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Abstract. A new, very fast, implementation of the exact (Fock) exchange operator

for electronic-structure calculations within the plane-wave pseudopotential method

is described and carefully validated. Our method combines the recently proposed

Adaptively Compressed Exchange approach, to reduce the number of times the

exchange is evaluated in the self-consistent loop, with an orbital localization procedure

that reduces the number of exchange integrals to be computed at each evaluation.

The new implementation, already available in the Quantum ESPRESSO distribution,

results in a speedup that is never smaller than 3-4× and that increases with the size

of the system, according to various realistic benchmark calculations.

http://arxiv.org/abs/1801.09263v3
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1. Introduction

Hybrid functionals, resulting from the introduction of a Fock exchange energy term into

a density-functional framework, are very popular due to their accuracy and predictive

capabilities.[1, 2, 3] Nowadays most if not all electronic-structure codes implement

them. In quantum chemistry codes, and in general in codes using localized basis

sets, exact-exchange terms do not significantly add to the computational complexity of

electronic states calculations. When working with a plane-wave (PW) basis set, however,

the calculation of the exact-exchange term, although straightforward,[4, 5, 6, 7, 8] is

computationally heavy. The problem lies in the delocalized nature of orbitals and of

PWs: all pairs of canonical orbitals in the system contribute to exact exchange. While

each contribution is quickly and effectively computed using conventional Fast Fourier

Transform (FFT) techniques, the overall computational workload scales unfavorably

with the number of electrons in the system, being proportional to the square of the

number of occupied electron states. In practice, the usage of modern and accurate

hybrid functionals together with PW basis sets is limited to relatively small systems,

described by units cells no larger than a few dozen atoms.

Over the years, several approaches have been proposed to extend the range of

hybrid-functional calculations with PW-based methods. We mention, e.g., the reduction

of the dimension of the density matrix [9], or of the basis set, [10] and improvements

in the parallelization strategies[11, 12]. Another promising approach is to leverage a

localized representation of the occupied-state manifold, so as to reduce the number of

significant exchange integrals to be computed. Several proposals[13, 14, 15, 16, 17, 18,

19] have been put forward, mostly using maximally localized Wannier functions.[20, 21]

This approach is very effective and has proven to be reliable for large systems, showing

that strategies based on molecular orbital localization are a robust route in order to cope

with scaling problems in exact exchange calculations. Furthermore, another effective

method named Adaptively Compressed Exchange (ACE) has been recently proposed by

Lin Lin,[22] and integrated in Quantum ESPRESSO[23], achieving a speed-up factor

of 4-5x by the integration of a projected exchange operator in the double-loop structure

of the Self Consistent Field (SCF) algorithm. Notably such approach is very similar

to other projection procedures previously proposed for PW calculations[24] and also

to inner-projection methods,[25, 26] popular in Quantum Chemistry.[27, 28, 29, 30] In

this work we combine for the first time an algorithm based on the molecular orbital

localization with the ACE method. We show how the ACE approach can be extended

to deal with approximate exchange potentials coming from the localization, and we show

accurate benchmark calculations showing the computational performances on realistic

systems. The new method, L-ACE, allows significant computational gains with respect

to the previous implementation of exact exchange with PWs. As localization algorithm

we use a modified version of the Selected Columns of the Density Matrix (SCDM)

approach,[31, 32, 33] an algebraic technique recently introduced by Damle et al..

The paper is organized as follows. In Sec. 2 we describe the L-ACE method. Sec. 3
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briefly introduces computational details used in the extensive benchmarks of Sec. 4. Sec.

5 contains our conclusions.

