravitational background field is turned on. In the presence of conformal

anomalies, the trace of the one-point function of the stress tensor becomes a function of local

geometric quantities whose integrals are conformal invariants. For CFTs in infinite or closed

manifolds, this condition implies that conformal anomalies occur only in even-dimensional

spacetime since they can depend only on combinations of the Riemann tensor which has

energy dimension two. Furthermore, they vanish in flat space. In the presence of a curved

boundary, there may be additional contributions localized at the edge of the system. In the

following, we report the trace-anomaly in d = 1

〈Tµµ (y)〉(d=1) =
c

24π
(R+ 2k δ (∂M2)) (1.2.9)

and d = 2 [88, 205]

〈Tµµ (y)〉(d=2) =
1

4π

(
−aR+ qTrκ2

)
δ (∂M3) (1.2.10)

where x = 0 define the boundary in a suitable coordinate system. The quantity 〈T µ
µ 〉 has

been studied also in BCFT4 [206, 207]. We notice that in d = 1 the contribution of the
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a q Boundary conditions

Free scalar boson − 1
96

1
64 Neumann

Free scalar boson 1
96

1
64 Dirichlet

Free dirac fermion 0 1
32 Mixed

Table 1.1: In this table the values of a and q are reported for the free scalar and free fermion

[208].

boundary to the anomaly makes the integral of (1.2.9) conformal invariant in agreement with

the Gauss-Bonnet theorem, but it does not add any new charge.

In three dimensions, the situation is much more interesting because the presence of the

boundary uncovers the two boundary charges a and q. These charges have been computed for

the free scalar [88, 91] and fermion in [208] (we postpone the discussion for the holographic

computation of those charges to Sec. 1.4). The central charge a has been shown to be a

decreasing quantity under the boundary renormalization group flow in [88]. Thus, it plays the

role of the boundary entropy in three dimensions, and it represents a measure of the boundary

number degrees of freedom. Regarding q, it turns out to be proportional to AT in (1.2.8),

namely q = −2πAT [200]. In table 1.1 the known boundary charges a and q are reported

[208].

1.2.2 Entanglement entropy in BCFTs

One of the main aims of this dissertation is making progress in understanding how boundaries

affect the entanglement entropy.

In two-dimensional conformal field theory, it has been found that when the region A is an

interval of length ` adjacent to the boundary in the vacuum state, the entanglement entropy

has the following form [23]

S
(BCFT)
A =

c

6
log

`

ε
+ cα +O(ε). (1.2.11)

We notice that the coefficient in front of the logarithmic divergence is again proportional

to the central charge but, since the entangling surface is made by one single point, is the

half of the case of equation (1.1.15). In contrast to the leading term, which does not give

any information about the boundary conditions, the subleading term cα strongly depends on

them. In particular, the combination S
(BCFT)
A − S(CFT)

A /2 gives the Affleck-Ludwig boundary

entropy log gα [23] discussed above. Furthermore, in [209] the entanglement entropy has been

employed to obtain a quantity that is monotonically decreasing along the boundary RG flow

on the same footing of the “entropic c-functions” in infinite systems discussed in 1.1.1.

In three and four dimensions, results in free boundary quantum field theories have been

found in [208, 210], where the authors employed the heat kernel method to obtain the Rényi

entropies corresponding to entangling surfaces orthogonal to flat boundaries which divide the

space in two identical parts.

In BCFT3, when the region A is smooth and disjoint from the boundary, the entanglement
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entropy is expected to have the form

SA = b
PA,B
ε
− FA,α +O(ε) (1.2.12)

where FA,α is finite as ε → 0+. The expansion (1.2.12) is very similar to the one in CFT3

(1.1.16) but here FA,α shows a dependence on the boundary conditions labelled by α (besides

the dependence on the shape of the region A). This case will be studied in details in chapter

2 where we employ the AdS4/BCFT3 setup introduced in Sec. 1.4 correspondence to find

results for circular and elliptical regions disjoint from the boundary. To our best knowledge

no results are available in CFT for this case.

Another compelling case is when the region A intersects the boundary at isolated points.

In this case, the expansion (1.2.12) is modified by the occurrence of a logarithmic divergence

SA = b
PA,B
ε
− fα,tot log(PA,B/ε) +O(1) (1.2.13)

where the coefficient fα,tot is, in general, a function of the angles which characterises the

intersection between the entangling curve and the boundary, and it also depends on the

boundary condition α. If more than one intersection occurs, fα,tot is the sum of the various

functions corresponding to the individual intersections. Here, we do not give any further

details on fα,tot because a detailed discussion is the subject of the chapter 3, where analytic

results in the holographic framework regarding that function are obtained. In [208, 210], the

explicit value of fα,tot has been found for an orthogonal intersection between the entangling

curve and the boundary both for the free scalar and the free Dirac fermion. For the former

one, fbos
α,orth = ±1/24 where ± corresponds to Dirichlet and Neumann boundary conditions

respectively, while for the free fermion with mixed boundary condition the coefficient vanishes

f ferm
α,orth = 0.

In chapter 3, we will find the boundary corner function fα(γ) for arbitrary angles γ ∈ [0, π]

within the holographic setup of Takayanagi [89].

1.3 Holographic Entanglement Entropy

Computing the entanglement entropy in quantum field theory is a formidable task. An ex-

ception is represented by (d+ 1)−dimensional quantum field theories that are dual to (d+ 2)-

dimensional gravitational theories, which provide weakly coupled and calculable gravitational

descriptions of certain strongly coupled field theories.

In these cases, the field theory on a manifold Md+1 is defined on the boundary of a

gravitational spacetime Gd+2 × Y where Y is eventually a compact space. The first and

most known example of this kind of dualities was discovered by Maldacena [33] and it relates

the 4-dimensional N = 4 superconformal field theory with gauge group SU(N) to type IIB

superstring theory on AdS5 × S5. Further studies have been performed in [211, 212], and for

a review we refer to [213]. AdS/CFT dualities have been discovered also in three dimensions

(ABJM) [214], in two dimensions [215] and in six dimensions [216].

Even though for generic coupling gYM and N of the CFT these dualities are very com-

plicated, they simplify in specific limits. When N → +∞ (large N limit) the gravitational
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theory reduces to classical string theory, which further simplifies to classical theory of gravity

in the strong coupling limit gYM → +∞. In this thesis, we always consider the dualities in

the large N and strong coupling limit.

When the (d + 1)−dimensional conformal field theory is in its vacuum state, the dual

gravitational theory is given by a manifold Gd+2×Y where Gd+2 is equipped with the AdSd+2

background metric. The compact space Y is not important for our purposes and in the

following will be ignored. The AdSd+2 metric in Poincaré coordinates reads

ds2 =
R2

AdS

z2

(
−dt2 + dx2 + dz2

)
, (1.3.1)

where x = (x1, . . . , xd) and RAdS is the AdS radius. The line element (1.3.1) diverges on

the plane z = 0, where the (d+ 1)-dimensional CFT lives. The duality can be schematically

stated by the equality between the partition functions of the two theories [211, 212]

e
−Sgrav[φI

(0)
(x)]

=
〈
e
∫
ddx φI

(0)
(x)OI(x)

〉
CFT

where Sgrav is the (super)gravity action, φI(0)(x) is the boundary limit of the classical solution

of the fields in the gravity theory, and OI(x) are scaling operators of the CFT duals to the

bulk fields φI . In the following, we will refer to the CFT as the boundary theory, while the

gravitational theory will be called bulk theory.

By employing the AdS/CFT correspondence, it is possible to compute CFT observables

by performing computation in the gravity side, which is classical in the limit of our interest.

For example, the (connected) correlation functions of primary operators are given by

〈OI1(x1) · · · OIn(xn)〉CFT = − δ

δφI1(0)(x1)
· · · δ

δφIn(0)(xn)
S[φI(0)(x)]

∣∣∣∣∣
φI
(0)

=0

.

Other interesting quantities are the Wilson loops whose holographic description has been

firstly studied in [217] and the entanglement entropy, whose holographic dual will be described

in 1.3.1 for the static case [31, 32] and 1.3.2 for the general one [34].

Similarly to what happens in field theory, the computation of observables in the bulk

theory leads to divergences that must be regularized. In the gravity side, the divergences

arise because the spacetime is not compact and the classical action diverges. In order to

regularize them, we introduce an infrared cutoff ε which restricts the spacetime to the part

z ≥ ε. The IR cutoff ε corresponds in the boundary theory to a UV regulator. Furthermore,

the renormalization procedure, which has been systematically studied in [218–220], can be

entirely performed in the bulk theory. We mention that also the renormalization group has

been extensively studied in the holographic context [221, 222].

1.3.1 Holographic entanglement entropy: static case

The gravitational dual of entanglement entropy has been conjectured by Ryu and Takayanagi

[31, 32]. This subsection is devoted to discussing the holographic entanglement entropy and

its properties for static spacetimes.
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Figure 1.4: Example of minimal surface in the Cauchy slice t = 0 of the AdS4 spacetime (1.3.1).

The surface γA is anchored to the entangling curve Σ that divides the two complementary regions A

and B. The entanglement entropy SA is given by the Ryu-Takayanagi formula (1.3.2).

Let us consider a Cauchy slice Cd+1 of the manifold Gd+2 with asymptotic boundary

∂Gd+2 = Md+1. For instance, if the manifold is equipped with the metric (1.3.1) we can

consider the time-slice t = 0. Then, we consider a bipartition {A,B} of the boundary Md+1.

The entanglement entropy corresponding to the region A is given by

SA = minγA∼A
A[γA]

4G
(d+2)
N

(1.3.2)

where A[γA] is the area of a d-dimensional (codimension-2) hypersurface γA homologous to

the region A, see Fig. 1.4. A hypersurface γA is said to be homologous to the region A if it is

smoothly retractable to A, or more correctly if it exists a smooth spacelike codimension-one

surface bounded by γA and the region A. In particular, the boundary of ∂γA coincides with

the entangling surface ∂A. The formula (1.3.2) states that, among all the hypersurfaces which

respect the homologous constraint, we have to pick up the one which has the minimal area.

Finally, G
(d+2)
N is the Newton gravitational constant in d+2 dimensions. Since the minimal (or

extremal in general) hypersurface γ̂A reaches the conformal infinity of the asymptotically AdS

spacetime, its area diverges. In order to regularize the divergence we restrict the integration

of the area of γ̂A to the hypersurface γ̂ε ≡ γ̂A ∩ {z > 0}, where ε > 0 is the UV cutoff. In the

following, for simplicity will we use use the term surface instead of hypersurface.

A minimal surface is a particular case of extremal surface, which is a surface that extremizes

the area functional

A[γA] =

∫ √
h ddσ. (1.3.3)

In the following, we will use the symbol γ̂A for the extremal surfaces anchored to A. The

extremal surfaces in asymptotically AdS background share the important property to be

orthogonal to the conformal boundary Md+1 [67]. This property will be proved in chapter 4

in the context of the more general metrics with hyperscaling exponent (see appendix C.2).
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Figure 1.5: Left: Single interval of length ` in the AdS3/CFT2 setup. The minimal surface γ̂A is

the geodesics which connects the extrema of the interval. The straight dashed line z = ε represents

the cutoff in the gravity side. Right: Extremal surfaces anchored two the two intervals of length `

separated by the distance d. Above the critical value (d/`)crit the minimal surface is given by the blue

geodesics, while below (d/`)crit the correct surface is made by the red ones.

For a given region A on Md+1 there could be more than one extremal surfaces consistent

with the homology constraint. In those cases, by varying the shape of the region A, a transition

between extremal surfaces may happen. In fact two distinct extremal surfaces, of which is one

minimal, can have the same area once the region A is appropriately modified. Modifying

the region further can exchange the role between the two surfaces, i.e., the extremal one can

become the global minimum at the expense of the other. The simplest example of transitions

occurs for two disjoint intervals in AdS3/CFT2, and it will be analysed in Sec. 1.3.1.

The Ryu-Takayanagi formula (1.3.2) has passed many consistency checks. For instance,

it is able to reproduce the structure (1.1.14), and the minimality condition implies the strong

subadditivity constraint introduced in Sec. 1.1 [223]. Furthermore, (1.3.2) has been proved for

spherical domains in the vacuum state in [224]. There, the authors employed a conformal map

between the CFT on flat spacetime and on a hyperbolic geometry. In this way, the vacuum

state of the former geometry is mappedto a thermal state in the latter one. In particular,

they showed that the entanglement entropy of the sphere is mapped to the thermal entropy of

the hyperbolic geometry. If the CFT admits a holographic dual, by employing the AdS/CFT

dictionary, it is possible to compute the thermodynamic entropy as the horizon entropy of

a certain topological black hole, which is mapped back into the RT surface by applying the

inverse mapping. The general proof of the Ryu-Takayanagi formula has been finally derived

from the holographic dictionary in [225] (see also previous attempts in [226, 227]).

Before going to some examples in AdS3/CFT2, we mention that a reformulation of the

holographic entanglement entropy formula (1.3.2) has been recently proposed through par-

ticular flows [228] called bit threads. Exploring the various features of the holographic en-

tanglement entropy through this approach seems very insightful [229, 230], but a detailed

description of this method is beyond the scope of this thesis.

Below we discuss some example in AdS3/CFT2.
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HEE in AdS3/CFT2: single interval in the vacuum state

Let us consider the case of single interval A = {R : −`/ ≤ x ≤ `/2} on the Cauchy slice t = 0

of the asymptotic boundary of the AdS3 spacetime described by the metric (1.3.1).

The minimal surface, which respects the homology constraint, is the geodesic z(x) =√
(`/2)2 − x2 with x ∈ (−`/2, `/2) [31, 32] depicted on the left side of Fig. 1.5. As discussed

above, the integration of the area (1.3.3) must be performed on the restricted part z > ε. The

holographic entanglement entropy is given by the formula (1.3.2), and we find

SA = 2
RAdS

4G
(3)
N

∫ `/2

ε
dz

`/2

z

√(
`
2

)2 − z2

=
RAdS

2G
(3)
N

log

(
`+
√
`2 − 4ε2

2ε

)
=

RAdS

2G
(3)
N

log

(
`

ε

)
+O

(
ε2
)
.

(1.3.4)

By employing the Brown-Henneaux formula for the central charge [215]

c = 3
RAdS

2G
(3)
N

(1.3.5)

we find the well-known CFT result (1.1.15). We stress that, even though we have found the

same result of (1.1.15), the holographic computation is valid only for large central charges

c� 1.

HEE in AdS3/CFT2: disjoint intervals in the vacuum state

Interesting cases are the ones in which the regionA is made of two or more disjoint components,

in which the transitions between extremal surfaces discussed above may occur. For the sake

of simplicity, we analyse the case of two disjoint intervals. Now A is as represented on the

right side of Fig. 1.5. In this case, there are two possible extremal solutions, i.e., the red and

the blue surface, that compete. Which one is the global minimum depends on the ratio d/`.

The area of the surfaces corresponding to the two situations can be easily found by adapting

the computation in (1.3.4). One obtains

Ared = 2RAdS log

(
d

ε

)
+ 2RAdS log

(
2`+ d

ε

)
+O

(
ε2
)

(1.3.6)

Ablue = 4RAdS log

(
`

ε

)
+O

(
ε2
)
. (1.3.7)

We see that in the limit ε → 0, Ared and Ablue are equal at (d/`)crit = (
√

2 − 1), value

at which the transition between the two extremal surface occurs. As a consequence, when

d/` ≥ (d/`)crit the minimal surface is the blue one, while when d/` ≤ (d/`)crit we must consider

the red surface. The mutual information reads

I(A : B) =





c

3
log

(
`2

d(2`+ d)

)
d/` < (d/`)

crit

0 d/` > (d/`)
crit

(1.3.8)

which (1.3.8) is a continuous function of d/`, but it is not derivable at (d/`)crit, where it

vanishes and the transition takes place. This behaviour is a large c effect that has not been

observed for finite values of the central charge [171–174]. In particular, it is expected to be

smoothed out by quantum corrections [231].
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Figure 1.6: Left: Single interval in the BTZ black hole metric (1.3.9). The homology constraint

implies that the minimal surface corresponding to the region A is the red geodesics, while the one

corresponding to the region B is the blue one. Right: When the region B is sufficiently large, i.e.,

θ0 > θ0,crit, the minimal surface is made by the two disjoint components depicted with the continuous

blue lines. When θ0 < θ0,crit the minimal surface is given by the dashed blue line.

HEE in AdS3/CFT2: single interval in the thermal state

Before concluding this subsection, we consider the case of the BTZ black hole in AdS3/CFT2,

which is dual to the CFT2 on the circle of length L in the thermal state with inverse temper-

ature β. The BTZ black hole metric (we set for simplicity RAdS = 1) is given by [232]

ds2 = −(r2 − r2
h)dt2 +

1

r2 − r2
h

dr2 + r2dθ (1.3.9)

where the asymptotic boundary is at r → +∞, and where rh sets the position of the horizon

given by rh = RAdSL/β. The extremal surfaces anchored to the extrema of the interval A of

length ` have been found in [31, 32] (see also [233]), and their profile r = r(θ) reads

r(θ) = rh


1−

cosh2
(

rh
RAdS

θ
)

cosh2
(

rh
RAdS

θ0

)



− 1

2

(1.3.10)

where θ0 is a parameter whose value corresponds to the absolute value of θ when r → +∞.

This is the simplest case in which the homology constraint plays a crucial role. In Fig. 1.6,

we show two possible extremal surfaces anchored to the extrema of the interval A of length

`. The two geodesics are given by the equation (1.3.10) with two different values of θ0, i.e.

θ
(A)
0 = π`/L and θ

(B)
0 = π − θ(A)

0 . The length of the two geodesics depends on the parameter

θ0, and it is given by [31, 32, 233]

S(θ0) =
c

3
log

(
2
r∞
rh

sinh (rhθ0)

)
(1.3.11)

where r∞ is the cutoff. We notice that if θ
(A)
0 < π/2, the red geodesics is shorter than the

blue one. However, the red geodesic provides the entanglement entropy only for the region A.

In fact, since the surface cannot be smoothly retracted to B due to the presence of the black
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hole, it does not respect the homology constraint if the entanglement entropy of the region

B is considered. Thus, SB is given by (1.3.11) with θ0 = θB0 even though it is longer than

the one corresponding to θ0 = θA0 . In particular, the homology constraint leads to SA 6= SB

for the thermal state, in agreement with the general expectation regarding the entanglement

entropy of mixed states.

The BTZ black hole provides another kind of transitions between minimal surfaces, which

gives rise to the entanglement plateaux [233]. On the right side of Fig. 1.6, the case of very

large regions B is depicted. In this case, it turns out that the corresponding minimal surface

may not be given by the dashed blue geodesic as in the previous example. In fact, there is

another good candidate (respecting the homology constraint) for SB. When the region B

is sufficiently large, SB is given by the sum of the two disconnected geodesics depicted in

continuous blue lines: the one anchored to the extrema of the interval and that is the same as

the one corresponding to A, and the one which wraps the black-hole horizon [233]. Thus, by

comparing the length of the two configurations we find the entanglement entropy of B, which

reads

SB =





c

3
log

(
2
r∞
rh

sinh
(
rhθ

(B)
0

))
θ

(B)
0 < θ0,crit

c

3
πrh +

c

3
log

(
2
r∞
rh

sinh
(
rh(π − θ(B)

0 )
))

θ
(B)
0 > θ0,crit

(1.3.12)

where the critical angle is given by θ0,crit = coth−1(2 coth(πrh) − 1)/rh [233]. In particular,

in the limiting case in which the region B is the whole circle, the entanglement entropy is

proportional to the area of the horizon, which is the dual of the thermal entropy of the CFT.

Furthermore, we observe that if we do not take into account the disconnect solution, the

holographic entanglement entropy will not respect the Araki-Lieb inequality since |SA − SB|
would diverge as θ0 → 0, while SA∪B gives the thermal entropy which is finite. Finally, we

observe that the holographic entanglement entropy saturates the Araki-Lieb inequality when

θ0 > θ0,crit.

1.3.2 Holographic entanglement entropy: time-dependent case

In the Ryu-Takayanagi prescription (1.3.2) is necessary to fix a Cauchy slice. In fact, the

minimality condition makes sense only for Riemannian metrics, since for Lorentzian spaces

minimal surfaces do not exist in general. This is the reason for which we assumed static

spacetime so far. In fact, in those cases, the choice of a preferred time-slice is suggested by

the existence of a time-like killing vector. In contrast, for time-dependent backgrounds, there

are no preferred Cauchy time-slices, and the Ryu-Takayanagi formula (1.3.2) is not directly

applicable.

The holographic prescription for computing the entanglement entropy in general space-

times, which includes time-dependent metrics, has been proposed in [34] and it is called the

Hubeny-Rangamani-Takayanagi (HRT) formula. In the following, we introduce this prescrip-

tion.

Let us take a codimension-2 spacelike surface γA anchored to ∂A at a certain boundary

time. The surface γA has two unit normal vectors orthogonal to each other, which we denote
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n(1), n(2) and with normalization n(1) · n(1) = 1 and n(2) · n(2) = −1. Thus, n(1) is space-like,

while n(2) is time-like. The first fundamental form can be constructed out of the unit normal

vectors

hAB = gAB − n(1)
A n

(1)
B + n

(2)
A n

(2)
B (1.3.13)

and the two extrinsic curvatures read

K
(i)
AB = hMA hNB ∇Mn(i)

N i = 1, 2 (1.3.14)

where ∇M is the unique covariant derivative with respect to the metric gAB. The HRT

prescription requires that the surface, whose area provides SA, is the extremal surface with

the smallest area (if more than one extremal surface exists) which respects the homology

constraint. The extremality condition of a codimension-2 surface is equivalent to the vanishing

of the trace of both the extrinsic curvatures (1.3.14), i.e. hABK
(i)
AB = 0. We stress that for

generic spacetimes the extremal surface with the smallest area may not be the minimal surface.

The HRT proposal has been employed for studying the evolution of entanglement entropy

in the holographic setup. For instance, the Vaidya metrics provide simple models for the

black hole formation where the holographic entanglement entropy has been largely studied

[148, 149, 234–239]. This proposal will be considered in chapter 4.

We conclude this subsection discussing an alternative way to compute the holographic

entanglement entropy which is equivalent to the HRT prescription, i.e. the maxmin construc-

tion [240]. Given a spatial boundary region A ⊂ Md+1 and its complement B, we consider

a bulk Cauchy slice C(guess)d+1 such that ∂C(guess)d+1 = A ∪ B. Since C(guess)d+1 is space-like, one can

compute the minimal surface γ̂(guess)

A ⊂ C(guess)d+1 homologous to A. Then, one varies the Cauchy

slice finding all the corresponding minimal surfaces. Among the whole family of minimal

surfaces, the prescription requires to consider the one with the maximal area γ̂maxmin
A . Thus,

the entanglement entropy is computed by employing the formula (1.3.2) where γ̂maxmin
A takes

the place of γ̂A. Even though the maxmin construction may be more involved to employ in

explicit computations, it can be very useful to prove general statements. For istance, it has

been used to prove the strong subadditivity inequality (1.1.7) for generic spacetimes [240].

1.3.3 Holographic entanglement entropy in AdS4/CFT3

In this subsection, we discuss in detail the holographic entanglement entropy in AdS4/CFT3,

which is the case of interest of this dissertation. Let us consider an arbitrary background

metric that is asymptotically AdS4 (AAdS4). In this case, the holographic entanglement

entropy of a region A is

SA =
R2

AdS

4GN

(
PA,B
ε
− FA +O(ε)

)
(1.3.15)

where for simplicity we used the same notation FA for the subleading term divided by

R2
AdS/(4GN ). The leading term is independent of the behaviour of the metric in the deep

interior of the bulk and depends only on its asymptotic characteristics. In contrast, the finite

term FA is sensible on all the details of the metric.

When the metric is empty AdS4, it is possible to obtain analytic solutions for the minimal

surfaces in the case in which the region A have particular symmetries, i.e. when it is the
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half-plane, a disk or a strip, and when it is made by two disjoint disks [241–245]. The case

with corners will be discussed in 1.3.3. In the time-slice t = 0, we consider the region A on the

AdS boundary z = 0 to be the half-plane A = {x > 0, ∀ y}. By symmetry, the corresponding

minimal surface is a half-plane orthogonal to the boundary z = 0, i.e. γ̂A = {x = 0, ∀ (y, z)},
and its area is

A[γ̂A,ε] =

∫

γ̂A,ε

√
h =

∫ +∞

ε
dz

∫ L/2

−L/2
dy

R2
AdS

z2
dzdy = R2

AdS

L

ε
(1.3.16)

where, as discussed above, we have restricted γ̂A to the part of AdS z > ε, and we introduced

the IR cutoff L because the region A is infinite. In this case, we observe that SA contains

only the area-law term in (1.3.15), i.e. FA = 0.

The minimal surface anchored to a disk of radius R can be obtained by the one anchored

to the half-disk by employ a conformal mapping [246]. This mapping is studied in appendix

A.1 and it will be applied to the case of AdS4/BCFT3 in chapter 2 (for the current case

consider equation (A.1.4) with α = π/2 and RQ = R). In particular, the minimal surface

turns out to be the hemisphere x2 + y2 + z2 = R2. The area can be easily computed, and it

reads [31, 32, 217, 247]

A[γ̂A,ε] = R2
AdS

(
πR

ε
− 2π

)
(1.3.17)

from which we read FA = 2π. The strip domain will be studied in the Sec. 1.5.2 for the more

general hvLif4 background metric, and here we report only the result FA in the AdS4 metric,

which reads [31, 32]

FA = 4π
Γ2
(

3
4

)

Γ2
(

1
4

) L
`

(1.3.18)

where ` is the width of the strip and L is the IR cutoff as in the case of the half-plane. For

general shapes, finding the holographic entanglement entropy is very complicated and usually

one considers perturbation about half-space or spherical regions as in [65, 67–73].

In the context of AdS4/CFT3, an analytic formula for FA valid for generic shape of the

region A has been found [76, 77], which expresses this subleading term as a functional over

the minimal surface γ̂A. In the time-slice t = 0, we consider an extremal (not necessarily

minimal) surface γ̂A which is described by the unit-normal vector nµ and with extrinsic

curvature Kµν = h α
µ h β

ν ∇αnβ. The surface γ̂A ⊂ H3 can be also embedded in the upper

half-space R3 ∩ {z > 0}, i.e. the flat space with metric ds2 = dx2 + dy2 + dz2. This can be

achieved by applying the Weyl transformation e−2ϕgµν = δµν where gµν is given by (1.3.1)

with t = 0 and ϕ = − log(RAdS/z). The subleading term FA is then written as the functional

over the extremal surface [76, 77]

FA[γ̂A] =W[γ̂A], W[γ] =

∫

γ

1

4

(
TrK̃

)2
dÃ (1.3.19)

where K̃µν is the extrinsic curvature of γ̂A as embedded in R3. The functional W[γ] over the

surface γ ⊂ R3 is known in mathematics as the Willmore functional, or Willmore energy [75],

and it has the interesting property to be conformal invariant. This functional has also appli-

cations in biology where cell membranes are known to reach configurations which minimize
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the Willmore energy [248]. We stress that despite in (1.3.19) the quantity FA is computed by

means of a functional defined in R3, the result (1.3.19) corresponds to the subleading term

of A[γ̂A] in AdS4. We notice that, since the metric in (1.3.19) is flat, FA turns out to be

a finite quantity for any smooth γ̂A, and the integration in the functional can be performed

without the introduction of any cutoff. Furthermore, equations (1.3.18) imply that FA is a

non-negative quantity in the empty AdS4 case.

An interesting bound on FA can be proved with the help of this functional [76, 78]. It can

be shown thatW[γ] > 4π whenever γ is a closed surface [75]. Of course, the extremal surfaces

we are interested in are not closed because they have a boundary ∂γ̂A = ∂A. However, as

argued in [76, 78], given any surface γA ⊂ R3 ∩ {z > 0} with boundary ∂A at z = 0 it is

possible to consider the corresponding surface γA,double = γ̂A∪γ′A where γ′A is the mirror image

of γ̂A in the part of R3 with z 6 0. We notice that, since any extremal surface γ̂A is orthogonal

to the plane z = 0, the doubled surface γA,double = γ̂A ∪ γ′A is smooth. Thus, since γdouble is

closed, W[γA,double] > 4π which, in turn, implies

FA[γ̂A] =W[γ̂A] > 2π (1.3.20)

for any region A.

The result (1.3.18) has been generalized to arbitrary asymptotically AdS4 metrics gµν in

[78]. The steps leading to the analytic formula for FA will be discussed in Sec. 2.1 where we

will consider the AdS4/BCFT3 case. Below, we report the result for static AAdS4 spacetimes

only.

Let us consider an asymptotically AdS4 spacetime with metric gµν in the time-slice t = 0.

We define a conformally equivalent metric g̃µν which corresponds to the Euclidean space M̃3

asymptotically flat close to the conformal boundary of gµν , i.e.,

gµν = e2ϕ g̃µν . (1.3.21)

The generalization of the functional (1.3.18) reads

FA[γ̂A] =

∫

γ̂A

(
1

2

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ

)
dÃ (1.3.22)

and it reduces to (1.3.18) when g̃µν = δµν and ϕ = − log(RAdS/z). We notice that, in this

case, FA is not always positive and its sign depends both on the region A and on the metric

gµν .

The functionals (1.3.18) and (1.3.22) are finite as far as the surface γ̂A is smooth, i.e. for

non-singular entangling curves. In [78] the functional (1.3.22) has been studied for different

kinds of metrics, namely black hole and domain wall, and for generic shapes of the region A.

Furthermore, a functional valid for time-dependent spacetimes has also been discussed. In

this chapter, we do not consider this case because it will be analysed in detail in chapter 4.

Corners in HHE in AdS4/CFT3

So far, we have restricted our analysis to smooth entangling regions for which the subleading

term FA is finite. Here, we consider the holographic entanglement entropy of domains with
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corners in AdS4/CFT3. As introduced in Sec. 1.1.2, in the presence of isolated corners, the

area of the minimal surfaces shows a logarithmic divergence

A[γ̂ε] = R2
AdS

(
PA
ε
− F̃tot log(PA/ε) +O(1)

)
(1.3.23)

where

F̃tot =
∑

Vk

F̃ (θVk) +
∑

Wr

F̃(~φWr). (1.3.24)

We note that F̃ and F̃ in (1.3.24) are the holographic analogue of the corner functions (1.1.18).

In this section we will focus only on F̃ , postponing the discussion of F̃ to the Sec. 3.5.

The analytic expression of the coefficient F̃ of the logarithmic divergence has been found

in [157] in the context of Wilson loops. We take A to be the infinite wedge of opening angle θ

defined as A = {(x, y) = (ρ sinφ, ρ cosφ) | ρ ∈ (0,+∞), φ ∈ (−θ, θ)}. Yhe scale invariance of

the region suggests the following ansatz for the profile of γ̂A

z =
ρ

q(φ)
(1.3.25)

where q(φ) is an undetermined function. By plugging equation (1.3.25) in the area functional

(1.3.3), one observes that, since the coordinate φ is cyclic, it is possible to obtain a conservation

law. By employing this conservation law, the function q(φ) and, in turn, the area of the

minimal surface can be found analytically. In this way, the function F̃ and the opening angle

θ have been found in terms of the parameter q0 = q(0)

F̃ (θ) ≡ 2F (q0) (1.3.26)

where

F (q0) ≡ E(q̃2
0)−

(
1− q̃2

0

)
K(q̃2

0)√
1− 2q̃2

0

(1.3.27)

and the opening angle θ of the wedge is given by

θ

2
= q̃0

√
1− 2q̃2

0

1− q̃2
0

[
Π
(
1− q̃2

0, q̃
2
0

)
−K

(
q̃2

0

) ]
≡ P0(q0) (1.3.28)

where the positive parameter q̃0 ∈ (0, 1/2) is related to q0 as

q̃2
0 ≡

q2
0

1 + 2q2
0

q0 > 0. (1.3.29)

The functions K(m), E(m) and Π(n,m) are the complete elliptic integrals of the first, sec-

ond, and third kind respectively. From (1.3.26) and (1.3.28), one can plot the curve F̃ (θ)

parametrically in terms of q0 > 0, finding the blue curve shown in Fig. 1.8.

Since SA = SB for pure states, for the argument of the corner function F̃ (θ) we have

θ ∈ (0, π]. Hereafter, whenever θ ∈ (0, 2π) we mean F̃ (θ) = F̃ (min[θ, 2π − θ]).
In the remaining part of this section, we study a simple domain whose holographic entan-

glement entropy is given by (1.3.23) with F̃ tot = F̃ . In this example studied in our work [154],

∂A has a single vertex with two edges, and thus only one term occurs in (1.3.24).
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Figure 1.7: Triangulated surface in H3 which approximates the minimal area surface γ̂A corresponding

to a single drop region A in the z = 0 plane. The boundary ∂A (red curve) lies in the z = 0 plane

and it is characterised by L = 1 and θ = π/3. The UV cutoff is ε = 0.03. The triangulation has been

obtained with Surface Evolver by setting ∂A at z = ε.

We consider the finite domain A similar to a two-dimensional drop. It is constructed by

taking the infinite wedge with opening angle θ < π (whose tip is denoted by P ) and the disk

of radius R which is tangent to both the edges of the wedge. The distance between the two

intersection points and P is L = R cot(θ/2). Considering the circular sector given by the

intersection of the infinite wedge with the disk centered in P with radius L, our drop region

A is obtained as the union between this circular sector and the disk of radius R tangent to

the edges of the infinite wedge introduced above. This domain can be characterised by the

parameters L and θ. Its boundary ∂A is a smooth curve except for the vertex P , where two

edges join, whose length is PA = 2L+R(π + θ). An example of drop domain is the region in

the plane enclosed by the red curve in Fig. 1.7.

The holographic entanglement entropy of a drop region A in the z = 0 plane is obtained

by computing the area A[γ̂ε] from the minimal surface γ̂A embedded in H3 which is anchored

to ∂A, as prescribed by (1.3.2). The result is (1.3.23) with F̃tot = F̃ (θ), being F̃ (θ) the

corner function given by (1.3.26) and (1.3.28). Here, we anticipate the numerical tool we have

used throughout this thesis, namely Surface Evolver [152, 153], which has been applied in

the context of holography for the first time in [78, 245]. Evolver is an optimization problem

software that is able to obtain a triangulated surface as an accurate approximation of extremal

surfaces, once the background metric and the boundary conditions together with a very simple

ansatz fixing the topology are given. This software will be discussed in detail in Sec. 1.6, and

in the remaining of this section we show the result of our analysis in studying the corner

function F̃ by means of the drop domain introduced above. The main advantage of our choice

for A is that we can vary the opening angle θ in a straightforward way. The minimal area

surfaces γ̂A corresponding to regular polygons, and other finite domains with three or more

vertices have been studied in [245].

In Fig. 1.7 we show a refined triangulation which approximates the minimal surface γ̂A

anchored to a single drop domain. Some technical details about the construction of this kind
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Figure 1.8: Corner function for a vertex with two edges in AdS4/CFT3. The blue curve corresponds

to the analytic expression given by (1.3.26) and (1.3.28) found in [157]. The points labeled by the red

triangles have been found through the numerical analysis based on Surface Evolver (see appendix 1.6).

The inset highlights the domain corresponding to opening angles close to π.

of triangulations are discussed in Sec. 1.6 (see also [245]).

As explained in the Sec. 1.6, by fitting the numerical data for A[γ̂ε] obtained for various

ε at fixed values of θ and L, we find a numerical value for the corner function which can

be compared to the corresponding value coming from the analytic expression of F̃ (θ) given

by (1.3.26) and (1.3.28). Repeating this analysis for different values of θ, we have obtained

the results shown in Fig. 1.8, where the blue solid curve is the analytic curve F̃ (θ) found in

[157], while the points marked by the red triangles have been found through our numerical

analysis. The agreement is exceptionally good in the range of θ that has been explored, and

it represents a good benchmark for our studies in the following chapters.
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1.4 AdS/BCFT duality

In this section, we introduce the holographic dual of a BCFT on Md+1 following Takayanagi

[89] and the subsequent works [90, 91].

In this prescription, the gravitational theory is an asymptotically AdSd+2 spacetime Gd+2

restricted by the occurrence of a (d+1)-dimensional hypersurface Q in the bulk whose bound-

ary coincides with the boundary of the BCFTd+1, i.e. ∂Gd+2 =Md+1 ∪Q and ∂Q = ∂Md+1.

Thus, Q is the extension of the boundary of the BCFTd+1 in the bulk. The metric of Gd+2

and the shape of Q are fixed by requiring the extremization of the following gravitational

action [89, 90]

I =
1

16πGN

∫

Gd+2

√− g
(
R− 2Λ

)
+

1

8πGN

∫

∂Gd+2

√
−hK + IQ (1.4.1)

being Λ = −d(d+1)
2R2

AdS
the negative cosmological constant, hµν the induced metric on ∂Gd+2 and

K = hµνKµν the trace of the extrinsic curvature Kµν of ∂Gd+2. We stress that, since ∂Gd+2 is

made of two components joined along the boundary of the BCFTd+1, the manifold ∂Gd+2 is in

general non-smooth. The boundary term IQ describes some matter fields localised on Q. In

the action the boundary term onMd+1 ∩Q, needed because ∂Gd+2 is non-smooth [249, 250],

and the ones introduced by the holographic renormalisation procedure [219, 220, 251, 252]

have been omitted because they are not relevant in the following analysis.

The variation of the first term (1.4.1) gives the Einstein equations plus a boundary term

δIbulk =
1

16πN

∫

Gd+2

√−g
(
Rµν −

1

2
gµν + Λgµν

)
δgµν

+
1

8πGN

∫

∂Gd+2

√
−h1

2
nµ
(
∇νδgµν − gνλ∇µδgνλ

) (1.4.2)

while the variation of the extrinsic curvature reads3

δK =
1

2
Kµνδh

µν − 1

2
nµ
(
∇νδgµν − gνλ∇µδgνλ

)
+Dµcµ (1.4.3)

where Dµ is the covariant derivative with respect hµν and cµ = −1/2hµλnνδgνλ. We observe

that the second term of (1.4.2) is cancelled against the second one in (1.4.3). Thus, the total

variation becomes

δI =
1

16πGN

∫

Gd+2

√−g
(
Rµν −

1

2
gµν + Λgµν

)
δgµν

+
1

8πGN

∫

∂Gd+2

√
−h
[

1

2
(Kµν − hµνK) δhµν +Dµcµ

]
+ δIQ.

(1.4.4)

The first line of (1.4.4) gives the well-known Einstein equations in the presence of the cos-

mological constant Λ, while the second line is the boundary term that sets the boundary

conditions. The boundary of Gd+2 is made of two components Md+1 and Q: on the former

component, we impose the Dirichlet boundary conditions δhµν = 0 as usual, while on the

3A nice compendium of useful formulas can be found in http://jacobi.luc.edu/notes.html.
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latter one Q we impose the Neumann boundary conditions. In particular, the equations that

describe the spacetime are

Rµν −
1

2
gµν + Λgµν = 0 (1.4.5)

Kµν − hµνK = 8πGNT
Q
µν

∣∣
Q (1.4.6)

where TQµν = 2/
√
−hδIQ/δhµν .

In the following we focus on the simplest case where IQ in (1.4.1) is given by

IQ = − T

8πGN

∫

Q

√
−h (1.4.7)

being T a constant real parameter characterising the hypersurface Q. Furthermore, we will

consider only on static backgrounds.

1.4.1 Vacuum state on the half-space

In this subsection we discuss the simplest case of AdSd+2/BCFTd+1 duality, namely when the

BCFTd+1 is in its ground state and the boundary ∂Md+1 is a flat d−dimensional hyperplane.

Under these hypothesis, the equations (1.4.5) with (1.4.7) can be solved exactly [89, 90]. We

introduce the Cartesian coordinates (t, x, ~y ) in the (d+ 1)−dimensional Minkowski spacetime

such that the BCFTd+1 is defined in x > 0, and its boundary corresponds to x = 0. In this

simple case the spacetime is completely determined by the trace of (1.4.6) K = (d+ 1)/d T .

In [89], by solving this equation, the author found that the gravitational spacetime Gd+2 dual

to the ground state of the BCFTd+1 is AdSd+2, whose metric in Poincaré coordinates reads

ds2 =
R2

AdS

z2

(
− dt2 + dz2 + dx2 + d~y 2

)
z > 0 (1.4.8)

restricted by the half-hyperplane Q given by4

Q : x = − (cotα) z α ∈ (0, π). (1.4.9)

Notice that the boundary of Q at z = 0 coincides with the boundary of the BCFTd+1, which

is the hyperplane {x = 0, z = 0}. On the left side of Fig. 1.9 a cartoon of the spacetime is

depicted. In (1.4.9), the slope α ∈ (0, π) of the half-hyperplaneQ is related to the parameter T

in (1.4.7) as T = (d/RAdS) cosα, and as it will be argued in the following it can be interpreted

as the dual of the boundary conditions of the BCFTd+1.

1.4.2 Vacuum state on the ball

The second setup that we will consider in this thesis is the BCFTd+1 defined on a ball of

radius RQ. To discuss this setup we find it useful to switch to the Euclidean time τ = it. The

gravitational spacetime of this case can be obtained by performing a suitable reparametriza-

tion [246], which maps the hyperplane x = 0 at z = 0 into the ball of radius RQ described

4 Comparing our notation with the one adopted in [89, 90], we have tanα = 1/ sinh(ρ∗/RAdS), being ρ∗ ∈ R.
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Figure 1.9: Cartoons of the holographic duals of BCFTd+1 with flat boundary (left) and spherical

boundary (right). The two cases are related by a conformal transformation and the boundaries Q are

given by equations (1.4.9) and (1.4.10), respectively.

by τ2 + ~y2 + x2 = RQ. This transformation is discussed in detail in Appendix A.1 for the

two-dimensional case, and it will be employ also in chapter 2. After the transformation the

AdS metric (1.4.8) remains unchanged but the boundary Q (1.4.9) becomes the spherical cup

[90]

Q : τ2 + ~y2 + (z −RQ cotα)2 = R2
Q csc2 α α ∈ (0, π) (1.4.10)

which ends on the hypersphere τ2 + ~y2 + x2 = RQ, see the right side of Fig. 1.9. In

order to exploit the symmetry of the system, we introduce the spherical coordinates in

(d + 2)−dimensions. The metric of the space-time reads ds2 = (dz2 + dρ2 + ρ2dΩ2
d), where

dΩ2
d is the volume element of the d−dimensional hypersphere and ρ ∈ [0, RQ] is the radial

coordinate. Now, Q is described by

ρQ(z) =
√

(RQ cscα)2 − (z −RQ cotα)2, (1.4.11)

which corresponds to a spherical cap Q centered in (ρ, z) = (0, RQ cotα) with radius RQ/ sinα

(see the green surface in the left panel of Fig. 1.9). When α = π/2, this spherical cap becomes

the hemisphere ρ2 + z2 = R2
Q. By introducing the angular coordinate θ as tan θ = z/ρ, from

(1.4.11) we find that the coordinates of a point of Q are (ρ, z) = RQ
(
Qα(θ), Qα(θ) tan θ

)
with

Qα(θ) ≡ cos θ
(

cotα sin θ +
√

1 + (cotα sin θ)2
)

=

√
ζ2 + (sinα)2 + ζ cosα

(ζ2 + 1) sinα
(1.4.12)

where in the last step we have introduced ζ ≡ tan θ, that will be employed also in Sec. 2.3.1.

In the following, we will focus on the BCFT3 (d = 2), which is the case of our interest.

We find it instructive computing the partition function on the ball, which can be easily found

by evaluating the gravitational action (1.4.1) on the solution (1.4.8) restricted on the part of

spacetime bounded by the boundary (1.4.11). After the introduction of the cutoff z = ε, we

find

IE =
R2

AdS

2GN

∫ RQ cot α
2

ε

ρ3
Q(z)

z4
dz − R2

AdS

2GN
cosα

∫ RQ cot α
2

ε

√
1 + ρ′2Q(z)

z3
ρ2
Q(z) dz

=
R2

AdS

2GN

[
R3
Q

3ε3
+
R2
Q cotα

ε2
+
RQ(cot2 α− 3)

2ε
− cotα log

(
RQ
ε

)
+ fα

]
(1.4.13)
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where fα is the finite parte of the action which reads

fα = (π − α)− cotα

[
3

2
+

cot2 α

6
+ log(2 sinα)

]
. (1.4.14)

The first integral in (1.4.13) comes from the bulk contribution to the action (1.4.1), while the

second one from the boundary terms. The polynomial divergences in (1.4.13) can be removed

by suitable counterterms, while the logarithmic divergence encodes the conformal anomaly.

In particular, the trace of the stress-energy tensor can be obtained by taking the variation of

the action under the Weyl rescaling δgµν = δRQgµν/RQ. We find

∫
〈Tµµ 〉 = −RQ

∂IE
∂RQ

=
R2

AdS

2GN
cotα. (1.4.15)

By comparing (1.4.15) with equation (1.2.10) and by using R = 2/RQ for a sphere, we get

the central charge a [90]

a = −R
2
AdS

4GN
cotα. (1.4.16)

We notice that the charge q does not appear in the boundary anomaly of the ball because

κµν = 0.

We discussed in Sec. 1.2 that the charge a is a measure of the boundary degrees of freedom

of the theory. This fact suggests to interpret the holographic parameter α, or equivalently

the tension T , as the dual of the boundary conditions of the BCFT3. We will see in the next

section how this parameter is related to the boundary entropy in the AdS3/BCFT2 setup.

We conclude this section mentioning other recent proposals of AdS/BCFT [158–161]. In

those proposals, the boundary condition (1.4.6) is replaced by its trace K = (d + 1)/d T .

This condition is less restrictive than (1.4.6), and it admits in general more solutions. While

for the flat and spherical boundaries, both kinds of the boundary conditions are satisfied by

the solutions presented above, for a generic curved boundary the condition (1.4.6) induces a

back-reaction on the metric. In particular, in the Takayanagi proposal [89] the solution for

generic boundary will not be simply the AdS spacetime bounded by Q, but a more complicate

asymptotically AdS spacetime. In contrast, employing just the trace of (1.4.6) leads to a single

equation that can be solved keeping the bulk metric pure AdS. The two proposals give, in

general, different results. For instance, since the charge q and the coefficient AT require

κµν 6= 0 to be uncovered, their value differs between the proposals, while the value of a

is the same. In the Takayanagi setup, generic boundaries have been studied by using the

perturbation theory about the flat case [91]. We stress that our results on the entanglement

entropy discussed in chapter 2 and the corner function derived in chapter 3 do not depend on

the choice of the prescription. On the other hand, as it will be discussed in detail in chapter

3, the relation between the corner function and the one-point function of the stress-energy

tensor observed in 3.4 is valid only in the Takayanagi’s setup, since it also depends on AT .

1.4.3 Holographic entanglement entropy in AdS/BCFT

In this section we discuss the holographic entanglement entropy in the AdSd+2/BCFTd+1

setup introduced in Sec. 1.4.
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Figure 1.10: Left: When the domain A is sufficiently far from the boundary, the minimal surface

γ̂A is disconnected from Q. Middle: When A is close to the boundary, a transition between extremal

surfaces occurs, and the global minimum is represented by the surface which intersects Q. Right: Case

of entangling regions that intersect the boundary, the minimal surface is always connected to Q.

Given a (d + 1)−dimensional region A in the spatial slice t = 0 of the BCFTd+1
5, the

corresponding holographic entanglement entropy is also given in this case by the formula

(1.3.2), where the minimal area surface γ̂A is anchored to the entangling surface ∂A ∩ ∂B.

However, in this case, the extremal area surfaces may also end on the spacetime boundary Q,

i.e., γ̂A ∩ Q 6= 0. Whenever γ̂A ∩ Q is a non-trivial submanifold, since we do not impose any

restriction on the intersection between γ̂A and Q, it is not difficult to show that γ̂A intersects

Q orthogonally along γ̂A ∩Q, i.e., γ̂A ⊥ Q.

In Fig. 1.10, we show two possible cases of minimal surface anchored to a disk in the

spatial slice of BCFT3. On the left, the minimal surface is disconnected from Q while in the

middle part the submanifold γ̂A ∩ Q is non-trivial. In general, whether γ̂A intersects Q or

not depends both on the entangling region A and the parameter α. In particular, when the

spacetime is given by (1.4.8) subjected to the constraint (1.4.9) or (1.4.10), the disconnected

case gives the same value of the entanglement entropy of the vacuum case without boundary,

while the connected one is affected by the presence of the boundary.

As it will be discussed in details in Sec. 2.2 and 2.3 employing specific entangling regions

in AdS4/BCFT3, when we change the distance of the region from the boundary keeping α

fixed, a transition between the connected and the disconnected case occurs at a finite distance

from the boundary. The simplest case in which such transitions happen is the single interval

in AdS3/BCFT2 setup, and it will be discussed at the end of this subsection. This kind of

transitions are analogous to the transitions discussed in Sec. 1.3.1. Transitions also occur if

the region is kept fixed but α is changed toward smaller values. In particular, we will show

in chapter 2 that for d > 1 it exists a critical value of α denoted with αcrit below which any

minimal surface (independently of the distance from the boundary) is disconnected from Q.

On the right side of Fig. 1.10 we show the case in which the region A intersects the

boundary. When d = 2 as in the figure, the intersection is made of isolated points and

the entangling curve creates corners with the spatial boundary of the BCFT3. The case of

5With a slight abuse of notation, in the following we will denote in the same way Q and its spatial section.
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Figure 1.11: Left: Single interval of length ` adjacent to the boundary in AdS3/BCFT2. The

minimal surface is the blue geodesics, which in Cartesian coordinates is part of the semicircle of radius

` centered on the spatial section of the boundary of the BCFT2. Right: Single interval disjoint from

the boundary. When d/` < (d/`)crit, the minimal surface is the one made by the two disconnected red

geodesics. When d/` > (d/`)crit, the minimal surface is the blue connected geodesic.

entangling curves that intersect the boundary will be studied in detail in chapter 3. We will

see that the corners give rise to an additional logarithmic divergence in agreement with the

general discussion done in Sec. 1.2.2, whose coefficient depends on the slope α. When the

entangling surface intersects the boundary, γ̂A ∩ Q 6= 0 for any value of α (also for α 6 αc).

However, we will show that αc shows up in the behaviour of the boundary corner function in

the limit of vanishing opening angle, namely for α > αc the function has a pole in that limit,

while tends to a finite value for α 6 αc.

We conclude this section by discussing two examples in the AdS3/BCFT2 setup: the single

interval adjacent to the boundary and the one disjoint from it.

HEE in AdS3/BCFT2: Single interval in the vacuum

In the spatial slice t = 0, we consider the flat boundary case of Sec. 1.4.1 where the region

A is an interval adjacent to the boundary of length `. We saw in Sec. 1.3.1 that the minimal

surfaces anchored to intervals in AdS3/CFT2 are semi-circles. Since the semi-circles of radius

` anchored to the end of the interval located at (z, x) = (0, `) are orthogonal to the boundary

Q (which is a straight line with slope parametrised by α) they are the minimal surfaces also

for this case once we restrict them to the part of space-time x ≥ −(cotα) (see left side of Fig.

1.11). Thus, the entanglement entropy for this case is given by the following integral

SA =
c

6

∫ π−α

sin−1(ε/`)

dθ

sin θ
=
c

6
log

(
2`

ε

)
+
c

6
log
[
cot
(α

2

)]
+O

(
ε2
)
. (1.4.17)

We notice that the factor of c/6 instead of c/3 comes from the fact that the geodesics reach

the conformal boundary only at (z, x) = (0, `), and this is in agreement with the BCFT result

of [23] (see eq. (1.2.11)). Moreover, from (1.4.17) we can extract the boundary entropy which

reads [90]

log gα =
c

6
log
[
2 cot

(α
2

)]
. (1.4.18)

In [90], the same value of the boundary entropy has also been found from the computation

of the partition function, analogously to the one discussed in the previous section. This
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match provides a non-trivial check of the AdS/BCFT correspondence, and it enforces the

interpretation of α as the dual of the boundary conditions.

For an interval of length ` disjoint from the boundary, a transition analogous to the one

studied in Sec. 1.3.1 occurs. On the right side of Fig. 1.11, the two competing extremal

surfaces are depicted. The area of the disconnected case has been found in eq. (1.3.4) while

the connected one can be easily computed from the result (1.4.17). One obtains

Sred =
c

3
log

(
`

ε

)
+
c

6
log

[
4d(`+ d)

`2
cot2

(α
2

)]
+O

(
ε2
)

(1.4.19)

Sblue =
c

3
log

(
`

ε

)
+O

(
ε2
)
. (1.4.20)

Thus, we find the transition between the two different extremal surfaces at

(
d

`

)

crit

=
sec
(
α
2

)
− 1

2
. (1.4.21)

We note that the critical distance depends on the slope α and, in particular, when α = π/2 we

recover the critical distance of the disjoint interval case studied in Sec. 1.3.1 (once we apply

the substitution d→ d/2).

1.5 Holographic theories with Lifshitz scaling and hyperscal-

ing violation

In Sec. 1.3, we discussed the AdS/CFT correspondence as an example of holographic duality.

In that case, the gravitational theory is dual to a relativistic field theory which possesses

superconformal invariance. Furthermore, we mentioned that, when the gravitational theory is

in the classical regime, the field theory is strongly coupled. It turns out that the strong/weak

characteristic of the holographic duality is very useful for various applications to physical

systems that cannot be described through perturbation theory. On the other hand, many

physical systems of interest may be not supersymmetric or may possess intrinsic length scales

like massive excitations. Even though in those cases exact gravity duals have not been discov-

ered yet, many features of those systems can be realised within the gauge/gravity dualities.

Examples are the AdS/QCD dualities where gravitational theories are employed to study

the low-energy characteristic of the QCD, and the fluid/gravity correspondence whose aim is

to study strongly-coupled relativistic fluids like the quark-gluon plasma. Another branch of

the gauge/gravity duality is AdS/CMT, which studies gravitational theories able to mimic

condensed matter systems like superfluid, superconductor and, more in general, systems that

undergo to quantum phase transitions.

In this section, after a very brief discussion of quantum phase transitions, we are go-

ing to introduce the gravitational theories that are supposed to describe field theories with

anisotropic Lifshitz scaling and theories displaying a violation of the hyperscaling relations.

Furthermore, we will see that specific cases of those metrics present violation of the area law

of entanglement entropy compatible with systems with a Fermi surface [140, 141].
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Let us begin introducing the concept of quantum phase transition. Consider a quantum

system described by a Hamiltonian H(g) that depends on a dimensionless coupling g, and

with ground state energy E0(g). A quantum critical point is a point gc in the phase diagram

in which a non-analyticity of E0(g) occurs. This non-analyticity highlights a level-crossing

between the ground state and the first excited state. If there is an energy gap ∆, it vanishes

at gc as

∆ ∼ |g − gc|ζν . (1.5.1)

In a second-order quantum phase transition, the characteristic length scale ξ diverges. About

the critical point, its behaviour is given by

ξ ∼ |g − gc|−ν ∆ ∼ ξ−ζ . (1.5.2)

ζ and ν are the critical exponents and they are universal, being independent of most of the

microscopic details of the systems. We note that this kind of phase transitions occurs at

T = 0. At the critical point, the effective theory is scale-invariant. Nonetheless, an important

observation is that the energy ∆ and the correlation length ξ are not in general inversely

related. The exponent ζ is called the dynamical critical exponent, and characterizes the

scaling of the theory. In particular, when ζ = 1 the effective theory is relativistic, while for

ζ 6= 1 the scaling is not relativistic. Systems that display this behaviour have been extensively

studied in condensed matter [113–117], and the entanglement entropy in these theories has

been considered in [181, 253–258].

1.5.1 Theories with anisotropic Lifshitz scaling

An example of effective field theories that display a non-relativistic scaling is the Lifshitz field

theory, invariant under the following anisotropic scale

t→ λζt yi → λyi (1.5.3)

and where the dynamical exponent ζ fixes the dispersion relation ω ∼ kζ . Scaling arguments

imply that the thermal entropy density as a function of the temperature T scales as

s(T ) ∼ T
d
ζ . (1.5.4)

The simplest theory with an anisotropic scaling is the Lifshitz field theory with ζ = 2

I =

∫
dx2dt

[
(∂tϕ)2 − g(∇2ϕ)2

]
(1.5.5)

that has a line of critical points parametrised by the coupling g, and that it describes the

critical behavior of various strongly coupled electron systems. For instance, the effective

theory (1.5.5) arises in the description of certain liquid crystals [259], and quantum dimers

[117]. We mention that ζ = 2 is a special case since it allows for a non-relativistic conformal

algebra called Schroedinger algebra. An interesting fact is that the non-relativistic conformal

algebra is not able to fix completely the form of the two-point function, which can depend on

the ratio |~y − ~y′|2/(t− t′).
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The holographic spacetimes compatible with the scaling (1.5.3) have been found as solu-

tions of the Einstein equations coupled to some appropriate matter [119, 121], and successively

from string theory in [123, 260, 261] (see also [121] for related discussions). The metric com-

patible with the scaling property (1.5.3) has the form

ds2 =
1

z2

(
−z2(1−ζ)dt2 + d~y2 + dz2

)
(1.5.6)

where we set for simplicity RAdS = 1, and which reduces to the AdS metric for ζ = 1. We

notice that the line element (1.5.6) is invariant under the scale transformation

t→ λζt yi → λyi z → λz. (1.5.7)

Furthermore, this metric is non-singular everywhere, and its Ricci scalar isR = −2(ζ2+2ζ+3).

As for the holographic entanglement entropy of this case, we observe that once we fix a

constant time-slice of the metric (1.5.6), the background does not depend on the dynamical

exponent ζ. As a consequence, the holographic entanglement entropy is the same as in

AdS/CFT. The situation is different for the finite-temperature case. In fact, as we will

see in chapter 4, the black hole metric depends on ζ through the blackening function. In

particular, in Sec. 4.4.2 we will study the holographic entanglement entropy of a disk in the

metric (1.5.6) for d = 2 (we anticipate that in Fig. 4.4 we show cases with different ζ). In

addition, an analytic result in the limit ζ → +∞ will be discussed.

1.5.2 Holographic theories with hyperscaling violation

Besides metric backgrounds with the Lifshitz exponent, it is possible to engineer a more general

family of metrics parametrised by an additional parameter θ, called hyperscaling violation

exponent. This kind of metrics, which we call asymptotic hivLifd+2, emerges as a solution to

the Einstein equations when both a dilaton and an abelian gauge field are introduced in the

bulk. They have the asymptotic form [122]

ds2 =
1

z2(d−θ)/d

(
−z2(1−ζ)dt2 + d~y2 + dz2

)
. (1.5.8)

We note that, in contrast to the metrics (1.5.6), the hivLifd+2 metrics are not scale invariant

since under the transformation 1.5.7 they scale as

ds2 → λ2θ/dds2. (1.5.9)

In order to deal only with geometries admitting physically sensible dual field theories, the

allowed values of the parameters in (1.5.8) must satisfy some constraints on the energy-

momentum tensor computed via the Einstein equations GMN −ΛgMN = TMN . In particular

the Null Energy Condition (NEC)6 is required, namely TMNV
MV N > 0 for any (future

directed) null vector VM . The NEC translates into the following constraints for θ and ζ [126]

{
(d+ ζ − θ)(ζ − 1) > 0

(d− θ)(d(ζ − 1)− θ) > 0 .
(1.5.10)

6The NEC is insensible to the cosmological constant; indeed for a null vector GMNV
MV N = TMNV

MV N .
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We refer to Appendix C.1 for a detailed discussion of the NEC and its consequences in d = 2,

which is the case we will explore in chapter 4. Further studies have been done in [123–126].

The metric (1.5.8) represents a candidate for the holographic description of theories that

show a violation of hyperscaling [118]. When hyperscaling holds, the free energy scales as

a function of the temperature by its naive dimensions. In particular, the thermal entropy

density scales as S ∼ T d/ζ . In order to show that θ actually drives the hyperscaling violation,

we need to consider the finite temperature case described by the black hole metric

ds2 =
1

z2(d−θ)/d

(
−z2(1−ζ)f(z)dt2 + d~y2 +

dz2

f(z)

)
f(z) = 1−

(
z

zh

)d+ζ−θ
(1.5.11)

where zh determines the location of the horizon. Notice that the metric (1.5.11) has the

asymptotic form of (1.5.8). The temperature and the area of the black hole can be easily

computed and are related to zh by [126]

T =
1

4π

|d+ ζ − θ|
zζh

A =
Ld

zd−θh

(1.5.12)

where we have introduced the infra-red cutoff L. Combining the two relations (1.5.12) to

remove zh and employing the Bekenstein-Hawking formula for the entropy of black holes, for

the thermal density entropy s(T ) of the system we find the following scaling

s(T ) ∼ T (d−θ)/ζ (1.5.13)

which legitimises θ to be called the hyperscaling violation exponent. In particular, we observe

that θ has the effect of modifying the effective dimension of the theory. In condensed matter

physics, the hyperscaling violation has been studied for the first time by Fisher in [118].

Generically, they are gapless systems that do not possess conformal symmetries.

Now we discuss briefly the entanglement entropy in systems dual to the metric (1.5.11).

The simplest region we can employ is the stripA =
{
Rd : |x| 6 `/2, |yi| 6 L/2 i = 1, . . . , d− 1

}

in the limit of `� L. By following [126], we consider the hvLifd+2 gravitational background

(1.5.8). In the regime ` � L the area functional evaluated on the surfaces γA characterised

by the profile z = z(x) reads

A[γA] = Ld−1

∫ `/2

−`/2

√
1 + (z′)2

zd−θ
dx . (1.5.14)

Since the coordinate y1 is cyclic, its conjugate momentum is conserved, namely

d

dx

(
1

zd−θ
1√

1 + (z′)2

)
= 0 =⇒ 1

zd−θ
√

1 + (z′)2
=

1

zd−θ∗
(1.5.15)

where in the integration we have denoted by z∗ ≡ z(0) the value of the function z(x) corre-

sponding to the tip of the surface, where z′(0) = 0. The parameter z∗ can also be expressed

in terms of the width of the strip ` as follows

`

2
=

∫ z∗

0

dz

z′
=

∫ z∗

0

dz√(
z∗/z

)2(d−θ) − 1

=

√
π Γ

(
1
2 + 1

2(d−θ)

)

Γ
(

1
2(d−θ)

) z∗ . (1.5.16)
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By integrating the conservation law (1.5.15), for the profile x(z) one finds

x(z) =
`

2
− z∗
d− θ + 1

(
z

z∗

)d−θ+1

2F1

(
1

2
,
1

2
+

1

2(d− θ) ;
3

2
+

1

2(d− θ) ; (z/z∗)2(d−θ)
)
. (1.5.17)

Introducing the usual cutoff z > ε, the area corresponding to the profile (1.5.17) can be easily

computed by employing the conservation law (1.5.15)

A[γ̂A] = 2
Ld−1

zd−1−θ
∗

∫ 1

ε/z∗

x−(d−θ)
√

1− x2(d−θ)
dx =

2Ld−1

d− θ − 1


 1

εd−1−θ −
√
π Γ

(
d+1−θ
2(d−θ)

)

Γ
(

1
2(d−θ)

) 1

zd−1−θ
∗




=
2Ld−1

d− θ − 1


 1

εd−1−θ −



√
π Γ

(
d+1−θ
2(d−θ)

)

Γ
(

1
2(d−θ)

)



d−θ (

2

`

)d−1−θ

 , θ < d− 1

(1.5.18)

where in the last step we employed (1.5.16). We notice that, since the asymptotic behaviour

of (1.5.8) is different from the one of the AdS metric, the leading divergence got modified,

and in particular it turns out to depend on θ. However, the scaling with respect to the size

of the region follows the area law again. In chapter 4, we will study the divergences of the

holographic entanglement entropy for generic shape for d = 2. We will find that all the

divergent terms are completely fixed by the geodesic curvature of the entangling curve (see

Sec. 4.1.1).

