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Chapter 1
Introduction

Language is the mental faculty that mostly characterizes humans from other
living beings on Earth. We can communicate concepts, facts and ideas with
each other by speaking, writing, typing or using gestures. Already these
aspects show the incredible multimodality of language, involving a wide range
of motor and sensory abilities. Communication is then supported by the
even more exceptional cognitive ability to translate an abstract concept into
a structured sequence of symbols (i.e., language production) able to elicit a
similar concept in someone else’s mind (i.e., language comprehension). We

perform all these types of processing in our everyday life with minimal effort.

Language and the brain

Neurologists in the 19th century assigned the neural origin of language to
two small areas in the left hemisphere [1][2] following the study of aphasic
patients with narrowly defined brain lesions. Broca’s area in the inferior
frontal lobe, close to motor areas, was associated with the articulation of
speech. On the other hand, Wernicke’s region in the superior temporal gyrus,
close to the auditory cortex, was thought to store the sound representations
of words [3][1]. Further subdivisions of the two areas were then associated
with different impairments, resulting in an even more confined localization

of the language faculty in the brain [5][0][7]. Language, however, is a highly



complex function and we may argue if a cortical area of just a few square
centimeters could really be the only actor in the play.

The increase in popularity and refinement of neuroimaging techniques in re-
cent years have allowed for the study of the neural correlates of language
in normal conditions. This shift from the investigation of impaired patients
to healthy subjects revealed a widespread involvement of cortical regions in
both production and comprehension tasks.

Authors in [3] were able to predict the cortical patterns of activation asso-
ciated with newly presented words by combining the distributed activations
resulting from the presentations of words with similar meaning. Similarly,
data from healthy participants hearing meaningful stories while in an fMRI
scanner were used to create an atlas of the semantic tuning of the human
cortex [9]. In both studies, language processes appear to involve extensive

portions of the cerebral cortex.

Predictive model
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Figure 1.1: The prediction of fMRI signal is derived, in the study by Mitchell et al. in two steps. First
the meaning of celery is defined by a set of semantic features collected from large corpora of text (e.g.
“vegetable” and “edible” are proper features forcelery but they are not for airplane). In the second step,
the neural activation related to each feature is learned through the presentation of lists of words to the
participant. Combining the features for the word celery results in a prediction for the fMRI activation
pattern when the word is presented to the participant [3].



A distributed perspective on language

A possible reconciliation of the two opposite types of observations may be
found in Hebb’s concept of cell assemblies [10][11]. Hebb’s theory states
that functional units composed of many neurons, i.e., the cell assemblies, are
formed in the cortex as a result of a frequent simultaneous activation that
causes synaptic strengthening. Evidence for these associative connections be-
tween frequently co-active units was found in many studies [12][13][L4][L5].
Pyramidal cells, with their long axons entering white matter and their high
variability in size, have been hypothesized to be the major means of commu-
nication between the different regions of the cortex, supporting the formation
of large-scale activity patterns. The crucial feature of pyramidal cells, de-
scribed in [16][17], is the typical bipartite branching of their dendritic trees.
Basal dendrites, surrounding the soma, receive local connections from neigh-
boring cells; conversely, apical dendrites, extending from the apex of the cell
body towards the upper layers of the cortex, receive input from long-range
cortico-cortical connections from other brain regions.

Braitenberg and Schuz envisioned a crucial role for this dual, local and global,
nature of the cortex provided by the A (apical) and B (basal) systems [17][16].
They hypothesized the whole cortex to be an associative memory machine,
in which the B-systems encode a set of memories as local attractors and the
A-system encodes global attractors, by virtue of long-range connections. In
the theory of dynamical systems, an attractor is defined as a set of values, or
a state, towards which the system tends to evolve [18][19]. In simple terms,
an attractor can be thought of as a large valley surrounded by mountains:
in this sense, the dynamics of the system in consideration is comparable to
the flow of a river descending the mountains to form a lake in the valley.
This analogy also suits the description of a memory system like our brain:
a strong memory of a past event (i.e., the valley) can be entirely recalled
by merely hinting at small but relevant details of the scene (i.e., the flow
of the river). Attractor states can thus be used to model the dynamics of

the cortex in memory retrieval [20][21][19][18]. Furthermore, a crucial, and



Figure 1.2: Camera lucida tracing of two pyramidal cells, taken from [17]. The dashed line represents
the surface of the cortex. The basal dendrites surround the typical conic shaped soma, while the apical
dendrites reach the first layers of the cortex. A long myelinated axon departs from the bottom of the
soma and enters the white matter to create cortico-cortical connections.

often overlooked, feature of this theory is the ability to model the conver-
sion from the analog computations performed by the neurons into discrete
macroscopic neural states, suitable to describe the encoding of the atoms of
language, namely words, syllables, phonemes, morphemes, etc. In light of
these concepts, unified with the view of Braitenberg in [17], we can interpret
the semantic cortical maps in [9] as a collection of many local attractors, en-
coding semantic features, that are recollected together, in a global attractor

state, to form the neural representation of a word.

From memory to functions

Language cannot be reduced to only the description of how linguistic in-
formation is stored in the brain: considering its dynamics is, therefore, a
fundamental step to grasp the mechanisms which allow us to communicate
with each other. Related concepts tend to elicit one another in a possibly

indefinite process, allowing for the production and expression of more com-
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Figure 1.3: Map of the semantic tuning of the human cortex from Huth et al. in [9]. Each color
represents the encoding for a broadly defined semantic category. For example, from green to purple the
semantic tuning shifts from sensory-related concepts (visual, tactile, numeric) to abstract, human-related,
entities (social, emotional, mental).

plex and profound thoughts [22]. This simple intuition already reveals the
dynamic nature of language and pushes the investigation to a further level
of analysis.

To achieve the level of complexity of language, simple cued retrieval, de-
scribed in detail for autoassociative networks with the evolution towards an
attractor [23][24][25] [20], cannot be the only mechanism at play in the cor-
tex. Neuropsychological models usually describe specific cognitive functions
in terms of sequences of specialized routines, expressed as box-and-arrows
models, conceptually similar to the flow charts of computer code [27]. How-
ever, the neural implementation of these models often implies detailed as-
sumptions on the functioning and connectivity of single neural networks,
about which we have no clear evidence [27][28]. Associative mechanisms, on
the other hand, are often described as an alternate path, a “lateral thinking”
option [29], to perform the same task of a specialized function. Nonetheless,

associative retrieval and synaptic plasticity are the only neural mechanisms



with strong empirical evidence [30]. We, therefore, envision the cortex as
a memory machine able to achieve its complex behavior only by means of

purely associative mechanisms [29].

A network model for the cortex

Following this idea, a Potts attractor neural network [31][32][33] model has
been previously proposed [34][35][36], where Potts units, representing patches
of cortex, are a key element to describe not only the storage of concepts but
also the dynamics from one memory item to the next. In this model, the
retrieval of a pattern follows the dynamics towards an attractor while the
hopping between memory items, reminiscent of a free sequence of thoughts,
is ruled by neural adaptation and inhibition, which both contribute to the
destabilization of the current attractor state. We will refer to the jumping
between attractors states as latching dynamics [37][38][39)].

The purpose of this thesis is to take the first steps towards a purely associa-
tive model of cortical functions. To tackle this ambitious goal, we will exploit
the tools offered by the Potts neural network previously developed in our lab
and apply them to 3 specific examples of processes previously described in
terms of box-and-arrows models.

In Chapter 2 we will introduce a Potts neural network model of the cortex.
After describing its essential functionality, we will introduce a method to
teach instructions to the network. Instructions are coded in the network as
heteroassociative connections that can be used to model rule-guided behav-
ior, fixed temporal sequences or frequent associations.

In a first attempt to link our theoretical model with experimental data we
also designed an exploratory study on word transitions by exploiting a pop-
ular Italian game on word associations, named “Il Bersaglio” A detailed
description of the experiment is presented in Chapter 3 while its implemen-
tation with our network model is treated in Chapter 4.

In the last two parts of this thesis we will introduce two other applications

of our Potts model. Chapter 5 will propose a latching dynamics model of



Mind Wandering, a high-level cognitive function that involves not only the
posterior “semantic” cortex but also the hippocampus and the ventromedial
prefrontal cortex. Finally, Chapter 6 will focus on the challenge of model-
ing the Phonological Output Buffer (POB), a key short-term memory device
for our language production faculty, enabling us, in its simplest role, to de-
code and translate the linguistic information coming from posterior cortical

regions into sequences of syllables and phonemes.



Chapter 2

A Neural Network Model of
the Cortex

The model described in this chapter, previously proposed and studied in
[34][35][36][10], was inspired by Braitenberg in [I6]. In his studies on the
amount of white matter one would expect in a mammalian brain, Braiten-
berg hypothesized a parcellation of the cortex into v/N compartments each
containing VN neurons. Assuming each neuron in a compartment to have its
axon entering the white matter and connecting to a different compartment,
he was able to find good agreement with different quantities measured in the
cortex [17]. The following model will approach the problem in a similar way:
the cortex is first split into separate local networks, each with its own local
attractors. Then the cortico-cortical connections are thought to mediate the
interaction between such local networks and the resulting global network is

thus proposed as a model of the cortex.

2.1 The Potts Attractor Neural Network

A Potts system of interacting units was first introduced in statistical physics
in 1952 [11] and its neural network version was then studied by [31][32] as a

generalization of a Hopfield binary network [20], in which units are allowed
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to be in only two states, active or inactive. Potts was the name of the student
encouraged to study systems of multi-state units, and the advantage brought
by a Potts network is precisely to allow for more than a single active state.
In modeling cortical dynamics, these additional states can be exploited to
represent the different dynamical patterns of activity of a local network of
neurons. In this sense, a Potts unit becomes a model for a local patch of
cortex, and the network can be thought of as a model of the entire cortex, or
at least of the large swaths comprised of its so-called association areas. One
can regard such a generalization as an autoassociative network of N Potts

units interacting through tensor connections.
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Figure 2.1: Schematic illustration of a small network of 3 Potts units with 4 possible active states. Each
state represents the pattern of activity of the local network of neurons in the patch of cortex. Picture
taken from [35].

2.1.1 Tensorial interactions between patches

Long-term memories are stored as global patterns through the weights of the
connectivity matrix, reflecting a previous Hebbian learning phase.
Each memory g is then defined as a vector of states taken in the overall

activity configuration by each unit i: &', We take each Potts unit to have S
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possible active states, labeled e.g., by the index k, as well as one quiescent
state, k = 0, when the unit does not participate in the activity configuration
of the memory. Therefore k = 0, ..., S, and each & can take values in such

abstract categorical set. The simil-Hebbian tensor weights read

i = Cma(cl_) 3 (b= 5) (0= 5) 1 =d0) (1= 00) (21

5) r=1

where i, 7 denote units, k, [ denote states, a is the fraction of units active
in each memory, ¢;; = 1 or 0 if unit j gives input or not to unit ¢, ¢, is the

number of input connections per unit, and the 0’s are Kronecker symbols.

The subtraction of the mean activity per state g ensures a higher storage

capacity [31]. In a non-dynamical formulation, the units of the network are

updated in the following way:

rk
oF exp(prt) (2.2a)

P, exp(prl) rexp[s(e+Ui)]

0¥ = exp[s(60+U:)]
i Zle exp(prt)+exp[8(09+Ui )]

(2.2b)

where r¥ is the variable representing the input to unit i in state k within a
time scale 7 and U; is effectively a threshold. From Eqgs.2.2, we see that
>S9 _,0F = 1, and note also that oF takes continuous values in the (0,1)
range for each k, whereas the memories, for simplicity, are assumed discrete,
implying that perfect retrieval is approached when of ~ 1 for k = &' and
~ () otherwise.

As a result of the attractor dynamics, the model thus allows for the conversion
from a collection of graded responses from the single patches {o¥} to a unique
global state u of the cortex. If the connectivity matrix ¢;; is such that each
Potts unit receives the influence of C' other units, the quantities S and C
(and the total number of units, V) are the main parameters that determine
the storage capacity of the network. Global activity patterns, composed of

local active and inactive states in the various units, can indeed be stored in
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the Potts network by the plasticity model in Eq.2.1. They are then attractor
states, and the network functions as an auto-associative memory, retrieving
one of p stored global activity patterns from a partial cue. Cued retrieval is
possible up to a limit p = p. which is roughly p. ~ CTSQ — very large, whatever
the assumptions about C', S and a. A model, therefore, of long-term memory,
which can hold, say, millions of items in a network of the size of the human

cortex.

2.1.2 Latching Dynamics

When the Potts model is studied as a model of cortical dynamics, U; is
written as U + 62, where U is a common threshold acting on all units, and
69 is the threshold component specific to unit 7, but acting on all its active
states, and varying in time with time constant 75. This threshold is intended
to describe local inhibitory effects that tend to turn off the units, in keeping
with the general observation that inhibition in the cortex is exerted only
locally [42].