2. The L-ACE approach

In the framework of density-functional theory (DFT), the energy for a hybrid

functional[34] in a system with NP Kohn-Sham (KS) molecular orbitals (or pseudo-

orbitals if pseudo-potentials are used), {ψk(r)}
NP

k=1, can be written in terms of the charge

density, n(r) =
∑N

i |ψi(r)|
2, and of the density matrix, γ(r, r ′) =

∑N
i ψi(r)ψ

∗
i (r

′),

where N is the number of occupied orbitals. In the following the index i will be used

to label the occupied orbitals (i = 1, .., N), the indexes j and k will be used for the

KS orbitals (j, k = 1, ..., NP ), also including virtual orbitals if NP > N . The spin part,

omitted for simplicity of notations, should be assumed wherever relevant. In order to

determine the molecular orbitals, a set of single-particle KS equations
(

−
1

2
∇2 + V̂ext + V̂Hxc[n, α]− αV̂X [γ]

)

ψk(r) = εkψk(r) (1)

must be solved. The first term of the last equation is the kinetic energy operator,

the second term is the external potential, V̂Hxc includes the Hartree and the DFT

exchange-correlation contributions, and V̂X is the exact (Fock) exchange operator (with

a minus sign with respect to the usual definition, to make it positive definite). The

empirical parameter α is used to weight the Fock and DFT exchange contributions, and

takes different values according to the particular functional parametrization (e.g. see

Refs. [35, 36, 3]). The Fock exchange operator can be defined through its action on a

generic function ψk

V̂Xψk(r) = e2
N
∑

i=1

ψi(r)
∫

dr ′ψ
∗
i (r

′)ψk(r
′)

|r− r ′|
, (2)

e being the electronic charge. When a PW basis set is used, Eq. 2 is usually represented

in reciprocal space as a matrix VX of dimension NP ×NPW , where NPW is the number

of plane waves, and the integrals are numerically solved using FFT algorithms. The

latter is the bottleneck of the calculation especially when large molecular systems are

involved, because many FFTs must be performed over large grids. A significant speed-

up can be achieved by employing the ACE method.[22] In the ACE method VX is used

to build the ACE operator, which can be written in matrix form as

WX = VX ·M−1 ·V†
X (3)

where Mjk = 〈ψj |V̂X|ψk〉 is the exchange matrix. In practice the M−1 matrix is

factorized via the Cholesky decomposition and the ACE operator takes the form

WX = ξ · ξ† (4)

where

ξ = VX · L−T (5)
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and L−T is the Cholesky factor of M−1. The application of the ACE operator to a

generic function costs as little as NP scalar products and it is much cheaper than the

application of V̂X . When a double-loop SCF algorithm is employed, as in the pw.x

code of Quantum ESPRESSO,[8, 23] it is much more convenient to compute VX

only to build the ACE operator, using the latter to solve the KS equations iteratively,

instead of computing VX at every SCF iteration. Once convergence is achieved, VX

is evaluated again in order to update the ACE operator, the KS equations are solved

with the new operator, and this process is repeated until the total energy reaches the

minimum. As a result, the exact exchange potential needs not to be evaluated inside

every SCF iteration, but only once per SCF loop, resulting in a significant speed-up.

It is important to notice that the ACE operator is perfectly equivalent to V̂X only at

convergence or whenever it is applied to the same set of functions used to build it. In

all other cases, it is an approximation, whose accuracy improves as more functions are

used for the projection, and it can been shown that its expectation values are greater

than the expectation values of V̂X .[37, 25, 26] The ACE method has been implemented

in the Quantum ESPRESSO code[23] with minor modifications, so that we refer to

the original work[22] for a detailed description of the method.

In this work we have achieved a further speed-up in the exact exchange evaluation,

by projecting the ACE operator on a set of localized orbitals, {wi}
N
i=1 and neglecting the

integrals of Eq. 2 involving two orbitals localized in different regions of space. Among

the many known localization schemes,[13, 14, 15, 20, 21, 38, 39, 31, 32, 33] we have

chosen the Selected Columns of the Density Matrix (SCDM) approach,[31, 32] which

has the advantage of being fast, non-iterative, and to be estensible to periodic systems

using k-points[33]. The method proposed in the following is however completely general

and can be applied independently of the particular choice of the localization algorithm.