A very interesting case is when θ = d− 1. In fact, in this regime, the area law is violated

by a logarithmic correction [125]. By performing the same integral as in (1.5.18), we find

A[γ̂A] = 2Ld−1 log

(
`

ε

)
+O(ε2) (1.5.19)

where we employed (1.5.16), which gives `/2 = z∗ in this case.

The violation of the area law has been found in weakly coupled fermionic systems [140, 141],

and it is attributed to the presence of a Fermi surface. Hence, the hyperscaling violating metric

(1.5.8) for θ = d− 1 is a good candidate to describe strongly coupled quantum systems with

Fermi surfaces.

Chapter 4 is devoted to the study of holographic entanglement entropy in asymptotically

hvLif4 metrics. Besides the divergent structure of the area of the extremal surfaces in these

backgrounds, we have found different ways to express the finite term in the expansion of the

area as the cutoff ε vanishes. In particular, we will generalise the functional (1.3.22) valid

for asymptotically AdS4 metrics (see Sec. 4.1.2), and we will show that it is also possible to

express the finite term as an integral over the boundary of the extremal surface when the

metric is hvLif4 (see Sec. 4.2). Finally, we will present numerical results for elliptic regions in

both hvLif4 (1.5.8), and in the presence of the black hole (1.5.11).

1.6 Numerical method: Surface Evolver

In this section, we will give details about the software we employed throughout this thesis

to obtain the various numerical results. As anticipated in Sec. 1.3.3, our numerical analysis
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is based on Surface Evolver, a multipurpose optimisation software developed by Ken Brakke

[152, 153]. This tool is employed here to find minimal-area surfaces embedded in three-

dimensional spaces with AdS4 or asymptotically hvLif4 metrics on the constant time-slice

t = 0. The constraints imposed on the minimal surfaces define the ones we are interested in.

In this thesis, we deal with two qualitatively different situations, depending on the occur-

rence of the boundaryQ defined by (1.4.9) or (1.4.11). For the corner functions in AdS4/CFT3

discussed in Sec. 1.3.3 and the application to the chapter 4, where Q does not occur, we em-

ployed the standard prescription (1.3.2) for the holographic entanglement entropy. It requires

to construct the minimal surface γ̂A anchored to ∂A in the z = 0 plane. Instead, to compute

the holographic entanglement entropy in AdS4/BCFT3 discussed in Sec. 1.4.3, the minimal

area surface γ̂A belongs to the region of H3 bounded by Q and may intersect it. Thus, while in

the former case ∂γ̂A = ∂A, in the latter one ∂γ̂A ⊂ ∂A and it can happen that ∂γ̂A ∩ Q 6= ∅.
When ∂γ̂A ∩ Q 6= ∅, the minimisation procedure implemented by Surface Evolver leads to

surfaces which are orthogonal to Q along γ̂A ∩Q in the final step of the evolution.

Surface Evolver constructs surfaces as unions of triangles; therefore, a smooth surface is

approximated by a surface made by triangles obtained through a particular evolution. The

initial step of the optimisation procedure is a very simple surface, made by a few triangles,

which basically sets the topology. The initial surface evolves towards a configuration that

is a local minimum of the area functional by both increasing the number of triangles and

modifying the mesh in a proper way. For each step of the evolution, the software provides

all the elements characterising the surface, like the coordinates of the vertices, the way to

connect them, the normal vectors, the area of each triangle, the total number of triangles and

the total area of the surface. We refer the interested reader also the appendix B of [245] for

another discussion on the application of Surface Evolver to find minimal area surfaces in H3.

Since the area of a surface that reaches the boundary at z = 0 diverges, in our numerical

analysis, we have defined the entangling curve ∂A ∩ ∂B (which coincides with ∂A for the

domains considered in Sec. 1.3.3 to study the corner functions in AdS4/CFT3) at z = ε and

not at z = 0, as required in the prescription for the holographic entanglement entropy.

Once the final entangling curve ∂A ∩ ∂B has been fixed at z = ε, let us denote by γSE
ε

the triangulated surface constructed by Surface Evolver at a generic step of the evolution

and by Ã[γSE
ε ] the corresponding numerical value for its area provided by the software. We

denote by γ̃SE
ε the final configuration of the evolution and by Ã[γ̃SE

ε ] the corresponding area

given by Surface Evolver. The final step of the evolution depends on the required level of

approximation. In our analysis the typical value of the UV cutoff is ε = 0.03, the area of the

final surfaces is O(102) (setting RAdS = 1) and we have stopped the evolution once the value

of the area was stable up to small variations of order O(10−2).

The evolution begins from a very simple trial surface, and it develops through some steps

which improve the triangulation of the surface towards configurations with a smaller area.

A way to improve the triangulation consists of moving the positions of the vertices without

changing their total number according to a gradient descent method which decreases the total

area of the surface. Another way is to refine the mesh of the surface by splitting each edge

of a facet into two new edges and then connecting them. After a modification of this kind,
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Figure 1.12: An example of the numerical analysis of the corner functions based on Surface Evolver.

Top: Some stages of an evolution towards the minimal area surface anchored to the entangling curve

given by the red line in the z = 0 half-plane, which has γ = π/4 and L = 2.5 (see also Fig. 3.6). Here

α = π/3. Bottom: Numerical data corresponding to the evolutions shown in the top panel for different

values of ε. Fitting this data as discussed in Sec. 1.6, one finds the numerical value for the corner

function to compare with the corresponding one obtained from the analytic expression Fα(γ) given by

(3.2.7) and (3.2.12).

a facet is partitioned into four new facets; therefore, this step increases the total number of

triangles.

The boundaries of the triangulated surfaces are treated differently during the evolution,

depending on whether they belong to the half-plane Q or to the section of the spacetime given

by z = ε (for the surfaces studied in Sec. 1.3.3 only the latter situation occurs). The vertices

on the entangling curve ∂A ∩ ∂B at z = ε are kept fixed although their number increases

during the refinements. Instead, the vertices of the curve ∂γSE
ε ∩ Q can move freely on Q

during the evolution.

In the following as an example, we consider the case in which a region A intersects the

boundary of the BCFT3.

In the top part of Fig. 1.12 we show some steps of an evolution made by Surface Evolver

towards the minimal area surface anchored to the entangling curve given by the red line in the

z = 0 plane (see also Fig. 3.6). In this example ∂γSE
ε ∩Q 6= ∅. The initial step of the evolution

is a trial surface made by six facets, while the last step shown in the figure is a triangulated

surface with 6144 facets.

As anticipated in Sec. 1.4.3, when the region A intersects the boundary of the BCFT3 a

logarithmic divergence in the expansion of the area as ε → 0+ occurs. Here, we give details

on the method we used in chapter 3 to extract its coefficient. Once the final step γ̃SE
ε of the
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evolution corresponding to a given entangling curve at z = ε is reached, one subtracts to

Ã[γ̃SE
ε ] the area law term, which is given by either PA/ε or PA,B/ε. By repeating this analysis

for various small values of ε, a list of numerical values is obtained. Fitting these data points

through the function a log ε+ b+ c ε, one finds the best fit for the parameters a, b and c. The

value of a is the numerical result for the coefficient of the logarithmic divergence that we have

compared against the corresponding theoretical prediction. In the bottom part of Fig. 1.12

we show an example of this procedure which corresponds to the domain A identified by the

red curve in the top part of the same figure.
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Chapter 2
Holographic entanglement entropy in

AdS4/BCFT3 and the Willmore Functional

This chapter is devoted to the study of the shape dependence of entanglement entropy in

holographic boundary conformal field theories in three dimensions. Throughout this chapter

and the next one, we employ the setup proposed by Takayanagi in [89] that has been exten-

sively discussed in Sec. 1.4 following the works [90, 91]. Even though this framework makes

it possible to study also dynamical situations, we will focus for the sake of simplicity only on

static spacetimes.

The strategy is to employ the holographic entanglement entropy formula (1.3.2) within the

AdS/BCFT duality as described in Sec. 1.4.3. We remind that given a spatial region A in a

Cauchy slice of the BCFT, the holographic entanglement entropy is determined by the minimal

area hypersurface γ̂A anchored to the entangling surface ∂A∩ ∂B. As discussed in Sec. 1.4.3,

a peculiar feature of extremal hypersurfaces in the context of AdS/BCFT is that γ̂A may

intersect Q. It is also important to remind that, since γ̂A ∩ Q is not fixed, the extremization

of the area functional leads to the condition that γ̂A intersects Q orthogonally. In order to

obtain a finite value for the area, we restrict the surface to the part γ̂ε = γA ∩ {z > ε}, being

ε the UV cutoff. The expansion of the area in terms of the cutoff ε gives

A[γ̂ε] =
PA,B
ε
− FA + o(1). (2.0.1)

This chapter aims to study the subleading term FA of the holographic entanglement entropy

(2.0.1) associated with spatial regions A having arbitrary shapes. Here, we will deal only with

smooth entangling curves ∂A, which in particular do not intersect the boundary of the BCFT,

postponing the case of singular entangling curves to chapter 3. In this case, FA is finite and

independent of the cutoff ε.

This chapter is organized as follows. In Sec. 2.1 we adapt the method employed in [76–78]

for the holographic entanglement entropy in AdS4/CFT3 to the case with boundaries. This

analysis leads to writing FA as a functional evaluated on the surface γ̂ε embedded in a three-

dimensional Euclidean space with boundary which is asymptotically flat close to z = 0, gen-

eralising the functional (1.3.22). This result holds for any static gravitational background and
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any region, even when it is made by disjoint domains. Focusing on the simplest AdS4/BCFT3

setup, where the gravitational background is a part of H3 and the asymptotically flat space is

a part of R3, in Sec. 2.1.1 we observe that the functional obtained for FA becomes the Will-

more functional [75] with a proper boundary term evaluated on the surface γ̂ε embedded in

R3. In the remaining part of the chapter, further simplifications are introduced by restricting

to BCFT3s whose spatial slice is either a half-plane (see Sec. 1.4.1) or a disk (see Sec. 1.4.2).

The analytic expression found for FA is checked by considering some particular regions

such that the corresponding FA can be found analytically. In Sec. 2.2.1 we study the sim-

plest configuration, namely the infinite strip parallel to a flat boundary (see also [158, 262]).

Another interesting entangling region for which is possible to obtain analytic results is a disk

disjoint from a boundary which is either flat or circular. In Sec. 2.3 we compute FA analytically

for these configurations and check the results against the numerical data obtained through

Surface Evolver, the numerical tool introduced in Sec. 1.6. In Sec. 2.4 Surface Evolver is

employed to find numerically FA corresponding to some ellipses disjoint from a flat boundary.

In Appendix A.1 we report the mappings that are employed to study the disk disjoint from

a flat boundary. Details on the derivation of the minimal surfaces anchored to the strips and

the generalization to higher dimensions are collected in Appendix A.2. The Appendix A.3

contains the technical details for the derivation of the analytic results presented in Sec. 2.3

about a disk concentric to a circular boundary. In Appendix A.4 we further discuss the

auxiliary surfaces corresponding to some extremal surfaces occurring in this chapter.

2.1 A formula for the finite term FA

On the lines of [78], in the AdS4/BCFT3 setup described in Sec. 1.4, let us denote by C3 ⊂ G4

the three dimensional Riemannian space with metric gµν obtained by taking a constant time

slice of the static asymptotically AdS4 gravitational background. The boundary of C3 is the

union of the conformal boundary, which is the constant time slice of the spacetime where the

BCFT3 is defined, and the surface Q delimiting the gravitational bulk.

Let us consider a two dimensional surface γ embedded into C3 whose boundary ∂γ is made

by either one or many disjoint closed curves. Denoting by nµ the spacelike unit vector normal

to γ, the metric induced on γ (first fundamental form) and the extrinsic curvature of γ (second

fundamental form) are given respectively by

hµν = gµν − nµnν Kµν = h α
µ h β

ν ∇αnβ (2.1.1)

where ∇α is the torsionless covariant derivative compatible with gµν . Furthermore, in the

following, we will need the traceless part of the extrinsic curvature Kµν = Kµν − TrK
2 hµν .

In our analysis gµν is conformally equivalent to the metric g̃µν corresponding to a Euclidean

space C̃3 which is asymptotically flat near the conformal boundary, namely

gµν = e2ϕ g̃µν (2.1.2)

where ϕ is a function of the coordinates. The two dimensional surface γ is also a submanifold

of C̃3. Denoting by ñµ the spacelike unit vector normal to γ ⊂ C̃3, we have that nµ = eϕ ñµ.
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The fundamental forms in (2.1.1) can be written in terms of the fundamental forms h̃µν and

K̃µν characterising the embedding γ ⊂ C̃3 as follows

hµν = e2ϕ h̃µν Kµν = eϕ
(
K̃µν + h̃µν ñ

λ∂λϕ
)
. (2.1.3)

A very useful identity we will employ in our analysis is the contracted Gauss-Codazzi

relation [263]

R−
(
TrK

)2
+ TrK2 = hµρhνσ⊥Rµνρσ (2.1.4)

where R is the Ricci scalar, which provides the intrinsic curvature of γ, and ⊥ Rµνρσ =

h α
µ h β

ν h γ
ρ h λ

σ Rαβγλ is the Riemann tensor of gµν projected on γ. Explicit contraction of the

right-hand side of (2.1.4) gives

hµρhνσ⊥Rµνρσ = R− 2nµnνRµν = − 2nµnνGµν , (2.1.5)

where Gµν is the Einstein tensor of gµν .

The starting point is the following Weyl invariant quantity

TrK2 dA =

(
TrK2 − 1

2

(
TrK

)2
)
dA (2.1.6)

which holds because the area elements dA =
√
h dΣ of γ ⊂ C3 and dÃ =

√
h̃ dΣ of γ ⊂ C̃3 are

related as dA = e2ϕdÃ, being dΣ = dσ1dσ2, where σi are some local coordinates on γ.

By employing the Gauss-Codazzi relation (2.1.4), together with (2.1.5) to eliminate TrK2

in (2.1.6), the Weyl invariance of the combination (2.1.6) can be rewritten as

(
1

2

(
TrK

)2 −R− 2nµnνGµν

)
dA =

(
1

2

(
TrK̃

)2 − R̃ − 2 ñµñνG̃µν

)
dÃ (2.1.7)

where the tilded quantities refer to the asymptotically flat metric g̃µν . In the left and right

side of (2.1.7), the same surface γ is embedded either in C3 or in C̃3 respectively. The geometric

quantity R and Gµν transform under a Weyl transformation as

R = e−2ϕ
(
R̃ − 2 D̃2ϕ

)
(2.1.8)

Gµν = G̃µν − ∇̃µ∇̃νϕ+ ∇̃µϕ ∇̃νϕ+ g̃µν∇̃2ϕ (2.1.9)

where D̃µ is the covariant derivative constructed through h̃µν and D̃2 the corresponding Lapla-

cian operator. By plugging (2.1.8) and (2.1.9) into (2.1.7) and then integrating over γ, we

find

0 =

∫

γ

(
D̃2ϕ− ∇̃2ϕ+ ñµñν ∇̃µ∇̃νϕ−

(
ñλ∂λϕ

)2 − 1

4

(
TrK̃

)2
)
dÃ+

1

4

∫

γ

(
TrK

)2
dA .
(2.1.10)

Adding the area A[γ] to both sides of this identity, it becomes

A[γ] =

∫

γ

(
D̃2ϕ− ∇̃2ϕ+ e2ϕ + ñµñν ∇̃µ∇̃νϕ−

(
ñλ∂λϕ

)2 − 1

4

(
TrK̃

)2
)
dÃ+

1

4

∫

γ

(
TrK

)2
dA .

(2.1.11)
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We remark that (2.1.11) holds for a generic two dimensional surface embedded into the three

dimensional Euclidean space given by (2.1.2).

The first term is a total derivative that reduces to a boundary integral. This observation

leads to the following expression for the area A[γ] of the surface [78]

A[γ] =

∮

∂γ
b̃µ∂µϕds̃ +

1

4

∫

γ

(
TrK

)2
dA (2.1.12)

−
∫

γ

(
1

4

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ+

(
ñλ∂λϕ

)2
)
dÃ

where b̃µ is the unit vector on ∂γ that is tangent to γ, orthogonal to ∂γ and outward pointing

with respect to γ.

If part of γ belongs to the conformal boundary at z = 0, the area (2.1.12) is infinite because

of the behaviour of the metric hµν near the conformal boundary. In order to regularise the

area, one introduces the UV cutoff ε and considers the part of γ given by γε ≡ γ∩{z > ε}. The

curve ∂γε can be decomposed as ∂γε = ∂γQ∪∂γ‖, where ∂γQ ≡ γε∩Q and ∂γ‖ ≡ γε∩{z = ε}
are not necessarily closed lines. Consequently, for the surfaces γε the boundary term in (2.1.12)

can be written as ∮

∂γε

b̃µ∂µϕds̃ =

∫

∂γ‖
b̃µ∂µϕds̃ +

∫

∂γQ
b̃µ∂µϕds̃. (2.1.13)

Let us consider the integral over ∂γ‖ in the r.h.s. of this expression. Since in our analysis

ϕ = − log(z) +O(za) with a > 1 as z → 0, we need to know the behaviour of the component

b̃z at z = ε as ε → 0. If b̃z = − 1 + o(ε), for the integral over ∂γ‖ in (2.1.13) we obtain the

following expansion ∫

∂γ̂‖
b̃µ∂µϕds̃ =

PA,B
ε

+ o(1) (2.1.14)

as ε → 0, being PA,B = length(∂A ∩ ∂B) the length of the entangling curve. The above

expansion for b̃z holds for any surface, not necessarily minimal, which intersects the conformal

boundary orthogonally [77]. This fact will be discussed in detail in the chapter 4 for the more

general metric hvLif4. The interested reader is referred to the corresponding appendix C.3,

where the expansion (C.3.7) is derived.

Hereafter we will consider only this class of surfaces, which includes also the extremal

surfaces.

By plugging (2.1.14) into (2.1.13) first and then substituting the resulting expression into

(2.1.12), for the area of the surfaces γε we find the following expansion

A[γε] =
PA,B
ε

+

∫

∂γQ
b̃µ∂µϕds̃ +

1

4

∫

γε

(
TrK

)2
dA (2.1.15)

−
∫

γε

(
1

4

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ+

(
ñλ∂λϕ

)2
)
dÃ + o(1)

as ε→ 0. We remark that (2.1.15) also holds for surfaces γε that are not extremal of the area

functional. Furthermore, no restrictions are imposed along the curve ∂γQ.
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In order to compute the holographic entanglement entropy in AdS4/BCFT3 through

(1.3.2), we must consider the minimal area surface γ̂A which is anchored to the entan-

gling curve ∂A ∩ ∂B. This implies that γ̂A intersects the surface Q orthogonally, when-

ever γ̂A ∩ Q 6= ∅. The expression (2.1.15) significantly simplifies for the extremal surfaces

γ̂ε ≡ γ̂A ∩ {z > ε} (with a slight abuse of notation, sometimes we denote by γ̂A also extremal

surfaces which are not the global minimum). The local extrema of the area functional are the

solutions of the following equation

TrK = 0 ⇐⇒
(
TrK̃

)2
= 4(ñλ∂λϕ)2 (2.1.16)

which, furthermore, intersect orthogonally Q whenever γ̂A ∩Q 6= ∅. The second expression in

(2.1.16) has been obtained by using the second formula in (2.1.3).

Plugging the extremality condition (2.1.16) into (2.1.15), we find the expansion of A[γ̂ε] as

ε → 0, which provides the holographic entanglement entropy of a region A in AdS4/BCFT3

for static gravitational backgrounds. It reads

A[γ̂ε] =
PA,B
ε

+

∫

∂γ̂Q
b̃µ∂µϕds̃ −

∫

γ̂ε

(
1

2

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ

)
dÃ + o(1)

(2.1.17)

where the leading divergence gives the expected area law term for the holographic entangle-

ment entropy in AdS4/BCFT3. Comparing (2.1.17) with the expansion (2.0.1) expected for

A[γ̂ε], we find that the subleading term is given by

FA =

∫

γ̂ε

(
1

2

(
TrK̃

)2
+ ∇̃2ϕ− e2ϕ − ñµñν ∇̃µ∇̃νϕ

)
dÃ −

∫

∂γ̂Q
b̃µ∂µϕds̃. (2.1.18)

This is one of the main results of this chapter. According to (2.1.18), the subleading term

is made by two contributions: an integral over the whole minimal surface γ̂ε and a line integral

over the curve ∂γ̂Q = γ̂ε ∩Q. We also remark that the definition of Q has not been employed

in the derivation of (2.1.18).

We observe that when the surface does not intersect Q, the boundary term in (2.1.18)

vanishes and we recover the functional (1.3.22) discussed in the previous chapter.

The first term in (2.1.18) is the same of equation (1.3.22) obtained in [78], where this

analysis has been applied for the holographic entanglement entropy in AdS4/CFT3. The

holographic entanglement entropy in AdS4/BCFT3 includes the additional term given by the

line integral over ∂γ̂Q. This term can be written in a more geometrical form by considering

the transformation rule of the geodesic curvature k under Weyl transformations (see e.g. [77])

k = e−ϕ
(
k̃ + b̃µ∂µϕ

)
. (2.1.19)

This formula allows to write the line integral over ∂γQ in (2.1.18) as follows

∫

∂γQ
b̃µ∂µϕds̃ =

∫

∂γQ
k ds−

∫

∂γQ
k̃ ds̃. (2.1.20)

In the following we are going to consider backgrounds such that ϕ = − log(z) in (2.1.2).

In these cases, the first and the last term of the integrand in the surface integral in (2.1.18)
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become respectively

(
TrK̃

)2
=

4(ñz)2

z2
ñµñν ∇̃µ∇̃νϕ =

(ñz)2

z2
+

1

z
Γ̃zµν ñ

µñν (2.1.21)

where the first expression has been obtained from the second expression in (2.1.16) and Γ̃zµν
are some components of the Christoffel connection compatible with g̃µν .

2.1.1 Special case: AdS4 with boundary

In the previous discussion, we did not specify the background metric at all, being the only

requirement that gµν is asymptotically AdS4 and g̃µν asymptotically flat. In the remaining

part of this chapter, we focus on the simple gravitational background given by a part of AdS4

delimited by Q and the conformal boundary. These cases are relevant because, as explained

in Sec. 1.4, they are dual to the vacuum of BCFT3 with flat or spherical boundaries. We

recall that the time-slice t = 0 of the AdS4 space-time reduces to the hyperbolic space H3,

which in Cartesian coordinates reads

ds2 =
1

z2

(
dz2 + dx2 + dy2

)
z > 0. (2.1.22)

Specialising the results of Sec. 2.1 to this background, we have C3 = H3, i.e. gµν = 1
z2
δµν ,

which means that g̃µν = δµν and ϕ = − log(z). In this case, drastic simplifications occur

in (2.1.18) because ∇̃2ϕ − e2ϕ = 0 and all the components of the connection Γ̃zµν vanish

identically. Thus, when the gravitational bulk is a proper subset of H3 delimited by the

surface Q and the conformal boundary, the expression (2.1.18) for FA reduces to

FA =
1

4

∫

γ̂ε

(
TrK̃

)2
dÃ +

∫

∂γ̂Q

b̃z

z
ds̃ =

∫

γ̂ε

(ñz)2

z2
dÃ +

∫

∂γ̂Q

b̃z

z
ds̃. (2.1.23)

The surface integral over γ̂ε in the first expression is the Willmore functional of γ̂ε ⊂ R3.

Notice that the curves ∂γ̂Q corresponding to some configurations may intersect the plane

given by z = ε.

When the entangling curve is a smooth and closed line that does not intersect the spatial

boundary of the BCFT3, the limit ε→ 0 of (2.1.23) provides the following finite expression

FA =
1

4

∫

γ̂A

(
TrK̃

)2
dÃ +

∫

∂γ̂Q

b̃z

z
ds̃ =

∫

γ̂A

(ñz)2

z2
dÃ +

∫

∂γ̂Q

b̃z

z
ds̃ (2.1.24)

which will be largely employed throughout this chapter.

Below we specialize the equation (2.1.24) to the flat boundary case.

Flat boundary

For this case, we remark that the line integral over ∂γ̂Q in (2.1.23) simplifies because b̃z =

− cosα for all the points of ∂γ̂Q. Furthermore, k̃ = 0 in (2.1.20) in this setup, i.e. ∂γ̂Q is a

geodesic of γ̂A ∈ R3. Thus, for any region A in the half-plane x > 0, we find

FA =

∫

γ̂A

(ñz)2

z2
dÃ − (cosα)

∫

∂γ̂Q

1

z
ds̃. (2.1.25)
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Figure 2.1: Extremal surface γ̂ε constructed with Surface Evolver from a spatial domain A in the

right half-plane (the grey half-plane) whose ∂A is the red curve, which is also highlighted in the inset.

The gravitational bulk is the part of H3 defined by (2.1.22), whose boundary is made by the conformal

boundary at z = 0 (the grey half-plane) and Q (the green half-plane defined in (1.4.9)). Here α = 3π/4.

The green curve corresponds to ∂γ̂Q = γ̂ε ∩Q, and γ̂ε intersects Q orthogonally along this curve.

The two integrals in this expression are always positive, but their relative sign depends on

the slope α. In particular, when α > π/2 we have FA > 0, while FA can be negative when

α < π/2.

In Fig. 2.1 we show an explicit example where (2.1.25) can be applied. The entangling

curve ∂A is the red curve in the z = 0 half-plane also highlighted in the inset. Surface Evolver

has been employed to construct γ̂ε, as done in [154] for other regions in this AdS4/BCFT3

setup.

The AdS4/BCFT3 for the circular case has been discussed in Sec. 1.4.2, and FA in (2.1.24)

can be applied in this case as well. However, b̃z is not constant along γ̂Q and the simplification

which leads to equation (2.1.25) is not available in this case.

2.2 Infinite strip domains

A simple domain which plays an important role in our analysis is the infinite strip of finite

width ` which can be either adjacent to the boundary, namely such that one of its two edges

coincides with the boundary x = 0, or parallel but disjoint from it by a distance d. The strip

adjacent to the boundary has also been considered in [159]. In the following we present only

the main results about the holographic entanglement entropy of these regions in AdS4/BCFT3,

55



Chapter 2. HEE in AdS4/BCFT3 and the Willmore Functional

and their detailed derivation in AdSd+2/BCFTd+1 is reported in the appendix A.2.

2.2.1 Infinite strip adjacent to the boundary

Considering the rectangular domain A = {(x, y) ∈ R2 | 0 6 x 6 ` , 0 6 y 6 L‖}, the infinite

strip adjacent to the boundary is obtained by taking L‖ � ` � ε. These assumptions allow

assuming the invariance under translations in the y direction and this symmetry drastically

simplifies the problem of finding the minimal surface γ̂A and its area because γ̂A is completely

characterised by its profile z = z(x) obtained through a section at y = const.

The minimal area surface γ̂A intersects the z = 0 half-plane orthogonally along the line

x = `, and this leads to the linear divergence L‖/ε (area law term) in its area. Let us stress

that the logarithmic divergence does not occur in this case.

When α 6 π/2, two surfaces γ̂ dis
A and γ̂ con

A are local extrema of the area functional and

the minimal surface γ̂A is given by the global minimum. In particular, γ̂ dis
A is the half-plane

given by x = `, therefore it remains orthogonal to the z = 0 plane and it does not intersect Q
at a finite value of z, while γ̂ con

A bends in the bulk towards the half-plane Q until it intersects

it orthogonally at a finite value z∗ of the coordinate z. It is straightforward to observe that

the solution γ̂ dis
A does not exist for α > π/2.

The surface γ̂ con
A can be also viewed as the part identified by the constraint x > −(cotα)z

of the auxiliary minimal surface γ̂A,aux ⊂ H3 anchored to the auxiliary infinite strip A aux ⊂ R2

which includes A and has one of its edges at x = `. In the appendix A.4 the width of Aaux

has been computed (see (A.4.1) specialised to d = 2).

Focussing on a section at y = const of γ̂ con
A , which is characterised by the profile z(x),

let us denote by P∗ = (x∗, z∗) the intersection between this curve and the half-line (1.4.9)

corresponding to Q. In the half-plane described by the pair (z, x), we find it convenient to

write the curve z(x) of γ̂A in a parametric form Pθ = (x(θ), z(θ)) in terms of the angular

variable θ ∈ [0, π−α]. The angular variable θ corresponds to the angle between the outgoing

vector normal to the curve given by Pθ and the x semi-axis with x > 0. The parametric

expressions Pθ must satisfy the boundary conditions P0 = (`, 0) and Pπ−α = P∗. Since P∗ lies

on Q, we have x∗ = − z∗ cotα; therefore we can write its position as P∗ = z∗(− cotα , 1). In

Fig. 2.2 we show the profile z(x) corresponding to a given strip adjacent to the boundary for

different values of the slope α of Q. Notice that z∗ is a decreasing function of α.

In the appendix A.2 we find that, for any given slope α ∈ (0, π), the coordinate z∗ of P∗
is related to the width ` of the strip as follows

z∗ =

√
sinα

g(α)
` (2.2.1)

where we have introduced

g(α) ≡ E
(
π/4− α/2 | 2

)
− cosα√

sinα
+

Γ
(

3
4

)2
√

2π
(2.2.2)

being E(φ|m) the elliptic integral of the second kind. The expressions (2.2.1) and (2.2.2)

correspond respectively to (A.2.10) and (A.2.11) specialised to d = 2. In order to enlighten
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Figure 2.2: Sections of minimal surfaces γ̂A corresponding to an infinite strip adjacent to the boundary

whose width is ` = 1 for different values of α > αc, where αc is given by (2.2.4). These curves are

obtained from (2.2.5). The grey half-lines correspond to the sections of Q at y = const obtained from

(1.4.9) and the red one is associated to α = αc. Each curve intersects orthogonally the corresponding

section of Q at the point P∗, whose coordinate z∗ along the z axis is (2.2.1).

the notation, in the main text we slightly change the notation with respect to the appendix A.2

by setting g(α) ≡ g2(α) (see (A.2.11)). In Fig. 2.3 the function g(α) and the ratio z∗/` are

shown in terms of α ∈ (0, π).

As for the function g(α) in (2.2.2), we find g(α) = −1/
√
α + O(1) when α → 0+ and

g(α) = 1/
√
π − α+O(1) as α→ π−. Moreover g′(α) = (sinα)−3/2/2 is positive in the whole

domain α ∈ (0, π). These observations imply that g(α) has a unique zero, namely

g(αc) = 0 (2.2.3)

where we have introduced αc to label the unique solution of this transcendental equation.

Solving (2.2.3) numerically, we find

αc '
π

4.8525821
' 0.647406. (2.2.4)

Since z∗ > 0 in (2.2.1), the condition (2.2.3) defines the critical value for the slope α charac-

terising the range of validity of (2.2.1), which is well defined only for α ∈ (αc, π). Thus, for

α 6 αc the solution γ̂ con
A does not exist and therefore γ̂A = γ̂ dis

A . This is confirmed also by

the fact that, by taking α→ α+
c in (2.2.1) we have z∗ → +∞. The occurrence of the critical

value (2.2.4) has been observed also in [159].

When α > αc, the extremal surface γ̂ con
A is parametrically described by the following curve

Pθ =
(
x(θ) , z(θ)

)
=

`

g(α)

(
E
(
π/4− α/2 | 2

)
− cosα√

sinα
+ E

(
π/4− θ/2 | 2

)
,
√

sin θ

)
(2.2.5)
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Figure 2.3: Infinite strip adjacent to the boundary: The red curve is g(α) in (2.2.2), which is positive

for α > αc and negative for α 6 αc, being αc given by (2.2.4). The solid green curve corresponds to

z∗/` obtained from (2.2.1) and it diverges as α → α+
c . The solid blue line is the O(1) term in the

expansion (2.2.7) of the area A[γ̂ε].

where the independent angular parameter is 0 6 θ 6 π − α. The profile (2.2.5) corresponds

to (A.2.14) specialised to d = 2. It is straightforward to check that (2.2.5) fulfils the required

boundary conditions P0 = (`, 0) and Pπ−α = P∗ = z∗(− cotα , 1), with z∗ given by (2.2.1). In

Fig. 2.2 we show the profiles z(x) for γ̂A obtained from (2.2.5) which correspond to the same

strip adjacent to the boundary in the z = 0 half-plane (` = 1 in the figure) and different values

of α. As for the maximum value zmax reached by the coordinate z along the curve (2.2.5), we

observe that zmax = z∗ when α ∈ [π/2, π), while zmax > z∗ for α ∈ (αc, π/2).

The expansion for ε→ 0+ of the area of the extremal surface corresponding to the infinite

strip adjacent to the boundary and characterised by the curve (2.2.5) restricted to z > ε reads

A[γ̂ε] = R2
AdS L‖

(
1

ε
− g(α)2

`
+O(ε3)

)
α > αc. (2.2.6)

This expression is the special case d = 2 of (A.2.23). Comparing (2.2.6) with (2.0.1), we have

that in this case PA,B = L‖, the logarithmic divergence does not occur and the O(1) term is

negative.

An important role in our analysis is played by the extremal surface γ̂ dis
A given by the

vertical half-plane at x = `. By computing its area restricted to ε 6 z 6 zIR, being zIR � `

an infrared cutoff, one easily finds that A[γ̂ε] = R2
AdSL‖(1/ε − 1/zIR). Notice that the O(1)

term of this expression vanishes in the limit zIR → +∞. This extremal surface exists only for

α 6 π/2 because when α > π/2 the half-plane Q and the vertical infinite strip x = ` do not

intersect orthogonally.
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Summarising, for the minimal area surface γ̂A we have that γ̂A = γ̂ dis
A when α 6 αc because

(2.2.1) is not well defined. When α ∈ (αc, π/2], two extremal surfaces γ̂ dis
A and γ̂ con

A compete

(the vertical half-plane at x = ` and the surface characterised by (2.2.5) respectively), while

for α > π/2 we have γ̂A = γ̂ con
A because γ̂ dis

A does not exist. As for the regime α ∈ (αc, π/2],

since the O(1) term in (2.2.6) is negative while it vanishes for γ̂ dis
A , we conclude that γ̂A = γ̂ con

A ,

given by (2.2.5).

Combining the above observations, we find that the expansion as ε → 0+ of the area of

the minimal surface γ̂A ∩{z > ε} corresponding to an infinite strip of width ` adjacent to the

boundary for α ∈ (0, π) is

A[γ̂ε] = R2
AdS L‖

(
1

ε
+
a0(α)

`
+ o(1)

)
a0(α) =

{
− g(α)2 α > αc

0 α 6 αc
(2.2.7)

where g(α) has been defined in (2.2.2) and αc is its unique zero (2.2.4). The result (2.2.7)

is the special case d = 2 of the expressions (A.2.23) and (A.2.26). Since αc is defined by

(2.2.3), the function a0(α) in (2.2.7) is continuous and it corresponds to the blue solid curve

in Fig. 2.3. Let us also observe that g′(α) is continuous but g′′(α) is not continuous at α = αc.

2.2.2 Infinite strip parallel to the boundary

The results for the infinite strip adjacent to the boundary discussed in Sec. 2.2 allow addressing

also the holographic entanglement entropy of an infinite strip A parallel to the boundary and

at a finite distance from it. In the appendix A.2.2 we discuss the analogue case in a BCFTd+1.

In the following, we report only the results of that analysis for d = 2.

The configuration of an infinite strip parallel to the boundary is characterised by the width

`A of the strip and by its distance dA from the boundary. By employing the translation in-

variance and the results of Sec. 2.2, one realises that γ̂A is the global minimum obtained by

comparing the area of two possible configurations γ̂ dis
A and γ̂ con

A . The surface γ̂ dis
A is discon-

nected from Q and it connects the two parallel lines of ∂A through the bulk, while γ̂ con
A is

made by two disjoint surfaces such that each of them connects an edge of ∂A to Q. The two

disjoint surfaces occurring in γ̂ con
A are like the ones described in Sec. 2.2; therefore γ̂ con

A ∩Q is

made by two parallel lines. The two configurations γ̂ dis
A and γ̂ con

A are depicted in Fig. 2.4 for a

given value of α

For an infinite strip A at a finite distance from the boundary, γ̂A,aux is the minimal surface

in H3 anchored to A aux = A∪A′ ⊂ R2, which is the union of two parallel and disjoint infinite

strips in R2 [142]. The minimal surface γ̂A is the part of γ̂A,aux identified by the constraint

x > −(cotα)z. The width of A′ and the separation between A and A′ are given by (A.4.3)

specialised to the case d = 2.

As for the area of γ̂ε, we find

A[γ̂ε] = R2
AdS L‖

(
2

ε
+

1

`A
min

[
h2 , a0(α)

(
1

δA
+

1

δA + 1

)]
+ o(1)

)
δA ≡

dA
`A

(2.2.8)

where a0(α) has been introduced in (2.2.7) and h2 ≡ − 4π
[
Γ(3

4)/Γ(1
4)
]2

comes from the O(1)

term of the holographic entanglement entropy of an infinite strip in CFT3 [31, 32]. The
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dA dA + `A

| {z }| {z }
A0 A

�̂ dis

A

�̂ con

A

Figure 2.4: Infinite strip of width `A parallel to the boundary at distance dA: Section of the surfaces

γ̂ dis
A and γ̂ con

A (blue and green solid curve respectively) which are local extrema of the area functional.

In this plot α > αc. The auxiliary domain A aux = A ∪A′ in R2 is made by two parallel infinite strips

A and A′. The green dashed curves together with γ̂ con
A provide γ̂A,aux when γ̂A = γ̂ con

A , while the red

dashed curve together with γ̂ dis
A gives γ̂A,aux when γ̂A = γ̂ dis

A .

expression (2.2.8) corresponds to the special case d = 2 of (A.2.29). When α 6 αc, we have

that γ̂A = γ̂ dis
A because a0(α) = 0 and h2 < 0.

The critical configuration corresponds to the value δA = δA,c such that the two terms

occurring in the minimisation procedure in (2.2.8) provide the same result. By imposing this

condition, one finds an algebraic equation of second order with only one positive root given

by

δA,c =
1

2

(√
4
[
a0(α)/h2

]2
+ 1 + 2 a0(α)/h2 − 1

)
. (2.2.9)

When δA 6 δA,c the minimal surface is γ̂A = γ̂ con
A , while for δA > δA,c it is given by γ̂A = γ̂ dis

A .

The function (2.2.9) corresponds to the red curve in Fig. A.3 and it is meaningful for α > αc.

2.2.3 Recovering the finite term from the modified Willmore functional

Before concluding this section, we show that the non-trivial expression for FA corresponding

to the regime α > αc in (2.2.7) can be recovered by evaluating (2.1.25) for γ̂ con
A as surface

embedded in R3. The surface γ̂ con
A is described by the constraint C = 0, being C ≡ z − z(x),

and its unit normal vector ñµ = (ñz, ñx, ñy) can be found by first computing ∂µC and then

normalising the resulting vector. We find ñµ = (1,−z′, 0)/
√

1 + (z′)2. The area element in
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the surface integral occurring in (2.1.25) reads dÃ =
√

1 + (z′)2 dx dy in this case. Combining

these observations, we get
∫

γ̂A

(ñz)2

z2
dÃ =

∫

γ̂A

dx dy

z2
√

1 + (z′)2
(2.2.10)

where we have not used yet the fact that z(x) corresponds to γ̂A. Specifying (2.2.10) to the

profile (2.2.5), we find
√

1 + (z′)2 = 1/ sin θ and dx = `
√

sin θ dθ/(2g(α)). By employing

these observations, (2.2.10) becomes
∫

γ̂A

(ñz)2

z2
dÃ = L‖

2g(α)

`

∫ π−α

0

√
sin θ dθ = L‖

g(α)

`

(
E
(
π/4− α/2 | 2

)
+

Γ(3
4)2

√
2π

)
.

(2.2.11)

The integral over the line ∂γ̂Q in (2.1.25) significantly simplifies for these domains because

∂γ̂Q is the straight line given by (z, x, y) = (z∗, x∗, y) with−L‖/2 6 y 6 L‖/2, where (x∗, z∗) =

Pπ−α can be read from (2.2.5) and it corresponds to the green straight lines in Fig. ??. Thus,

the line integral in (2.1.25) gives
∫

∂γ̂Q

1

z
ds̃ =

L‖
z∗

=
g(α)

`
√

sinα
L‖ (2.2.12)

where (2.2.1) has been used in the last step.

Plugging (2.2.11) and (2.2.12) into the general expression (2.1.25), for an infinite strip of

width ` adjacent to the boundary we find

FA
∣∣
γ̂ con
A

= L‖
g(α)

`

[(
E
(
π/4− α/2 | 2

)
+

Γ(3
4)2

√
2π

)
− cosα√

sinα

]
= L‖

g(α)2

`
(2.2.13)

where the last result has been obtained by employing (2.2.2), and which agrees with the area

(2.2.7) as expected. Notice that both the terms in (2.1.25) provide non-trivial contributions.

From the results discussed in this section, it is straightforward to find FA when A is an

infinite strip parallel to the flat boundary and at a finite distance from it through the formula

(2.1.25), recovering the result presented in Sec. 2.2.2.

2.3 Disk disjoint from the boundary

In this section, we study the holographic entanglement entropy of a disk A at a finite distance

from the boundary.

In the setup described in Sec. 1.4.2, in Sec. 2.3.1 we consider the case of a disk A concentric

to the circular boundary because the symmetry of this configuration allows us to obtain an

analytic expression for the profile characterising the minimal surface γ̂A (in the left panel of

Fig. 2.5 we show an example of γ̂A). The corresponding area A[γ̂ε] is computed in two ways:

by the direct evaluation of the integral and by specifying the general formula (2.1.25) to this

case. In Sec. 2.3.2, by employing the second transformation in (A.1.3) and the analytic results

presented in Sec. 2.3.1, we study the holographic entanglement entropy of a disk disjoint from

the flat boundary in the setup introduced in Sec. 2.1.1 (see the right panel of Fig. 2.5 for an

example of γ̂A in this setup). The two configurations in Fig. 2.5 have the same α and are

related through the map (A.1.3) discussed in Appendix A.1.
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Figure 2.5: Left: Extremal area surface γ̂ con
A anchored to a disk A disjoint from a circular concentric

boundary (see Sec. 1.4.2 and Sec. 2.3.1) where Q (green spherical dome) is described by (1.4.11). Here

α = π/3 and R◦/RQ ∼ 0.85, which corresponds to r◦,min (see Sec. 2.3.1). Right: Extremal surface

γ̂ con
A anchored to a disk disjoint from a flat boundary (see Sec. 2.1.1 and Sec. 2.3.2). Here α = π/3 and

d/R can be obtained from the first expression in (2.3.22) with the value of R◦/RQ of the left panel

because the two configurations shown in these panels are related through (A.1.3).

2.3.1 Disk disjoint from a circular concentric boundary

In the AdS4/BCFT3 setup introduced in Sec. 1.4.2, let us consider a disk A with radius

R◦ < RQ which is concentric to the boundary of the spatial slice of the spacetime. In

Sec. 2.3.1 we obtain an analytic expression for the profile characterising γ̂A and in Sec. 2.3.1

we evaluate the corresponding area A[γ̂ε]. In the following, we report only the main results

of this analysis. Their detailed derivation, which is closely related to the evaluation of the

holographic entanglement entropy of an annulus in AdS4/CFT3 [243, 245] has been presented

in Appendix A.3.

Profile of the extremal surfaces

Adopting the coordinate system (ρ, φ, z) introduced in Sec. 1.4.2, the invariance under rota-

tions about the z-axis in the z = 0 plane implies that the local extrema of the area functional

are described by the profiles of their sections at φ = const.

For a given A, an extremal surface is a hemisphere anchored to the circle ∂A. Since it

does not intersect Q, this solution will be denoted by γ̂ dis
A , while we will refer to the extremal

surfaces that intersect Q orthogonally as γ̂ con
A . The holographic entanglement entropy of A is

provided by the surface corresponding to the global minimum of the area. Let us anticipate

that we find at most two solutions γ̂ con
A ; hence we have at most three local extrema for a given

disk A. The number of solutions depends on the value of α, as we will discuss in the following.

By employing the analytic result that will be presented below, in the left panel of Fig. 2.6 we

show the three profiles corresponding to γ̂ dis
A (black curve) and γ̂ con

A (blue and red curve) in an

explicit case. The red curve provides the holographic entanglement entropy in this example.

We find it worth introducing an auxiliary surface that allows relating our problem to the
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Figure 2.6: Sections of the extremal surfaces anchored to a disk A of radius R◦ disjoint from a circular

concentric boundary with radius RQ (see Sec. 2.3.1). Left: Profiles corresponding to the three extremal

surfaces in the case of R◦/RQ = 0.9 and α = π/3. The green curve represents Q. The black curve

corresponds to γ̂ dis
A (the hemisphere). The red curve and the blue curve correspond to γ̂ con

A and they

have been obtained through the analytic results discussed in Sec. 2.3.1 and in Appendix A.3. The red

curve provides the global minimum in this case. Right: Extremal surfaces γ̂ con
A having R◦/RQ ' 0.85

for different values of α: α = π/3 (red), α = π/2.5 (magenta), α = π/2 (green), α = 2π/3 (blue) and

α = 3π/4 (black). The dashed curves are the profiles of the auxiliary surfaces γ̂ con
A, aux, with the same

color code. All the profiles correspond to the smaller value of k whenever two surfaces γ̂ con
A exists. All

the curves except for the red one provide the global minimum of the corresponding configuration.

one of finding the extremal surfaces in H3 anchored to an annulus, which has been already

addressed in the literature. Given γ̂ con
A , let us consider its unique surface γ̂ con

A, aux in the whole

H3 such that γ̂ con
A ∪ γ̂ con

A, aux is an extremal area surface in H3 anchored to the annulus whose

boundary is made by the two concentric circles with radii R◦ and Raux > R◦. Thus, γ̂ con
A can

be viewed as part of an extremal surface anchored to a proper annulus whose boundary is

the union of two circles, one of which is ∂A. By using the solution that will be discussed in

the following, in the right panel of Fig. 2.6 we fix A and we show the profiles associated to

γ̂ con
A (solid curves) for various α and the ones for the corresponding extensions γ̂ con

A, aux (dashed

curves). Other examples are shown in Fig. 2.8.

The profile of a section of γ̂ con
A at fixed φ can be written as (ρ, z) = (ργ(θ), ργ(θ) tan θ),

where the angular variable is defined as ẑ ≡ tan θ = z/ρ (see Sec. 1.4.2). Considering the

construction of the extremal surfaces in H3 anchored to an annulus reported in [245], we have

that the curve ργ(θ) can be written by introducing two branches as follows

ργ(θ) =

{
R◦ e−q−,k(ẑ)

Raux e
−q+,k(ẑ)

(2.3.1)
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with Raux > R◦. The functions q±,k(ẑ) are defined as

q±,k(ẑ) ≡
∫ ẑ

0

λ

1 + λ2

(
1± λ√

k (1 + λ2)− λ4

)
dλ 0 6 ẑ 6 ẑm (2.3.2)

being k > 0 and ẑ2
m ≡

(
k +

√
k(k + 4)

)
/2 the unique admissible root of the biquadratic

equation coming from the expression under the square root in (2.3.2). Since q±,k(0) = 0, the

two branches in (2.3.1) give ργ = R◦ and ργ = Raux when z = 0.

The two branches characterised by q±,k(ẑ) in (2.3.1) match at the point Pm = (ρm, ẑm)

associated to the maximum value of θ. The coordinates of Pm read (see also Appendix A.3)

ẑ2
m =

k +
√
k(k + 4)

2
ρm = R◦ e−q−,k(ẑm) = Raux e

−q+,k(ẑm). (2.3.3)

The last equality in the second expression follows from the continuity of the profile (2.3.1)

and it gives
R◦
Raux

= eq−,k(ẑm)−q+,k(ẑm) (2.3.4)

which will be denoted by χ(ẑm) in the following. Being ẑm given by the first expression in

(2.3.3), from (2.3.4) we observe that the ratio R◦/Raux is a function of the parameter k > 0.

Moreover, by employing (2.3.2) in (2.3.4), it is straightforward to observe that R◦/Raux < 1.

The integral in (2.3.2) can be computed analytically, finding that q±,k(ẑ) can be written

in terms of the incomplete elliptic integrals of the first and third kind as follows

q±,k(ẑ) =
1

2
log(1 + ẑ2)± κ

√
1− 2κ2

κ2 − 1

[
Π
(
1− κ2,Ω(ẑ)|κ2

)
− F

(
Ω(ẑ)|κ2

)]
(2.3.5)

where

Ω(ẑ) ≡ arcsin

(
ẑ/ẑm√

1 + κ2(ẑ2/ẑ2
m − 1)

)
κ ≡

√
1 + ẑ2

m

2 + ẑ2
m

. (2.3.6)

Let us remark that the above expressions depend on the positive parameters R◦ and k.

The dependence on the parameters RQ and α characterising the boundary occurs through the

requirement that γ̂ con
A ⊥ Q.

Denoting by P∗ = (ρ∗, z∗) the point in the radial profile corresponding to the intersection

between γ̂ con
A and Q, in Appendix A.3 we have found that

ẑ2
∗ =

k +
√
k(k + 4(sinα)2)

2
ρ∗ = RQ

√
ẑ2∗ + (sinα)2 + ẑ∗ cosα

(ẑ2∗ + 1) sinα
(2.3.7)

where the first expression has been obtained by imposing that γ̂ con
A intersects Q orthogonally

at P∗, while the second one comes from (1.4.12). In Appendix A.3.1 (see below (A.3.12))

we have also remarked that the orthogonality condition also implies that P∗ belongs to the

branch described q−,k when α > π/2, while it belongs to the branch characterised by q+,k

when α 6 π/2. This observation and (2.3.1) specialised to P∗ lead to

R◦ = ρ∗

(
1 + ηα

2
eq−,k(ẑ∗) +

1− ηα
2

χ(ẑm) eq+,k(ẑ∗)
)

(2.3.8)
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R�/RQ
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Figure 2.7: The ratio R◦/RQ providing γ̂ con
A as a function of 4

√
k from (2.3.9) for different values of

α. The allowed configurations have R◦/RQ < 1 and the black dashed line corresponds to the limiting

value R◦/RQ = 1. The asymptotic behaviours of these curves for k → 0 and k → ∞ are given by

(2.3.10) and (2.3.11) respectively. For fixed values of α > αc and R◦/RQ < 1, the number of extremal

solutions γ̂ con
A is given by the number of intersections between the curve corresponding to α and the

horizontal line characterised by the given value of R◦/RQ.

where ηα ≡ − sign(cotα) and χ(ẑm) denotes the ratio in (2.3.4).

Notice that eq−,k(ẑ∗) = χ(ẑm) eq+,k(ẑ∗) for α = π/2. Moreover, if we employ this observation

into the second expression of (2.3.3), we find that P∗ = Pm when α = π/2.

By using the expression of ρ∗ in (2.3.7) into (2.3.8), we get the following relation

R◦
RQ

=

√
ẑ2∗ + (sinα)2 + ẑ∗ cosα

(ẑ2∗ + 1) sinα

(
1 + ηα

2
eq−,k(ẑ∗) +

1− ηα
2

χ(ẑm) eq+,k(ẑ∗)
)

(2.3.9)

where ẑ∗ is the function of k and α given by the first formula in (2.3.7). The expression (2.3.9)

tells us that R◦/RQ is a function of k and α, and it is used to find the value of the parameter

k given the physical quantities R◦, RQ and α. In Fig. 2.7 we plot this function by employing
4
√
k as the independent variable and α as parameter. Since the disk A is a spatial subsystem

of the disk with radius RQ, the admissible configurations have R◦/RQ < 1.

We find it worth discussing the behaviour of the curves R◦/RQ in (2.3.9) parameterised

by α in the limiting regimes given by k → 0 and k →∞. The technical details of this analysis

have been reported in Appendix A.3.3.

The expansion of (2.3.9) for small k reads

R◦
RQ

= 1− g(α)
4
√
k +

g(α)2

2

√
k + o

(√
k
)

(2.3.10)
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Figure 2.8: Radial profiles of extremal surfaces γ̂ con
A intersecting Q (green curve) orthogonally and

anchored to a disk A of radius R◦ concentric to a circular boundary with radius RQ (see Sec. 2.3.1).

The value of α in the three panels is α = 3π/4 (top), α = π/2 (bottom, right) and α = π/3 (bottom,

left). The solid lines give γ̂ con
A , while the dashed ones (with the same colour) give the corresponding

auxiliary surface γ̂ con
A, aux. The value of k associated to all the shown profiles is the minimum one,

whenever two solutions occur (see Fig. 2.7). All the profiles except for the black one correspond to

the global minimum. The red curves correspond to the critical value of the ratio R◦/RQ where the

area of the extremal surface γ̂ dis
A is equal to the minimum of the area of the extremal surfaces γ̂ con

A .

The points have been found by taking the φ = const section of the extremal surfaces constructed by

Surface Evolver and they nicely agree with the corresponding analytic solutions.

where g(α) has been defined in (2.2.2). Since g(α) > 0 only for α > αc, being αc the unique

zero of g(α) introduced in Sec. 2.2.1, the expansion (2.3.10) tells us that, in the regime of

small k, an extremal surface γ̂ con
A can be found only when α > αc because R◦/RQ < 1. From

Fig. 2.7 we notice that this observation can be extended to the entire regime of k. Indeed,

since R◦/RQ > 1 for the curves with α 6 αc, we have that γ̂ con
A does not exist in this range

of α.

In Appendix A.3.3 also the limit of (2.3.9) for large k has been discussed, finding that for

any α ∈ (0, π) it reads

lim
k→∞

R◦
RQ

= cot(α/2) (2.3.11)

which gives the asymptotic value of the curves in Fig. 2.7 for large k.

When α > αc the curve R◦/RQ has only one local minimum (see Fig. 2.7). Denoting by
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k◦,min and r◦,min the values of k and R◦/RQ characterising this point, we have that r◦,min <

cot(α/2). The plot of r◦,min in terms of α > αc has been reported in Fig. 2.10 (black solid

curve) where cot(α/2) corresponds to the dashed blue curve.

These observations about the limits of R◦/RQ and the numerical analysis of Fig. 2.7 allow

to discuss the number of extremal surfaces γ̂ con
A in the various regimes of the parameters.

When α 6 αc the solutions γ̂ con
A do not exist because R◦/RQ > 1. When α > αc also

the global minimum r◦,min of R◦/RQ is an important parameter to consider. Indeed, for

αc < α 6 π/2 (see e.g. the green curve in Fig. 2.7) one has two distinct extremal surfaces

γ̂ con
A when r◦,min < R◦/RQ < 1, one extremal surface when R◦/RQ = r◦,min and none of them

when R◦/RQ < r◦,min. For α > π/2 also the asymptotic value (2.3.11) plays an important

role. Indeed, when cot(α/2) 6 R◦/RQ < 1 we can find only one extremal surface γ̂ con
A , when

r◦,min < R◦/RQ < cot(α/2) there are two solutions γ̂ con
A , when r◦,min = R◦/RQ we have again

only one solution, while γ̂ con
A do not exist when R◦/RQ < r◦,min. Whenever two distinct

solutions γ̂ con
A can be found, considering their values k1 < k2 for the parameter k, we have

that k1 < k◦,min < k2 because R◦/RQ has at most one local minimum for k > 0.

As for the extremal surface γ̂ dis
A , which does not intersect Q, its existence depends on the

value of α because the condition that γ̂ dis
A does not intersectQ provides a non-trivial constraint

when α < π/2. In order to write this constraint, one first evaluates the z coordinate zQ of

the tip of Q by setting ρ = 0 in (1.4.11), finding that zQ/RQ = cot(α/2). Then, being γ̂ dis
A a

hemisphere, we must impose that R◦ 6 zQ and this leads to R◦/RQ 6 cot(α/2).

Focusing on the regimes where at least one extremal surface γ̂ con
A exists and employing the

above observations, we can plot the profile given by the section of γ̂ con
A at φ = const by using

(2.3.1) and the related expressions. In Fig. 2.8 we show some radial profiles of γ̂ con
A (solid lines)

and of the corresponding auxiliary surfaces γ̂ con
A, aux (dashed lines) obtained from the analytic

expressions discussed above. These analytic results have also been checked numerically by

employing Surface Evolver as done in [78, 154, 245] for other configurations. The data points

in Fig. 2.8 correspond to the φ = const section of the extremal surfaces obtained numerically

with Surface Evolver. The nice agreement between the solid curves and the data points

provides a highly non-trivial check of our analytic results. We remark that Surface Evolver

also constructs extremal surfaces that are not the global minimum corresponding to a given

configuration.

A detailed discussion about the position of the auxiliary circle with respect to the circular

boundary has been reported in Appendix A.4. Here let us notice that in the top panel, where

α = 3π/4, for the black curve and the blue curve we have Raux < RQ.

In the above analysis, we have considered the case of a disk concentric to a circular

boundary. Nonetheless, we can also study the case of a disk whose center does not coincide

with the center of the circular boundary by combining the analytic expressions obtained for

this configuration and the mapping discussed in Appendix A.1.

Area

Given a configuration characterised by a disk A of radius R◦ < RQ concentric to the spatial

disk of radius RQ and the value α for Q, in Sec. 2.3.1 we have seen that we can find at most
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three local extrema of the area functional among the surfaces anchored to A: the hemisphere

γ̂ dis
A and at most two surfaces γ̂ con

A ⊥ Q. Since for these three surfaces the expansion of the

regularised area is given by the r.h.s. of (2.0.1) with PA,B = PA = 2πR◦, the holographic

entanglement entropy of A can be found by comparing their subleading terms FA. Let us

denote by Fcon the subleading term for the surfaces intersecting Q orthogonally discussed in

Sec. 2.3.1. Since FA = 2π for the hemisphere [31, 32, 246], the holographic entanglement

entropy of A is given by

A[γ̂ε] =
2πR◦
ε
−max

(
2π, F̂con

)
+O(ε) (2.3.12)

where we have denoted by F̂con the maximum between the (at most) two values taken by Fcon

for the values of k corresponding to the local extrema γ̂ con
A .

In Appendix A.3.2, we have computed Fcon by employing two methods: a straightforward

evaluation of the integral coming from the area functional and the general expression (2.1.24)

specialized to the extremal surfaces γ̂ con
A of these configurations. Both these approaches lead

to the following result

Fcon = 2π

[
1 + ηα

2
Fk(ẑ∗) +

1− ηα
2

(
2Fk(ẑm)−Fk(ẑ∗)

)]
(2.3.13)

where

Fk(ẑ) ≡
√
k(1 + ẑ2)− ẑ4

√
k ẑ

− F(arcsin(ẑ/ẑm) | − ẑ2
m − 1)− E(arcsin(ẑ/ẑm) | − ẑ2

m − 1)

ẑm
(2.3.14)

and we recall that ẑm and ẑ∗ are the values of ẑ corresponding to the points Pm and P∗
respectively (see Sec. 2.3.1). For ẑ = ẑm, we have

Fk(ẑm) =
E(−ẑ2

m − 1)−K(−ẑ2
m − 1)

ẑm
(2.3.15)

where K and E are the complete elliptic integral of the first and second kind respectively.

Since ẑm is a function of k (see (2.3.3)), the r.h.s. of (2.3.15) depends only on this parameter.

Instead, since ẑ∗ depends on both k and α (see the first expression in (2.3.7)), we have that

(2.3.13) defines a family of functions of k parameterised by α ∈ (αc, π).

We find it worth to discuss the limiting regimes of Fcon in (2.3.13) for small and large

values of k (the technical details of this analysis have been reported in Appendix A.3.3).

In the limit k → 0, which corresponds to R◦ → RQ (see (2.3.10) and Fig. 2.7), the

expansion of Fcon reads

Fcon =
2π g(α)

4
√
k

+
π

2

(
cotα√
sinα

+ F
(
π/4− α/2 | 2

)
+

Γ2
(

1
4

)

4
√

2π

)
4
√
k + o

( 4
√
k
)
. (2.3.16)

Since the coefficient of the leading term is positive when α > αc, negative when α < αc and

zero when α = αc, different qualitative behaviours are observed when k → 0. In particular,

for α = αc the subleading term is o(1); therefore Fcon → 0.
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Fcon
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Figure 2.9: The subleading term Fcon for the extremal surfaces γ̂ con
A which intersect Q orthogonally

as a function of 4
√
k (see (2.3.13)). The horizontal dashed line corresponds to 2π, i.e. the value of

FA for the hemisphere γ̂ dis
A , and it provides the asymptotic limit at large k for any value of α. The

asymptotic behaviour for k → 0 is given by (2.3.16). The curve with α = αc vanishes as k → 0 and the

slope of its tangent at k = 0 is given by the coefficient of the O( 4
√
k ) term in (2.3.16). We numerically

observe that for α > αc the values of k corresponding to the local minima coincide with the values of

k of the local minima in Fig. 2.7.

By using (2.3.10), the expansion (2.3.16) can be written also as an expansion for R◦/RQ →
1, finding that

Fcon =
2π g(α)2

1−R◦/RQ
− π g(α)2 +O(1−R◦/RQ). (2.3.17)

In the limit k → ∞ we have seen that (2.3.11) and in Appendix A.3.3 we find that

Fcon → 2π for every α.

In Fig. 2.9 we show Fcon in terms of 4
√
k for different values of α. The horizontal dashed

line corresponds to 2π, which is the value of the subleading term in the expansion of the area

of the hemisphere γ̂ dis
A . This value provides the asymptotic limit of all the curves, confirming

the result obtained in Appendix A.3.3.

When α 6 αc, from Fig. 2.9 we observe that Fcon < 2π for all values of k. Since in

Sec. 2.3.1 we have shown that the local solutions γ̂ con
A do not exist in this regime, the curves

Fcon having α 6 αc do not occur in the computation of holographic entanglement entropy.

Thus, for α 6 αc the holographic entanglement entropy is given by γ̂ dis
A .

