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Preface

The work presented in this thesis mainly focuses on the development of theoretical framework

to describe the non-equilibrium transport through nano-sized quantum devices in the presence of

strong electron-electron interactions and resonance scattering. The main objective of this research

is to further understand the exotic transport processes in the non-equilibrium setup of a nanoscale

system. The collection of findings presented in this thesis could be useful in the development

of very efficient thermoelectric devices, quantum computation and information processing, and

significantly improve the understanding of the many-body physics associated with the strongly-

correlated electronic systems. In addition, the domain of applicability of the presented ideas and

theoretical formulation are quite broad, not limited to the systems studied in this thesis.

To study the transport through the nano sized objects, several theoretical models, yet simple

but very powerful, have been constructed for various type of multi-orbital quantum impurities with

effective spin S ≥ 1/2, in particular the quantum dots, carbon nanotubes and quantum point con-

tacts, exhibiting the Kondo screening effects. The effects of applied voltage bias in the presence of

finite temperature gradient are consistently treated within the full-fledged non-equilibrium Keldysh

calculation. Thermoelectric transport of several variants of Kondo effects ranging from the con-

ventional SU(2) to exotic SU(N) are explored using a controllable approximation based on local

Fermi-Liquid theory known to be a paradigmatic approach for the description of a quantum impu-

rity. Moreover, the low energy theory of non-equilibrium transport in multi-stage, multi-channel

Kondo effects are investigated. A general method of full counting statistics of charge transfer in

multi-stage Kondo effects has been developed and all the cumulants of charge current are studied.

Different experimental setups have been suggested for the verification of new results presented in

this thesis. Besides, several avenues for future research based on the ideas presented in this thesis

are proposed and explained.
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Chapter 1

Introduction and Overview

This chapter aims to provide a concise overview of this thesis including key results and correspond-

ing discussions. We briefly review the current status of Kondo physics in relation to the topic under

investigation and highlight the open problems of the field, their history, importance and challenges.

We present the set of ideas and their origin that have been used in order to circumvent the difficulty

associated with the problems which have been finally solved in this thesis. Afterward, the inclusive

summary of the main finding and way of their experimental implementation are discussed. We

close this chapter with short outline and suggestion about the effective reading of this thesis. All

the materials presented in this thesis are based on the five recent publications [1–5] co-authorized

by the candidate.

1.1 Brief overview of Kondo Physics

The Kondo physics is connected with the novel experimental observation [6] reported in 1934 that

some of the metals containing magnetic impurities showed an increase in resistivity when tempera-

ture is lowered below certain characteristics value. Since the electron-phonon scattering dominates

the room temperature resistivity of a typical metal, the resistivity was expected to gradually de-

crease with decreasing temperature and saturates to a constant value when zero temperature is

reached. This puzzle had persisted for almost three decades under the name “resistance anomaly”

until its explanation put fourth by Jun Kondo in 1964 [7]. Kondo studied the interaction be-

tween the localized spin associated with the magnetic impurity and spins of conduction electrons

in the metal using the method of perturbation. He showed that the resistance anomaly is con-

nected with the increased scattering cross-section of the magnetic impurity due to the exchange

interaction between localized spin and itinerant electrons in the metal. This interaction forms a

cloud of conduction electrons around the impurity which screen the impurity spin and enhance the

scattering of conduction electrons in the vicinity of Fermi level as illustrated in Fig 1.1. The main

finding of Kondo that the resistance of a metal with magnetic impurities increases logarithmically

when the temperature is lowered correctly describes the observed upturn of the low tempera-
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Figure 1.1: Left panel: Interaction between the localized spin and the spins of itinerant electrons

results in the formation of screening cloud (Kondo cloud) of conduction electrons around the mag-

netic impurity. Right panel: The Kondo cloud enhances the scattering of conduction electrons in

the vicinity of Fermi-level which give rise to the increase of resistivity below certain characteris-

tics temperature, the Kondo temperature TK. In normal metal (without magnetic impurities) this

anomalous behavior is absent and the conductance below TK sturates to a constant value set by

residual impurities and structural defects.

ture resistance [8]. This celebrated discovery, however, resulted in an unphysical prediction that

the resistance approaches towards infinity when the temperature is further lowered. Therefore,

Kondo’s original prediction is applicable just above certain characteristics temperature scale called

the Kondo temperature TK. Below TK the ordinary perturbation theory breaks down, therefore,

a complete description of Kondo effect requires non-perturbative methods. A decade after the

Kondo’s discovery, in 1974 Kenneth Wilson developed a non-perturbative method known as “nu-

merical renormalization” [9] to provide the complete description of the physics associated with

the Kondo effect in the broad range of temperatures. Wilson work explained that at temperature

well below the Kondo temperature, T�TK, the magnetic moment of the impurity gets screened

completely by the spins of the conduction electrons in the metal and forms the spin singlet ground

state. Later on the method of numerical renormalization has been extended to study the transport

properties of the system [10, 11].