The time evolution of the network is governed by the equations

drf (t) gk k k
S = B (8) - 0 (1) — v (1) (2.3a)
ot (t) K
e AURLA (2.3b)
WeO) _ 5~ g )~ 60 (1) (2.30)
T3 a . o; i 3¢

where the variable 0% is a specific threshold for unit i in state k, varying with
time constant 75, and intended to model adaptation, i.e., synaptic or neural
fatigue specific to the neurons active in state k. The field h¥ instead repre-

sents the input to the patch ¢, coming both from cortico-cortical connections
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and the internal activity of its neurons, namely

hF = g:z ijlgl, +w (Uf — ;Zaf) . (2.4)
j#i =1 =1

Here w is another parameter, the local feedback term, discussed in [35][10],
that models the stability of local attractors. This helps the network to con-
verge towards an attractor, by giving more weight to the most active states,
and thus effectively deepening the attractors. The evolution of the network
according to Egs.2.3 can be described as a saltatory dynamics, called latching
[37]: network activity is driven towards an attractor and remains in the same
state until neural fatigue destabilizes it. At this point, the activity shifts,
usually towards the closest stable attractor in what appears as a sequence
of jumps from one state to the next. An example of latching dynamics can
be seen in Fig.2.2, where the current state of the network is displayed by
plotting, for each time point, the overlaps {m*} of the activity pattern with
each of the stored memories. The overlap m* (t) of the state at time ¢ with

the stored pattern p is defined by:

i (1) = WD fj 3 (554% - ;) 10 (2.5)

Overlaps

_02 L L
500 600 700 800 900 1000 1100 1200 1300
Time

Figure 2.2: Example of latching dynamics. Colored lines represent the overlaps {m#} of the network
with each stored pattern pu. The network is cued to a pattern at time ¢ = 500 and the overlap with that
pattern reaches a value close to 1. After some time, the initial pattern becomes unstable, due to the effects
of adaptation and inhibition, and the next pattern is retrieved. Here the process goes on indefinitely.
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With the correct set of parameters this latching process goes on indefinitely,
mimicking an infinite recursion [22][37][43]. In a regime of slow inhibition
(i.e., when 73 is a longer timescale than 7 and 75) such dynamics are mainly
guided by correlations between the different memory attractors. Since latch-
ing transitions occur with very uneven probability among different pairs of
patterns, latching statistics can define which long-term memories are readily
accessible to the network from any given starting point. These statistics can
then be seen as a metric in the space of memory patterns and compared with
experimental measures on the objects of interest: semantic or orthographic
similarity for words, associative strength for episodic memories, or in many
other ways. Such types of correlations and the transitions they facilitate
can be dissociated, once one introduces some internal structure in the so-far

undifferentiated, homogeneous Potts network.

2.1.3 Slow and fast inhibition

In the previous section, we introduced the concept of latching dynamics and
the set of equations (Eqgs.2.3) that define it. However the evolution of the
network strongly depends on its parameters and, in particular, on the time
constants 71, 79 and 73, each associated with a particular neural mechanism:
71 is the typical time with which activity propagates in the network, 7 regu-
lates the firing rate adaptation of the neurons in a patch and 73 represents the
timescale of inhibition exerted by inhibitory interneurons on, mainly, pyra-
midal cells. While neuronal excitability, here represented by the timescale
71, is very well understood [14][15], adaptation and inhibition have a more
complex and mysterious nature. Firing frequency adaptation has been shown
to have a wide range of timescales, depending on stimulus type and history
[16][17][18]. Local inhibition, instead, relies on the influence on pyramidal
cells of, at least, three different classes of GABAergic interneurons [12][19],
each acting with its timescale.

For simplicity, in our future simulations, we will consider the case of only a

single timescale for modeling adaptation, with the only exception of Chap-
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ter 6, where the introduction of a second time constant will be discussed.
However, we will always assume adaptation to act “slower” than neuronal
excitability.

On the other hand, the effect of local inhibition can be both faster or slower
than neuronal excitability, depending on the particular type of receptor by
which it is mediated. In this thesis we will manly consider the slowly adapt-
ing regime (77 < 79 < 73), for which inhibition is mediated by only GABAg
receptors. In this regime, correlations among patterns guide the latching dy-
namics, making this the optimal functioning mode to model semantic tran-
sitions, for example, in Chapters 3-4. One can also consider what may be
called a rapidly adapting regime, ruled by GABA 4 receptors, when 73 is very
short, 73 < 71 < 75 (which also has the incidental computational advantage
that rich dynamics unfold within limited CPU time). Analytical considera-
tions derived for both regimes can be found in [35][30].

To model the more realistic case in which both slow and fast inhibition are
taken into account we could replace the inhibitory or non-specific thresh-
old #Y with the sum 6 + 67 (to denote fast, GABA, and slow, GABAp

inhibition, respectively) and writing separate equations:

0 S ot -0 ) (2.60)
dt =
s LN St Rt (2.60)

k=1
with, instead of 73 either short or long, 7'54 <T < Ty K T?)B and v4 determin-
ing the balance of the two. Note that a more realistic approach would be to
consider inhibition at all time scales, in line with experimental findings [19].
First results with this combined inhibition show an improvement in latching
quality and length, but a more analytical investigation on this topic will be
addressed in [50]. An example application of this regime will be given in
Chapter 6.
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2.2 Instructing the Potts network

The previous definitions are the foundations of a very simple model of the
cortex. However complex brain functions may need the introduction of rule-
based memories (e.g. frequent associations, idioms, fixed sequences of actions,
schemas) that cannot be simply described by a purely autoassociative net-
work. Thus we can consider the pairing of configuration p to configuration
v, which is instructed to succeed it in time, p — v. These can be partial
configurations, defined only over a specific subnetwork, and their heteroas-
sociation may coexist with several other ones, u — v, u — p, p — ¥, ... .
One may regard the long-term memory for a transition u — v, stored in a
subnetwork of the cortex, as a schema, that favors its repetition, with dif-
ferent content in the complementary portion of the network which does not
express the schema.

A conceptually distinct situation is when the pairing is only held in short-
term memory, to remember a specific sequence for a short time. In this
case the favored transition p — v is taken to be unique, and reproducing it

corresponds to successful remembering in the short term.

2.2.1 Patch-level implementation

Both these situation can be construed to involve the pairing of the complete
or incomplete sets of adaptive thresholds {Qf} that have been raised by the
activation of configuration p to the state variables {aé} that have to be
activated in configuration v.

If © is not a steady configuration of activity by an underlying extended
cell assembly, in fact, but rather it represents a continuous attractor which
at the microscopic, intrapatch level keeps changing in time, expressing the
pairing in terms of the thresholds {6} instead of the activity variables {o¥}
implies that the transition is only favored once the continuous attractor has

largely run its course, and is close to be destabilized (by the very same {65}
thresholds).
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Focusing for now only on the long-term heteroassociation we can write the

following expression for the couplings:

. CijA L. a a
Jf‘l’h t_ ]a> Z Z GH (5&% — S) <5£;l — S> (1 — 5k0> (1 — 5[0)

Cma (1 —5) n=lvEn
(2.7)

where A modulates the strength of the heteroassociation and G* = {0,1}
defines the activity patterns associated one to the other. Plasticity is taken
to have been refined over many repetitions of learning the rule, and so the
coupling to be optimized for the long-term storage of these transitions. At

this point the new field h that unit ¢ in state k experiences is

Kk

| =

N S
5t ] oo

j#i =1

> a§> : (2.8)
=1
This heteroassociative contribution will be further investigated in the next
sections and will be developed according to the specific needs for modeling

different cortical functions, without changing its core character defined here.

2.2.2 Measuring the effects of instructions on latching

A purely autoassociative Potts attractor neural network, undergoing latch-
ing dynamics, hops from a discrete activity configuration to the next in
a sequence of spontaneous transitions. In a slowly adapting regime, such
transitions mainly occur between correlated patterns. Heteroassociative in-
structions may be exploited to link together patterns independently on their
correlation. However, to better understand the performance of a heteroas-
sociative network in hopping between randomly correlated patterns, we first
need to define both what we mean for correlation between Potts patterns of

activity and a measure for the quality of latching.
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Correlation between patterns

In a binary Hopfield network, where units can either be on or off, the corre-
lation between two patterns is proportional to the number of units that are
active in both configurations. In a Potts network, however, each unit can
either be inactive or active in one of its S possible states. This produces two
types of correlations, which we call C'; and C, defined for two configurations

1 and v by

1
aN

=1

N
Cr= oy 2 (1= dga) (1= ) (1~ ). (2.90)

Here (' measures the fraction of units that are active and in the same state

Cy = (1= Gero) Gerer (2.92)

in both patterns. Conversely, C; measures the fraction of units active in
both patterns but in different states. Following these definitions, we consider
as highly correlated those pairs of configurations with high €} and low C,
values, based on our assumption that related memories should elicit similar

representations in the brain. An example of the correlation space C1-Cy

0.4

All Pairs
Latching Pairs

0 0.1 0.2 0.3 0.4
cl

Figure 2.3: Correlation space spanned by a set of p = 200 randomly generated patterns with a = 0.25,
N = 600 and S = 7. After cueing the network, pairs of patterns for which a spontaneous transition
occurred are highlighted in red. The slowly adaptive regime allowed for a hopping between pairs laying
in the correlated region of the plot.
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spanned by a correlated latching dynamics can be found in Fig.2.3, where
latching transitions occured between pattern pairs having high C; and low

Cy values.

Quality of latching

Latching sequences can look quite diverse depending on the parameters of
the simulation. The principal dimensions in which the dynamics can differ
are the length of latching sequences and quality of latching. For measuring
latching length we will consider both the length of the simulation, i.e., the
time after which activity in the network dies out, and the number of latching
steps performed in the dynamics. A latching step from p to v is counted only
if the overlaps before and after the switch reach the threshold m = 0.5. For
latching quality, instead, we will consider the average difference d;5 between

the highest overlap at time ¢, say m;, and the second highest, say ms:

dy = — /tz (mr (1) — m (£)) dtyene (2.10)

Three very different examples of latching are shown in Figs.2.4, where mea-

sures of length and quality can be clearly visualized.

[V

g0s h |

T04 ‘\“ ‘
02| [ Al
o

200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Time

Overlaps

(a) Short latching. (b) Long sequence with good quality.
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Time

(c¢) Low quality and number of steps.

Figure 2.4: Examples of three very different latching dynamics. (a) Sequence with high di2, but very
short and only 3 latching steps. (b) Long sequence with good quality of latching. (¢) The network remains
active for a long time but both quality, di2, and the number of latching steps are very low.
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2.3 Instructed Latching: Results

The previous section focused on the possibility of teaching instructions to a
Potts neural network. The mechanism proposed is a heteroassociative com-
ponent, introduced in the tensorial couplings between units, that links one
memory stored in the network with one, or more, other memories, that may
follow the first. To avoid the interference between the memories, stored in
the network through -0 connections, and the instructions, we suggested im-
plementing the heteroassociation on a separate set of connections. Therefore,
we introduced a new type of connection between units, mediated by a 6-0
interaction in the field h? (Eq.2.8).

In this section we will compare this definition of heteroassociation with one
based on a -0 interaction. After that, we will consider the case in which
instructions are encoded by only a subset of connections, namely by dividing
the Potts network into a purely autoassociative subnetwork and a heteroas-
sociative one.

All simulations will be performed with the following set of parameters: N =
600, S =7, p = 200, ¢, = 90, a = 0.25, U = 0.1, § = 12.5, w = 0.45,
71 = 3.33, » = 100 and 73 = 10%. For each batch of simulations, we will
compare the effect of varying both A, i.e., the heteroassociative strength, and
the number of instructions D associated with each pattern.

The performance of the heteroassociative couplings will be compared based

on the fraction of followed instructions f defined by

T‘instructed
= — 2.11

where T,sructea 1S the number of transitions, with overlap above 0.5, that
follow the instructions, and T}, is the total number of latching steps in the
sequence. f is 1 if the network always follows the instructions, and 0 if it

never does.
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2.3.1 Simulation results: Single network

Simulations of both models with #-0 and o-0 heteroassociative couplings
showed high sensitivity to changes of the parameter A and to the number of
instructions D. Each (D, \) pair was simulated 50 times, each time by cueing
the network with a different pattern. The D instructions were randomly

chosen for each pattern.

Latching dynamics

Latching length increased both with the number of instructions D and the
strength A due to the increased input to units they bring through the field
h¥. The number of steps instead increased up to a certain value of ), after
which the activity of the network becomes so high that no real latching can
occur, being all units constantly receiving a high input from hetereoassocia-

tive connections. The two types of interaction show similar behaviors when

o-0, A = 0,D=4 0-0, A = 0, D=4

Overlaps
Overlaps

600 800 1000 1200 1400 1600 1800 2000 800 1000 1200 1400 1600 1800 2000
Time Time

200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Time

o-0, A = 0.4, D=4 -0, A = 0.4, D=4

200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Time

Figure 2.5: Comparison of latching sequences with o-o (left column) and 6-o (right column) interactions
for different values of A\. Latching with a -0 heteroassociation results less noisy even at high values of A
compared to the o-o one.
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increasing A and D, however latching with -0 heteroassociation appears less
noisy with intermediate values of .

Heteroassociative input with the #-0 coupling becomes comparable to the
autoassociative component only when the {6%}’s are high, i.e., when the cur-
rent attractor is becoming unstable and the network has to jump to the next
attractor state.

On the other hand, the -0 interaction is always active, both when the net-
work is reaching an attractor state and when it has to make a transition,
causing constant interference between stored patterns and instructions. This
leads to the rapid decrease of latching quality and to the high number of
latching steps, compared to the § mediated interaction, as we can see from
Figs.2.6-2.7. For higher values of A (e.g. A 2 0.5) latching quality deterio-

rates for both types of interactions.

o-0o -0
1 1
—D=2 —D=2
D=3 D=3
0.8 — D-4 0.8 — D=4
0.6 0.6
o~ o~
Ll i
© ©
0.4 \ 0.4
0.2 \\ 0.2
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
A A

Figure 2.6: Quality of latching as a function of X for the two heteroassociative mechanisms. di2 decreases
drastically as A increases. The steepest decrease occurs for the simulations wih a o-0 coupling.