When α > αc we have that Fcon → +∞ for k → 0 and Fcon → (2π)− for k → ∞. This

69



Chapter 2. HEE in AdS4/BCFT3 and the Willmore Functional

↵
<latexit sha1_base64="3grWps7CykaVDdW8u0eofw75Ues=">AAAB7HicbZC7SgNBFIbPxluMt6ilzWAQrMKuKdRGAzaWEcwFkiWcncwmY2Znl5lZISx5BxsLFVtfxDew822cXApN/GHg4//PYc45QSK4Nq777eRWVtfWN/Kbha3tnd294v5BQ8epoqxOYxGrVoCaCS5Z3XAjWCtRDKNAsGYwvJnkzUemNI/lvRklzI+wL3nIKRprNTookgF2iyW37E5FlsGbQ+n6s1KpAkCtW/zq9GKaRkwaKlDrtucmxs9QGU4FGxc6qWYJ0iH2WduixIhpP5tOOyYn1umRMFb2SUOm7u+ODCOtR1FgKyM0A72YTcz/snZqwgs/4zJJDZN09lGYCmJiMlmd9Lhi1IiRBaSK21kJHaBCauyBCvYI3uLKy1A/K1+WvTu3VL2CmfJwBMdwCh6cQxVuoQZ1oPAAT/ACr07sPDtvzvusNOfMew7hj5yPHzGYkIw=</latexit><latexit sha1_base64="KSWQpxhisErf9fUCU5utlapWzw4=">AAAB7HicbZDPSgMxEMZn/Vvrv6pHL8EieCq7elAvWvDisYLbFtqlzKbZNja7WZKsUErfwYsHFa++iG/gzbcx3fagrR8EfnzfDJmZMBVcG9f9dpaWV1bX1gsbxc2t7Z3d0t5+XctMUeZTKaRqhqiZ4AnzDTeCNVPFMA4Fa4SDm0neeGRKc5ncm2HKghh7CY84RWOtehtF2sdOqexW3FxkEbwZlK8/z3LVOqWvdlfSLGaJoQK1bnluaoIRKsOpYONiO9MsRTrAHmtZTDBmOhjl047JsXW6JJLKvsSQ3P3dMcJY62Ec2soYTV/PZxPzv6yVmegiGPEkzQxL6PSjKBPESDJZnXS5YtSIoQWkittZCe2jQmrsgYr2CN78yovgn1YuK96dW65ewVQFOIQjOAEPzqEKt1ADHyg8wBO8wKsjnWfnzXmfli45s54D+CPn4wfr+pEY</latexit><latexit sha1_base64="KSWQpxhisErf9fUCU5utlapWzw4=">AAAB7HicbZDPSgMxEMZn/Vvrv6pHL8EieCq7elAvWvDisYLbFtqlzKbZNja7WZKsUErfwYsHFa++iG/gzbcx3fagrR8EfnzfDJmZMBVcG9f9dpaWV1bX1gsbxc2t7Z3d0t5+XctMUeZTKaRqhqiZ4AnzDTeCNVPFMA4Fa4SDm0neeGRKc5ncm2HKghh7CY84RWOtehtF2sdOqexW3FxkEbwZlK8/z3LVOqWvdlfSLGaJoQK1bnluaoIRKsOpYONiO9MsRTrAHmtZTDBmOhjl047JsXW6JJLKvsSQ3P3dMcJY62Ec2soYTV/PZxPzv6yVmegiGPEkzQxL6PSjKBPESDJZnXS5YtSIoQWkittZCe2jQmrsgYr2CN78yovgn1YuK96dW65ewVQFOIQjOAEPzqEKt1ADHyg8wBO8wKsjnWfnzXmfli45s54D+CPn4wfr+pEY</latexit><latexit sha1_base64="jjSKjTIiaK5CRzju0A/W8DtcGE4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m8qBcpePFYwbSFNpTJdtOu3WzC7kYoof/BiwcVr/4gb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrW9sbpW3Kzu7e/sH1cOjlk4yRZlPE5GoToiaCS6Zb7gRrJMqhnEoWDsc38789hNTmifywUxSFsQ4lDziFI2VWj0U6Qj71Zpbd+cgq8QrSA0KNPvVr94goVnMpKECte56bmqCHJXhVLBppZdpliId45B1LZUYMx3k82un5MwqAxIlypY0ZK7+nsgx1noSh7YzRjPSy95M/M/rZia6CnIu08wwSReLokwQk5DZ62TAFaNGTCxBqri9ldARKqTGBlSxIXjLL68S/6J+Xffu3VrjpkijDCdwCufgwSU04A6a4AOFR3iGV3hzEufFeXc+Fq0lp5g5hj9wPn8A9XWO5A==</latexit>

π/2 π
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↵c
<latexit sha1_base64="aqMGQHMeURjKMTzEvYBCS1p1zRo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4rGFtoQ5lsN+3SzSbuboQS+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmKPNpIhLVDlEzwSXzDTeCtVPFMA4Fa4Wjm6nfemJK80Tem3HKghgHkkecorFSu4siHWKP9qo1t+7OQJaJV5AaFGj2ql/dfkKzmElDBWrd8dzUBDkqw6lgk0o30yxFOsIB61gqMWY6yGf3TsiJVfokSpQtachM/T2RY6z1OA5tZ4xmqBe9qfif18lMdBXkXKaZYZLOF0WZICYh0+dJnytGjRhbglRxeyuhQ1RIjY2oYkPwFl9eJv5Z/bru3Z3XGhdFGmU4gmM4BQ8uoQG30AQfKAh4hld4cx6dF+fd+Zi3lpxi5hD+wPn8AWhjj7U=</latexit><latexit sha1_base64="aqMGQHMeURjKMTzEvYBCS1p1zRo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4rGFtoQ5lsN+3SzSbuboQS+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmKPNpIhLVDlEzwSXzDTeCtVPFMA4Fa4Wjm6nfemJK80Tem3HKghgHkkecorFSu4siHWKP9qo1t+7OQJaJV5AaFGj2ql/dfkKzmElDBWrd8dzUBDkqw6lgk0o30yxFOsIB61gqMWY6yGf3TsiJVfokSpQtachM/T2RY6z1OA5tZ4xmqBe9qfif18lMdBXkXKaZYZLOF0WZICYh0+dJnytGjRhbglRxeyuhQ1RIjY2oYkPwFl9eJv5Z/bru3Z3XGhdFGmU4gmM4BQ8uoQG30AQfKAh4hld4cx6dF+fd+Zi3lpxi5hD+wPn8AWhjj7U=</latexit><latexit sha1_base64="aqMGQHMeURjKMTzEvYBCS1p1zRo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4rGFtoQ5lsN+3SzSbuboQS+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmKPNpIhLVDlEzwSXzDTeCtVPFMA4Fa4Wjm6nfemJK80Tem3HKghgHkkecorFSu4siHWKP9qo1t+7OQJaJV5AaFGj2ql/dfkKzmElDBWrd8dzUBDkqw6lgk0o30yxFOsIB61gqMWY6yGf3TsiJVfokSpQtachM/T2RY6z1OA5tZ4xmqBe9qfif18lMdBXkXKaZYZLOF0WZICYh0+dJnytGjRhbglRxeyuhQ1RIjY2oYkPwFl9eJv5Z/bru3Z3XGhdFGmU4gmM4BQ8uoQG30AQfKAh4hld4cx6dF+fd+Zi3lpxi5hD+wPn8AWhjj7U=</latexit><latexit sha1_base64="aqMGQHMeURjKMTzEvYBCS1p1zRo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4rGFtoQ5lsN+3SzSbuboQS+ie8eFDx6u/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmKPNpIhLVDlEzwSXzDTeCtVPFMA4Fa4Wjm6nfemJK80Tem3HKghgHkkecorFSu4siHWKP9qo1t+7OQJaJV5AaFGj2ql/dfkKzmElDBWrd8dzUBDkqw6lgk0o30yxFOsIB61gqMWY6yGf3TsiJVfokSpQtachM/T2RY6z1OA5tZ4xmqBe9qfif18lMdBXkXKaZYZLOF0WZICYh0+dJnytGjRhbglRxeyuhQ1RIjY2oYkPwFl9eJv5Z/bru3Z3XGhdFGmU4gmM4BQ8uoQG30AQfKAh4hld4cx6dF+fd+Zi3lpxi5hD+wPn8AWhjj7U=</latexit>

R�/RQ
<latexit sha1_base64="uJGctlBzUFloQBRrsmT4PiwYIM0=">AAACAXicbVBNS8NAEN3Ur1q/op7Ey2IRPNVEBOut4MVjW4wtNCFstpt26WYTdjdCCcGLf8WLBxWv/gtv/hs3bQ7a+mDg8d4MM/OChFGpLOvbqKysrq1vVDdrW9s7u3vm/sG9jFOBiYNjFot+gCRhlBNHUcVIPxEERQEjvWByU/i9ByIkjfmdmibEi9CI05BipLTkm0dd38VUYHgOu37mRkiNMWJZJ899s241rBngMrFLUgcl2r755Q5jnEaEK8yQlAPbSpSXIaEoZiSvuakkCcITNCIDTTmKiPSy2Qs5PNXKEIax0MUVnKm/JzIUSTmNAt1Z3CgXvUL8zxukKmx6GeVJqgjH80VhyqCKYZEHHFJBsGJTTRAWVN8K8RgJhJVOraZDsBdfXibOReO6YXcu661mmUYVHIMTcAZscAVa4Ba0gQMweATP4BW8GU/Gi/FufMxbK0Y5cwj+wPj8AfkwlrQ=</latexit><latexit sha1_base64="uJGctlBzUFloQBRrsmT4PiwYIM0=">AAACAXicbVBNS8NAEN3Ur1q/op7Ey2IRPNVEBOut4MVjW4wtNCFstpt26WYTdjdCCcGLf8WLBxWv/gtv/hs3bQ7a+mDg8d4MM/OChFGpLOvbqKysrq1vVDdrW9s7u3vm/sG9jFOBiYNjFot+gCRhlBNHUcVIPxEERQEjvWByU/i9ByIkjfmdmibEi9CI05BipLTkm0dd38VUYHgOu37mRkiNMWJZJ899s241rBngMrFLUgcl2r755Q5jnEaEK8yQlAPbSpSXIaEoZiSvuakkCcITNCIDTTmKiPSy2Qs5PNXKEIax0MUVnKm/JzIUSTmNAt1Z3CgXvUL8zxukKmx6GeVJqgjH80VhyqCKYZEHHFJBsGJTTRAWVN8K8RgJhJVOraZDsBdfXibOReO6YXcu661mmUYVHIMTcAZscAVa4Ba0gQMweATP4BW8GU/Gi/FufMxbK0Y5cwj+wPj8AfkwlrQ=</latexit><latexit sha1_base64="uJGctlBzUFloQBRrsmT4PiwYIM0=">AAACAXicbVBNS8NAEN3Ur1q/op7Ey2IRPNVEBOut4MVjW4wtNCFstpt26WYTdjdCCcGLf8WLBxWv/gtv/hs3bQ7a+mDg8d4MM/OChFGpLOvbqKysrq1vVDdrW9s7u3vm/sG9jFOBiYNjFot+gCRhlBNHUcVIPxEERQEjvWByU/i9ByIkjfmdmibEi9CI05BipLTkm0dd38VUYHgOu37mRkiNMWJZJ899s241rBngMrFLUgcl2r755Q5jnEaEK8yQlAPbSpSXIaEoZiSvuakkCcITNCIDTTmKiPSy2Qs5PNXKEIax0MUVnKm/JzIUSTmNAt1Z3CgXvUL8zxukKmx6GeVJqgjH80VhyqCKYZEHHFJBsGJTTRAWVN8K8RgJhJVOraZDsBdfXibOReO6YXcu661mmUYVHIMTcAZscAVa4Ba0gQMweATP4BW8GU/Gi/FufMxbK0Y5cwj+wPj8AfkwlrQ=</latexit><latexit sha1_base64="uJGctlBzUFloQBRrsmT4PiwYIM0=">AAACAXicbVBNS8NAEN3Ur1q/op7Ey2IRPNVEBOut4MVjW4wtNCFstpt26WYTdjdCCcGLf8WLBxWv/gtv/hs3bQ7a+mDg8d4MM/OChFGpLOvbqKysrq1vVDdrW9s7u3vm/sG9jFOBiYNjFot+gCRhlBNHUcVIPxEERQEjvWByU/i9ByIkjfmdmibEi9CI05BipLTkm0dd38VUYHgOu37mRkiNMWJZJ899s241rBngMrFLUgcl2r755Q5jnEaEK8yQlAPbSpSXIaEoZiSvuakkCcITNCIDTTmKiPSy2Qs5PNXKEIax0MUVnKm/JzIUSTmNAt1Z3CgXvUL8zxukKmx6GeVJqgjH80VhyqCKYZEHHFJBsGJTTRAWVN8K8RgJhJVOraZDsBdfXibOReO6YXcu661mmUYVHIMTcAZscAVa4Ba0gQMweATP4BW8GU/Gi/FufMxbK0Y5cwj+wPj8AfkwlrQ=</latexit>

r�,min
<latexit sha1_base64="OpagCaexULjQtb7nm4r0H9sncj4=">AAACBnicbVA9SwNBEN3zM8avU0tBFoNgEcKdCMYuYGMZwTOBXAh7m02yZHfv2J0Tw5HOxr9iY6Fi62+w89+4Sa7QxAcDj/dmmJkXJYIb8LxvZ2l5ZXVtvbBR3Nza3tl19/bvTJxqygIai1g3I2KY4IoFwEGwZqIZkZFgjWh4NfEb90wbHqtbGCWsLUlf8R6nBKzUcY90Jwsp17QcAnsALbMQuBrhsCy5Go87bsmreFPgReLnpIRy1DvuV9iNaSqZAiqIMS3fS6CdEQ2cCjYuhqlhCaFD0mctSxWRzLSz6R9jfGKVLu7F2pYCPFV/T2REGjOSke2UBAZm3puI/3mtFHrVdsZVkgJTdLaolwoMMZ6EgrtcMwpiZAmhmttbMR0QTSjY6Io2BH/+5UUSnFUuK/7NealWzdMooEN0jE6Rjy5QDV2jOgoQRY/oGb2iN+fJeXHenY9Z65KTzxygP3A+fwAKcZmX</latexit><latexit sha1_base64="OpagCaexULjQtb7nm4r0H9sncj4=">AAACBnicbVA9SwNBEN3zM8avU0tBFoNgEcKdCMYuYGMZwTOBXAh7m02yZHfv2J0Tw5HOxr9iY6Fi62+w89+4Sa7QxAcDj/dmmJkXJYIb8LxvZ2l5ZXVtvbBR3Nza3tl19/bvTJxqygIai1g3I2KY4IoFwEGwZqIZkZFgjWh4NfEb90wbHqtbGCWsLUlf8R6nBKzUcY90Jwsp17QcAnsALbMQuBrhsCy5Go87bsmreFPgReLnpIRy1DvuV9iNaSqZAiqIMS3fS6CdEQ2cCjYuhqlhCaFD0mctSxWRzLSz6R9jfGKVLu7F2pYCPFV/T2REGjOSke2UBAZm3puI/3mtFHrVdsZVkgJTdLaolwoMMZ6EgrtcMwpiZAmhmttbMR0QTSjY6Io2BH/+5UUSnFUuK/7NealWzdMooEN0jE6Rjy5QDV2jOgoQRY/oGb2iN+fJeXHenY9Z65KTzxygP3A+fwAKcZmX</latexit><latexit sha1_base64="OpagCaexULjQtb7nm4r0H9sncj4=">AAACBnicbVA9SwNBEN3zM8avU0tBFoNgEcKdCMYuYGMZwTOBXAh7m02yZHfv2J0Tw5HOxr9iY6Fi62+w89+4Sa7QxAcDj/dmmJkXJYIb8LxvZ2l5ZXVtvbBR3Nza3tl19/bvTJxqygIai1g3I2KY4IoFwEGwZqIZkZFgjWh4NfEb90wbHqtbGCWsLUlf8R6nBKzUcY90Jwsp17QcAnsALbMQuBrhsCy5Go87bsmreFPgReLnpIRy1DvuV9iNaSqZAiqIMS3fS6CdEQ2cCjYuhqlhCaFD0mctSxWRzLSz6R9jfGKVLu7F2pYCPFV/T2REGjOSke2UBAZm3puI/3mtFHrVdsZVkgJTdLaolwoMMZ6EgrtcMwpiZAmhmttbMR0QTSjY6Io2BH/+5UUSnFUuK/7NealWzdMooEN0jE6Rjy5QDV2jOgoQRY/oGb2iN+fJeXHenY9Z65KTzxygP3A+fwAKcZmX</latexit><latexit sha1_base64="OpagCaexULjQtb7nm4r0H9sncj4=">AAACBnicbVA9SwNBEN3zM8avU0tBFoNgEcKdCMYuYGMZwTOBXAh7m02yZHfv2J0Tw5HOxr9iY6Fi62+w89+4Sa7QxAcDj/dmmJkXJYIb8LxvZ2l5ZXVtvbBR3Nza3tl19/bvTJxqygIai1g3I2KY4IoFwEGwZqIZkZFgjWh4NfEb90wbHqtbGCWsLUlf8R6nBKzUcY90Jwsp17QcAnsALbMQuBrhsCy5Go87bsmreFPgReLnpIRy1DvuV9iNaSqZAiqIMS3fS6CdEQ2cCjYuhqlhCaFD0mctSxWRzLSz6R9jfGKVLu7F2pYCPFV/T2REGjOSke2UBAZm3puI/3mtFHrVdsZVkgJTdLaolwoMMZ6EgrtcMwpiZAmhmttbMR0QTSjY6Io2BH/+5UUSnFUuK/7NealWzdMooEN0jE6Rjy5QDV2jOgoQRY/oGb2iN+fJeXHenY9Z65KTzxygP3A+fwAKcZmX</latexit>

r�,c
<latexit sha1_base64="9AWThii/ZlTalysg3yOfxiVKxJw=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBg5REBOut4MVjBWMLbSib6aZdutmE3YlQQn+GFw8qXv033vw3btsctPXBwOO9GWbmhakUBl332ymtrW9sbpW3Kzu7e/sH1cOjR5NkGrgPiUx0J2SGS6G4jwIl76SasziUvB2Ob2d++4lrIxL1gJOUBzEbKhEJYGilru7nPRAaLmDar9bcujsHXSVeQWqkQKtf/eoNEshirhAkM6bruSkGOdMoQPJppZcZnjIYsyHvWqpYzE2Qz0+e0jOrDGiUaFsK6Vz9PZGz2JhJHNrOmOHILHsz8T+vm2HUCHKh0gy5gsWiKJMUEzr7nw6E5oByYgkDLeytFEZMM0CbUsWG4C2/vEr8y/pN3bu/qjUbRRplckJOyTnxyDVpkjvSIj4BkpBn8kreHHRenHfnY9FacoqZY/IHzucPsIeRBw==</latexit><latexit sha1_base64="9AWThii/ZlTalysg3yOfxiVKxJw=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBg5REBOut4MVjBWMLbSib6aZdutmE3YlQQn+GFw8qXv033vw3btsctPXBwOO9GWbmhakUBl332ymtrW9sbpW3Kzu7e/sH1cOjR5NkGrgPiUx0J2SGS6G4jwIl76SasziUvB2Ob2d++4lrIxL1gJOUBzEbKhEJYGilru7nPRAaLmDar9bcujsHXSVeQWqkQKtf/eoNEshirhAkM6bruSkGOdMoQPJppZcZnjIYsyHvWqpYzE2Qz0+e0jOrDGiUaFsK6Vz9PZGz2JhJHNrOmOHILHsz8T+vm2HUCHKh0gy5gsWiKJMUEzr7nw6E5oByYgkDLeytFEZMM0CbUsWG4C2/vEr8y/pN3bu/qjUbRRplckJOyTnxyDVpkjvSIj4BkpBn8kreHHRenHfnY9FacoqZY/IHzucPsIeRBw==</latexit><latexit sha1_base64="9AWThii/ZlTalysg3yOfxiVKxJw=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBg5REBOut4MVjBWMLbSib6aZdutmE3YlQQn+GFw8qXv033vw3btsctPXBwOO9GWbmhakUBl332ymtrW9sbpW3Kzu7e/sH1cOjR5NkGrgPiUx0J2SGS6G4jwIl76SasziUvB2Ob2d++4lrIxL1gJOUBzEbKhEJYGilru7nPRAaLmDar9bcujsHXSVeQWqkQKtf/eoNEshirhAkM6bruSkGOdMoQPJppZcZnjIYsyHvWqpYzE2Qz0+e0jOrDGiUaFsK6Vz9PZGz2JhJHNrOmOHILHsz8T+vm2HUCHKh0gy5gsWiKJMUEzr7nw6E5oByYgkDLeytFEZMM0CbUsWG4C2/vEr8y/pN3bu/qjUbRRplckJOyTnxyDVpkjvSIj4BkpBn8kreHHRenHfnY9FacoqZY/IHzucPsIeRBw==</latexit><latexit sha1_base64="9AWThii/ZlTalysg3yOfxiVKxJw=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBg5REBOut4MVjBWMLbSib6aZdutmE3YlQQn+GFw8qXv033vw3btsctPXBwOO9GWbmhakUBl332ymtrW9sbpW3Kzu7e/sH1cOjR5NkGrgPiUx0J2SGS6G4jwIl76SasziUvB2Ob2d++4lrIxL1gJOUBzEbKhEJYGilru7nPRAaLmDar9bcujsHXSVeQWqkQKtf/eoNEshirhAkM6bruSkGOdMoQPJppZcZnjIYsyHvWqpYzE2Qz0+e0jOrDGiUaFsK6Vz9PZGz2JhJHNrOmOHILHsz8T+vm2HUCHKh0gy5gsWiKJMUEzr7nw6E5oByYgkDLeytFEZMM0CbUsWG4C2/vEr8y/pN3bu/qjUbRRplckJOyTnxyDVpkjvSIj4BkpBn8kreHHRenHfnY9FacoqZY/IHzucPsIeRBw==</latexit>

Figure 2.10: The solid black curve is the minimal value r◦,min of R◦/RQ, below which the local

solutions γ̂ con
A intersecting Q orthogonally do not exist (see also Fig. 2.7), in terms of α > αc. The

solid red curve gives the value r◦,c > r◦,min of R◦/RQ for α > αc corresponding to the critical

configuration where γ̂ con
A and γ̂ dis

A provide the same finite term FA of the holographic entanglement

entropy. The dashed blue curve is the asymptotic value (2.3.11).

implies that at least a local minimum exists. We observe numerically that Fcon has only

one local extremum for k = k◦,min, i.e. the same value for k corresponding to the minimum

of the ratio R◦/RQ. This observation and the fact that, whenever two solutions γ̂ con
A can

be found, for their values k1 < k2 of k we have k1 < k◦,min < k2 lead to conclude that

Fcon(k2) < 2π. Hence, the holographic entanglement entropy is obtained by comparing 2π

with Fcon evaluated on k1. When α > αc, let us denote with k = kc the solution of Fcon = 2π,

which can be found numerically and characterises the configuration where the subleading

terms for γ̂ con
A and γ̂ dis

A take the same value. Since kc < k◦,min, the minimal surface providing

the holographic entanglement entropy is γ̂ con
A if k1 < kc and γ̂ dis

A if k1 > kc . Denoting by r◦,c
the value of the ratio R◦/RQ for the critical configuration having k = kc, in Fig. 2.10 we show

r◦,min < r◦,c in terms of α ∈ (αc, π).

The solid curves in Fig. 2.11, which are parameterised by α, have been obtained by

combining (2.3.9) and (2.3.13) through a parametric plot. The allowed configurations have

R◦/RQ < 1. A vertical line having R◦/RQ < 1 can intersect twice a solid curve corresponding

to a fixed value of α > αc. These two intersection points provide the values of Fcon (see

Fig. 2.9) obtained from the two values of k given by the intersection of the horizontal line

R◦/RQ with the curve in Fig. 2.7 having the same α.

In Fig. 2.11, the value of R◦/RQ corresponding to the intersection between Fcon for a given

α and the horizontal dashed line (whose height is 2π) is r◦,c (see the red line in Fig. 2.10),
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Figure 2.11: The subleading term Fcon for the extremal surfaces γ̂ con
A intersecting orthogonally Q in

terms of the ratio R◦/RQ, for some values of α. The allowed configurations have R◦/RQ < 1. The solid

curves have been obtained by combining the analytic expressions (2.3.9) and (2.3.13). The horizontal

dashed line corresponds to the value of the subleading term of the hemisphere γ̂ dis
A , i.e. FA = 2π. The

data points are the numerical values obtained through Surface Evolver. The ones below the horizontal

dashed line correspond to extremal surfaces that are not global minima. Different kind of markers are

associated with the two different ways employed to extract Fcon from the numerical data provided by

Surface Evolver: either by subtracting the area law term from the area of the entire extremal surface

(empty circles) or by applying the general formula (2.1.23) (empty triangles).

while r◦,min is the value of R◦/RQ corresponding to the cusp.

The analytic expression for Fcon has been checked numerically with Surface Evolver, by

adapting the method discussed in [154] to the configurations considered in this chapter. The

numerical results are the data points in Fig. 2.11, where the two different kinds of markers

(the empty circles and the empty triangles) correspond to two different ways to obtain the

numerical value of Fcon from the numerical data about the extremal surface γ̂ con
A . One way is to

evaluate ÂSE
ε −2πR◦/ε, being ÂSE

ε the numerical value of the area of the extremal surface γ̂ con
A .

The other method consists in finding Fcon by plugging into (2.1.23) the geometrical quantities

about γ̂ con
A required to employ this formula, which are also given by Surface Evolver.

Notice that Fig. 2.11 shows that the extremal surfaces γ̂ con
A do not exist when R◦/RQ → 0.

This means that the hemisphere γ̂ dis
A provides the holographic entanglement entropy in this

regime, as expected.

The agreement between the solid curves and the data points in Fig. 2.11 provides a highly

non-trivial confirmation of the analytic expressions obtained above.
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The formula (2.3.13) can be found also by specialising the general result (2.1.24) to the

extremal surfaces γ̂ con
A for the disks A that we are considering. The details of this computation

have been reported in Appendix A.3.2, and in the following, we report only the main results.

For the surface integral in (2.1.24) we find

∫

γ̂A

(ñz)2

z2
dÃ = 2π

(
1 + ηα

2
Fk,−(ẑ∗) +

1− ηα
2

[
Fk,+(ẑm) + Fk,−(ẑm)−Fk,+(ẑ∗)

])

(2.3.18)

where the functions Fk,± can be written in terms of the function Fk introduced in (2.3.14) as

follows (the derivation of this identity is briefly discussed in Appendix A.3.2)

Fk,±(ẑ) = Fk(ẑ)−
√
k(ẑ2 + 1)− ẑ4

√
k ẑ
(
ẑ2 + 1

) ± ẑ2

√
k (ẑ2 + 1)

. (2.3.19)

Since for ẑ = ẑm the expression under the square root in (2.3.19) vanishes, it is straightfor-

ward to observe that, by plugging (2.3.19) into (2.3.18), one obtains (2.3.13) and an additive

contribution which depends on ẑ∗ but that does not contain ẑm. This additive contribution

is cancelled by the integral over the line ∂γ̂Q = γ̂ con
A ∩Q in (2.1.24), which gives

∫

∂γ̂Q

b̃z

z
ds̃ = 2π

√
ẑ2∗ + (sinα)2 ẑ∗ − cosα

ẑ∗ (ẑ2∗ + 1)
. (2.3.20)

This concludes our analysis of the disk concentric to a circular boundary. We remark that

we can easily study disks which are not concentric to the circular boundary by combining the

analytic expressions presented above with the mapping discussed in Appendix A.1.

2.3.2 Disk disjoint from a flat boundary

In the final part of this section we consider a disk A of radius R at a finite distance d

from a flat boundary, in the AdS4/BCFT3 setup described in Sec. 1.4.1. By combining the

results presented in Sec. 2.3.1 with the mapping (A.1.3) discussed in Appendix A.1, one can

easily obtain the analytic expressions for the extremal surfaces anchored to ∂A and for the

corresponding subleading term in the expansion of the area as ε→ 0.

The values of R and d are related to the parameters R◦ and RQ characterising the con-

figuration considered in Sec. 2.3.1 as follows

R =
R◦R2

Q
R2
Q −R2◦

d =
RQ(RQ −R◦)
2(RQ +R◦)

. (2.3.21)

From these expressions it is straightforward to find that

d

R
=

(R◦/RQ − 1)2

2R◦/RQ

R◦
RQ

=
d

R
+ 1−

√
d

R

(
d

R
+ 2

)
. (2.3.22)

Since the extremal surfaces anchored to a disk disjoint from the flat boundary in the setup

of Sec. 1.4.1 are obtained by mapping the extremal surfaces described in Sec. 2.3.1 through

(A.1.3), also for this configuration, we have at most three local extrema of the area functional,
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Figure 2.12: Extremal surfaces γ̂ con
A anchored to a disk of radius R (bounded by the red circle)

at finite distance d from the flat boundary (see Sec. 2.3.2). Here d/R ∼ 0.042 is fixed and different

values of α are considered: α = π/2.5 (left), α = 2π/3 (middle) and α = 2.7 (right). The surface

γ̂ con
A intersects the green half-plane Q orthogonally along the green circle ∂γ̂Q. The shaded surfaces

correspond to the auxiliary surfaces γ̂ con
A, aux (see also Appendix A.4). The extremal surface γ̂ con

A is

the global minimum when the corresponding FA is larger than 2π. Here FA = 5.6 (left), FA = 17.1

(middle) and FA = 47.1 (right). The surface in the left panel has the smallest area among the two

solutions γ̂ con
A but the global minimum is the hemisphere γ̂ dis

A in this case.

depending on the ratio d/R: the hemisphere γ̂ dis
A and at most two solutions γ̂ con

A intersecting

the half-plane Q orthogonally.

In Fig 2.12 we show some examples of γ̂ con
A for a fixed configuration of the disk A and three

different slopes of Q (the green half-plane). In each panel, the shaded surface is the auxiliary

surface γ̂ con
A, aux corresponding to γ̂ con

A , which intersects orthogonally Q along ∂γ̂Q and is such

that γ̂ con
A ∪ γ̂ con

A, aux is an extremal surface in H3 anchored to the two disjoint circles (one of

them is ∂A). In Fig. 2.13 we show γ̂ con
A and the corresponding γ̂ con

A, aux for a fixed value of α and

three different values of d/R. Notice that for some configurations γ̂ con
A, aux lies entirely outside

the gravitational space-time bounded by Q (see e.g. the left panel and the middle panel of

Fig 2.12), while for other ones part of γ̂ con
A, aux belongs to it. The latter case occurs when the

auxiliary region A aux is a subset of the half-plane x > 0, where also A is defined.

For the extremal surfaces that we are considering, the leading term of A[γ̂ε] as ε → 0 is

the area law term 2πR/ε and the subleading finite term is −max(2π, F̂con), like in (2.3.12),

where F̂con corresponds to the maximum between the values of Fcon evaluated for the extrema

γ̂ con
A . The analytic expression of Fcon as function of d/R can be obtained through a parametric

plot involving Fcon in (2.3.13), d/R in (2.3.22) and R◦/RQ in (2.3.9). This procedure has been

employed to find the solid black curves in Fig. 2.15, which correspond to a disk.

From (2.3.22), it is straightforward to observe that d/R→∞ corresponds to R◦/RQ → 0,

and d/R → 0 to R◦/RQ → 1. Thus, when d/R → ∞ the hemisphere γ̂ dis
A is the minimal

surface providing the holographic entanglement entropy (see also Sec. 2.3.1). In the opposite

limiting regime d/R→ 0, the second expression in (2.3.22) implies thatR◦/RQ = 1−
√

2 d/R+

d/R + O((d/R)3/2). Hence, from the expansion (2.3.17), it is straightforward to obtain that

Fcon = 2π g(α)2/
√

2d/R+O
(√

d/R
)

at leading order.
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Figure 2.13: Extremal surfaces γ̂ con
A anchored to a disk (bounded by the red circle) of radius R at

finite distance d from the flat boundary, like in Fig. 2.12. Here α = 2.7 is fixed (like in the right panel

of Fig. 2.12) and the different values of d/R are considered: d/R ∼ 0.042 (left), d/R ∼ 1.6 (middle)

and d/R ∼ 2.243 (right). The shaded surfaces correspond to γ̂ con
A, aux and for all the configurations of

this figure part of γ̂ con
A, aux belongs to the gravitational space-time constraint by x > −(cotα)z (see also

Appendix A.4). The extremal surface γ̂ con
A, aux is a global minimum when its FA is larger than 2π. The

configuration in the left panel is the same as shown in the right panel of Fig. 2.12. In the remaining

panels FA = 6.95 (middle) and FA = 6.13 (right).

2.4 On smooth domains disjoint from the boundary

Analytic expressions for the subleading term FA in (2.0.1) can be obtained for configurations

which are particularly simple or highly symmetric. Two important cases have been discussed

in Sec. 2.2 and Sec. 2.3. In order to find analytic solutions for an extremal surface anchored

to a generic entangling curve, typically a partial differential equation must be solved, which

is usually a difficult task. Thus, it is useful to develop efficient numerical methods that allow

us to study the shape dependence of FA.

The crucial tool of our numerical analysis is Surface Evolver, which has been already

employed to study the holographic entanglement entropy in AdS4/CFT3 [78, 245] and to check

the corner functions in AdS4/BCFT3 in Sec. 1.3.3. Surface Evolver has been introduced in

the previous chapter (see Sec. 1.6). In this chapter, we consider some regions disjoint from the

boundary in AdS4/BCFT3. In Sec. 2.3.1 Surface Evolver has been used to check the analytic

expressions numerically of the extremal surfaces and of FA for a disk concentric to a circular

boundary (see Fig. 2.8 and Fig. 2.11 respectively). In this section, we use Surface Evolver

to study the extremal surfaces γ̂A and the corresponding FA for some simple domains which

cannot be treated through analytic methods.

Considering the simple AdS4/BCFT3 setup described in Sec. 2.1.1, in Fig. 2.1 we showed

the extremal surface corresponding to a region A with a complicated shape (the entangling

curve is the red curve in the inset) which has been constructed by using Surface Evolver and

which is very difficult to describe analytically.

In the same setup, let us consider, for simplicity, regions A delimited by ellipses at a

distance d from the flat boundary with one of the semiaxis parallel to the flat boundary.

These regions are given by the points (x, y) ∈ R2 with x > 0 such that (x − d − R⊥)2/R2
‖ +

y2/R2
⊥ 6 1, where R⊥ and R‖ are the lengths of the semiaxis which are respectively orthogonal

and parallel to the flat boundary x = 0. As for the extremal surfaces anchored to the

entangling curve ∂A, either they are disconnected from the half-plane Q or they intersect it
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Figure 2.14: Extremal surfaces γ̂con
A found with Surface Evolver in the gravitational setup described

in Sec. 2.1.1. The extremal surfaces are anchored to the boundary of two different ellipses A (red

curves) and intersect the half-plane Q with α = 2π/3 (green half-plane) orthogonally. Here ε = 0.03.

Denoting by R⊥ and R‖ the lengths of the semiaxis which are respectively orthogonal and parallel to

the flat boundary, and by d the distance of ∂A from the flat boundary, we have d/R⊥ = 0.2 in both

the panels. Instead, R‖ = 2R⊥ in the left panel and R‖ = 0.5R⊥ in the right panel.

orthogonally. The occurrence of this different kind of extremal surfaces and which of them

gives the global minimum depend on the values of α, of the ratio d/R⊥ and of the eccentricity

of A. For some configurations only the solutions disconnected from Q are allowed, while for

other configurations only the extremal surfaces intersecting Q exist, as discussed in a specific

example in the final part of Sec. 2.3.1. In Fig. 2.14 we show two examples of extremal surfaces

anchored to ellipses in the z = 0 half-plane (the red curves) which intersect Q orthogonally

along the green line ∂γ̂Q.

In Fig. 2.15 the values of the subleading term for extremal surfaces intersecting Q and

anchored to various ellipses are plotted in terms of the ratio d/R⊥. These data points have

been obtained through Surface Evolver by first constructing the extremal surface γ̂SE
ε anchored

to the ellipses defined at z = ε and then employing the information about γ̂SE
ε provided by

the code (in particular its area A[γ̂SE
ε ] and its normal vectors) in two different ways. One

way to extract the subleading term is to compute PA/ε−A[γ̂SE
ε ] (empty circles in Fig. 2.15).

Another way is to evaluate (2.1.25) from the unit vector ñµ normal to γ̂SE
ε (empty triangles

in Fig. 2.15). The agreement between these two approaches provides a non-trivial check of

the functional (2.1.25). The numerical analysis has been performed by adapting the method

discussed in [154] to the configurations considered here.

The horizontal dashed lines in Fig. 2.15 correspond to the extremal surfaces that do not

intersect Q. Denoting by Fdis the subleading term in the expansion of A[γ̂SE
ε ] for these sur-

faces, we have that FA in (2.0.1) is finite and given by FA = max(Fcon, Fdis). The relation

Fcon = Fdis provides the critical value of d/R⊥ characterising the transition in the holographic

entanglement entropy between the surfaces connected to Q and the ones disjoint from Q (see

the intersection between the curve identified by the data points and the horizontal dashed line

having the same colour in Fig. 2.15, except for the magenta points, that must be compared

with the red dashed line).
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Figure 2.15: The subleading term Fcon for the extremal surfaces γ̂ con
A intersecting orthogonally the

half-plane Q and anchored to ellipses at distance d from a flat boundary (see Fig. 2.14). A semiaxis

of the ellipse is orthogonal to the flat boundary, and its length is R⊥, while R‖ is the length of the

other one. The three panels are characterised by three diverse values of the slope α for the half-plane

Q (see Fig. 2.14): α = π/2 (top), α = 2π/3 (bottom right) and α = 3π/4 (bottom left). Different

colours correspond to different eccentricities: R‖ = 3R⊥ (green), R‖ = 2R⊥ (red), R‖ = R⊥ (black)

and R‖ = 0.5R⊥ (magenta). The solid black curves correspond to the analytic expressions obtained in

Sec. 2.3.2 for disks. The dashed horizontal lines provide the value FA = Fdis for the extremal surfaces

disconnected from Q. In particular, Fdis = 9.25 (green), Fdis = 2π (black) and Fdis = 7.33 (red and

magenta).

The black points in Fig. 2.15 correspond to disks disjoint from a flat boundary and the

solid black curves have been obtained through the analytic expressions discussed in Sec. 2.3

(see (2.3.13) and (2.3.22)). The nice agreement with the data points found with Surface

Evolver is a strong check for the analytic expressions.

In Sec. 2.3 we have found that the critical value αc (defined as the unique zero of (2.2.2))

for the slope of Q in the AdS4/BCFT3 setup of Sec. 2.1.1 is such that extremal surfaces

anchored to a disk A disjoint from the flat boundary and intersecting Q orthogonally do not

exist for α 6 αc. We find it reasonable to conjecture the validity of this property (with same

αc) for any smooth region A disjoint from the boundary in the AdS4/BCFT3 setups described

in Sec. 1.4.1 and Sec. 1.4.2.

We find it worth exploring the existence of bounds on the subleading term FA. In the

AdS4/CFT3 duality when the dual gravitational background is AdS4, by employing a well

known bound for the Willmore functional in R3, it has been shown that FA > 2π for any
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kind of spatial region, including the ones with singular ∂A and the ones made by disjoint

components [78].

In the remaining part of this section, we discuss that, in the context of AdS4/BCFT3 and

when the gravitational dual is the part of AdS4 delimited by Q and the conformal boundary,

for any kind of spatial region A disjoint from the boundary we have

FA > 2π. (2.4.1)

If A contains at least one corner, this bound is trivially satisfied because FA diverges

logarithmically and the coefficient of this divergence is positive, being determined by the

corner function of [157].

For regions A with smooth ∂A, the subleading term FA in (2.0.1) is finite and the corre-

sponding minimal surface γ̂A is such that either γ̂A∩Q = ∅ or γ̂A∩Q 6= ∅. In the former case

γ̂A is also a minimal surface in H3, therefore we can employ the observation made in [78] and

discussed in Sec. 1.3.3 for AdS4/CFT3 and conclude that (2.4.1) holds.

If γ̂A ∩Q 6= ∅, let us denote by FA = Fcon the value of the subleading term corresponding

to γ̂A. In these cases, we have two possibilities: either another extremal surface γ̂ dis
A such that

γ̂ dis
A ∩ Q = ∅ exists or not. In the former case, being γ̂A the global minimum, we have that

Fcon > Fdis > 2π, where the last inequality is obtained from the observation of [78], as above.

The remaining configurations are the ones such that only the extremal surface γ̂A with

γ̂A ∩Q 6= ∅ exists (see e.g. the explicit case discussed in the final part of Sec. 2.3.1). In these

cases γ̂ dis
A does not occur because, by introducing the extremal surface γ̂(0)

A in H3 anchored to

∂A, we have that γ̂(0)

A ∩ Q 6= ∅. Let us consider the part γ̂ ∠
A ⊂ γ̂(0)

A of γ̂(0)

A belonging to the

region of AdS4 delimited by Q and the conformal boundary. We remark that γ̂ ∠
ε intersects

Q but, typically, they are not orthogonal along their intersection. Restricting both γ̂(0)

A and

γ̂ ∠
A to z > ε, for the resulting surfaces γ̂(0)

ε and γ̂ ∠
ε the expansion (2.0.1) holds with the same

PA,B but different O(1) terms, that will be denoted by F (0)

A and F ∠
A respectively. Notice

that the observation of [78] here gives F (0)

A > 2π. Since γ̂ ∠
A ⊂ γ̂(0)

A , we have A[γ̂(0)
ε ] > A[γ̂ ∠

ε ],

which implies F (0)

A 6 F ∠
A , being PA,B the same for γ̂(0)

ε and γ̂ ∠
ε . Since Fcon corresponds to an

extremal surface and γ̂ ∠
ε is not extremal, we can conclude that Fcon > F ∠

A . Collecting these

observations, we find that Fcon > F ∠
A > F (0)

A > 2π.

This completes our discussion about the validity of the inequality (2.4.1) for any spatial

region A disjoint from the boundary, including the ones having singular ∂A or that are made

by disjoint connected components. We find it worth remarking that the bound (2.4.1) does

not hold in general when A is adjacent to the boundary because as we will see in the next

chapter 3 the corner function is negative for some configurations.

2.5 Discussion

In this chapter we studied the shape dependence of the holographic entanglement entropy in

AdS4/BCFT3, along the lines of [89–91, 154, 158, 160, 161, 262]. Considering the expansion

of the holographic entanglement entropy as the UV cutoff vanishes, our main result is the
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analytic formula (2.1.18) for the subleading term FA, which can be applied for any spatial

region and any static gravitational background.

We have analysed some specific cases that admit an explicit solution of the minimal sur-

faces. Thus, in Sec. 2.2 we focused on the holographic dual of the vacuum state of BCFT3

with a flat boundary. In this setup we found analytic expressions corresponding to infinite

strips which can be either adjacent to the flat boundary (see Sec. 2.2.2) or parallel and disjoint

from it (see Sec. 2.2.2). In these cases, we found a particular value of α = αc for which a

transition between the extremal surfaces connected and disconnected to Q happens. More

precisely, when α 6 αc the connected solution does not exist. We have also shown that the

subleading term FA can be recovered by employing the general formula (2.1.18), providing a

first check. In the appendix A.2 details of the derivations and the generalization to higher

dimensions are reported.

The second explicit result is the analytic study of the extremal surfaces anchored to disks

disjoint from a boundary which is either flat or circular, when the gravitational background is

a part of H3. The corresponding expression for the subleading term FA has been obtained both

by evaluating the area in the standard way and by specialising (2.1.18) to this configuration.

The software Surface Evolver has also been employed to obtain a numerical check of the

analytic formulas. By studying the limit regime of very large regions A when the BCFT3 is

a disk, we found again the same value α = αc below which the minimal surfaces are always

disconnected from Q. This result suggests that this value is valid for any region disjoint from

the boundary, and it would be interesting to explore this fact further. Another question that

is worth to address is understanding the meaning of this transition in the field theory. We

hope to make progress on these questions in the future.

As for our last analytic result of this chapter, when the spatial section of the gravitational

spacetime is a part of H3, we found the bound FA > 2π for any region A that does not

intersect the boundary.

Finally, we employed the software Surface Evolver to obtain numerical results for elliptic

entangling regions disjoint from the boundary providing a highly non-trivial check of the

general formula (2.1.18).
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Chapter 3
Corner Contributions to Holographic

Entanglement Entropy in AdS4/BCFT3

In this chapter, we study the entanglement entropy in AdS4/BCFT3 when the entangling curve

intersects the boundary of the BCFT3, focusing on the flat boundary case. More specifically,

we consider the holographic setup discussed in Sec. 1.4.1 in which the holographic spacetime

is AdS4 restricted by the boundary Q such that x > −(cotα)z in Poincaré coordinates.

Given a generic BCFT3, we shall focus on two-dimensional regions A whose boundaries ∂A

contain some isolated vertices that are all located on the boundary of the spatial half-plane,

which is the straight line x = 0. A prototypical example is the yellow domain on the left panel

of Fig. 3.1. The entanglement entropy for this case has been briefly discussed in Sec. 1.2.2.

We recall that for this kind of domains, the expansion of the entanglement entropy as ε→ 0+

reads

SA = b
PA,B
ε
− fα,tot log(PA,B/ε) +O(1) (3.0.1)

where PA,B ≡ length(∂A∩∂B) is the length of the entangling curve (the red curves on the left

and right panel of Fig. 3.1). In the rest of this chapter, we are interested in the coefficient of the

logarithmic divergence in (3.0.1), which is expected to depend on the boundary conditions

characterising the BCFT3 in a highly non-trivial way. The index α labels the boundary

conditions allowed by the conformal invariance in the underlying model.

In particular, we are going to consider domains A with vertices on the x = 0 line both of

the types P1, P2 and Q1 depicted in Fig. 3.1. The vertices of the P type are characterised

only by an angle γ, while the Q vertices are determined by a pair ~ω of opening angles.

For this class of regions A, the coefficient fα,tot of the logarithmic divergence in (3.0.1) is

obtained by summing the contributions of all the corners on the boundary, namely

fα,tot =
∑

Pi

fα(γPi) +
∑

Qj

Fα(~ωQj ) (3.0.2)

where fα and Fα are corner functions that depend on the boundary conditions of the BCFT3.
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Figure 3.1: Examples of finite two-dimensional regions A (yellow domains) containing the kinds

of corners considered in this chapter. Left: A is a domain in the plane with three corners and two

different kinds of vertices. Right: A is a domain in the half-plane with three corners whose boundary

∂A intersects the boundary of the BCFT3 (solid black line). The three vertices in ∂A are also on

the boundary of the BCFT3, and they belong to two different classes of vertices. In both panels, the

red curve corresponds to the entangling curve ∂A ∩ ∂B, whose length provides the area law term in

(1.1.17) and in (3.0.1).

In the holographic framework, by employing the Ryu-Takayanagi formula (1.3.2) properly

adapted to the AdS/BCFT setup as discussed in Sec. 1.4.3, we will find

A[γ̂ε] = R2
AdS

(
PA,B
ε
− Fα,tot log(PA,B/ε) +O(1)

)
(3.0.3)

where PA,B is the length of the entangling curve in the boundary at z = 0. We are mainly

interested in the coefficient of the logarithmic divergence, which is given by the sum of the

contributions from all the vertices of ∂A, namely

Fα,tot =
∑

Pi

Fα(γPi) +
∑

Qj

Fα(ωQj , γQj ) (3.0.4)

where the functions occurring in the sums depend on the slope α of the half-plane Q (1.4.9).

We mainly refer to Fα(γ) and Fα(ω, γ) as the holographic corner functions in the presence of

a boundary, although the proportionality constant
R2

AdS
4GN

should be taken into account.

In this chapter, we find analytic expressions for the corner functions Fα(γ) and Fα(ω, γ).

Numerical checks of these results are performed by constructing the minimal area surfaces

corresponding to some finite domains containing corners. In the numerical analysis, we have

employed the software Surface Evolver [152, 153] introduced in Sec. 1.6 to construct the min-

imal area surfaces. This numerical tool has been already used in [78, 245] to study the shape

dependence of the holographic entanglement entropy in AdS4/CFT3, and in chapter 2 where

entangling regions disjoint from the boundary in the AdS4/BCFT3 framework have been

considered.

This chapter is organised as follows. In Sec. 3.1 the strong subadditivity is employed to

find constraints for the corner functions fα(γ) and Fα(ω, γ) in a generic BCFT3. In Sec. 3.2
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we describe the main result of this chapter, namely the holographic boundary corner function

Fα(γ). We apply the prescription for the holographic entanglement entropy to two sim-

ple domains, i.e., the half-disk centered on the boundary (Sec. 3.2.1) and the infinite wedge

(Sec. 3.2.2), whose area provides the analytic expression of Fα(γ). Furthermore, in Sec. 3.2.3

we will recover the boundary corner function also by employing the expression (2.1.25) for

the subleading term FA obtained the previous chapter. In Sec. 3.3, we find the one-point

function of the stress-energy tensor in the presence of a curved boundary in the Takayanagi

setup. By performing perturbation about the flat boundary case, we extract the coefficient

AT in (1.2.8) for any dimension d > 1. From this result and the analytical expression of

Fα(γ), in Sec. 3.4 we discuss a proportionality relation between AT and F ′′α(π/2). In Sec. 3.5,

we study transitions in the minimal surfaces both when the domain A has two corners with

the same tip in AdS4/CFT3 (see the right side of Fig. 3.1), and in the presence of one corner

of the Q-type depicted on the left side of Fig. 3.1. In particular, we will find the analytic

formula for the corner function Fα(ω, γ). Throughout this chapter, the analytic results are

double-checked against the numerical calculation obtained with Surface Evolver.

The main text of this chapter contains only the description of the main results. All the

computational details and also some generalisations to an arbitrary number of spacetime

dimensions have been collected and discussed in the appendices B.1, B.2, and B.3.

3.1 Constraining the corner functions

In this section, we employ the strong subadditivity of the entanglement entropy (1.1.7) to con-

strain the corner functions introduced in (3.0.2). Our analysis is similar to the one performed

in [178] for the corner function f̃(θ) in (1.1.18).

Let us consider a BCFT3 in its ground state and the domain A given by the infinite

wedge adjacent to the boundary whose opening angle is γ. Thus, the complementary domain

B is the infinite wedge with opening angle π − γ. Since the ground state is a pure state,

we have SA = SB. Combining this property with (3.0.1) and (3.0.2) specialised to these

complementary domains, we have

fα(π − γ) = fα(γ) (3.1.1)

namely the corner function fα(γ) is symmetric with respect to γ = π/2; therefore we are

allowed to study this corner function for 0 < γ 6 π/2. Hereafter we mainly consider γ ∈
(0, π/2] for the argument of this corner function. Nonetheless, whenever γ ∈ (0, π) in the

following, we always mean fα(γ) = fα(min[γ, π − γ]).

By assuming that fα(γ) is smooth for γ ∈ (0, π), the symmetry (3.1.1) implies that its

expansion around γ = π/2 includes only even powers of γ − π/2, namely

fα(γ) = fα(π/2) +
f ′′α(π/2)

2

(
γ − π/2

)2
+ . . . γ → π

2
. (3.1.2)

In the remaining part of this section, we discuss some constraints for the corner functions

in (3.0.2) obtained by imposing that the strong subadditivity of the entanglement entropy is

valid for particular configurations of adjacent domains.
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Figure 3.2: Configurations of adjacent domains containing corners (yellow regions) in the half-plane

x > 0 (grey region) which have been used in Sec. 3.1 to constrain the corner functions through the

strong subadditivity.

Consider the configuration of adjacent regions shown in the left panel of Fig. 3.2. The

strong subadditivity inequality specialised to this case states that

SC1∪C2 + SC2∪C3 > SC1∪C2∪C3 + SC2 . (3.1.3)

By employing the expressions (3.0.1) and (3.0.2), which provide the entanglement entropy

of the domains occurring in this inequality, one observes that the area law terms and the

logarithmic divergencies corresponding to vertices which are not on the boundary simplify.

The remaining terms at leading order provide the following inequality

Fα(ω1 + ω2 + ω3, γ)− Fα(ω1 + ω2, γ) > Fα(ω2 + ω3, γ + ω1)− Fα(ω2, γ + ω1). (3.1.4)

Multiplying both sides of this inequality by 1/ω3 > 0 first and then taking the limit ω3 → 0+,

one finds

∂ω Fα(ω2 + ω1, γ) > ∂ω Fα(ω2, γ + ω1). (3.1.5)

Next we add − ∂ωFα(ω2, γ) to both sides of (3.1.5), then we multiply them by 1/ω1 > 0 and

finally take the limit ω1 → 0+. The resulting inequality reads

∂2
ω Fα(ω, γ) > ∂ω∂γ Fα(ω, γ). (3.1.6)

This property resembles to f̃ ′′(ω) > 0 for the corner function f̃(ω) in CFT3 [178] discussed in

Sec.1.1.2 (see equation (1.1.19)).

The second configuration of adjacent domains that we consider is the one depicted in the

middle panel of Fig. 3.2. In this case, the constraint given by the strong subadditivity reads
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SA∪C1 + SC1∪C2 > SA∪C1∪C2 + SC1 and simplifications similar to the ones discussed in the

previous case occur. In particular, the leading non-vanishing terms correspond to the vertex

shared by the three domains. The resulting inequality reads

fα(γ + ω1 + ω2)− fα(γ + ω1) > Fα(ω1 + ω2, γ)− Fα(ω1, γ). (3.1.7)

Multiplying both sides of this relation by 1/ω1 > 0 and taking the limit ω1 → 0+, one obtains

∂ω Fα(ω, γ) 6 ∂γfα(γ + ω). (3.1.8)

Let us study also the configuration shown in the right panel of Fig. 3.2, where γ1+ω+γ2 = π

and the strong subadditivity property provides the constraint SA1∪C + SA2∪C > SA1∪A2∪C +

SC . By using (3.0.1) and (3.0.2) as done in the previous cases, we get another inequality

among the corner functions corresponding to the vertex shared by the three adjacent domains

fα(γ1 + ω) + fα(γ2 + ω) 6 Fα(ω, γ1) γ1 6 γ2. (3.1.9)

Since γ2 + ω = π − γ1, we can employ (3.1.1), finding that (3.1.9) can be written as

fα(γ + ω) + fα(γ) 6 Fα(ω, γ) γ 6
π − ω

2
. (3.1.10)

We remark that the constraints (3.1.6), (3.1.8) and (3.1.10) hold whenever the entangle-

ment entropy is given by (3.0.1) and (3.0.2), with corner functions which are regular enough

to define the derivatives occurring in these inequalities.

3.2 The boundary corner function in AdS4/BCFT3

In this section we study the holographic boundary corner function Fα(γ) defined in (3.0.3) and

(3.0.4). We will employ two simple entangling regions which allow us finding the analytic solu-

tion of the Ryu-Takayanagi minimal surface and the corresponding holographic entanglement

entropy. The first domain we consider is the half-disk centered on the boundary (Sec. 3.2.1)

from which we extract the quantity Fα(π/2). In the following subsection (Sec. 3.2.2) we study

the infinite wedge that provides the whole boundary corner function Fα(γ).

3.2.1 Half-disk centered on the boundary

Let us consider the half-disk A of radius R whose center is located on the boundary of the

BCFT3., i.e. in Cartesian coordinates A = {(x, y) ∈ R2 |x2 + y2 6 R2, x > 0}. In BCFT3 the

entanglement entropy of this domain has been studied in [264], by using the method of [224].

In our AdS4/BCFT3 setup the constraint z > −(cotα)z due to the occurrence of the half-

plane Q must be taken into account. The key observation is that the hemisphere x2+y2+z2 =

R2 in H3 intersects the half-plane Q orthogonally along a semi-circumference of radius R

centered on the origin. As discussed in Sec. 1.3.1, this hemisphere is the minimal area surface

anchored to the circular curve x2 + y2 = R2 in the z = 0 plane [31, 32, 217, 247]. Thus, the

minimal surface γ̂A corresponding to the half-disk A in presence of Q is part of the minimal
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Figure 3.3: Minimal surfaces γ̂A corresponding to the half-disk centered on the boundary. The green

half-plane is Q in (1.4.9), while the grey half-plane is z = 0. In the left panel α < π/2, while in the

right panel α > π/2. The green curve is γ̂A ∩ Q and the red curve is the entangling curve ∂A ∩ ∂B,

whose length enters in the area law term of (3.2.1). The yellow half-plane is defined by z = ε, and the

yellow curve corresponds to its intersection with γ̂A.

area surface γ̂A,aux = {(x, y, z) ∈ H3 |x2 + y2 + z2 = R2} anchored to the boundary of the

auxiliary domain A aux ⊂ R2 = ∂H3 given by a disk of radius R which includes A as a proper

subset. In particular γ̂A is the part of γ̂A,aux identified by the constraint x > −(cotα)z.

In Fig. 3.3 we show γ̂A for a case having α < π/2 in the left panel and for a case with

α > π/2 in the right panel. Notice that the boundary of γ̂A is a continuous curve made by

two arcs whose opening angles are equal to π: the arc in the z = 0 half-plane defined by

{(x, y) |x2 + y2 = R2, x > 0} and the arc given by ∂γ̂Q ≡ γ̂A ∩Q.

Since γ̂A reaches the boundary at z = 0, its area is infinite; therefore we have to introduce

the cutoff ε > 0 and consider the area of the restricted surface γ̂ε = γ̂A ∩ {z > ε} as ε→ 0+.

The details of this computation have been reported in the appendix B.1. For a given α ∈ (0, π)

we find

A[γ̂ε] = R2
AdS

(
πR

ε
+ 2(cotα) log(R/ε) +O(1)

)
. (3.2.1)

This expression is a special case of (3.0.3) corresponding to PA,B = πR and Fα,tot = 2Fα(π/2).

Thus, we have

Fα(π/2) = − cotα. (3.2.2)

As consistency check, we observe that Fπ/2(π/2) = 0. This is expected because (3.2.1) for

α = π/2 gives half of the area of the hemisphere x2 + y2 + z2 = R2 restricted to z > ε in H3.

Furthermore, by increasing the slope α of Q while A is kept fixed, the area A[γ̂ε] in (3.2.1)

decreases because of the coefficient of the logarithmic divergence, as expected.

The result (3.2.2) can also be obtained by considering a bipartition whose entangling curve

is a half straight line orthogonal to the boundary [161].

3.2.2 Infinite wedge adjacent to the boundary

Now we discuss the main result of this chapter. We compute the minimal surface γ̂A cor-

responding to an infinite wedge with opening angle γ ∈ (0, π/2] having one of its edges on

the boundary of the BCFT3. By evaluating the area of γ̂ε, an analytic expression for the
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Figure 3.4: Left: The opening angles occurring in the construction of the minimal surface γ̂A
anchored to the infinite wedge A (the yellow region) adjacent to the boundary with opening angle

γ. Here, α ∈ (0, π/2] while for the range α ∈ [π/2, π) see Fig. B.1. The entangling curve is the red

straight line given by φ = γ. The auxiliary wedge Aaux is the infinite wedge in R2 containing A whose

tip is P and whose edges are the red half-line and the black dashed line with the largest dashing. The

black dashed line with the smallest dashing at φ = φ0 corresponds to the bisector of Aaux. The blue

dashed half-line at φ = φ∗ corresponds to the projection of γ̂A ∩Q in the z = 0 plane. Right: Minimal

surface γ̂A anchored to the region A. The green half-plane is Q, and it intersects γ̂A along the green

line.

corner function Fα(γ) occurring in (3.0.4) is obtained. In the following, we report only the

main results of our analysis, while the technical details of their derivations are collected in

the appendix B.2.

Let us adopt the polar coordinates (ρ, φ) given by x = ρ sinφ and y = ρ cosφ for the

t = const slice of the BCFT3, in terms of which the region is A =
{

(ρ, φ) | 0 6 φ 6 γ , ρ 6 L
}

with L � ε. Since the wedge is infinite, we can look for the corresponding minimal surface

γ̂A among the surfaces described by the following ansatz

z =
ρ

q(φ)
(3.2.3)

where q(φ) > 0, as already done in [157] to get the minimal surface in H3 anchored to an

infinite wedge in R2.

The minimal surface γ̂A can be found as part of an auxiliary minimal surface γ̂A,aux em-

bedded in H3 and anchored to an auxiliary infinite wedge γ̂A,aux containing A and having the

same edge {(ρ, φ) |φ = γ}. The minimal surface γ̂A intersects orthogonally the half-plane at

z = 0 along the edge {(ρ, φ) |φ = γ} of A and the half-plane Q along the half-line given by

φ = φ∗. As remarked for the previous case, γ̂A is the part of γ̂A,aux identified by the constraint

z > −(cotα)z. For the infinite wedge A that we are considering, A aux is a suitable infinite

wedge in R2 and γ̂A,aux is the corresponding minimal surface found in [157]. On the left side

of Fig. 3.4 the auxiliary wedge A aux is shown (see also B.1 in the appendix B.2), while on
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Figure 3.5: Minimal surfaces γ̂A obtained with Surface Evolver corresponding to a region A given

by the intersection between the grey half-plane at z = 0 and a disk of radius R whose center has

coordinate x > 0. The entangling curve ∂A ∩ ∂B (red line) is an arc of circumference. The green

half-plane is Q defined by (1.4.9), and the green curve corresponds to γ̂A ∩ Q. In the figure ε = 0.03,

R = 1 and the center of the disk has coordinate x = 0.6. In the left panel α = π/3, while in the

right panel α = 2π/3. The numerical data of the corner function Fα(γ) corresponding to this kind of

domains are labeled by empty circles in Fig. 3.7.

the right side the minimal surface γ̂A in dark blue is shown with the auxiliary surface γ̂A,aux

depicted with a lighter color.

Given the half-plane Q described by (1.4.9), whose slope is α ∈ (0, π), the angle φ∗ which

identifies the half-line γ̂A ∩Q can be defined by introducing the following positive function

s∗(α, q0) ≡ − ηα
cotα√

2

{√
1 + 4(sinα)2(q4

0 + q2
0)− cos(2α)

(cosα)2 + q4
0 + q2

0

} 1
2

ηα ≡ − sign(cotα)

(3.2.4)

where q(φ0) ≡ q0 > 0 is the value of the function q(φ) at the angle φ = φ0 corresponding to

the bisector of the auxiliary wedge A aux. We find it convenient to adopt q0 as a parameter to

define various quantities in the following. From (3.2.4), we find φ∗ as

φ∗(α, q0) = ηα arcsin[s∗(α, q0)]. (3.2.5)

This result encodes the condition that γ̂A intersects Q orthogonally, as explained in the

appendix B.2.2.

To write the analytic expression for the opening angle γ of the infinite wedge in terms of

the positive parameter q0, let us introduce

q∗(α, q0) =
| cotα |
s∗(α, q0)

(3.2.6)

where s∗(α, q0) > 0 is given by (3.2.4). For the opening angle γ of A we find

γ = P0(q0) + ηα

(
arcsin[s∗(α, q0)]− P

(
q∗(α, q0), q0

))
(3.2.7)

where the function P (q, q0) is defined as

P (q, q0) ≡ 1

q0(1 + q2
0)

{
(1 + 2q2

0) Π
(
− 1/Q2

0 , σ(q, q0)
∣∣−Q2

0

)
− q2

0 F
(
σ(q, q0)

∣∣−Q2
0

)}
(3.2.8)
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Figure 3.6: Minimal surfaces γ̂A obtained with Surface Evolver corresponding to a region A delimited

by the red curve (entangling curve ∂A∩∂B) in the grey half-plane at z = 0, which has been obtained by

smoothly joining two segments of equal length L forming two equal corners with the boundary, whose

opening angle is γ. The green half-plane is Q defined by (1.4.9), and the green curve corresponds to

γ̂A ∩ Q. In the left panel α = π/3, L = 1 and γ = 0.8, while in the right panel α = 2π/3, L = 1 and

γ = 1. The numerical data of the corner function Fα(γ) corresponding to this kind of domains are

labeled by empty triangles in Fig. 3.7.

(in (B.2.9) we give the integral representation) being F(φ|m) and Π(n, φ|m) the incomplete

elliptic integrals of the first and third kind respectively, with

σ(q, q0) ≡ arctan

√
q2 − q2

0

1 + 2q2
0

Q2
0 ≡

q2
0

1 + q2
0

∈ (0, 1). (3.2.9)

The function P0(q0) in (3.2.7) is the limit P (q, q0) → P0(q0) as q → +∞. The explicit

expression of P0(q0) in terms of the complete elliptic integrals has been written in (1.3.28).

Here, we provide an equivalent form coming directly from (3.2.8), namely

P0(q0) =
1

q0(1 + q2
0)

{
(1 + 2q2

0) Π
(
−1/Q2

0 ,−Q2
0

)
− q2

0 K
(
−Q2

0

)}
(3.2.10)

being K(m) and Π(n|m) the complete elliptic integrals of the first and third kind respectively.

As for the holographic entanglement of the infinite wedge A adjacent to the boundary,

since γ̂A reaches the boundary z = 0, its area is infinite; therefore we have to consider its

restriction γ̂ε = γ̂A ∩ {z > ε} and take the limit ε→ 0+.

We find that the expansion of the area A[γ̂ε] of γ̂ε as ε→ 0 reads

A[γ̂ε] = R2
AdS

(
L

ε
− Fα(γ) log(L/ε) +O(1)

)
(3.2.11)

which is a special case of (3.0.3) and (3.0.4) with PA,B = L and Fα,tot = Fα(γ). The leading

linear divergence in (3.2.11) is the expected area law term and it comes from the part of γ̂ε

close the edge of A at φ = γ. The occurrence of the wedge leads to the important logarithmic

divergence, whose coefficient provides the corner function Fα(γ) we are interested in.