The formation of singlet ground state due to the Kondo effect leads to an increase of the

probability for an electron to scatter by the impurity. This increased scattering cross-section results

in the increased resistivity of a magnetic impurity embedded in the bulk sample. Does the same

result apply to the impurity residing in a tunneling barrier separating two large electronic reservoirs,

a typical transport setup in nanostructure? In this particular case the increased scattering rate

leads to an enhanced probability for an electron to tunnel through the barrier, i.e., the enhanced

scattering couples the electron states in two reservoirs. Therefore, in contrast to the Kondo effect in

bulk sample, the conductance of nanostructure setup with Kondo effect increases with decreasing

2
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Figure 1.2: Left panel: Schematic representation of a QD with intrinsic spin S=1/2 tunnel coupled

to two conducting reservoirs, the left (L) and right (R). The tunneling from/to the QD is controlled

by intrinsic local level widths ΓL/R. Right panel: The temperature dependence of conductance in

a QD nano structure. The QD with odd number of electrons posses intrinsic spin S=1/2, which

interact with the itinerant electrons in the electronic reservoirs. This exchange interaction results

in the Kondo effect, thus, the zero temperature conductance reaches the maximum value known as

the quantum of conductance. If the number of electrons in QD is even, the Kondo effect is absent

since the total spin adds up to zero. Consequently, at zero temperature the electrons in the left

reservoir remain completely decoupled from that in right reservoir resulting in the nullification of

the conductance.

temperature and reaches its maximal value equal to the two times of quantum of conductance at

T=0 as illustrated in Fig. 1.2. Similar behavior of conductance had been reported as a function of

applied voltage bias ∆V [12, 13]. This zero-bias anomaly of the conductance were later explained in

1969 in the context of Kondo effect [14, 15]. Afterward several exciting theoretical works in Kondo

effect contributed towards the better understanding of the phenomena [9, 16–19]. The growing

interest in the field of Kondo effect was further intensified by the celebrated work of Philippe

Nozieres [20] in 1974, where he proposed a low-energy theory called local Fermi-liquid theory of

Kondo effect. In 1978 Duncan Haldane presented an expression of TK in terms of the parameters

of the Anderson model [21] which helped in further expanding the scope of Kondo paradigm.

Several theoretical perseverances [22–26] finally guided experiment for the first observation of Kondo

effect in semiconductor QD as reported in 1998 by two different groups [27, 28]. The temperature

dependence of conductance G(T ) for a spin S=1/2 Kondo effect in the strong-coupling regime

(T�TK) as proved by theories and experiments [29] takes the form

G(T ) =
2e2

h

4ΓLΓR

(ΓL + ΓR)2

[
1−

(
πT

TK

)2
]
, (1.1)

with e2/h the quantum of conductance and ΓL/R are the intrinsic local level width associated with

the tunneling from/to the QD. This scaling form is demonstrated in the right panel of Fig. 1.2.

The equilibrium conductance behavior Eq. (1.1) was then extended to the out-of-equilibrium sit-

uation in the early experiment reported in Ref. [30]. With the growing interest in Kondo effects,

researchers of different discipline started to use this paradigmatic phenomena as a clean testbed for

the study of strongly correlated electron physics [31]. Kondo effect is also serving as a playground

for the study of nonequilibrium physics which is regarded as quite challenging yet ubiquitous at the

3
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Figure 1.3: Classification of Kondo effects into fully-screened, under-screened and over-screened

cases. The complete screening of localized spin S by the conduction electrons forms a singlet with

zero residual moment Sred=0. These fully-screened Kondo effects falls into the FL universality

class. While the under-screened Kondo effects can also be described to some extent in terms of FL

paradigm, the over-screened situations are beyond the scope of FL theory.

nanoscale. The nonequilibrium physics associated with the system can, in practice, be extracted

from the current through the system in response to possibly simultaneously occurring voltage and

temperature biases. The application of two affinities (voltage bias and temperature gradient) across

the nanoscale setup allows to study the thermoelectric transport, such as the Seebeck and Peltier

effects. The experimental measurement of thermoelectric power (Seebeck coefficient) of Kondo cor-

related QD has been started in the mid 2000s [32] to use it as an independent probe of associated

many-body physics and apply for the energy harvesters used in modern quantum technologies. Re-

cent experiments [33–38] have further broaden the field of nano scale themoelectricity production

utilizing the enhanced electronic properties of Kondo correlated nano devices. Going further into

the detail of Kondo paradigm, at this stage, it is crucial to differentiate among different classes of

Kondo effects and associated transport fingerprints. The competition among localized degrees of

freedom, number of conduction channel, number of electronic reservoirs etc., can exhibit different

forms of Kondo effects [26]. In the following we briefly summarize the broad classification of Kondo

effects.

It is almost four decades since the seminal work of Nozieres and Blandin (NB) [22] about

the Kondo effect in real metals. The concept of the Kondo effect studied for impurity spin S=1/2

interacting with a single orbital channel K=1 of conduction electrons [7, 16–18, 20, 23, 39–41] was

extended in [22] for arbitrary spin S and arbitrary number of channels K. A detailed classification

of possible ground states corresponding to the under-screened K<2S, fully screened K=2S and

overscreened K>2S Kondo effect has been given in [26, 42, 43] as shown in Fig. 1.3. In the fully

screened case the conduction electrons completely screen the impurity spin to form a singlet ground

state [44]. As a result, the low-energy physics is described by a local Fermi-Liquid (FL) theory [20,

22]. In the under-screened Kondo effect, the available conducting channels are not enough to provide

complete screening [45, 46]. Thus, there is a finite concentration of impurities with a residual spin

contributing to the thermodynamic and transport properties. In contrast to the underscreened

4



1.2. So what’s still so new with Kondo effects in Fermi-liquid regime?

and fully-screened cases, the physics of the overscreened Kondo effect is not described by the

FL paradigm resulting in dramatic change of the thermodynamic and transport behaviour [10].

However, in this thesis we restrict ourselves to the study of non-equilibrium transport properties

of fully screened Kondo effects described by FL theory.

1.2 So what’s still so new with Kondo effects in Fermi-liquid

regime?