Followed fraction

Besides the latching quality, another important factor to consider is the per-
formance of the network in following instructions. When considering latch-
ing sequences, the main feature that distinguishes the two heteroassociative
mechanisms is the memory effect introduced in the system by the -0 cou-
pling. Indeed, as we can notice from the comparison in Fig.2.8, if we would

only consider as successfully followed instructions the ones given at the pre-
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Figure 2.7: Average number of latching steps as a function of A for the two heteroassociative mechanisms.
The maximum number of latching steps in the plots depends on the value of D. The larger input to units
given by the o-0 coupling greatly increases the number of latching steps performed by the network while
keeping fixed the total simulation length.

vious step, the simulations with the -0 coupling, would have a value of f

around 0.5. This would mean that roughly half of the transitions would be
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Figure 2.8: Examples of latching sequence for the two heteroassociative couplings with highlighted
information on the type of each latching step. The first row shows the overlaps while the second and third
rows show the indices of the patterns retrieved by the network. In red are displayed the transitions that
follow an instruction from the step before. In green instead, are displayed the transitions that follow an
instruction from a pattern two steps before them.

spontaneous. However, if we consider what appears as a spontaneous step in
relation to the pattern retrieved two latching steps before it, we can notice
that a very high fraction of those “spontaneous steps” can be counted as a

“2-step” followed transition (n — n+ 2 followed fraction plotted in Fig.2.9).
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On the other hand, with a high enough value of A, simulations with the o-o
interaction almost always follow the instructions of the step before, with a

value of f approaching 1.
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Figure 2.9: Comaparison of n — (n 4+ 1) vs. n — (n + 2) followed fractions for the two types of
heteroassociative couplings. First-order followed instructions are higher in number, at low A, for o-o
simulations but rapidly decrease as A increases. Almost no second-order followed pairs can be found with
this heteroassociative interaction. First and second-order transitions in 6-o simulations not only have
similar values of f but also are almost constant in number as a function of .

The fast decaying quality of latching for simulations with the o-o interaction
prevents the network from following the instructions when both D and A
increase. Conversely, the -0 coupling produces an almost constant value of
f when X varies. The lower values of f, in this case, are compensated by the
fraction of transitions that follow the instruction from the pattern retrieved
two steps before. This longer memory in the #-0 network is linked to the
slow evolution of the {#¥}’s that allows keeping the information on previously

retrieved patterns for a brief period of time.
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Correlations

Spontaneous latching, in the regime defined by our set of network parame-
ters, occurs between correlated pairs of patterns. Does correlations influence
latching also when it is instructed? To answer this question we analyzed the
cumulative distribution of correlations between latching pairs, divided by the
type of latching transition occurred.

For convenience, we introduce some abbreviations: FP denotes a pair of pat-
terns that follows the instructions, SP a spontaneous transition and AP any

possible pair, whether occurring in a latching sequence or not.
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Figure 2.10: Cumulative distributions of correlations between patterns. SP correlations plotted in the
second row panel for A = 0 show that spontaneous latching occurs between patterns with high values of
C1 and low of C2. On the other hand FP transitions have a distribution of correlations that approaches
the one of AP, meaning that followed transitions are less sensitive to correlations.

Fig.2.10 shows the comparison between the cumulative distributions of cor-
relations for spontaneous (A = 0) and instructed latching pairs. While spon-
taneous latching forces jumps between correlated pairs (i.e., high C; and low

(), instructed latching is less influenced by correlations, as it can be seen
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from the FP curves approaching the AP distribution.
The simulations on a single network show crucial results for the implemen-

tation of rule-based memories in our network model of the cortex:

- Instructions stored trough Eq.2.7 are effective in guiding the dynamics
(high values of f);

- #-0 coupling introduces a memory effect that allows the network to fol-

low instructions from previous latching steps (n — (n + 2) transitions);

- #-o0 interaction produce less noisy dynamics by reducing the interference

of instructions with stored memories;

- FP transitions occur even for instructions between uncorrelated pairs

of patterns.

Possible improvements to the current model will be discussed in the net

section.

2.3.2 Simulation results: the double network

Single network simulations have shown that the heteroassociative mecha-
nisms introduced successfully drive network choices when latching occurs.
However, latching quality is deteriorated when both the number of instruc-

tions and the heteroassociative strength increase. To address this problem,

\..(
A

A H

Figure 2.11: Schematic representation of a double network with a purely autoassociative subnetwork A
and a heteroassociative subnetwork H. Red connections represent heteroassociative couplings. Blue lines
instead represent autoassociative connections between units.
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we performed the same simulations on a bipartite network: subnetwork A is
a purely autoassociative network while H mixes both an autoassociative and
a heteroassociative character. The goal of the simulations was to compare
the performance when only a subset of the connections encode instructions.
The only changes in parameters with respect to the previous simulations are
in the number of units and in the connectivity. Networks A and H have
N, = Ny = 300 units and ¢,, = 90 input connections per unit. The ¢,

connections are equally divided into internal and external ones.

0-0, A = 0.2,D=2 -0, A = 0.2, D=4
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Time
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Time

¢-0, A = 0.8, D=2

Time
0-0, A = 0.4, D=4
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9-0, A = 0.8, D=4
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Figure 2.12: Comparison of #-o latching sequences with D = 2 (left column) and D = 4 (right column)
for differnt values of A. Heteroassociative instructions are stored in c,Hn connections only. Latching quality

improves at low D or with low enough values of A. Latching length increases with A even with a lower
amount of heteroassociative connections.

In this way A has ¢ = 45 input connections from its units and cZ4 = 45
from units in network H. The same structure is set to H with cZ = 45
and ¢ = 45. The heteroassciative couplings in Eq.2.7 are assigned to the
internal connections of network H, i.e., {c;;} = {cZ}.

Since no qualitative difference from previous simulations has been found in

the comparison between o-0 and -0 couplings, we will show results only for
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the #-0 mechanism.

Fig.2.12 shows examples of latching with D = 2 and D = 4 for A =
{0.2,0.4,0.8}. Compared to the single network implementation, these ex-
amples show that higher values of A (A 2 0.2) are needed to reach the
infinite latching regime. However the fraction of followed instructions, past
the A\ &~ 0.2 threshold, remains similar to the single network case (Fig.2.13,

first row). These results suggest that relegating the heteroassociative cou-
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Figure 2.13: Summary of the performance of a bipartite network with a heteroassociative component.
In the first row are plotted the fraction for the two orders of followed transitions. The behavior does not
deviate from the single network case. In the second row are plotted the average number of latching steps

(left) and the quality of latching (right). Latching steps dramatically increase for A 2 0.2 while d12 slowly
decreases with .

plings to a subset of connections does not prevent the network from following
instructions or rule-based associations, allowing for the introduction of more

structured models of the cortex, like the ones developed in the next chapters.
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Figure 2.14: Cumulative distributions of correlations between patterns in the two network architecture.
SP correlations plotted on the top panel for A = 0 show that spontaneous latching occurs between patterns
with high values of C7 and low of C3. On the other hand FP transitions on the bottom panel have a
distribution of correlations that approaches the one of AP, similarly to the single network case.
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Chapter 3

An Experimental Investigation

of Latching

Many studies on the neural substrates of language measure responses to
unnatural stimuli such as semantic or orthographic violations, non-existent
words, strings of random letters, or very fast serial word presentations. These
highly controlled conditions have the advantage of isolating the linguistic pro-
cesses of interest, at the expense of a more ecological understanding of lan-
guage. Latching dynamics, instead, can be thought of as a primitive model of
natural language production, where each latching step represents a concept,
or even a word, in a hypothetical sentence. Thus, an experimental investiga-
tion of latching would naturally develop into a study on spontaneous speech
production.

The human mind can flexibly combine the meanings of individual words to
construct structured sentences. However, an experimental investigation of
this processing is challenging. For example, it is still a matter of debate how
our brain encodes sentence meaning or, even, how we could quantify such
a thing. While vectorial semantic models proved to be predictive in many
linguistic tasks [$][9][51], their conversion to models of sentence meaning is
still at the initial stages. Anderson et al. [52], for example, proposed to

model sentence meaning with simple additive or multiplicative operations on
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the space defined by word vector models of semantics. A sentence, however,
can have a very different meaning than the simple summation of the words
that compose it: the sentences a dog bites the man and the man bites a
dog share the same words but have opposite meanings, resulting in different
brain activations [53]. Therefore syntax must be the first ingredient to be
included for a proper investigation on this topic. However, how our brain
builds and interprets syntactical structure is still an area of open discussion
in both linguistic theory and neuroscience [51][55].

From our modeling perspective, implementations of sentence meaning and
syntax are currently being developed for the Potts neural network [56][57],
with similar mechanisms as the ones described in the previous chapter, but
the generated utterances are still not comparable with natural human pro-
duction.

For all the previous reasons we decided, for now, not to focus on spontaneous
speech, but to try, instead, to reduce the problem to its core and most simple
mechanism, namely the interaction between single words. Similar words tend
to elicit one another, a process which our Potts network represents in terms
of its latching dynamics. In this experimental investigation, we will induce
the participants to link words through specific types of association, allowing

us to study the neural trajectories of activity behind word transitions.

3.1 Experimental design

Early attempts

Our focus in this work is on word transitions in ecological conditions. For
this reason, we designed a task that could be entertaining for participants by
using only existing Italian words presented at a slow pace. To do so, we took
inspiration from a game, named Il Bersaglio, literally The Target, published
weekly on a popular Italian journal. The game appears as a set of words
arranged in random order on a shooting target. The goal of the player is, by

starting from a highlighted word, to find the only correct sequence that leads
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voce Marmore osati recitare

adontati rosati satiro aspretto
Lippi cippi acidulo marmorei
Bulgero appretto usati stiro
improprio Marcore' inadatto Claudio
nove Rumeno attore numero
cantare noce adottati improperio

Figure 3.1: First implementation of the experiment. Subjects had to play 12 rounds of the game by
associating all the words on the screen, starting from the word highlighted in the bottom right corner.

to the center of the target and includes all the words in the set. The player,
at each step, has to find the next word in the sequence, among those on
the target, which satisfies one of a well-defined set of associations. The final
sequence thus resembles a latching process on the given word list, guided by
the rules of association imposed by the game. However, the early version of
the experiment in Fig.3.1, mimicking the original game, was too complex to

constrain into a proper experimental setting.

Revised design

In our final experimental transposition of the game, participants were asked
to select words (Targets), appearing one after the other in the center of
the screen, which satisfied precise rules of association with a reference word
(Prime), allowing us to investigate the neural signatures of latching between
stored memory items.

The stimuli were Italian words that could be associated with each other,
either orthographically or semantically, as shown in Fig.3.2. The list of
associations for this pilot study was taken from an online database of a
computer version of the game. A more strictly controlled set of stimuli will

be used for the confirmatory experiment presented later in this thesis.
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Types of transition:
addition (VANO/vanto)

Word Form
omission (SCOLPIRE/colpire) 4 60 trials
change  (PELLE/selle)
synonym (ASPRO/acido)

A\

antonym (FUORI/dentro) ¢ Semantic
association (TALLONE/Achille) 60 trials
semantic (GATTO/felino) y

. “Filler”
no correct transition } 60 trials

Figure 3.2: List of the seven rules of association with relevant examples. Prime words are in capital
letters.

Both classes of allowed associations could be further divided into different
subtypes: addition, omission or change of one letter for the word form (or-
thographic) class and synonym, antonym, semantic (encyclopedic) or associ-
ation of ideas (collocations, words often co-occurring) for the semantic class.
Participants were instructed to recognize these seven subtypes. The 60 word
form trials were subdivided into 20 trials per subtype of transition. For the
semantic class, instead, 15 trials were assigned to each of the four categories.
Each trial started with the presentation of the prime word, in capital letters,
followed by a maximum of four words, only one of which could be a correct
association. Trials with no correct association were also included as a control
condition and the total 180 trials were equally divided for the three types
of transition, “Semantic”, “Word Form” and “No Association”. Each
trial ended when the correct associate was selected or after the presentation
of all four words if no association was found. Both trial and word orders were

randomized for each participant.
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3.2 Behavioural Experiment

3.2.1 Methods

The first experiment was a reaction time (RT) task. The response phase
overlapped with the presentation of the word. If the word appearing on the
screen was thought to be related to the prime, the participant had to press
a button, as fast as possible, to select it as an associate. Otherwise, the
participant had to wait until the presentation of the next word, without any

button press.

Figure 3.3: Trial structure. Red arrow represents time. The correct association (Target) could be in
any of the four words position. Words appeared on the screen one at a time in the center of the screen.

Prime words were presented in capital letters for 2s, test words for 1.8s, and
a response (button press) was allowed for as long as the word was displayed
on the screen. Reaction times were then calculated from the first frame of
the monitor displaying the selected word. Participants received feedback on

the button press according to the correctness of the response.

3.2.2 Results

For the behavioral experiment, 22 subjects were tested for a total of 2362
correct trials (~ 89% accuracy, 22 x 120 = 2640 total trials). Semantic asso-
ciations are, on average, more difficult to recognize (~ 84% accuracy) than
word form ones (~ 95% accuracy), as shown in Fig.3.4. Nonetheless, the

fraction of correct responses is still very high for both classes of transitions,
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proving that participants could easily accomplish the task.

[ Semantics

ord Form

Transitions Semantics Word Form

Figure 3.4: Distribution (left) and average proportion (right) of correct responses for the two categories
of transitions. Semantic associations are more difficult to recognize than word form ones. A Wilcoxon
rank-sum test on the distributions of correct responses proved this difference to be statistically significant
with p < 0.001. Error bars represent the standard error of the mean.

As expected from the analysis of the accuracy, the distributions of reaction
times also show average faster processing for word form associations. A
Wilcoxon rank-sum test proved the difference of reaction times of ~ 70ms to
be highly significant with p < 0.001 (Fig.3.5).
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Figure 3.5: (Left) Distribution of Reaction Times for both conditions. (Right) Mean Reaction Times.
Error bars represent the standard error of the mean.

Semantic transitions are recognized slower than word form ones, reflecting the increased difficulty of the
first condition.