In order to decide whether a given exchange integral can be discarded or must be

retained, a reliable criterion needs to be found. In the limit case of orbitals shaped

like Gaussian functions, the exchange integrals depend linearly upon the overlap of the

two functions, and can be thus neglected when the overlap is small enough. Extending

the idea to more general functions which can take positive and negative values, a safe

criterion is that whenever the overlap of the moduli

Sik =
∫

dr |wi(r)| · |wk(r)| (6)

is smaller than a predefined threshold (Sthr), i.e. Sik < Sthr, the corresponding exchange

integral can be set to zero.

The (approximate) matrix of truncated exchange potential, V′
X , can be formally

written as

V′
X = VX −

∑

αβ

Sαβ<Sthr

u(αβ) (7)

where α and β run over the discarded pairs of orbitals, and u(αβ) have all columns set
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to zero except two:

u(αβ)
α (r) = e2wβ(r)

∫

dr ′
w∗

β(r
′)wα(r

′)

|r− r ′|
(8)

and u
(βα)
β (r), with switched α and β indexes. The truncated exchange matrix M′ can

then be written as

M′ = M−
∑

αβ

Sαβ<Sthr

m(αβ), (9)

where m(αβ) contains only column vector corrections. The matrix M′ is still invertible

and the matrix inversion lemma (Woodbury identity)[40, 41] allows to write M′−1 =

M−1 + ∆M. Furthermore, recalling that the determinant is a linear function of the

columns (rows) and that the α and β columns of m(αβ) are small by construction, we can

safely assume that det (M′) ≃ det (M) , where det (M) > 0 is the product of positive

definite eigenvalues. This suggests that the truncated exchange matrix M′ remains

positive definite and invertible, provided that the m(αβ) matrices are small compared

with M. The approximate ACE operator then reads

W′
X = V′

X ·M′−1
·V′†

X ≃ WX +∆W. (10)

The last equality just formalizes the fact that the approximate ACE operator can be

written as the sum of the exact ACE operator plus a truncation error. The ACE method

exploiting the localization algorithm will be referred to as the Localized ACE (L-ACE)

method in the following. Unlike M, the M′ matrix is not symmetric and it has to be

symmetrized in order to perform the Cholesky decomposition. We have tested three

different symmetrizations: copying the upper (lower) triangle into the lower (upper)

triangle, and replacing the matrix with (M′ + M′T )/2. In all cases, also after the

symmetrization the matrix can be decomposed as in Eq. 9, into a sum of column-wise

(or row-wise) corrections and the method is still valid.

One drawback of the L-ACE method is that the truncation introduces a small

error in the exchange energy, resulting in an oscillatory behaviour of the total energy

during the self-consistency cycle which may plague the convergence, as observed in other

linear-scaling approaches based on truncated potentials.[17, 16] However, in our case the

truncation is done only on the exact exchange energy, which is a small fraction of the

total energy, so that such fluctuations are very small. Furthermore, such fluctuations

depend on the threshold Sthr, which can be tuned to be large enough to allow significant

computational savings but still small enough to allow smooth SCF convergence. For the

molecular systems reported in Section 4 we have verified that values of the threshold in

the interval 0 < Sthr ≤ 0.005 allow to achieve a significant speed-up and yet converge

smoothly the SCF to an estimated accuracy of 10−6 Ry. When very tight convergences

are required, a good strategy to improve SCF convergence is to align the orbitals at a

given iteration to the ones at the previous step, thus ensuring convergence to arbitrary

precision.
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3. Computational methods

All calculations have been performed using a development version ‡ of the Quantum