When the number of conduction channels K and the spin of localized impurity S bears the specific

form K=2S, the impurity spin gets fully screened which forms a ground state singlet. At strong-

coupling regime the complete screening give rise to a FL. The usual situation corresponds to the

case of spin S=1/2 impurity interacting with the single channel K=1 of conduction electrons.

Furthermore, it has been argued that in real metals the spin-1/2 single-channel Kondo effect is

unlikely to be sufficient for the complete description of the physics of a magnetic impurity in a

non-magnetic host [29, 47–52]. In many cases truncation of the impurity spectrum to one level

is not possible and besides there are several orbitals of conduction-electrons which interact with

the higher spin S>1/2 of the localized magnetic impurity [10], giving rise to the phenomenon of

multi-stage, multi-channel Kondo screening [24, 53] even in the FL regime. The most general case

of experimental relevance for the multi-stage Kondo paradigm is the spin S=1 impurity screened by

two channels K=2 of conduction electrons [47, 49]. While the single channel spin-1/2 Kondo effects

are being widely studied, the fully screened Kondo effects with higher spin S>1/2 have received

much less attention over the past years. Though the ground state is of FL universality class, the

consistent treatment of the competition between the channels creates the major complexity of the

problem. Given that, we consider two prototypical examples of the fully screened Kondo effects:

i) spin-1/2 single channel and ii) spin-1 two channel and develop a local FL theory of quantum

transport applicable in the strong-coupling regime to study the non-equilibrium transport in the

presence of voltage bias and temperature gradient. In the following section we discuss in detail

about “Why we took this route?” and “What are our contributions to above mentioned fields of

fully screened Kondo effects?”.

1.2.1 Thermoelectric transport through a spin-1/2 single channel Kondo ef-

fects: from SU(2) to SU(N) regime

Greatly enhanced thermoelectric response of nano scale systems over conventional bulk materials

has revived further the field of thermoelectricity [54–56]. Rapid development of nanotechnology has

fueled several exciting thermoelectric experiments on nano materials and their theoretical formu-

lation [57] to fulfill the urgent demand of energy harvesters for quantum technologies. The charge

quantization in quantum devices [58] furnishes a controllable comprehension of underlying trans-

port processes. Consequently, spectacular thermoelectric measurement of prototypical nano scale

systems such as quantum dots (QDs), carbon nano-tubes (CNTs), quantum point contacts (QPCs),

5



1.2. So what’s still so new with Kondo effects in Fermi-liquid regime?

etc has been reported over the past years [54, 59]. So why Kondo effect for thermoelectricity?

Why Kondo effect for thermoelectricity?

At the nanoscale, the single electron effects become very important resulting in the ubiquitousness

of electron interactions. Equivalently, strong Coulomb interaction is at the cornerstone of nano

devices. The resonance scattering often combines with strong electron interaction which drives the

system to posses very peculiar functionality [60, 61] due to the emergence of Kondo effect. As follows

from the FL theory, the thermopower S (Seebeck effect) of bulk metals is directly proportional to the

temperature T and inversely proportional to the Fermi energy εF [62]; Sbulk ∝ T/εF . The resonance

scattering on a quantum impurity, however, dramatically enhances this effect due to the emergence

of new quasi-particle resonances at the Fermi level described by the Kondo effect [10, 20, 22]. The

contribution to the Seebeck effect proportional to the concentration of impurities at low T , as a

result, scales as SKondo ∝ T/TK [10, 62] where TK is a characteristic energy defining the width

of the Kondo resonance, the Kondo temperature. Since TK�εF we arrive at the conclusion that

SKondo�Sbulk. The Kondo effect in nano-devices is, thus, a key for enhancing the thermopower

production [32]. The tunable thermo-transport through nano-devices controlling the heat flow is

needed for efficient operation of quantum circuits elements: single-electron transistors, quantum

diodes etc to perform controllable heat guiding.

Can we really produce appreciable thermopower with Kondo devices?

Let us consider the general case of spin-1/2 Kondo impurity tunnel coupled to two conducting

reservoirs, the left (L) and right (R). Furthermore, the rotation of the electrons in the reservoirs

and the impurity are assumed to be described by the SU(2) transformation (we refer this particular

case as “conventional SU(2) Kondo effect”). In addition, the left and right reservoirs are in equilib-

rium, separately, at temperatures Tγ (γ=L,R) and chemical potentials µγ respectively. Note that

throughout the calculations we use the system of atomic unit, ~=kB=e=1 unless explicitly written.

As far as the condition TL 6=TR and µL 6=µR is satisfied, heat current (Ih) and charge current (Ic)

start to flow from one reservoir to another via the Kondo impurity. To be more explicit, we con-

sider the voltage bias and temperature gradient across the impurity in such a way that µL−µR=∆V

and TL−TR=∆T . We choose the right reservoir to define the reference temperature, Tref≡TR=T .

Then the charge and the heat currents in the linear response theory are connected by the Onsagar

relations [63, 64], (
Ic

Ih

)
=

(
L11 L12

L21 L22

)(
∆V

∆T

)
. (1.2)

The Onsagar transport coefficients Lij in Eq. (2.2) provide all the thermoelectric measurements of

interests in linear response regime [65]. As we anticipated earlier, the low energy transport via

fully screened Kondo impurity is completely described by a local FL theory [20]. Therefore the

coefficients Lij are characterized by the single particle T-matrix Tσ(ε) of FL quasi-particles [29, 65].