The corner function Fα(γ) has been computed in the appendix B.2.3 and the result is

Fα = F (q0) + ηα G
(
q∗(α, q0), q0

)
(3.2.12)
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Figure 3.7: The corner function Fα(γ) for some values of the slope α of the half-plane Q. The solid

curves are obtained from the analytic expressions (3.2.7) and (3.2.12), which provide the corner function

parametrically in terms of q0 > 0 (see also Fig. 3.8). The marked points have been found through our

numerical analysis based on Surface Evolver. The empty circles label the data points obtained from

the domain A in Fig. 3.5, while empty triangles label the data points found by employing the domain A

in Fig. 3.6. The same color has been adopted for the analytic curves and the data points corresponding

to the same α.

where F (q0) has been introduced in (1.3.27) and the function G(q, q0) is

G(q, q0) ≡
√

1 + q2
0

{
F
(
σ(q, q0)

∣∣−Q2
0

)
− E

(
σ(q, q0)

∣∣−Q2
0

)
+

√
(q2 + 1)(q2 − q2

0)

(q2
0 + 1)(q2 + q2

0 + 1)

}
.

(3.2.13)

The expression for q∗(α, q0) to use in (3.2.12) is (3.2.6).

The main results of this chapter are (3.2.7) and (3.2.12), which provide the analytic ex-

pression of the corner function Fα(γ) in a parametric form in terms of q0 > 0.

In Fig. 3.7 the solid curves corresponds to the corner function Fα(γ) for some values of α.

As for the argument of the corner function Fα(γ), we remind that γ ∈ (0, π/2]. Nonetheless,

whenever γ ∈ (0, π) we mean Fα(min[γ, π − γ]).

In Fig. 3.8 we show the surface given by the corner function Fα(γ) in terms of the opening

angle γ and the slope α ∈ (0, π). In this figure we have highlighted the sections corresponding

to the curves reported in Fig. 3.7 and also the curve Fα(π/2) (yellow curve).

We have employed Surface Evolver to find an important numerical evidence of our analytic

result. In this numerical analysis we have chosen domains A whose entangling curves ∂A∩∂B
correspond to the red solid curves in the z = 0 half-plane shown in Fig. 3.5 and in Fig. 3.6. In
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↵

�

F↵

Figure 3.8: The corner function Fα(γ) given by (3.2.7) and (3.2.12) in terms of γ ∈ (0, π/2] and

α ∈ (0, π) (grey surface). The solid curves corresponding to the α = const sections are the same ones

shown in Fig. 3.7, with the same colour code. The section γ = π/2 (yellow solid curve) is (3.2.2). In

the left panel of Fig. B.2 we depict the intersection between the grey surface and the red plane and in

the right panel of Fig. B.2 the intersection of the grey surface with the green plane is shown.

particular, in Fig. 3.5 we have that A is part of a disk which is not centered on the boundary

and in Fig. 3.6 the region A is made by two finite wedges with an edge on the boundary and

the same opening angle whose remaining edges are joined smoothly. In Fig. 3.5 and in Fig. 3.6

we show also the corresponding minimal surface γ̂A constructed with Surface Evolver for a

value α < π/2 (left panels) and for a value α > π/2 (right panels).

The marked points in Fig. 3.7 are the numerical values of the corner function Fα(γ) ob-

tained through the numerical analysis based on the data obtained from Surface Evolver, as

explained in the appendix 1.6. In particular, the empty circles and the empty triangles cor-

respond to the domains A shown in Fig. 3.5 and in Fig. 3.6 respectively. It turns out that the

domain A in Fig. 3.6 is more suitable to deal with small values of γ in our numerical approach.

Excellent agreement is obtained with the analytic result for the values of α and γ considered

in Fig. 3.7.

From Fig. 3.7 and Fig. 3.8 we observe that for the holographic corner function given by

(3.2.7) and (3.2.12) we have that F ′α(γ) 6 0 and also F ′′α(γ) > 0 for any fixed value of the

slope α ∈ (0, π). Furthermore, from Fig. 3.8 we also notice that ∂αFα(γ) > 0 for any fixed

value of γ ∈ (0, π/2]. It would be interesting to understand whether these properties come

from some more fundamental principles.

89



Chapter 3. Corner Contributions to HEE in AdS4/BCFT3

In Fig. 3.7 the curves corresponding to the critical value α = αc (red curve) given by (2.2.4)

and to α = π/2 (black curve) have been highlighted by employing thicker lines because these

values separate the range of α ∈ (0, π) into three intervals for α where the corner function

Fα(γ) has different features. In particular, when α > π/2 we have that Fα(γ) > 0, while when

α 6 αc we have that Fα(γ) 6 0. In the intermediate range α ∈ (αc, π/2) the corner function

does not have a definite sign in the whole range γ ∈ (0, π/2] and, being F ′α(γ) < 0, it has a

unique zero γ = γ0. The value γ0 in terms of α ∈ [αc, π/2] found numerically is shown in the

left panel of Fig. B.2.

From Fig. 3.7 we observe that the corner function Fα(γ) displays two qualitative different

behaviours as γ → 0+. Indeed, Fα(γ) → +∞ when α > αc, while it reaches a finite (non-

positive) value when α 6 αc. In Sec. 3.2.2 quantitative results about the regimes γ → 0+ and

γ → π/2 of Fα(γ) are obtained.

It would be interesting to get a direct numerical confirmation of the occurrence of αc

through Surface Evolver or other methods. Unfortunately, we have not been able to push

our numerical analysis to values of γ small enough to appreciate the qualitatively different

behaviour of the corner function for α 6 αc and α > αc.

Limiting regimes of the corner function

It is worth studying the corner function Fα(γ) in some particular regimes. In the following

we report only the main results of our analysis, referring the reader to the appendices B.2.3

and B.2.4 for a detailed discussion of their derivations.

An important special value to consider is α = π/2. In this case, it is straightforward

to realise that the minimal surface γ̂A is half of the auxiliary minimal surface γ̂A,aux in H3,

which is anchored to the auxiliary infinite wedge A aux with opening angle 2γ. Indeed, for

every α we have that γ̂A,aux in H3 is smooth and symmetric with respect to the half-plane

orthogonal to z = 0 passing through the bisector of A aux; therefore γ̂A,aux intersects this half-

plane orthogonally. When α = π/2 the half-plane characterising this reflection symmetry

coincides with Q.

As for the corner function at α = π/2, from the analytic expression (3.2.7) and (3.2.12)

we find respectively that

lim
α→π/2

γ = P0(q0) lim
α→π/2

Fα = F (q0). (3.2.14)

Further comments can be found in the closing remarks of the appendix B.2.3. Comparing

(3.2.14) with (1.3.26) and (1.3.28) respectively, we obtain

F̃ (2γ) = 2Fπ/2(γ). (3.2.15)

Thus, the corner function found in [157] and discussed in Sec. 1.3.3 is recovered as the special

case α = π/2 of the corner function Fα(γ) given by (3.2.7) and (3.2.12).

Now we consider the limiting regimes of γ → 0 and γ → π/2, which correspond to

q0 → +∞ and q0 → 0+ respectively (see the appendix B.2.4 for a detailed discussion).
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Taking the limit q0 → +∞ of (3.2.7) and (3.2.12), we obtain

γ =
g(α)

q0
+O(1/q3

0) Fα = g(α) q0 +O(1/q0) q0 → +∞ (3.2.16)

where g(α) is the same function introduced (2.2.2) and given by the red curve in Fig. 2.3.

The appearance of g(α) can be explained from a relation between the strip and the infinite

wedge in the limit γ → 0+. In appendix B.2.5 we perform a conformal transformation which

relates the infinite wedge on the half-plane to the strip of width ` on the half-cylinder with

semi-circumference L0. In the limit γ → 0+ and L0 → +∞ such that γL0 = `, the half-

cylinder becomes the half-plane allowing us to identify the infinite wedge when γ → 0+ with

the strip. The discussion reported in the appendix B.2.5 is a modification of the analogue one

in AdS4/CFT3 [189, 247, 265], obtained by taking into account the presence of the boundary.

We remark that we have different behaviors of the corner function Fα(γ) as γ → 0+,

depending on whether α ∈ (0, αc] or α ∈ (αc, π). Indeed, g(α) changes its sign at the critical

value α = αc defined by (2.2.3), whose numerical value is (2.2.4). Since γ and q0 must be

strictly positive, while g(α) 6 0 for α ∈ (0, αc], the expansion of γ in (3.2.16) is meaningful

in our setup only when α ∈ (αc, π). In this range, from the first expansion in (3.2.16) we find

that q0 = g(α)/γ + O(γ) as γ → 0. Then, plugging this result into the second expansion of

(3.2.16), we obtain

Fα =
g(α)2

γ
+O(γ) γ → 0+ α ∈ (αc, π). (3.2.17)

When α = αc the second expansion in (3.2.17) tells us that

Fαc(0) = 0. (3.2.18)

We can interpret this observation as a possible definition of αc in terms of the corner function.

The function Fα(0), which corresponds to finite values q̂0 of the parameter q0 for a given α,

can be found numerically in terms of α ∈ (0, αc) and the result of this analysis is shown in

the right panel of Fig. B.2 in the appendix B.2. In particular, when α = αc we have (3.2.18).

From Fig. 3.7 we observe that in the range α ∈ [αc, π/2) the function Fα(γ) vanishes at a

positive value γ0 of the opening angle. When α = αc we have γ0 = 0, as written in (3.2.18).

By solving numerically the equation Fα(γ0) = 0 for α ∈ [αc, π/2), we find the function γ0(α)

shown in the left panel of Fig. B.2.

When α ∈ (0, αc) we have g(α) < 0; therefore the expansions in (3.2.16) imply that γ → 0−

and Fα → −∞ as q0 → +∞. Since negative values of γ are meaningless in our context, we

do not consider the limit in this case.

As for the regime q0 → 0+, in the appendix B.2.4 we have computed the expansions of

the opening angle γ and of the corner function Fα, which are given by (3.2.7) and (3.2.12)

respectively, finding (B.2.47) and (B.2.51). From these results, we conclude that γ → π/2

and also that

Fα(γ) = − cotα+
(π/2− γ)2

2(π − α)
+O

(
(π/2− γ)4

)
(3.2.19)
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which agrees with the general expansion (3.1.2) for this kind of corner function. In particular,

we have that with Fα(π/2) = − cotα and F ′′α(π/2) = 1/(π − α). The expression for Fα(π/2)

confirms the expected result (3.2.2) obtained in Sec. 3.2.1 by considering the half-disk centered

on the boundary. Let us remark that the method discussed in the appendix B.2.4 allows to

computed also higher orders in (3.2.19). For instance, in (B.2.52) also the O((π/2−γ)4) term

has been reported.

3.2.3 Corner function from the modified Willmore functional

In the previous chapter, the shape dependence of the holographic entanglement entropy for

spacetimes with boundaries has been studied. The main result is the functional (2.1.18),

which reduces (2.1.24) when the spacetime is part of AdS4. The functional (2.1.18) and

(2.1.24) corresponds to the subleading term in the expansion of the area A[γ̂A]. As discussed

in Sec. (2.1), whenever the region A is smooth, i.e., has no corners and does not intersect the

boundary of the BCFT3, FA is finite in the limit ε→ 0+. On the other hand, the expression

(2.1.23) diverges logarithmically when it contains corners. In AdS4/CFT3, the emergence of

the logarithmic divergence from the Willmore functional (1.3.18) for domains with corners

has been studied in [78], where the corner function found in [157] has been recovered. In

this section, we discuss the occurrence of the logarithmic divergence in (2.1.23) for singular

domains in the AdS4/BCFT3 setup. Since we are interested in the flat boundary case, the

functional we will employing below is (2.1.25) with the only modification that the integral

will be taken over the restricted surface γ̂ε to tame the logarithmic divergence, i.e.

FA[γ̂ε] =

∫

γ̂ε

(ñz)2

z2
dÃ − (cosα)

∫

∂γ̂ε,Q

1

z
ds̃. (3.2.20)

Below, we show that the corner function Fα(γ) can also be obtained also from (2.1.25)

once the cutoff ε is reintroduced by focusing on the half-disk and the infinite wedge domains.

Half-disk centered on the boundary

In the integral (3.2.20), we have two contributions, the surface and the boundary integrals.

Let us observe that the former one provides a finite result as ε→ 0 because γ̂ε is part of the

hemisphere γ̂A ∪ γ̂A, aux and, being the integrand positive, the integral over γ̂ε is smaller than

the integral over the entire hemisphere γ̂A ∪ γ̂A, aux , which is finite (see (1.3.17)). Thus, all

the logarithmic divergence comes from the boundary integral in (3.2.20).

The intersection between γ̂A and Q is given by the following semi-circle

∂γ̂Q :

{
x2 + y2 + z2 = R2

z = −x tanα
. (3.2.21)

By employing the spherical coordinates

z = R sin θ cosφ x = −R sin θ sinφ y = R cos θ (3.2.22)
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one finds the following parametric representation of ∂γ̂Q

∂γ̂Q : (z, x, y) = R
(

sin θ cos(π/2− α) , − sin θ sin(π/2− α) , cos θ
)

θε 6 θ 6 π − θε.
(3.2.23)

The angle θε is given by the intersection of ∂γ̂Q with the cutoff z = ε; therefore it can be

found from the condition ε = R sin θε cos(π/2− α). Since the line element is ds̃ = Rdθ, from

(3.2.23) we easily obtain the following result for the line integral over ∂γ̂Q in (3.2.20) for this

configuration

∫

∂γ̂Q

b̃z

z
ds̃ = − cotα

∫ π−θε

θε

1

sin θ
dθ = − cotα log

[
tan(θ/2)

]∣∣∣
π−θε

θε
. (3.2.24)

As ε→ 0, at the leading order we obtain

∫

∂γ̂Q

b̃z

z
ds̃ = − 2 cotα log(R/ε) +O(1) (3.2.25)

as expected. Thus, the logarithmic divergence and its coefficient in (3.2.1) have been recovered

by specifying the functional (3.2.20) to this configuration, finding that they come from the

line integral over ∂γ̂Q.

Infinite wedge

Here we consider the infinite wedge. In this case, since showing that (3.2.20) reproduces the

corner function Fα(γ) is more involved, we underly the main steps leaving the details to the

appendix B.2.6.

First of all, we observe that, while for the half-disk centered on the flat boundary the

logarithmic divergence in the expansion of A[γ̂ε] comes only from the line integral over ∂γ̂Q,

for the infinite wedge both the surface integral over γ̂ε and the line integral over ∂γ̂Q provide

a logarithmic divergence. In particular, for the line integral over ∂γ̂Q we find

∫

∂γ̂Q

b̃z

z
ds̃ = − cotα

√
1 + (cosα cotφ∗)2 log(L/ε) +O(1). (3.2.26)

Notice that, since for the half-disk centered on the flat boundary φ∗ = ηα π/2, the expression

(3.2.26) is consistent with (3.2.25) (where we recall that the factor of 2 occurs because the

half-disk contains two corners).

The evaluation of the surface integral over γ̂ε in (3.2.20) is less straightforward than

(3.2.26) and it provides the following logarithmic divergent contribution

∫

γ̂ε

(ñz)2

z2
dÃ = I(q∗, q0) log(L/ε) +O(1) (3.2.27)

whose coefficient is given by

I(q∗, q0) ≡ F (q0)− ηα
(
S(q∗, q0) +

√
(q∗ − q0) (q∗ + q0) (q2∗ + q2

0 + 1)

q2∗ + 1

)
(3.2.28)
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where

S(q∗, q0) ≡
√
q2

0 + 1

[
E

(
i arccsch

q0√
q2 + 1

∣∣∣∣
− q2

0

q2
0 + 1

)
− F

(
i arccsch

q0√
q2 + 1

∣∣∣∣
− q2

0

q2
0 + 1

)] ∣∣∣∣∣

q∗

q0

.

(3.2.29)

By combining (3.2.26) and (3.2.27) as prescribed by the formula (3.2.20) (see the Ap-

pendix B.2.6 for some technical details), we recover exactly the expression (3.2.12) for the

corner function.

3.3 The coefficient AT from holography

In this section we describe the holographic computation of the coefficient AT defined in (3.4.3)

in the AdSd+2/BCFTd+1 setup of [89]. The main result of our analysis is the analytic ex-

pression of AT for arbitrary d > 1. The special case of d = 2 will be used in Sec. 3.4 to state

a relation with the quantity f ′′α(π/2) that appears in the expansion of the boundary corner

function obtained in the previous section.

The AdSd+2/BCFTd+1 construction of [89] has been described by employing the following

metric

ds2 = dξ2 +
[

cosh(ξ/RAdS)
]2
(
R2

AdS

− dt2 + dζ2 + d~y 2

ζ2

)
ζ > 0 (3.3.1)

where d~y 2 is the Euclidean flat metric of Rd−1. If ξ ∈ R, then the metric (3.3.1) describes

AdSd+2. Indeed, the change of coordinates

z =
ζ

cosh(ξ/RAdS)
x = − ζ tanh(ξ/RAdS) (3.3.2)

brings the metric (3.3.1) into the usual form (1.4.8) in terms of the Poincaré coordinates.

Notice that on a generic ξ = const slice of (3.3.1) the induced metric is the Poincaré metric of

AdSd+1. In terms of the coordinates occurring in (3.3.1), the half-hyperplane Q corresponds

to a particular ξ = const slice. From (3.3.2), we have that the conformal boundary where the

BCFTd+1 is defined is given by ξ → −∞.

In order to make contact with the coordinates mainly employed throughout this thesis,

we find it convenient to introduce the angular coordinate ψ ∈ (0, π) as follows

cotψ = − sinh(ξ/RAdS). (3.3.3)

From (3.3.2), it is straightforward to observe that

z

x
= − 1

sinh(ξ/RAdS)
= tanψ. (3.3.4)

In terms of the angular coordinate ψ ∈ (0, π) defined in (3.3.3), the metric (3.3.1) becomes

ds2 =
R2

AdS

(sinψ)2

(
dψ2 +

− dt2 + dζ2 + d~y 2

ζ2

)
. ζ > 0 (3.3.5)
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By employing the metric (3.3.5) in the AdSd+2/BCFTd+1 setup described in Sec. 1.4.3,

where the boundary of the BCFTd+1 is a flat hyperplane, we have that the half-hyperplane

Q in (1.4.9) is given by ψ = π − α, with α ∈ (0, π), and the spacetime of the BCFTd+1

corresponds to the limit ψ → 0+. Indeed, (3.3.4) tells us that the limit z → 0+ for fixed x > 0

corresponds to ψ → 0+.

In order to find AT for the AdSd+2/BCFTd+1 construction proposed in [89], one introduces

a non-vanishing extrinsic curvature kij for the boundary of the BCFTd+1 and solves the

Einstein equations with the Neumann boundary condition Kµν = (K − T )hµν proposed by

[89] perturbatively in kij , considering only the first order in the perturbation.

Since we consider the first non-trivial order in the curvature of the boundary, the metric

of the BCFTd+1 close to the boundary can be written as the follows

ds2 = dx2 +
(
ηij − 2x kij + . . .

)
dY idY j (3.3.6)

where Y i = (t, ~y ) and ηij is the d dimensional Minkowski metric. The dots denote higher-

order terms in the extrinsic curvature and in the distance x. In the literature, this gauge

choice is sometimes called geodesic slicing.

In order to find the bulk metric corresponding to (3.3.6), in the following, we employ the

ansatz recently suggested in [266] written in the coordinates adopted in (3.3.5). Also, in [91] a

similar analysis has been performed. In particular, let us consider the perturbation of (3.3.5)

given by

ds2 =
R2

AdS

(sinψ)2

(
dψ2 +

dζ2 +
(
ηij − 2 ζ cosψ pd(ψ)κij

)
dY idY j

ζ2

)
+O(k2) (3.3.7)

where κij = kij − (k/d)ηij is the traceless part of the extrinsic curvature and the boundary

condition pd(0) = 1 is imposed to recover (3.3.6) for the BCFTd+1.

The metric (3.3.7) is a solution of the Einstein equations with negative cosmological con-

stant up to O(k2) terms when pd(θ) solves the following ordinary differential equation

sin(2ψ) p′′d(ψ)− 2
[

(d− 2)(cosψ)2 + 2
]
p′d(ψ) = 0. (3.3.8)

We remark that in (3.3.7) κij occurs in the perturbation (and not kij) without loss of

generality. Indeed, if we start with a metric like (3.3.7) where κij is replaced by kij and ηij by

ηij [1 + ζ cosψ qd(ψ) k ], being k the trace of kij , we would find that the Einstein equations at

the first perturbative order in the extrinsic curvature provide again the equation (3.3.8) for

pd(ψ) besides another equation for the function qd(ψ). Otherwise, if we start with an ansatz

like (3.3.7) with κij just replaced by kij , the Einstein equations to this order would lead to

(3.3.8), as expected, and also the condition that k = 0.

The general solution of (3.3.8) reads

pd(ψ) = Bd +
Cd

cosψ
2F1

(
− 1/2 , (1− d)/2 ; 1/2 ; (cosψ)2

)
(3.3.9)

where Bd and Cd are integration constants. The requirement that (3.3.9) satisfies the bound-

ary condition pd(0) = 1 leads to

Bd = 1−
√
π Γ(d+1

2 )

Γ(d2)
Cd. (3.3.10)
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Thus, the solution of (3.3.8) fulfilling the constraint pd(0) = 1 can be written as

pd(ψ) = 1 + Cd Pd(ψ) (3.3.11)

where

Pd(ψ) ≡ 1

cosψ
2F1

(
− 1/2 , (1− d)/2 ; 1/2 ; (cosψ)2

)
−
√
π Γ(d+1

2 )

Γ(d2)
. (3.3.12)

We find important to remark that the combination pd(ψ) cosψ occurring in the metric is

smooth for ψ ∈ (0, π).

In the following we show that the constant Cd in (3.3.11) can be fixed in order to have that

the half-hyperplane Q given by ψ = π− α is a solution of the Neumann boundary conditions

Kab = (K − T )hab of [89] up to O(k2) terms.

Considering the metric ds2 = gµνdx
µdxν defined in (3.3.7), the outward unit normal vector

of the half-hyperplane Q is nµ = L−1
AdS( sinα,~0 ). As for the extrinsic curvature of Q, we find

that its non-vanishing components are given by

Kζζ =
RAdS sinψ

2 ζ2
∂ψ

(
1

sin2 ψ

)∣∣∣∣
ψ=π−α

(3.3.13)

KY iY j =
RAdS sinψ

2
∂ψ

(
1

ζ2 sin2 ψ
δij −

2 pd(ψ) cosψ

ζ sin2 ψ
kij

)∣∣∣∣
ψ=π−α

. (3.3.14)

Taking the trace of the Neumann boundary conditions, it is straightforward to observe that

they can be written as Kab = (T/d)hab. Since T = (d/RAdS) cosα for the half-hyperplane Q,

the condition to impose in order to get the solution given byQ becomes Kab = (cosα/RAdS)hab

at ψ = π − α. At O(k), the component having (a, b) = (ζ, ζ) is identically satisfied, while the

components with (a, b) = (Y i, Y j) lead to the following equation

(cotα) p′d(π − α) + pd(π − α) = 0. (3.3.15)

Plugging (3.3.11) into (3.3.15), we obtain an equation for the integration constant Cd that

can be easily solved. For α ∈ (0, π), we find

1

Cd
= −Pd(π − α)− cotα ∂ψPd(ψ)

∣∣
ψ=π−α (3.3.16)

=
1

cosα
2F1

(
− 1/2 , (1− d)/2 ; 1/2 ; (cosα)2

)
− (sinα)d−1

cosα
+

√
π Γ(d+1

2 )

Γ(d2)
.

Let us observe that Cd = 1/(π − α)d−1 + . . . when α→ π and also that

∂α
(
1/Cd

)
= − (d− 1)(sinα)d−2. (3.3.17)

Comparing (3.3.17) with (A.2.12) it is straightforward to observe that ∂α
(
1/Cd

)
= ∂α g1/d.

This observation suggests performing a direct comparison between (3.3.16) and (A.2.11),

which provides the following intriguing relation

1

Cd(α)
= g1/d(α). (3.3.18)
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It would be interesting to explore whether this observation leads to some physical insights.

We find it worth considering the special cases of d = 2 and d = 3 explicitly.

In AdS4/BCFT3, the expressions (3.3.12) and (3.3.16) give respectively

P2(ψ) = tanψ − ψ (3.3.19)

and

C2 =
1

π − α. (3.3.20)

In the case of AdS5/BCFT4 we have that (3.3.12) simplifies to

P3(ψ) = cosψ + secψ − 2 (3.3.21)

and (3.3.16) leads to

C3 =
1

2 (1 + cosα)
. (3.3.22)

In the remaining part of this appendix, we show that the constant Cd is proportional to

the constant AT defined by (3.4.3).

According to the holographic prescription of [218], the expansion close to the boundary of

the one-point function 〈Tij 〉 of the stress tensor in the BCFT3 is given by

〈Tij 〉 =
(d+ 1)RdAdS

16πGN

lim
z→ 0

g(1)

ij

zd−1
x→ 0+ (3.3.23)

being g(1)

ij the O(k) perturbation, which can be read from (3.3.7), finding

g(1)

ij = − 2 cosψ pd(ψ)

(sinψ)2 ζ
κij (3.3.24)

where pd(ψ) is (3.3.11) with the constant Cd given by (3.3.16)

In order to recover the expression (3.4.3) from (3.3.23), we have to exploit the relations

among the various coordinates. In particular, from (3.3.3) we have that ξ → −∞ as ψ → 0+.

Furthermore, taking this limit in the second expression in (3.3.2), one finds ζ → x. By

considering the O(ψd+1) term in the expansion of pd(ψ) for ψ → 0, we obtain

lim
z→ 0

g(1)

ij

zd−1
= − 2Cd

(d+ 1)xd
κij (3.3.25)

where we used that z/x = ψ and ζ = x when ψ → 0+.

Finally, by plugging (3.3.25) into (3.3.23), we find that

〈Tij 〉 =
AT
xd

κij + . . . x→ 0+ AT = − RdAdS

8πGN

Cd (3.3.26)

which corresponds to the expected BCFTd+1 behaviour (3.4.3). The proportionality relation

between AT and the integration constant Cd comes from the dual gravitational description of

the BCFTd+1 at strong coupling.
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We can write AT explicitly by employing the expression of Cd that can be read from

(3.3.16). The result is

AT = − RdAdS

8πGN

[
1

cosα
2F1

(
− 1/2 , (1− d)/2 ; 1/2 ; (cosα)2

)
− (sinα)d−1

cosα
+

√
π Γ(d+1

2 )

Γ(d2)

]−1

.

(3.3.27)

We find worth remarking that AT can be written also in terms of the function gd(α) defined

in (A.2.11). From (3.3.26) and the relation (3.3.18), we obtain

AT = − RdAdS

8πGN

1

g1/d(α)
. (3.3.28)

The function AT (α) is negative and decreasing function in the range α ∈ (0, π), Indeed,

for α = 0 we find

AT
∣∣
α= 0

=
RdAdS

8πGN

(
2
√
π Γ(d+1

2 )

Γ(d2)
− δd,1

)−1

(3.3.29)

which is negative for every value of d. Moreover, from (3.3.17) it is straightforward to observe

that

∂αAT (α) =
RdAdS

8πGN

C2
d ∂α(1/Cd) = − RdAdS

8πGN

(d− 1)(sinα)d−2C2
d (3.3.30)

which implies ∂αAT (α) 6 0 for α ∈ (0, π). Furthermore, let us notice that the behaviour of

Cd as α→ π leads to conclude that AT (α) = − RdAdS
8πGN

(π − α)−(d−1) in this limit.

In the special case of d = 2, the expression (3.3.27) of AT simplifies to

AT = − R2
AdS

16πGN

2

π − α (3.3.31)

and this result will be crucial to observe the relation (3.4.6) presented in the next section.

The computation described above has been done for d = 2 and d = 3 also in [266] and

non-smooth expressions for AT have been found in the regime α ∈ (0, π).

3.4 Relations between the stress-energy tensor and the bound-

ary corner function

In this section, we are going to explore possible universal relations among the corner functions

and other quantities of the underlying BCFT3 model.

In CFT3, an important example of universal relation involves the corner function f̃(θ) and

the two-point function (1.1.22) of the stress tensor Tij , which has been discussed in Sec. 1.1.21.

We recall that by considering the coefficient σ̃ = f̃ ′′(π)/2 of the leading term in the expansion

f̃(θ) = σ̃(π − θ)2 + . . . as θ → π−, it has been found that [63, 265]

σ̃

CT
=
π2

24
. (3.4.1)

1In this section, we will use Latin indices for the components of the BCFTd+1, while Greek indices are

reserved for the bulk spacetime
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In AdS4/CFT3 the holographic corner function is f̃(θ) =
R2

AdS
4GN

F̃ (θ), as discussed in

Sec. 1.3.3. Denoting by σ̃E the coefficient σ̃ for this holographic corner function in a bulk

theory described by Einstein gravity, we have that σ̃E =
R2

AdS
8GN

F̃ ′′(π). Considering the corner

function Fα(γ) in AdS4/BCFT3 given by (3.2.7) and (3.2.12), in Sec. 3.2.2 the relation (3.2.14)

has been observed when α = π/2. Taking the limit γ → π/2 of (3.2.14) by employing (3.1.2)

and Fπ/2(π2 ) = 0, one finds that 2F̃ ′′(π) = F ′′π/2(π2 ). The latter relation and F ′′α(π2 ) = 1/(π−α)

(see (3.2.19)) evaluated for α = π/2 provide σE =
R2

AdS
16GN

F ′′π/2(π2 ) =
R2

AdS
8πGN

. Then, by employing

the holographic result CT = 3R2
AdS/(π

3GN) =
R2

AdS
16πGN

(48/π2) found in [267, 268], one obtains

σ̃E/CT = π2/24, which corresponds to (3.4.1) in the holographic setup determined by the

Einstein gravity in the bulk. Thus, consistency has been found between (3.2.14) and the ratio

(3.4.1).

We find it interesting to explore the possibility that universal relations also exist for

BCFT3. In Sec. 1.2.1 we have seen that in a BCFT3 the presence of the boundary leads to a

non-trivial Weyl anomaly localised on the boundary, which is given by [88, 205]

〈T i
i 〉 =

1

4π

(
− aR+ qTrκ2

)
δ(∂M3) (3.4.2)

where δ(∂M3) is the Dirac delta whose support is ∂M3. Furthermore, we discussed that

the one-point function of the stress-tensor is non-trivial when the boundary is curved and, in

terms of the proper distance X from ∂M3, it is given by [199]

〈Tµν 〉 =
AT
X2

κij + . . . X → 0+ (3.4.3)

In the above equations, R is the Ricci scalar corresponding to the induced metric hij on ∂M3

and κij is the traceless part of the extrinsic curvature of M3. The constants a and q are the

boundary central charges, which depends on the underlying model and also on the conformally

invariant boundary conditions characterising the BCFT3, which have been computed for some

free models in [88, 91, 208]. The coefficient AT has been computed in four dimensions in [199]

and it has been found to be proportional to q in [200].

Let us focus on the holographic corner function fα(γ) =
R2

AdS
4GN

Fα(γ), where Fα(γ) is given

by (3.2.7) and (3.2.12).

Let us recall that in the AdS/BCFT construction discussed in [89], the Neumann boundary

conditions given by Kµν = (K − T )hµν have been imposed to define the hypersurface Q in

the bulk delimiting the gravitational spacetime. Instead, in [158–160] it has been proposed to

employ the less restrictive boundary condition K = d+1
d T to find Q̃. When the boundary of

the BCFT3 is flat, both these prescriptions provides the half-plane Q̃ = Q given by (1.4.9).

In Sec. 1.4.2, by following [90] we found for a BCFT3 defined on the three-dimensional

sphere (in the Euclidean signature) that [90]2

a =
R2

AdS

4GN

(− cotα) (3.4.4)

which means that a = fα(π/2) in the holographic setup. Recently, in [269] the authors showed

by employing the method of [224] that the relation a = fα(π/2) is actually true for a generic

2 Comparing with the notation of [90], we find that (− cbdy/6)
∣∣
there

= a .
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BCFT3. On the other hand, in [208], it has been shown that this relation fails for the scalar

field because of the occurrence of a non-minimal coupling to the curvature. This seems to be

a puzzle that, at this stage, has not been solved yet. We think that checking the validity of

fα(π/2) = a by employing other models is an interesting issue for future studies.

We mention also that using instead the restricted boundary conditions K = d+1
d T , the

relations q = a = fα(π/2) have been obtained [158–160]. Notice that the relation q = a is not

true for a free scalar [88, 91, 208].

We remark that, since the holographic corner function given by (3.2.7) and (3.2.12) has

been found for a flat boundary, it should be the same for both the above AdS4/BCFT3 con-

structions, once the prescription (1.3.2) for the holographic entanglement entropy is accepted.

In the remaining part of this section we explore a relation involving the coefficient f ′′α(π/2)

of the expansion (3.1.2) of the holographic corner function as γ → π/2.

In AdS4/BCFT3 we have found that F ′′α(π/2) = 1/(π − α) (see (3.2.19)); therefore for

α = π/2 we have

f ′′α(π/2) =
R2

AdS

16πGN

4π

π − α. (3.4.5)

By employing the AdS/BCFT construction of [89] and the standard approach to the

holographic stress tensor [218, 270, 271], in Sec. 3.3 we have revisited the analysis of [266]3

finding the expression of AT in AdSd+2/BCFTd+1 with the boundary conditions of [89] (see

(3.3.27)). In the special case of d = 2, for α ∈ (0, π) we obtain (3.3.31).

From (3.4.5) and (3.3.31), we observe that in the AdS4/BCFT3 setup of [89] the ratio

f ′′α(π/2)/AT is independent of the slope α, which should be related to the conformally invariant

boundary conditions allowed for the dual BCFT3. In particular this ratio reads

f ′′α(π/2)

AT
= − 2π. (3.4.6)

We find it very interesting to compute the ratio (3.4.6) also for other BCFT3. Free

quantum field theories are the simplest models to address in this direction. We mention that

in [272] the numerical result of f ′′α(π/2) for the free scalar boson with Dirichlet boundary

conditions has been found, and it does not agree with our (3.4.6). However, the scalar boson

seems to be anomalous due to the non-minimal coupling to the curvature mentioned above.

It is certainly worth to test (3.4.6) also for the free fermions.

3.5 Transitions in the presence of corners

The main aim of this section is to discuss the vertices of the Q-type depicted in Fig. 3.1 in

the AdS4/BCFT3 framework. In this case, two different extremal surfaces compete, and a

transition occurs at a certain value of the angles (γ, ω) = (γc, ωc).

To begin with, we will consider the case of AdS4/CFT3 where similar transitions take

place for two corners which share the same tip (see the right side of Fig. 3.1). Then, we move

to the AdS4/BCFT3 setup where we find the analytic expression of Fα(ω, γ) discussed in the

introduction of this chapter.

3 In Sec. 3.3 the differences between our results and the ones obtained in [266] are discussed.
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Figure 3.9: Triangulated surfaces in H3 approximating the minimal area surfaces γ̂A which correspond

to two different double drop regions A described in Sec. 3.5.1. For these domains φ1 = φ2 ≡ φ and

ϕ1 = ϕ2 = π − φ. The boundary ∂A (red curve) belongs to the z = 0 plane and the UV cutoff is

ε = 0.03. Top: L = 2 and φ = 1.4 (below φc = π/2). Bottom: L = 1 and φ = 2.2 (above φc = π/2).

3.5.1 Two corners with the same tip

Let us consider the domain obtained as the union A = A1 ∪A2 of two single drop regions4 A1

and A2, where A1 and A2 have the same tip W , as in the right side of Fig. 3.1. In particular,

W is the only element of their intersection, i.e. A1 ∩A2 = {W}. The boundary ∂A is smooth

except at the vertex W , where four lines join together. Considering the four adjacent corners

with the common vertex W , let us denote by φ1 and φ2 the opening angles of the corners

in A1 and A2 respectively and by ϕ1 and ϕ2 the opening angles of the other two corners

which do not belong to A. We can assume 0 < φ1 6 φ2 and 0 < ϕ1 6 ϕ2 without loss

of generality. The configuration of the corners around W can be characterised by the three

angles ~φ = (φ1, ϕ1, φ2).

In Sec. 1.3.3 of chapter 1, by following [157] we have studied the minimal surfaces anchored

to entangling curves with a single corner, finding the general expressions (1.3.23) and (1.3.24).

In this section, we employ such expressions to compute the holographic entanglement entropy

for “double drop” regions A. The coefficient of the logarithmic divergence of A[γ̂ε] comes

4We recall that the drop regions have been defined in the Sec. 1.3.3 of the first chapter.
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from the contribution of the vertex W and it is given by F̃tot = F̃
(
~φ
)
.

Symmetric configurations can be considered by imposing constraints among the compo-

nents of ~φ. For instance, we can study domains such that A1 and A2 coincide after a proper

rigid rotation of one of them. In these cases the configuration of the corners at the common

tip W is determined by two parameters: the opening angle φ1 = φ2 ≡ φ and the relative

orientation given by ϕ1. Let us stress that the coefficient of the logarithmic term is deter-

mined by the local configuration of corners around the vertex W and it is not influenced by

the shape of the entire domain A.

We consider first the configuration where the two drop regions A1 and A2 are symmetric

with respect to their common tip W . This means that φ1 = φ2 ≡ φ and also ϕ1 = ϕ2 ≡ ϕ.

The resulting domain A is symmetric w.r.t. two orthogonal straight lines whose intersection

point is W . Since ϕ + φ = π, the coefficient of the logarithmic divergence in (1.3.23) is

determined only by the angle φ for these cases, namely F̃tot = F̃(φ). In particular, it is not

difficult to realise that for these configurations the corner function is given by [273]

F̃(φ) = 2 max
{
F̃ (φ) , F̃ (π − φ)

}
(3.5.1)

being F̃ (φ) the corner function given by (1.3.26) and (1.3.28). The factor 2 in (3.5.1) is due

to the fact that the two opposite wedges provide the same contribution.

A critical value φc for the common opening angle occurs when the two functions compared

in (3.5.1) takes the same value. From the arguments of the F̃ ’s in (3.5.1), it is straightforward

to find that φc = π/2.

In Fig. 3.9 we show two triangulations obtained with Surface Evolver which approximate

the corresponding minimal surface γ̂A in the two cases of φ < φc (top panel) and φ > φc

(bottom panel). The crucial difference between them can be appreciated by focussing around

the common tip W . Indeed, when φ < φc the points of γ̂A close to the tip have coordinates

(x, y) ∈ A and γ̂A is made by the union of two minimal surfaces like the one in Fig. 1.7 which

have the same tip. Instead, when φ > φc the points of γ̂A close to the tip have coordinates

(x, y) /∈ A. This leads to the expression (3.5.1) for the coefficient of the logarithmic divergence

in the expansion of A[γ̂ε]. The minimal surface γ̂A is symmetric w.r.t. two half-planes

orthogonal to the z = 0 plane whose boundaries are the two straight lines which characterise

the symmetry of A. In Fig. 3.9 the symmetry w.r.t. one of these two half-planes is highlighted

by the fact that the triangulation is shown only for half of the surface, while the remaining

half-surface is shaded. This choice makes evident the curve given by the intersection between

this half-plane and γ̂A when φ > φc.

In Fig. 3.10 we show the results of our numerical analysis for this kind of symmetric regions.

The points labeled by red triangles are obtained from triangulated surfaces like the one in

the top panel of Fig. 3.9, while the points labeled by black circles correspond to triangulated

surfaces like the one in the bottom panel of the same figure. The solid blue curve in Fig. 3.10

is obtained from the analytic expression (3.5.1). The agreement of our numerical results with

the expected analytic curve is very good. This strongly encourages us to apply this numerical

method to study more complicated configurations.

Another class of symmetric configurations is made by double drop regions A which are
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Figure 3.10: Corner function for a vertex with four edges in AdS4/CFT3 in the symmetric case where

φ1 = φ2 ≡ φ and ϕ1 = ϕ2 = π − φ (see Sec. 3.5.1). The points labeled by the red triangles come from

surfaces like the one in the top panel of Fig. 3.9, while the points labeled by the empty black circles

are obtained from surfaces like the one in the bottom panel of Fig. 3.9. The solid curve corresponds to

the analytic expression (3.5.1).

symmetric with respect to a straight line passing through the vertex W . There are two

possibilities: either the intersection between this straight line and A is only the common

tip (in this case φ1 = φ2 ≡ φ) or such intersection is given by a finite segment belonging

to A (in this case ϕ1 = ϕ2 ≡ ϕ). In both these cases, a constraint reduces the number of

independent opening angles to two. Focussing on the coefficient of the logarithmic divergence,

one can consider the limit of infinite wedges and employ the property SA = SB of the pure

states in this regime. This leads to conclude that these two options are equivalent and that

the corresponding corner functions become the same because the property SA = SB allows

exchanging ϕj ↔ φj . Nonetheless, we find it instructive to discuss both of them separately

because they look very different when A is a finite domain.

As for the former class of configurations, by choosing the angles ~φ = (φ, ϕ1) as independent

variables, the remaining angle ϕ2 is determined by the consistency condition 2φ+ϕ1+ϕ2 = 2π.

The area of the minimal surface anchored to this kind of regions is given by (1.3.23) where

F̃tot = F̃
(
~φ
)

and the corner function reads

F̃
(
~φ
)

= max
{

2 F̃ (φ) , F̃ (ϕ1) + F̃ (ϕ2)
}

(3.5.2)

where we remind that F̃ (ϕ2) = F̃ (min[ϕ2 , 2π − ϕ2]). Also this case has been considered in

[273]. When the two expressions occurring in the r.h.s. of (3.5.2) are equal, a transition occurs.

This condition determines a critical value ϕ1,c = ϕ1,c(φ) in terms of φ < π. In Fig. 3.11 we

show two examples of minimal surfaces anchored to double drop regions that have this kind
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Figure 3.11: Triangulated surfaces in H3 which approximate the minimal area surfaces γ̂A corre-

sponding to two different double drop regions A which are symmetric w.r.t. a straight line passing

through the vertex. For these domains φ1 = φ2 ≡ φ (see Sec. 3.5.1). The boundary ∂A (red curve)

belongs to the z = 0 plane and the UV cutoff is ε = 0.03. Top: L = 1.5 with φ = 0.9 and ϕ1 = 0.671.

Bottom: L = 1.5 with φ = 0.8 and ϕ1 = 0.378.

of symmetry. In particular ϕ1 > ϕ1,c in the top panel and ϕ1 < ϕ1,c in the bottom panel.

Considering the second class of configurations introduced above, where ϕ1 = ϕ2 ≡ ϕ, we

have that φ1 + φ2 + 2ϕ = 2π and therefore two angles fix the configurations of the corners

in the neighbourhood of the common tip. One can choose e.g. ~φ = (φ1, φ2). For this kind

of double drop domains the coefficient of the logarithmic divergence in the area (1.3.23) is

F̃tot = F̃
(
~φ
)

with

F̃
(
~φ
)

= max
{
F̃ (φ1) + F̃ (φ2) , 2 F̃ (ϕ)

}
. (3.5.3)

As expected, also in this case two local solutions for the minimal surface exist and the global

minimum provides the holographic entanglement entropy. The transition between the two

kinds of solutions occurs when the two expressions in the r.h.s. of (3.5.3) are equal and this

corresponds to a critical value for φ1,c = φ1,c(ϕ). Notice that (3.5.2) and (3.5.3) exchange if

φj ↔ ϕj , as observed above.

For a generic double drop region A, we cannot employ symmetry arguments. Only the

constraint φ1 + φ2 + ϕ1 + ϕ2 = 2π holds; therefore the configuration of corners at W is
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Figure 3.12: Minimal surfaces γ̂A obtained with Surface Evolver and anchored to a single drop A

(whose boundary is the solid red curve in the z = 0 grey half-plane) which has only the tip on the

boundary. Here A has been chosen in a symmetric way (i.e. γ̃ = γ). In the left panel α = π/2.5,

ω = 2.6 and L = 0.5, while in the right panel α = 2π/3, ω = π/2 and L = 1.5. In both panels ε = 0.03.

This kind of minimal surfaces have been constructed to find the data corresponding to ω > ωc in

Fig. 3.13, which have been labeled by empty black circles.

determined by three independent angles, which are e.g. ~φ = (φ1, ϕ1, φ2). The expansion of

the area of the corresponding γ̂ε is (1.3.23) with F̃tot = F̃
(
~φ
)
, with the corner function given

by

F̃
(
~φ
)

= max
{
F̃ (φ1) + F̃ (φ2) , F̃ (ϕ1) + F̃ (ϕ2)

}
. (3.5.4)

The transition occurs when the two expressions in the r.h.s. of (3.5.4) are equal. This condition

provides a critical surface in the parameter space described by (φ1, ϕ1, φ2) with φ1 6 φ2.

3.5.2 Corners with only the tip on the boundary

In this subsection, we consider the domain given by an infinite wedge having its tip on the

boundary whose edges do not belong to it. In a generic BCFT3 the entanglement entropy

of this region contains a logarithmic divergence whose coefficient provides a corner function

Fα(~ω) which in general cannot be determined from the corner function fα(γ) corresponding

to the infinite wedge adjacent to the boundary. In the following, we explain that for the

holographic entanglement entropy in AdS4/BCFT3 this analysis significantly simplifies and

the corner function Fα(ω, γ) corresponding to this kind of wedge (see (3.0.4)) can be written

in a form which involves the corner function Fα(γ) presented in Sec. 3.2.2 and the corner

function F̃ (θ) reviewed in Sec. 1.3.3.

Let us consider the infinite wedge A with opening angle ω < π which has only the tip

on the boundary x = 0. Domains containing this kind of corner occur in Fig. 3.2, where

they are labeled by C and Cj . Setting the origin of the Cartesian coordinates in the tip of

the wedge A, we have that the boundary x = 0 is split into two half-lines corresponding to

y < 0 and y > 0. Denoting by γ < π and γ̃ < π the opening angles of the corners in B, the

supplementarity condition ω + γ + γ̃ = π holds. We can assume that γ 6 γ̃ without loss of

generality. Combining this inequality with the supplementarity condition, it is straightforward

to observe that γ 6 (π − ω)/2. Instead, since γ̃ is not restricted, we have that γ̃ ∈ (0, π). In

the following we denote by L � ε the length of the edges of A, as done in Sec. 3.2.2 for the

wedge adjacent to the boundary.
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Figure 3.13: The corner function (3.5.6) for symmetric configurations of the infinite wedge (i.e.

γ̃ = γ). The slope α of Q is different in the two panels: α = π/2.3 (left) and α = 2π/3 (right). The

solid blue line is obtained from the analytic expression (3.5.6). The data points have been found by

constructing minimal surfaces with Surface Evolver anchored to single drop domains whose opening

angle of the corner is ω. The minimal surfaces corresponding to the empty black circles are connected

to Q (see e.g. Fig. 3.12), while the ones corresponding to the empty red triangles are disconnected

from Q. The critical value ωc is defined by (3.5.7). Notice that ωc > π/2 when α < π/2 and ωc < π/2

when α > π/2.

Since the edges of A do not belong to the boundary x = 0, the minimal surface γ̂A is

anchored to both of them. Moreover, the expansion of the area of γ̂ε is (3.0.3) with PA,B = 2L

and the coefficient of the logarithmic divergence (3.0.4) is given by Fα,tot = Fα(ω, γ).

It is not difficult to realise that there are two candidates for γ̂A which are local solutions of

the minimal area condition in presence of Q. The first one is a surface γ̂ dis
A which connects the

two edges of A through the bulk and is disconnected from the half-plane Q. Since γ̂ dis
A ∩Q = ∅,

we have that γ̂ dis
A is the minimal area surface found in [157], which has been discussed in

Sec. 1.3.3. The second solution is a surface γ̂ con
A which connects the two edges of A to Q

through the bulk. It is given by the union of two disjoint surfaces where each of them is like

the one found in Sec. 3.2.2; therefore γ̂ con
A ∩ Q is made by two half-lines departing from the

tip of the wedge.

The area A[γ̂ε], which provides the holographic entanglement entropy for this infinite

wedge A, is the minimum between the area of γ̂ dis
A ∩ {z > ε} and the area of γ̂ con

A ∩ {z > ε}.
Being PA,B = 2L for both γ̂ dis

A and γ̂ con
A , the minimal area surface γ̂A must be found by

comparing the coefficients of the subleading logarithmic divergence. This comparison leads

to the following corner function

Fα(ω, γ) = max
{
F̃ (ω) , Fα(γ) + Fα(γ̃)

}
γ̃ = π − (ω + γ) (3.5.5)

where the first function within the parenthesis corresponds to γ̂ dis
A and the second one to γ̂ con

A .

The corner function F̃ (ω) is the one found in [157] and reviewed in Sec. 1.3.3, while Fα(γ) is

the corner function discussed in Sec. 3.2.2. Let us remind that, since γ̃ ∈ (0, π) in (3.5.5) we

mean Fα(γ̃) = Fα(min[ γ̃ , π − γ̃ ]), as stated in Sec. 3.1.

It could be useful to compare (3.5.5) with (3.5.2). Indeed, by extending the half-plane

x > 0 to the whole R2 and including the reflected image of A obtained by sending x → −x,
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Figure 3.14: Infinite wedge with only the tip on the boundary and γ̃ = γ: The critical opening angle

ωc as function of α > αc. The curve has been found by solving (3.5.7) numerically.

one obtains the symmetric configuration of corners underlying (3.5.2). Nonetheless, let us

stress that (3.5.5) with (3.5.2) are not equivalent because in (3.5.5) the boundary conditions

(which correspond to α in this holographic setup) play a central role.

The corner function (3.5.5) occurs in the constraints from the strong subadditivity found

in Sec. 3.1. In the appendix B.3 we show that the holographic corner functions Fα(γ) and

Fα(ω, γ) fulfils these constraints.

For the sake of simplicity, let us consider first the subclass of infinite wedges which are

symmetric with respect to the half-line departing from the tip and orthogonal to the boundary.

For these wedges γ̃ = γ; therefore the supplementarity condition implies that γ = (π −
ω)/2. Thus, these configurations are fully determined by ω (equivalently, one can adopt γ as

the independent variable). By substituting ω = π − 2γ into (3.5.5), we find that for these

symmetric wedges the corner function simplifies to

Fα(ω, γ) = max
{
F̃ (ω) , 2Fα(γ)

}
γ =

π − ω
2

. (3.5.6)

The maximisation procedure occurring in (3.5.5) and (3.5.6) chooses the first function for

some configurations and the second function for other ones. In particular, there exist critical

configurations such that the two functions in the r.h.s.’s of (3.5.5) and (3.5.6) provide the same

result, namely both γ̂ dis
A and γ̂ con

A have the same coefficient of the logarithmic divergence.

In Fig. 3.12 we show two examples of minimal area surfaces obtained with Surface Evolver

which correspond to single drop domains A (see Sec. 1.3.3) whose corners have the tip on the

boundary and belong to this class of symmetric wedges having γ̃ = γ. In a neighbourhood of

the tips of these two domains, the minimal area surface γ̂A is given by γ̂ con
A .

In Fig. 3.13 the corner function (3.5.6) is plotted as function of ω for two particular values

of α. The critical value ωc, where the two functions in the r.h.s. of (3.5.6) are equal, is

highlighted by the vertical dashed segments, and it depends on the slope α. For ω < ωc the

minimal surface γ̂A is disconnected from Q and it is like the one shown in Fig. 1.7, while for
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Figure 3.15: Minimal surfaces γ̂A obtained with Surface Evolver and corresponding to a single drop

A such that the entangling curve ∂A (solid red curve in the z = 0 grey half-plane) intersects the

boundary at the tip of its corner. For these configurations of A, the corresponding minimal surface

is the surface which intersects Q (green half-plane) orthogonally along the green curve. In the left

panel α = π/2.5, ω = π/2, γ = π/2− π/5 and L = 0.75, while in the right panel α = 2π/3, ω = π/3,

γ = π/2− π/5 and L = 1. In both panels ε = 0.03.

ω > ωc it is connected to Q and it looks like the minimal surfaces depicted in Fig. 3.12. The

minimal surfaces in Fig. 3.12 are prototypical examples of the surfaces employed to find the

numerical data corresponding to the empty circles in Fig. 3.13.

By applying the remark made above about (3.5.5) to this simpler situation, it could be

instructive to compare (3.5.6) with (3.5.1), which has been found for the analogous situation

in AdS4/CFT3, as it can be observed by using the image method. Nonetheless, we remark

again that in (3.5.6) the parameter α enters in a crucial way. By performing the same analysis

done for Fig. 3.13 setting α = π/2, we have checked numerically the data shown in Fig. 3.10

are consistent with the relation (3.2.15).

In the remaining part of this section we describe the critical configurations corresponding

to (3.5.5) and to (3.5.6).

Let us consider first the class of symmetric wedges where γ̃ = γ. From (3.5.6), we have

that the critical configuration is characterised by the opening angle ωc = ωc(α) which solves

the following equation

F̃ (ωc) = 2Fα
(
(π − ωc)/2

)
. (3.5.7)

As consistency check we can set α = π/2. In this case, by employing (3.2.15) in the r.h.s.

of (3.5.7), the equation (3.5.7) becomes F̃ (ωc) = F̃ (π − ωc), whose solution is ωc = π/2, as

expected from the general fact the results in AdS4/CFT3 (see Fig. 3.10 for this quantity) are

recovered in our AdS4/BCFT3 setup for α = π/2.

We find it worth also focussing on the special value α = αc. By employing the characteristic

property of αc given by (3.2.18) and the fact that F̃ (π) = 0 into (3.5.7), we find

lim
α→αc

ωc(α) = π. (3.5.8)

Since ω < π, the limit (3.5.8) tells us that, within the class of symmetric wedges with γ̃ = γ,

the minimal area surface γ̂A is always γ̂ dis
A when α 6 αc. This observation can be inferred

also from (3.5.6) because Fα(γ) 6 0 for α 6 αc, while F̃ (ω) > 0. Thus, when α 6 αc, the
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Figure 3.16: Infinite wedge with only the tip on the boundary: The surface described by the critical

configurations, defined by (3.5.9) in the parameters space given by the angles ω, γ and α. The yellow

plane is α = αc. The red curve corresponds to the symmetric configurations having γ̃ = γ (see

Fig. 3.14).

transition from γ̂A = γ̂ dis
A to γ̂A = γ̂ con

A as ω increases does not occur. The absence of this

transition is a characteristic feature of the regime α 6 αc that can be detected with finite

domains. We have not been able to get reliable numerical data from Surface Evolver for values

of alpha close enough to αc; therefore we have not observed (3.5.8) numerically. Hopefully,

future analysis will address this numerical issue.

In Fig. 3.14 we show the curve ωc(α) of the critical opening angle for the symmetric wedges,

which has been obtained by solving (3.5.7) numerically. Notice that the curve lies above the

straight line tangent to it and passing through the point α = π/2.

In the general case, γ̃ > γ and the configuration of the infinite wedge is characterised by

the independent angles γ and ω. In Fig. 3.15 we show the minimal area surfaces constructed

with Surface Evolver which are anchored to two different configurations of single drop domains

A having the tip on the boundary and with γ̃ > γ. For the configurations in Fig. 3.15, the

minimal area surface γ̂A in the neighbourhood of the tip is given by γ̂ con
A .

As discussed above, critical configurations exist such that the two functions involved in

the maximisation procedure of (3.5.5) have the same value. For a given slope α, we can

equivalently characterise these configurations either by the critical value ωc = ωc(γ, α) in

terms of γ or by the critical value γc = γc(ω, α) in terms of ω. Choosing the former option,

the critical value ωc = ωc(γ, α) is the solution of the following equation

F̃ (ωc) = Fα(γ) + Fα(γ̃) γ̃ = π − (ωc + γ). (3.5.9)

In Fig. 3.16 we show the surface which characterises the critical configurations, obtained

by solving (3.5.9) numerically. Notice that the surface lies in the range α > αc, as expected
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from the above considerations. The red solid curve in Fig. 3.16 corresponds to the symmetric

case γ = γ̃, namely to the curve in Fig. 3.14. Furthermore, the section at α = π/2 of the

surface in Fig. 3.16 provides the critical configurations for the symmetric domains in a CFT3

whose coefficient of the logarithmic divergence of the corresponding holographic entanglement

entropy is (3.5.2), which have been described in Sec. 3.5.1.

3.6 Discussion

Considering a BCFT3 with a flat boundary, in this chapter, we mainly focussed on the entan-

glement entropy of two-dimensional domains A in a constant time-slice whose entangling curve

intersects the boundary of the BCFT3. In particular, we have studied the cases where the

singular points of ∂A belong to the boundary of the BCFT3 (see e.g. the yellow region on the

right panel of Fig. 3.1). The expansion of the entanglement entropy of these domains as the

UV cutoff ε→ 0 contains a logarithmic divergence whose coefficient encodes the characteristic

features of the BCFT3 through some corner functions in a non-trivial way.

Our main result is the analytic expression of the corner function Fα(γ) for an infinite

wedge adjacent to the boundary, which is given by (3.2.7) and (3.2.12) in a parametric form

(see Fig. 3.7 and Fig. 3.8). This result and the corner function of [157] discussed in Sec. 1.3.3

lead to the analytic formula (3.5.5) for the corner function Fα(ω, γ), which corresponds to an

infinite wedge having only its tip on the boundary.

Various checks have been done to test the analytic expressions of these two corner func-

tions. The main one is the numerical analysis performed by employing Surface Evolver

[152, 153], where minimal area surfaces corresponding to finite domains containing corners

have been explicitly constructed. Further non-trivial consistency checks have been considered

by studying the limiting regimes γ → 0+ and γ → π/2 of the corner function Fα(γ). In

the limit γ → 0+ the holographic entanglement entropy of the infinite strip adjacent to the

boundary has been recovered, while taking the limit γ → π/2 we have obtained the coeffi-

cient of the logarithmic divergence in the holographic entanglement entropy of the half-disk

centered on the boundary, as expected.

We remark that interesting transitions have been observed in the analysis of the holo-

graphic entanglement entropy for the various domains. The main one occurs in the slope α

at the critical value αc given by (2.2.4). This transition can also be observed through the

behaviour of the corner function Fα(γ) in the regime γ → 0+.

An interesting outcome of our analysis is the relation (3.4.6) found in the context of the

AdS4/BCFT3 correspondence defined in [89], which involves the coefficient f ′′α(π/2) obtained

from the expansion of Fα(γ) as γ → π/2 and the coefficient AT characterising the behaviour

of the one point function of the stress tensor 〈Tij 〉 close to the boundary (see (3.4.3)). In

particular, (3.4.6) tells us that the ratio between these coefficients is independent of α. We

stress that this relation does not hold if the prescriptions [158–161] for the gravitational dual

of the BCFTs are employed. This is due to the fact that, even though the boundary corner

function is the same in all the proposals, the value of AT turns out to be different. In the

future, we find it very interesting to explore the validity of this ratio in a generic BCFT.
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Chapter 4
Shape Dependence of Holographic

Entanglement Entropy in Asymptotically

hvLif4 Spacetimes

In this chapter, we explore the shape dependence of the holographic entanglement entropy in

four-dimensional gravitational backgrounds having a non-trivial Lifshitz scaling (characterised

by the parameter ζ) and a hyperscaling violation exponent θ (we find it more convenient to

employ the parameter dθ ≡ 2(d−1−θ)/(d−1)). This kind of backgrounds has been introduced

for generic spacetime dimensions d in Sec. 1.5. In the following, we will focus mainly on d = 2,

but we also consider generic dimensions in Sec. 4.2, where a formula for the area in terms of

an integral along the boundary of the extremal surface γ̂A will be derived.

Our analysis holds for smooth entangling curves ∂A, which can also be made by disjoint

components. We consider 1 6 dθ 6 5 for the sake of simplicity, although the method can be

adapted to higher values of dθ. In particular, we will study both the divergent terms and the

finite term in the expansion of the holographic entanglement entropy as ε→ 0. Both analytic

results and numerical data will be presented. For instance, in Fig. 4.1 we show the minimal

area surface obtained with Surface Evolver whose area provides the holographic entanglement

entropy of an elliptic region through (1.3.2), in the case where the gravitational background is

a constant time slice of the four-dimensional hyperscaling violating Lifshitz spacetime (4.1.1).

The chapter is organised as follows. The main results about the finite term in the expansion

of the holographic entanglement entropy as ε→ 0 for a generic static gravitational background

are presented in Section 4.1, where also some important special cases like the four-dimensional

hyperscaling violating Lifshitz spacetime (hvLif4) defined in (4.1.1) and the asymptotically

hvLif4 black hole are explicitly discussed. In Section 4.2 we show that the finite term in

the expression for the area of a minimal submanifold anchored on the boundary reduces

to an integral over their intersection when the bulk geometry possesses a conformal Killing

vector generating dilatations. In Section 4.3 we study the finite term of the holographic

entanglement entropy for time-dependent backgrounds having 1 < dθ < 3. In Section 4.4 we

discuss explicitly the infinite strip, the disk and the ellipse. Some conclusions are drawn in
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Figure 4.1: Minimal area surface obtained with Surface Evolver whose area provides the holographic

entanglement entropy of an ellipse A delimited by the red curve. The minimal surface is embedded in

a constant time slice of the four-dimensional hyperscaling violating Lifshitz spacetime (4.1.1), whose

metric depends on the hyperscaling parameter dθ.

Section 4.5. In appendices C.1, C.2, C.3, C.4, C.5 and C.6 we provide the technical details

underlying the results presented in the main text.

4.1 Holographic entanglement entropy in asymptotically hvLif4

backgrounds

In this chapter, we consider four-dimensional gravitational backgrounds G4 that depend on the

hyperscaling violation exponent θ and on the Lifshitz scaling exponent ζ > 1, and which have

been discussed in Sec. 1.5. We recall that in Poincaré coordinates where z > 0 denotes the

holographic coordinate, these backgrounds have a boundary at z = 0 and their asymptotic

behaviour as z → 0+ is given by the following metric, that defines the four-dimensional

hyperscaling violating Lifshitz spacetimes (hvLif4) [123, 124, 126]

ds2 =
RdθAdS

zdθ

(
− z
−2(ζ−1)

R
−2(ζ−1)
AdS

dt2 + dz2 + dx2

)
(4.1.1)

where dx2 ≡ dx2 +dy2 and dθ ≡ 2− θ. The length scale RAdS is the analog of the AdS radius.

When dθ = 2 and ζ = 1, the background (4.1.1) becomes AdS4 in Poincaré coordinates. In this

chapter, we set RAdS to one for simplicity, although it plays a crucial role in the dimensional

analysis.
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Moreover, to deal only with geometries admitting physically sensible dual field theories,

the allowed values of the parameters in (4.1.1) are constrained by the null energy condition

(1.5.10) introduces in Sec. 1.5.2. Specialising (1.5.10) to the case d = 2 we find
{

(dθ + ζ)(ζ − 1) > 0

dθ(dθ + 2ζ − 4) > 0 .
(4.1.2)

In the Appendix C.1 a detailed discussion of the NEC and its consequences is reported.

In this section we focus on static backgrounds; hence we can restrict our attention to

the three-dimensional Euclidean section C3 obtained by taking a constant time slice of the

asymptotically hvLif4 bulk manifold G4. This submanifold is naturally endowed with a metric

gµν such that

ds2
∣∣
t=const

≡ gµν dx
µdxν

z→ 0−−−→ 1

zdθ

(
dz2 + dx2 + dy2

)
. (4.1.3)

In the following, we give some definitions useful for the rest of the chapter. Those defi-

nitions have already been introduced in chapter Sec. 2.1 because they do not depend on the

presence of the boundary Q. Here, we recall them in order to facilitate the reading.

Given a two dimensional spatial region A in a constant time slice of the CFT3 at z = 0, its

holographic entanglement entropy is given by (1.3.2). Thus, first we must consider the class

of two dimensional surfaces γA embedded in C3 whose boundary curve belongs to the plane

z = 0 and coincides with the entangling curve, i.e. ∂γA = ∂A. Then, among these surfaces,

we have to find the one having the minimal area, that provides the holographic entanglement

entropy. As usual, we will denote by γ̂A the extremal surfaces of the area functional, without

introducing a particular notation for the global minimum.

Considering the unit vector nµ normal to γA, the induced metric hµν on γA and the

extrinsic curvature Kµν are given in terms of nµ respectively by

hµν = gµν − nµnν Kµν = h α
µ h β

ν ∇αnβ (4.1.4)

being ∇α the torsionless covariant derivative compatible with gµν .