ESPRESSO pw.x code.[8, 23] Pure DFT calculations have been performed using the

PBE[42] functional, while PBE0,[36] B3LYP,[35] and HSE[3] functionals have been used

for hybrid calculations. Three FFT grids are defined for hybrid functional calculations,

one for KS orbitals, one for the charge density and one for the exchange potential. Such

grids are uniquely identified by the cell parameters and the cutoff values, which will

be indicated in the following for each test system. Norm-conserving pseudopotentials

have been used throughout the work. We will refer to the old method for the exact

exchange, not using either ACE or localization, as the ”Full” method; to the ACE

algorithm without localization as ”ACE”; to ACE plus localization as ”L-ACE(Sthr)”,

with the value of Sthr always specified (e.g., L-ACE(0.004) means that we are neglecting

all exchange integrals in the potential with Sik < 0.004).

The calculations have been run on the Galileo supercomputer hosted at CINECA.

In the current configuration, the nodes of the system are based on a IBM NeXtScale

architecture equipped with 2 x 18-cores Intel Xeon E5-2697 v4 (Broadwell) running at

2.30 GHz nominal clock speed and 128 GB of RAM memory. The nodes are connected

through a QDR InfiniBand network with 40 Gbps links.

4. Results and discussion

We used three different typologies of molecular systems (shown in Figure 1) to validate

the truncation scheme of the L-ACE method, ranging from amorphous materials (Silica),

to organic molecules (Anthocyanine in water) and nanoparticles (TiO2 cluster).

4.1. Amorphous Silica

Five different amorphous Silica (SiO2) geometries, containing 72, 144, 288, 432 and 576

atoms, have been generated by classical MD simulations using the BKS force field,[43, 44]

quenching from the melt at 6500K down to 500K at a constant quenching rate, as

described in Ref.[45] The geometries are in cubic cells of dimension 18.6826, 24.1996,

30.3976, 35.1143 and 38.6458 Bohr, respectively. In Figure 1a the largest system of 576

atoms is shown. We have used such geometries for hybrid SCF calculations, using the

PBE0 functional, and cutoffs of 80 Ry for the orbital grid and 320 Ry for the density

and the exchange grid. For pure DFT calculations the PBE functional has been used.

First of all we have numerically checked the consistency of the L-ACE

approximations. In practice the L-ACE method is based on the assumption that

whenever the absolute overlap Sik is small, all the exchange integrals§ of the type (jkki)

‡ to be released by the time this article is published; work is currently under way to port the same

methodology to the GPU version of Quantum ESPRESSO.
§ In this notation[46] for the electrostatic integrals, the first (last) two indexes refer to functions

integrated over r (r ′)
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(a) Amorphous Silica (576 atoms).
(b) C3OG in water (565 atoms).

(c) TiO2 cluster (465 atoms).

Figure 1. Unit cells of three representative systems.

and (jiik) are also small for any j. In Figure 2, the values of (jkki) and (jiik) integrals

are plotted versus the corresponding values of Sik, for the 72-atoms system. We observe

that the largest integrals – those of the type (kkki) and (iiik) – show a linear dependence

upon Sik in the range between 0 and 0.005, confirming that the absolute overlap is a

good quantity for the prescreening. Following Figure 2, values of Sthr in the range

between 0 and 0.005 have been used for all the calculations in this work.

Figure 2. Exchange integrals of type (jiik) and (jkki) plotted versus the

corresponding absolute overlap integrals Sik, for any j.
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In Figure 3 the WALL times for one SCF with standard convergence (10−6 Ry)

are plotted as a function of the number of atoms of the Silica cells in a logarithmic

scale, in order to visualize the scaling with the system size. The same numbers are

shown in the last column of Table 1. When the Full algorithm is used, we could perform

the SCF only for the three smallest systems, and the SCF for the system of 288 atom

took nearly three days. The use of the ACE method improves the performance, and we

could perform calculations also for the system composed by 432 atoms, in a reasonable

time. With the L-ACE approach, the WALL times are strongly reduced especially for

the largest systems, and the calculation of the system composed by 576 atoms becomes

feasible. Noteworthly, in all cases PBE0 calculations are still much slower than pure