Such connection is governed by defining the transport integrals In(T ) (n=0, 1 and 2) in terms of

6
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SU(2), m=1

SU(4), m=1

SU(4), m=2

Figure 1.4: The ground state of the conventional SU(2) and SU(4) Kondo effect. While the SU(2)

Kondo effect occurs at half filling, the SU(N = 4) Kondo effect offers a non-trivial occupation away

from the PH-symmetric point, namely the m=1 and m=3 state (not shown in figure since it is

related to the case of m=1 via the PH symmetric transformation).

the imaginary part of the T-matrix [29],

In(T )=
∑

σ=↑,↓

∫ ∞

−∞

dε

2π
εn
[
−∂f(ε)

∂ε

]
Im [−πνTσ(ε)] . (1.3)

Here f(ε)= [1 + exp (ε/T )]−1 is the equilibrium Fermi-distribution function of the reference reser-

voir, the term Im [−πνTσ(ε)] represents the spectral function of the Kondo impurity. Density

of states per species for the one-dimensional channel ν and the Fermi-velocity vF are related as

ν=1/2πvF . Then the transport coefficients characterizing the charge current are expressed in terms

of the transport integrals, namely, L11 = I0 and L12 = −I1/T [66]. The electrical conductance is

given by the coefficient L11 and the thermopower (Seebeck coefficient) by the ratio L12/L11.

Carefully analyzing the form of Eq. (1.3) we see that the coefficient L11 will be non-zero

if the spectral function is either fully symmetric or contain some terms that are symmetric with

energy ε. In contrast, the Onsagar’s coefficient L12 vanishes for symmetric spectral function, thus,

is the measure of the asymmetry of the spectral function. Now the major concern is what is the

spectral function of the SU(2) Kondo impurity? Is it fully symmetric with respect to energy? The

answer is “yes it is fully symmetric” in accordance with the expression of spectral function in the

7



1.2. So what’s still so new with Kondo effects in Fermi-liquid regime?

strong-coupling regime [29],

Im [−πνTσ(ε)] = 1− 3

2

(
ε

T
SU(2)
K

)2

− 1

2

(
πT

T
SU(2)
K

)2

. (1.4)

Here T
SU(2)
K is the Kondo temperature of SU(2) Kondo effect. The Eq. (1.4) shows that the

thermopower of a conventional Kondo effect vanishes in linear response level of calculation. What

is the simple explanation of this behavior? The spin-1/2 SU(2) Kondo impurity physics arises at the

half-filled particle-hole (PH) symmetric regime. We refer to “electrons” as quasi-particles above εF

and “holes” as the excitations below εF . The PH symmetry, being responsible for the enhancement

of the electric conductance, suppresses however the thermo-electric transport. This is because the

heat current carried by electrons is completely compensated by the heat current carried by holes

resulting the nullification of power production. The emergent PH symmetry in SU(2) Kondo regime

is shown in the upper panel of the Fig. 1.4. How to bypass the PH symmetry problem occurring with

conventional SU(2) Kondo effects so as to achieve appreciable thermopower? In addition, it is very

rare to realize the system with exact PH symmetry, therefore, one needs a theoretical framework

that can capture the breaking of PH symmetry in order to describe the experimental results. How

to develop a low energy theory of transport that is beyond the SU(2) Kondo paradigm?
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SU(4) state

Figure 1.5: Upper panel: An example of SU(N=4) Kondo correlated heat engine where a CNT is

connected between two fermionic reservoirs, the hot (red) and the cold (blue). Voltage bias ∆V

and temperature gradient ∆T=TL−TR are applied across the CNT quantum dot. Lower panel:

The doubly degenerate orbital degree of freedom in CNT combines with spin degeneracy to form

a Kondo effect with SU(4) symmetry group. The SU(4) Kondo effects occur with at most three

electrons. While the state with two electron forms a PH symmetric state, the one or three electron

case explicitly breaks the PH symmetry. The density of states (spectral function) for beyond PH

symmetric SU(4) Kondo effects is not symmetric with respect to the Fermi level. Therefore, these

systems offer huge thermopower and other fascinating thermoelectric transport properties.
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1.2. So what’s still so new with Kondo effects in Fermi-liquid regime?

SU(2) to SU(N) Kondo effects: root of achieving huge thermopower

From the above discussion we see that to achieve appreciable thermopower, the occupation factor of

the quantum impurity should be integer, while the PH symmetry should be lifted. Such properties

are generic for the SU(N) Kondo models with the filling factors different from 1/2 (see Fig. 1.4).

That means, the SU(N) Kondo model with integer occupancy m offers the possibility of avoiding

half-filled regime so as to achieve the enhanced thermoelectric power production over the conven-

tional SU(2) Kondo correlated systems [1, 4, 67]. The orbital degeneracy of the quantum impurity

combines with the true spin symmetry to form the Kondo effect described by higher symmetry

group SU(N). Here the occupancy factor m takes all possible values starting from 1 to N−1. The

paradigmatic SU(4) Kondo physics has been experimentally studied in CNTs [35, 68–72], double

QDs [73] and single-atom transistor [74]. Various theoretical works [75–80] have contributed to-

wards better understanding of SU(4) Kondo physics over past years. The SU(4) Kondo effect in

CNT is demonstrated in Fig.1.5. In addition, exciting proposals have been put forth for the ex-

perimental realization of different variants of SU(N) Kondo systems. Possible realization of SU(3)

Kondo effects using triple QDs with three and four edge states of the quantum Hall effects was sug-

gested in Ref. [81], which been verified recently using numerical renormalization group study [82].

The proposals for the solid-state realization of SU(6) [83] and SU(12) [84] Kondo effects have like-

wise attracted considerable attentions both theoretically and experimentally. Beside obtaining the

solid-state realization of these exotic SU(N) Kondo effects, an increasing effort has been put in

their cold atomic realization [85–88]. Given that, we develop a low energy theory of thermoelectric

transport through a SU(N) Kondo impurity based on the local FL theory in combination with

non-equilibrium Keldysh approach. Dramatic transport characteristics such as huge power factor,

thermopower and Peltier coefficients with a SU(N>2) Kondo effects are reported.