Analysis of transition subtypes

By looking at the single subtypes of association in Fig.3.6, we can notice that
overall the three word form subtypes are associated with shorter average re-

action times. However, omission transitions show consistently lower reaction
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times. This could be explained as a word-length effect; however, such inter-
pretation would suggest longer reaction times for addition with respect to
change. For this reason, an effect of letter identities should be investigated
in future experiments, since the omission is the only transition type which

does not use different letters than the ones in the prime.
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Figure 3.6: Mean reaction times for the seven types of allowed transitions. Error bars represent the
standard error of the mean.

For what regards semantic transitions, the main difference in reaction times
appears between association and synonym/antonym conditions. Semantic
transitions instead lie in between and the differences in reaction times be-
tween semantic and both association and synonym/antonym are not statis-
tically significant (see Fig.3.7 for statistical analysis results), indicating that
encyclopedic transitions may share both the semantic and the frequency as-
pects of the synonym/antonym and of the association types of transition,
respectively. Stricter and more controlled definitions of the classes of transi-
tions are needed to further investigate their supposedly different representa-
tions. Therefore, in the following EEG experiment we will mainly consider
the semantic and word form categories, while a more controlled stimulus

set will be used for the confirmatory experiment.
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semantic synonym antonym addition omission change

association - * * % * ok k * ok * _—
semantic - - * % * k% *
synonym - * * ok * —
antonym - * %k _
addition * k% _
omission ok ke

Figure 3.7: Significance results from comparing the reaction times between all pairs of conditions with
a Wilcoxon rank-sum test. * stands for p < 0.05, ** for p < 0.01 and *** for p < 0.001.

3.3 EEG Experiment

Given the encouraging results of the behavioral experiment, we decided to
investigate the neural signatures associated with our word transitions through

an electroencephalographic (EEG) experiment.

3.3.1 Methods

Experiment design

For this second experiment, we kept a similar design as in the behavioral
version but with a different modality for the response. Participants this time
had to judge the relation with the prime after each word, presented in the
center of the screen for 1.5s. The response phase was signaled on the screen
with the presentation of a "YES’ on one side of the screen and a 'NO’ on
the other. Participants were instructed to reply "YES’ if the previous word
was related to the prime and 'NO’ otherwise. The answer was selected by
pressing 'f” or ’j’ on the keyboard. Each participant saw the "YES’ always on
the same side of the screen, which was initially assigned at random, so that
18 participants had it on the right while the other 11 participants had it on
the left.

The "YES/NO’ question allowed us to collect the EEG signatures for the no
association condition, defined as the set of trials with correct '"NO’ responses.
Participants were never asked which rule they followed when a "YES’ response
was given; therefore, semantic and word form conditions were distinguished

only according to the stimulus set.
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Figure 3.8: Trial structure. The red arrow represents time. The correct association (Target) could be
in any of the four words position. Words appeared on the screen one at a time in the center of the screen.
The response phase started after the 1.5 seconds of word presentation.

Data collection

EEG data were collected in a sound-proof booth for 29 subjects. The brain
activity was recorded with a 64 channel BioSemi ActiveTwo system (BioSemi
Inc., Amsterdam, Netherlands) at a sampling rate of 1024Hz. A Common
Mode Sense (CMS) active electrode was used as the reference, and a Driven
Right Leg (DRL) passive electrode was used as the ground. Two external
electrodes placed on the right and left of the outer canthi, and one external
electrode placed under one eye were used to obtain horizontal and vertical
electrooculograms (EOG). Two additional electrodes were placed on the left
and right mastoids, and their average was used as reference in the analysis.
Individual electrode offsets were kept between +304V. Participants were re-
quested to minimize movement throughout the experiment except when they
had a break.

Data preprocessing

Preprocessing and analysis were done in MATLAB with the eeglab toolbox
[8]. Collected data underwent different cleaning procedures, described in

the following pipeline:

- Downsample: the number of data points was first reduced to achieve a

sampling frequency of 256Hz.
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- Filtering: to downsampled data were then applied a high-pass filter
(lower bound at 0.1Hz) to remove the continuous component and a
low-pass filter (upper bound at 40Hz) to remove the 50Hz electrical

noise.

- Segmentation: we epoched the continuous EEG data into short time-
series of 1.5 seconds around the onset of the test word presentation.
Each epoch started 100ms before word presentation to have enough

timepoints for baseline removal.

- Channel rejection: bad channels were removed with the eeglab function
pop_rejchan, for which we used the three available methods. Kurtosis
threshold was set to 4o, joint probability threshold was set to 40, and
abnormal spectra was checked between 1 and 30 Hz, with a threshold

of 30.

- Independent Component Analysis: ICA was performed on epoched data

to remove eye blink artifacts [58][59].

- Baseline: data 100ms before word onset was averaged and the resulting

value was subtracted to align all trials.

- Trial rejection: trials containing extreme values (+2001V) and improb-
able trials (4o threshold on the trial occurrence probability distribu-
tion, calculated from the total distribution of values in the set) were

removed.

After the cleaning procedure, each epoch was assigned to its condition ac-
cording to the response given by the participant, including only correct re-
sponses. The datasets of each condition were pruned by randomly discarding
trials to ensure the same number of trials per condition. Data from different
participants were then merged in a single ’super subject’ dataset. All the
epochs belonging to the same condition were then averaged together for a
first inspection at Event-Related Potentials (ERP).
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Statistical analysis

Statistical analysis of EEG data was performed with a nonparametric clus-
tering method exploiting the spatiotemporal evolution of EEG signals on
the scalp [60]. The algorithm compared the difference between 2 condi-
tions, for every time point and electrode, with a nonparametric permutation
t test. Adjacent spatiotemporal points with a statistically significant differ-
ence (p<0.05) were clustered together. The candidate clusters found with
this procedure were then statistically tested with a nonparametric permuta-

tion ¢ test to assess their significance [01][62].

3.3.2 Results
Clustering analysis

The clustering analysis of the EEG data returned the four significant clus-
ters reported in Fig.3.9. Two clusters have been found for the comparison
between semantics and word form conditions, and one for each of the com-
parisons with the no association condition. No significant difference was
found from the comparison at the single subtypes level so we will focus only
on the three main conditions.

Potentials peaking around 170ms (N170) and 200ms (P200) after stimulus
onset are usually related to automatic processing of visual stimuli [63]. In
our experiment, these components appear in all clusters but no significant
difference can be found for our three conditions.

An N400 component (negative deflection of the signal peaking at 400ms after
stimulus onset), which the dominant view interprets as a correlate of lexical
retrieval and semantic memory access [61][65], appears for all conditions but
with different modulations. Clusters 3 and 4 in Fig.3.9 show a highly sig-
nificant difference around 400ms between both classes of association and the
no association control condition, with a more negative deflection for the last
compared to the first. However, no significant difference can be found in the

N400 between semantic and word form transitions.
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Figure 3.9: Clusters found by the clustering algorithm. (Left columns) EEG traces for the pair of
conditions considered, calculated as the averaged signal coming from all the electrodes in the cluster. Grey
bar is the time window considered in the analysis while the black bar highlights the statistically significant
region. (Right columns) Spatial distribution of the clusters. Electrodes included are highlighted by black
dots. Color represents the difference between the signals of the two conditions in the analysis. Note that
the blue (lower potential) in clusters 1 and 2 to the right matches, in this case, the unrelated color coding
on the left, where blue (semantic transitions) show a significantly lower potential than red (word form)
ones. For cluster 3 the two color codes do not happen to match, while they do again for cluster 4.
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A slow positive component peaking around 600-800ms, commonly referred
to as P600, can be found for both types of associations compared to the no
association control (clusters 3 and 4). Historically, P600 has been studied in
sentence comprehension tasks, leading to its interpretation as the reflection
of a process of integration and re-analysis of a word in its context [65][06]. In
our experiment, this component not only appears when there is an associa-
tion between the current word and its prime but also it shows a modulation
of amplitude that distinguishes word form (higher peak) from semantic tran-
sitions. Note that cluster 1 includes most posterior electrodes as well as left
and right frontal ones, differently from the usual centro-parietal distribution
reported in the literature.

Finally, a left-anterior cluster (cluster 2) highlights a late slightly significant
difference between semantics and word form. Note that unlike the broad
P600 distribution over cluster 1, this late significant difference around 1.1s
(well after the average reaction time in the behavioral experiment) is ex-
pressed in a small cluster of electrodes concentrated over the left frontal
cortex. This may suggest a confirmatory process, perhaps the repetition or
inversion of the semantic link, or the active mental execution of the ortho-
graphic change required to match prime and target stimulus. Interestingly,
a late Left Anterior Negativity (LAN) component has been found in studies
on morphosyntactic agreement [(7][08], suggesting a processing of reanalysis

of the prime-target pair.

Visual inspection of grand-averages

The statistical analyses of our exploratory study resulted in four spatiotem-
poral clusters with two main significant effects: an N400 component that
distinguishes between recognized associations and the no association con-
trol, and a P600 potential higher for word form transitions compared to
semantic ones. Nonetheless, further interesting effects may be hidden in the
row distribution of ERPs, to be tested in future experiments.

The ERP traces in Fig.3.10 show two additional effects, not captured by the
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Figure 3.10: ERP traces for the 3 main conditions for 10 selected channels (electrodes) broadly spanning
the whole scalp, represented here as flattened in 2D. The ERPs of each condition are obtained by merging
together the datasets from all the subjects and averaging the signals of each electrode. Shaded area
represent the standard error of the mean at each timepoint.

statistical analysis, which may be worth investigating in a second experiment.
The first effect is a modulation of the N400 in right-anterior channels (elec-
trode 42, F'8, in the example traces) that differentiates our three conditions;
negative deflections are more accentuated respectively for no association and
semantics compared to word form. The second is again another modulation
of the N400 appearing in left-posterior channels. This time the main effect
regards word form transitions, with a more negative potential, compared to
the other two conditions. The absence of a cluster for this left-posterior
N400 could be due to a possible issue with the construction of the adjacency
matrix for the electrodes in this region of the scalp, not fitting the spatial
distribution of the ERP.
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3.4 A new version of the experiment

3.4.1 Experimental design

The success of the exploratory experiment leads us to a deeper and more
controlled investigation of word transitions. The first experiment showed
no difference in the EEG traces of the different subtypes belonging to the
same category. For this reason, we planned a second experiment with better-
defined conditions in order to highlight the possible variability inside the two
macro-conditions of semantics and word form. To do so, we kept the same
experimental tasks described in Figs.3.3 and 3.8.

The new experiment, currently ongoing in the EEG phase, is designed to
enhance the possible difference between semantic transitions and colloca-
tions (earlier included as association transitions) by considering as colloca-
tions mainly words co-occurring in frequent Italian idiomatic expressions.
A further condition then aims to distinguish between noun-noun and noun-
adjective (or adjective-noun) transitions, as the first step towards a more
comprehensive and ecological study on language, including both semantics

and syntax.

Types of transition:

vowel — noun/noun (WF' ) (BACCHE/bocche) 3
- consonant — noun/noun (WF€ ) (PALCO/palmo) Word Form
. vowel — adj/noun (WF'_ ) (OVALE/ovile) ;o Souials
- consonant —adj/noun  (WF€, ) (FONTANA/lontana)
- semantic — noun/noun (S,.) (FAVOLE/storie) 3
- collocation — noun/noun  (C_ )  (SCHELETRO/armadio) , Se;(;?rgltsics
- semantic — adj/noun (S,,) (COLLERA/furioso)
. collocation - adj/n_om_m (C,.) (TORTO/marcio) J Control
* no correct transition 20 trials

Figure 3.11: List of the eight conditions of the second experiment, with relevant examples. Prime words
are in capital letters.

On the other hand, word form conditions have been restricted to single letter
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change transitions. In this case, the noun-noun/noun-adjective distinction is
added to a vowel-vowel /consonant-consonant condition, to check for a pos-
sible effect of letter identity. A summary of the eight total conditions with

relative examples in Italian is shown in Fig.3.11.

3.4.2 Stimuli

Semantic and orthographic transitions for this second experiment have been
collected from a dictionary of Italian words, extracted from the subtlex-it
annotated corpus [09]. The dictionary was first cleaned by removing anoma-
lous entries (e.g., wrong spelling, proper names, extremely long words, etc.)
and by including only words tagged as nouns or adjectives. A random set of
2000 words was then chosen in the range of frequency (i.e., number of occur-
rences in the corpus that ranges from 1 to roughly 2 - 10% counts) between
102 and 10° counts. With the resulting set, we calculated the orthographic

and semantic distances for all the possible pairs of words. We used the
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Figure 3.12: Scatter plot of the frequencies of each transition pair included in the final stimulus set.
Semantics pairs are plotted in blue while Word Form ones are in red. The diamond points represent the
mean frequencies for the two categories of association. Dotted lines represent the frequency range used
for selecting transitions.

Levenshtein measure [70] for orthographic distance and the cosine distance,

obtained from the Snaut [71] website, for evaluating semantic similarities.
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This last measure was obtained from training a word2vec model with 200
dimensions and a 5 words window on the I[tWaC' corpus to derive a vectorial
space of word meaning.

Pairs of associates were built for the eight conditions based on the measures
previously described. Additional words were later included to balance the
number of trials per condition. As shown in Fig.3.12, transitions were built

between words whose frequency satisfied the following relation:

[logio (fwy) — logio (fw,) |< 1.1, (3.1)

where fy is the number of counts mentioned above.