PBE ones. The lines in Figure 3 are fits of the computational times to a function of

the type y = αxβ, where y is the SCF time and x the number of atoms composing the

system, and the values of β are reported in the Figure. We observe that although the

Full method is much more expensive than ACE, they scale pretty much in the same

way with increasing system size: β ≃ 2.8 in both cases. For comparison, L-ACE scales

with an exponent of about 2, closer to the pure DFT value of about 1.7. The behavior

of the L-ACE(0.002) and L-ACE(0.004) cases can be explained by observing (Table 1)

that the percentage of integrals included in the calculation is 91% and 71% respectively

for the 72-atom system, 12% and 8% respectively for the largest system.

Figure 3. Wall time for a complete SCF (logarithmic scale) in Silica versus the

logarithm of the number of atoms. a) Full, b) ACE, c) L-ACE(0.002), d) L-ACE(0.004),

e) DFT. DFT calculations are with the PBE functional, all the others are with the

PBE0 functional. The lines are the plot in logarithmic scale of the fitting function

y = αxβ and β is reported for each method. The number of atoms is shown for clarity

near the magenta (e) line.

It is then reasonable that the computational times of the two methods become more

similar for increasing system size.

In Figure 4 the scaling with the number of processors is shown for the 144-atom

system. In order to account for the unavoidable fluctuations in the computational load of

the cluster, and for the different memory allocations when different number of nodes are

chosen, 32 runs (on 1, 2, 3, 4, 5, 6, 8 and 10 nodes, using 15, 20, 25 and 30 cores per node)
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Figure 4. Wall time for a complete SCF (logarithmic scale) versus the logarithm of

the number of CPUs used in the calculations, for the 144-atom Silica cell. a) Full, b)

ACE, c) L-ACE(0.002), d) L-ACE(0.004). With pure DFT method SCF times were

always lower than 3 min. The lines are the plot in logarithmic scale of the fitting

function y = αxβ and β is reported for each method.

Figure 5. Wall time for a complete SCF versus the number of bands required in

the calculations, for the 144-atom Silica cell (384 occupied states). a) Full, b) ACE,

c) L-ACE(0.002), d) L-ACE(0.004). With pure DFT method SCF times were always

lower than 1 min. The lines are the linear regression of the points and the slopes are

reported for each method.

have been performed. All the WALL times are shown in Figure 4 as points. With all

the methods the lowest computational times are achieved when using 150 cores (marked

by an arrow for the black circles in the plot). The increase observed for more than 150

cores is due to limitations of the default FFT parallelization scheme used by Quantum

ESPRESSO[8, 23], that becomes ineffective when the number of processors exceeds

the number of FFT planes (144 in this case). Among the three different combinations

of cores per nodes resulting in 150 CPUs, i.e. 10 nodes with 15 cores per node, 6 nodes

with 25 cores per node and 5 nodes with 30 cores per nodes, the best performances are

obtained using 10 nodes with 15 cores per node for all methods. Also in this case the
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Atoms Method ∆Ehyb Max MAD St. Dev. ∆εHL Time

72 Full 0.4059 0.01449 0.00398 0.00519 7.6355 84 (100%)

ACE 0.4059 0.01450 0.00398 0.00519 7.6356 13 (100%)

L-ACE(0.002) 0.4064 0.01450 0.00398 0.00520 7.6355 12 (91%)

L-ACE(0.004) 0.4106 0.01451 0.00399 0.00520 7.6360 10 (71%)

pure DFT 0 0 0 0 5.1161 0.3 (0%)

144 Full 0.5567 0.01772 0.00404 0.00520 7.2559 578 (100%)

ACE 0.5567 0.01773 0.00404 0.00520 7.2560 54 (100%)