1.2.2 Fermi liquid paradigm extended to multi-stage Kondo effects

Multi-orbital quantum impurity with effective spin S=1 connected to two terminals can results in

a Kondo effect exhibiting two-stage screening [2]. The first-stage screening process constitutes an

under-screened Kondo effect where the impurity spin is effectively reduced from S=1 to S=1/2.

Subsequently, second-stage screening leads to complete screening of the impurity spin and the

formation of a Kondo singlet. This feature of screening is called two-stage Kondo (2SK) effect [45,

49]. This two-stage screening process is illustrated in Fig. 1.6. The low energy description of such

2SK effects is still governed by a local FL theory. Nonetheless, transport properties of such FL

get modified in dramatic ways compared to single channel Kondo effects [2]. The strong interplay

between two conduction channels, both close to resonance scattering, causes strikingly different

transport features over single channel case. The lack of compatible cure of the two Kondo resonances

makes the 2SK paradigm far from being trivial for several years [45, 49, 89]. Given that, we develop

two-color Fermi-liquid theory to analyze the equilibrium and non-equilibrium transport properties

of a generic 2SK effects based on the non-equilibrium Keldysh formalism. The generalization of

Kondo screening in three and beyond stages are also within the scope of developed formalism. In

addition to the non-equilibrium charge current, all of its moments are studied using the method of
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1.3. Main Results

Quantum dot
Left lead Right lead

Figure 1.6: Upper panel: Schematic representation of a quantum impurity with an effective spin

S=1 tunnel-coupled to two electronic reservoirs as a prototypical example of the two-stage, two-

channel Kondo effect. The symmetric and anti-symmetric combinations of electrons states in the

reservoirs are represented by “even (e)” and “odd (o)” channels. The Kondo temperatures of

even/odd channels are T
e/o
K . Lower panel: Flow diagram of two-stage Kondo model from weak to

strong coupling.

full counting statistics. The absence of zero-bias anomaly and non-monotonicity of FL transport

coefficients are demonstrated as the hallmarks of multi-stage Kondo effects in its strong-coupling

regime T�min(T e
K, T

e
K). A novel method of measuring FL transport coefficients of the 2SK effect

by the independent measurements of charge current and its noise is proposed.

1.3 Main Results

The main results presented in this thesis can be divided into two broad categories. The study of

non-equilibrium thermoelectrics with a SU(N) Kondo impurity constitutes the first part. In this

part, two reciprocal measures of thermoelectrics namely, the Seebeck and Peltier coefficients are

investigated. The role of junction asymmetry in enhancing the thermoelectric transport coefficients

is discussed. Moreover, the power output of a heat engine in SU(N) Kondo regime is explored which

is shown to be bounded from below by zero with the upper bound strictly set by the filling factor and

reference temperature. The second part is devoted to the development of a local FL theory for the

non-equilibrium transport through higher spin S=1 quantum impurity in the strong-coupling Kondo

regime. The strong-coupling regime of a S=1 quantum impurity interacting with the two external

reservoirs constitutes a pro-typical example of two-stage, two-channel Kondo effect. The absence

of zero-bias anomaly and the non-monotonicity of the transport coefficients are demonstrated to be

10



1.3. Main Results

the major hallmarks of multi-stage, multi-channel Kondo effects. The second part also contains the

study of full counting statistics of the multi-stage Kondo paradigm. In the following we announce

the key results presented in this thesis.

1.3.1 Thermoelectric power production in the presence of strong interactions

and resonance scattering

Enhancing power production in nano-devices has been limited due to the recent finding of quantum

mechanical upper bound in power output of non-interacting systems P0
max [90, 91],

P0
max ≤

Nπ2

h
A0∆T 2, A0 ' 0.0321, (1.5)

with h Planck’s constant, N is the number of conduction modes and ∆T is the applied temperature

gradient. The Eq. (1.5) illustrates the fact that the power output grows linearly with number of

conduction modes N . However, it has been noticed that, most of the thermoelectric engines are

limited to the setup with N ∼ 1. The search towards the physical realization of the systems with

N�1 is one of the major research concern of the field. Note that the recent experiment [92] has

reported almost 50% of upper bound of power production in one dimensional nanowire. How to

enhance further the achievable power output of a generic nano device is another hottest research

topic of the field [92]. Furthermore, since the interactions are ubiquitous at nano-scale, examining

the universality of predicted upper bound in the presence of strong interactions looks like a earnest

need and serious challenge. In this facet, we develop a local Fermi-liquid approach to examine

the influences of strong interactions and resonance scattering on the power production of a generic

nano device in SU(N) Kondo regime with arbitrary filling factor m. We uncover the bounded

value of power factor with lower bound zero and upper bound set by the filling factor and reference

temperature. While the lower bound is strictly satisfied by half-filled Kondo impurity, the upper

bound explicitly depends on the reference temperature for given filling factor. These findings are

summarize with the an equation of output power of a SU(N) Kondo impurity PKondo
max ,

PKondo
max =

Nπ2

h




1

36

sin2
(

2πm
N

)(
πT

T
SU(N)
K

)2

sin2
(
πm
N

)
+1

3

(
πT

T
SU(N)
K

)2
N+1
N−1 cos

(
2πm
N

)


∆T 2, (1.6)

where T is the reference temperature and T
SU(N)
K is the Kondo temperature. The output power

Eq. (1.6) explicitly depends on the internal parameters of the system such asN , m and T
SU(N)
K unlike

the non-interacting systems. With the help of Eq. (1.6), we report about 50% of quantum bound

of power production in an experimentally studied SU(4) Kondo effect in carbon nano tube setup.