For collocation trials we included as associates words appearing in Italian
idioms or that compose together the name of an object, book, etc. (e.g.,
CODA /paglia, DENTE/giudizio, CORDE/vocali, DIVINA /commedia).
Collocation pairs have on average greater semantic distances than seman-
tic ones, at least for what regards noun/noun pairs. Adjective/noun pairs
on average are estimated by the vectorial model as farther apart in meaning
than noun/noun pairs. To check that transitions in the collocation conditions
were different than the purely semantic ones, we defined a measure of col-
location distance in our set by taking inspiration from the pointwise mutual
information (PMI) [72]. From Google Ngram Viewer [73] we collected the
frequencies (i.e., the raw counts) of the single words and of their collocations
in a 3 words window and we calculated the PMI for each transition pair with

the following formula:

PMI (W3, W) = log, ( fows ) (3.2)
Jwa fw,

where fy, w, is obtained by summing the frequency of all the collocations

found in the search. The PMI values were then normalized by the maxi-

mum value in our set and negative values were set zero (i.e., words occur-

ring together less than chance were set to the chance level). A collocation

distance (actually, a quasi-distance, as it is not guaranteed to satisfy the tri-
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angle inequality) for the couples (W5, W) was then obtained by calculating
1 —PMI(W;, W3). After the inclusion of a collocation distance, semantic dis-
tances were re-evaluated with a model less sensitive to syntactic structure,
with 400 dimensions and trained with a 9 words window.

The final stimulus set showed different distributions of the defined distances,

allowing for the categorization into the eight total conditions with 20 trials

for each condition (Fig.3.13).
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Figure 3.13: Bar plot with the distribution of average distances for each of the eight conditions. Error
bars represent the standard error of the mean. The orthographic distance was normalized by the length of
the longest word in the pair. Note that, among the 4 categories on the left, collocations have on average
a lower collocation distance than purely semantic ones. Labels on the z-azis represent the experimental
conditions defined in Fig.3.11, where S stands for semantic, C for collocation, an for adjective/noun, nn
for noun/noun, WF for word form and superscript letters ¢ and v for consonant and vowel respectively.

3.4.3 Reaction Times: results

A reaction times experiment was performed with the same modalities of the
previous behavioural experiment using the new stimulus set. 15 participants
performed the task with a 93% accuracy. Again, statistical analyses show
higher accuracy for word form transitions (~ 97%) compared to semantics
ones (~ 89%), as shown in Fig.3.14.

The ease of recognition is also reflected in the distribution of reaction times

for the two classes of association, with a significant difference (p < 0.001) of
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Figure 3.14: Distribution (left) and average proportion (right) of correct responses for the two categories
of transitions. Semantic associations are slightly more difficult to recognize than word form ones, consis-
tently with the previous experiment. A Wilcoxon rank-sum test on the distributions of correct responses
proved this difference to be statistically significant with p < 0.001. Error bars represent the standard error
of the mean.

~ 130ms. The shorter reaction times of this second experiment compared to
the first are mainly due to a decrease in the response times for the word form
category. The average RT of 730ms for word form transitions is the same
average value measured for the omission subtype in the first experiment,
even if this time transitions involve only the change of one letter. Since the
subconditions that we considered were not explicitly told, participants in this
new task had to check only for one rule of orthographic change, leading to
the possible reduction in reaction times.
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Figure 3.15: (Left) Distribution of Reaction Times for both conditions. (Right) Mean Reaction Times.
Error bars represent the standard error of the mean. Semantic transitions are recognized slower than word
form ones.
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Association subtypes

Reaction times for the eight conditions are plotted in Fig.3.16.Semantics
conditions show different trends between semantic (S) and collocation (C)
transitions when comparing noun/noun (NN) with noun/adjective (AN) sub-
types. However no parallel interaction is present in word form trials, where
it would involve consonant/vowel changes .

In the NN comparison, semantic (Syx) transitions are faster (~ 70ms) than
collocations (Cyy), implying a possibly stronger effect of semantic rather
than collocation links in driving the reaction times. The opposite occurs
in the AN comparison, with shorter reaction times (~ 90ms difference) for
the collocation (C4y) subtype. With adjective/noun pairs, the semantic dis-
tances are balanced between the two conditions (see Fig.3.13) and only the

difference in average collocation distance defines the two classes.
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nn nn an an nn nn an an

Figure 3.16: Mean reaction times for the eight types of allowed transitions. Error bars represent the
standard error of the mean.

Word form conditions, as already noted, do not show a modulation for the
NN/AN comparison. Interestingly, however, a clear modulation appears for
the vowel/consonant comparison with an average difference of ~ 40ms, show-
ing a faster processing for vowels.

The table in Fig.3.17 reports the significance results of a Wilcoxon rank-sum

test for all pairs of conditions.
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C_NN S_AN CAN WF VNN WFCNN WF VAN WF C AN

S NN *) Kk K * - * Kk %k * kK * ok ok *k Kk Kk
C_NN - * k% * Kk %k * k% * Kk ok * % Kk
S_AN * kK * k% * kK KKk * K Kk
C_AN * kK L KKKk K kK
WF_V_NN * - x
WF_C_NN £ -

WF_V_AN ok

Figure 3.17: Significance results from comparing the reaction times between all pairs of conditions with
a Wilcoxon rank-sum test. * stands for p < 0.05, ** for p < 0.01 and *** for p < 0.001.

A currently ongoing EEG experiment, with the same design of the previous
ERP experiment, will hopefully shed light on the neural correlates of the

word transitions described in this section.
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Chapter 4
Potts Model Implementation

The encouraging results of the experiments described in Chapter 3 pushed
us towards the development of a network architecture able to perform the
same task.

In this chapter, we will propose an approach to model priming tasks in the
framework of a latching process, in a similar fashion to the model of spreading
activation suggested by Lerner et al. in [39]. In this work, the authors showed
how a latching process can replicate some of the semantic priming effects that
challenged the attractor network approach, such as mediated and asymmetric
priming. The modeling of priming by Lerner et al., however, was indirect,
being based on the results of a simulated process of spreading activation,
starting from the prime node, on a small semantic network.

On the other hand, in our implementation we will explicitly model both the
encoding of the prime and the process of recognition of the correct target, in

a network with the minimal structure imposed by the task.

4.1 Modeling a priming task

The Potts model in [34] [30] was taken as a starting point for our network
implementation of a priming task. Each Potts unit represents a patch of

cortex, thought of as a local network of many neurons. Each local network
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is supposed to store S items, which can be thought of as semantic or or-
thographic features. The composition of these distributed features generates
the representation of words and concepts in a similar fashion to [$]. The
same composition of features can thus be implemented in our network by
building patterns of co-active Potts units. The patterns of activity generated
in this way are then stored in the connections between the units as stable
attractors of the network by means of Eq.2.1. Once the network is cued with
an external field, its activity converges to the closest global attractor. How-
ever, the introduction in this model of the time-dependent thresholds defined
in Eqgs.2.3, representing inhibition and adaptation, allows destabilizing the

activity, making it jump from an attractor state to another close to the first.

4.1.1 Network architecture

As a first, primitive, model of our behavioral task, we have limited the ex-
perimental conditions to the only semantic and word form transitions. In
addition, for the semantic condition, collocations have been included as rule-
based memories, as an application of the instructed latching described in

section 2.2.

Semantic and orthographic networks

To model the task described in Chapter 3, we constructed a network divided
into two components: one subnetwork storing orthographic information and
the other encoding the semantic content of words. The first word form net-
work was the only one to receive the external cue representing the visual
stimulus in the experiment. The visual cue in this implementation elicits, in
the word form subnetwork, the representation of a target word, which in the
global network will interact with the representation of the previously stored
prime word.

Each network was initialized with independent sets of randomly correlated
patterns. Each word representation in the global network was then built by

linking one pattern of the semantic network (S) with one of the word form
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network (WF). Thus, there was a 1 to 1 correspondence between the pat-
terns of the two subnetworks. A schematic view of the full network model is

presented in Fig.4.1.

External
Cue

/(]
[

Figure 4.1: Network architecture for simulating the word-transitions experiment. The global network
is splitted into a Semantic and a Word Form network. The two networks are linked by autoassociative
connections such that each word is represented by a unique global pattern of activity. The external visual
cue affects only orthographic units.

4.1.2 Encoding of the prime

A priming experiment, like the one in the previous chapter, involves two
main types of processing, namely the encoding of the prime word in short-
term memory and the recognition of its possible relation, based on specific
similarities in long-term memory, with the current target word.

For the encoding of the prime word, we exploited the local parameter w,
which appears as a positive feedback term acting on Potts states (Eq.2.1.2),
helping the global network to converge to an attractor. This term is usually
kept constant for all states and all units; however, to produce a short-term
memory of the prime, we changed the w of all the states active in the pattern

representing the prime, effectively increasing the depth of its attractor.
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The change to the w parameter is defined by the following equation:

'U}f =w +w 5k7glprime (41)

where @ is a small positive number, "™ is the state of unit 7 in the activity

i
pattern representing the prime word and ¢ is the Kronecker function. In our
case, no time-dependence has been included in the short-term memory, but
a degradation of the memory of the prime word could easily be included for
modeling longer tasks, with a decaying value for w (t).

The mechanism in Eq.4.1 is only one of the available alternatives for model-
ing short-term memory in our Potts attractor neural network, but a detailed

analysis on this topic will be treated in [50].

4.1.3 Structure of the word-space
Word transitions based on similarity

To test the associative capability of the network in the two conditions of
the experiment, we generated different sets of randomly correlated patterns
to store in the two subnetworks. Then, for each condition, we selected the
five global patterns in the full network with the highest correlation with a
chosen prime pattern, and we manually changed them such that the source
of their correlation could be restricted to only one of the two subnetworks.
This manipulation allowed us to construct models of semantic and word form
associates of the prime.

The prime was chosen among all patterns, as the one having the highest
number of highly correlated patterns with it. However, since for Potts pat-
terns we do not have a unique definition of correlation, each unit being active
in any of its S possible states, we defined, as in section 2.2, two types of
correlation: C) equal to the fraction of units active in the same state in the
two patterns considered; (5, instead, equal to the fraction of shared active
units but in different states. Since similar words share common features and

features in our model are represented by the active states of the Potts units,
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Figure 4.2: Distribution of correlations in the full network and its two subnetworks. Grey dots represent
the correlations between all pairs of patterns, in green are highlighted only the pairs including the prime
while in blue are plotted the five patterns changed to mimic, in this case, a semantic relation with the
prime. Cy axes for the two subnetworks, in this and future plots, have a different scale than for the
full network to reduce the spacing between dots, since distances in this correlation space are sensitive to
network size.

we considered as highly correlated patterns those pairs with high values of
Cy and low values of Cj.

According to the previous definitions, an example of semantic associations
with a prime word is shown by the C; — C5 plot in Fig.4.2. While the grey
cloud in the figure represents the correlations between all pairs of patterns,
the green cloud shows the correlations between all pairs in which one of the
patterns is the prime word. As we can notice, green dots span a region of
relatively low correlation with the prime and thus the relative pairs are used
to effectively model the no association control condition of the experiment.
Conversely, blue dots represent the five patterns modified to be highly cor-
related with the prime, having the main source of correlation, in this case,

in the semantic network.

Word transitions based on collocations

Collocations are words often occurring one after the other in a text or speech.
Both experiments showed a modulation of reaction times sensitive to this
type of transition, therefore we included it as a third association mechanism.

This kind of relations can be thought and implemented in our model as an
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instruction that forces a jump from the first word to the second. Instructions
can be stored in the Potts network as a heteroassociative term in the coupling
tensor JZZ, as in Eq.2.7, linking one pattern to another.

For the simulations in this chapter, we chose the five patterns with the lowest
(' correlation with the prime, and we manually changed them to set their
(' values to zero in both subnetworks. The association with the prime was
then implemented as an instruction of the type target — prime. In order
to evaluate the effect of the change of w in guiding the dynamics towards
the prime, we added for each target word a further instruction pointing to a

non-prime pattern, target — non-prime.

0.4 Full Net. Semantic Net. Word Form Net.
' All Pairs
® No Association
0.5 0.5 ® Collocations
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Figure 4.3: Distribution of correlations in the full network and its two subnetworks. Grey dots represent
the correlations between all pairs of patterns, in green are highlighted only the pairs including the prime
while in pink are plotted the five patterns for which an instruction towards the prime was implemented
through an heteroassociative term.

Fig.4.3 shows the distribution of correlations between the five patterns which
form a collocation with the prime. Purple dots, representing collocation pairs,
lie on the €7 = 0 axis to avoid the possibility of spontaneous transitions to

the prime.

4.1.4 Latching back to the prime

In the analysis of our experimental task, we focused on the behavioral and
neural responses to the target words. Similarly, in this simulated experi-

ment, we have put our attention on the process of recognition of a correct
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associate. For this reason, after storing the prime in the short term memory,
we consider a successful recognition as a latching process coming back to
the representation of the prime. Therefore, simulations started from cueing
the network with a target word, waiting for the latching process to recall
the original prime word. The number of latching steps required to reach the
prime pattern is considered as an analog of the reaction time for recognition
of a correct association.

An example of a successful recognition of a prime-target pair is given in
Fig.4.4, where pattern 0 is initially cued and the first latching step drives
the network in the representation of the prime word (red latching step in the
second row of the figure), related to the target through a semantic associa-

tion.
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Figure 4.4: Example of a trial with a latching transition from a semantically associated pattern (pattern
index 1) to the prime (pattern index 187, in red) occurring as the first latching step. (Top row) Evolution
of the overlaps for the full network and its subnetworks. (Bottom row) Plots of the index of the pattern
with the highest overlap with the state of the networks in time. Note that the two subnetworks proceed
in nearly synchronous latching.
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4.2 Simulation Results

4.2.1 Parameter setting

For our simulations of the model, we considered a network with N = 600
units, equally divided in the two subnetworks, with S = 7 possible active
states. The total number of randomly correlated patterns was p = 200.
Each unit received an input connection from C' = 90 other units, equally
distributed between the two subnetworks. For the positive feedback term w,
we chose a value of 0.45, which puts us in a region of correlated latching
transitions (Fig.4.5). For the units and states active in the prime, instead,
we chose a value w = 0.1. All the other parameters of the model were kept

as in the simulations presented in Chapter 2.