In our analysis, we find it convenient to introduce an auxiliary conformally equivalent

three-dimensional space C̃3 given by C3 with the same boundary at z = 0, but equipped with

the metric g̃µν , which is asymptotically flat as z → 0 and Weyl related to gµν , i.e.

gµν = e2ϕ g̃µν (4.1.5)

where ϕ is a function of the coordinates. The surface γA can be also viewed as a submanifold

of C̃3. Denoting by ñµ the unit normal vector to γA embedded in C̃3, it is straightforward to

find that nµ = eϕñµ. The first and second fundamental form h̃µν and K̃µν of γA ⊂ C̃3 can be

written in terms of the same quantities for γA ⊂ C3 (defined in (4.1.4)) as follows

hµν = e2ϕ h̃µν Kµν = eϕ
(
K̃µν + h̃µν ñ

λ∂λϕ
)
. (4.1.6)

The two induced area elements dA =
√
h dΣ (of γA ⊂ C3) and dÃ =

√
h̃ dΣ (of γA ⊂ C̃3),

where dΣ is a shorthand notation for dσ1dσ2 with σi some local coordinates on γA, are related

as dA = e2ϕdÃ.
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Since γA ⊂ C3 extends up to the boundary plane at z = 0, its area functional

A[γA] =

∫

γA

√
h dΣ (4.1.7)

diverges when dθ > 1 because of the behaviour (4.1.3) near the conformal boundary. The

holographic entanglement entropy is proportional to the area of the global minimum among

the local extrema γ̂A of (4.1.7) anchored to the entangling curve ∂A. These surfaces are

obtained by solving the condition of vanishing mean curvature

TrK = 0 (4.1.8)

with the Dirichlet boundary condition ∂γA = ∂A. In terms of the second fundamental form

defined by the embedding in C̃3, the extremal area condition (4.1.8) reads

TrK̃ = − 2 ñλ∂λϕ ⇐⇒ TrK̃ = dθ
ñz

z
(4.1.9)

where in the last step we choose e2ϕ = 1/zdθ , as suggested by the asymptotic form (4.1.3).

4.1.1 Divergent terms

In our analysis, we consider only smooth entangling curves ∂γA. Furthermore, we restrict

to two-dimensional surfaces γA that intersect the spatial boundary orthogonally at z = 0 of

C3; and the extremal surfaces γ̂A anchored to smooth entangling curves enjoy this property.

In the following, we discuss the divergent contributions in the expansion of the holographic

entanglement entropy as ε→ 0.

Since γA reaches the boundary and dθ > 1, its area is divergent; hence we have to introduce

a UV cutoff plane at z = ε and evaluate the functional (4.1.7) on the part of γA above the

cutoff plane, i.e. on γA,ε ≡ γA ∩ {z > ε}. The series expansion of A[γA,ε] as ε → 0 contains

divergent terms, a finite term and vanishing terms as ε → 0. By exploiting the techniques

discussed in [67, 76, 77] in Appendix C.2 we study the surface γA,ε, singling out the structure

of the divergences in the expansion of A[γA,ε] as ε→ 0. In the following, we report only the

results of this analysis. Let us stress that some of these results also hold for surfaces γA that

are not minimal.

The leading divergence of A[γA,ε] as ε→ 0 is given by

A[γA,ε] =
PA

(dθ − 1) εdθ−1
+ . . . dθ 6= 1 (4.1.10)

where PA is the perimeter of the entangling curve ∂A, as pointed out in [124–126]. This

leading divergence provides the area law of the holographic entanglement entropy for the

asymptotically hvLif4 backgrounds. When dθ = 1, the leading divergence is logarithmic

A[γA,ε] = PA log(PA/ε) +O(1) dθ = 1 . (4.1.11)

The apparent dimensional mismatch between the two sides of (4.1.11) is due to our choice to

set RAdS = 1. The subleading terms in these expansions depend on the value of dθ and we
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find it worth considering the ranges given by 2n + 1 < dθ < 2n + 3, being n > 0 a positive

integer.

When 1 < dθ < 3, after the leading divergence (4.1.10), a finite term occurs

A[γA,ε] =
PA

(dθ − 1) εdθ−1
−FA +O(ε) 1 < dθ < 3 . (4.1.12)

At this point, let us restrict our analysis to extremal surfaces γ̂A. When γA = γ̂A is

the minimal surface, in (4.1.12) we adopt the notation FA = FA for the finite term (see

Section 4.1.2).

When dθ = 3, the subleading term diverges logarithmically [124–126]. In particular, for a

generic smooth entangling curve we find

A[γ̂A,ε] =
PA
2ε2

+
log ε

8

∫

∂A
k2(s) ds+O(1) dθ = 3 (4.1.13)

where k(s) is the geodesic curvature of ∂γ̂A and s parameterises the entangling curve. When

A is a disk of radius R, the geodesic curvature k(s) = 1/R is constant, and the coefficient of

the logarithmic divergence for this region has also been considered in [151].

In the range 3 < dθ < 5, the subleading divergence is a power like; hence the finite term

FA is not changed by a global rescaling of the UV cutoff. The expansion of the area of γ̂A,ε

reads

A[γ̂A,ε] =
PA

(dθ − 1)εdθ−1
+

CA
εdθ−3

−FA +O(ε) 3 < dθ < 5 (4.1.14)

where the coefficient CA is given by

CA = − (dθ − 2)

2(dθ − 3)(dθ − 1)2

∫

∂A
k2(s) ds . (4.1.15)

For dθ = 5, a finite term in the expansion as ε→ 0 is not well defined because a logarithmic

divergence occurs. In particular, we obtain

A[γ̂A,ε] =
PA
4ε4
− 3

64ε2

∫

∂A
k(s)2 ds+

log ε

2048

∫

∂A

(
9 k(s)4 − 16 k′(s)2

)
ds+O(1) . (4.1.16)

The pattern outlined above seems to repeat also for higher values of dθ: when dθ = 2n+1 is an

odd integer with n > 0, one finds power like divergences O(1/ε2n−2k) with integer k ∈ [0, n−1]

and a logarithmic divergence. Instead, in the range 2n + 1 < dθ < 2n + 3 only power like

divergencies O(1/εdθ−1−2k) with integer k ∈ [0, n] occur.

In Appendix C.2 we provide the derivations of the results reported above, and we also

discuss their extensions to the class of surfaces that intersect the boundary plane orthogonally

at z = 0, which includes the extremal surfaces.

4.1.2 Finite term

In this subsection, we investigate the finite term in (4.1.12) for surfaces γA that can be also

non-extremal and in (4.1.14) only for γ̂A. The main result of this chapter is their expression

as (finite) geometrical functionals over the two dimensional surface γA (or γ̂A for FA) viewed
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as a submanifold of C̃3. The procedure to obtain the finite terms extends the one developed

in [76, 77] for AdS4 and in [78] for asymptotically AdS4 spacetimes. Since the specific details

of this analysis depend on the type of divergences occurring in the expansion of the area

functional as ε → 0, we will treat the regimes 1 < dθ < 3 and 3 < dθ < 5 separately. In the

following we report only the main results, collecting all the technical details of their derivation

in Appendix C.3.

When 1 < dθ < 3, the only divergence in the expansion of area functional A[γA,ε] is the

area law term (4.1.10); hence our goal is to write an expression for the finite term FA in

(4.1.12).

In Appendix C.3.1 we adapt the analysis performed in [78] to this case, finding

FA =
2

dθ(dθ−1)

∫

γA

e2φ
(

2h̃µν∂νφ∂µϕ−
dθ(dθ−1)

2
e2(ϕ−φ)+∇̃2ϕ−ñµñν∇̃µ∇̃νϕ+(ñλ∂λϕ)2

)
dÃ

+
1

2 dθ(dθ−1)

[ ∫

γA

e2φ
(
TrK̃

)2
dÃ +

∫

γA

e2φ
(
TrK

)2
dA
]

(4.1.17)

where ϕ is the same conformal factor defined in (4.1.5), while φ is chosen so that e−2φgµν is

asymptotically AdS4. In our explicit calculations we have employed the simplest choice for ϕ

and φ, namely ϕ = −dθ
2 log z and φ = 2−dθ

2 log z.

In the special case of dθ = 2, the field φ can be chosen to vanish (see (C.3.10)) and this

leads us to recover the result obtained in [78] as a special case of our analysis.

When the functional (4.1.17) is evaluated on an extremal surfaces γ̂A, the forms (4.1.8)

and (4.1.9) of the extremality condition imply respectively that the last term in (4.1.17) does

not occur and that the term containing (ñλ∂λϕ)2 can be written in terms of (TrK̃)2. Finally,

we can write

FA =
2

dθ(dθ − 1)

∫

γ̂A

e2φ

(
2 h̃µν∂νφ∂µϕ+ ∇̃2ϕ− ñµñν ∇̃µ∇̃νϕ (4.1.18)

− dθ(dθ − 1)

2
e2(ϕ−φ) +

1

2
(TrK̃)2

)
dÃ .

The regime 3 < dθ < 5 is more challenging because the expansion of the area functional

A[γ̂A,ε] as ε → 0 contains two power like divergent terms (see (4.1.14)). Let us remind that

the structure of this expansion is dictated by the geometry of the entangling curve only for

extremal surfaces (in this case, the coefficient of the subleading divergent term is (4.1.15)).

For non-extremal surfaces, the structure of the divergent terms does not depend only on the

geometry of the entangling curve, but also on the surface (see e.g. (C.2.8)).

In Appendix C.3.2 we find that the finite term in (4.1.14) for minimal surfaces reads

FA = FA +
2

d3
θ(dθ − 3)(dθ − 1)

∫

γ̂A

e2ψ
(

(TrK̃)2f − h̃µν∂νϕ∂µ(TrK̃)2
)
dÃ (4.1.19)

being

f = ñµñν ∇̃µ∇̃νϕ− ∇̃2ϕ− 2(ñλ∂λϕ)2 − 2h̃µν∂µψ ∂νϕ (4.1.20)

where FA is defined in (4.1.18). In (4.1.19) we have introduced a third conformal factor e2ψ

that scales as z4−dθ when we approach the boundary at z = 0. The scaling of e2ψ with z (for
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small z) is fixed by requiring that the boundary terms in (C.3.13) match the divergence of

order 1/εdθ−3 appearing in (4.1.14) (see (C.3.18) and (C.3.19) for details).

4.1.3 HvLif4

The simplest gravitation geometry to consider is hvLif4, whose metric reads

ds2 =
1

zdθ

(
− z−2(ζ−1)dt2 + dz2 + dx2 + dy2

)
(4.1.21)

namely (4.1.1) with the length scale RAdS set to one. In this background g̃µν = δµν ; hence the

general formulae (4.1.18) and (4.1.19) take a compact and elegant form. In Appendix C.3.3

some details about these simplifications are provided.

When 1 < dθ < 3, the expression (4.1.18) reduces to

FA =
1

dθ − 1

∫

γ̂A

(ñz)2

zdθ
dÃ (4.1.22)

where we remind that ñz is the z-component of the normal vector to γ̂A in C̃3. By employing

the extremality condition (4.1.9), one can write FA in terms of the second fundamental form

in C̃3 as follows

FA =
1

d2
θ(dθ − 1)

∫

γ̂A

(TrK̃)2

zdθ−2
dÃ . (4.1.23)

This functional is a deformation of the Willmore functional parameterised by 1 < dθ < 3. In

the special case of dθ = 2 the functional (4.1.23) becomes the well known Willmore functional,

as expected from the analysis of FA in AdS4 performed in [76, 77].

As a consistency check, we can show that in the limit dθ → 3 the functional (4.1.22)

reproduces the logarithmic divergence (4.1.13). This can be done by first plugging (C.3.17b)

and (C.2.3) in (4.1.22), then expanding about z = 0 and finally using (C.2.12a). We find

FA =
1

dθ − 1

∫ zmax

ε
dz

∫

∂γ̂A,ε

ds

[
k2(s)

(dθ − 1)2 zdθ−2
+O

(
zdθ−3

)]
(4.1.24)

→ − log ε

8

∫

∂A
k2(s) ds+O(1) dθ → 3 (4.1.25)

which is the logarithmic contribution occurring in (4.1.13).

In the regime 3 < dθ < 5, the expression for FA in (4.1.19) specified for (4.1.21) on a

constant time slice becomes (see Appendix C.3.3 for details)

FA = − 1

(dθ − 1)(dθ − 3)

∫

γ̂A

[
3(ñz)4

zdθ
− 2 ñz

zdθ−2
h̃zµ ∂µ

(
ñz

z

)]
dÃ (4.1.26)

where both the integrals are convergent; indeed, the former integrand scales as z4−dθ , while

the latter one as z6−dθ . Following the same steps that lead to (4.1.24), we find that the

expansion near to the boundary of (4.1.26) gives

FA = −
∫ zmax

ε
dz

∫

∂γ̂A,ε

ds

{[
(9dθ − 2d2

θ − 13)k(s)4 − 2(dθ − 1)2k(s)k′′(s)
]

(dθ − 3)2(dθ − 1)5 zdθ−4
+O(z6−dθ)

}
.

(4.1.27)

117



Chapter 4. Shape Dependence of HEE in Asymptotically hvLif4 Spacetimes

Taking the limit dθ → 5, we find the logarithmic divergent term

FA → −
log ε

2048

∫

∂A

[
16 k(s) k′′(s) + 9 k(s)4

]
ds+O(1) dθ → 5 (4.1.28)

which becomes the logarithmic divergent term occurring in (4.1.16), after a partial integration.

4.1.4 Asymptotically hvLif4 black hole

Another static background of physical interest is the asymptotically hvLif4 black hole, whose

metric reads [126, 133, 134]

ds2 =
1

zdθ

(
− z−2(ζ−1)f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
f(z) ≡ 1− (z/zh)dθ+ζ (4.1.29)

where the parameter zh corresponds to the horizon, which determines the black hole temper-

ature [126]

T =
|dθ + ζ|

4πzζh
. (4.1.30)

Unlike hvLif4, where the Lifshitz exponent ζ occurs only in the gtt component of the metric,

in (4.1.29) it enters also in f(z); hence the minimal surface γ̂A depends on ζ.

For 1 < dθ < 3, specialising the general formula (4.1.18) to the black hole metric (4.1.29),

for the finite term of the holographic entanglement entropy we find

FA =
1

(dθ − 1)

∫

γ̂A

1

zdθ

[
(dθ − 1)(f(z)− 1)− zf ′(z)

2
+ (ñz)2

(
1 +

zf ′(z)
2f(z)

)]
dÃ . (4.1.31)

This functional reduces to (4.1.22) when f(z) = 1 identically, as expected. For simplicity,

here we do not consider the case 3 < dθ < 5, but the corresponding computation to obtain

FA is very similar to the one leading to (4.1.31).

In the regime where the size of the domain A is very large with respect to the black hole

horizon scale zh, the extremal surface can be approximated by a cylinder γ̂cyl

A with horizontal

cross-section ∂A and the second base located at z = z∗ ∼ zh. Within this approximation, the

functional (4.1.31) simplifies to

F cyl

A =
dθ[f(z∗)− 1] + 1

(dθ − 1) zdθ∗
Area(A) +

PA
dθ − 1

∫ z∗

0

[
f(z)− zf ′(z)

2
− 1

]
dz

zdθ

=
1− (z∗/zh)dθ+ζ dθ

zdθ∗ (dθ − 1)
Area(A) +

(dθ + ζ − 2) z1−dθ∗
2(ζ + 1)(dθ − 1)

(
z∗
zh

)dθ+ζ

PA (4.1.32)

where we used that ñz =
√
f(z∗) on the base and ñz = 0 on the vertical part of γ̂cyl

A . In

the special case of dθ = 2, the expression (4.1.32) reduces to the corresponding result of [78].

Taking the limit z∗ → zh of (4.1.32), we find

F cyl

A = − Area(A)

zdθh
+ . . . . (4.1.33)

By using (4.1.30), this relation can be written as F cyl

A ' −T dθ/ζArea(A) (up to a numerical

coefficient), which tells us that −F cyl

A approaches the thermal entropy in this limit.
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4.2 Finite term as an integral along the entangling curve

This section is devoted to showing that the finite term in the expansion of the entangle-

ment entropy for the case hvLifd+1 can be written as an integral over the entangling (d− 2)

dimensional hypersurface. This analysis extends the result obtained in [77] for AdS4. In

Appendix C.4 we show that the same result can be obtained through a procedure on the area

functional that is similar to the one leading to the Noether theorem.

The geometry of this spacetime is given by (4.1.1) with dx2 =
∑d−1

i=1 dx
2
i , RAdS = 1 and

dθ = 2(d− 1− θ)/(d− 1). This spacetime possesses a conformal Killing vector generating the

following transformation

t 7→ λ1−ζt z 7→ λz x 7→ λx (4.2.1)

under which the metric changes as ds2 7→ λ2−dθds2, being dθ > 1.

An amusing consequence of the existence of this conformal Killing vector is the possibility

to write the finite term (whenever a logarithmic divergence does not occur) as an integral over

the entangling hypersurface independently of the number of divergent terms appearing in the

expansion of the area and of the spacetime dimensionality. This can be shown by considering

the variation of the induced area element for an infinitesimal transformation generated by the

infinitesimal parameter λ = 1 + ε+ · · · . From the scaling law of the metric, we find

δε
(√
h
)

= ε
(2− dθ)m

2

√
h (4.2.2)

where m is the dimension of the minimal hypersurface. Namely, if we perform the transfor-

mations (4.2.1) the volume of the hypersurface scales as V → λ
m(2−dθ)

2 V.
Since the transformation (4.2.1) can also be viewed as an infinitesimal diffeomorphism

generated by a conformal Killing vector field Vµ acting on the bulk, its action on the induced

metric can be cast into the following form

δhab =
(
∇µVν +∇νVµ

)∂xµ
∂σa

∂xν

∂σb
= DaVb +DbVa +K

(i)
ab (n(i) · V ) (4.2.3)

where σa are the coordinates on the minimal surface, Da is the induced covariant derivative

on γA, the vector field Va = Vµ∂ax
µ is the pullback of Vµ on γA, n(i) are the normal vectors

to the minimal surface and K
(i)
ab the associated extrinsic curvature (the dot corresponds to

the scalar product given by the bulk metric). Then, the variation of the volume form can be

written as

δε
(√
h
)

=
1

2

√
hhabδεhab =

ε

2

√
h
(

2DaV
a +K(i)(n(i) · V )

)
= ε
√
h (DaV

a) (4.2.4)

where in the last step the extremality condition has been employed. If we compare (4.2.2)

and (4.2.4), we find √
h =

2

(2− dθ)m
√
h(DaV

a) (4.2.5)

which can be integrated over γ̂A,ε, finding

A[γ̂A,ε] =
2

(2− dθ)m

∫

γ̂A,ε

√
h(DaV

a) dmσ =
2

(2− dθ)m

∫

∂γ̂A,ε

√
h(baV

a) dm−1ξ (4.2.6)
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where ba is the unit vector normal to ∂γ̂A,ε along the surface γ̂A,ε, and ξj denote the coordinates

on the boundary of the minimal hypersurface. Actually, identities similar to (4.2.5) and

(4.2.6) hold if the manifold admits a vector of constant divergence. The conformal Killing

vector generating dilatations is just an example of this type. The above analysis is valid in

any dimension and for generic codimension of the minimal submanifold. To complete our

analysis, we need to know the behavior of the vector ba close to the boundary. In the present

paper, we have performed this analysis only for the case of interest, i.e. d = 3 and m = 2

(see Appendix C.2), but it can be extended to more general situations by means of the same

techniques.

For d = 3 and m = 2, by plugging the expansion (C.2.5) into (4.2.6), for the finite term

we find

FA = −dθ + 1

dθ − 2

∫

∂A

(
xA · Ñ

)
Udθ+1 ds dθ 6= 2 (4.2.7)

where Udθ+1 is the first non-analytic term encountered in the expansion (C.2.5), xA is a

shorthand notation for the parametric representation xA ≡ (x(s), y(s)) of the entangling

curve and the vector Ñ is the unit normal to this curve in the plane z = 0 in M̃3 (see also

Appendix C.2).

Further remarks about (4.2.7) are in order. The representation (4.2.7) for the finite term

holds for any dθ 6= 2 and there is no restriction on the range of dθ. Even though the expression

(4.2.7) may suggest that FA is completely characterized by the local behaviour of the extremal

surface near the boundary, it turns out that the coefficient Udθ+1 cannot be determined only

by solving perturbatively (4.1.8) about z = 0 (see Appendix C.2); hence it depends on the

whole minimal surface γ̂A.

4.3 Time-dependent backgrounds for 1 < dθ < 3

When the gravitational background is time-dependent, the covariant prescription for the holo-

graphic entanglement entropy introduced in [34] must be employed. The class of surfaces γA

to consider is defined only by the constraint ∂γA = ∂A; hence γA is not restricted to lay on a

slice of constant time, as in the static gravitational spacetimes.

In this section, we study the finite term in the expansion of the holographic entanglement

entropy in time-dependent asymptotically hvLif4 backgrounds. A crucial difference with re-

spect to the case of static backgrounds is that surfaces in four dimensional spacetimes have

two normal directions identified by the unit normal vectors n
(i)
N (with i = 1, 2, whose squared

norm εi = gMNn
(i)
Mn

(i)
N is either +1 or −1) and therefore two extrinsic curvatures K

(i)
MN . In

this analysis, we need to extend the result obtained in [78] by including the Lifshitz scaling

and the hyperscaling violation. The technical details of this computation are discussed in

Appendix C.5 and in the following, we report only the final results.

In the range 1 < dθ < 3, for surfaces γA that intersect orthogonally the boundary, the
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expansion (4.1.12) holds with the finite term given by

FA = c1

∫

γA

e2φ

[
2 h̃MN∂Mϕ∂Nφ−

2∑

i=1

εi ñ
(i)M ñ(i)N

(
D̃MD̃Nϕ− D̃MϕD̃Nϕ

)
+ D̃2ϕ (4.3.1)

+
1

4

2∑

i=1

εi
(
TrK̃(i)

)2
]
dÃ −

∫

γA

e2ϕ dÃ − c1

4

2∑

i=1

εi

∫

γA

e2φ
(
TrK(i)

)2
dA .

Specialising this expression to extremal surfaces γ̂A, that satisfy TrK(i) = 0 and for which

c1 is given in (C.3.10), we find

FA =

∫

γ̂A

2 e2φ

dθ(dθ − 1)

[
2 h̃MN∂Mϕ∂Nφ−

2∑

i=1

εi ñ
(i)M ñ(i)ND̃MD̃Nϕ (4.3.2)

+ D̃2ϕ− dθ(dθ−1)

2
e2(ϕ−φ) +

1

2

2∑

i=1

εi
(
TrK̃(i)

)2
]
dÃ .

In the special case of dθ = 2, the expressions (4.3.1) and (4.3.2) simplify to the ones

obtained in [78] for time dependent asymptotically AdS4 backgrounds. In the final part of

Appendix C.5 we show that (4.3.2) becomes (4.1.18) for static backgrounds.

The temporal evolution of the holographic entanglement entropy in the presence of Lifshitz

scaling and hyperscaling violation exponents has been studied in [147–151] by considering

infinite strips and disks. It would be interesting to extend this numerical analysis to non-

spherical finite domains, also to check the analytic expression (4.3.2).

4.4 Some particular regions

In the previous sections, we discussed expressions for the finite term in the expansion of the

holographic entanglement entropy that hold for any smooth region A, independently of its

shape. In this section we test these expressions by considering infinite strips (Section 4.4.1),

disks (Section 4.4.2) and ellipses (Section 4.4.3).

4.4.1 Strip

The spatial region A = {(x, y) : |x| 6 `/2, |y| 6 L/2} in the limit of `� L can be seen as an

infinite strip that is invariant under translations along the y-direction. The occurrence of this

symmetry leads to a drastic simplification because the search of the minimal area surface γ̂A

can be restricted to the class of surfaces γA invariant under translations along the y-direction,

which are fully characterised by the profile z = z(x) of a section at y = const.

HvLif4

The minimal surfaces anchored to the strip domain defined above have been studied in details

in Sec. 1.5.2 of chapter 1 for generic spacetime dimension d. Here, we are interested in the

case d = 2.
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In Sec. 1.5.2 we discussed the most direct approach to obtain A[γ̂A,ε] consists in evaluating

(1.5.14) on the profile (1.5.17). In the following, for d = 2 we reproduce the finite term of

this expansion by specialising the expressions (4.1.22) and (4.1.26) to the strip (for the latter

formula, the computation is reported in Appendix C.3.3).

Let us first consider the tangent and normal vectors to the surfaces anchored to the

boundary of the infinite strip that are characterised by the profile z = z(x). They read

t̃µ1 =

(
z′√

1 + (z′)2
,

1√
1 + (z′)2

, 0

)
t̃µ2 =

(
0, 0, 1

)
ñµ =

(
−1√

1 + (z′)2
,

z′√
1 + (z′)2

, 0

)
.

(4.4.1)

For 1 < dθ < 3, we can plug the component ñz into (4.1.22), that holds for the minimal

surface γ̂A, finding that the finite term of the holographic entanglement entropy becomes

FA =
1

dθ − 1

∫

γ̂A

dx dy

zdθ
√

1 + (z′)2
=

4

(dθ − 1) zdθ∗

∫ L/2

0

∫ `/2

0
dxdy =

L `

(dθ − 1) zdθ∗
(4.4.2)

where (1.5.15) specialized to d = 2 has been used in the last step. By employing (1.5.16), the

expression (4.4.2) can be written as [126]

FA =
L `1−dθ

dθ − 1

(
2
√
π Γ
(
(1 + 1/dθ)/2

)

Γ
(
1/(2dθ)

)
)dθ

. (4.4.3)

We have obtained this result for 1 < dθ < 3, but it turns out to be valid for any dθ > 1

(in Appendix C.3.3 we have checked that (4.4.3) is recovered also by specialising to the strip

the general formula (4.1.26) that holds for 3 < dθ < 5). In fact, all the subleading divergences

can be expressed recursively in terms of the geodesic curvature of ∂A and its derivatives (see

Appendix C.2); and this quantity trivially vanishes for the straight line.

We find it instructive to specialise the method discussed in Section 4.2 to the infinite strip.

The analytic profile (1.5.17) (for d = 2) allows us to determine the scalar function u(z, s) used

in Appendix C.2 to describe the minimal surface: u(z, s) = `/2 − x(z). By expanding this

result in powers of z and by comparing the expansion with (C.2.5), one finds the following

coefficient

Udθ+1 =
1

(dθ + 1) zdθ∗
. (4.4.4)

The expression (4.2.7) must be slightly modified for the infinite strip because, in this case,

we evaluate the finite ratio A/L and the scaling in the direction along which the strip is

infinitely long is not considered. Thus, the ratio A/L scales like A/L → λ1−dθA/L under

(4.2.1). As a consequence, for the infinite strip (4.2.7) has to be replaced with

FA = −dθ + 1

dθ − 1

∫

∂A

(
xA · Ñ

)
Udθ+1 ds . (4.4.5)

Plugging (4.4.4) into (4.4.5) and using that xA · Ñ = −`/2, we recover (4.4.2), and therefore

also (4.4.3), which is the result found in [126] for the infinite strip in a generic number of

spacetime dimensions.
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Asymptotically hvLif4 black hole

We find it worth also considering the finite term of the holographic entanglement entropy of

an infinite strip A when the gravitational background is given by the asymptotically hvLif4

black hole (4.1.29). This can be done by adapting the procedure described in Section 4.4.1

for hvLif4.

The area functional restricted to the class of surfaces γA that are invariant under transla-

tions along the y-direction (which are fully determined by the profile z = z(x) of any section

at y = const) reads

A[γA] = L

∫ `/2

−`/2

1

zdθ

√
1 +

(z′)2

f(z)
dx (4.4.6)

that simplifies to (1.5.14) when f(z) = 1 identically, as expected. Since x is a cyclic coordinate

in (4.4.6), one obtains the following conservation law

zdθ

√
1 +

(z′)2

f(z)
= zdθ∗ (4.4.7)

being (z, x) = (z∗, 0) the coordinates of the tip of the profile of the minimal surface γ̂A, where

z′(0) = 0 holds. We also need the unit vector ñµ normal to the surface, whose components

read

ñµ =
(
ñz, ñx, ñy

)
=

(
f(z)√

f(z) + (z′)2
,− z′√

f(z) + (z′)2
, 0

)
. (4.4.8)

Now we can specialise (4.1.31), which holds for minimal surfaces, to the strip by employing

(4.4.8), finding that

FA =
2L

zdθ∗ (dθ − 1)

∫ `/2

0

[(
(dθ − 1)(f(z)− 1)− zf ′(z)

2

)
z2dθ∗
z2dθ

+ f(z) +
zf ′(z)

2

]
dx (4.4.9)

where the emblacking factor f(z) is given in (4.1.29). By employing the conservation law

(4.4.7), it is straightforward to write (4.4.9) as an integral in z between 0 and z∗. Notice that,

by setting ζ = 1 and dθ = 2 in (4.4.9), we recover the result obtained in [78].

4.4.2 Disk

In this subsection, we study the holographic entanglement entropy of a disk A with radius

R when the gravitational background is hvLif4 (Section 4.4.2) or the asymptotically hvLif4

black hole (Section 4.4.2). Fixing the origin of the Cartesian coordinates (x, y, z > 0) in the

center of A, the rotational symmetry of A about the z-axis implies that γ̂A belongs to the

subset of surfaces γA displaying this rotational symmetry; hence it is more convenient to adopt

cylindrical coordinates (z, ρ, φ), where (ρ, φ) are polar coordinates in the plane at z = 0. In

these coordinates, the entangling curve is given by (ρ = R ,φ) in the plane at z = 0.
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HvLif4

When the gravitational background is hvLif4 (now it is convenient to express the metric

(4.1.21) in cylindrical coordinates), the area functional for the surfaces invariant under rota-

tions about the z-axis that are defined by their radial profile z = z(ρ) and that are anchored

to the entangling curve (ρ, φ) = (R,φ) (i.e. such that z(R) = 0) reads

A[γA] = 2π

∫ R

0

√
1 + (z′)2

zdθ
ρ dρ (4.4.10)

where z′ = ∂ρz(ρ). Imposing the vanishing of the first variation of the functional (4.4.10)

leads to the following second-order ordinary differential equation

z′′

1 + (z′)2
+
z′

ρ
+
dθ
z

= 0 (4.4.11)

where the boundary conditions z(R) = 0 and z′(0) = 0 hold. It is well known that, in the

special case of dθ = 2, the hemisphere z(ρ) =
√
R2 − ρ2 is a solution of (4.4.11) [31, 32]. For

dθ 6= 2, the solution of (4.4.11) has been studied numerically in [151].

In the following, we provide the finite term in the expansion of the holographic entangle-

ment entropy for disks by specialising (4.1.22) and (4.1.26) to these domains. In terms of the

cylindrical coordinates, the unit tangent and normal vectors to γ̂A read

t̃µρ =

(
z′√

1 + (z′)2
,

1√
1 + (z′)2

, 0

)
t̃µφ =

(
0, 0, 1

)
ñµ =

(
1√

1 + (z′)2
,

− z′√
1 + (z′)2

, 0

)

(4.4.12)

where z = z(ρ) satisfies (4.4.11). We remark that only the component ñz occurs in (4.1.22)

and (4.1.26). Thus, from (4.4.12), we easily find that for 1 < dθ < 3 the expression (4.1.22)

becomes

FA =
2π

dθ − 1

∫ R

0

ρ dρ

zdθ
√

1 + (z′)2
. (4.4.13)

In the regime 3 < dθ < 5, we have that (4.1.26) gives

FA =
2π

(dθ − 1)(dθ − 3)

∫ R

0

2
[
(dθ − 1) + z z′/ρ

]
(z′)2 − 3

zdθ
[
1 + (z′)2

]3/2 ρ dρ (4.4.14)

where (4.4.11) has been used to rewrite z′′.

Even though (4.4.11) is invariant under the scale transformation (z, ρ) → λ(z, ρ), the

expressions in (4.4.13) and (4.4.14) do not enjoy this invariance. However, since the metric

scales as ds2 7→ λ2−dθds2, it is straightforward to observe that

FA(R) = R2−dθ FA
∣∣
R=1

FA(R) = R2−dθ FA

∣∣
R=1

. (4.4.15)

Thus, the finite term in the holographic entanglement entropy decreases with the radius for

dθ > 2, while it increases for dθ < 2. The case dθ = 2 corresponds to AdS4, which is scale

invariant, and FA = 2π for a disk, independently of the radius R, as expected.

In our numerical analysis we have employed Wolfram Mathematica and Surface Evolver

[152, 153]. Wolfram Mathematica has been used to solve numerically ordinary differential
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Figure 4.2: Finite term FA in terms of 1 < dθ < 3 for minimal surfaces anchored to a disk of radius

R = 1 in the hvLif4 geometry (4.1.21) at t = const. The solid line is found by first solving numerically

(with Wolfram Mathematica) the differential equation (4.4.11) and then plugging the resulting radial

profile into (4.4.13). The data points labelled by the empty circles and the empty triangles have been

obtained with Surface Evolver through the two formulas in (4.4.16) respectively. The inset contains a

zoom close to the minimum of the curve, that corresponds to (dθ, FA) ' (2.52 , 4.67).

equations, which can be written whenever the symmetry of A and of the gravitational back-

ground allows to parameterise γA only in terms of a function of a single variable. In this

chapter, this is the case for the disk. Instead, Surface Evolver is more versatile in our three-

dimensional gravitational backgrounds (on a constant time slice) because it provides an ap-

proximation of the minimal surface γ̂A through triangulated surfaces without implementing

any particular parameterisation of the surface. In particular, once the three-dimensional grav-

itational background has been introduced, given the UV cutoff ε and the entangling curve ∂A,

only the trial surface (a rough triangulation that fixes the topology of the expected minimal

surface) has to be specified as initial data for the evolution. This makes Surface Evolver

suitable to study the holographic entanglement entropy in AdS4/CFT3 for entangling curve

of generic shape, as already done in [78, 154, 155, 245] (we refer the interested reader to these

works for technical details about the application of Surface Evolver in this context). We re-

mark that, besides the position of the vertices of the triangulated surface, Surface Evolver can

also provide the unit vectors normal to the triangles composing the triangulated surface. This

information can be used to evaluate numerically the expressions discussed in Section 4.1.2.

Let us denote by γ̂A,SE the best approximation of the minimal surface obtained with Surface

Evolver and byASE its area, which depends on the value of ε adopted in the numerical analysis.

These data allow to compute the finite term in the expansion of the holographic entanglement

entropy in two ways: by subtracting the area law term from ASE or by plugging the numerical

data provided by Surface Evolver into the general formulas discussed in Section 4.1.2. For
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where we used

h̃zµ@µ = h̃zz@z + h̃zy@y = (1 � ñzñz)
1

z0
@x (4.19)

The conserved quantity (4.5) allows us to simplify (4.18) as follows

FA = � 4

(d✓ � 1)(d✓ � 3)

Z L/2

0

Z `/2

0

"
3

zd✓⇤ (1 + z02)
� 2(d✓ � 1)

zd✓⇤ (1 + z02)
z02
#

dxdy, (4.20)

where we performed the derivative

@x

✓
1

z
p

1 + z02

◆
=

1

zd✓⇤
@x(zd✓�1) =

(d✓ � 1)z0zd✓�2

zd✓⇤
. (4.21)

By expressing z0 in terms of z, z⇤ we can further simplify (4.20) obtaining

FA = � 2L

(d✓ � 1)(d✓ � 3)

2d✓ + 1

z3d✓⇤

Z `/2

0
z2d✓dx � 2L`

(d✓ � 1)(d✓ � 3)

(1 � d✓)

zd✓⇤
. (4.22)

Now we perform the integral

Z `/2

0
z2d✓dx =

Z z⇤

0

z2d✓

z0
dz =

Z z⇤

0

z2d✓dzq�
z⇤/z

�2d✓ � 1
=

p
⇡�
⇣

3
2 + 1

2d✓

⌘

2d✓�
⇣
2 + 1

2d✓

⌘ z2d✓+1
⇤ . (4.23)

By using the properties of the Gamma function and the expression (4.7) for `/2 the previous

integral becomes Z `/2

0
z2d✓dx =

`(d✓ + 1)

2(2d✓ + 1)
z2d✓⇤ . (4.24)

Plugging (4.24) in (4.22) we obtain

FA =
L

(d✓ � 1)

`

zd✓⇤
(4.25)

which is exactly (4.6).

4.3 Disk

In this subsection, we study circular domains in the pure hvLif4 background. The following

analysis is performed numerically because finding an analytic solution is not possible even in

the circular case.

4.3.1 hvLif4

Let us firstly consider the case when the A is a disk of radius R, namely the entangling curve

is the circle defined by (x, y) = (R cos�, R sin�). To better exploit the rotational symmetry,

it is convenient to use cylindrical coordinates (z, ⇢, �), and parametrize the surface as

A(z, ⇢) =
�
z(⇢), ⇢, �

�
, (4.26)
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Figure 3: [come mai qui l’origine é messa a �5? sembrerebbe meglio 0]

it is straightforward to see that they scale as follows

FA(R) = R2�d✓ FA

��
R=1

FA(R) = R2�d✓ FA

��
R=1

(4.26)

as expected [why expected?]. From (4.26) one observes that the finite term in the holo-

graphic entanglement entropy decreases with the radius for d✓ > 2, while it increases for

d✓ < 2. The case d✓ = 2 corresponds to the scale invariant case of AdS4 and the finite term

FA = 2⇡ for the disks is independent of the radius R, as expected.

****************************************************************************

Let us denote with �̂SE
A the approximation of the extremal surface obtained with Surface

Evolver and with ASE its area. We then compute the two quantities [ho messo PA invece

di `A, va bene?]

FA,SE ⌘ �
⇣
ASE � PA/"d✓�1

⌘
eFA,SE ⌘ FA

��
�̂A,SE

(4.27)

where F
SE
A is obtained from the expression (2.23) evaluated on the triangulated surface trough

the components of the normal vectors to the minimal surface evaluated by Surface Evolver.

We computed FA(R = 1) by plugging the numerical solution of z(x) (found with Mathe-

matica) into the integral (??) and the result is plotted in Fig. ?? as a function of the e↵ective

dimensionality d✓, in the range 1 < d✓ < 3. We also computed some value of FA(d✓) with

Surface Evolver by employing two di↵erent methods, as explained in the following.
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Figure 4.3: Finite term FA in terms of 3 < dθ < 5 for minimal surfaces anchored to a disk of radius

R = 1 in the hvLif4 geometry (4.1.21) at t = const. The two curves have been obtained by first

solving numerically (with Wolfram Mathematica) the differential equation (4.4.11) and then plugging

the resulting profile either in (4.4.14) (solid red line) or into (4.4.10) (dashed blue line), once the area

law term has been subtracted.

1 < dθ < 3, these two ways to find the finite term are given by

FA,SE ≡ −
(
ASE − PA/εdθ−1

)
F̃A,SE ≡ FA

∣∣
γ̂A,SE

(4.4.16)

where FA is the expression in (4.1.18). In the range 3 < dθ < 5 we can write expressions

similar to the ones in (4.4.16) starting from (4.1.14) and (4.1.19).

In Fig. 4.2 we show the finite term FA for a disk of radius R = 1 as a function of the effective

dimensionality dθ, in the range 1 < dθ < 3, when the gravitational background is hvLif4. The

solid black curve has been found with Mathematica, by solving numerically (4.4.11) first and

then plugging the resulting radial profile for the minimal surface into (4.4.13). The data

points have been found with Surface Evolver by using FA,SE (empty circles) and F̃A,SE (empty

triangles), introduced in (4.4.16). The very good agreement between the data points and the

continuous curve provides a non-trivial check both of the analytic formula (4.1.22) and of the

procedure implemented in Surface Evolver, that is sensible to the value of dθ. For d ' 3 our

numerical analysis fails; hence in Fig. 4.2 we have reported only the reliable results.

An interesting feature that can be observed in Fig. 4.2 is the occurrence of a minimum for

FA corresponding to (dθ, FA) ' (2.52 , 4.67). When the gravitational background is AdS4, the

bound FA > 2π holds for any entangling curve and the inequality is saturated for the disks

[78]. From Fig. 4.2 we notice that, for hyperscaling violating theories, FA assumes also values
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lower than 2π for certain dθ.

In Fig. 4.3 the finite term FA for a disk of radius R = 1 is shown in terms of dθ, in the

range 3 < dθ < 5, when the gravitational background is hvLif4. The radial profile z(ρ) for

the minimal surface has been obtained by solving the equation of motion (4.4.11) numerically.

Then, the finite term has been obtained by plugging this result either into the area functional

regularised by subtracting the divergent terms (solid red line) or into the analytic expression

(4.4.14) (dashed blue line). In the figure, we have reported only the reliable numerical data.

Asymptotically hvLif4 black hole

It is worth studying the holographic entanglement entropy of a disk of radius R when the

gravitational background is the black hole (4.1.29). By adopting the cylindrical coordinates,

we can find the minimal surface among the surfaces γA invariant under rotations about the

z-axis, characterised by their radial profile z(ρ) such that z(R) = 0, as in Section 4.4.2. The

area functional for this class of surfaces reads

A[γA] = 2π

∫ R

0

1

zdθ

√
1 +

(z′)2

f(z)
ρ dρ . (4.4.17)

Under the rescaling (z, ρ) → λ(z, ρ), we have that zh → λzh, R → λR and A[γA] →
λ2−dθA[γA] for (4.4.17). This rescaling leaves invariant both the equation of motion and the

shape of the extremal surface γ̂A.

The unit vector normal to γ̂A reads

ñµ =
(
ñz, ñρ, ñφ

)
=

(
f(z)√

f(z) + (z′)2
,− z′√

f(z) + (z′)2
, 0

)
(4.4.18)

where z(ρ) satisfies the equation of motion coming from (4.4.17). By employing the component

ñz in (4.4.18), we can specialise (4.1.31) to this case, finding that for 1 < dθ < 3 the finite

term of the holographic entanglement entropy of a disk in the black hole geometry (4.1.29) is

proportional to

FA =
2π

dθ − 1

∫ R

0

[
(dθ−1)(f(z)−1)−zf

′(z)
2

+
f2(z)

f(z) + (z′)2

(
1 +

zf ′(z)
2f(z)

)] √
1 + (z′)2/f(z)

zdθ
ρ dρ .

(4.4.19)

This expression scales like FA → λ2−dθFA under the rescaling introduced above.

The radial profile characterising the minimal area surface γ̂A can be found by solving

the second order ordinary differential equation obtained by extremising the area functional

(4.4.17). This can be done numerically for any dθ (e.g. with Wolfram Mathematica). Then,

the finite term FA for 1 < dθ < 3 can be found by plugging the resulting profile into the

integral (4.4.17) properly regularised and subtracting the leading divergence (4.1.10),

In order to check our results, we have studied the finite term FA as a function of the radius

R for different values of ζ, where the gravitational background given by the black hole (4.1.29)

with fixed dθ = 2 and the black hole horizon set to zh = 1. The results are shown in Fig. 4.4,

where the same quantity has been computed by employing analytic expressions and numerical
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Figure 4.4: Finite term FA for minimal surfaces anchored to a disk of radius R when the bulk metric

is the black hole (4.1.29), with dθ = 2, different values of ζ and the horizon set to zh = 1. The

solid black curve corresponds to the analytic solution (4.4.24) described in Section 4.4.2, while the

remaining coloured solid lines have been obtained by evaluating (4.4.19) on the minimal surface whose

radial profile has been found by solving the equation of motion of (4.4.17) numerically. The data points

labelled by the empty circles and the empty triangles have been obtained with Surface Evolver through

the two formulas in (4.4.16) respectively. The horizontal black dashed line corresponds to FA = 2π,

that gives the finite term of the holographic entanglement entropy of disks when the gravitational

background is AdS4.

methods based either on Mathematica or on Surface Evolver, finding a remarkable agreement.

For very small regions, FA tends to 2π as in the AdS4 and, in particular, it is independent on

ζ. For very large regions we expect to obtain the behaviour (4.1.33), independent of ζ, while

for intermediate sizes FA depends on ζ in a non-trivial way.

Let us remark that, in Fig. 4.4, the curves having dθ = 2 and different ζ tend to accumulate

toward a limiting curve as ζ increases. In Section 4.4.2 we provide the analytic expression of

this limiting curve.

Analytic solution for dθ = 2 and ζ → ∞

Analytic solutions for the minimal surfaces anchored to the disk with radius R can be found

for the black hole background (4.1.29) in the asymptotic regime given by dθ = 2 and large

ζ. In this limit, the original black hole geometry collapses to AdS4 for z 6 zh, with an event
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Figure 4.5: Radial profiles of minimal surfaces anchored to disks with R = 0.85 and R = 2 in the

black hole background (4.1.29) for dθ = 2 and different values of ζ. The grey horizontal line is the black

hole horizon at zh = 1. The solid black lines correspond to the asymptotic regime ζ → +∞: when

R 6 zh they are hemispheres z(ρ) =
√
R2 − ρ2, otherwise they are given by (4.4.20). The coloured

dashed lines, which correspond to some finite values of ζ, are radial profiles obtained numerically with

Mathematica.

horizon located at z = zh. The horizon prevents the minimal surface from entering the region

z > zh.

When R/zh 6 1, the minimal surface is provided by the usual hemisphere, that in cylin-

drical coordinates reads z(ρ) =
√
R2 − ρ2. When R/zh > 1, the extremal surface consists of

two branches: a non-trivial profile connecting the conformal boundary to the horizon and a

flat disk that lies on the horizon. The detailed procedure to construct this minimal surface

analytically is given in Appendix C.6 and below we summarize the main results.

In cylindrical coordinates, the profile of the minimal surface for R/zh > 1 is parametrically

defined by

(z, ρ) =

{
Req+,k(ẑ)(ẑ, 1) 0 < ẑ < k1/4

(zh, ρ) 0 < ρ < zh/k
1/4

(4.4.20)

where ẑ = z/ρ and k is an integration constant whose value as function of R/zh is determined

by the following condition

R

zh
=
eq+,k(k1/4)

k1/4
. (4.4.21)

The function q+,k(ẑ) is one of the two functions emerging from the integration of the differen-

tial equation for the extremal surface (see Appendix C.6). They both can be written in terms

of elliptic integrals of different kinds, and their expressions have already defined in (2.3.5).
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Figure 4.6: Finite term FA in terms of dθ in the range 1 < dθ < 3 for minimal surfaces in hvLif4
anchored to ellipses A having fixed perimeter PA = 1. Different colours correspond to ellipses with

different eccentricity. The data points have been obtained with Surface Evolver in the two ways

described in (4.4.16) (the markers have been assigned as in the previous figures). The solid black

curve, that corresponds to the disk, is the curve reported in Fig. 4.2 multiplied by (PA/(2πR))2−dθ .

However, for easier reading, we report again the result below:

q±,k(ẑ) =
1

2
log(1 + ẑ2)± κ

√
1− 2κ2

κ2 − 1

[
Π
(
1− κ2,Ω(ẑ)|κ2

)
− F

(
Ω(ẑ)|κ2

)]
(4.4.22)

with

Ω(ẑ) ≡ arcsin

(
ẑ/ẑm√

1 + κ2(ẑ2/ẑ2
m − 1)

)
κ ≡

√
1 + ẑ2

m

2 + ẑ2
m

(4.4.23)

where ẑ2
m = (k +

√
k(k + 4))/2.

In Fig. 4.5, we have plotted the profile of the minimal surfaces in the limit ζ → +∞ for two

different radii R = 0.85 and R = 2 (continuous black lines). In the former case, the solution

is the hemisphere, while in the latter one it is given by the profile (4.4.20). As a consistency

check, we have obtained numerically (with Mathematica) the radial profiles for finite values

of ζ (coloured dashed lines), finding that they approach the analytical solution as ζ increases.

We can now compute the finite term FA for this family of surfaces, and the result reads

FA =





2π when R 6 zh

2π

(
Fk(k1/4)− 1

2
√
k

)
when R > zh

(4.4.24)

with

Fk(ẑ) ≡
√
k(1 + ẑ2)− ẑ4

√
k ẑ

− F(arcsin(ẑ/ẑm) | − ẑ2
m − 1)− E(arcsin(ẑ/ẑm) | − ẑ2

m − 1)

ẑm
(4.4.25)
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Figure 4.7: Finite term FA in terms of the perimeter PA for minimal surfaces in the asymptotically

hvLif4 black hole (4.1.29) anchored to ellipses A. The Lifshitz exponent is fixed to ζ = 1.5, while

dθ = 1.5 in the left panel and dθ = 2.5 in the right panel. Different colours correspond to ellipses with

different eccentricity: disk (black), R2 = 2R1 (blue) and R2 = 3R1 (red). The data points labelled

by the empty circles and the empty triangles have been obtained with Surface Evolver through the

two formulas in (4.4.16) respectively. The solid black curves for disks have been found numerically by

employing Mathematica. All the curves and the data points have been obtained by using (4.1.18).

where F and E are the first and second elliptic integral respectively. The curve (4.4.24) is a

continuous function of R.

The solid black curve in Fig. 4.4 has been obtained by a parametric plot employing (4.4.21)

and (4.4.24) (with zh = 1) for R > 1, while FA = 2π for R < 1.

4.4.3 Ellipses

The main feature of the analytic expressions obtained in Section 4.1 and Section 4.3 for the

finite term of the holographic entanglement entropy is that they hold for any smooth shape

of the entangling curve. In order to evaluate these formulas for explicit domains, one needs

to know the entire minimal surface γ̂A, and this task is usually very difficult, in particular

when the entangling curve does not display some useful symmetry. Surface Evolver can be

employed to study numerically γ̂A for a generic smooth entangling curve ∂A, as already done

in some asymptotically AdS4 backgrounds in [78, 245], and in the chapters 2 and 3.

In this subsection, we consider the finite term of the holographic entanglement entropy

of ellipses when the gravitational spacetime is hvLif4 in (4.1.19) or the asymptotically hvLif4

black hole (4.1.29).

In Fig. 4.6, we show the finite term FA of elliptic regions having the same perimeter PA = 1

as a function of the effective dimension 1 < dθ < 3, when the bulk is hvLif4. Ellipses with

different eccentricity e have been considered (we recall that e =
√

1− (R1/R2)2 ∈ [0, 1), being

R1 6 R2 the semi-axis of the ellipse). The numerical data have been obtained with Surface

Evolver and FA has been found through the two different methods described in (4.4.16). In

particular, the empty circles and the empty triangles correspond respectively to FA,SE and

F̃A,SE (the coloured dashed lines just join the data points). The solid black line gives the
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finite term for disks, and it has been obtained by using Mathematica (it is the same curve

shown in Fig. 4.2,multiplied by the factor (PA/(2πR))2−dθ).

The finite term FA when the bulk metric is the black hole (4.1.29) also depends on dθ.

In Fig. 4.7 we show FA for ellipses having different eccentricity in terms of their perimeter

PA for two different values of dθ (dθ = 1.5 in the left panel and dθ = 2.5 in the right panel)

and the same value of the Lifshitz parameter ζ = 1.5. Also in this case, the data points

have been found by evaluating numerically (4.1.31) on the approximated minimal surfaces

obtained with Surface Evolver, while the solid black curve has been obtained numerically by

using Mathematica. The very good agreement between the various methods provides a highly

non-trivial check of the general formula (4.1.18).

A qualitative difference can be observed between the two panels in Fig. 4.7. Indeed, for

very small regions, the behaviour of FA depends on dθ. In particular, when PA → 0, we have

that FA → 0 for dθ < 2 while FA → +∞ for dθ > 2. This can be understood by observing that

the finite term FA of small regions (whose maximal penetration in the bulk is very far from

the horizon) is not influenced by the occurrence of the horizon; hence it scales approximately

as in (4.4.15), which is valid in hvLif4.

4.5 Discussion

In this chapter, we have explored the shape dependence of the holographic entanglement

entropy in AdS4/CFT3 in the presence of Lifshitz scaling and hyperscaling violation. Both

static and time-dependent backgrounds have been studied and, for the sake of simplicity, we

focussed to smooth entangling curves and to the regime 1 6 dθ 6 5 for the hyperscaling

parameter. In the expansion of the holographic entanglement entropy as the UV cutoff ε

vanishes, both the divergent terms and the finite term have been analysed.

Our main results are analytic expressions for the finite term that can be applied for any

smooth entangling curve: for static backgrounds, they are given by (4.1.18) when 1 < dθ < 3

and by (4.1.19) when 3 < dθ < 5; for time-dependent backgrounds, we have obtained (4.3.2)

when 1 < dθ < 3. In the regime 1 < dθ < 3, the finite term for static and time-dependent

backgrounds has also been studied for surfaces that intersect the boundary orthogonally along

smooth curves, finding the expressions (4.1.17) and (4.3.1) respectively. This class of surfaces

includes the extremal surfaces providing the holographic entanglement entropy.

When dθ ∈ {1, 3, 5}, a logarithmic divergence occurs in the expansion of the holographic

entanglement entropy. The coefficient of this divergence is determined only by the geometry

of the entangling curve and its analytic expression for a generic smooth entangling curve has

been reported in (4.1.11), (4.1.13) and (4.1.16) respectively.

The new results summarised above have been found by extending the analysis first per-

formed in [76] and then further developed in [77, 78, 155] for gravitational backgrounds having

dθ = 2.

We find it worth mentioning two other analytic results obtained. For hvLifd+1 spacetime

we showed that the finite term of the extremal surface can be expressed as an integral over the

entangling surface, since the background metric admits a conformal Killing vector generating
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dilatations. Moreover, we have briefly discussed the extension of this result to more general

geometries. By applying this result to hvLifd+1, the simple expression (4.2.7) is found for the

finite term, valid in any dimension and for any dθ > 1. Another result has been obtained for

the asymptotically hvLif4 black hole (4.1.29) in the asymptotic regime given by dθ = 2 and

ζ → ∞, where we have found the analytic expression of the minimal surface anchored to a

disk and of the finite term in the expansion of its area.

For the static backgrounds given by the hvLif4 spacetime (4.1.21) and the asymptotically

hvLif4 black hole (4.1.29), a numerical analysis has been performed by considering disks and

ellipses. Disks have been studied mainly through the standard Wolfram Mathematica, while

for the ellipses we have employed Surface Evolver [152, 153]. A very good agreement between

the analytic expressions in (4.1.18) and (4.1.19) and the numerical data has been observed.
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Conclusions and Future Directions

The time has come for drawing the conclusions of this thesis and discussing some possible

future directions.

The recurrent theme of this work is the shape dependence of the entanglement entropy. As

already discussed in chapter 1, subleading terms with respect to the area law strongly depends

on the shape of the region A. In four dimensions, the first subleading term is a logarithmic

divergence whose coefficient is a universal quantity characterising the underlying CFT, and

which contains the two anomalies a and c. It turns out that when the region A is a sphere, only

the charge a appears in the logarithm and this provides a way to state the a-theorem in terms

of the entanglement entropy. In the three-dimensional case, no logarithmic terms occur for

smooth surfaces. Nonetheless, by considering a circular region A, the finite term (related to

the free-energy on the sphere) provides the F−theorem. When the domain A is non-smooth,

logarithmic terms arise as contributions from corners in A. The universal coefficient is a

function of the opening angles of the corners and depends on the specific three-dimensional

CFT. In particular, in the limit of vanishing angles, the coefficient of the quadratic term

of the expansion of the corner function is proportional to the coefficient characterising the

two-point function of the stress-energy tensor. All these results suggest that studying the

dependence of the entanglement entropy on the shape of A can reveal important information

about the theory. On the other hand, finding the entanglement entropy for a generic region

is a formidable task also from the numerical perspective. For this reason, we employ the

holographic setup, in which SA can be found by computing the area of a minimal surface in

a suitable asymptotically anti de-Sitter spacetime whose boundary supports the CFT. In this

case, a change in the shape of the region A leads to a change of the corresponding minimal

surface and, in turn, of its area. The holographic setup, which is conjectured to describe some

strongly coupled CFTs, allows finding many analytical results, and it drastically simplifies

the numerical analysis.

In chapters 2 and 3, we have considered the case of three-dimensional conformal field

theories with boundaries (BCFT3). Our strategy was to compute the entanglement entropy in

the holographic setup introduced by Takayanagi [89]. In chapter 2, we have started deriving

an analytical formula for the finite term FA (see equation (2.1.18)) valid for any region A

(also when it is made of disjoint components) and any static asymptotically AdS4 metric
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with generic boundary Q that represents the gravitational counterpart of the boundary of

the BCFT3 (see Sec. 2.1). For gravitational backgrounds corresponding to AdS4 spacetimes

restricted by Q, the functional (2.1.18) reduces to the Willmore functional over R3 with a

proper boundary term (see equation (2.1.23)). When the gravitational spacetime is dual to

the vacuum of the BCFT3 with flat or circular boundaries, we found explicit solutions of

the minimal surfaces from which we were able to check the general formula (2.1.18). These

solutions correspond to strip regions (Sec. 2.2) when the boundary is flat, and to circular

regions disjoint from either the flat or the circular boundary (Sec. 2.3). Both the domains

show a particular feature of AdSd+2/BCFTd+1, namely for certain boundary conditions the

minimal surfaces are never affected by the presence of the boundary Q, not even for domains

very closed to the boundary of the BCFTd+1. In particular, in the holographic setup the

boundary conditions are parametrized by the tension of Q, or equivalently by the geometrical

angle α setting the slope of Q when it is a hyperplane. Thus, below a certain critical value

αc of α, the minimal surfaces behave as in the absence of Q. In contrast, above this value,

the minimal surfaces can be either connected to Q or disconnected from it, depending on

the distance of A from the boundary. This means that it exists a finite critical distance

at which a transition between extremal surfaces occurs. This kind of transitions have been

studied explicitly for circular regions in Sec. 2.3. Finally, in Sec. 2.4, numerical results for

elliptic domains disjoint from the boundary have been studied by employing Surface Evolver

[152, 153].

In chapter 3, we considered entangling curves intersecting the boundary at isolated points.

For these bipartitions, a logarithmic term in the expansion of SA arises as a contribution of

corners adjacent to the boundary. The coefficient of the logarithm is a boundary corner

function that depends on the opening angles of such corners. If more than one intersection

occurs, the total coefficient is the sum of the functions due to the single intersections. By

employing two simple domains, namely the half-disk (see Sec. 3.2.1) and the infinite wedge

adjacent to the boundary (Sec. 3.2.3), we have found the analytic expression of the boundary

corner function in the holographic setup. For such domains, the minimal surfaces are always

affected by the boundary Q. However, the critical value of α shows up in the limiting regime

for which the opening angle of the infinite wedge tends to zero (see equation (3.2.17)). In

this case, above the critical value, the boundary corner function displays a simple pole, while

below that value it tends to a finite value (which is zero at the critical value). The other

interesting limiting regime corresponds to the orthogonal intersection. In this case, from the

expansion of the boundary corner function (3.2.19), we observed that the leading contribution

fα(π/2) is proportional to the a charge of the boundary conformal anomaly (see Sec. 3.4) in

agreement with the results [161, 208, 269], while the coefficient of the second-order f ′′α(π/2)

is proportional to the coefficient AT , which appears in the leading order of the one-point

function of the stress-energy tensor in its expansion near a curved boundary. We stress that

this relation (3.4.6), which is independent of the boundary conditions, holds only in the setup

proposed by Takayanagi. This is in contrast with the relation (3.2.19) that also holds for the

other proposals [158–161]. Finally, numerical results have been found to check the analytic

result of the boundary corner function, and transitions between extremal surfaces for domains
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with single tips located on the boundary have been studied in Sec. 3.5.

Many interesting directions can be explored in the future. An important conceptual issue

to understand in the AdS/BCFT setup of [89] is the relation occurring between the geometri-

cal parameter α and the space of the conformally invariant boundary conditions for the dual

BCFT3. As for the holographic entanglement entropy in AdS4/BCFT3, gravitational back-

grounds dual to a BCFT3 at finite temperature or to boundary RG flows could be considered.

The expression (2.1.18) found in this chapter 2 also holds in these cases; nonetheless, it would

be interesting to find explicit analytic expressions in some simple setups. Time-dependent

gravitational backgrounds, which are relevant to study quenches, could be studied. Further-

more, an interesting issue that we find it worth exploring is the possibility that the relation

(3.4.6) holds for other models of BCFT3. A result in this direction has been discussed in

[272], where this ratio has been obtained numerically for the free scalar boson with Dirich-

let boundary condition. Their result shows a mismatch with our holographic computation

(3.4.6). On the other hand, the free scalar boson seems to be a special case for the presence

of non-minimal coupling to the scalar curvature. In particular, in [208] it has been discussed

that this coupling spoils the relation a = fα(π/2) that should be valid for any BCFTs [269]. It

is certainly interesting to explore if such coupling is also the cause for the mismatch regarding

the ratio (3.4.6). Furthermore, a deep understanding of the relation (3.4.6) could give in-

sight on the possible different prescriptions for the holographic dual of BCFTs [89, 158–161].

The extension of the analysis performed in this thesis to higher dimensions, where different

kinds of singular configurations occur, is certainly important to improve our understanding

of the holographic entanglement entropy in AdS/BCFT. Furthermore, we find it interesting

to explore in the future the holographic complexity [44–48] in the presence of boundaries. In

particular, it has been recently found that the insertion of defects could give insights on the

duals of the quantum complexity [274]. We remark that the results and the methods discussed

in this thesis could be useful also in the context of the gauge/gravity correspondence in the

presence of defects (AdS/dCFT) [262, 275].

In chapter 4, we considered asymptotically hvLif4 background metrics. This kind of space-

times are supposed to be dual to critical systems with anisotropic scale invariance (Lifshitz

spacetime) characterised by the dynamical exponent ζ, and which display the violation of the

hyperscaling relations driven by the exponent θ. These behaviours appear in quantum phase

transitions of certain condensed matter systems. The holographic entanglement entropy of a

region A in general depends on both ζ and θ (or dθ = 2− θ). In asymptotically hvLif4 back-

grounds, we computed the divergent terms for certain value of dθ, i.e. 1 6 dθ 6 5 for domains

A. We showed that these terms are completely determined by the geodesics curvature of the

entangling surface. In particular, for odd values of dθ a logarithmic contribution appears, see

for instance equations (4.1.11), (4.1.13) and (4.1.16) for dθ = 1, 3, 5, respectively. The case

dθ = 1 is compelling because it shows a logarithmic violation of the area law, which charac-

terises systems with a Fermi surface. The finite term has a more complicated structure since

it also depends on the whole background metric. Despite that, we found analytic expressions

for the finite term in static backgrounds. These expressions are different for the two ranges

1 < dθ < 3 (see (4.1.18)) and 3 < dθ < 5 (see (4.1.19)). Furthermore, for the case 1 < dθ < 3
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we have found the functional (4.3.1) which is valid for time-dependent backgrounds and ex-

tends the analysis of [78] which is recovered in the special case of dθ = 2. We find it worth

mentioning two other analytic results obtained in that chapter. For hvLifd+1 spacetimes, we

showed that the finite term of an extremal surface can be expressed as an integral over the en-

tangling surface because the background metric admits a conformal Killing vector generating

dilatations. Then, numerical results have been found by employing Wolfram Mathematica (for

circular shapes) and Surface Evolver (for elliptic domains) to check the analytic expressions

(4.1.18) and (4.1.19). In particular, black-hole backgrounds have also been considered.

The results reported in chapter 4 can be extended in various directions. We find it worth

exploring dθ > 5 because other divergent terms occur, and it is interesting to understand

their dependence on the shape of the entangling curve. The numerical approach employed in

chapter 4 deserves further studies. For instance, it is important to extend the application of

Surface Evolver to time-dependent backgrounds, both to check on non-spherical finite regions

the analytic expressions for the finite term in the expansions of the holographic entanglement

entropy found in [78] and in Section 4.3, and to improve the current understanding of the

shape dependence of the holographic entanglement entropy.
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A.1 Useful mappings

In this appendix we discuss two useful transformations employed in Sec. 2.1.1 and Sec. 2.3.