In addition, we demonstrate that the SU(N) Kondo effects away from half-filling can provide an

experimental realization with N � 1 so as to increase the total power production of a heat engine.
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1.3. Main Results
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Figure 1.7: Left panel: Schematic representation for the tunneling tL/R through the SU(N) quantum

impurity. Right panel: Fermi distribution functions of the left (hot) and right (cold) leads at

temperatures TL/R and chemical potential µL/R. The thermo-voltage ∆V = |µR − µL|/e is applied

to achieve the steady state with zero net current across the impurity. Left (red)/right (blue) arrows

show directions of thermo- and electric- currents. Resonance Kondo peak of width TK in density

of states is shown by the green color.

1.3.2 Nonlinear theory of thermoelectrics with a SU(N) Kondo impurity

Efficient control of heat flow through nano-sized quantum devices (such as single-electron tran-

sistors, quantum diodes etc.) is one of the important directions of modern quantum technologies

and quantum computing. For example, a quantum dot (one of promising realizations of the single

electron transistor) is typically sandwiched between two external reservoirs and therefore accessible

through quantum tunneling effects. Besides, at very low temperatures, electrons carry both charge

and heat serving as a driving force of thermoelectric phenomena. Assuming that the source and the

drain are biased by an external electric potential and characterized by two different temperatures

(as shown in Fig 1.7), both scattering and interactions in the quantum dot develop at out-of-

equilibrium conditions. The involvement of strong electron-electron interactions and resonance

scattering demands a non-perturbative treatment of the problem. In this facet, we construct a new

approach to the quantum thermoelectric transport through nano-devices based on non-equilibrium

many-body theory. This approach allowed for a mapping of a model of quantum-spin-impurity

onto a Fermi system which scatters and interacts at the quantum dot position.

In summary, we investigate thermoelectric transport through a SU(N) quantum impurity in

the Kondo regime. The strong coupling fixed point theory is described by the local Fermi-liquid

paradigm. Using Keldysh technique we analyze the electric current through the quantum impurity

at both finite bias voltage and finite temperature drop across it. The theory of a steady state at

zero-current provides a complete description of the Seebeck effect. The Peltier coefficient is defined

as the ratio of heat current to the charge current at isothermal condition. We find pronounced

non-linear effects in temperature drop at low temperatures. We illustrate the significance of the

non-linearities for enhancement of thermopower and Peltier coefficient by two examples of SU(4)

symmetric regimes characterized by a filling factor m: i) particle-hole symmetric at m=2 and ii)

particle-hole non-symmetric at m=1. We analyse the effects of potential scattering and coupling

asymmetry on the transport coefficients. We discuss connections between the theory and transport

12



1.3. Main Results

experiments with coupled quantum dots and carbon nanotubes.

One of the central result of this work is the expression of the charge current of a SU(N) Kondo

impurity upto cubic response in applied bias ∆V and temperature gradient ∆T . For T
SU(N)
K being

the Kondo temperature and G0(N) the unitary conductance, the charge current Ic(N,m) of a

SU(N) Kondo impurity with m electrons is

J (N,m) ≡ Ic(N,m)

G0(N)T
SU(N)
K

= L 1
1 ∆V+L 1

2 ∆T+L 2
1 ∆V

2
+L 2

2 ∆T
2
+L 11

12 ∆V∆T + · · · . (1.7)

Where the over-line symbol represents that the given quantity is normalized with the corresponding

Kondo temperature such as T ≡ T/T
SU(N)
K and similarly the others. The transport coefficients in

Eq. (1.7) are then expressed as a function of the intrinsic parameters of the SU(N) Kondo impurity,

L 1
1 =

[
sin2

(πm
N

)
+

1

3

N + 1

N − 1
cos

(
2πm

N

)
(πT )2

]
,

L 1
2 =− π2

3
T sin

(
2πm

N

)
, L 2

1 =
1

2
C sin

(
2πm

N

)
,

L 2
2 =− π2

6
sin

(
2πm

N

)
,

L 11
12 =− π2

3
T
[C(N − 2)−N − 1

N − 1
cos

(
2πm

N

)
+ 2CA sin

(
2πm

N

)]
, (1.8)

and similarly the higher order coefficients. In Eq. (1.8), the symbol C ≡ cos 2θ with θ ∈ (0, π/2)

stands for the junction asymmetry and the parameter A is defined as

A ≡ N − 2

N − 1

Γ(1/N) tan(π/N)√
πΓ
(

1
2 + 1

N

) cot
[mπ
N

]
. (1.9)

1.3.3 Nonequilibrium transport through the two-stage, two-channel Kondo ef-

fect

A multi-orbital quantum impurity with effective spin S>1/2 connected to several reservoirs of

conduction electrons can lead to a Kondo effect exhibiting multi-stage screening. In a prototypical

nano-scale device consisting of a S=1 quantum impurity connected to two conducting reservoirs,

the first-stage screening process constitutes an under-screened Kondo effect where the impurity

spin is effectively reduced from S=1 to S=1/2. Subsequently, second-stage screening leads to

complete screening of the impurity spin and the formation of a spin singlet. Due to this two-stage

screening mechanism, transport coefficients such as the differential conductance exhibit a non-

monotonic dependence on external magnetic field, applied source-drain voltage and temperature.