All Transitions

® Al Pairs
Transitions

0.15 0.2 0.25 0.3 0.35 0.4
Cc1

Figure 4.5: Distribution of correlations for all latching transitions observed in a simulation with w = 0.45
for all states. The red cloud covers a region of high Cy and low C2 values (correlated latching).

4.2.2 Effectiveness of priming

In a first batch of simulations, we checked that our manipulations on correla-
tion distributions and on the encoding of the prime could allow the network
to recall the prime after being cued with a correct association target. For
the effectiveness of collocations transitions we instead refer to section 2.2

on instructed latching.
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For these simulations, we generated a set of p patterns for which pattern
187 was chosen as prime and patterns {1,11,13,70,80} were selected and
modified to implement semantic or word form transitions. The two types
of transitions were simulated separately by changing only the five selected
patterns. The network was cued, through its word form part, ten times for

each of the p stored patterns, for a total of 2000 independent simulations.
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Figure 4.6: Distribution of correlations for the patterns for which the first latching step was to the prime
in at least 90% of the trials. (First row) Simulation with strong semantic relations and (Second row) with
strog orthographic relations in the 5 modified patterns, namely patterns {1,11,13,70,80}. Green dots
represent immediate returns of these five modified patterns. Red dots show all the non modified patterns
returning to the prime in the first latching step.

In Fig.4.6 we focus our attention on those patterns for which, in all ten tri-
als, the first latching step was on the prime. By highlighting these patterns
in the C}-C5 graph we can then check their relation with the prime. We

can notice that the five modified patterns almost always lead to the prime

in the first latching step, with the only exception of pattern 70 in word form
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associations. However, they are not the only ones. Indeed various degrees of
correlation with the prime may lead other patterns to latch to it. This result
shows how the tuning of w with Eq.4.1 effectively broadens the attractor of
the prime, facilitating transitions towards it. The large number of patterns
that follow this type of transitions in the current implementation pushes to-
wards the definition of a more structured word-space in future versions of
the model, where associates will not be artificially constructed from a ran-
domly correlated set of patterns. An ecological way to implement structured
relations between stored memories has been proposed for the Potts model in
[74].

4.2.3 Simulating reaction times

In a second batch of simulations, we included trials of association pairs linked
by a collocation relation modeled with heteroassociative couplings stored in
the internal connections of the orthographic network. We used in this case a
0-o interaction with A = 1 (see section 2.2 for the details on heteroassocia-
tion).

Full Net. Semantic Net. Word Form Net.
' { All Pairs

No Association
Semantic
Word Form
Collocations

0.3

0.2 0.2

0.1 02 03 04 0.1 02 03 04 01 02 03 04

1 1 c1

Figure 4.7: Distribution of correlations for the patterns with all three types of transition: semantic

(blue), word form (red), and collocation (pink). Non-associated patterns are in green while all pairs of
patterns are in grey.

We first generated five independent sets of p patterns; for each set, we then

found the pattern with the highest number of highly correlated patterns
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with it and we used it as prime. Once we defined a prime pattern for each
of the sets, we changed its 15 mostly correlated patterns to model the tree
rules of association, as described in section4.1.3. This search for highly
correlated patterns was used to remove as many unstructured correlated pairs
as possible, by transforming them into semantic, word form and collocation
associations. With this procedure, each set of patterns had a unique prime
and five associates for each type of transition. Fig.4.7 shows the distribution
of correlations for one of the five sets of patterns.

For this new set of simulations, we measured the distribution of reaction
times for each type of transition, including the ones with no relation, by
considering the average number of latching steps required to return to the
representation of the prime. Each of the p — 1 target patterns was cued ten

times for each of the five sets of patterns.

Results

From this last simulation, we can notice different distributions of reaction
times for the three types of transition, whose averages can be qualitatively
compared with our behavioral data.

As we can notice from Fig.4.8, “no association” transitions have longer reac-
tion times compared to the three classes of proper associations. Returns to
the prime in this control condition, as already discussed in section 4.2.2, are
due to the artificial structure of the word-space, where semantic representa-
tions are manually built from randomly correlated patterns. Furthermore, in
these simulations we considered complete latching trajectories, rather than
only their first steps, making it more likely for the simulation to eventually
reach the broad attractor state of the prime. Nonetheless, the difference be-
tween the distributions indicates the efficacy of our manipulations.

By looking at the three main conditions, we can see that collocation tran-
sitions are slower than similarity-based associations, in analogy with the
noun-noun comparison between semantic and collocation transitions in the

second experiment. On the other hand, no clear difference in the reaction
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Figure 4.8: Distributions and means of reaction times for the three types of transition, compared to “no
association” transitions

times can be seen between semantic and word form associations.

Conclusions and Outlook

Orthographic transitions may take advantage, at the level of human reaction
times, from the visual similarity of the stimuli, even before reaching word-
level processing. However, as suggested by the results of the second exper-
iment, a distinction between the processing of vowels and consonants could
be implemented in the network, bearing possibly different reaction times
even at the word level. Furthermore, in the current implementation, the
two subnetworks are connected by autoassociative connections which yield
an almost instantaneous information transfer from the orthographic network
to the semantic one. Further segregation between the two networks would
then account for faster processing of visual stimuli compared to accessing
semantic memory. In such a model, the average activity of the units in the
two subnetworks may be considered as an in-silico correlate of the evoked

potentials found in the EEG experiment, similarly to the results from the ar-
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tificial neural network by Cheyette and Plaut [75], with the main difference,
in our case, of being the result of a general cortical model, rather than an ad

hoc model of semantic priming.
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Chapter 5

A Spontaneous Stream of
Thoughts: Mind-Wandering

In the previous chapters, we studied one of the most basic mechanisms in
language production and comprehension, namely the associative relations
that link one word to another. To do so we developed an experiment on word
transitions with a structure simple enough to be easily implemented with our
Potts neural network. This approach allowed us to avoid experimental and
computational complications that arise when studying language in ecological
settings. Although we limited as much as possible the use of unnatural
stimuli, experimental constraints often shape our understanding of the neural
processes underlying different human mental faculties. In this chapter, we
will review the main results from one of the most ecological approaches to
the investigation on human memory and language processes, namely the
research line on mind-wandering. In the second part of this chapter, we will
present a model for mind-wandering by means of our Potts attractor neural
network, able to replicate some of the interesting results from hippocampal

and prefrontal patients, somehow impaired in their ability to mind-wander.
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5.1 Mind-Wandering

In our everyday life, our conscious experience continuously ebbs and flows
between the current task and unrelated thoughts and memories. This shift
of attention from external to internal contents is spontaneous and is a very
common phenomenon. It has indeed been shown that people spend from
25% to 50% [76] of their waking time thinking about something different
from their “here and now”.

The intimate and spontaneous nature of mind-wandering makes this mental
process one of the most mysterious and fascinating products of the human
brain. However, because of its almost inaccessible nature, MW has been
historically studied through Fxperience Sampling, the most common method
to access the contents of spontaneous thoughts. Across task, participants
are intentionally interrupted and probed to report whether their thoughts
have been fully on-task or “elsewhere”, and, in case, about the contents of
such off-task thoughts. Recently, the investigation on mind-wandering and
self-generated thoughts has seen an explosion, mainly due to the advent of
sophisticated imaging techniques that led to the discovery of a consistent
activation of certain brain regions during rest. What is now known as the
“Default Network” has been linked to mind-wandering and it involves a set of
interconnected brain regions, including the medial temporal lobes (MTLs),

ventromedial prefrontal cortex (vmPFC), posterior cingulate cortex, and the

angular gyrus [77][78][79][20].

5.1.1 Impairments of spontaneous thinking

The role of the different brain regions in MW is still unclear but experimental
investigations, in particular on vimPFC and hippocampal patients, have shed
light on the possible different influence of these two regions on spontaneous
thought generation.

VmPFC patients show a reduced frequency of mind-wandering, but, when

they do mind wander, their thoughts are mostly about the present and never
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about the future [31]. Interestingly, vinPFC damage does not change the
frequency with which participants claim they are unaware of the content of
their off-task thoughts, suggesting it causes impaired construction, not meta-
awareness, of mind-wandering contents [32].

On the other hand, hippocampal patients experience mind-wandering with
the same frequency as controls. However, while off-task thoughts are rich in
details in healthy controls, in hippocampal patients they are semanticized,
not episodic and mainly present-oriented [33].

We tentatively propose, therefore, that during mind-wandering vinPFC initi-
ates the construction of events alternative to direct perceptual experience, by
coordinating the activation of relevant schemata [34], which the hippocampus

uses to build a rudimentary sketch of the event.

5.1.2 A latching perspective on MW

Mind-wandering, a spontaneous train of thoughts unfolding in a rather un-
constrained fashion, is thus reminiscent of a latching process, in which some
of the transitions appear random while others are more guided by local
schemata. Therefore we propose that vimPFC participates in the mechan-
ics of neocortical latching by facilitating congruent consecutive retrieval of
stored memories, while their content is boosted by the hippocampus.
Mathematizing the psychological concept, a schema may be conceived, in
the framework of our Potts model, as the association of attractor state k in
local network 7 with the subsequent attractor state [ in local network j, an
association extracted over multiple similar occurrences of the same sequence
of states [84]. This view can thus be easily implemented in the Potts network
as an heteroassociative contribution described in section 2.2.

On the other hand, a Potts model connected with a hippocampal model may
utilize it as an “episodic content booster,” reinvigorating streams of thoughts
in the cortex without completely been driven by it if hippocampal output
representations are activated not too frequently relative to the sequence of

neocortical states.
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Model predictions

In such a network a lesion to the hippocampal component is expected to result
in reduced episodic content boosts, with preserved schema-driven transitions:
latching is thus long-lasting but constrained to schematic contents.

Conversely, a lesion to vinPFC is expected to disarticulate mind wandering,
leaving it over-dependent on the hippocampal content booster: ephemeral,
inconsequential, short-lived mind wandering is now triggered by the infre-
quent hippocampal output and poorly assisted by schema-guided construc-

tion processes.

5.2 A Potts model of MW

5.2.1 Network architecture

Our network model for MW aims to capture the functioning of the main
components involved in the Default Network in the human cortex. For this

reason, we considered the tripartite network sketched in Fig.5.1.

Figure 5.1: Schematic representation of the network model of the Default Network considered as a
latiching model of mind-wandering. ymPFC' is an heteroassociative network storing schema associations
between stored patterns. SW (i.e., semantic workspace) is an autoassociative network that stores as ac-
tivity patterns the semantic representations of words and concepts. H represents instead the hippocampal
input to the neocortical network SW.
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The SW, i.e., semantic workspace, network can be regarded as the core com-
ponent of the model, storing the semantic representations of the single con-
cepts which will be concatenated during mind-wandering simulations. This
memory component is implemented by an autoassociative Potts neural net-
work described in Chapter 2. The latching dynamics occurring in such a
network will be considered as a simulated mind-wandering process. The dif-
ferent latching properties of the network in Fig.5.1 will then be related to
the properties of the ymPFC and H components.

Hippocampal input

The hippocampus in this implementation is not directly modeled with a Potts
network, instead only its input to the semantic network is considered. We
propose the role of the hippocampus in mind-wandering to be that of reinvig-
orating the activity of the semantic network by recalling episodic memories.
These memories are modeled as static collections of four patterns that are
elicited all together for a brief period. For each of the p stored patterns
in network SW, we chose at random three other patterns that would form
with it an episodic memory. The distribution of correlations between any
chosen pattern and its three other components in its episodic memory are
highlighted in red in Fig.5.2.

Hippocampal input

® All pairs
® H. Input

0.15 0.2 0.25 03 0.35 0.4

Figure 5.2: Distribution of correlations between all pairs of patterns (blue) and of pairs occurring in the
same episodic memory (red).
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During simulations, the hippocampus cues network SW for five times at times
= {700,900, 1200, 1600, 2100}. The cue is modeled by an additional term
in the field h¥ of units in SW, namely:

Wt =g (477) Y 15&% (5.1)

HE{M}Episode

where ¢ is the strength of the cue, W (t, 1 ) is a window function equal to
1 when 1 <t < 1 4100 and 0 otherwise, and {p}*5°% is the collection
of four patterns that compose an episodic memory. At times ¢! the cued
episodic memory is the one associated the pattern with the highest overlap

m in network SW.

Schemata in the vimnPFC

Schemas in our model are considered as frequent ordered associations which
can be implemented as heteroassociative instructions (section 2.2) stored in
the internal connections of the vimnPFC network. To enhance the heteroasso-
ciative role of vmPFC, favouring the encoding of schemas rather than single
memory items, we diminished the influence of the autoassociative component

by a term (1 — A). In this way Eq.2.8 becomes:

Sl Kl 1 kl,het i p 1 &
€
=3 [a=N ok + gt 9]+w<a —SZ@) (5.2)

j#i 1=1
where 7 is a unit in the vmPFC subnetwork and A is the strength of heteroas-
sociative connections that appears as a multiplicative factor in the definition
of JZ@l’hd (see Eq.2.7).
Schemas are then constructed between correlated patterns in network SW.
Therefore, for each pattern three instructions were added towards the three

most correlated patterns with it, as shown by the distribution in Fig.5.3.
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vmPFC instructions

® All pairs
® Instructed pairs

0.15 0.2 0.25 0.3 0.35 0.4

Figure 5.3: Distribution of correlations between all pairs of patterns (blue) and of all pairs of instructed
transitions (red).

Parameter setting

The parameters used for simulating mind-wandering are the following: N =
600 of which N° = 480 and N""PFC¢ = 120, a = 0.25 ¢,, = 90 of which
¢S = 72 (internal connections in network SW) and c¢?mPf¢ = 18, S = 7,

g ={0,0.1,0.2,0.3,0.4,0.5}, A = {0,0.2,0.4,0.6,0.8,1}, p = 200, U = 0.1,
B =125, w=0.5, 7 = 3.33, 7 = 100 and 75 = 10°.