L-ACE(0.002) 0.5592 0.01773 0.00404 0.00520 7.2562 28 (51%)

L-ACE(0.004) 0.5663 0.01774 0.00404 0.00520 7.2576 20 (33%)

pure DFT 0 0 0 0 4.7764 1 (0%)

288 Full 0.5588 0.01735 0.00400 0.00520 7.0843 3956 (100%)

ACE 0.5588 0.01735 0.00400 0.00520 7.1154 641 (100%)

L-ACE(0.002) 0.5588 0.01735 0.00400 0.00520 7.1155 170 (25%)

L-ACE(0.004) 0.5694 0.01736 0.00401 0.00520 7.1156 116 (16%)

pure DFT 0 0 0 0 4.6115 2.3 (0%)

432 ACE 0.5772 -0.02067 0.00405 0.00531 6.7921 1913 (100%)

L-ACE(0.002) 0.5806 -0.02068 0.00405 0.00532 6.7963 350 (16%)

L-ACE(0.004) 0.5878 -0.02069 0.00406 0.00532 6.7973 246 (11%)

pure DFT 0 0 0 0 4.2792 5 (0%)

576 L-ACE(0.002) 0.5595 0.01812 0.00393 0.00507 7.1319 636 (12%)

L-ACE(0.004) 0.5666 0.01815 0.00394 0.00507 7.1330 475 (8%)

pure DFT 0 0 0 0 4.6377 8 (0%)

Table 1. Summary of results for Silica cells. Pure DFT calculations with PBE,

hybrid calculations with PBE0. ∆Ehyb is the difference between PBE0 and PBE total

energies per atom (kcal/mol), ∆εHL is the HOMO-LUMO gap (eV), Max, MAD and

St. Dev. are the maximum difference, the mean absolute difference, and the standard

deviation, respectively, of the PBE0 force components (Ry/Bohr) with respect to the

PBE ones, Time is the WALL time (min) for one SCF with 300 CPUs, in parenthesis

the fraction of included integrals is reported.

points have been fitted with the function y = αxβ , where y is the SCF time and x the

total number of cores, in the range 15–150 cores, and slopes of about -0.7 have been

found for all the methods, with slightly better performances for ACE and L-ACE with

respect to the Full method.

Finally since the exchange potential is applied to computed (occupied or empty)

Kohn-Sham orbitals, the computational times grow with the number of such orbitals,

as shown in Figure 5.

In Table 1 we report the results for selected physical quantities. Differences between

PBE0 and PBE results are reported in order to have a unique reference, since PBE

calculations are available for all systems. In the third column of Table 1 hybrid energy

corrections (that is: differences between the PBE0 and PBE total energies per atom)

are reported. The two exact methods, Full and ACE, give an hybrid energy correction

of about 0.4 kcal/mol per atom for the 72 atoms system, of about 0.6 kcal/mol for all

other systems. Results from L-ACE(0.002) and L-ACE(0.004) differ on the third and

second significant digit, respectively, from exact results.
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Columns 4 to 6 of Table 1 contain the Mean Absolute Differences (MAD), maximum

(Max) differences and standard deviation of the differences between PBE0 and PBE

forces, averaged over all the force components of all atoms. Having converged the SCF

to 10−6 Ry we can trust the forces up to 10−4 Ry/Bohr, and five decimal digits are

reported.

The maximum differences between the PBE0 force components computed with the

Full and ACE method and the PBE ones in the system of 72 atoms is 0.01449 Ry/Bohr,

while for the systems with 144 and 288 atoms they are 0.01772 and 0.01735 Ry/Bohr,

respectively. The loss of accuracy introduced by L-ACE turns out to be very small: in

all cases the maximum differences are almost exactly the same as for ACE and occur

for the same force component.

A similar analysis can be performed for the MAD and the standard deviation.