Theoretically understanding the equilibrium and non-equilibrium properties of the strong-coupling

regime resulting from this two-stage screening mechanism has been an open problem for more than

two decades, because, in contrast to standard impurity models such as the Kondo model or the

single-impurity Anderson model, not one but two non-trivial phase shifts are involved.
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1.3. Main Results
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Figure 1.8: Schematic representation of the non-monotonic behavior of the differential conductance

G/G0 (G0 = 2e2/h is the conductance quantum) as a function of temperature resulting from a

two-stage Kondo effect. There are three characteristic regimes: (A) weak, (B) intermediate and

(C) strong coupling. In the weak coupling (A)-regime the screening is absent and the transport

coefficients are fully described by the perturbation theory. In the intermediate regime (B), the

Kondo impurity is partially screened (see the first stage at the top panel); the residual interaction

of electrons with the under-screened spin is antiferromagnetic. The description of the FL transport

coefficients in the strong coupling regime (C) at the second stage of the screening is the central

result of our work.

We consider a quantum dot with K≥2 orbital levels occupied by two electrons connected to

two electric terminals. The generic model is given by a multi-level Anderson Hamiltonian. The

weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S=1 Kondo

model characterized by intrinsic channels asymmetry. These channels are leveled as “even (e)” and

“odd (o)” characterized by the respective Kondo temperatures T
e/o
K . Based on the conformal field

theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamil-

tonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum

impurity by a two-color local Fermi-liquid. Using non-equilibrium (Keldysh) perturbation theory

around the strong-coupling fixed point we analyse the transport properties of the model at finite

temperature (T ), Zeeman magnetic field (B) and source-drain voltage (eV ) applied across the

quantum dot. We compute the Fermi-liquid transport constants and discuss different universality

classes associated with emergent symmetries. The key result of this work is the non-monotonicity

of the conductance in two-stage, two-channel Kondo effect as demonstrated in Fig 1.8. While we

illustrate the general theory of two resonance scattering channels by the two-stage Kondo problem,

the developed formalism is applicable for a broad class of models describing quantum transport

through nano-structures and behavior of strongly correlated electronic systems. In addition, it is

straightforward to extend the presented ideas for generic Anderson-type models away from the PH

symmetric point and generalize it for the SU(N) Kondo impurity in multi-stage setup.
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1.3. Main Results

1.3.4 Full counting statistics of the two-stage Kondo effect

Figure 1.9: The evolution of Fano factor (F ) as a function of channel asymmetry parameter (L)

for a generic two-stage Kondo effect. Inset: The non-monotonic conductance behavior, the major

hallmark of multi-stage Kondo paradigm.

The method of full counting statistics (FCS) furnishes an elegant way to scrutinize an arbitrary

(n-th) order cumulant of current through a nanodevices. The probabilistic interpretation of charge

transport is at the core of FCS theory. The primary object of FCS is the moment generating

function (MGF) for the probability distribution function (PDF) of transferred charges within a

given time interval. The moments of PDF of order n≥2 characterize the current fluctuations.

The FCS scheme permits in this way a transparent study of the quantum transport in various

nanostructures. Various seminal works [93–97] paved the way to access the associated FCS in

single channel spin-1/2 Kondo effects. As we already anticipated that the transport properties of

two-stage Kondo effects are in strikingly contrast with the single channel case, the development

of FCS for multi-stage, multi-channel Kondo paradigm seems to be a serious challenge. In this

facet, we developed a theoretical framework which extends the method of FCS from conventional

single channel Kondo screening schemes to multi-channel Kondo paradigm. The developed idea

of FCS has been demonstrated considering an example of two-stage Kondo (2SK) model. We

analyzed the charge transferred statistics in the strong-coupling regime of a 2SK model using non-

equilibrium Keldysh formulation. One of the central result of this work is the prediction of bounded

value of Fano factor (F ), 1 ≤ F ≤ 5/3 in 2SK model, which confirmed the cross-over regimes (from

Poissonian to super-Poissonian) of charge transfered statistics in 2SK effect as shown in Fig. 1.9. An

innovative way of measuring transport properties of 2SK effect, by the independent measurements

of charge current and its noise, has been proposed.

15



1.4. Outline of this Thesis

1.4 Outline of this Thesis

In chapter 2 we present our calculation for the power production of a heat engine in the strong-

coupling regime of a SU(N) Kondo impurity, and show that it is bounded from below by zero and

upper bound is strictly set by the filling factor and reference temperature. The chapter 3 is devoted

to the development of the non-equilibrium theory of thermoelectric transport through a SU(N)

Kondo impurity. Two reciprocal measure of thermoelectrics namely, the Seebeck coefficient and

Peltier coefficients are calculated in SU(N) Kondo regime and the strong dependence of nonlinearity

and junction asymmetry on the thermoelectric transport coefficients are explored. In addition, the

mysterious experimental thermo-voltage offset observed with the SU(2) Kondo correlated QD has

been explained as an effect associated with nonlinearity. In chapter 4 we present a local FL theory

for the quantum transport through the multi-stage, multi-channel Kondo effect and demonstrate the

formalism for prototypical two-stage Kondo effect relevant to the spin-1 QD tunnel coupled to the

two external reservoirs. In the last chapter of this thesis, we develop a theoretical framework which

extends the method of full counting statistics from conventional single channel Kondo screening

schemes to multi-channel Kondo paradigm. The developed idea of full counting statistics has been

demonstrated considering an example of two-stage Kondo effect. We did our best to make each

chapter self contained and independent from each other. Therefore, if you are interested in reading

this thesis, you can start from any chapter you like.
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Chapter 2

Thermoelectrics with a SU(N) Kondo

impurity

This chapter explores the thermoelectric power output of a heat engine in SU(N) Kondo regime.