5.2.2 Simulating spontaneous thoughts: Results

For each (g, \) pair we generated 30 latching sequnces. The influence of the
parameters g and A was used to simulate not only MW in healthy subjects
but also in hippocampal or ventromedial patients.

Two examples of latching sequences are given in Fig.5.4. As we can firt
notice, higher values of A seem to increase the latching length. When activity
dies out in the network, hippocampal input, if strong enough, may reactivate
the network from its last “thought”.

In Fig.5.5 we can observe the two effects of vimPFC in our model. When
increasing A latching transitions tend to follow schematic instructions, mixing
them with spontaneous transitions and, if ¢ is high enough, with episodic

content. The second effect is the average increase in latching length. This
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Figure 5.4: Examples of latching sequences for two choices for (g, \). The first row shows the overlaps of
the p patterns with the state of the network. The second row highlightes the types of transitions. In red
and green are plotted the followed instructed transitions and in blue the spontaneous ones. In grey instead
is shown the cued patterns from the hippocampus. The third row shows the activity of the full network
and of its autoassociative (i.e., SW) and heteroassociative (i.e., ymPFC) components. High values of A
increase latching length while high values of g reactivate the network when latching dies out.

result is in analogy with mind-wandering in vimPFC patients, modeled by low
values of A, for which it has been found an impairment in the construction of
mind-wandering contents. The reduced frequency of mind-wandering in these
patients may be explained by our model by the difficulty in spontaneously
generating long sequences from both an external or a hippocampal input.
In this case, latching sequences resemble more a retrieval of single episodes
rather than an extended mental travel.

When considering the contribution of the hippocampus on simulated thoughts,
we notice again two main effects. Fig.5.6 shows a jump in the average number
of latching steps that occurs for g ~ 0.3. Below this value, the hippocampus
has not enough strength to reactivate the cortical network, leaving only to
the vimPFC the role of carrying on the latching sequence.

The second role of the hippocampal input is instead described in Fig.5.7,
where we considered how much neocortical latching follows the episodic con-
tents received from the hippocampus. As we can notice, for g 2 0.3 latching

is mainly driven by hippocampal inputs for all values of A\ but with a crucial
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Figure 5.5: Effect of A (i.e., the strength of schema instructions) on latching. (Left) Followed fractions
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relevant for high values of A, when latching is long-lasting.

73



difference in the number of latching steps between the different memories
the compose an episode. Indeed, for lower values of A, the network tends to

jump more between the items of an episodic memory.
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Figure 5.7: Effect of g in driving the contents of neocortical latching. (Left) Average overlap between
latching steps and the suggested hippocampal patterns. This overlap is equal to one if latching steps are
completely aligned with one or more of the cued patterns by H (evaluated only when the interaction is

active). (Right) Average number of latching steps between the single patterns that compose an episodic
memory.

The conjunct role of g and A on latching length is outlined in Fig.5.8, where

network activity at time ¢ is calculated with

N

Activity — ;v > (1-a(1). (5.3)
To summarize, high values of A (i.e. = 0.6), a synonym of a functioning
vmnPFC, generate long latching sequences with a balanced mixture of spon-
taneous and schematic transitions. Both types of transitions, however, occur
in a regime of correlated latching, given by the chosen value of w and the set
of schema instructions. Mind-wandering is thus driven by purely semantic
associations in the absence of hippocampal input. A result that mimics the
behavior of hippocampal patients.
On the other hand, for high values of ¢ (i.e. 2 0.3), the hippocampus has a
boosting effect on the network by both reactivating its units and driving its
latching to sequences of episodic memories. Ventromedial patients that rely

exclusively on hippocampal input can thus be modeled by the low A and high
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Figure 5.8: Network activity averaged over 30 simulations for nine (g, \) pairs. A qualitative model of
MW in healthy subjects is achieved with values of g = 0.3 and A 2 0.6. Different degrees of impairment
are described by lower values of g and A.

g parameter region, where latching is short-lived, driven by episodic contents

and poor of semantic and schematic relations.
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Chapter 6

The Phonological Output
Buffer

The Potts neural network has been utilized in previous chapters to model
large scale cortical networks and their behavior in performing high-level cog-
nitive functions, like spontaneous thinking and word associations. In this
chapter, instead, we will consider a Potts model implementation for a spe-
cific processing in the final stages of speech production, namely the phoneme

concatenation at the level of the phonological output buffer.

6.1 What is the POB?

The Phonological Output Buffer (POB) is a conceptual construct which ap-
pears necessary to explain patterns of deficits observed in certain linguistic
tasks, such as reading aloud. The occurrence in some subjects of phoneme
omission, addition, replacement and misplacement, particularly when reading
non-words, with concurrent preservation of the lexicon and of grapheme-to-
phoneme conversion, leads to posit a stage downstream, or a device, where
phonemes are assembled in the correct order, perhaps modified as required,
and kept in short-term memory (STM) until the word or non-word is uttered
by the subject [35][86][87][35].
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It is therefore tempting to think of the POB as a specialized device, located
somewhere in the brain, which has evolved to facilitate the human language
faculty.

The notion of an ad hoc and unique phoneme assembly line is challenged,
however, by the occurrence of similar deficits in the sequential production
of other linguistic objects. Experimental data on patients with POB deficits
have shown a tendency in committing errors specifically on elements belong-
ing to the same linguistic category such as numbers, morphemes, function
words, ete. [89]. This dysfunction for distinct linguistic material can appear
both as phonological errors when uttering words (e.g. time — tise), or as se-
mantic errors when uttering number or function words (e.g. eight — nine ).
Similar semantic errors can be observed for morphologically complex words,
where a wrong, but existent, morpheme could replace the correct one. The
discovery of these deficits led to the proposal of separate mini-stores specific
for each linguistic object. The different mini-stores may be thought of as
localized and physically separated, but close, networks with similar cortical
mechanisms underlying their functioning. An alternative view to the mul-
tiple stores, however, can still not be excluded. The experimental evidence
summarized above can also be compatible with a single memory store en-
coding different linguistic categories as separate clusters in its whole activity
space. With this hypothesis mistakes by POB patients would be due to a
failure of the network in specific regions of its activity space. Partial cortical
localization of the different categories could still be implemented by assign-
ing a preferred tuning to specific linguistic material, say numbers, onto a
spatially defined subset of neurons of the network.

The main difference between the single and multiple stores hypotheses would
then reside in their functional implications, one of which may be the storage
capacity. Two mini-stores, one of which holding M; function words and the
other My numbers, should be able to operate concurrently and hold M; func-
tion words and My numbers at the same time. A single network, in contrast,

would be limited by a combined capacity determined by the degree of mutual
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interference, down to kM; + (1 — k) My objects with full interference, with k
set by the task at hand.

In the following sections we will propose, using a Potts network model of
cortical dynamics, a first implementation of the phonological output buffer
with the final purpose of evaluating its statistical constraints on memory

performance.

6.2 Building a model of the POB

Language production models, as the one in Figure 6.1, typically consider the
necessary processing stages needed to produce an utterance and which could
vary depending on the task to be modeled. In this sense, the phonological
output buffer can be considered as a special stage in which different streams
of information have to converge to be transformed into a sequence of instruc-
tions to the Articulatory System [90]. For simplicity, we will focus on a task
involving only real words, already known by the participants. This will allow
us to consider only one type of input to the POB, namely the Phonological
Output Lexicon (POL) [91][92]. For our purposes, we will consider the POL
as a dictionary containing all the relevant phonological information for utter-
ing a word. This simplification will be particularly useful to reduce the CPU
time of our simulations by storing at once in the POL all the words that will
be used to test the functioning of our POB model. However, our assumptions
on the form of the input will hopefully be vague enough to be generalizable
to other types of tasks (e.g. involving nonwords). The main goal for our
POB model will then be to transform the compact package of phonological
information coming from the POL into a temporal sequence of what we will
refer to as syllables. In future implementations of the model further details
and functions (e.g. phonotactic rules, morphological composition, etc.) may

be added to the core mechanisms described in this thesis.
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6.2.1 Network Structure

Our network model will consider the interaction between the POL and the
POB, therefore we will focus our attention on 3 main components: 2 au-
toassociative subnetworks, modeling the behavior of the POL and the POB,
and the connections between the two networks, responsible for the transfer
of information from the POL to the POB. No feedback connection from the
POB to previous stages of the language production model will be included
for simplicity. Both subnetworks will be modeled by Potts attractor neural
networks. The POL will receive its input in the form of an instantaneous cue
to one of its stored patterns, namely the word to be uttered, from a previous
stage and will transfer this information to the POB through heteroassociative

connections as described in Eq.2.7.

Parameter setting

In all simulations we have modeled the word buffer as a Potts network of
NPOL = 600 units, with CZ9L = 90 internal connections and p"°F = 200
stored words. For both networks, the patterns stored were randomly gener-
ated without adding any sort of structured correlation. In order to prevent
the buffer network from spontaneously latching, we chose the the following
set of parameters: w’9F = 0.45, 7'1POL = 3.33, TQPOL = 33.3, TéDOL = 109,
S =7 a=025 =125 and U = 0.1. On the other hand for the POB
we set the parameters to allow it to be driven into a latching regime when
instructed by the POL. For the POB we chose: NF98 = 200, CP9F = 150,
pPO8 = 200, wPO8 = 0.5, 798 = 3.33, 7FOL = 11.1, 9L =105, S =7,
a = 0.25, § = 12.5 and U = 0.1. The choice of a three times faster adapta-
tion, determined by 7, is motivated by our decision to model only 3 syllable
words and thus to allow the POB to latch to all the 3 syllables while the
word is still activated in the buffer. The number of heteroassociative con-
nections between the two networks was fixed to C"** = 150. This has to be
interpreted as the number of units in the POL influencing each unit in the

POB. In the following paragraphs, we will illustrate the additional elements

80



that define our model of the POB.

Step 1: Cascade Input

In all simulations we have considered only 3 syllable words. To instruct the
POB on the correct sequence of 3 syllables composing a word we worked on
POLy ,P

P"?% in Eq.2.7. We

assigned to each pattern stored in the word buffer a sequence of 3 syllables in

the shape of the heteroassociative matrix G € RP

a way that each syllable could be enrolled in composing only 3 words, each
time in a different position. For instructing the sequential order of syllables
for word W we set GWS1 = 1.0, GV52 = 0.9 and GWV5* = 0.8, where S;, Ss,
S3 are the indices of the first, second and third syllable of word W.

Word (POL)
— Input to 1 Syll |
Input to 2" Syl
Input to 3" Syll |1

o
o
T

o
o
T

Input to POB
o
NN
T
L

o
[N)
T
L

550 600 650 700 750
Time

Figure 6.2: Input to the POB syllables (coloured lines) associated to the active word in the POL (black
line).

We used a value of A = 0.2 and a 0 — o interaction to implement the heteroas-
sociation. This type of mecanism was preferred to the § — o one to favour
a synchronous dynamic of the two subnetworks. As we can see from Fig.6.2
the POL sends a constant input with different strengths to the 3 syllables to
be produced. However the POB, even if sometimes it retrieves the correct
sequence, as shown in Fig.6.3 by the red— green— blue color code, seems to
enter a spontaneous latching phase where many wrong syllables are also re-
trieved. A possible origin of the problem can be seen by plotting the activity
of the units encoding the 3 syllables (Fig.6.4). In an ideal scenario, the POB
should be able to retrieve one syllable at a time, in the correct order and

then turn off, waiting for the next utterance. What we observe here instead
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Figure 6.3: Example of the dynamics in the two subnetworks.

is sustained activity for all the units active in the 3 syllables, even after the

end of the input.
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Figure 6.4: Normalized activity of the units encoding the 3 syllables. For each sullable this was measured
1 POB
as ~NTPOB va (1 - a?) (1 — (55;‘0), where p is the label of the syllable considered.

Step 2: Fast Inhibition

The constant signal from the POL induces an overactivation of the POB
network which is effectively driven in a spontaneous latching regime, often
preventing it to recover the correct sequence. A possible solution would be to
artificially transform the constant input from the word buffer into a sequence
of instantaneous cues. This approach would, however, shift the problem of
serializing the phonological information to the POL. Another option would
instead be to reduce the activity of the network by increasing the effect of
inhibition on its active units. One way to achieve this is to introduce a fast

inhibition component as the one treated in section 2.1.3.
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(b) Activity of units encoding the syllables.
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(c) Dynamics of the fast inhibition component.

Figure 6.5: Example of a simulation with the introduction of a fast inhibition component. The latching
dynamics now ends with the deactivation of the word in the buffer and it is mainly restricted to the correct
subset of syllables.
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Figure 6.6: Example of a typical error induced by the co-activation of the 3 syllables.

For the simulations with this additional component, we used 75! = 2 and a
proportion of fast inhibition y4 = 0.3. As we can notice from the example
in Figs.6.5a and 6.5b the overactivation problem induced by the constant
input is resolved by the introduction of this new component. With this
configuration, the network, over three batches of 50 simulations, retrieved
the correct sequence in the first three latching steps around 55% of the times.
However the POB still “speaks” for more than requested, even if it does that

without adding new and unrequested syllables.

Coactivation of multiple syllables

A second and more subtle type of overactivation appears when comparing the
three syllables with each other. Pairs of randomly correlated patterns share
on average a’N active units. For our sparsity a = 0.25 this corresponds
roughly to a proportion of shared active units below 0.1. As we can see
already in the example in Fig.6.5b, the minimum of this proportion of active
units in our simulations fluctuates around a value of 0.4. This co-activation
of syllables is indeed the main source of mistakes in this batch of simulations.
Figures 6.5a and 6.6 show the effect of the overactivation on latching for

t < 540, where all three syllables are simultaneously active in the network.
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Step 3: Dynamic Global Threshold

The simultaneous activation of the 3 syllables leads the network into a mixed
state where multiple patterns are active together. When this situation occurs
the network has no immediately available pattern to latch to leading to false
starts and spelling errors of the kind shown in Fig.6.6.