Let us consider the map (x, y, z)→ (X,Y, Z) with z > 0 and Z > 0 defined by [246]





X = λ
x− ax + cx

[
(x− a)2 + z2

]

1 + 2 c · (x− a) + c2
[
(x− a)2 + z2

]

Y = λ
y − ay + cy

[
(x− a)2 + z2

]

1 + 2 c · (x− a) + c2
[
(x− a)2 + z2

]

Z = λ
z

1 + 2 c · (x− a) + c2
[
(x− a)2 + z2

]

(A.1.1)

where λ > 0, the vectors x = (x, y), a = (ax, ay) and c = (cx, cy) belong to R2 and · denotes

the standard scalar product between vectors in R2. The transformation (A.1.1) leaves the

metric (2.1.22) invariant up to a conformal factor. On the conformal boundary, given by

Z = z = 0, the map (A.1.1) becomes a special conformal transformation.

The first special case of (A.1.1) that we need is the map sending the right half-plane

{(x, y) ∈ R2, x > 0} at z = 0 into the disk {(X,Y ) ∈ R2, X2 + Y 2 6 R2
Q} of radius RQ at

Z = 0. Since this transformation must send the straight line (x, y, z) = (0, y, 0) into the circle

CQ given by (X,Y, Z) = (RQ cosφ,RQ sinφ, 0) with φ ∈ [0, 2π), it can be constructed by first

setting ay = az = 0 and x = z = 0 in (A.1.1), and then imposing X2 + Y 2 = R2
Q. This leads

to
λ2 (a2

x + y2)

(a2
x + y2)

(
c2
x + c2

y

)
− 2axcx + 2cyy + 1

−R2
Q = 0 ∀y ∈ R (A.1.2)

which can be written as a quadratic equation in y that must hold ∀y ∈ R; therefore we

have to impose the vanishing of its coefficients. This procedure gives ax = ±RQ/(2λ) and

c = (±λ/RQ, 0), where the choice of the sign determines whether the right half-plane x > 0 is

mapped in the region inside (positive sign) or outside (negative sign) the circle CQ. Considering
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the former option, we find that (A.1.1) becomes





X =
RQ
[
4λ2(x2 + y2 + z2)−R2

Q
]

R2
Q + 4λ2 (x2 + y2 + z2) + 4λRQ x

Y =
4λR2

Q y

R2
Q + 4λ2 (x2 + y2 + z2) + 4λRQ x

Z =
4λR2

Q z

R2
Q + 4λ2 (x2 + y2 + z2) + 4λRQ x





x =
RQ
(
R2
Q −X2 − Y 2 − Z2

)

2λ
[
(RQ −X)2 + Y 2 + Z2

]

y =
R2
Q Y

λ
[
(RQ −X)2 + Y 2 + Z2

]

z =
R2
Q Z

λ
[
(RQ −X)2 + Y 2 + Z2

]

(A.1.3)

where also the inverse map has been reported. The transformations in (A.1.3) relate the

setups described in Sec. 2.1.1 and Sec. 1.4.2. Since in (A.1.3) the constant λ can be reabsorbed

through the rescaling (x, y, z) → λ(x, y, z), which leaves H3 invariant, we are allowed to set

λ = 1 in (A.1.3) without loss of generality. The first transformation in (A.1.3) maps the

half-plane (1.4.9) into the following spherical cap [90]

X2 + Y 2 + (Z −RQ cotα)2 =
R2
Q

sin2 α
Z > 0 (A.1.4)

which has also been written in (1.4.11) by means of cylindrical coordinates. When α = π/2,

(A.1.4) reduces to the hemisphere of radius RQ.

The second map in (A.1.3) has been used in Sec. 2.3.2 to obtain the holographic en-

tanglement entropy of a disk disjoint from a flat boundary starting from the holographic

entanglement entropy of a disk concentric to a circular boundary computed in Sec. 2.3.1.

Indeed, by considering the circle (X,Y ) = (b◦ + R◦ cosφ,R◦ sinφ) with φ ∈ [0, 2π) in-

side the disk delimited by CQ, its image through the second map in (A.1.3) is the circle

(x, y) = (d + R + R cosφ,R sinφ) in the right half-plane at z = 0, which has radius R and

distance d from the straight boundary at x = 0. We find that (R◦, b◦) can be written in terms

of (R, d) as follows

R◦
RQ

=
4R/RQ

1 + 4(d/RQ + 2R/RQ)d/RQ + 4(d/RQ +R/RQ)
(A.1.5)

b◦
RQ

= 1− 2
[
1 + 2(d/RQ +R/RQ)

]
[
1 + 2(d/RQ + 2R/RQ)

] [
1 + 2d/RQ

] (A.1.6)

where the r.h.s.’s depend only on the ratios R/RQ and d/RQ. For a circle concentric to the

circular boundary (considered e.g. in Sec. 2.3.1), b◦ = 0. The expressions in (2.3.21) have

been obtained by solving (A.1.5) and (A.1.6) in this special case.

The second map in (A.1.3) has been also employed to obtain the analytic expressions for

the extremal surfaces shown in Fig. 2.12 and Fig. 2.13.

The second transformation coming from (A.1.1) that we consider is the one mapping

the disk delimited by CQ into itself. Let us rename (x, y, z) = (X ′, Y ′, Z ′) in (A.1.1) for

this case, where Z = Z ′ = 0. By imposing that the circle CQ is mapped into itself in the

coordinates (X ′, Y ′), we find the following two options: either a = (±RQ
√

(λ+ 1)/λ, 0) and

c = (±
√
λ(1 + λ)/RQ, 0) or a = (±RQ

√
(λ− 1)/λ, 0) and c = (∓

√
λ(λ− 1)/RQ, 0) with
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λ > 1. Since the first option exchanges the interior and the exterior of the disk, we have to

select the second one, where the lower or upper choice of the signs move the center of the

disk along either X ′ > 0 or X ′ < 0 respectively. Being the disk invariant under a rotation

of π about the origin, we can choose one of these two options without loss of generality.

Considering e.g. a = −(RQ
√

(λ− 1)/λ, 0) and c = (
√
λ(λ− 1)/RQ, 0) with λ > 1, the

resulting transformation maps the circle (X,Y ) = (R◦ cosφ,R◦ sinφ) with R◦ < RQ into the

circle (X ′, Y ′) = (b′◦ +R′◦ cosφ,R′◦ sinφ), where

R′◦
RQ

=
R◦/RQ

λ
[
1− (R◦/RQ)2

]
+ (R◦/RQ)2

b′◦
RQ

=

√
(λ− 1)λ

[
1− (R◦/RQ)2

]

λ
[
1− (R◦/RQ)2

]
+ (R◦/RQ)2

. (A.1.7)

By inverting these relations, one gets R◦/RQ and λ in terms of R′◦/RQ and b′◦/RQ. We have

checked that, under the transformation that we have constructed, the surface Q in (A.1.4)

remains unchanged for any value of λ > 1.

The expression of R◦/RQ obtained in this way and (2.3.13) provide the finite term FA for

the holographic entanglement entropy of a disk A inside the disk delimited by CQ in the cases

where these two disks are not concentric.

A.2 On the Infinite strips in generic dimension

A.2.1 Infinite strip adjacent to the boundary

In this appendix, we study the holographic entanglement entropy for the d dimensional infinite

strip of width ` adjacent to the boundary. The main results of this analysis specialised to

d = 2 have been reported in Sec. 2.2.

Given a constant time slice of a BCFTd+1, defined by x > 0 in proper Cartesian coordi-

nates, let us consider the following spatial domain

A = {(x, y1, . . . , yd−1) | 0 6 x 6 ` , 0 6 yi 6 L‖} L‖ � `� ε. (A.2.1)

The invariance under translations along the yi-axis (in a strict sense, this requires L‖ → +∞)

allows us to assume that the minimal surface γ̂A is characterised by its profile obtained by

sectioning γ̂A through an hyperplane defined by yi = const. The profile of γ̂A is given by

either x = ` or by a non-trivial curve z = z(x). Focussing on the latter case, let us denote

by P∗ = (x∗, z∗) the intersection between the curve z(x) and the section at yi = const of the

half-hyperplane Q, which is a half-line given by (1.4.9). The coordinates of P∗ are constrained

by imposing that P∗ ∈ Q, and this condition gives

x∗ = − z∗ cotα (A.2.2)

where we recall that α ∈ (0, π). Since the curve z(x) characterising the extremal surface

intersects orthogonally the section at constant yi = const of the half-hyperplane Q, it is not

difficult to realise that z′(x∗) = cotα.

The profile z(x) can be obtained by finding the extrema of the area functional among

the surfaces γA anchored to the edge x = ` of the strip (A.2.1) which are invariant under

translations along the yi directions and intersect Q orthogonally.
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Given a surface γA characterised by z(x), by writing the metric induced on γA from the

background (1.4.8), one obtains the following area functional

A[γA] = LdAdS L
d−1
‖

∫ `

x∗

√
1 + (z′)2

zd
dx. (A.2.3)

Since the integrand does not depend on x explicitly, we can find the extremal surface γ̂A by

employing the fact that the first integral of motion is constant. For the functional (A.2.3) this

condition tells us that zd
√

1 + (z′)2 is independent of x. By choosing the point (x∗, z∗), where

z′(x∗) = cotα, the equation imposing the constancy of the first integral of motion reads

zd
√

1 + (z′)2 =
zd∗

sinα
. (A.2.4)

In order to solve (A.2.4), we find it convenient to introduce the following parameterisation

z(θ) =
z∗

(sinα)1/d
(sin θ)1/d 0 6 θ 6 π − α (A.2.5)

which respects the boundary conditions z(π − α) = z∗ and z(0) = 0.

Plugging (A.2.5) into the square of (A.2.4), one gets ( dzdx)2 = (cot θ)2, which gives x′(θ)2 =

z′(θ)2(tan θ)2. Then, by employing (A.2.5) into the latter differential equation, we obtain

x′(θ) = − z∗
d (sinα)1/d

(sin θ)1/d (A.2.6)

where the physical condition that x(θ) decreases for increasing values of θ has been imposed.

The relation ( dzdx)2 = (cot θ)2 and (A.2.5) leads to the geometrical meaning of the angle

θ: it is the angle between the outgoing vector normal to the curve given by Pθ and the x

semi-axis with x > 0. Thus, from (A.2.5) we have that θ = π/2 corresponds to the point of

the curve z(x) having the maximum value zmax = z∗/(sinα)1/d.

By integrating (A.2.6) with the initial condition x(0) = `, we find

x(θ) = `− z∗
d (sinα)1/d

∫ θ

0
(sin θ̃)1/d dθ̃ (A.2.7)

= `− z∗
(sinα)1/d

[ √
π Γ
(
d+1
2d

)

Γ
(

1
2d

) − cos θ

d
2F1

(
d− 1

2d
,
1

2
;
3

2
; (cos θ)2

)]
. (A.2.8)

The expressions (A.2.5) and (A.2.8) depend on the coordinate z∗ of the point P∗. We can

relate z∗ to the width ` of the strip (A.2.1) by imposing that (A.2.8) satisfies the consistency

condition x(π − α) = x∗, where x∗ can be obtained from (A.2.2). This gives

`− z∗
(sinα)1/d

[ √
π Γ
(
d+1
2d

)

Γ
(

1
2d

) +
cosα

d
2F1

(
d− 1

2d
,
1

2
;
3

2
; (cosα)2

)]
= − z∗ cotα (A.2.9)

which leads to the following relation

z∗ =
(sinα)1/d

gd(α)
` (A.2.10)
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Figure A.1: The function gd(α) defined in (A.2.11) for some values of d. For a given d, the critical

value αc(d) is the unique zero of gd(α) (see (A.2.13)) and it has been highlighted through a vertical

dashed segment having the same colour of the corresponding curve gd(α).

where we have introduced

gd(α) ≡
√
π Γ
(
d+1
2d

)

Γ
(

1
2d

) +
cosα

d
2F1

(
d− 1

2d
,
1

2
;
3

2
; (cosα)2

)
− (sinα)1/d cotα. (A.2.11)

We remark that z∗ > 0, therefore (A.2.10) is well defined only when gd(α) > 0, being α ∈
(0, π). For d = 2, which is the case considered through the main text, the function (A.2.11)

becomes the function g(α) ≡ g2(α) in (2.2.2).

The first derivative of gd(α) with respect to α is very simple

∂α gd(α) =

(
1− 1

d

)
(sinα)1/d−2. (A.2.12)

This expression tells us that g1(α) is constant and, in particular, one finds g1(α) = 1 identi-

cally. When d > 1, we have that g′d(α) > 0 for α ∈ (0, π). Moreover, gd(α) = −1/α1−1/d+O(1)

as α→ 0+ and gd(α) = 1/(π−α)1−1/d+o(1) as α→ π−. These observations allow to conclude

that (A.2.11) has a unique zero α = αc for d > 1, namely

gd(αc) = 0. (A.2.13)

Since z∗ > 0 in (A.2.10), the condition (A.2.13) defines a critical value αc(d) for the slope

of Q. Indeed, (A.2.10) is well defined only for α ∈ (αc, π). Moreover, from (A.2.10) and

(A.2.13) we have that z∗ → +∞ when α→ α+
c . These observations allow us to conclude that

for α ∈ (0, αc] the solution which intersects orthogonally the half-hyperplane Q at a finite

value of z∗ does not exist; therefore γ̂A is the vertical half-hyperplane x = ` in this range of

α.

143



Appendix A. Appendix of Chapter 2

20 40 60 80 100 120 140 160

pê2

3pê8

pê4
¥

¥

¥

¥
¥
¥
¥¥
¥¥¥
¥¥¥¥¥
¥¥¥¥¥¥¥¥¥¥

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

d

↵c

Figure A.2: The critical slope αc(d) of the half-plane Q as function of the dimensionality parameter

d > 2. These points have been found by solving (A.2.13). The value αc(2) is given by (2.2.4). We find

that αc(d)→ π/2 as d→ +∞.

We remark that αc 6 π/2. Indeed, for α > π/2 it is straightforward to observe that

the vertical half-hyperplane x = ` is excluded because it does not intersect orthogonally the

half-hyperplane Q.

We find it worth considering the limit d → +∞ of (A.2.11). In this regime only the last

term gives a non-vanishing contribution and, in particular, we have gd(α)→ − cotα, meaning

that αc(d)→ π/2. Thus, αc tends to its natural upper bound for large d.

In Fig. A.1 the function gd(α) is shown for 1 6 d 6 6. The corresponding critical values

αc(d) for d 6 2 are highlighted through vertical dashed lines. The value of αc(d = 3) has

been found also in [159]. In Fig. A.2 we provide the critical slope αc(d) as function of the

dimensionality parameter d.

The profile z(x) of the extremal solution intersecting Q orthogonally at a finite value z∗
can be found by plugging (A.2.10) into (A.2.5) and (A.2.8). The result reads

(
x(θ) , z(θ)

)
=

`

gd(α)

(
cos θ

d
2F1

(
d− 1

2d
,
1

2
;
3

2
; (cos θ)2

)
−
√
π Γ
(
d+1
2d

)

Γ
(

1
2d

) + gd(α) , (sin θ)1/d

)
.

(A.2.14)

It is not difficult to check that this profile satisfies the required boundary conditions. Indeed

for θ = 0 and θ = π−α we find P0 = (`, 0) and P∗ = z∗(− cotα , 1) respectively, being z∗ given

by (A.2.10). The expression of (A.2.14) specialised to d = 2 has been reported in (2.2.5).

An interesting point of the curve z(x) is the one where z′(x) vanishes. Denoting its

coordinates by Pmax = (xmax, zmax), we have that z′(xmax) = 0. From the latter condition and
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(A.2.4) one finds a relation between Pmax and P∗ given by

zmax =
z∗

(sinα)1/d
=

`

gd(α)
. (A.2.15)

The first equality can be obtained also from (A.2.5) for θ = π/2, as remarked above, while in

the last step (A.2.10) has been used. Notice that for 0 < α < π/2 we have that zmax > z∗,

being θ − α 6= π/2. Instead, Pmax = P∗ when α = π/2, while Pmax does not exist when

α > π/2. These features can be observed in Fig. 2.2 for the case d = 2.

In order to evaluate the area for z > ε of the extremal surface characterised by the profile

(A.2.14), let us compute the metric induced on this surface by the background metric of Hd+1 .

By setting t = const into (1.4.8) and employing the relation x′(θ)2 = z′(θ)2(tan θ)2 derived

above (see the text below (A.2.5)), we find that the induced metric reads

ds2
∣∣
γ̂A

=
R2

AdS

z(θ)2

[
z′(θ)2

(cos θ)2
dθ2 + d~y 2

]
(A.2.16)

=
R2

AdS (sinα)2/d

z2∗ (sin θ)2/d

[
z2
∗

d2 (sinα)2/d (sin θ)2(1−1/d)
dθ2 + d~y 2

]
(A.2.17)

where d~y 2 =
∑d−1

j=1 dy
2
j and (A.2.5) have been used to obtain the last expression.

Let us focus on the cases with d > 1 first. From (A.2.17), for the area of γ̂ε we find

A[γ̂ε]

LdAdS

=
(sinα)1−1/d

d zd−1
∗

∫ L‖

0
dy1 . . . dyd−1

∫ π−α

θε

dθ

(sin θ)2−1/d
(A.2.18)

=
(sinα)1−1/d

d zd−1
∗

Ld−1
‖

[
2F1

(
3d− 1

2d
,
1

2
;
3

2
; (cos θ)2

)
cos θ

] ∣∣∣∣
θε

π−α
(A.2.19)

where the cutoff θε is defined by imposing that z(θε) = ε, being z(θ) the expression in (A.2.5).

This gives θε = arcsin(εd sinα/zd∗).

Taking the limit ε → 0+ in (A.2.19) and neglecting terms which vanish in this limit, we

find

A[γ̂ε]

LdAdS

= Ld−1
‖

{
1

(d− 1) εd−1
(A.2.20)

− (sinα)1−1/d

zd−1
∗

[ √
π Γ
(
d+1
2d

)

(d− 1) Γ
(

1
2d

) − cosα

d
2F1

(
3d− 1

2d
,
1

2
;
3

2
; (cosα)2

)]}
.

We remark that the divergent part of the area A[γ̂ε] is due to the area term only.

The above analysis extends smoothly to the whole range of α ∈ (0, π) the results of [159]

for the infinite strip adjacent to the boundary, which hold for α ∈ (0, π/2].

The finite term in (A.2.20) can be written in an insightful form by considering the following

identity [276]

[
(c− b)x− a

]
2F1(a+ 1, b ; c+ 1 ;x) = (c− a) 2F1(a, b ; c+ 1 ;x) + c (x− 1) 2F1(a+ 1, b ; c ;x).

(A.2.21)
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Specialising this identity to our case, we find

2F1

(
3d− 1

2d
,
1

2
;
3

2
; (cosα)2

)
= − 1

d− 1

[
2F1

(
d− 1

2d
,
1

2
;
3

2
; (cosα)2

)
− d (sinα)1/d−1

]
.

(A.2.22)

By employing this result, it is straightforward to realise that the expression enclosed by the

square brackets in (A.2.20) is gd(α)/(d− 1), being gd(α) given by (A.2.11). This observation

and (A.2.10) allow us to write (A.2.20) in terms of the width ` of the strip A as follows

A[γ̂ε]

LdAdS

=
Ld−1
‖

d− 1

(
1

εd−1
− gd(α)d

`d−1
+O

(
εd+1

))
. (A.2.23)

The expression (2.2.6) in the main text corresponds to (A.2.23) specialised to d = 2.

The other extremal surface occurring in our analysis is the half-hyperplane defined by

x = `. This can be observed by considering the extrinsic curvature of a half-hyperplane

embedded in Hd+1 whose normal vector has non-vanishing components only along z and x.

Denoting by θ the angle between this normal vector and the positive x semi-axis, one finds

TrK ∝ cos θ for the trace of the extrinsic curvature of the half-hyperplane. This implies that

the vertical hyperplane, which has θ = 0, is a local minimum for the area functional.

By also introducing an infrared cutoff zIR beside the UV cutoff ε, it is straightforward to

show that the portion of surface such that ε 6 z 6 zIR reads

A[γ̂ε]

LdAdS

=
Ld−1
‖

d− 1

(
1

εd−1
− 1

zd−1
IR

)
. (A.2.24)

The divergent part of A[γ̂ε] is the same one occurring in (A.2.20), as expected. Let us stress

that the finite term in (A.2.24) vanishes as zIR →∞.

Summarising, for α ∈ (0, αc] the minimal surface γ̂A is the vertical half-hyperplane x = `

because the surface characterised by (A.2.14) is not well defined. In the range α ∈ (αc, π/2]

both the surface given by (A.2.14) and the vertical half-hyperplane x = ` are well defined

extremal solutions of the area functional and, by comparing (A.2.23) with (A.2.24), we con-

clude that γ̂A is the one characterised by (A.2.14). Instead, when α ∈ (π/2, π) the vertical

half-hyperplane is not a solution anymore of our problem because it does not intersect Q
orthogonally; therefore the minimal surface γ̂A is again the surface corresponding to (A.2.14).

Putting these observations together, we find the following area for the restriction to z > ε

of the minimal surface corresponding to the strip adjacent to the boundary

A[γ̂ε]

LdAdS

= Ld−1
‖

[
1

(d− 1) εd−1
+

a0,d(α)

(d− 1) `d−1
+ o(1)

]
(A.2.25)

where

a0,d(α) ≡
{
− gd(α)d α > αc(d)

0 α 6 αc(d)
. (A.2.26)

Notice that a0,d(α) and its first derivative are continuous functions of α. Also the higher order

derivatives of a0,d(α) are continuous until the d-th derivative of a0,d(α), which is discontinuous

at α = αc(d). In (2.2.7) we have specialised (A.2.25) and (A.2.26) to d = 2.
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We find it interesting to discuss separately the d = 1 case. As already remarked below

(A.2.11), in this case we have that g1(α) = 1 identically; therefore a critical value for α does

not occur. Moreover, the profile (A.2.14) simplifies to (x(θ), z(θ)) = ` (cos θ , sin θ). This curve

is an arc of circumference of radius `; therefore it intersects orthogonally the half-line Q given

by (1.4.9) which passes through the origin. We also have that z∗ = ` sinα, which corresponds

to (A.2.10) for d = 1.

As for the length of this arc of circumference with opening angle π − α and for z > ε, it

is straightforward to find that

A[γ̂ε]

LdAdS

=

∫ π−α

θε

dθ

sin θ
= log

(
sin(θ/2)

cos(θ/2)

)∣∣∣∣
π−α

θε

= log(`/ε) + log
(
2 cot(α/2)

)
+O(ε2) (A.2.27)

where the angular cutoff θε is defined by requiring that ε = ` sin θε. As for the extremal curve

given by the half-line x = `, by introducing the IR cutoff zIR, for the length of the part of this

straight line such that ε 6 z 6 zIR we find

A[γ̂ε]

LdAdS

= log(`/ε) + log(zIR/`) (A.2.28)

where the term log(zIR/`) diverges when zIR/` → +∞. Thus the minimal curve is always

given by the arc of circumference. This is consistent with the observation that a critical slope

does not occur when d = 1.

A.2.2 Infinite strip parallel to the boundary in generic dimension

In this appendix, we consider a strip A parallel to the boundary x = 0 and at a finite distance

from it. Let us denote by `A the width of the strip and by dA its distance from the boundary

(see Fig. 2.4). We will focus on spacetimes having d > 1. For the case d = 1 we refer the

reader to [159].

The main feature of the holographic entanglement entropy corresponding to this simple

domain is the fact that two qualitatively different hypersurfaces are local extrema of the area

functional; therefore, the minimum between them must be found. We recall that the case

d = 1 has been discussed in Sec. 1.4.3.

One of these candidates is the minimal area surface in AdSd+2 corresponding to the infinite

strip found in [31, 32] (see the blue solid curve in Fig. 2.4). Let us denote this hypersurface

by γ̂ dis
A , being disconnected from Q. The second candidate γ̂ con

A is made by the union of two

disjoint hypersurfaces. When α 6 αc, we have that γ̂ con
A is the union of the vertical half-

hyperplanes defined by x = dA and x = dA + `A. Instead, for α > αc the hypersurface γ̂ con
A

is made by two disjoint hypersurfaces characterised by the profile (A.2.14) which depart from

the edges of A and intersect Q orthogonally (see the green solid curves in Fig. 2.4 for a case

with α > αc).

Taking the part z > ε of γ̂ dis
A and γ̂ con

A , and evaluating the corresponding area as ε→ 0+,

one finds that the area law term is the same; therefore we have to compare the O(1) terms to

find γ̂A. By employing (A.2.25) and the well known result for the holographic entanglement
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entropy of the infinite strip in AdSd+2 [31, 32], one finds that the expansion of the area of γ̂ε

as ε→ 0+ reads

A[γ̂ε]

LdAdS

=
Ld−1
‖

d− 1

(
2

εd−1
+

1

`d−1
A

min

[
hd , a0,d(α)

(
1

δd−1
A

+
1

(δA + 1)d−1

)]
+ o(1)

)
. (A.2.29)

The function a0,d(α) has been introduced in (A.2.26), while the constant hd is defined as

[31, 32]

hd ≡ − 2dπd/2

(
Γ
(
d+1
2d

)

Γ
(

1
2d

)
)d
. (A.2.30)

The first term in the argument of the minimisation function occurring in the r.h.s. of (A.2.29)

corresponds to γ̂ dis
A , while the second one comes from γ̂ con

A . Thus, γ̂A = γ̂ dis
A when δA ≡ dA/`A

is large enough, while γ̂A = γ̂ con
A if the strip is close enough to the boundary. We remark that

(A.2.29) holds for α ∈ (0, π). Notice that, when α 6 αc, being hd < 0 and a0,d(α) = 0, we

have that γ̂A = γ̂ dis
A .

The critical configurations correspond to the cases where the two terms occurring in the

minimisation function of the O(1) term of (A.2.29) are equal. The value δA,c of the ratio δA

for these configurations can be found as a solution of the following equation

δd−1
A,c (δA,c + 1)d−1 = ã0,d(α)

[
(δA,c + 1)d−1 + δd−1

A,c

]
ã0,d(α) ≡ a0,d(α)

hd
. (A.2.31)

We remark that ã0,d is a positive and non-vanishing function of the slope α when α ∈
(αc, π), while ã0,d(α) = 0 when α ∈ (0, αc]. This implies that a strictly positive solution of

(A.2.31) does not exist when α 6 αc, as expected from the fact that γ̂A = γ̂ dis
A . Instead, for

α > αc we can show that δA,c always exists and it is also unique.

The equation (A.2.31) can be written as p(δA,c) = 0, where the real polynomial p(δA,c) in

powers of δA,c schematically reads

p(δA,c) = δ
2(d−1)
A,c + (d− 1)δ2d−3

A,c + · · ·+
[
1− 2ã0,d(α)

]
δd−1
A,c − ã0,d(α)(d− 1)δd−2

A,c − · · · − ã0,d(α).

(A.2.32)

The maximum number of positive roots of (A.2.32) can be determined by employing the

Descartes’ rule of signs. This rule states that the maximum number of positive roots of a

real polynomial is bounded by the number of sign differences between consecutive nonzero

coefficients of its powers, once they are set in decreasing order (the powers which do not occur

must be just omitted). Since ã0,d(α) > 0, the expression (A.2.32) shows that this number is

equal to one in our case; therefore we have at most one positive real root. Its existence is

guaranteed by the fact that p(0) = − ã0,d(α) < 0 and p(δ)→ +∞ as δ → +∞.

Since γ̂A = γ̂ dis
A when α 6 αc, as remarked above, the critical configurations exist only

for α ∈ (αc, π). Focussing on this range, an analytic expression for δA,c(α) in terms of ã0,d

for a generic dimension d cannot be found. However, we find it instructive to determine it

explicitly for d = 2 and d = 3 because (A.2.31) can be solved in closed form for these cases.

When d = 2 it is straightforward to obtain the result (2.2.9) reported in the main text.

For d = 3 the algebraic equation (A.2.31) has degree four. A shift of the variable allows to
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Figure A.3: Infinite strip of width `A parallel to the boundary at finite distance dA from it: The

ratio δA = dA/`A corresponding to the critical configurations in terms of α ∈ [αc, π) for some values

of d. The curves are obtained by finding the unique positive root of (A.2.31). For d = 2 and d = 3 the

expression of δA,c has been written analytically in (2.2.9) and (A.2.34) respectively, while for d > 4

the curves have been found by solving (A.2.31) numerically.

write it as follows

u4 − 4 ã0,3(α) + 1

2
u2 +

1− 8 ã0,3(α)

16
= 0 δA,c = u− 1

2
(A.2.33)

which is a biquadratic equation. Its unique positive root reads

δA,c =
1

2

(√
4ã0,3(α) + 4

√
ã0,3(α)

[
ã0,3(α) + 1

]
+ 1− 1

)
. (A.2.34)

For d > 4 the root of (A.2.31) can be found numerically and the results for some values of d

are shown in Fig. A.3, where the curves are defined for α > αc (see the inset, which contains

a zoom of the main plot for small values of δA,c).

A.3 On the disk concentric to a circular boundary

In this appendix, we provide some technical details underlying the derivation of the results

reported in Sec. 2.3.1. Considering the setup introduced in Sec. 1.4.2, we are interested in the

extremal surfaces anchored to the boundary of a disk A with radius R◦ concentric to the disk

of radius RQ > R◦, which corresponds to a spatial slice of the spacetime where the BCFT3

is defined. In the following we will adapt to this case the analysis reported in Appendix D.2

149



Appendix A. Appendix of Chapter 2

of [245] about the extremal surfaces anchored to the boundary of an annulus in AdS4/CFT3

(see also [243]).

A.3.1 Extremal surfaces

The invariance under rotations about the vertical axis z of this configuration significantly

simplifies the analysis of the corresponding extremal surfaces. Indeed, by introducing the

polar coordinates (ρ, φ) in the z = 0 plane, an extremal surface is determined by the curve

z = z(ρ) obtained by taking its section at a fixed angle φ. The area functional evaluated on

these surfaces becomes

A = 2πR2
AdS

∫
dρ ρ

√
z′2 + 1

z2
. (A.3.1)

The equation of motion coming from the extremization of this functional reads

z z′′ +
(
1 + z′2

)(
2 +

z z′

ρ

)
= 0. (A.3.2)

By introducing the variable u and the function ẑ(ρ) as follows

z(ρ) = ρ ẑ(ρ) u = log ρ ẑu = ∂uẑ (A.3.3)

the differential equation (A.3.2) becomes

ẑ ẑu(1 + ∂ẑ ẑu) +
[
1 + (ẑ + ẑu)2

][
2 + ẑ(ẑ + ẑu)

]
= 0. (A.3.4)

Integrating this equation, one finds

ẑu,± = −1 + ẑ2

ẑ

[
1± ẑ√

k(1 + ẑ2)− ẑ4

]−1

k > 0 (A.3.5)

where k is the integration constant. By employing that du = dẑ/ẑu and integrating (A.3.5)

starting from an arbitrary initial point, we get

log(ρ/ρin) =

∫ u

uin

dũ = −
∫ ẑ

ẑin

λ

1 + λ2

[
1± λ√

k(1 + λ2)− λ4

]
dλ. (A.3.6)

Since the extremal surfaces are anchored to the boundary of the disk A of radius R◦ at

z = 0, from (A.3.3) we have ẑ(R◦) = 0 and u = logR◦ when ρ = R◦. Choosing ρin = R◦ and

the negative sign within the integrand in (A.3.6), one finds the first equation in the r.h.s. of

(2.3.1), namely

log(ρ/R◦) = − q−,k(ẑ) (A.3.7)

where q−,k(ẑ) has been defined in (2.3.2). The choice of the negative sign in (A.3.7) will be

discussed at the end of this subsection.

The solution (A.3.7) is well defined as long as the expression under the square root of

(A.3.6) is positive. Such expression vanishes at the point Pm = (ρm, ẑm), whose coordinates

have been reported in (2.3.3). Following the curve given by (A.3.7) starting from (ρ, z) =

(R◦, 0), if it intersects Q before reaching Pm, then (A.3.7) fully describes the profile of γ̂ con
A .
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Otherwise, (A.3.7) provides the profile of γ̂ con
A until Pm and for the part between Pm and the

point P∗ = (ρ∗, ẑ∗) (which fully characterises the curve ∂γ̂Q = γ̂A ∩ Q in this case) also the

function defined by (A.3.6) with the positive sign must be employed. In particular, the profile

between Pm and P∗ reads

log(ρ/R◦) = − q+,k(ẑ) + q+,k(ẑm)− q−,k(ẑm) (A.3.8)

which can also be written in the form given by the second expression in the r.h.s. of (2.3.1),

once (2.3.4) has been used.

In order to justify (2.3.3) for the coordinates of Pm, let us consider the unit vectors vµ±
tangent to the radial profile of γ̂con

A along the two branches characterised by q±,k. They read

vµ± =
(
vρ±, v

z
±, v

φ
±
)

=
± z√

(q′±,k)
2 + (1− ẑ q′±,k)2

(
q′±,k , ẑ q

′
±,k − 1 , 0

)
(A.3.9)

where ± refers to the two different branches. At the matching point Pm, the tangent vector

field defined by vµ± must be continuous, hence a necessary condition is that gµν v
µ
+v

ν
− = 1 at

Pm. From (A.3.9), one finds that this requirement gives ẑ4 = k(1+ ẑ2), whose only admissible

solution is the first expression in (2.3.3).

The boundary condition along the curve ∂γ̂Q = γ̂A ∩ Q provides the parameter k. The

condition to impose is that γ̂ con
A and Q intersects orthogonally along ∂γ̂Q. This requirement

is equivalent to impose that the vector vµ tangent to γ̂ con
A and the vector uµ tangent to Q are

orthogonal along ∂γ̂Q. From (1.4.11), we find

uµ = (uρ, uz, uφ) = (cotα− ρ ẑ/RQ , ρ/RQ , 0) . (A.3.10)

By using (A.3.9) and (A.3.10), we find that the orthogonality condition vρuρ + vzuz = 0

at the intersection between γ̂ con
A and Q gives

q′±,k(ρ∗) =
ρ∗
RQ

tanα (A.3.11)

where q′±,k can be read from (2.3.2) and ρ∗/RQ can be obtained by specializing (1.4.12) to

P∗. This leads to √
ẑ2∗ + sin2 α

cosα
= ± ẑ2

∗√
k(1 + ẑ2∗)− ẑ4∗

(A.3.12)

that allows us to write ẑ∗ as a function of k and α. Indeed, the first expression of (2.3.7) can

be found by taking the square of (A.3.12). The ± in the r.h.s. of (A.3.12) correspond to the

same choice of sign occurring in (A.3.11). From (A.3.12) and ẑ∗ > 0, one observes that the

orthogonality condition can be satisfied only by q+,k when α 6 π/2, while for α > π/2 the

orthogonality condition leads to select q−,k . Consequently, P∗ belongs to the branch described

q−,k for α 6 π/2 and to the one characterised by q+,k for α > π/2. When α→ π/2 the l.h.s.

of (A.3.12) diverges; therefore the argument of the square root in the r.h.s. must vanish in

this limit. This means that ẑ∗ = ẑm, being ẑm given in (2.3.3). Thus, when α = π/2, the

extremal surface γ̂ con
A intersects Q at the matching point Pm of the two branches characterised

by q±,k.
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In order to justify the choice of q−,k in (A.3.7), in the following we show that a contradiction

is obtained if q+,k is assumed in (A.3.7) instead of q−,k . In this case, the profile of γ̂A can be

obtained from (2.3.1) simply by exchanging the role of R◦ and Raux, i.e.

ργ(θ) =

{
R◦ e−q+,k(ẑ)

Raux e
−q−,k(ẑ)

(A.3.13)

where now RQ > R◦ > Raux. First, let us notice that the maximum value of z(ẑ) is realized

in the q+,k branch because from (A.3.9) we have that vz± = 0 only for the q+,k branch (at

ẑ = 4
√
k). Since RQ > R◦ > Raux, this observation leads to conclude that Q cannot intersect

the q−,k branch without intersecting the one described by q+,k (see e.g. the red and the

black curves in the top panel of Fig. 2.8 as guidance). Thus, the only possibility is that Q
intersects orthogonally the branch described by q+,k . In this case, the condition (A.3.12)

leads to α 6 π/2. In order to find a contradiction, let us compare the quantity ρ2 + z2 for the

branch q+,k with the one for Q. For Q in the range α 6 π/2 we get

ρ2 + z2 = R2
Q
(
1 + ẑ2

)
Q2
α = R2

Q

(√
ẑ2(cscα)2 + 1 + ẑ cotα

)2

ẑ2 + 1
> R2

Q (A.3.14)

being Qα the function introduced in (1.4.12). As for the q+,k branch, from (A.3.13) and

(A.3.3) we get ρ2
γ + z2 = (1 + ẑ2)ρ2

γ = R2
◦ e
−2f+,k where f+,k ≡ q+,k− log

√
1 + ẑ2 (see (2.3.5)).

Since f+,k > 0 for any ẑ and R◦ > RQ, we have ρ2
γ + z2 < R2

Q. This means that the branch

described by q+,k cannot intersect Q in the whole range α 6 π/2, ruling out the possibility

that γ̂A is described by the profile (A.3.13).

A.3.2 Area

In this appendix we evaluate the area of γ̂ con
A in two ways: by a direct computation of the

integral (A.3.1) and by specialising the general formula (2.1.24) to the extremal surfaces γ̂ con
A .

The analysis performed in Sec. A.3.1 allows to write the area of γ̂ con
A from (A.3.1) and

(A.3.3) as follows

A =





2πR2
AdS

( ∫ ẑm

ε/R◦

dẑ

ẑ2
√

1 + ẑ2 − ẑ4/k
+

∫ ẑm

ẑ∗

dẑ

ẑ2
√

1 + ẑ2 − ẑ4/k

)
0 < α 6 π/2

2πR2
AdS

∫ ẑ∗

ε/R◦

dẑ

ẑ2
√

1 + ẑ2 − ẑ4/k
π/2 6 α < π

(A.3.15)

where the UV cutoff ε has been introduced to regularise A, which is a divergent quantity as

ε → 0. Le us recall that ẑ∗ = ẑm for α = π/2. The integrals in (A.3.15) can be explicitly

written by using that
∫

dẑ

ẑ2
√

1 + ẑ2 − ẑ4/k
= −Fk(ẑ) + const (A.3.16)

where Fk(ẑ) has been introduced in (2.3.14). The expression (2.3.13) for Fcon can be found

from (A.3.15) by employing the expansions of Fk(ẑ) as ẑ → 0+, which reads

Fk(ẑ) =
1

ẑ
+
ẑ

2
+O

(
ẑ3
)
. (A.3.17)
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In the remaining part of this appendix, we show that the analytic expression for Fcon given

in (2.3.13) can also be obtained by applying the general formula (2.1.24) in the special cases

of the extremal surfaces γ̂ con
A .

In order to evaluate the surface integral over γ̂A in (2.1.24), we need the normal vector ñµ

and the area element dÃ, which are given respectively by

ñµ = (nρ, nz, nφ) =
1√

1 + z′2
(
z′,−1, 0

)
dÃ =

√
z′2 + 1 ρ dρ dφ. (A.3.18)

The evaluation of the surface integral over γ̂A in (2.1.24) can be performed by using (A.3.3)

and (A.3.18), finding

∫
(ñz)2

z2
dÃ =





2π
(
Fk,−(ẑm) + Fk,+(ẑm)−Fk,+(ẑ∗)

)
0 < α 6 π/2

2πFk,−(ẑ∗) π/2 6 α < π
(A.3.19)

(which can be written as reported in (2.3.18)) where we have introduced the following functions

Fk,±(ẑ) ≡ 1√
k

∫ ẑ

0

(√
k(1 + ξ2)− ξ4 ± ξ

)2

(ξ2 + 1)2
√
k(1 + ξ2)− ξ4

dξ (A.3.20)

which can be written in terms of Fk(ẑ) (see (2.3.19)). The relation (2.3.19) has been found

by integrating the following identity

(√
k (ẑ2 + 1)− ẑ4 ± ẑ

)2
√
k (ẑ2 + 1)2

√
k (ẑ2 + 1)− ẑ4

+
1√
k

∂

∂ẑ

(√
k (ẑ2 + 1)− ẑ4 ± ẑ

ẑ(ẑ2 + 1)

)
= − 1

ẑ2
√
ẑ2 + 1− ẑ4/k

.

(A.3.21)

The result of this indefinite integration contains an arbitrary integration constant which can

be fixed by taking ẑ → 0 and imposing that both sides of the equation are consistent in this

limit (also (A.3.17) is useful in this computation).

In order to facilitate the recovering of the expression (2.3.13) for Fcon, let us observe that,

by employing (2.3.19), the expression (2.3.18) can be written as follows

∫

γ̂

(ñz)2

z2
dÃ = Fcon − 2π

ẑ3
∗ + ηα

√
k (ẑ2∗ + 1)− ẑ4∗√

k ẑ∗(ẑ2∗ + 1)
= Fcon − 2π

ẑ3
∗ −
√
k cosα√

k ẑ∗(ẑ2∗ + 1)
(A.3.22)

where in the last step we used the identity
√
k (ẑ2∗ + 1)− ẑ4∗ = −

√
k ηα cosα, which comes

from the explicit form of ẑ∗ given in the first expression of (2.3.7).

As for the boundary term in (2.1.24), the vector b̃µ can be obtained from the vector which

is tangent to Q given in (A.3.10), finding

b̃µ =
(
b̃ρ, b̃z, b̃φ

)
=

(√
1−

(
ρ∗
RQ

ẑ∗ sinα− cosα

)2

,
ρ∗
RQ

ẑ∗ sinα− cosα , 0

)
(A.3.23)

that coincides with (A.3.9) evaluated at P∗. From the component b̃z in (A.3.23) and the fact

that ds̃ = ρ∗dφ along ∂γ̂Q, we find that the boundary contribution in (2.1.24) becomes

∫

∂γ̂Q

b̃z

z
ds̃ = 2π

b̃z

ẑ∗
= 2π

(
ρ∗
RQ

sinα− cosα

ẑ∗

)
(A.3.24)
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z/RQ
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⇢/RQ
<latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit><latexit sha1_base64="4D5fSkEGabLmT0YUyIhNJsAvdPs=">AAAB/nicbVBPS8MwHE39O+e/quDFS3AInmYrinobePG4iXWDtZQ0y7awNClJKozag1/FiwcVr34Ob34b060H3XwQeLz3+/F7eVHCqNKO820tLC4tr6xW1qrrG5tb2/bO7r0SqcTEw4IJ2YmQIoxy4mmqGekkkqA4YqQdja4Lv/1ApKKC3+lxQoIYDTjtU4y0kUJ735dDAU/gbZj5MdJDjFjWyvPQrjl1ZwI4T9yS1ECJZmh/+T2B05hwjRlSqus6iQ4yJDXFjORVP1UkQXiEBqRrKEcxUUE2yZ/DI6P0YF9I87iGE/X3RoZipcZxZCaLjGrWK8T/vG6q+5dBRnmSasLx9FA/ZVALWJQBe1QSrNnYEIQlNVkhHiKJsDaVVU0J7uyX54l3Wr+qu62zWuO8bKMCDsAhOAYuuAANcAOawAMYPIJn8ArerCfrxXq3PqajC1a5swf+wPr8AeAglYo=</latexit>

Figure A.4: Radial profiles of extremal surfaces γ̂ con
A intersecting Q (green curve) orthogonally and

anchored to a disk A of radius R◦ concentric to a circular boundary with radius RQ (see Sec. 2.3.1).

Here α = 2π/3 (left panel) and α = π/3 (right panel). Any solid line provides γ̂ con
A and the dashed line

with the same colour gives the radial profile of the corresponding auxiliary surface γ̂ con
A, aux. Here the

values of k associated to γ̂ con
A (see Fig. 2.7) are k = 1 (red), k = 1000 (blue) and k = 107 (black). For

large k, both γ̂ con
A and the corresponding γ̂ con

A, aux tend to the hemisphere with radius cot(α/2), which

is tangent to Q at ρ = 0.

which reduces to (2.3.20), once the second expression of (2.3.7) has been employed. Then,

plugging (A.3.22) and (2.3.20) into (2.1.24), one obtains

FA = Fcon − 2π
ẑ2
∗ −

√
k
[
ẑ2∗ + (sinα)2

]
√
k (ẑ2∗ + 1)

(A.3.25)

where, by using (A.3.12) and the identity given in the text below (A.3.22), it is straightforward

to observe that the numerator in the r.h.s. vanishes.

A.3.3 Limiting regimes

In the remaining part of this appendix we provide some technical details about the limiting

regimes k → 0 and k → ∞ of the analytic expressions for R◦/RQ and Fcon (see (2.3.9) and

(2.3.13) respectively). The results of this analysis have been reported in (2.3.10), (2.3.11) and

(2.3.16).

As for the ratio R◦/RQ, whose analytic expression is (2.3.9) with χ(ẑm) given by (2.3.4),

we have to study q±,k(ẑ∗) and q±,k(ẑm) in these limiting regimes.

In order to find q±,k(ẑ∗) for k → 0, let us write q±,k(ẑ∗) from the integral (2.3.2) evaluated

for ẑ = ẑ∗ (see (2.3.7)) and adopt ẑ∗λ as integration variable because it leads us to a definite

integral whose extrema are 0 and 1. By first expanding the integrand of the resulting formula

and then integrating the terms of the expansion separately, we find

q±,k(ẑ∗) = ±
[
E
(

arcsin(
√

sinα )
∣∣− 1

)
− F

(
arcsin(

√
sinα )

∣∣− 1
)] 4
√
k +

sinα

2

√
k +O

(
k3/4

)
.

(A.3.26)
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Adapting this analysis to q±,k(ẑm), we obtain

q±,k(ẑm) = ±
(
E(−1)−K(−1)

)
4
√
k +

√
k

2
+O(k3/4). (A.3.27)

By employing the expansions (A.3.26) and (A.3.27) into (2.3.4) and (2.3.9), one gets the result

(2.3.10).

As for the k →∞ regime, for the integrals (2.3.2) we have

q±,k(ẑ) =
1

2
log(1 + ẑ2) +O

(
1/
√
k
)
. (A.3.28)

Moreover, from (2.3.3) and (2.3.7) notice that both ẑ∗ and ẑm diverge, with ẑ∗/ẑm → 1. Thus,

being ẑ = z/ρ with finite z for the surfaces that we are considering, we have that ρ∗ → 0 and

ρm → 0. These observations tell us that, in the regime of large k, the two branches in (2.3.1)

become the same arc of circle from ρ = R◦ to ρ = 0 (see the black curves in Fig. A.4). In

particular, we have Raux → R◦. By taking the limit of (1.4.12) for large ẑ and employing the

identity cotα + cscα = cot(α/2), one finds that P∗ = Pm = RQ(0, cot(α/2)) in this regime.

Then, being the limiting curve a circle of radius R◦, we have that RQ cot(α/2) = R◦. The

latter relation provides (2.3.11), which is the asymptotic behaviour of the curves in Fig. 2.7.

In Fig. A.4 we show some examples of extremal surfaces (which are not necessarily the global

minimum of the area) as k increases for two fixed values of α, highlighting the limit of large

k, which corresponds to the black curves.

In order to study the subleading term of area of the extremal surfaces as k → 0 or k →∞,

we find it convenient to employ the expressions (2.1.24), (2.3.18) and (2.3.20). Indeed, since

Fk,±(ẑ∗) and Fk,±(ẑm) can be written through the integral representation (A.3.20) of the

functions Fk,±(ẑ), we can adapt the above analysis to this case (e.g. for Fk,±(ẑ∗) one first

introduces ẑ∗ξ as integration variable, obtaining a definite integral between 0 and 1, then

expands the integrand of the resulting expression and finally integrates the various terms of

the expansion), finding

Fk,±(ẑ∗) =
1
4
√
k

[
E
(

arcsin(
√

sinα )
∣∣− 1

)
− F

(
arcsin(

√
sinα )

∣∣− 1
)]
± sinα

+

(
1

4
F
(

arcsin(
√

sinα )
∣∣− 1

)
− ηα cosα

√
sinα

)
4
√
k +O

(√
k
)

(A.3.29)

and

Fk,±(ẑm) =
E(−1)−K(−1)

4
√
k

± 1 +
K(−1)

4
4
√
k +O(

√
k). (A.3.30)

By using these expansions into (2.3.18), together with (2.3.20) into (2.1.24), the expansion

(2.3.16) is obtained.

The asymptotic value 2π for large k in Fig. 2.9 can be found by employing that the

profile of γ̂con
A in this regime is the one of the hemisphere in H3 anchored to R◦ (see also the

Appendix D in [245]). Since the finite term of the area for the hemisphere in H3 is 2π, we can

easily conclude that the curves in Fig. 2.9 tend to this value as k →∞.
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A.4 Auxiliary surfaces

In this appendix, we discuss a way to relate an extremal surface γ̂A anchored to the entangling

curve of a region A in AdS4/BCFT3 to an extremal surface in AdS4/CFT3 anchored to

a corresponding entangling curve in R2, which is the spatial slice of the CFT3, being the

gravitational background the one obtained by removing Q. We will discuss only the simplest

cases where a spatial section of the gravitational spacetimes is given by H3 or part of it.

In AdSd+2/BCFTd+1 setups of Sec. 1.4.1 and Sec. 1.4.2, if the extremal surface γ̂A does

not intersect the boundary Q, then it can be also seen as an extremal surface in Hd+1. Instead,

when γ̂A intersects orthogonally Q along some curve ∂γ̂Q (since we mainly consider extremal

surfaces intersecting Q orthogonally, in this appendix we denote by γ̂A the surfaces γ̂ con
A of

Sec. 2.3.1), we can consider the unique auxiliary surface γ̂A, aux such that γ̂A ∪ γ̂A, aux is an

extremal surface in Hd+1 and γ̂A, aux is orthogonal to Q along ∂γ̂Q. The extremal surface

γ̂A ∪ γ̂A, aux in Hd+1 is anchored to ∂A aux of some auxiliary region A aux in the plane Rd at

z = 0.

As first example, let us consider the infinite strip A of width ` adjacent to the flat bound-

ary discussed in Sec. 2.2.1. The minimal surface γ̂A characterised by the profile (A.2.14) is

part of an auxiliary surface γ̂A,aux which has minimal area in the hyperbolic space Hd+1 =

AdSd+2

∣∣
t= const

and which is anchored to an infinite strip A aux of width `aux belonging to the

boundary z = 0 of Hd+1 . The auxiliary infinite strip A aux includes A and it shares with A the

edge at x = `. The minimal surface γ̂A,aux has been computed in [31, 32], and their result can

be recovered from the more general expression (1.5.18) by setting θ = 0. Then, by imposing

that (A.2.15) is also the largest value assumed by the coordinate z for the points of γ̂A,aux, we

find that

`aux = 2

√
π Γ(d+1

2d )

Γ( 1
2d) gd(α)

` (A.4.1)

where gd(α) has been defined in (A.2.11). In particular, `aux depends on α. As consistency

check of (A.4.1), we observe that `aux = ` − x(π), where x(θ) has been written in (A.2.14).

We remark that the strip A is not necessarily a subset of the A aux. Indeed, for α 6 αc, aux

we have that A ⊆ A aux, while A aux ⊆ A when α > αc, aux. The value of αc, aux is defined by

imposing that `aux = `, which gives gd(αc, aux) = 2
√
π Γ(d+1

2d )/Γ( 1
2d). From the latter result

and (A.2.11), for α ∈ (0, π) we have

g(π − α) = g(αc, aux)− g(α). (A.4.2)

By specifying this relation to α = αc, the critical value of α defined as the zero of gd(α), one

finds that αc, aux = π − αc.
Regarding the strip parallel to the boundary studied in Sec. 2.2.2, the auxiliary domain

A aux = A∪A′ in Rd is made by two parallel and disjoint infinite strips and the corresponding

minimal surface in γ̂A,aux ⊂ Hd+1 has been studied e.g. in [142]. Denoting by `′ the width of

A′ and by daux the separation between A and A′, from Fig. 2.4 and (A.4.1) it is not difficult

to realise that

`′ = 2

√
π Γ(d+1

2d )

Γ( 1
2d) gd(α)

`A daux = 2

√
π Γ(d+1

2d )

Γ( 1
2d) gd(α)

dA. (A.4.3)
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4
p

k
<latexit sha1_base64="QOkCo+1bRegi5o3cCSbeQGjdYQ4=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm2ARXJVEBC8bC25cVjC2kIYymU7aoZNJnDkRSuxjuFFQcevbuPNVXDm9LLT1h4GP/z+HOeeEqeAaHefLKiwsLi2vFFdLa+sbm1vl7Z1bnWSKMo8mIlHNkGgmuGQechSsmSpG4lCwRti/HOWNe6Y0T+QNDlIWxKQrecQpQWP5LX2n0D8O8v6wXa44VWcsex7cKVQuvp8fwKjeLn+2OgnNYiaRCqK17zopBjlRyKlgw1Ir0ywltE+6zDcoScx0kI9HHtoHxunYUaLMk2iP3d8dOYm1HsShqYwJ9vRsNjL/y/wMo9Mg5zLNkEk6+SjKhI2JPdrf7nDFKIqBAUIVN7PatEcUoWiuVDJHcGdXngfvqHpWda+dSu0cJirCHuzDIbhwAjW4gjp4QCGBR3iBVwutJ+vNep+UFqxpzy78kfXxA/8Yk3U=</latexit><latexit sha1_base64="UQYNlc3gT7/sCPGe6vUaXb7REUs=">AAAB8XicbZDLSgMxFIYz9VbrrerSTbAIrsqMCF42Fty4rODYwnQomTRtQzPJmJwRytDHcKOg4ta3cecLiFu3rkwvC239IfDx/+eQc06UCG7Add+d3Nz8wuJSfrmwsrq2vlHc3Lo2KtWU+VQJpesRMUxwyXzgIFg90YzEkWC1qHc+zGu3TBuu5BX0ExbGpCN5m1MC1goa5kZDcBhmvUGzWHLL7kh4FrwJlM6+H7Kvz498tVl8a7QUTWMmgQpiTOC5CYQZ0cCpYINCIzUsIbRHOiywKEnMTJiNRh7gPeu0cFtp+yTgkfu7IyOxMf04spUxga6Zzobmf1mQQvs4zLhMUmCSjj9qpwKDwsP9cYtrRkH0LRCquZ0V0y7RhIK9UsEewZteeRb8g/JJ2bt0S5VTNFYe7aBdtI88dIQq6AJVkY8oUugOPaInB5x759l5GZfmnEnPNvoj5/UHs9GWOw==</latexit><latexit sha1_base64="UQYNlc3gT7/sCPGe6vUaXb7REUs=">AAAB8XicbZDLSgMxFIYz9VbrrerSTbAIrsqMCF42Fty4rODYwnQomTRtQzPJmJwRytDHcKOg4ta3cecLiFu3rkwvC239IfDx/+eQc06UCG7Add+d3Nz8wuJSfrmwsrq2vlHc3Lo2KtWU+VQJpesRMUxwyXzgIFg90YzEkWC1qHc+zGu3TBuu5BX0ExbGpCN5m1MC1goa5kZDcBhmvUGzWHLL7kh4FrwJlM6+H7Kvz498tVl8a7QUTWMmgQpiTOC5CYQZ0cCpYINCIzUsIbRHOiywKEnMTJiNRh7gPeu0cFtp+yTgkfu7IyOxMf04spUxga6Zzobmf1mQQvs4zLhMUmCSjj9qpwKDwsP9cYtrRkH0LRCquZ0V0y7RhIK9UsEewZteeRb8g/JJ2bt0S5VTNFYe7aBdtI88dIQq6AJVkY8oUugOPaInB5x759l5GZfmnEnPNvoj5/UHs9GWOw==</latexit><latexit sha1_base64="sa116uS/Wgr9wVoN7JrVPDHwxNM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi+HEqePFYwdhCGspmu22Xbnbj7kQooT/DiwcVr/4bb/4bt20O2vpg4PHeDDPz4lRwg5737ZRWVtfWN8qbla3tnd296v7Bg1GZpiygSijdjolhgksWIEfB2qlmJIkFa8Wjm6nfemLacCXvcZyyKCEDyfucErRS2DGPGsPzKB9NutWaV/dmcJeJX5AaFGh2q1+dnqJZwiRSQYwJfS/FKCcaORVsUulkhqWEjsiAhZZKkjAT5bOTJ+6JVXpuX2lbEt2Z+nsiJ4kx4yS2nQnBoVn0puJ/Xphh/zLKuUwzZJLOF/Uz4aJyp/+7Pa4ZRTG2hFDN7a0uHRJNKNqUKjYEf/HlZRKc1a/q/p1Xa1wXaZThCI7hFHy4gAbcQhMCoKDgGV7hzUHnxXl3PuatJaeYOYQ/cD5/AOAfkSU=</latexit>

Raux/RQ
<latexit sha1_base64="KypXBZqu9+jryKSEp+IRz2gJ5dU=">AAACEHicbVA9T8MwEHX4LOWrwMhiUSF1KglComyVWBhbRGilNqoc122tOk5kX1CjKH+Bhb/CwgCIlZGNf4PTdoCWJ1l+eu9Od/f8SHANtv1trayurW9sFraK2zu7e/ulg8N7HcaKMpeGIlRtn2gmuGQucBCsHSlGAl+wlj++zv3WA1Oah/IOkoh5ARlKPuCUgJF6pcptL+0Cm4AKzM9lgkk8ybLiGc6NgMCIEpE2s6xXKttVewq8TJw5KaM5Gr3SV7cf0jhgEqggWnccOwIvJQo4FSwrdmPNIkLHZMg6hkoSMO2l04syfGqUPh6EyjwJeKr+7khJoHUS+KYy31Evern4n9eJYVDzUi6jGJiks0GDWGAIcR4P7nPFKIjEEEIVN7tiOiKKUDAhFk0IzuLJy8Q9r15VneZFuV6bp1FAx+gEVZCDLlEd3aAGchFFj+gZvaI368l6sd6tj1npijXvOUJ/YH3+AKd6nbU=</latexit><latexit sha1_base64="KypXBZqu9+jryKSEp+IRz2gJ5dU=">AAACEHicbVA9T8MwEHX4LOWrwMhiUSF1KglComyVWBhbRGilNqoc122tOk5kX1CjKH+Bhb/CwgCIlZGNf4PTdoCWJ1l+eu9Od/f8SHANtv1trayurW9sFraK2zu7e/ulg8N7HcaKMpeGIlRtn2gmuGQucBCsHSlGAl+wlj++zv3WA1Oah/IOkoh5ARlKPuCUgJF6pcptL+0Cm4AKzM9lgkk8ybLiGc6NgMCIEpE2s6xXKttVewq8TJw5KaM5Gr3SV7cf0jhgEqggWnccOwIvJQo4FSwrdmPNIkLHZMg6hkoSMO2l04syfGqUPh6EyjwJeKr+7khJoHUS+KYy31Evern4n9eJYVDzUi6jGJiks0GDWGAIcR4P7nPFKIjEEEIVN7tiOiKKUDAhFk0IzuLJy8Q9r15VneZFuV6bp1FAx+gEVZCDLlEd3aAGchFFj+gZvaI368l6sd6tj1npijXvOUJ/YH3+AKd6nbU=</latexit><latexit sha1_base64="KypXBZqu9+jryKSEp+IRz2gJ5dU=">AAACEHicbVA9T8MwEHX4LOWrwMhiUSF1KglComyVWBhbRGilNqoc122tOk5kX1CjKH+Bhb/CwgCIlZGNf4PTdoCWJ1l+eu9Od/f8SHANtv1trayurW9sFraK2zu7e/ulg8N7HcaKMpeGIlRtn2gmuGQucBCsHSlGAl+wlj++zv3WA1Oah/IOkoh5ARlKPuCUgJF6pcptL+0Cm4AKzM9lgkk8ybLiGc6NgMCIEpE2s6xXKttVewq8TJw5KaM5Gr3SV7cf0jhgEqggWnccOwIvJQo4FSwrdmPNIkLHZMg6hkoSMO2l04syfGqUPh6EyjwJeKr+7khJoHUS+KYy31Evern4n9eJYVDzUi6jGJiks0GDWGAIcR4P7nPFKIjEEEIVN7tiOiKKUDAhFk0IzuLJy8Q9r15VneZFuV6bp1FAx+gEVZCDLlEd3aAGchFFj+gZvaI368l6sd6tj1npijXvOUJ/YH3+AKd6nbU=</latexit><latexit sha1_base64="KypXBZqu9+jryKSEp+IRz2gJ5dU=">AAACEHicbVA9T8MwEHX4LOWrwMhiUSF1KglComyVWBhbRGilNqoc122tOk5kX1CjKH+Bhb/CwgCIlZGNf4PTdoCWJ1l+eu9Od/f8SHANtv1trayurW9sFraK2zu7e/ulg8N7HcaKMpeGIlRtn2gmuGQucBCsHSlGAl+wlj++zv3WA1Oah/IOkoh5ARlKPuCUgJF6pcptL+0Cm4AKzM9lgkk8ybLiGc6NgMCIEpE2s6xXKttVewq8TJw5KaM5Gr3SV7cf0jhgEqggWnccOwIvJQo4FSwrdmPNIkLHZMg6hkoSMO2l04syfGqUPh6EyjwJeKr+7khJoHUS+KYy31Evern4n9eJYVDzUi6jGJiks0GDWGAIcR4P7nPFKIjEEEIVN7tiOiKKUDAhFk0IzuLJy8Q9r15VneZFuV6bp1FAx+gEVZCDLlEd3aAGchFFj+gZvaI368l6sd6tj1npijXvOUJ/YH3+AKd6nbU=</latexit>

Figure A.5: The ratio R aux/RQ for a disk A concentric to a circular boundary of radius RQ (see

Sec. 2.3.1 and Appendix A.4) in terms of the parameter k, obtained by combining (2.3.4) and (2.3.9).

For α > π−αc we have that R aux 6 RQ, therefore part of γ̂A, aux belongs to the gravitational spacetime

bounded by Q.

Another interesting configuration is given by a disk A disjoint from the boundary which

is either flat or circular (see Sec. 2.3). In these cases the extremal surfaces γ̂A, aux ∪ γ̂A are

anchored to a pair of circles and they have been studied in [241–245] for the gravitational

background given by H3. In the setup of Sec. 1.4.2, considering a disk A of radius R◦ concentric

to a circular boundary of radius RQ as in Sec. 2.3.1, we have that γ̂A ∪ γ̂A, aux is an extremal

surface in H3 anchored to the boundary of an annulus characterised by the radii R◦ and

Raux > R◦ (see also (2.3.1)). The ratio R◦/Raux is given by (2.3.4).

Partitioning H3 into the part C3, introduced in Sec. 2.1, and its complement C3, we have

that part of γ̂A, aux belongs to C3 because γ̂A, aux ⊥ Q along ∂γ̂Q. It can happen that the

intersection between γ̂A, aux and C3 is non-trivial (see e.g. the right panel in Fig. 2.12). In

Fig. A.5 we show the ratio Raux/RQ as function of k for some values of α. Let us introduce

the critical value αc, aux such that Raux/RQ < 1 for every k at fixed α > αc, aux. For this

configuration we observe numerically that αc, aux = π − αc, namely, the same relation found

above for the strip adjacent to the flat boundary. Three qualitatively different situations

are observed (see Fig. A.5 ): when α 6 π/2 we have Raux > RQ and γ̂A, aux ∩ C3 = ∅, for

π/2 6 α 6 π − αc it is possible that γ̂A, aux ∩ C3 6= ∅, while when α > π − αc we have that

some part of γ̂A, aux always belongs to C3 because Raux < RQ.

By employing the map (A.1.3), analogous considerations can be done for the extremal

surfaces anchored to a disk A disjoint from a flat boundary, considered in Sec. 2.3.2. The

extremal surface is anchored to a pair of circles in R2 and one of them is ∂A. For this

configuration explicit examples are given in Fig. 2.12 and Fig. 2.13, where γ̂A, aux are the

shaded surfaces.
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B.1 On the half-disk

In this appendix, we report the computation of the area A[γ̂ε], which provides the holographic

entanglement entropy of half-disk of radius R centered on the boundary, according to the

prescription (1.3.2). The main result derived here is (3.2.1), which is discussed in Sec. 3.2.1.