In all cases the differences between the ACE forces and L-ACE ones fall on the fifth

decimal digit. This suggest that the truncation scheme used in L-ACE for the potential

is reliable enough to provide good forces, that can be used for geometry optimizations

and likely for molecular dynamics as well.

While energies and forces can be obtained from occupied orbitals only, other

quantities such as e.g. the band gaps also require virtual orbitals. The band gaps for the

Silica systems reported in Table 1 have been calculated by adding ten virtual orbitals to

the number of occupied orbitals. Since the ACE operator is perfectly equivalent to the

exact exchange operator only when it is applied to a function belonging to the space in

which the projection is valid, NP in Eq. 1 has been set as the number of occupied orbitals

plus ten virtual orbitals. In the L-ACE scheme the occupied manifold is localized and

the truncation scheme is applied, while the virtual orbitals are just those obtained from

the KS equations, and all the exchange integrals involving at least one virtual orbital

are evaluated. For this reason the speed-up of L-ACE with respect to ACE decreases

when virtual orbitals are included. In all cases the errors in the band gaps (sixth column

of Table 1) are of the order of 10−3 eV, which is accurate enough for any application.

4.2. Anthocyanine in water

As an example of organic molecules, the Cyanidin 3-O-glucoside (C21H20O11) molecule

(shortcut C3OG) has been considered. We extracted one snapshot from a Car-

Parrinello simulation of the C3OG molecule surrounded by 171 water molecules, in an

orthorhombic cell with parameters a = 33.9933 Bohr, b = 36.7973 Bohr and c = 31.0310

Bohr. The molecule is in the neutral state, the water molecules form various hydrogen

bonds with the –OH moieties, and the whole system is shown in Figure 1b, with the

aromatic and sugar rings of C3OG highlighted in orange and green, respectively.

On such geometry we run SCF calculations using the B3LYP[35] functional and

cutoffs of 80 Ry, 320 Ry, 160 Ry for the orbital, density and exchange grids, respectively.

For pure DFT calculations the PBE functional has been used. Calculations have

been performed on the C3OG molecule both in vacuum and surrounded by the water
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molecules. The calculations in vacuum were performed on the same geometry as in water

just removing the solvent molecules. This allowed to compute the solvation energies as

the differences between the total energy of the molecule in water and the total energies

of the molecule and the waters alone, and the HOMO-LUMO band gaps in vacuum and

in water. Such data are reported in Table 2, together with the computational times

and with the hybrid energies corrections, analogously to the Silica systems (see previous

paragraph).

Method ∆Ehyb ∆ES ∆ε
gas
HL

∆εwaterHL Time

ACE -24.9794 -161.3846 2.0521 2.6091 249 (100%)

L-ACE (0.001) -24.9790 -161.3457 2.0521 2.6089 92 (36%)

L-ACE (0.002) -24.9780 -161.2540 2.0521 2.6085 71 (26%)

L-ACE (0.003) -24.9767 -161.1331 2.0521 2.6080 62 (21%)

L-ACE (0.004) -24.9750 -161.0085 2.0521 2.6075 56 (18%)

L-ACE (0.005) -24.9730 -160.8220 2.0521 2.6071 52 (16%)

pure DFT 0 -169.4025 1.1085 1.5666 5 (0%)

Table 2. Summary of results for C3OG molecule in water (565 atoms). Pure DFT

calculations with PBE, hybrid calculations with B3LYP. ∆Ehyb is the difference

between B3LYP and PBE total energies per atom (kcal/mol), ∆ES is the solvation

energy (kcal/mol), ∆ε
gas
HL and ∆εwaterHL are the HOMO-LUMO gaps (eV) in the gas

phase and in water respectively, Time is the WALL time (min) for one SCF with 160

CPUs, in parenthesis the fraction of included integrals is reported.