Co-activation of multiple patterns can be interpreted as a lack of competition
between the syllables, mainly driven by a weak constraint on the total number
of simultaneously active units. To increase the selectivity of our network, we
need to introduce a mechanism that penalizes units not aligned with the most
active syllable. This new type of inhibition was introduced in our simulations
as a dynamic component added to the previously defined constant global
threshold U:

A

Ut)=U+U(t) (6.1a)
dU 1 .
T—=— Z 1-0Y) - U. (6.1b)
dt alNFPOB icPOB ( )
A

For our simulations, we set the value of 7 equal to 75"
The introduction of the fast inhibition defined in Eqs.6.1 can be justified
as a rough first-order correction to the problem of discretizing the cortex
into units when defining our Potts network. This approximation, however,
should be acceptable only for small enough networks, where it is reasonable to
assume that the local inhibition to a unit, being this a fictitious discretization
of a continuous substrate, may influence also other units close by.

Simulations performed with this new mechanism show a noticeable improve-
ment in the quality of latching. Each syllabic utterance corresponds to an
isolate latching step with no interference coming from other overlapping syl-
lables. Nonetheless, as it will be discussed in depth in the next sections, the
proportion of correct sequences decreased drastically in the way illustrated by
the latching sequence in Fig.6.7a. The time dilation induced in the dynam-

ics as a byproduct of the dynamic global inhibition introduced what we can
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(a) Example of latching dynamics.
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(b) Activity of units encoding the syllables.
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(c) Dynamics of the new global threshold U.

Figure 6.7: Example of a simulation with the introduction of a fast global inhibition component. The
latching dynamics is more polished compared to previous simulations. The effect of the new inhibition is
to reduce the co-activation of multiple patterns.
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define as a short-term memory issue in our simulations. A tentative solution
will be addressed in the next, and final, step by modulating the adaptation
component in the POB.

1
— 1%t syll
0.8 2" syil| |
c —ard
506t 39 syl | |
-
]
| 0.4 il
2.0.
2
0.2 \/ |
of -
1 L L 1
500 550 600 650 700 750

Time

Figure 6.8: Dynamics of the adaptation for the 3 syllable for the simulation shown in Figs.6.7.

Step 4: Slow Adaptation

Adaptation, modeled by Eq.2.3, is the mechanism that forces active units
to change their preferred state of activity once a certain amount has passed.
Fig.6.8 shows the normalized amount of adaptation for each syllable. As
we can notice from this example, at the time of the third utterance, the
adaptation of the first syllable is already low enough to let it take advantage
of its greater input and win the race against the third syllable.

The time-constant 7, is then the parameter that regulates the memory of
the network about the previously active patterns. The choice of a shorter
time-scale to allow for a faster dynamics in the POB also corresponds to
faster forgetting of the previous states. To correct this behavior, without
altering too much the dynamics, we introduced a second term of adaptation,
similarly to what has been done to merge slow and fast inhibition in section

2.1.3.

oF (t) = 07" (1) + 0 (1) (6.2)
as dek(faSt) as as
/) S = Affeot — g (6:20)
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(b) Sum of slow and fast adaptation.
Figure 6.9: Example of a simulation with the introduction of a slow adaptation. The latching dynamics

is more polished compared to previous simulations. The effect of the new inhibition is to reduce the
co-activation of multiple patterns.

With this additional tool, many of the syllable repetitions were prevented
(see Figs.6.9 for an example) and the performance of our model drastically

improved to a value around 72% of correct sequences.
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6.3 Simulation results

6.3.1 Performance of the POB model

In the previous section, we showed how we exploited the available mechanisms
in our Potts neural network to build a basic model of the phonological output
buffer. To analyze the performance of the final model, we run three batches
of simulations, each having different sets of patterns for both the words and
the syllables. For each set, we stored in the network 50 word — syllables
associations which were all simulated by cueing the relative word in the
POL. The resulting 150 simulations were then aggregated to analyze the

performance of the network.
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Figure 6.10: Report on the correctness of the first 3 utterances of the final POB model. Error bars
represent the standard error of the mean.

In the final model the majority of utterances were correct (~ 72% accuracy),
while the main type of errors committed by the network was to switch the

position of two correct syllables.

6.3.2 Breaking the network: Analysis of errors

To better understand the role of the mechanisms included in the final model
we ran, with the same procedure of the section before, other rounds of sim-

ulation each time removing a single one of the added components.

89



No slow adaptation

Slow adaptation was introduced in the third step to remove triplets of syl-
lables with repetitions of the kind {15 — 2"¢ — 1%%}. The analysis of the
performance in Fig.6.11 indeed confirms the prevalence of these repetition

eIrors.
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Figure 6.11: Report on the correctness of the first 3 utterances. The model considered has 'yéfaSt) =1
while all other parameters are the same as in the complete model. Error bars represent the standard error
of the mean.

Examples of repetition errors are shown in Fig.6.12. The type of repetition
in Fig.6.12b could also be listed as an addition error, with the intrusion of
the first syllable.
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(a) Repetition of syll. “1” and “2”.  (b) Intrusion of syll. “1” before syll “3”.

4

Overlaps
Overlaps
o
iy

Figure 6.12: Exaples of typical errors in a network with no slow adaptation. Both types of errors are
classified as repetition errors.
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No dynamic global threshold

Simultaneous activation of multiple syllables lead us to the introduction of
a competition mechanism in the model. In these simulations we removed
from the complete model the time evolving component of the threshold U.
For a fair comparison we assigned to U a higher value corresponding to the
value assumed by Eq.6.1 for a network in the thermal state at a temperature

T = % In our case we set U = 0.216.
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(a) Correct sequence. (b) Syllable misplacement.
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(c) Syllable omission. (d) Syllable addition

Figure 6.13: Examples of a correct sequence and of three errors in a network with no dynamical global
inhibition.
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Figure 6.14: Report on the correctness of the first 3 utterances. The model considered has U = 0.216
and no temporal evolution for this parameter. Error bars represent the standard error of the mean.



This model showed a variety of types of errors and a low accuracy on correct
sequences, as illustrated in Figs.6.13 and 6.14. For simplicity, we catego-
rized omissions in “Shorter Sequence” errors, independently of the omitted
syllable, and syllable additions in the “Wrong Syllable” class, to highlight the
utterance of an intruded external syllable. All bisyllabic utterances involved

only the correct syllables.

No fast local inhibition

Fast inhibition was the first “ingredient” added to the basic network. Sim-
ulations of the complete model but without the fast local inhibition showed
the importance of this component. Omission errors were the predominant
type of error in these simulations. Very few (~ 10%) trisyllabic words were

indeed uttered by this network but almost never in the correct order.
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(a) Inversion of syllables. (b) Omission of 3" syllable.

Figure 6.15: Examples of errors in a network with no fast local inhibition.
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Figure 6.16: Report on the correctness of the first 3 utterances. The model considered has y4 = 0,
therefore only slow local inhibition is present. Error bars represent the standard error of the mean.
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6.3.3 Discussion

Simulation results of the complete model of the POB show a good perfor-
mance in producing trisyllabic utterances. The main purpose that this net-
work achieved is to disentangle the compact information on the full word,
stored in the POL, transforming it into an ordered sequence of syllables.
While the role of the POB in human speech production is more complex
than the one assessed in this chapter, possibly involving phonotactic and
content dependent rules (i.e., numbers, plurals, irregular forms, etc.), this
first-order description already captures interesting features of human perfor-
mance.

Disrupting basic neural mechanisms in the model produces error patterns
that may be compared with human subjects with specific POB impairments.
Interestingly, each of the introduced mechanisms, namely adaptation, local
and global inhibition, when removed produce each a different pattern of er-
rors in the utterances, as shown in Figs.6.11, 6.14 and 6.16. Furthermore,
the current implementation does not consider a feedback connection from the
POB to the POL, which would be able to correct some of the wrong spellings
reported in Fig.6.10 by modulating the strength of the inputs to the POB. A
future version of the model will thus include recurrent connections, possibly
increasing the accuracy of the utterances.

Nonetheless, the encouraging results of the current implementation suggest
the suitability of our network for modeling not only higher cognitive functions

but also specific low-level computations.
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Chapter 7
Conclusion

In recent years, the advances of neuroimaging techniques have led to new
insights on how our brain encodes information and on the dynamical inter-
actions between different cortical regions. Nonetheless, our understanding of
the role and functioning of the underlying neural mechanisms, of which we
can only see the external, macroscopic, effects, is shaped by experimental
constraints. Neuronal data not only are difficult to collect in human subjects
but are also hard to compare with the macroscopic measures provided by the
most popular neuroimaging techniques; the latter also having their specific
issues, like the low space/time resolution or the often undetermined relation
of the measured signal with the underlying neural computations.

From a methodological perspective, the neuropsychological investigation usu-
ally focuses its attention on the neural responses to external stimulations. In
the literature of language processing, this is often done in non-ecological set-
tings (e.g., unnatural stimuli, impaired patients, fast stimulus presentation,
etc.), which allow to enhance the effects of interest. This kind of studies
has led to detailed models for several neural functions, able to produce sim-
ilar effects as the ones observed in the experimental setting. However, a
fundamental question still remains unanswered: how does our brain use of
these functions and their related encoded information during its spontaneous

behavior? Or, how much can we extend the validity of these models to non-
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experimental settings?

The ambitious goal of this thesis was to move the first steps towards a model
of the cortex that could, in principle, link experimental results to spontaneous
activity. To do so, we decided not to engineer models of specific functions
to fit human performance; instead, we aimed to qualitatively replicate ex-
perimental results by including only biologically plausible mechanisms in a
previously proposed network model of the cortex.

The Potts attractor neural network, described in the second chapter, has been
proposed in recent years as a model of cortical dynamics. The model takes
inspiration from Braitenberg’s view of the cortex as an associative memory
machine that stores memories as local (B-systems) and global (A-system) at-
tractor states. Potts units, therefore, represent the activity of local neuronal
networks while the full network stores memories as global attractors. This
dual, local and global, nature can thus be considered as a model for the con-
version from the analog computations performed by neurons into the discrete
and macroscopic activity patterns observed with neuroimaging techniques.
Another strength of the model is its latching dynamics. This hopping pro-
cess from one memory to another is introduced in the model by including
three biologically inspired mechanisms, namely neuronal excitability, neural
adaptation, and inhibition. In Chapter 2, we described how the dynamics
is influenced by pattern correlations and rule-based associations. Within a
certain region of the parameter space, latching transitions occur between cor-
related patterns (i.e., similar memories). The inclusion of a heteroassociative
component allows for more complex latching sequences, which may include
frequency-based transitions.

Together, the mechanisms described above define the cortical model that we
used as a starting point for three different and more structured implementa-
tions.

In Chapter 3 we have proposed a priming experiment that could test sub-
jects on similarity- and frequency-based associations between words. Word

similarity has been included as semantic or orthographic relations, while fre-
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quency associations have been added as linguistic collocations. Orthographic
relations proved to be faster to recognize with respect to collocations and se-
mantic ones. Different ERP patterns have also been observed, which have
allowed us to distinguish the different neural signatures related to seman-
tic or orthographic associations and also with respect to a non-association
control condition. A second experiment has highlighted, then, the differ-
ent processing of vowel and consonants in orthographic associations. For
semantic and collocation transitions, instead, an interaction of noun/noun
vs. adjective/noun associations has shown the important effect of syntactic
information, even at the single word level.

The priming experiment has then been used as a testing ground for our Potts
neural network. In Chapter 4, we have considered a model with two net-
works, each encoding semantic or orthographic information. Collocations
have been, instead, encoded as heteroassociative instructions between pat-
terns. The recognition process has then been modeled as a spontaneous latch-
ing sequence elicited by the target word and, eventually, reaching the prime
representation, stored in short-term memory, if an association is found. Sim-
ulated reaction times have shown a slower recognition of collocations, similar
to experimental data in the noun/noun condition, but no difference has been
found between semantic and orthographic relations. Future investigations
including an improved definition of semantic and orthographic similarities
will aim to find better agreement of the model with experimental data. Fur-
thermore, a future implementation of syntax in the current model could be
tested in the adjective/noun condition. Nonetheless, the current network
can be regarded as a possible way of translating the processings involved in
a structured experimental task into a spontaneous cortical process.

The experimental study of a truly spontaneous cortical process has then been
considered in Chapter 5. The spontaneous thought generation during mind-
wandering is a neural function that can be naturally described as a latching
process. However, specific impairments of mind-wandering are observed in

certain brain lesioned patients. A Potts model including a hippocampal
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component, storing episodic memories, and a ventromedial prefrontal net-
work, encoding schema representations, in addition to a semantic network,
has been introduced to qualitatively replicate the observed impairments in
hippocampal and ventromedial patients. In such a network, lesions to the
hippocampus lead to purely semantic and schema-guided transitions. Latch-
ing length, however, has been shown to be similar to normal conditions, at
least for models with a high enough contribution of the vimPFC network.
Conversely, lesions to the vinPFC network lead to short latching sequences,
mainly jumping between the memory items composing the episodic memories
retrieved by the hippocampus.

Finally, in Chapter 6, we have shown the suitability of our cortical model in
describing specific neural functions, such as the one of the phonological out-
put buffer. Our basic network model suggests the importance of inhibitory
and adaptive mechanisms in the final stages of speech production. Results
from our implementation, indeed, relate different production errors when
assembling syllable or phoneme sequences to specific dysfunctions of the in-
hibitory mechanism. Future investigations and more refined models, possibly
including recurrent connections in the network, are, however, needed to ex-
tend the validity of the model to other linguistic materials and to confirm

the current results.
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