Given the half-disk A = {(x, y) ∈ R2 |x2 + y2 6 R2, x > 0}, which is centered on the

boundary x = 0, the entangling curve ∂A ∩ ∂B is {(x, y) ∈ R2 |x2 + y2 = R2, x > 0}. In

Sec. 3.2.1 we have discussed for this domain γ̂A,aux is the hemisphere x2 + y2 + z2 = R2 in H3

and that γ̂A is just the part of γ̂A,aux identified by the constraint x > −(cotα)z. In Fig. 3.3,

the minimal surface γ̂A is shown in a case having α < π/2 and in a case where α > π/2.

The holographic entanglement entropy is obtained by evaluating the area A[γ̂ε] of the

surface γ̂A ∩ {z > ε}, which is the part of γ̂A above the yellow line in Fig. 3.3. This area can

be written as follows
A[γ̂ε]

R2
AdS

=

{
A⊥ +A∠ 0 < α 6 π/2

A⊥ −A∠ π/2 6 α < π
(B.1.1)

where A⊥ is the area of the half-hemisphere restricted to z > ε with x > 0 and A∠ > 0

is the area of the part of the hemisphere restricted to z > ε enclosed between the vertical

half-plane x = 0 and the half-plane Q. Notice that, in the right panel of Fig. 3.3, the area A∠

corresponds to the shaded part of γ̂A,aux.

The area A⊥ can be easily computed by adopting the usual spherical coordinates (θ, φ),

where θ = 0 is the positive z semi-axis and φ = 0 is the positive y semi-axis. The change of

coordinates between these polar coordinates and the Cartesian coordinates reads

z = R cos θ x = R sin θ sinφ y = R sin θ cosφ. (B.1.2)

In terms of the polar coordinates (θ, φ), the induced metric on γ̂A from H3 is given by

ds2
∣∣
γ̂A

=
R2

AdS

(cos θ)2

(
dθ2 + (sin θ)2dφ2

)
. (B.1.3)
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By employing this metric, for A⊥ we find

A⊥ =

∫ θε

0
dθ

∫ π

0
dφ

sin θ

(cos θ)2
=

π

cos θ

∣∣∣∣
θε

0

=
πR

ε
− π (B.1.4)

where the condition defining θε is ε = R cos θε.

In order to compute A∠, let us parameterise the hemisphere by employing spherical co-

ordinates (θ, φ), where θ = 0 is the positive y semi-axis and φ = 0 is the positive z semi-

axis. Now from the change of coordinates (3.2.22), we obtain ε = R sin θε cosφ, which

relates the UV cutoff ε to the cutoff θε of the angular variable. This relation leads to

sin(θε/2) = ε[1 +O(ε2)]/(2R cosφ).

When α ∈ (0, π/2), the area A∠ is given by the following integral

A∠ = 2

∫ π/2−α

0
dφ

∫ π/2

θε

dθ
1

(cosφ)2 sin θ
= − 2

∫ π/2−α

0
dφ

log(tan θε/2)

(cosφ)2

= 2

∫ π/2−α

0
dφ

1
2 log(1− [sin(θε/2)]2)− log[sin(θε/2)]

(cosφ)2

= 2

∫ π/2−α

0
dφ

1

(cosφ)2

(
1

2
log
(
1− ε2/[2R cosφ]2

)
− log(ε/R) + log(2 cosφ)

)
+O(ε2)

= 2(cotα) log(R/ε) +O(1) (B.1.5)

where in (B.1.5) the relation between θε and ε has been employed, and the O(ε2) terms have

been neglected. The O(1) term in (B.1.5) can be found explicitly, but we do not report it

here because we are interested only in the logarithmic divergence. When α ∈ (π/2, π), being

A∠ > 0, the resulting integral for A∠ is like (B.1.5), except for the domain of integration for

the integral in φ, which is (0, α− π/2).

Summarising, the term A∠ provides the following logarithmic divergence

A∠ =

{
2(cotα) log(R/ε) +O(1) 0 < α 6 π/2

− 2(cotα) log(R/ε) +O(1) π/2 6 α < π
. (B.1.6)

Finally, by plugging (B.1.4) and (B.1.6) into (B.1.1), we obtain the area A[γ̂ε] given by

(3.2.1), which is the main result of this appendix.

Let us stress that the holographic entanglement entropy for this domain provides the

corner function Fα(π/2) for the special value γ = π/2 and for any α ∈ (0, π). This is an

important benchmark for the analytic expression of the corner function Fα(γ) presented in

Sec. 3.2.2, whose derivation is described in the appendix B.2.

B.2 On the infinite wedge adjacent to the boundary

In this appendix, we provide the technical details underlying the computation of the holo-

graphic entanglement entropy of the infinite wedge A adjacent to the boundary. The main

results have been collected and discussed in Sec. 3.2.2.
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Figure B.1: The opening angles occurring in the construction of the minimal surface γ̂A anchored

to the infinite wedge A adjacent to the boundary with opening angle γ, which has been discussed in

Sec. 3.2.2 and in the appendix B.2. In the left panel α ∈ (0, π/2] and in the right panel α ∈ [π/2, π).

The wedge A is the yellow region, whose edges are the red and the solid blue half-lines, given by φ = γ

and φ = 0 respectively. The auxiliary wedge Aaux is the infinite wedge in R2 containing A whose tip is

P and whose edges are the red half-line and the black dashed line with the largest dashing. The black

dashed line with the smallest dashing at φ = φ0 corresponds to the bisector of Aaux. The blue dashed

half-line at φ = φ∗ corresponds to the projection of γ̂A ∩Q in the z = 0 plane.

In the half-plane {(x, y) ∈ R2 , x > 0}, let us introduce the polar coordinates (ρ, φ) such

that φ = 0 is the half-line given by x = 0 and y > 0, namely

x = ρ sinφ y = ρ cosφ. (B.2.1)

In terms of these coordinates, the infinite wedge A having one of its two edges on the boundary

x = 0 can be described without loss of generality as follows

A =
{

(ρ, φ) | 0 6 φ 6 γ , ρ 6 L
}

L� ε. (B.2.2)

In order to study the holographic entanglement entropy of the infinite wedge A within

the AdS4/BCFT3 setup described in Sec. 1.4.3, let us consider the surfaces anchored to the

edge {(ρ, φ) |φ = γ} of A and embedded in the region of H3 restricted by x > −(cotα)z. The

symmetry under dilatations tells us that γ̂A belongs to the class of surfaces γA described by

(3.2.3) with q(φ) > 0. The metric induced on γA from H3 reads

ds2
∣∣
γA

= R2
AdS

(
1 + q2

ρ2
dρ2 − 2 q′

ρ q
dρ dφ+

(q′)2 + q4

q2
dφ2

)
. (B.2.3)

Our analysis heavily relies on [157], where the authors have found the minimal area surface

in H3 anchored to both the edges of an infinite wedge. Indeed, we study γ̂A by introducing an

auxiliary wedge Aaux in the z = 0 boundary of H3 such that A ( Aaux and {(ρ, φ) |φ = γ} is a
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common edge of both A and Aaux. Considering the minimal area surface γ̂A,aux in H3 anchored

to the edges of Aaux, the minimal area surface γ̂A anchored to the edge {(ρ, φ) |φ = γ} of A and

intersecting Q orthogonally is the part of γ̂A,aux identified by the constraint x > −(cotα)z.

Thus, finding γ̂A corresponds to find the proper γ̂A,aux.

In Fig. B.1 we show the relevant angles occurring in our construction, by distinguishing

the two cases of α ∈ (0, π/2] (left panel) and α ∈ [π/2, π) (right panel). The infinite wedge

A adjacent to the boundary x = 0 is the yellow region, which is embedded into the grey half-

plane x > 0. The edges of the auxiliary wedge Aaux are the red half-line {(ρ, φ) |φ = γ} and

the half-line denoted by the large black dashing. The bisector of Aaux is the black dashed half-

line at φ = φ0; therefore the opening angle of Aaux is 2(γ−φ0). The half-line corresponding to

the small black dashing is the bisector of the auxiliary wedge, while the blue dashed half-line

is the projection on the z = 0 plane of the half-line given by γ̂A ∩Q.

B.2.1 Minimal surface condition

The metric (B.2.3) induced on the surfaces γA leads to the following area functional

A[γA]

R2
AdS

=

∫

γA

1

ρ

√
q′2 + q2 + q4 dφ dρ =

∫

γA

1

ρ
L dφ dρ L ≡

√
q′2 + q2 + q4. (B.2.4)

The functions q(φ) characterising the extrema of this functional can be found by observing

that its integrand is independent of φ. The first integral associated with this invariance

provides a quantity which is independent of φ. It reads

∂L
∂q′

q′ − L ∝ q4 + q2

√
(q′)2 + q4 + q2

. (B.2.5)

Let us introduce the angle φ0 such that

q′(φ0) = 0 q(φ0) ≡ q0 q0 > 0. (B.2.6)

The angle φ0 provides the bisector of the auxiliary wedge Aaux.

By employing (B.2.6) into the condition that (B.2.5) is independent of φ, one obtains the

following first order differential equation

q4 + q2

√
(q′)2 + q4 + q2

=
√
q4

0 + q2
0. (B.2.7)

Taking the square of this expression, one gets

(q′)2

q2
= (q2 + 1)

(
q4 + q2

q4
0 + q2

0

− 1

)
q > q0. (B.2.8)

Separating the variables in (B.2.8), one finds dφ = Pφ(q, q0) dq. Then, by integrating the

latter expression, we get

∣∣φ− φ0

∣∣ =

∫ q

q0

Pφ(q̂, q0) dq̂ = P (q, q0) Pφ(q, q0) ≡
√
q4

0 + q2
0

q
√

(q2 + 1)(q2 − q2
0)(q2 + q2

0 + 1)
(B.2.9)
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where q > q0 and P (q, q0) has been written in (3.2.8). From (B.2.9), it is straightforward

to realise that P (q0, q0) = 0 and that the function P (q, q0) > 0 is an increasing function of

q > q0. The minimal area surface γ̂A is described by (3.2.3) with the proper q(φ) obtained by

inverting (B.2.9).

The opening angle of the auxiliary wedge Aaux is 2(γ − φ0), as already observed above

from Fig. B.1. This angle can be found from (B.2.9) as follows

γ − φ0 =

∫ γ

φ0

dφ =

∫ ∞

q0

Pφ(q̃, q0) dq̃ = lim
q→+∞

P (q, q0) ≡ P0(q0). (B.2.10)

Equivalent expressions of P0(q0) have been reported in (1.3.28) and (3.2.10).

The next step of our analysis consists in studying the intersection γ̂A∩Q and the opening

angle of Aaux.

B.2.2 Intersection between the minimal surface and Q

In order to find the extremal surface γ̂A anchored to the edge {(ρ, φ) |φ = γ} of A and ending

on the half-plane Q, beside the differential equation (B.2.7) we also have to impose that γ̂A

and Q intersect orthogonally.

By writing the equation (1.4.9) for Q in terms of the polar coordinates (B.2.1) and inter-

secting the resulting expression with the ansatz (3.2.3) for γA, we find

q∗ sinφ∗ = − cotα q∗ ≡ q(φ∗). (B.2.11)

This relation defines the angle φ = φ∗ at which γA and Q intersect. Thus, γA ∩ Q is the

half-line whose points have coordinates (z, ρ, φ) = (ρ/q∗, ρ, φ∗), with ρ > 0. Since q∗ > 0,

from (B.2.11) we have that φ∗ 6 0 when α ∈ (0, π/2], and φ∗ > 0 when α ∈ [π/2, π). This is

shown in Fig. B.1, where the blue dashed half-line corresponds to the projection of γ̂A ∩Q on

the z = 0 plane. The relation (B.2.11) tells us that φ∗ = 0 when α = π/2, as expected.

In order to impose that γA and Q intersect orthogonally along the half-line at φ = φ∗, we

have to find the unit vector normal to γA and the unit vector normal to the Q. The surfaces

γA described by the ansatz (3.2.3) can be equivalently written as C = 0, with C ≡ z− ρ/q(φ).

Thus, the unit vector normal to γA is

nµ =
∂µC√

gαβ ∂αC ∂βC
=

RAdS

z
√

(q′)2 + q4 + q2

(
q2 ,−q , ρ q′

)
(B.2.12)

where the components of the vector have been ordered according to µ ∈ {z, ρ, φ}. As for the

half-plane Q, its definition in (1.4.9) can be written as CQ = 0, with CQ ≡ z + ρ sinφ tanα,

where the first relation in (B.2.1) has been used. This tells us that the unit vector normal to

the half-plane Q is

bµ =
∂µCQ√

gαβ ∂αCQ ∂βCQ
=
RAdS cosα

z

(
1 , sinφ tanα , ρ cosφ tanα

)
. (B.2.13)

Given the unit vectors (B.2.12) and (B.2.13), we have to impose that they are orthogonal

(namely gµνnµbν = 0) along the half-line γA ∩ Q at φ = φ∗. This requirement leads to the
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following relation

q2
∗ +

[
q′∗ cosφ∗ − q∗ sinφ∗

]
tanα = 0 q′∗ ≡ q′(φ∗) (B.2.14)

which can be written also as

q′∗
q∗

= tanφ∗ −
q∗

cosφ∗
cotα. (B.2.15)

Taking the square of (B.2.15) first and then employing (B.2.8) to write (q′∗/q∗)
2 in terms of

q∗ and q0, we have

(
tanφ∗ −

q∗
cosφ∗

cotα

)2

= (q2
∗ + 1)

(
q4
∗ + q2

∗
q4

0 + q2
0

− 1

)
. (B.2.16)

This expression can be simplified by using (B.2.11) to rewrite q∗ in terms of φ∗, finding

(tanφ∗)2

[
(cotα)2

(sinφ∗)2
+ 1

]
=

1

q4
0 + q2

0

(cotα)2

(sinφ∗)2

[
(cotα)2

(sinφ∗)2
+ 1

]
− 1. (B.2.17)

This relation leads to the following biquadratic equation

q4
0 + q2

0 =

[
1 +

(cotα)2

(sinφ∗)2

]
(cosα)2 (cotφ∗)2 (B.2.18)

which has only one positive root in terms of q2
0. This solution allows us to write q0 in terms

of φ∗ as follows

q0 =
1√
2

(√
1 + 4

[
1 + (cotα)2(cscφ∗)2

]
(cosα)2 (cotφ∗)2 − 1

)1/2

. (B.2.19)

Instead of φ∗, we prefer to adopt q0 as fundamental parameter; therefore let us consider

the biquadratic equation in terms of sinφ∗ obtained from (B.2.18), namely

[
1 +

q4
0 + q2

0

(cosα)2

]
(sinφ∗)4 −

[
1− (cotα)2

]
(sinφ∗)2 − (cotα)2 = 0 (B.2.20)

whose positive solution for (sinφ∗)2 ≡ s∗(α, q0)2 reads

s∗(α, q0)2 = (B.2.21)

=
1

2

(
1 +

q4
0 + q2

0

(cosα)2

)−1
[

1− (cotα)2 +

√[
1− (cotα)2

]2
+ 4

(
1 +

q4
0 + q2

0

(cosα)2

)
(cotα)2

]
.

Notice that s∗(π − α, q0)2 = s∗(α, q0)2. We denote by s∗(α, q0) > 0 the positive root of

(B.2.21), which has been written explicitly in (3.2.4). Plugging s∗(α, q0) into (B.2.11), one

obtains (3.2.6).

Since φ∗ 6 φ0 6 0 when α ∈ (0, π/2], while 0 6 φ0 6 φ∗ when α ∈ [π/2, π) (see Fig. B.1),

we find it convenient to introduce ηα ≡ − sign(cotα), as done in (3.2.4). Then, the expression

for φ∗ = φ∗(q0, α) in (3.2.5) can be written straightforwardly. Furthermore, (B.2.9) leads to

∣∣φ∗ − φ0

∣∣ =

∫ q∗

q0

Pφ(q, q0) dq = P (q∗, q0) =

{
φ0 − φ∗ 0 < α 6 π/2

φ∗ − φ0 π/2 6 α < π
. (B.2.22)
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This provides the angle φ0 = φ0(q0, α) as follows

φ0 = φ∗(q0, α)− ηα P
(
q∗(α, q0), q0

)
= ηα

(
arcsin[s∗(α, q0)]− P (q∗, q0)

)
(B.2.23)

where the last step has been obtained by using φ∗(q0, α) in (3.2.5). Notice that φ0 characterises

the opening angle of the auxiliary wedge Aaux.

Finally, an expression for the opening angle γ in terms of α and q0 can be written. Indeed,

from (B.2.10) one first finds that γ = P0(q0) + φ0; then (B.2.23) can be used to get (3.2.7).

Summarising, we have determined the angles φ∗, φ0 and γ as functions of α and q0. They

are given in (3.2.5), (B.2.23) and (3.2.7) respectively.

B.2.3 Area of the minimal surface

The minimal surface γ̂A anchored to the edge {(ρ, φ) |φ = γ} of the infinite wedge adjacent

to the boundary given by (B.2.2) is non-compact; therefore we have to compute the area of

its restriction γ̂ε to z > ε. We stress that γ̂A ( γ̂A,aux is the part of the auxiliary minimal

surface γ̂A,aux identified by the constraint x > −(cotα)z, as discussed in Sec. 3.2.2 and in

the beginning of the appendix B.2 (see also Fig. B.1). The auxiliary infinite wedge Aaux and

the corresponding minimal surface γ̂A,aux have been obtained through the analysis of the

appendices B.2.1 and B.2.2. The area of γ̂ε,aux ≡ γ̂A,aux ∩{z > ε} has been computed in [157].

We compute A[γ̂ε] by considering two parts of γ̂A,aux, that we denote by γ̂∞A,aux and γ̂∗A,aux.

The surface γ̂∞A,aux corresponds to the part of γ̂A,aux such that with φ0 6 φ 6 γ. We remark

that γ̂∞A,aux reaches the half-plane at z = 0 along the edge at φ = γ and it corresponds to half

of γ̂A,aux. The surface γ̂∗A,aux is the part of γ̂A,aux having φ∗ 6 φ 6 φ0 when α ∈ (0, π/2] and

φ0 6 φ 6 φ∗ when α ∈ [π/2, π) (see respectively the left and right panel of Fig. B.1). Notice

that γ̂∗A,aux = ∅ when α = π/2.

The restrictions of γ̂∞A,aux and γ̂∗A,aux to z > ε provide γ̂∞ε,aux and γ̂∗ε,aux respectively, and we

denote their areas by R2
AdSA∞ and R2

AdSA∗ respectively. From (B.2.4), one finds

A∞ ≡
∫

γ̂∞ε

1

ρ

√
q′2 + q2 + q4 dφ dρ A∗ ≡

∫

γ̂∗ε

1

ρ

√
q′2 + q2 + q4 dφ dρ (B.2.24)

which give the area of γ̂ε as follows

A[γ̂ε]

R2
AdS

=

{
A∞ +A∗ 0 < α 6 π/2

A∞ −A∗ π/2 6 α < π
. (B.2.25)

By using (B.2.7) and (B.2.9), the angular part of the integrands in (B.2.24) can be written

as
√
q′2 + q2 + q4

dq

|q′| =
q4 + q2

√
q4

0 + q2
0

Pφ(q, q0) dq =

√
q4 + q2

√
q4 + q2 − q4

0 − q2
0

dq (B.2.26)

which leads us to introduce the following function

∫ q

q0

√
q̂4 + q̂2

√
q̂4 + q̂2 − q4

0 − q2
0

dq̂ ≡ G(q, q0) q > q0. (B.2.27)
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Performing explicitly this integral, we obtain

G(q, q0) ≡ − i
√
q2

0 + 1 E
(

i arcsinh

√
q2 − q2

0

1 + 2q2
0

∣∣∣∣
2q2

0 + 1

q2
0 + 1

)
(B.2.28)

which satisfies the condition G(q0, q0) = 0, as expected from (B.2.27). By employing the

following identity [277]

E(iψ|m) = iF
(

arctan(sinhψ)
∣∣ 1−m

)
− iE

(
arctan(sinhψ)

∣∣ 1−m
)

+ i

√
1− (1−m) tanh2 ψ sinhψ (B.2.29)

we can write (B.2.28) in a form that does not contain the imaginary unit, finding the real

expression reported in (3.2.13).

Since γ̂∞A,aux is half of γ̂A,aux, the area A∞ has been already computed in [157]. First, we

have to expand (B.2.28) for large q, finding

G(q, q0) = q − F (q0) +O(1/q3) q � 1 q � q0 (B.2.30)

where F (q0) has been explicitly written in (1.3.27). In order to get the area A∞, a large cutoff

ρmax � 1 in the radial direction must be introduced. Then, we have

ε =
ρmin

q0
, ε =

ρmax

q(γ − δε)
, L = ρmax cos δε , (B.2.31)

where δε ∼ 0+ is the angle between the edge of A at φ = γ and the straight line in the z = 0

half-plane connecting the tip of the wedge to the intersection point between the circumference

given by ρ = ρmax and the projection of ∂γ̂ε ∩ {z = ε} on the z = 0 half-plane. By employing

the expansion (B.2.30) and (B.2.31), the area A∞ is obtained as follows [157]

A∞ =

∫ ρmax

ρmin

dρ

ρ

∫ ρ/ε

q0

√
q4 + q2

√
q4 + q2 − q4

0 − q2
0

dq =

∫ ρmax

ρmin

G(ρ/ε, q0)

ρ
dρ

=

∫ ρmax

ρmin

1

ρ

[ ρ
ε
− F (q0) +O

(
(ε/ρ)3

)]
dρ =

ρmax − ρmin

ε
− F (q0) log(ρmax/ρmin) + . . .

=
L

ε
− F (q0) log(L/ε) + . . . (B.2.32)

where the dots correspond to finite terms for ε → 0+. We remark that A∞ provides the

expected linear divergence (area law term) whose coefficient is the length of the entangling

curve ∂A∩∂B. Furthermore, the coefficient of the subleading logarithmic divergence is half of

the corresponding coefficient (1.3.26) found for the wedge in AdS4/CFT3, as expected, being

γ̂∞A,aux half of γ̂A,aux.

The computation of the surface integral A∗ in (B.2.24) is similar to the one of A∞, with

a crucial difference in the angular integral. In particular, we find

A∗ =

∫ ρmax

ρmin

dρ

ρ

∫ q∗

q0

√
q4 + q2

√
q4 + q2 − q4

0 − q2
0

dq =

∫ ρmax

ρmin

G(q∗, q0)

ρ
dρ

= G(q∗, q0) log(ρmax/ρmin) = G(q∗, q0) log(L/ε) + . . . (B.2.33)

165



Appendix B. Appendix of Chapter 3

Notice that the double integral in A∗ factorises into the product of two integrals that can be

computed separately. This simplification does not occur in the computation of A∞.

Finally, plugging (B.2.32) and (B.2.33) into (B.2.25), we find the total corner function Fα

in terms of α and q0, whose explicit expression has been reported in (3.2.12). Combining this

formula with (3.2.7), we obtain Fα(γ) parametrically through the real parameter q0 > 0. This

function is the main result of this chapter. It is shown in Fig. 3.7 and Fig. 3.8.

A considerable simplification occurs in the expressions obtained above when α = π/2.

Indeed, being q∗ > 0, the relation (B.2.11) tells us that φ∗ = 0. Then, since 0 6 |φ0| 6 |φ∗|,
we have that φ∗ = φ0 = 0, and this implies q∗ = q0. By substituting φ0 = 0 into (B.2.10), we

can conclude that γ = P0(q0) in this special case. As for the corner function, the condition

q∗ = q0 tells us that G(q∗, q0) = G(q0, q0) = 0. Plugging this result in (3.2.12), we find that

Fπ/2 = F (q0). Thus, when α = π/2 we have that the minimal surface γ̂A is half of the minimal

surface found in [157], namely γ̂A = γ̂∞A,aux as expected. This is also stated in (3.2.14).

B.2.4 On the limiting regimes of the corner function

We find it worth considering some interesting regimes of the corner function Fα(γ), whose

analytic expression is given by (3.2.7) and (3.2.12). In particular, we focus on the limits

γ → 0 and γ → π/2, which correspond to q0 → +∞ and q0 → 0 respectively. The main

results derived in the following are also discussed in Sec. 3.2.2.

In order to expand γ(q0) in (3.2.7) for small and large values of q0, we find it convenient

to write it as follows

γ = P0(q0) +

∫ α

π/2
∂α̃γ dα̃ (B.2.34)

where (3.2.14) has been used and P0(q0) is given by (1.3.28) or (3.2.10). From (3.2.7) we have

that the integrand in (B.2.34) reads

∂αγ = ηα

(
∂α arcsin[s∗(α, q0)]− ∂αP

(
q∗(α, q0), q0

))
(B.2.35)

where s∗(α, q0) in the first term is given by (3.2.4). Then, (B.2.9) tells us that P (q∗(α, q0), q0)

depends on α only through its first argument q∗(α, q0), which is also the upper extremum in

the integral defining P (q, q0).

Thus, for the second term in (B.2.35) with α ∈ (0, π) we find

∂αP
(
q∗(α, q0), q0

)
= ∂α

(
q∗(α, q0)

)
Pφ
(
q, q0

)∣∣
q=q∗(α,q0)

(B.2.36)

=

√
q4

0 + q2
0√

(q2∗(α, q0) + 1)(q2∗(α, q0)− q2
0)(q2∗(α, q0) + q2

0 + 1)

∂α
(
q∗(α, q0)

)

q∗(α, q0)

= − ηα
√
q2∗(α, q0)− (cotα)2

(q2∗(α, q0) + 1) q∗(α, q0)
∂α
(
q∗(α, q0)

)
tanα.

We remark that the combination (tanα) ∂αq∗(α, q0) in the last expression is regular when

α→ π/2. Similarly, for the first term in (B.2.35) we find

∂α arcsin[s∗(α, q0)] = ∂α arcsin

[ | cotα|
q∗(α, q0)

]
= ηα

cotα ∂αq∗(α, q0) + (cscα)2 q∗(α, q0)

q∗(α, q0)
√
q2∗(α, q0)− (cotα)2

.

(B.2.37)
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Figure B.2: Left: The function γ0(α) for α ∈ [αc, π/2], being γ0 defined by Fα(γ0) = 0. Right: The

function Fα(0) in terms of α 6 αc.

It is important to observe that the factor ηα in (B.2.36) and (B.2.37) simplify with the

analogous one in (B.2.35). Thus, it becomes evident that (B.2.35) is smooth for α ∈ (0, π).

To study γ for small and large values of q0, we first employ (B.2.35) and (B.2.36) for the

integrand in (B.2.34); then we expand the resulting expression in the regime we are interested

in, and only at the end, we integrate the coefficients of the expansion.

The corner function Fα(q0) in (3.2.12) can be treated in the same way. First, by employing

(3.2.14), we write Fα as

Fα = F (q0)−
∫ π/2

α
∂α̃Fα̃ dα̃. (B.2.38)

Then, from the derivative of (3.2.12) with respect to α, the integral representation of G(q, q0)

in (B.2.27) and the expression of q∗(α, q0) in (3.2.6), we find that

∂αFα = ηα
(
∂αq∗(α, q0)

)
∂qG(q, q0)

∣∣
q=q∗(α,q0)

(B.2.39)

= ηα

√
q4∗(α, q0) + q2∗(α, q0)√

q4∗(α, q0) + q2∗(α, q0)− q4
0 − q2

0

∂α
(
q∗(α, q0)

)

= ηα
| secα | q∗(α, q0)√

1 + q2∗(α, q0)
∂α
(
q∗(α, q0)

)
= − q∗(α, q0)

cosα
√

1 + q2∗(α, q0)
∂α
(
q∗(α, q0)

)

where, like in (B.2.36), we observe again the occurrence of (∂αq∗(α, q0))/ cosα, which is finite

and regular when α = π/2. Thus, also in this case ηα simplifies; therefore it becomes evident

that ∂αFα is a smooth function in α ∈ (0, π).

By plugging (B.2.39) into (B.2.38), we obtain an expression which can be easily expanded

for q0 → 0 and q0 → +∞. Only at the end, one integrates the coefficients of the expansion

as prescribed in the r.h.s. of (B.2.38). We remark that the analysis presented here holds for

any α ∈ (0, π).

Before considering the regimes γ → 0 and γ → π/2 of the corner function, we find it worth

remarking that when α ∈ [αc, π/2] the corner function Fα(γ) has a unique zero (see Fig. 3.7),

as already discussed in Sec. 3.2.2. Denoting by γ0 the value of γ such that Fα(γ0) = 0, the
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function γ0(α) in terms of α ∈ [αc, π/2] can be obtained numerically and the result is shown

in the left panel of Fig. B.2.

Large q0 regime

Let us consider the limit q0 → +∞ of the opening angle γ(q0) written in the form (B.2.34).

For the first term, which is given by (1.3.28) or (3.2.10), we find

P0(q0) =
1√

2π Γ(3
4)2

(
Γ(3

4)4

q0
+
π2 − 6 Γ(3

4)4

24 q3
0

+
16 Γ(3

4)4 − 5π2

160 q5
0

+O(1/q7
0)

)
. (B.2.40)

As for the second term in (B.2.34), the integrand can be expanded by employing (B.2.35),

obtaining

∂αγ =
(cscα)3/2

2 q0
− (1 + cscα) (cscα)3/2

8 q3
0

+O(1/q5
0). (B.2.41)

Finally, by plugging (B.2.40) and (B.2.41) into (B.2.34), and integrating separately the coef-

ficients of the resulting expansion, one finds the first expression in (3.2.16).

The limit q0 → +∞ of the corner function Fα(q0) can be studied in a similar way, starting

from (B.2.38). As for the first term, whose explicit expression has been reported in (1.3.27),

its expansion reads

F (q0) =
1√

2π Γ(3
4)2

(
Γ(3

4)4 q0 −
π2 − 2 Γ(3

4)4

8 q0
+

π2

32 q3
0

+O(1/q5
0)

)
. (B.2.42)

The second term in (B.2.38) can be addressed by using (B.2.39), whose expansion is

∂αFα =
(cscα)3/2

2
q0 +

(3 cscα+ 1) (cscα)3/2

8 q0
+

(
3 cos(2α)− 12 sinα+ 7

)
(cscα)7/2

128 q3
0

+O(1/q5
0).

(B.2.43)

The coefficient of the leading term in this expansion coincides with the coefficient of the

leading term in the expansion (B.2.41), while the subleading terms are different. By inserting

the expansions (B.2.42) and (B.2.43) into (B.2.38) first and then integrating the coefficient of

the leading term of the resulting expression, one obtains the second expression in (3.2.16).

As discussed in detail in Sec. 3.2.2, a peculiar feature of the corner function Fα(γ) as

γ → 0+ is that Fα(γ) → +∞ when α > αc, while it tends to a finite value Fα(γ) → Fα(0)

when α 6 αc. The function Fα(0) in terms of α 6 αc can be obtained numerically and the

result is shown in the right panel of Fig. B.2. In particular, (3.2.18) holds for the critical slope

αc, and this feature has been employed to get (3.5.8) for an infinite wedge which has only its

tip on the boundary.

We find it worth also discussing the behaviour of the angle φ∗ characterising the half-line

γ̂A ∩Q as γ → 0+. When α > αc, from the expansion of (3.2.5) as q0 → +∞ and (3.2.16) we

find that

φ∗ = −cosα
√

cscα

g(α)
γ + . . . α > αc (B.2.44)

which implies that φ∗ → 0 when γ → 0+. Instead, when α 6 αc, we have to consider the value

q̂0 introduced in Sec. 3.2.2 and plug it into (3.2.5). The result is a negative and increasing

function of α which takes the value −π/2 for α→ 0+ and vanishes for α = αc.
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Small q0 regime

The method described in the appendix B.2.4 can be adapted to study the limit q0 → 0+ of the

functions γ(q0) and Fα(q0), once they are written in the form given by (B.2.34) and (B.2.38)

respectively.

Considering the opening angle γ, for the first term of (B.2.34) we find

P0(q0) =
π

2
− π

2
q0 +

3π

8
q3

0 −
61π

128
q5

0 +O(q7
0). (B.2.45)

As for the expansion of the integrand in (B.2.34), we find

∂αγ = q0 +
5 cos(2α)− 3

4
q3

0 +
63 cos(4α)− 132 cos(2α) + 61

64
q5

0 +O(q7
0). (B.2.46)

Plugging (B.2.45) and (B.2.46) into (B.2.34) first and then integrating the coefficients of the

resulting expansion, we find that

γ =
π

2
− (π − α) q0 +

3(π − α) + 5 sinα cosα

4
q3

0 +O(q5
0) (B.2.47)

which can be inverted obtaining

q0 =
π/2− γ
π − α − 6(π − α) + 5 sin(2α)

8(π − α)4
(π/2− γ)3 +O

(
(π/2− γ)5

)
γ → π

2
. (B.2.48)

The limit q0 → 0+ of the corner function Fα(q0) in the form (B.2.38) can be studied in

the same way. The first term in the r.h.s. of (B.2.38) is (1.3.27) and its expansion reads

F (q0) =
π

4
q2

0 −
7π

32
q4

0 +O(q6
0). (B.2.49)

As for the integrand occurring in (B.2.38), from (B.2.39) we obtain

∂αFα =
1

(sinα)2
− 1

2
q2

0 +
7− 15 cos(2α)

16
q4

0 +O(q6
0). (B.2.50)

By inserting (B.2.49) and (B.2.50) into (B.2.38) first and then integrating separately the

coefficients of the resulting expansion, we find

Fα = − cotα+
π − α

2
q2

0 −
7(π − α) + 15 cosα sinα

16
q4

0 +O(q6
0). (B.2.51)

Finally, by employing (B.2.48) into (B.2.51), we obtain

Fα(γ) = − cotα+
(π/2− γ)2

2(π − α)
+

5(π − α+ cosα sinα)

16(π − α)4
(π/2− γ)4 +O

(
(π/2− γ)6

)
(B.2.52)

which is one of our main results. In (3.2.19) the first two terms of (B.2.52) have been reported.
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B.2.5 A relation between the infinite wedge and the infinite strip

In the expansion (3.2.17) of the holographic corner function Fα(γ) for γ → 0 and in the O(1)

term of the holographic entanglement entropy of the infinite strip adjacent to the boundary

in (2.2.7), the same function g(α) given by (2.2.2) occurs. In the following, we explain this

connection by exploiting a conformal map that relates the infinite wedge adjacent to the

boundary in the half-plane and the infinite strip adjacent to a border of a half-cylinder. This

analysis has been done by adapting to our case in a straightforward way the analogue relation

in the absence of the boundary, which involves the infinite wedge in R2 and the infinite strip

on the surface of an infinite cylinder [189, 247, 265].

Consider a BCFT3 defined on R3
+ ≡ {(tE, x, y) ∈ R3 |x > 0} endowed with the usual

Euclidean metric ds2 = dt2E + dx2 + dy2. By adopting the polar coordinates introduced in

(B.2.1), where we recall that 0 6 φ 6 π, this metric becomes ds2 = dt2E + dρ2 + ρ2dφ2. We

define tE = 0 the slice containing the infinite wedge A adjacent to the boundary introduced in

Sec. 3.2.2, whose edges are given by φ = 0 and φ = γ. By introducing the coordinates (r̃, χ)

through the relations tE = r̃ cosχ and ρ = r̃ sinχ, where r̃ > 0 and 0 6 χ 6 π, the flat metric

becomes

ds2 = dr̃2 + r̃2
(
dχ2 + (sinχ)2dφ2

)
. (B.2.53)

Let us define the coordinate τ ∈ R as r̃ = L0 e
τ/L0 . The tip of the wedge A corresponds to

τ → −∞, being ρ = 0 = r̃ in the previous coordinates. In terms of the coordinates (τ, χ, φ),

the metric (B.2.53) reads

ds2 = e2τ/L0ds̃2 ds̃2 ≡ dτ2 + L2
0

(
dχ2 + (sinχ)2dφ2

)
(B.2.54)

i.e. the flat metric on R3
+ is conformally equivalent to ds̃2, which is the metric R× S2

+, being

S2
+ a two dimensional hemisphere whose radius is L0. The condition tE = 0 corresponds to

χ = π/2 and the metric induced on this slice from ds̃2 is given by ds̃2|χ=π/2 = dτ2 + L2
0 dφ

2,

which characterises the external surface of a half-cylinder of radius L0, whose boundaries

are defined by φ = 0 and φ = π (see Fig. B.3). Thus, on this surface, the infinite wedge A

corresponds to the infinite strip adjacent to the boundary and enclosed by the generatrices

given by φ = 0 and φ = γ (the yellow region in Fig. B.3). The width of this infinite strip

measured along the surface of the cylinder is ` = L0γ.

In terms of the coordinates (ρ, φ) in R3
+|tE=0, the entanglement entropy of the infinite

wedge A adjacent to the boundary can be written as

SA = b
ρmax − ρmin

ε
− fα(γ) log(ρmax/ρmin) +O(1) (B.2.55)

where ρmax = L and ρmin = ε, being L� ε the infrared regulator introduced in the beginning

of Sec. 3.2.2. We remark that (B.2.55) is a special case of the general expression (3.0.1) (see

(3.2.11) for the holographic case). Since at χ = π/2 we have that ρ = r̃ = L0 e
τ/L0 , in terms

of this coordinate τ one finds that (B.2.55) becomes

SA = b L0
eτ+/L0 − eτ−/L0

ε
− fα(γ)

τ+ − τ−
L0

+O(1) (B.2.56)
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A

�

�

A

Figure B.3: Part of the surface of a half-cylinder, introduced in the appendix B.2.5 (see ds̃2 in

(B.2.54) for χ = π/2). This surface corresponds to the conformal boundary of the gravitational

spacetimes depicted in Fig. B.4. The yellow region is an infinite strip A adjacent to the boundary.

where we used that ρmax = L = L0 e
τ+/L0 and ρmin = ε = L0 e

τ−/L0 . These relations and the

condition L/ε� 1 imply that (τ+ − τ−)/L0 � 1.

In order to relate (B.2.56) to the expansion of the entanglement entropy of the infinite strip

adjacent to the boundary, we take L0 → +∞ and γ → 0+ such that ` = L0γ is kept constant.

Notice that the width L0(π−γ) of the complementary region B in the half-cylinder of Fig. B.3

diverges in this limit. Moreover, since L0 → +∞ we have that L0(eτ+/L0 − eτ−/L0)→ τ+− τ−
in the r.h.s. of (B.2.56). Thus, in this regime (B.2.56) becomes

SA = b
L‖
ε

+A0 L‖ +O(1) τ+ − τ− = L‖ � L0 (B.2.57)

where O
(
(τ2

+ − τ2
−)/L2

0

)
term has been neglected and A0 is defined as follows

− fα(γ)

L0
→ A0 as





L0 → +∞
γ → 0+

L0γ = `

. (B.2.58)

The expression (B.2.57) in a BCFT3 corresponds to the entanglement entropy of an infinite

strip (L‖ � ε) of width ` adjacent to the boundary.

The above discussion holds for any BCFT3 with a flat boundary. In the following, we

focus on the case of AdS4/BCFT3, where this relation between the infinite wedge and the

infinite strip adjacent to the boundary can be explicitly checked.

In order to address the holographic case, let us consider a part of the Euclidean AdS4

spacetime in global coordinates, whose spacetime interval reads

ds2 =
dr2

1 + r2/R2
AdS

+
(
1 + r2/R2

AdS

)
dτ2 + r2

(
dχ2 + (sinχ)2dφ2

)
(B.2.59)
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A

�

�

A

↵ = ⇡/2 ↵ > ⇡/2↵ < ⇡/2

�̂A

Q

Figure B.4: The spacetime (B.2.60), whose boundary is the union of the surface in Fig. B.3 and of

the green surface Q in (B.2.63), which depends on the parameter α ∈ (0, π). The blue surface is the

minimal area surface γ̂A corresponding to the infinite strip adjacent to the boundary (yellow region).

The parameter α changes in the various panels: α = π/10 (left), α = π/2 (middle) and α = 3π/4

(right).

where τ ∈ R, χ ∈ [0, π], r > 0 and φ ∈ [0, 2π), but the ranges of the last two coordinates are

influenced by the occurrence of x > −(cotα)z. Indeed, we have that the conformal boundary

corresponds to r → +∞ and 0 6 φ 6 π. On the χ = π/2 slice, the induced metric is given by

ds2 =
dr2

1 + r2/R2
AdS

+
(
1 + r2/R2

AdS

)
dτ2 + r2dφ2. (B.2.60)

By introducing the coordinates (z, ρ) as follows

r = RAdS

ρ

z
tanh

(
τ/RAdS

)
=
z2 + ρ2 −R2

AdS

z2 + ρ2 +R2
AdS

(B.2.61)

one finds that (B.2.60) becomes

ds2 =
R2

AdS

z2

(
dz2 + dρ2 + ρ2dφ2

)
(B.2.62)

which is the metric of H3 in terms of the polar coordinates (B.2.1), whose conformal boundary

corresponds to z → 0+.

From the definition (1.4.9) of half-plane Q written in terms of the polar coordinates (B.2.1)

and the first expression of (B.2.61), we find that the position of Q in the spacetime (B.2.60)

is given by

Q : r = −RAdS

cotα

sinφ

{
π 6 φ 6 2π α ∈ (0, π/2)

0 6 φ 6 π α ∈ (π/2, π)
. (B.2.63)

In Fig. B.4 the spacetime defined by (B.2.60) and constrained by (B.2.63) is the internal part

of the cylinder enclosed by the green surface, which corresponds to Q and the darker half of

the cylindrical surface, which is the conformal boundary of the spacetime (B.2.60) (see also
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Fig. B.3). Since the conformal boundary is defined by r → +∞, in Fig. B.4 the radial variable

r̂ = (2RAdS/π) arctan r has been employed. Notice that for α = π/2 half of the global AdS4

must be considered, as expected.

Close to this boundary the second expression of (B.2.61) becomes

tanh
(
τ/RAdS

)
=
ρ2 −R2

AdS

ρ2 +R2
AdS

⇐⇒ ρ = RAdS e
τ/RAdS (B.2.64)

i.e. we recover the exponential change of coordinate reported in the text above (B.2.56), once

the identification RAdS = L0 is assumed.

In AdS4/BCFT3, by computing the holographic entanglement entropy of the infinite wedge

adjacent to the boundary (Sec. 3.2.2), we have found that (B.2.55) holds with b = R2
AdS/(4GN)

and fα(γ) =
R2

AdS
4GN

Fα(γ), being Fα(γ) given by (3.2.7) and (3.2.12). By employing the results

discussed in Sec. 3.2.2 for the regime γ → 0+ of Fα(γ) (namely (3.2.17) and the fact that

Fα(γ)→ Fα(0) when α 6 αc) and the identification RAdS = L0, we find that (B.2.58) in this

case gives

A0 =
R2

AdS

4GN

a0(α)

`
(B.2.65)

where ` = RAdS γ and a0(α) has been defined in (2.2.7). Plugging these results into (B.2.57),

we recover the holographic entanglement entropy (2.2.7) of the infinite strip adjacent to the

boundary, as expected.

As further consistency check of the relation between the infinite wedge and the infinite

strip adjacent to the boundary, we find it worth considering the quantity RAdS φ∗ in the limit

defined in (B.2.58) with L0 = RAdS. By employing (B.2.44) and the corresponding result for

α 6 αc, we find





RAdS φ∗ = − cosα
√

cscα

g(α)
RAdS γ + · · · = − cosα

√
cscα

g(α)
`+ . . . α > αc

RAdS φ∗ → −∞ α 6 αc

. (B.2.66)

In Sec. 2.2 we have found that x∗ = − z∗ cotα when α > αc, with z∗ given by (2.2.1), while

x∗ → −∞ when α 6 αc. Comparing these results with (B.2.66), we have that x∗ = RAdS φ∗
in the limit that we are considering. This identification allows to interpret the transition

between γ̂ con
A and γ̂ dis

A at α = αc for the infinite strip adjacent to the boundary (see Sec. 2.2)

in terms of the behavior of φ∗ for γ → 0. Indeed, when α > αc, from (B.2.44) we have φ∗ → 0

as γ → 0, therefore x∗ remains finite and the minimal surface for the infinite strip is γ̂ con
A .

Instead, when α 6 αc the angle φ∗ remains finite and negative, as discussed below (B.2.44).

This means that x∗ → −∞ for large RAdS, which tells us that the minimal area surface for

the infinite strip adjacent to the boundary is the vertical half-plane γ̂ dis
A .

B.2.6 Recovering the corner function from (2.1.23)

In the gravitational setup described in Sec. 2.1.1, let us consider an infinite wedge A in (B.2.2),

which is adjacent to the flat boundary and whose opening angle is γ. As for the corresponding

holographic entanglement entropy, in the main text the area A[γ̂ε] of γ̂ε it has been found by
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a direct computation and the analytic expression of the boundary corner function Fα(γ) has

been extracted. In this appendix, we provide some technical details underlying the discussion

of Sec. 3.2.3, where we have shown that the analytic expression for Fα(γ) can also be recovered

through (3.2.20).

Let us consider first the line integral over ∂γ̂Q occurring in (3.2.20). The curve ∂γ̂Q is a

line on Q which can be parameterised as follows

∂γ̂Q : (z, x, y) = ρ
(
− sinφ∗ tanα , sinφ∗ , cosφ∗

)
0 6 ρ 6 L (B.2.67)

where φ∗ is the angular coordinate characterising the projection of ∂γ̂Q on the z = 0 plane.

The line element ds̃ induced by the flat metric reads

ds̃ =
√
x′2 + y2 + z′2 dρ =

√
x′2 + cos2 α y′2 dρ
| cosα| = − ηα

cosα

√
sin2 φ∗ + cos2 α cos2 φ∗ dρ.

(B.2.68)

By employing (B.2.67) and (B.2.68), the line integral over ∂γ̂Q in (3.2.20) becomes

− cosα

∫

∂γ̂Q

1

z
ds̃ = − cotα

∫ L

ρε

√
1 + cos2 α cot2 φ∗

ρ
dρ (B.2.69)

where sign(sinφ∗) = ηα has been used. The integral in the r.h.s. of (B.2.69) has been

regularised by introducing the lower extremum ρε, which is defined by the condition ε =

− ρε sinφ∗ tanα, obtained by intersecting ∂γ̂Q in (B.2.67) with the plane z = ε. The radial

integral (B.2.69) can be easily evaluated, finding (3.2.26) at leading order as ε→ 0.

In order to compute the surface integral over γ̂ε in (3.2.20), we need the unit normal

vector ñν . Up to a normalization factor, this vector is given by the gradient of the equation

C = z − ρ/q(φ) = 0, where q(φ) has been introduced in (3.2.3) and characterises the minimal

surface. By imposing the normalization condition ñµñ
µ = 1, we get

ñµ =
1√

q4 + q2 + q′2
(
q2,−q, q′ρ

)
(B.2.70)

where the index µ spans the cylindrical coordinates (z, ρ, φ) defined in Sec. 3.2.3. We saw in

appendix B.2.1 the first derivative q′ of q with respect to φ can be expressed in term of q and

q0 with the help of the integral of motion associated to the cyclic coordinate φ, i.e. by means

of equation (B.2.8). Thus, by using (B.2.70) and (B.2.8) the integrand of the integral over γ̂ε

in (3.2.20) can be written as

(ñz)2

z2
=

q6

ρ2 (q4 + q2 + q′2)
=
q2(q4

0 + q2
0)

(q2 + 1)2ρ2
. (B.2.71)

In terms of the cylindrical coordinates introduced in Sec. 3.2.3, the area element induced by

the flat metric reads

dÃ =

√
q′2 + q4 + q2

q2
ρ dρ dφ =

q2 + 1√
q4

0 + q2
0

ρ dρ dφ. (B.2.72)
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Plugging (B.2.71) and (B.2.72) into the surface integral over γ̂ε in (3.2.20), it reduces to the

following double integral

∫

γ̂ε

(ñz)2

z2
dÃ =

∫ ρmax

ρmin

1

ρ
dρ

∫ γε

φ∗

q2
√
q4

0 + q2
0

q2 + 1
dφ. (B.2.73)

The integration domain in the angular integral is defined by the angle φ∗ characterising ∂γ̂Q
and γε ≡ γ − δε, where δε ∼ 0 is the angle between the border of the wedge at φ = γ and the

straight line in the z = 0 half-plane connecting the tip of the wedge to the intersection point

between the circle given by ρ = ρmax and the projection of γ̂A ∩ {z = ε} on the half-plane

z = 0. In the radial direction we have introduced the large cutoff ρmax to regulate the infrared

divergences of this integral, while the lower extremum ρmin = q0 ε (being q0 the minimum

value of q) controls the UV behaviour. The cutoff ρmax is related to L in (B.2.2) and to δε

through the relation L = ρmax cos δε , and to ε through the condition

ρmax = ε q(γ − δε). (B.2.74)

In order to perform the angular integration in (B.2.73), it is convenient to change the inte-

gration variable from φ to q. However, since q is not monotonic as a function of φ for some

values of α, we have to split the integral into two separate contributions (depending on the

sign of cotα) as follows

∫

γ̂

(ñz)2

z2
dÃ =

∫ ρmax

ρmin

dρ

ρ

(∫ ρ/ε

q0

q2
√
q4

0 + q2
0

(q2 + 1) q′
dq − ηα

∫ q∗

q0

q2
√
q4

0 + q2
0

(q2 + 1) q′
dq

)
(B.2.75)

where (B.2.8) can be used to express q′. By introducing the integration variable ρ̃ = ρ/ε in

the radial integration, we get

∫

γ̂

(ñz)2

z2
dÃ =

∫ ρmax/ε

ρmin/ε

dρ̃

ρ̃

(∫ ρ̃

ρmin/ε

q2
√
q4

0 + q2
0

(q2 + 1) q′
dq − ηα

∫ q∗

q0

q2
√
q4

0 + q2
0

(q2 + 1) q′
dq

)
≡ I1 − ηα I2

(B.2.76)

where I2 is defined as the integral multiplying ηα, while I1 is the remaining one.

Considering I1 first, in order to single out the logarithmic divergence we exchange the order

of integration between ρ̃ and q, finding that

I1 =

∫ ρmax/ε

ρmin/ε

q2
√
q4

0 + q2
0

(q2 + 1) q′
dq

∫ ρmax/ε

q

dρ̃

ρ̃
. (B.2.77)

Now the integration over ρ can be easily performed, obtaining

I1 =

∫ ρmax/ε

ρmin/ε

√
q4

0 + q2
0

(
q2

(q2 + 1) q′
log(ρmax/ε)−

q2 log q

(q2 + 1) q′

)
dq. (B.2.78)

Since L is large, the dominant contribution comes from the first integral (the second one is

finite in this limit). In particular, we find

I1 =

( ∫ +∞

q0

q2
√
q4

0 + q2
0

(q2 + 1) q′
dq

)
log(L/ε) + · · · (B.2.79)
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where the integral multiplying the logarithmic divergence provides an integral representation

of the function F (q0) given in (1.3.27) in terms of elliptic function, i.e.

∫ +∞

q0

q2
√
q4

0 + q2
0

(q2 + 1) q′
dq = F (q0). (B.2.80)

The second integral I2 in (B.2.76) can be also calculated in closed form in terms of elliptic

functions. Expanding the result for large L, one finds that the dominant contribution is the

following logarithmic divergence

I2 =

(
S(q∗, q0) +

√(
q2∗ − q2

0

) (
q2∗ + q2

0 + 1
)

q2∗ + 1

)
log(L/ε) + · · · (B.2.81)

where S(q∗, q0) has been defined in (3.2.29).

Combining (B.2.79) and (B.2.81) into (B.2.76), we get the logarithmic divergence pro-

vided by the surface integral over γ̂ε in (3.2.20), which is given by (3.2.27) and (3.2.28). By

taking into account also the logarithmic divergence provided by the line integral over ∂γ̂Q
(see (3.2.26)), for the coefficient of log(L/ε) in the subleading term FA we find

Fα(q0) = F (q0)− ηαS(q∗(α, q0), q0) (B.2.82)

− ηα

√(
q2∗ − q2

0

) (
q2∗ + q2

0 + 1
)

q2∗ + 1
−
√

1 + cos2 α cot2 φ∗(α, q0) cotα

where the last two terms in (B.2.82) cancel, once the explicit expressions for φ∗(α, q0) and

q∗(α, q0) (see (3.2.5) and (3.2.4)) have been used. Hence, Fα(q0) simplifies to

Fα(q0) = F (q0)− ηα S(q∗(α, q0), q0). (B.2.83)

In order to show that (B.2.83) coincides with (3.2.12), we have to prove that S(q∗, q0) =

−G(q∗, q0). This follows from two observations that can be easily verified: the function

obtained by taking the derivative of (3.2.13) with respect to q and then evaluating it for q = q∗
is the opposite of the derivative of (3.2.29) with respect to q∗ and S(q0, q0) = G(q0, q0) = 0

for any α.
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B.3 Check of the constraints for the corner functions

In this appendix we check that the holographic corner functions derived in Sec. 3.2.2 and

Sec. 3.5 for AdS4/BCFT3 satisfy the constraints found in Sec. 3.1.

The corner function (3.5.5) fulfils the inequality (3.1.6) in a trivial way. Indeed, whenever

the maximisation procedure selects F̃ (ω) (namely for either α 6 αc or ω 6 ωc when α > αc),

this constraints simply tells us that the corner function F̃ (ω) is convex. The property f̃ ′′(θ) >

0 for the generic corner function f̃(θ) has been derived from the strong subadditivity in [178]

and, in the special case of the holographic corner function F̃ (ω) found in [157], the convexity

is evident from its plot (see the solid curve in Fig. 1.8). When the second function in the r.h.s.

of (3.5.5) is selected, the inequality (3.1.6) is saturated, as one can straightforwardly observe

by using that γ̃ = π − (ω + γ).

As for the constraint obtained from the configuration shown in the middle panel of Fig. 3.2,

we find it worth specialising the inequality (3.1.7) to the holographic corner functions. By

employing (3.5.5), we find

Fα(ω1 + ω2 + γ)− Fα(ω1 + γ) > (B.3.1)

max
{
F̃ (ω1 + ω2) , Fα(γ) + Fα(ω1 + ω2 + γ)

}
−max

{
F̃ (ω1) , Fα(γ) + Fα(ω1 + γ)

}
.

For the configurations such that in both the maximisations occurring in the r.h.s. of (B.3.1)

the second function is selected, Fα(γ) simplifies in the r.h.s. and this inequality becomes a

trivial identity. As for other configurations, the inequality (B.3.1) is a non-trivial inequality.

We checked numerically for some cases that it is verified but, unfortunately, we do not have

a general proof.

The last constraint to check is (3.1.10). Specifying this inequality for the holographic

corner function (3.5.5), we obtain

Fα(γ + ω) + Fα(γ) 6 max
{
F̃ (ω) , Fα(γ) + Fα(ω + γ)

}
. (B.3.2)

It is straightforward to observe that this inequality is trivially true.
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C.1 Null Energy Condition

In this appendix, we discuss the constraints for the Lifshitz and the hyperscaling exponents

imposed by the Null Energy Condition (NEC), which has been introduced in Section 4.1.

Let us consider spacetimes whose metric has the following form

ds2 = e2A(z)
(
−e2B(z)f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
(C.1.1)

for some A(z), B(z) and f(z), being z > 0 the holographic coordinate. In [126], it is shown

that the NEC leads to the following constraints

(2A′ + 3B′)f ′ + 2f(2A′B′ +B′2 +B′′) + f ′′ > 0 (C.1.2)

f(A′2 +A′B′ −A′′) > 0 . (C.1.3)

Since we are mainly interested in the black hole metric (4.1.29), let us fix the functions

A(z), B(z) and f(z) as follows

A(z) = −dθ
2

log z B(z) = (1− ζ) log z f(z) = 1−
(
z

zh

)χ1

+ a zχ2 (C.1.4)

where a is a constant. Plugging (C.1.4) into (C.1.2) and (C.1.3), one obtains respectively

dθ(dθ + 2ζ − 4)f > 0 (C.1.5)

2(dθ + ζ)(ζ − 1) +

(
z

zh

)χ1

(dθ + ζ − χ1)(2− 2ζ + χ1)− a zχ2 (dθ + ζ − χ2) (2− 2ζ + χ2) > 0.

(C.1.6)

Restricting to the region of spacetime outside the horizon, where f > 0, one observes

that (C.1.5) provides the same constraint holding in the hvLif4, that is the first inequality in

(4.1.2). The constraint (C.1.6) is more involved because it depends on the coordinate z in a

non-trivial way. Notice that the second inequality in (4.1.2) is recovered by taking z → 0 in

(C.1.6).
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Let us focus on the simple case given by a = 0 and assume that χ1 > 0, in order to have

an asymptotically hvLif4 background (this class of metrics includes (4.1.29)). Taking the limit

z → zh in the inequality (C.1.6) with a = 0, one finds χ1 6 dθ+3ζ−2. Setting χ1 = dθ+ζ > 0

as in (4.1.29), one obtains ζ − 1 > 0 corresponding to the first constraint in (4.1.2).

C.2 Expansion of the area near the boundary

This appendix is devoted to reviewing the derivation of the expansion near the boundary of

the area functional A[γA] for two-dimensional surfaces γA that intersect the boundary ∂C3

orthogonally. In the following, we adapt the analysis reported in [77] to the gravitational

backgrounds of our interest. Since the structure of this expansion depends only on the local

geometry of γA near ∂C3, we may as well suppose that C3 is conformally flat (i.e. C̃3 = R3)

and that the form (4.1.3) of the metric is valid for any value of the coordinate z. The analysis

below can also be adapted directly to spaces whose metric is only asymptotically of the form

(4.1.3), though the equations involve higher-order correction terms and the procedure becomes

more complicated.

The boundary curve ∂γA ⊂ ∂C̃3 ≡ R2 is taken to be smooth and its parametric form xA(s)

is given by (x(s), y(s)), being s the affine parameter. At each non-singular point of ∂γA the

unit tangent vector T̃ = x′
A(s) and the normal one Ñ provide a basis for the boundary plane

∂C̃3. Then, let us consider the vertical cylinder Γ ⊂ C̃3 constructed over the curve xA(s),

which is given by {(z, x, y) ∈ C3 | (z,xA(s))}. Near ∂C̃3, i.e. close to the boundary plane

z = 0, we can parametrize the surface γA as a horizontal graph over Γ. This means that we

can introduce a scalar function u(s, z) so that the embedding E(s, z) of γA takes the form

E(s, z) =
(
z ,xA(s) + u(s, z)Ñ

)
. (C.2.1)

The function u(s, z) in (C.2.1) describes the displacement of γA from the vertical cylinder over

∂γA. The boundary condition E(s, 0) = xA(s) implies that u(s, 0) = 0, and thus the partial

derivative with respect to s at z = 0 vanishes as well, i.e. us(s, 0) = 0. From (C.2.1) one finds

the two vectors tangent to the surface by taking the derivative with respect to s and z

t1 = Es(s, z) =
(
0, w(s, z)T̃ + usÑ

)
t2 = Ez(s, z) =

(
1, uzÑ

)
(C.2.2)

where we have introduced w(s, z) = 1− k(s)u(s, z), being k(s) the geodesic curvature of the

entangling curve xA(s).

The scalar product of the vectors in (C.2.2) provides the metric h̃ab (and the its inverse

h̃ab) induced on the surface by the embedding (C.2.1)

h̃ab =

(
w2 + u2

s uzus

uzus 1 + u2
z

)
h̃ab =

1

h̃

(
1 + u2

z −uzus
−uzus w2 + u2

s

)
(C.2.3)

where h̃ = det(h̃ab) = u2
s + w2(1 + u2

z). The inward unit normal vector ñµ can be evaluated

by taking the normalized wedge product of t1 and t2, finding that

ñµ =

(
t1 ∧ t2

)µ

|t1 ∧ t2|
=

1√
h̃

(
−uzw ,−us T̃ + wÑ

)
. (C.2.4)
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In order to study the behaviour of the minimal surface γ̂A near the boundary z = 0, we

expand the function u = u(s, z) in a power series of z about z = 0 as follows

u(s, z)=
U2(s)

2
z2 +

U3(s)

3!
z3 +

U4(s)

4!
z4 + · · ·+ zα

[
Uα(s) + Uα+1(s) z + Uα+2(s)

z2

2!
+ . . .

]

(C.2.5)

where we have assumed that this expansion may contain both an analytic and a non-analytic

part, in order to be consistent with the non-analytic behaviour of the bulk metric near the

boundary. The non-analytic component is controlled by a real exponent α. The boundary

condition u(s, 0) = 0 has been employed to set U0(s) = 0 in (C.2.5). Instead, the requirement

that γA intersects orthogonally the plane z = 0 leads to U1(s) = 0 and α > 1. In fact, if we

use the expression in (C.2.2) for tµ2 , we immediately recognize that this condition translates

into uz(s, 0) = 0, which in turn entails the above two constraints. In the following we shall

adopt the stronger requirement α > dθ + 1. This ensures that the structure of the divergences

is determined only by the analytical part of the expansion and, moreover, it is automatically

satisfied by a minimal surface, as discussed below.

From (C.2.3), we can easily write the regularized area functional as follows

A[γA,ε] =

∫

γA,ε

1

zdθ

√
h̃ dΣ =

∫

γA,ε

1

zdθ

√
u2
s + w2(1 + u2

z) ds dz (C.2.6)

where γA,ε ≡ γA ∩ {z > ε}. Assuming that the embedding function u(s, z) can be expanded

as in (C.2.5) (with α > dθ + 1), for the leading contributions as z → 0 we obtain

A[γA,ε] =

∫

∂γA,ε

ds

∫ zmax

ε

1

zdθ

[
1 +

z2

4

(
− 2k(s)U2(s) + U ′2(s) + 2U2(s)2

)
(C.2.7)

+
z3

12

(
− 2k(s)U3(s) + 6U2(s)U3(s) + U ′3(s)

)
+O

(
z4
) ]

dz

which contains divergent terms only if dθ > 1. The integration of the first term within

the expansion between square bracket provides the leading divergence (4.1.10), where the

perimeter PA of the entangling curve comes from the integration over s. The subleading terms

are obtained by performing the integration over z in the remaining terms in the expansion

(C.2.7). This leads to

A[γA] =
PA

(dθ − 1)εdθ−1
+

1

2(dθ − 3)εdθ−3

∫

∂A
[U2(s)− k(s)]U2(s) ds (C.2.8)

+
1

6(dθ − 4)εdθ−4

∫

∂A
[3U2(s)− k(s)]U3(s) ds+O

(
max

{
1/εdθ−5, 1

})
dθ /∈ N .

When dθ = n ∈ N is a positive integer, this expansion still holds except for a crucial modifica-

tion of the O(εn−dθ) term, where 1/[(dθ−n)εdθ−n] has to be replaced with log ε. For instance,

when dθ = 3 we obtain

A[γA] =
PA
2 ε2
− log ε

2

∫

∂A
ds [U2(s)− k(s)]U2(s) +O(1) . (C.2.9)

In the above analysis, we considered surfaces γA whose smooth boundary is ∂γA = ∂A,

that intersect orthogonally the boundary plane z = 0 and which are not necessarily minimal.
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Moreover, we have assumed that the embedding function u(s, z) defined in (C.2.1) admits an

expansion of the form (C.2.5) close to z = 0 with α > 0. In the following we specialize to

surfaces γ̂A that are extrema of the area functional (4.1.7), namely to surfaces whose mean

curvature vanishes everywhere (see (4.1.8)) or, equivalently, which obey (4.1.9).

In terms of the parameterisation introduced in (C.2.1), the second fundamental form K̃ab

reads

K̃ab = − h̃−1

(
w(uss+kw)−us(ws−kus) wuzs+kuzus

wuzs + kuzus wuzz

)
. (C.2.10)

Taking the trace of (C.2.10), we can translate the extremality condition (4.1.8) into the

following second order partial differential equation for u(s, z)

(1 + u2
z)
[
w(uss + k w)− us(ws − k us)

]
− 2uz us

(
w uzs + k uzus

)
+ w uzz

(
w2 + u2

s

)

= dθ
uzw

z

[
u2
s + w2(1 + u2

z)
]

(C.2.11)

with the boundary conditions u(s, 0) = 0.