The SCF with the ACE method took 249 min using 160 CPUs on 8 nodes. With

L-ACE(0.001), only 36% of the integrals are retained in the calculations, and the WALL

time for the SCF is reduced by almost the same factor (37%) with respect to the ACE

method. The error in the hybrid energy correction is of the order of 10−4 kcal/mol per

atom; the errors in the solvation energy is -0.05 kcal/mol; the error in the HOMO-LUMO

gap in water is just 0.0002 eV. Increasing the threshold of L-ACE the computational

times are further reduced: with L-ACE(0.005) only 16% of the exchange integrals are

included in the SCF, and the WALL time is 80% smaller than for ACE. Errors in the

energies and gaps also increase, but still remain small: the error on the solvation energy

is just 0.5626 kcal/mol, amounting to a relative error of about 0.3%, while the error on

the HOMO-LUMO gap in water is just 0.002 eV.

4.3. TiO2 nanoparticles

As a final example, a TiO2 (anatase) nanoparticle of 465 atoms has been used. This has

the classical bipyramidal shape exposing the (101) and (001) surfaces, with diameter of

1.5 and 3 nm, in the short and the long dimensions, respectively. The geometry has

been taken from Ref.[47] and is shown in Figure 1c, together with the box – a tetragonal

cell with a = 50 Bohr and c = 70 Bohr – in bold black. The minimum distance between

two atoms belonging to different replicas is 18.36 Bohr and is found between replicas

along the c (longest) direction.
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The SCF calculations for such systems have been done using the HSE[3] functional

and the same cutoffs as in the previous Section. For pure DFT calculations the PBE

functional has been used.

Method ∆Ehyb ∆εHL Time

ACE 14.8840 4.3692 1877 (100%)

L-ACE (0.001) 14.8844 4.3728 838 (38%)

L-ACE (0.002) 14.8859 4.3751 754 (31%)

L-ACE (0.003) 14.8879 4.3772 691 (27%)

L-ACE (0.004) 14.8900 4.3783 643 (25%)

L-ACE (0.005) 14.8929 4.3792 651 (23%)

pure DFT 0 2.9434 112 (0%)

Table 3. Summary of results for the TiO2 cluster (465 atoms). Pure DFT calculations

with PBE, hybrid calculations with HSE. ∆Ehyb is the difference between HSE and

PBE total energies per atom (kcal/mol), ∆εHL is the HOMO-LUMO gap (eV), Time

is the WALL time (min) for one SCF with 288 CPUs, in parenthesis the fraction of

included integrals is reported.

The system has 2448 electrons, and 1300 KS states have been used in order to

compute the HOMO-LUMO gap. In Table 3 the gaps and the hybrid energy corrections

are displayed together with the WALL times for the SCF. We observe that the SCF with

the L-ACE(0.005) method is three times faster than the ACE method, approaching the

performances of the pure DFT. The error in the HOMO-LUMO gap is just 0.01 eV.

5. Conclusions

We have introduced a new method, L-ACE, for the fast and reliable calculation of the

electronic structure with hybrid functionals and a PW basis set, effectively combining

the ACE method and a localized representation of molecular orbitals. For the latter,

the SCDM approach has been used. We have shown how to integrate L-ACE into the

double-loop self-consistent algorithm of Quantum ESPRESSO and how to get rid of

the unpredictable energy fluctuations present in other algorithms using truncation.

Compared with other similar strategies based on orbital localization, [13, 16, 17, 18]

the present methodology has the advantage of combining the reduction of the number

of evaluations of the exchange operator, granted by ACE, with the truncation of

a large fraction of terms in each evaluation of the exchange operator, allowed by

localization. Moreover, the algebraic, non-iterative character of SCDM localization

makes the algorithm robust.

In conclusion, L-ACE allows to perform hybrid-functional calculations on systems

that were previously unfeasible or exceedingly costly. Further work is under way to

extend L-ACE to calculations using k-points (ACE without localization is already avail-

able for this case) and to compute each term in the truncated exchange potential via a

real-space solution of the Poisson equation, getting rid of FFTs altogether.
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