We can employ the expansion (C.2.5) to solve the equation (C.2.11) order by order in

z. Even if U1(s) = 0 is not assumed in (C.2.5), the vanishing of the leading term in the

sector of the expansion of (C.2.11) with integer powers implies U1(s) = 0. In other words,

an extremal surface is necessarily orthogonal to the boundary. Instead, the vanishing of

the leading term in the non-analytic sector of the expansion of (C.2.11), where the powers

depend on α, determines the value of α to be dθ+1. The associated coefficient Uα(s) in (C.2.5)

cannot be determined through this local analysis near the boundary because it encodes global

properties of γ̂A. On the other hand, (C.2.11) allows us to determine the analytical part of

the expansion (C.2.5) recursively. For the lowest coefficients of an extremal surface γ̂A, we

find

U2(s) =
k(s)

dθ − 1
dθ 6= 1 (C.2.12a)

U3(s) = 0 dθ 6= 2 (C.2.12b)

U4(s) =
3k′′(s)

(dθ − 1)(dθ − 3)
+

3(d2
θ − 2dθ − 1)

(dθ − 1)3 (dθ − 3)
k3(s) dθ 6= 1, 3 (C.2.12c)

U5(s) = 0 dθ 6= 4 . (C.2.12d)

The integer values of dθ require a separate analysis. For even values of dθ, the non-

analytical sector in (C.2.5) disappears and in general the odd coefficients Udθ+2n+1(s) (with

n > 0) can be non-vanishing. In particular, this local analysis leaves Udθ+1(s) undetermined,

as above. When dθ is an odd integer, it is necessary to introduce terms of the form zdθ+1+n log z

in the expansion (C.2.5) in order to satisfy the extremality condition (C.2.11). However, these

additional terms do not contribute to the divergent part of A[γA], hence they can be neglected

in the present discussion.

Finally, by plugging the expressions in (C.2.12) into the expansions (C.2.8) and (C.2.9),

one obtains the subleading divergent contributions in (4.1.13) and (4.1.14).
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C.2.1 Asymptotic hvLif4 black hole

In the above analysis, we have investigated the UV divergent terms in the expansion of the

holographic entanglement entropy when the bulk metric g̃µν of C̃3 is flat. However, since the

leading divergence in (4.1.10) is completely determined by the value of
√
h̃ on the boundary

curve ∂γ̂A, i.e. h̃|z=0 = 1, the expansion of the area of the minimal surface is given by

(4.1.10) for any metric gµν satisfying (4.1.3). Instead, the subleading divergent terms in the

expansion (4.1.10) can be different from the ones occurring for the hvLif4 spacetime. Thus,

in the expansion gµν(z,x) = ghvLif
µν (x) + δg

(1)
µν (x)z + δg

(2)
µν (x)z2 + . . . of the metric near the

plane z = 0, the occurrence of the terms δg
(n)
µν might lead to important modifications of the

analysis presented above (e.g. (C.2.12) are expected to be modified). In this appendix, we

address this issue in a concrete example where the asymptotic behaviour of the metric near

the boundary is given by a black hole geometry with hyperscaling violation.

Considering the general metric (C.1.1) with A(z), B(z) and f(z) given by (C.1.4), the

induced metric gµν on C3 reads

ds2 =
1

zdθ

(
dz2

f(z)
+ dx2 + dy2

)
f(z) = 1− (z/zh)χ1 + a zχ2 . (C.2.13)

The parametrization (C.2.1) for γ̂A ⊂ C̃3 allows to write the unit normal vector as follows

ñµ =
1√

u2
s + w2[1 + u2

zf(z)]

(
−uz wf(z) ,−us T̃ + wÑ

)
. (C.2.14)

By expressing ñµ in terms of the unit normal vector ñµhvLif corresponding to f(z) ≡ 1, one

finds

ñµ = C
(
ñzhvLif f(z) , ñxhvLif

)
C ≡

√
h̃hvLif√

u2
s + w2[1 + u2

zf(z)]
(C.2.15)

where h̃hvLif is the determinant of the induced metric for hvLif4. Thus, for the trace of the

second fundamental form we have

TrK̃ = ∇̃αñα = C−1ñα∂αC + C ∇̃α
(
C−1ñα

)
(C.2.16)

= C−1ñα∂αC + C
(
∂xñ

x
hvLif + ∂zñ

z
hvLiff(z) +

1

2
ñzhvLiff

′(z)
)

where we used that, for the metric (C.2.13), the following result holds

Γααµ ñ
µ = − C

2
f ′(z) ñzhvLif . (C.2.17)

The extremal surfaces γ̂A fulfil (4.1.9), which can be written as

C−2 ñα∂αC + ∂xñ
x
hvLif + f(z) ∂zñ

z
hvLif +

1

2
f ′(z) ñzhvLif = dθ

f(z)

z
ñzhvLif . (C.2.18)

Specialising (C.2.18) to the expression of f(z) given in (C.2.13), we find that the equation

solved by extremal surfaces in hvLif4 gets modified by O(zχ1) and O(zχ2) terms. Thus, for

arbitrary exponents χ1 and χ2, the divergent terms in A[γ̂A,ε] are different from the ones
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discussed in Section 4.1.1. However, in the following, we show that for black hole geometries

new divergencies do not occur because of the NEC.

The black hole geometry corresponds to a = 0 and χ1 = dθ + ζ in (C.2.13). In this case

the NEC inequalities in (C.1.5) and (C.1.6) reduce to ones in (4.1.2). Since dθ+ζ > 0, we also

have ζ > 1; hence for the cases of interest, where dθ > 1, we can assume dθ + ζ > 2. Now we

are ready to analyze the behaviour of the solution of (C.2.18) for small z. Since the leading

behaviour of ñzhvLif for z → 0 (see (C.2.5) and (C.2.4)) is given by ñzhvLif ' −U2 z + O(z3),

the extremality equation (C.2.18) in a black hole geometry differs from (C.2.11) by O(zdθ+ζ)

terms. This implies that the putative expansion for the function u(s, z), which solves (C.2.18),

must also contain terms of the form zdθ+ζ+n with n ∈ N. An explicit calculation shows that

the first new non-vanishing term occurs for n = 2 and its coefficient reads

dθ − ζ − 2

2(dθ − 1)(dθ + ζ + 2)(dθ + ζ + 1)
k(s) . (C.2.19)

These new terms, which scale at least like zdθ+ζ+2, cannot contribute to the divergent part of

the holographic entanglement entropy. Thus, the analysis performed for hvLif4 remains valid

also for the black hole geometry.

C.3 On the finite term

In this appendix, we describe the details of the derivation of the results presented in Sec-

tion 4.1.2.

Considering a constant time slice C3 of an asymptotically hvLif4 spacetime endowed with

the metric gµν , the asymptotically flat metric g̃µν of the conformally equivalent space C̃3 is

related to gµν through the relation gµν = e2ϕg̃µν . At the beginning of 2 we have shown, by

following [78], that for any surface (not necessarily anchored to a curve on the boundary) the

following identity holds (see equation (2.1.10))

(
D̃2ϕ−∇̃2ϕ+ ñµñν∇̃µ∇̃νϕ− (ñλ∂λϕ)2 − 1

4
(TrK̃)2

)
dÃ+

1

4
(TrK)2dA = 0 (C.3.1)

where the tilded quantities are evaluated considering C̃3 as embedding space, while C3 is the

embedding space for the untilded ones. In particular, TrK and TrK̃ are the mean curvatures

of γA computed in the two embedding spaces, while dA and dÃ are the two area elements.

Denoting by ñν the versor perpendicular to the surface γA viewed as a submanifold of C̃3, the

covariant derivative ∇̃ is the one defined in C̃3 while D̃ is the one induced on the surface γA

by the embedding space C̃3.

Let us focus on surfaces γA anchored orthogonally to ∂A, which are not necessarily ex-

tremal surfaces. The first term in the left-hand side of (C.3.1) is a total derivative; hence it

yields a boundary term when integrated over γA. As we will discuss in detail later in this Ap-

pendix, the main step to construct a finite area functional is to multiply both sides of (C.3.1)

by a suitable term that makes this total derivative the only source of the type of divergences

discussed in Section 4.1.1 when the integration over γA is carried out. Our analysis follows

slightly different paths, depending on the ranges of dθ. In particular, we consider separately
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the ranges 1 < dθ < 3 and 3 < dθ < 5. The special cases dθ = 3 and dθ = 5, where a

logarithmic divergence occurs, can be studied as limiting cases.

C.3.1 Regime 1 < dθ < 3

In order to find the finite term in the expansion (4.1.12) of the area of the surfaces γA anchored

orthogonally to ∂A (not necessarily extremal), first we multiply the identity (C.3.1) by a factor

c1e
2φ, where φ is a function of the coordinates and c1 is a numerical constant to be determined.

Then, integrating the resulting expression over the surface γA,ε ≡ γA ∩ {z > ε}, one finds

0 = c1

∫

γA,ε

e2φ
(
D̃2ϕ− ∇̃2ϕ+ ñµñν∇̃µ∇̃νϕ− (ñλ∂λϕ)2 − 1

4
(TrK̃)2

)
dÃ

+ c1

∫

γA,ε

e2φ 1

4
(TrK)2dA . (C.3.2)

By adding the area functional of γA to both sides of this identity, we get

A[γA,ε] = c1

∫

γA,ε

e2φ
(
D̃2ϕ− ∇̃2ϕ+ ñµñν∇̃µ∇̃νϕ− (ñλ∂λϕ)2 − 1

4
(TrK̃)2

)
dÃ

+

∫

γA,ε

e2ϕdÃ +
c1

4

∫

γA,ε

e2φ(TrK)2 dA . (C.3.3)

The first term of the first integrand can be arranged as a divergence minus a term that does

not contain second derivatives as follows

e2φ D̃2ϕ = D̃µ(e2φ∂µϕ)− 2 e2φh̃µν∂νφ∂µϕ . (C.3.4)

At this point, Stokes’ theorem can be employed to transform the integration over the diver-

gence in (C.3.4) into an integral over the boundary of γA,ε. Thus, (C.3.3) becomes

A[γA,ε] = c1

∫

∂γA,ε

e2φ b̃µ∂µϕds̃ +

∫

γA,ε

e2ϕdÃ +
c1

4

∫

γA,ε

e2φ(TrK)2dA (C.3.5)

− c1

∫

γA,ε

e2φ
(

2h̃µν∂νφ∂µϕ+ ∇̃2ϕ− ñµñν∇̃µ∇̃νϕ+ (ñλ∂λϕ)2 +
1

4
(TrK̃)2

)
dÃ

where b̃µ is the outward pointing unit vector normal to the boundary curve. The function

φ and the constant c1 can be fixed by requiring that the divergence originating from the

boundary term in (C.3.5) as ε → 0 matches the divergence in (4.1.12). The limit ε → 0 of

the remaining terms provides the finite contribution FA in (4.1.12).

As for the vector b̃µ normal to the boundary of γA,ε, it has the same direction of the vector

tµ2 in (C.2.2). This gives

b̃µ =
−1√
1 + u2

z

(
1, uzÑ

)
(C.3.6)

whose expansion as ε→ 0 reads

b̃µ =
(
−1 +

ε2

2
U2

2 +O(ε4),−U2 Ñ ε+O
(
ε3
))
. (C.3.7)
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This expansion can be used to determine the behaviour of the boundary term in (C.3.5),

finding

c1

∫

∂γA,ε
e2φ b̃µ∂µϕds̃ = −c1dθPA

2ε
e2φ(ε) +O(εa) (C.3.8)

where

ϕ = −dθ
2

log z (C.3.9)

and a is determined by the specific choice of φ. By imposing consistency between the leading

divergence in (4.1.12) and (C.3.8), one obtains

φ =
2− dθ

2
log z +O(z2) c1 =

2

dθ(dθ − 1)
. (C.3.10)

By considering the expressions of ϕ in (C.3.9) and of φ in (C.3.10), together with the expansion

in (C.3.7), the integral (C.3.8) leads to a = 3−dθ. Notice that the leading singular behaviour

of φ vanishes identically when dθ = 2. The sum of the remaining terms in (C.3.5) must be

finite; hence we can safely remove the cutoff ε, obtaining the expression (4.1.17) for the finite

term.

We remark that (4.1.17) holds for surfaces γA that intersect orthogonally ∂C3 and that this

class includes the extremal surfaces. For extremal surfaces, (4.1.8) and (4.1.9) can be employed

to simplify (4.1.17), which reduces to (4.1.18). In the special case of dθ = 2, the expression

(4.1.18) simplifies further to the formula valid for the asymptotically AdS4 backgrounds found

in [78].

C.3.2 Regime 3 < dθ < 5

In this range of dθ we limit our analysis to the case of extremal surfaces because the condition

of orthogonal intersection with the boundary does not fix the structure of the divergences

completely. Instead, for extremal surfaces anchored to ∂A we can have only two types of

divergences as ε → 0, and they are of the form occurring in (4.1.14). To single out these

singular terms, we multiply both sides of the identity (C.3.1) by the following factor

c1e
2φ + c2e

2ψ(TrK̃)2 (C.3.11)

where c1 ans c2 are numerical coefficients and e2φ and e2ψ are functions of the coordinates

to be determined. Integrating the resulting expression over γ̂A,ε and then adding the area

A[γ̂A,ε] to both sides, we obtain

A[γ̂A] =

∫

γ̂A,ε

(
c1e

2φ+c2e
2ψ(TrK̃)2

)(
D̃2ϕ−∇̃2ϕ+ñµñν∇̃µ∇̃νϕ−(ñλ∂λϕ)2− 1

4
(TrK̃)2

)
dÃ

+

∫

γ̂A,ε

e2ϕ dÃ (C.3.12)

where the equation of motion TrK = 0 has been used. As done in Section C.3.1, let us rewrite

the term proportional to D̃2ϕ as a total divergence minus residual contributions. In particular,

we have
(
c1e

2φ + c2e
2ψ(TrK̃)2

)
D̃2ϕ = D̃µ

[
c1 e

2φ∂µϕ+ c2 e
2ψ
(
TrK̃

)2
∂µϕ

]
− 2 c1 e

2φh̃µν∂µφ∂νϕ

− 2 c2 e
2ψ(TrK̃)2h̃µν∂µψ∂νϕ− 2 c2 e

2ψ
(
TrK̃

)
h̃µν∂µ

(
TrK̃

)
∂νϕ .
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Plugging this expression back into (C.3.12), we can write the area of γ̂A,ε in the following

form

A[γ̂A,ε] =

∫

γ̂A,ε

D̃µJµ dÃ −FA,ε (C.3.13)

where

Jµ = c1 e
2φ∂µϕ+ c2 e

2ψ
(
TrK̃

)2
∂µϕ (C.3.14)

and FA,ε contains all the remaining terms. By Stokes’ theorem, the integral of the divergence

turns into a line integral over the boundary curve

∫

γ̂A,ε

D̃µJµ dÃ =

∫

∂γ̂A,ε

b̃µJµds̃ =

∫

∂γ̂A,ε

(
c1 e

2φ b̃µ∂µϕ+ c2 e
2ψ
(
TrK̃

)2
b̃µ∂µϕ

)
ds̃ . (C.3.15)

The first term occurs also in (C.3.8) and it contains the leading divergence of A[γ̂A,ε]. Thus,

we must choose e2φ and c1 as in (C.3.10). Then we fix c2 and e2ψ so that the boundary

term (C.3.15) reproduces also the subleading divergence in (4.1.14). Specifically, if we use the

explicit expressions of c1, of e2φ and the extremal equation (4.1.9), we can rewrite the above

boundary term as follows

∫

∂γ̂A,ε

b̃µJµds̃ = −
∫

∂γ̂A,ε

b̃z
(
ε1−dθ

dθ − 1
+ c2 e

2ψd3
θ

(ñz)2

2ε3

)
ds̃ . (C.3.16)

From the analysis reported in Appendix 4.1.1, we obtain the following expansions as z → 0

b̃z = − 1 +
U2(s)2

2
z2 +O(z4) (C.3.17a)

ñz = −U2(s) z +O(z3) (C.3.17b)

ds̃ =

(
1− k(s)U2(s)

2
z2 +O(z4)

)
ds (C.3.17c)

where U2(s) is given in (C.2.12a). Plugging (C.3.17) into (C.3.16) and collecting the terms

containing k(s)2, we get

∫

∂γ̂A,ε

b̃µJµ ds̃ =

∫

∂γ̂A,ε

(
1− U2

2

2
ε2

)(
ε1−dθ

dθ − 1
+ c2 e

2ψd3
θ

U2
2

2ε

)(
1− U2 k

2
ε2

)
ds (C.3.18)

=
PA

(dθ − 1) εdθ−1
−
∫

∂γ̂A,ε

(
ε3−dθ

2(dθ − 1)3
− c2 d

3
θ e

2ψ

2(dθ − 1)2ε
+

ε3−dθ

2(dθ − 1)2

)
k2 ds

=
PA

(dθ − 1) εdθ−1
+

1

2(dθ − 1)2 εdθ−3

(
c2d

3
θe

2ψεdθ−4 − dθ
dθ − 1

)∫

∂γ̂A,ε

k2 ds .

The simplest choice to obtain the right subleading divergence in (4.1.14) is given by

c2 = − 2

d3
θ(dθ − 3)(dθ − 1)

e2ψ = z4−dθ(1 +O(z2)
)
. (C.3.19)

Since the boundary integral (C.3.18) with the substitutions (C.3.19) yields all the correct

divergences of the area as ε → 0, the sum of the remaining terms is finite in this limit and
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provides the finite contribution FA to A[γ̂A,ε]. After some simple algebraic manipulations,

FA can be expressed as in (4.1.19).

The procedure to subtract the divergences and consequently to write down a finite func-

tional FA is not unique. Instead of adding a second exponential weighted by the (TrK)2,

we could have achieved the same result by tuning the subleading in the expansion of φ. For

instance, if we choose

φ =
2− dθ

2
log z − k(s)2

(dθ − 3)(dθ − 1)2
z2 +O(z4) (C.3.20)

the functional (4.1.18) would produce the correct result in the entire interval 1 < dθ < 5. It

would be interesting to find a geometrical interpretation of (C.3.20).

C.3.3 HvLif4

In hvLif4, we have that g̃µν = δµν and this leads to drastic simplifications in (4.1.18) and

(4.1.19).

As for FA in (4.1.18), we observe that the following combination of terms vanishes identi-

cally (for any dθ)

∇̃2ϕ+ 2 g̃µν ∂νφ∂µϕ−
dθ(dθ − 1)

2
e2(ϕ−φ) =

1

2z2

(
dθ + dθ(dθ − 2)− dθ(dθ − 1)

)
= 0 . (C.3.21)

The remaining terms can be written through ñz as follows

ñµñν∇̃µ∇̃νϕ = dθ
(ñz)2

2z2
(TrK̃)2 = d2

θ

(ñz)2

z2
ñµñν∂νφ∂µϕ = dθ(dθ − 2)

(ñz)2

4z2
.

(C.3.22)

The above observations allow to write FA in the form (4.1.22) or (4.1.23).

Next, we show that FA in (4.1.19) simplifies to (4.1.26) for the hvLif4 geometry. First,

we find it useful to decompose f in (4.1.20) as the following sum

f = f0 + fn (C.3.23)

where f0 includes the terms that do not contain the vector ñµ, namely

f0 = −∇̃2ϕ− 2 g̃µν∂µψ ∂νϕ (C.3.24)

while the terms containing ñµ are collected into fn. Then, the combination

FA − c2

∫

γ̂A

e2ψ(TrK̃)2f0 dÃ (C.3.25)

in FA can be shown to vanish identically when g̃µν = δµν with the help of (4.1.22) and

(C.3.22). In fact, we find

FA − c2

∫

γ̂A

e2ψf0(TrK̃)2dÃ =
1

dθ − 1

∫

γ̂A

(ñz)2

zdθ
dÃ+ c2

d3
θ(dθ − 3)

2

∫

γ̂A

(ñz)2

zdθ
dÃ = 0

(C.3.26)
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where in the last equality we used the value of c2 in (C.3.19). Thus the functional (4.1.19)

for FA collapses to

FA = − c2

∫

γ̂A

e2ψ
((

TrK̃
)2
fn − 2(TrK̃)h̃µν∂µ(TrK̃)∂νϕ

)
dÃ (C.3.27)

with

fn = ñµñν ∇̃µ∇̃νϕ− 2(ñλ∂λϕ)2 + 2ñµñν∂µψ∂νϕ (C.3.28)

and reduces to (4.1.26) when g̃µν is the flat metric. We can also explicitly verify that the

result (4.1.26) is finite in the limit ε→ 0. If we use the near boundary expansion (C.3.17b) of

the normal vector, we can easily check that the integrand in first term of (4.1.26) is of order

z4−dθ and it is convergent for dθ < 5. Then, assuming the parametrization (C.2.1), for the

integrand in the second term of (4.1.26) one gets

ñz

zdθ−2
h̃zµ ∂µ

(
ñz

z

)
=

ñz

zdθ−2
h̃zz ∂z

(
ñz

z

)
+

ñz

zdθ−2
h̃zs ∂s

(
ñz

z

)
. (C.3.29)

From (C.2.3) we know that near z=0 the inverse metric components are h̃zz=1 +O(z2) and

h̃zs = O(z3), so that we have the following behaviours

ñz

zdθ−2
h̃zz ∂z

(
ñz

z

)
∝ 1

zdθ−3
∂z

(
U2z +O(z3)

z

)
∝ z4−dθ ñz

zdθ−2
h̃zs ∂s

(
ñz

z

)
∝ z6−dθ

(C.3.30)

and both scalings provide convergent integrals for dθ < 5.

Consistency check of FA for the strip

In this section we show that the functional FA in (4.1.26) gives the expected result when γ̂A

is the extremal surface anchored to the infinite strip discussed in 4.4.1, when the gravitational

background is (4.1.21) with 3 < dθ < 5.

By employing the parametrization of Section 4.4.1, we find that (4.1.26) becomes

FA =
4

(dθ − 1)(dθ − 3)

∫ L/2

0

∫ `/2

0

[
2

zdθ−2

(
1− 1

1 + (z′)2

)
1

z′
∂x

(
1

z
√

1 + (z′)2

)
(C.3.31)

− 3

zdθ
1

(1 + (z′)2)
3
2

]
dxdy

where h̃zµ∂µ = h̃zz∂z + h̃zy∂y = (1 − ñzñz)(1/z′)∂x has been used. The conserved quantity

(1.5.15) allows to rewrite the (C.3.31) as

FA = − 4

(dθ − 1)(dθ − 3)

∫ L/2

0

∫ `/2

0

[
3

zdθ∗ (1 + (z′)2)
− 2(dθ − 1) (z′)2

zdθ∗ (1 + (z′)2)

]
dxdy (C.3.32)

which can be further simplified by eliminating z′ with the help of (1.5.15):

FA = − 2L (2dθ + 1)

(dθ − 1)(dθ − 3) z3dθ∗

∫ `/2

0
z2dθdx+

2L`

(dθ − 3) zdθ∗
. (C.3.33)
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Now, we perform the integral in (C.3.33)

∫ `/2

0
z2dθdx =

∫ z∗

0

z2dθdz√
(z∗/z)2dθ − 1

=

√
π Γ
(

3
2 + 1

2dθ

)

2dθ Γ
(

2 + 1
2dθ

) z2dθ+1
∗ =

`(dθ + 1)

2(2dθ + 1)
z2dθ∗ (C.3.34)

where in the first step we changed integration variable first and then we used (1.5.15) again,

while in the last step we employed the expression (1.5.16) for `/2. Finally, by plugging (C.3.34)

in (C.3.33) we obtain the r.h.s. of (4.4.2).

We stress that the same result can be achieved by starting from the more general functional

(4.1.19). Since the functional FA in (4.1.19) is the same as the one in (4.1.18), it is sufficient to

show that the remaining integral in (4.1.19) vanishes. This can be shown through a calculation

similar to the one performed in this section.

C.4 On the finite term as an integral along the entangling

curve

This appendix is devoted to an alternative and more field theoretical derivation of the expres-

sion (4.2.7) for the finite term written as an integral along the entangling curve. The method

employed below is also discussed in [278].

Let us denote with γ̂ an extremal m dimensional hypersurface embedded in Gd+1 with

tangent vectors tµa , where a = 1 · · ·m. The area of γ̂ is the integral

I =

∫

γ̂
L[xµ(σ), ∂bx

µ(σ)]dmσ L[xµ(σ), ∂bx
µ(σ)] ≡

√
h (C.4.1)

where σ is a set of local coordinates on γ̂ and h = det(tµatνbgµν). Next, we assume that the

metric gµν is endowed with a conformal Killing vector V µ, namely, a vector field obeying the

equation

∇µVν +∇νVµ =
2

d
gµν∇ρV ρ . (C.4.2)

This vector generates the infinitesimal coordinate transformation xµ → xµ+εV µ, under which

the volume form on γ̂ transforms as

δ
√
h =

1

2

√
hhab δhab =

1

2

√
hhab tµat

ν
b δgµν . (C.4.3)

The variation of the metric gµν is given by δgµν = ε gµν∇ρV ρ, hence the variation (C.4.3) can

be rewritten as

δ
√
h =

ε

2

√
hhabhab∇ρV ρ = ε

m (2− dθ)
2

√
h . (C.4.4)

Let us now suppose that the divergence of the vector V µ is a constant c. The transformation

law of the area of γ̂ becomes

δI = ε
m c

2
I . (C.4.5)
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The left-hand side of (C.4.5) can be cast into a total divergence as follows

δI =

∫

γ̂

[
δL
δxµ

δxµ +
δL

δ∂axµ
δ∂ax

µ

]
dmσ

=

∫

γ̂

[(
δL
δxµ
− ∂a

δL
δ∂axµ

)
δxµ + ∂a

(
δL

δ∂axµ
δxµ
)]
dmσ (C.4.6)

=

∫

γ̂
∂a

(
δL

δ∂axµ
δxµ
)
dmσ = ε

∫

γ̂
∂a

(
δL

δ∂axµ
V µ

)
dmσ

where the equations of motions and δxµ = ε V µ have been used. By employing the Stokes’

theorem, we can write (C.4.6) as the following integral over ∂γ̂

δI = ε

∫

∂γ̂
ba

(
δL

δ∂axµ
V µ

)
dm−1s (C.4.7)

where ba is the unit normal vector to ∂γ̂. Finally, by plugging (C.4.7) into (C.4.5), we get

I =
2

mc

∫

∂γ̂
ba

(
δL

δ∂axµ
V µ

)
dm−1s . (C.4.8)

This result tells us that the area of an extremal hypersurface can be expressed as a bound-

ary integral whenever the ambient metric exhibits a conformal Killing vector with constant

divergence.

Let us now specialize (C.4.8) to our case of interest, namely to a two dimensional extremal

surface γ̂A anchored to ∂A embedded into C3 with metric gµν given by (4.1.21) (thus, m = 2

and d = 3). This metric has a conformal Killing vector V µ = xµ with constant divergence

that generates scale transformations xµ → λxµ. Under dilation the metric acquires an overall

factor gµν → λ2−dθgµν , i.e. c = 2 − dθ. Thus, in the case of hvLif4 geometry we can rewrite

(C.4.8) as

I =
1

2− dθ

∫

∂γ̂A

ba

(
δL

δ∂axµ
xµ
)
ds . (C.4.9)

The expression (C.4.9) can be further simplified by employing the parametrization (C.2.1)

for the minimal surface γ̂A; hence σ = {z, s}. The derivative of L =
√
h = e2ϕ

√
h̃ yields

δL
δ∂axµ

=
e2ϕ

2

√
h̃ h̃bc

δh̃bc
δ∂axµ

= e2ϕ
√
h̃ h̃ab∂bx

ν g̃µν . (C.4.10)

In order to compute the vector ba we remind that the integral (C.4.9) is defined on1 R2, so it

is simply the normal vector to the boundary of the coordinate domain of the surface γ̂A. The

integral is divergent, and therefore, we need to introduce a cutoff. In particular, this means

the line integral (C.4.9) has to be performed over the curve ∂γ̂A,ε = {z = ε} ∩ γ̂A. Finally, by

plugging (C.4.10) into (C.4.9), using the explicit expression of h̃ab in (C.2.3) and g̃µν = δµν ,

for the area of extremal surfaces in hvLif4 in terms of the function u(z, s) we obtain

I =
1

dθ − 2

∫

∂γ̂A,ε

(w2 + u2
s)(z + uz xA · Ñ + uzu)− uzus(w T̃ · ∂γ + us xA · Ñ + us u)

zdθ
√
u2
s + w2(1 + u2

z) .
ds

(C.4.11)

1Notice that. the index a in ba is not associated with the metric on γ̂A but with the metric of R2.
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Although this form is not very illuminating, it is interesting to observe that, once we expand

the integrand near to z = 0, only the term uz xA · Ñ gives a finite contribution to I. By

writing the area of the regularized extremal surface γA,ε in the following form

A[γ̂A,ε] = PA(ε)− FA +O(ε) (C.4.12)

where PA(ε) is a shorthand for all the divergent terms in (C.4.11), and employing the expan-

sion of u(z, s) given in (C.2.5), we find (4.2.7).

C.5 Time-dependent backgrounds

In this appendix we derive the expressions (4.3.1) and (4.3.2), which generalize the results

found in the Appendix C.3.1 to time dependent backgrounds.

Let us consider a two-dimensional spacelike surface γA embedded in a four-dimensional

Lorentzian spacetime G4, endowed with the metric gMN . Given the two unit vectors n(i) (with

i = 1, 2) normal to γA and orthogonal between them, the induced metric (the projector) on

the surface is

hMN = gMN −
2∑

i=1

εi n
(i)
Mn

(i)
N (C.5.1)

where εi = gMNn
(i)
Mn

(i)
N is either +1 or −1. The surface γA is now a codimension two surface

in the full spacetime G4 and we can compute its two extrinsic curvatures as

K
(i)
MN = h A

M h B
N ∇An(i)

B . (C.5.2)

We introduce an auxiliary conformally equivalent four dimensional space G̃4 given by G4 with

the same boundary at z = 0, but equipped with the metric g̃MN , which is asymptotically flat

as z → 0 and Weyl related to gMN , i.e.

gMN = e2ϕ g̃MN (C.5.3)

where ϕ is a function of the coordinates. Within this framework, in [78] the following identity

was shown to hold for any surface (not necessarily anchored to a curve on the boundary)

0 =

[
D̃2ϕ+

2∑

i=1

εiÑ
(i)M ñ(i)N

(
D̃MD̃Nϕ− D̃MϕD̃Nϕ

)
− D̃2ϕ− 1

4

2∑

i=1

εi
(
TrK̃(i)

)2
]
dÃ

+
1

4

2∑

i=1

εi
(
TrK(i)

)2
dA (C.5.4)

where the tilded quantities are evaluated considering G̃4 as embedding space, while for the

untilded ones the embedding space is G4. In particular TrK(i) and TrK̃(i) are the mean

curvatures of the surface computed in the two embedding spaces, while dA and dÃ are the

two area elements. The vectors ñ(i)M are versors perpendicular to the surface viewed as a

submanifold of G̃4. The covariant derivative ∇̃ is the one defined in G̃4 while D̃ is the one

induced on the surface by the embedding space G̃4.

191



Appendix C. Appendix of Chapter 4

At this point, let us consider the surfaces γA anchored to some smooth entangling curve

∂A and orthogonal to the boundary. Similarly to the static case considered in Section C.3.1,

we multiply (C.5.4) by c1e
2φ, integrate over γA,ε and add the regularized area function to

both sides of (C.5.4). Thus, we obtain

A[γA,ε] = c1

∫

γA,ε

e2φ

[
D̃2ϕ+

2∑

i=1

εiñ
(i)M ñ(i)N

(
D̃MD̃Nϕ− D̃MϕD̃Nϕ

)
− D̃2ϕ (C.5.5)

− 1

4

2∑

i=1

εi
(
TrK̃(i)

)2
]
dÃ+

∫

γA,ε

e2ϕdÃ+
c1

4

2∑

i=1

εi

∫

γA,ε

e2φ
(
TrK(i)

)2
dA .

When we evaluate the first term in the r.h.s. of (C.5.5) over γA,ε with the same procedure of

the static case, it provides the divergent contribution to A[γA,ε]. Thus, the expansion (4.1.12)

is obtained, with FA given by (4.3.1).

For non-static geometries, the holographic entanglement entropy of a region A belonging

to the asymptotic boundary of G4 can be computed by employing the prescription [34]. One

has to compute the area of the minimal surface γ̂A anchored to the boundary of the region

A. Since γ̂A has codimension two, we have the following two extremality conditions

TrK(i) = 0 ⇐⇒
(
TrK̃(i)

)2
= 4
(
ñ(i)M∂Mϕ

)2
. (C.5.6)

By specialising (4.3.1) to an extremal surface γ̂A, we find the expression (4.3.2) for the finite

term in the expansion of the area.

For scale invariant theories, where dθ = 2, the first term in (4.3.2) vanishes because φ can

be set to 0; hence the expression for FA reduces to [78]

FA =

∫

γ̂A

[
D̃2ϕ−

2∑

i=1

εiñ
(i)M ñ(i)ND̃MD̃Nϕ− e2ϕ +

1

2

2∑

i=1

εi
(
TrK̃(i)

)2
]
dÃ . (C.5.7)

We shall now briefly discuss how to recover the result (4.1.18) for the static cases from

(4.3.2). The most general static metric can be written as

ds2 = −N2dt2 + gµνdx
µdxν (C.5.8)

where N and gµν are functions of the spatial coordinates xµ = (z,x) only. In this background

metric, the two unit normal vectors can be written as n
(1)
M = (N, 0,0) and n

(2)
M = (0, nµ).

With the choice of coordinates (C.5.8), the only non-vanishing Christoffel symbols are

Γtµt =
1

2N2
∂µN Γµtt =

1

2
gµν∂νN Γµνρ = (3)Γµ

νρ (C.5.9)

where (3)Γµνρ denotes the Christoffel computed with the three dimensional metric gµν of the

constant time hypersurface. Combining (C.5.9) with the observation that the time components

htM of the projector (C.5.1) vanish, we easily conclude that the extrinsic curvature in the

timelike direction K
(1)
MN is zero. Thus, the first equation of motion in (C.5.6) is identically

satisfied. Instead the second equation of motion in (C.5.6) reduces to (4.1.8) because only the

spatial components of the extrinsic curvature K
(2)
MN are non-vanishing; hence TrK(2) = TrK.

Similar conclusions can be reached for the tilded quantities: K̃
(1)
MN = 0, K̃

(2)
µν = K̃µν and

K̃
(2)
tt = 0, being ϕ independent of t. Finally, due to (C.5.9), ñ(2)M ñ(2)ND̃MD̃Nϕ = ∇̃M∇̃Nϕ,

while the Laplacian D̃2ϕ and the term ñ(1)M ñ(1)ND̃MD̃N sum to ∇̃2ϕ.
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C.6 On the analytic solution for a disk when dθ = 2 and

ζ → ∞

In this appendix, we analytically study minimal surfaces γ̂A anchored to circular regions A

in spacetimes equipped with the metric (4.1.29) in the limit ζ → +∞ and for dθ = 2. The

background metric becomes the AdS4 metric for z 6 zh with an event horizon located at

z = zh. The only effect of the horizon is to forbid the minimal surface enters the region

z > zh. As discussed below, for regions large enough, the minimal surfaces reach and stick to

the horizon sharing a portion of the surface with it.

For small regions A, the minimal surfaces do not reach the horizon, and their profile is the

same as in AdS4 case, i.e., it is given by the hemisphere: z(ρ) =
√
R2 − ρ2. This occurs as long

as the surface does not intersect the horizon, namely for R < zh. For R = zh the hemisphere

is tangent to the event horizon at the point (z, ρ) = (zh, 0). As the radius R increases further,

a certain portion of the dome would cross the horizon; hence, in this regime, the hemispheres

cannot be the extremal surfaces. The actual minimal surfaces consist of two parts: a flat disk

that lies on the horizon and a non-trivial surface connecting the conformal boundary to the

horizon. The aim of the following discussion is to find the latter one analytically.

Let us consider the most general solution of the differential equation (4.4.11) for dθ = 2,

which has already been found in Sec. A.3.1 in the context of the minimal surfaces anchored

to the disk disjoint from the circular boundary. The profile can be found from the equation

(A.3.6) also in this case. Now, by imposing the boundary condition ρ(z = 0) = R we find the

equation

ρ = Re−q±,k(ẑ) ẑ = z/ρ (C.6.1)

where again the function q±,k(ẑ) is defined in (2.3.5) and (4.4.22), and k is an integration

constant. Below we will fix both k and the plus/minus ambiguity by imposing the boundary

condition on the horizon z = zh.

Let us denote by P∗ = (ρ∗, zh) the intersection point between (C.6.1) and the horizon. For

ρ < ρ∗, the minimal surface is a disk lying exactly on the horizon. The position of P∗ and the

constant k are then determined by requiring that the solution is continuous and differentiable

at P∗. Since the tangent vector to the surface for ρ > ρ∗ is tµρ = (tρρ, tzρ) = (ρ′, ρ + ẑρ′),

the condition of being tangent to the horizon reads ρ + ẑρ′ = 0. Being ρ′ = −ρ q′±,k, we

obtain ẑ∗ q′(ẑ∗)±,k = 1, that implies ±ẑ3
∗ =

√
k(1 + ẑ2∗)− ẑ4∗ ; and this is meaningful only

if the plus sign is chosen in (C.6.1). This choice, in turn, gives ẑ∗ = k1/4. Finally, the

value of k is evaluated by imposing that z = zh when ẑ = ẑ∗. This leads to (4.4.21), which

implicitly determines k in terms of R/zh. The possibility of inverting (4.4.21) is controlled by

its derivative with respect to k. We find

d

dk

(
R

zh

)
= −R

zh

∫ k1/4

0

λ2

2 [k(1 + λ2)− λ4]3/2
6 0 . (C.6.2)

Since R/zh is a monotonic function of k, the condition (4.4.21) has at most one solution

for any value of R/zh. On the other hand, in Section C.6.2 we show that R/zh → +∞ for

k → 0, while R/zh → 1 for k → +∞. Thus (4.4.21) admits exactly one solution in the range
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R/zh ∈ (1,+∞) which leads to the profile (4.4.20). Instead, let us remind that in the range

R/zh ∈ (0, 1] the solution is the hemisphere z(ρ) =
√
R2 − ρ2.

C.6.1 Area

As for the area of the minimal surface γ̂A, when R < zh it is the area of the hemisphere

z(ρ) =
√
R2 − ρ2 regularised by the condition z > ε, namely

A =
2πR

ε
− 2π R < zh . (C.6.3)

For R > zh, the area is A = A1 +A2, where A1 corresponds to a flat disk located at zh and

with radius ρ∗ = zh/ẑ∗ = k1/4/zh; hence it reads

A1 =
πρ2
∗

z2
h

=
π√
k
. (C.6.4)

The contribution A2 is the area of the profile (C.6.1) between ẑ = 0 and ẑ∗ = k1/4. In terms

of the variables introduced in (A.3.3), the area functional (4.4.17) in the limit ζ → +∞ and

for dθ = 2 reduces to

A2 = 2π

∫ ẑ∗

ε/R

dλ

λ2
√

1 + λ2 − λ4/k
(C.6.5)

where we introduced the UV cutoff ε. The primitive Fk(λ) of the integrand in (C.6.5) can

be written explicitly in terms of elliptic integrals and it has been reported in (2.3.14) and

(4.4.25). In order to single out the UV divergence, one employs its expansion as λ→ 0+

Fk(λ) =
1

λ
+
λ

2
+O(λ3) (C.6.6)

which gives

A2 =
2πR

ε
− 2πFk(k1/4) +O(ε/R) (C.6.7)

where also ẑ∗ = k1/4 has been used. By adding (C.6.7) to (C.6.4), we find that the area of γ̂A

for R > zh reads

A =
2πR

ε
− 2π

(
Fk(k1/4)− 1

2
√
k

)
R > zh (C.6.8)

which provides (4.4.24).

C.6.2 Limiting regimes

Let us consider the limit of (4.4.21) and (C.6.8) for R/zh → +∞, which corresponds to k → 0.

The expansion of (C.6.8) is straightforward, and we find

A =
2πR

ε
− 2π

[
− 1

2
√
k

+

√
2π3/2

Γ(1/4)2 4
√
k

+
1

2

]
+O

(
k1/4

)
. (C.6.9)

In order to expand (4.4.21) for small k, we find it more convenient to use the integral repre-

sentation (2.3.5). First one performs the change of variable λ → k1/4λ, obtaining a definite
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integral between the two extrema in λ = 0 and λ = 1. Then, we expand the integrand as

k → 0, and we integrate term by term, finding

q+,k(k
1/4) =

√
2π3/2

Γ(1/4)2
k1/4 +

√
k

2
+ . . . (C.6.10)

that leads to

R

zh
=

1

k1/4
+

√
2π3/2

Γ(1/4)2
+

(
π3

Γ(1/4)4
+

1

2

)
k1/4 + . . . . (C.6.11)

Now, by plugging (C.6.11) into (C.6.9) we get

A =
2πR

ε
+

(
πR2

z2
h

+
4π
√

2π3/2R

Γ(1/4)2 zh

)
+O(1) (C.6.12)

where the leading term in R agrees with (4.1.33).

In the regime given by k → +∞, from the definition of ẑm we have ẑm → +∞, and

therefore the surface reaches ρ = 0. Moreover from (2.3.5) we obtain

q±,k(ẑ) =

∫ ẑ

0

λ

1 + λ2
dλ =

1

2
log(1 + ẑ2) (C.6.13)

that gives the profile of the hemisphere z(ρ) =
√
R2 − ρ2. By means of (C.6.13) we find that

q+,k(k
1/4) = log k1/4 + . . . as k →∞, which leads to R/zh → 1 in the same limit. Notice that

R = zh is the value of the radius corresponding to the transition between the two minimal

surfaces. Since we showed that the solution reduces to the hemisphere with radius R = zh in

this limit, we conclude that (C.6.8) reduces to A → 2πR/ε − 2π as k → ∞. In particular,

this means that the function FA(R) given in (4.4.24) is continuous in R.
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[92] M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory,

JHEP 04 (2016) 091 [1601.02883].

[93] P. Liendo, L. Rastelli and B. C. van Rees, The Bootstrap Program for Boundary

CFTd, JHEP 07 (2013) 113 [1210.4258].

[94] A. Gadde, Conformal constraints on defects, 1602.06354.

[95] T. Quella, I. Runkel and G. M. T. Watts, Reflection and transmission for conformal

defects, JHEP 04 (2007) 095 [hep-th/0611296].

201

https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.1016/0550-3213(89)90521-X
https://doi.org/10.1016/0550-3213(89)90521-X
https://arxiv.org/abs/hep-th/0411189
https://doi.org/10.1088/0264-9381/8/8/010
https://doi.org/10.1016/0550-3213(93)90229-I
https://arxiv.org/abs/cond-mat/9206009
https://doi.org/10.1016/0550-3213(93)90005-A
https://arxiv.org/abs/hep-th/9302068
https://doi.org/10.1016/0550-3213(95)00476-9
https://arxiv.org/abs/cond-mat/9505127
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1103/PhysRevLett.93.030402
https://arxiv.org/abs/hep-th/0312197
https://doi.org/10.1103/PhysRevLett.116.091601
https://arxiv.org/abs/1509.02160
https://doi.org/10.1103/PhysRevLett.107.101602
https://arxiv.org/abs/1105.5165
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://doi.org/10.1007/JHEP06(2012)066
https://arxiv.org/abs/1205.1573
https://doi.org/10.1007/JHEP04(2016)091
https://arxiv.org/abs/1601.02883
https://doi.org/10.1007/JHEP07(2013)113
https://arxiv.org/abs/1210.4258
https://arxiv.org/abs/1602.06354
https://doi.org/10.1088/1126-6708/2007/04/095
https://arxiv.org/abs/hep-th/0611296


Bibliography

[96] M. Fukuda, N. Kobayashi and T. Nishioka, Operator product expansion for conformal

defects, JHEP 01 (2018) 013 [1710.11165].

[97] J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, Progress of Theoretical

Physics 32 (1964) 37.

[98] I. Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B26

(1995) 1869 [cond-mat/9512099].

[99] B. Bellazzini, M. Burrello, M. Mintchev and P. Sorba, Quantum Field Theory on Star

Graphs, Proc. Symp. Pure Math. 77 (2008) 639 [0801.2852].

[100] B. Bellazzini and M. Mintchev, Quantum Fields on Star Graphs, J. Phys. A39 (2006)

11101 [hep-th/0605036].

[101] G. Y. Cho, K. Shiozaki, S. Ryu and A. W. W. Ludwig, Relationship between symmetry

protected topological phases and boundary conformal field theories via the entanglement

spectrum, Journal of Physics A Mathematical General 50 (2017) 304002 [1606.06402].

[102] J. R. Fliss, X. Wen, O. Parrikar, C.-T. Hsieh, B. Han, T. L. Hughes et al., Interface

Contributions to Topological Entanglement in Abelian Chern-Simons Theory, JHEP

09 (2017) 056 [1705.09611].

[103] B. Han, A. Tiwari, C.-T. Hsieh and S. Ryu, Boundary conformal field theory and

symmetry protected topological phases in 2 + 1 dimensions, Phys. Rev. B96 (2017)

125105 [1704.01193].

[104] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008

[hep-th/0011156].

[105] O. DeWolfe, D. Z. Freedman and H. Ooguri, Holography and defect conformal field

theories, Phys. Rev. D66 (2002) 025009 [hep-th/0111135].

[106] J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories

with interacting boundaries or defects, Phys. Rev. D66 (2002) 025020

[hep-th/0203020].

[107] J. Erdmenger, C. Hoyos, A. O’Bannon and J. Wu, A Holographic Model of the Kondo

Effect, JHEP 12 (2013) 086 [1310.3271].

[108] J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase, On Holographic Defect

Entropy, JHEP 05 (2014) 084 [1403.6475].

[109] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella and J. M. S. Wu, Entanglement

Entropy in a Holographic Kondo Model, Fortsch. Phys. 64 (2016) 109 [1511.03666].

[110] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, A. O’Bannon and J. Wu,

Holographic impurities and Kondo effect, Fortsch. Phys. 64 (2016) 322 [1511.09362].

202

https://doi.org/10.1007/JHEP01(2018)013
https://arxiv.org/abs/1710.11165
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://arxiv.org/abs/cond-mat/9512099
https://arxiv.org/abs/0801.2852
https://doi.org/10.1088/0305-4470/39/35/011
https://doi.org/10.1088/0305-4470/39/35/011
https://arxiv.org/abs/hep-th/0605036
https://doi.org/10.1088/1751-8121/aa7782
https://arxiv.org/abs/1606.06402
https://doi.org/10.1007/JHEP09(2017)056
https://doi.org/10.1007/JHEP09(2017)056
https://arxiv.org/abs/1705.09611
https://doi.org/10.1103/PhysRevB.96.125105
https://doi.org/10.1103/PhysRevB.96.125105
https://arxiv.org/abs/1704.01193
https://doi.org/10.1088/1126-6708/2001/05/008
https://arxiv.org/abs/hep-th/0011156
https://doi.org/10.1103/PhysRevD.66.025009
https://arxiv.org/abs/hep-th/0111135
https://doi.org/10.1103/PhysRevD.66.025020
https://arxiv.org/abs/hep-th/0203020
https://doi.org/10.1007/JHEP12(2013)086
https://arxiv.org/abs/1310.3271
https://doi.org/10.1007/JHEP05(2014)084
https://arxiv.org/abs/1403.6475
https://doi.org/10.1002/prop.201500099
https://arxiv.org/abs/1511.03666
https://doi.org/10.1002/prop.201500079
https://arxiv.org/abs/1511.09362


Bibliography

[111] J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu,

Two-point Functions in a Holographic Kondo Model, JHEP 03 (2017) 039

[1612.02005].

[112] J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst and J. M. S. Wu,

Holographic Kondo and Fano Resonances, Phys. Rev. D96 (2017) 021901

[1611.09368].

[113] R. M. Hornreich, M. Luban and S. Shtrikman, Critical behavior at the onset of
→
k -space instability on the λ line, Phys. Rev. Lett. 35 (1975) 1678.

[114] G. Grinstein, Anisotropic sine-gordon model and infinite-order phase transitions in

three dimensions, Phys. Rev. B 23 (1981) 4615.

[115] E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan and S. L. Sondhi, Bipartite

rokhsar–kivelson points and cantor deconfinement, Phys. Rev. B 69 (2004) 224415

[cond-mat/0311353].

[116] A. Vishwanath, L. Balents and T. Senthil, Quantum criticality and deconfinement in

phase transitions between valence bond solids, Phys. Rev. B 69 (2004) 224416

[cond-mat/0311085].

[117] E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum

critical points, Annals Phys. 310 (2004) 493 [cond-mat/0311466].

[118] D. S. Fisher, Scaling and critical slowing down in random-field Ising systems, Phys.

Rev. Lett. 56 (1986) 416.

[119] S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys.

Rev. D78 (2008) 106005 [0808.1725].

[120] K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys.

Rev. Lett. 101 (2008) 061601 [0804.4053].

[121] M. Taylor, Non-relativistic holography, 0812.0530.

[122] C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, Effective

Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010)

151 [1005.4690].

[123] B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite

Density, JHEP 12 (2011) 036 [1107.2116].

[124] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of

gauge-gravity duality, Phys. Rev. B85 (2012) 035121 [1112.0573].

[125] N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and

Entanglement Entropy, JHEP 01 (2012) 125 [1111.1023].

203

https://doi.org/10.1007/JHEP03(2017)039
https://arxiv.org/abs/1612.02005
https://doi.org/10.1103/PhysRevD.96.021901
https://arxiv.org/abs/1611.09368
https://doi.org/10.1103/PhysRevLett.35.1678
https://doi.org/10.1103/PhysRevB.23.4615
https://doi.org/10.1103/PhysRevB.69.224415
https://arxiv.org/abs/cond-mat/0311353
https://doi.org/10.1103/PhysRevB.69.224416
https://arxiv.org/abs/cond-mat/0311085
https://doi.org/10.1016/j.aop.2004.01.004
https://arxiv.org/abs/cond-mat/0311466
https://doi.org/10.1103/PhysRevLett.56.416
https://doi.org/10.1103/PhysRevLett.56.416
https://doi.org/10.1103/PhysRevD.78.106005
https://doi.org/10.1103/PhysRevD.78.106005
https://arxiv.org/abs/0808.1725
https://doi.org/10.1103/PhysRevLett.101.061601
https://doi.org/10.1103/PhysRevLett.101.061601
https://arxiv.org/abs/0804.4053
https://arxiv.org/abs/0812.0530
https://doi.org/10.1007/JHEP11(2010)151
https://doi.org/10.1007/JHEP11(2010)151
https://arxiv.org/abs/1005.4690
https://doi.org/10.1007/JHEP12(2011)036
https://arxiv.org/abs/1107.2116
https://doi.org/10.1103/PhysRevB.85.035121
https://arxiv.org/abs/1112.0573
https://doi.org/10.1007/JHEP01(2012)125
https://arxiv.org/abs/1111.1023


Bibliography

[126] X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for

theories with hyperscaling violation, JHEP 06 (2012) 041 [1201.1905].

[127] K. Goldstein, S. Kachru, S. Prakash and S. P. Trivedi, Holography of Charged Dilaton

Black Holes, JHEP 08 (2010) 078 [0911.3586].

[128] S. S. Gubser and F. D. Rocha, Peculiar properties of a charged dilatonic black hole in

AdS5, Phys. Rev. D81 (2010) 046001 [0911.2898].

[129] N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, Holographic Fermi and Non-Fermi

Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [1105.1162].

[130] K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev.

D85 (2012) 106006 [1202.5935].

[131] M. Ammon, M. Kaminski and A. Karch, Hyperscaling-Violation on Probe D-Branes,

JHEP 11 (2012) 028 [1207.1726].

[132] J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries

with hyperscaling violation, JHEP 02 (2013) 147 [1208.1752].

[133] M. Alishahiha, E. O Colgain and H. Yavartanoo, Charged Black Branes with

Hyperscaling Violating Factor, JHEP 11 (2012) 137 [1209.3946].

[134] P. Bueno, W. Chemissany, P. Meessen, T. Ortin and C. S. Shahbazi, Lifshitz-like

Solutions with Hyperscaling Violation in Ungauged Supergravity, JHEP 01 (2013) 189

[1209.4047].

[135] J. Gath, J. Hartong, R. Monteiro and N. A. Obers, Holographic Models for Theories

with Hyperscaling Violation, JHEP 04 (2013) 159 [1212.3263].

[136] B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with

(un)broken symmetry, JHEP 04 (2013) 053 [1212.2625].

[137] M. H. Christensen, J. Hartong, N. A. Obers and B. Rollier, Boundary Stress-Energy

Tensor and Newton-Cartan Geometry in Lifshitz Holography, JHEP 01 (2014) 057

[1311.6471].

[138] M. H. Christensen, J. Hartong, N. A. Obers and B. Rollier, Torsional Newton-Cartan

Geometry and Lifshitz Holography, Phys. Rev. D89 (2014) 061901 [1311.4794].

[139] J. Hartong, N. A. Obers and M. Sanchioni, Lifshitz Hydrodynamics from Lifshitz Black

Branes with Linear Momentum, JHEP 10 (2016) 120 [1606.09543].

[140] M. M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96

(2006) 010404 [quant-ph/0503219].

[141] D. Gioev and I. Klich, Entanglement Entropy of Fermions in Any Dimension and the

Widom Conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].

204

https://doi.org/10.1007/JHEP06(2012)041
https://arxiv.org/abs/1201.1905
https://doi.org/10.1007/JHEP08(2010)078
https://arxiv.org/abs/0911.3586
https://doi.org/10.1103/PhysRevD.81.046001
https://arxiv.org/abs/0911.2898
https://doi.org/10.1007/JHEP01(2012)094
https://arxiv.org/abs/1105.1162
https://doi.org/10.1103/PhysRevD.85.106006
https://doi.org/10.1103/PhysRevD.85.106006
https://arxiv.org/abs/1202.5935
https://doi.org/10.1007/JHEP11(2012)028
https://arxiv.org/abs/1207.1726
https://doi.org/10.1007/JHEP02(2013)147
https://arxiv.org/abs/1208.1752
https://doi.org/10.1007/JHEP11(2012)137
https://arxiv.org/abs/1209.3946
https://doi.org/10.1007/JHEP01(2013)189
https://arxiv.org/abs/1209.4047
https://doi.org/10.1007/JHEP04(2013)159
https://arxiv.org/abs/1212.3263
https://doi.org/10.1007/JHEP04(2013)053
https://arxiv.org/abs/1212.2625
https://doi.org/10.1007/JHEP01(2014)057
https://arxiv.org/abs/1311.6471
https://doi.org/10.1103/PhysRevD.89.061901
https://arxiv.org/abs/1311.4794
https://doi.org/10.1007/JHEP10(2016)120
https://arxiv.org/abs/1606.09543
https://doi.org/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/PhysRevLett.96.010404
https://arxiv.org/abs/quant-ph/0503219
https://doi.org/10.1103/PhysRevLett.96.100503
https://arxiv.org/abs/quant-ph/0504151


Bibliography

[142] E. Tonni, Holographic entanglement entropy: near horizon geometry and disconnected

regions, JHEP 05 (2011) 004 [1011.0166].

[143] E. Shaghoulian, Holographic Entanglement Entropy and Fermi Surfaces, JHEP 05

(2012) 065 [1112.2702].

[144] K. Narayan, T. Takayanagi and S. P. Trivedi, AdS plane waves and entanglement

entropy, JHEP 04 (2013) 051 [1212.4328].

[145] M. Alishahiha, A. F. Astaneh, P. Fonda and F. Omidi, Entanglement Entropy for

Singular Surfaces in Hyperscaling violating Theories, JHEP 09 (2015) 172

[1507.05897].

[146] R. Mishra and H. Singh, Entanglement entropy at higher orders for the states of a = 3

Lifshitz theory, Nucl. Phys. B938 (2019) 307 [1804.01361].

[147] V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement

following a non-relativistic holographic quench, Phys. Rev. D85 (2012) 026005

[1110.5035].

[148] H. Liu and S. J. Suh, Entanglement Tsunami: Universal Scaling in Holographic

Thermalization, Phys. Rev. Lett. 112 (2014) 011601 [1305.7244].

[149] H. Liu and S. J. Suh, Entanglement growth during thermalization in holographic

systems, Phys. Rev. D89 (2014) 066012 [1311.1200].

[150] M. Alishahiha, A. Faraji Astaneh and M. R. Mohammadi Mozaffar, Thermalization in

backgrounds with hyperscaling violating factor, Phys. Rev. D90 (2014) 046004

[1401.2807].

[151] P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni,

Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08

(2014) 051 [1401.6088].

[152] K. A. Brakke, The surface evolver, Experimental Mathematics 1 (1992) 141

[https://doi.org/10.1080/10586458.1992.10504253].

[153] “Surface Evolver.” http://www.susqu.edu/brakke/evolver/evolver.html.

[154] D. Seminara, J. Sisti and E. Tonni, Corner contributions to holographic entanglement

entropy in AdS4/BCFT3, JHEP 11 (2017) 076 [1708.05080].

[155] D. Seminara, J. Sisti and E. Tonni, Holographic entanglement entropy in AdS4/BCFT3

and the Willmore functional, JHEP 08 (2018) 164 [1805.11551].

[156] G. Cavini, D. Seminara, J. Sisti and E. Tonni, On shape dependence of holographic

entanglement entropy in AdS4/CFT3 with Lifshitz scaling and hyperscaling violation,

1907.10030.

205

https://doi.org/10.1007/JHEP05(2011)004
https://arxiv.org/abs/1011.0166
https://doi.org/10.1007/JHEP05(2012)065
https://doi.org/10.1007/JHEP05(2012)065
https://arxiv.org/abs/1112.2702
https://doi.org/10.1007/JHEP04(2013)051
https://arxiv.org/abs/1212.4328
https://doi.org/10.1007/JHEP09(2015)172
https://arxiv.org/abs/1507.05897
https://doi.org/10.1016/j.nuclphysb.2018.11.012
https://arxiv.org/abs/1804.01361
https://doi.org/10.1103/PhysRevD.85.026005
https://arxiv.org/abs/1110.5035
https://doi.org/10.1103/PhysRevLett.112.011601
https://arxiv.org/abs/1305.7244
https://doi.org/10.1103/PhysRevD.89.066012
https://arxiv.org/abs/1311.1200
https://doi.org/10.1103/PhysRevD.90.046004
https://arxiv.org/abs/1401.2807
https://doi.org/10.1007/JHEP08(2014)051
https://doi.org/10.1007/JHEP08(2014)051
https://arxiv.org/abs/1401.6088
https://doi.org/10.1080/10586458.1992.10504253
https://arxiv.org/abs/https://doi.org/10.1080/10586458.1992.10504253
http://www.susqu.edu/brakke/evolver/evolver.html
https://doi.org/10.1007/JHEP11(2017)076
https://arxiv.org/abs/1708.05080
https://doi.org/10.1007/JHEP08(2018)164
https://arxiv.org/abs/1805.11551
https://arxiv.org/abs/1907.10030


Bibliography

[157] N. Drukker, D. J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys.

Rev. D60 (1999) 125006 [hep-th/9904191].

[158] R.-X. Miao, C.-S. Chu and W.-Z. Guo, New proposal for a holographic boundary

conformal field theory, Phys. Rev. D96 (2017) 046005 [1701.04275].

[159] C.-S. Chu, R.-X. Miao and W.-Z. Guo, On New Proposal for Holographic BCFT,

JHEP 04 (2017) 089 [1701.07202].

[160] A. Faraji Astaneh and S. N. Solodukhin, Holographic calculation of boundary terms in

conformal anomaly, Phys. Lett. B769 (2017) 25 [1702.00566].

[161] A. Faraji Astaneh, C. Berthiere, D. Fursaev and S. N. Solodukhin, Holographic

calculation of entanglement entropy in the presence of boundaries, Phys. Rev. D95

(2017) 106013 [1703.04186].

[162] S. N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8

[1104.3712].

[163] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes

Phys. 931 (2017) pp.1 [1609.01287].

[164] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A65

(2002) 032314 [quant-ph/0102117].

[165] P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory,

Phys. Rev. Lett. 109 (2012) 130502 [1206.3092].

[166] B. M. Terhal, M. Horodecki, D. W. Leung and D. P. DiVincenzo, The entanglement of

purification, Journal of Mathematical Physics 43 (2002) 4286 [quant-ph/0202044].

[167] M. Mezard, G. Parisi and M. Virasoro, Spin Glass Theory and Beyond. WORLD

SCIENTIFIC, 1986, 10.1142/0271,

[https://www.worldscientific.com/doi/pdf/10.1142/0271].

[168] J. L. Cardy, O. A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist

fields in quantum integrable models and entanglement entropy, J. Statist. Phys. 130

(2008) 129 [0706.3384].

[169] M. B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech.

2007 (2007) P08024 [0705.2024].

[170] A. B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D

Field Theory, JETP Lett. 43 (1986) 730.

[171] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [0905.2069].

206

https://doi.org/10.1103/PhysRevD.60.125006
https://doi.org/10.1103/PhysRevD.60.125006
https://arxiv.org/abs/hep-th/9904191
https://doi.org/10.1103/PhysRevD.96.046005
https://arxiv.org/abs/1701.04275
https://doi.org/10.1007/JHEP04(2017)089
https://arxiv.org/abs/1701.07202
https://doi.org/10.1016/j.physletb.2017.03.026
https://arxiv.org/abs/1702.00566
https://doi.org/10.1103/PhysRevD.95.106013
https://doi.org/10.1103/PhysRevD.95.106013
https://arxiv.org/abs/1703.04186
https://doi.org/10.12942/lrr-2011-8
https://arxiv.org/abs/1104.3712
https://doi.org/10.1007/978-3-319-52573-0
https://doi.org/10.1007/978-3-319-52573-0
https://arxiv.org/abs/1609.01287
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/quant-ph/0102117
https://doi.org/10.1103/PhysRevLett.109.130502
https://arxiv.org/abs/1206.3092
https://doi.org/10.1063/1.1498001
https://arxiv.org/abs/quant-ph/0202044
https://doi.org/10.1142/0271
https://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/0271
https://doi.org/10.1007/s10955-007-9422-x
https://doi.org/10.1007/s10955-007-9422-x
https://arxiv.org/abs/0706.3384
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://arxiv.org/abs/0705.2024
https://doi.org/10.1088/1742-5468/2009/11/P11001
https://arxiv.org/abs/0905.2069


Bibliography

[172] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [1011.5482].

[173] C. De Nobili, A. Coser and E. Tonni, Entanglement entropy and negativity of disjoint

intervals in CFT: Some numerical extrapolations, J. Stat. Mech. 1506 (2015) P06021

[1501.04311].

[174] A. Coser, E. Tonni and P. Calabrese, Spin structures and entanglement of two disjoint

intervals in conformal field theories, J. Stat. Mech. 1605 (2016) 053109 [1511.08328].

[175] H. Casini, C. D. Fosco and M. Huerta, Entanglement and alpha entropies for a

massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007

[cond-mat/0505563].

[176] H. Casini and M. Huerta, Entanglement and alpha entropies for a massive scalar field

in two dimensions, J. Stat. Mech. 0512 (2005) P12012 [cond-mat/0511014].

[177] H. Casini, M. Huerta, R. C. Myers and A. Yale, Mutual information and the

F-theorem, JHEP 10 (2015) 003 [1506.06195].

[178] T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement

entropy, JHEP 02 (2007) 042 [hep-th/0608213].

[179] H. Casini, M. Huerta and L. Leitao, Entanglement entropy for a Dirac fermion in

three dimensions: Vertex contribution, Nucl. Phys. B814 (2009) 594 [0811.1968].

[180] H. Elvang and M. Hadjiantonis, Exact results for corner contributions to the
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