Some parts of this chapter have been previously published as:

D. B. Karki and Mikhail N. Kiselev,

Effects of strong electron interactions and resonance scattering on power output of nano-devices,

arXiv:1906.00724.

2.1 Background

Greatly enhanced thermoelectric response of nano scale systems over conventional bulk materials

has revived further the field of thermoelectricity [54–56]. Rapid development of nanotechnology

has fueled several exciting thermoelectric experiments on nano materials and their theoretical

formulation [57] to fulfill the urgent demand of energy harvesters for quantum technologies. The

charge quantization in quantum devices [58] furnishes a controllable comprehension of underlying

transport processes. Consequently, spectacular thermoelectric measurement of prototypical nano

scale systems such as quantum dots (QDs), carbon nano-tubes (CNTs), quantum point contacts

(QPCs), etc has been reported over the past years [54, 59]. In such a small systems the electron

interactions are ubiquitous. Equivalently, strong Coulomb interaction is at the cornerstone of nano

devices. The resonance scattering often combine with strong electron interaction resulting the

system to posses very peculiar functionality [60, 61]. Therefore unified description of resonance

scattering and strong electrons interaction at the nano scale have remained a challenging task for

modern quantum technologies.

In the past years several perseverance have been devoted for the consistent description of

thermoelectricity in QD based heat engines [57]. Efficiency and power production of a heat engine

are the two connected fundamental ingredients of thermoelectric production [98–101]. Reversible

engine, though Carnot efficient, are not of any practical applications since they do not produce finite
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2.1. Background

0 otherwise

boxcar function

Figure 2.1: The boxcar transmission function T (ε) producing the maximum power output suggested

in Ref [90]. The number of conduction modes is represented by N .

power [98]. Consequently the search for quantum thermoelectric devices with maximum attainable

output power maintaining good efficiency have remained one of the active and demanding field

of research in mesoscopic physics [57, 101]. Even though unveiling the universal upper bound of

output power in nano devices looks like a serious challenge, certain attempts of this facet has

been reported recently [90, 91, 102] by Whitney. These fundamental discoveries, for the first time,

have shown that the quantum mechanics sets an upper bound on the power output of the non-

interacting systems. Based on the non-linear scattering theory, the maximum power production of

two-terminal nano devices established by Whitney [90] can be cast into the compact form

P0
max ≤

N

h
A0π

2∆T 2, (2.1)

with the constant A0 ' 0.0321, N is the number of transverse modes participating in the transport,

h is the Planck’s constant and ∆T is the applied temperature gradient. The equality in Eq. (2.1) is

satisfied when the transmission is a boxcar function as shown in Fig. 2.1. Furthermore, according

to the Whitney’s formula Eq. (2.1), the power output grows linearly with numbers of conduction

modeN . Therefore the setup withN�1 would be highly advantageous for the better thermoelectric

performance of a nano device. Since most of the thermoelectric devices are limited to the setup

with N∼1 [90], Whitney further suggested to use many properly engineered quantum systems in

parallel to increase N . In the experimental side, only about 50% of quantum upper bound of power

output has been recently observed in one dimensional nano wire [92].

In addition to greatly contributing towards the better understanding of nano scale thermo-

electricity, Whitney’s prediction has open diverse valid avenues for further research, both theoretical

and experimental. On one hand, examinations of how universal is this bound P0
max in the presence

of strong electron interactions are of earnest interest [91]. On the other hand, the intense search of

better energy harvesters for quantum technologies demands properly addressing the fundamental

question “can one deigned a operating nano devices in the interacting regime with similar upper

bound as in non-interacting case P0
max?” In addition, how to experimentally achieve the setup with
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2.1. Background

Figure 2.2: An example of SU(N=4) Kondo correlated heat engine where a CNT is connected

between two fermionic reservoirs, the hot (red) and the cold (blue). Voltage bias ∆V and tempera-

ture gradient ∆T=TL−TR is applied across the CNT quantum dot. The doubly degenerate orbital

degree of freedom in CNT combines with spin degeneracy so as to form a Kondo effect with SU(4)

symmetry group.

N�1 to increase the total power output of a nano device made up of a single quantum system is

also the active field of research in mesoscopic physics.

In this chapter, we investigate the influences of strong electron interactions and resonance

scattering on the output power of a generic nano device and discuss it in relation to the Whitney’s

formula. The strong electron correlation at the nano scale often results in dramatic transport

properties. The most prominent example of low energy phenomena resulting from the strong

interaction is the Kondo effect. Therefore, we chose a heat engine in Kondo correlated regime

to reveal how the interactions modify the non-interacting upper bound of power production. As

anticipated in chapter 1, the emergent particle-hole (PH) symmetry of conventional SU(2) Kondo

effects results in vanishingly small thermopower. Due to this difficulty associated with SU(2) Kondo

effect, we consider the paradigmatic SU(N) Kondo regime. We proceed with the local Fermi-Liquid

based calculation of power production in thermoelectric heat engine mediated by strongly coupled

SU(N) Kondo impurity. We concentrate our discussion mainly on the experimentally studied

beyond half-filled SU(4) Kondo effects. In addition, we examine power output with some proposed

realizations of SU(N) Kondo variants such as SU(N=3, 6, 12).

The paradigmatic Kondo screening phenomena [7] play the central role in enhancing nano

scale thermoelectricity by the formation of the quasi particle resonances at the Fermi level [32].

Recent experimental progress [33–38] has revived further the realm of transport measurements in

Kondo correlated nano scale systems. The low temperature Kondo regime (the strong-coupling

regime), emerges from the complete screening of spin of the localized impurity, is completely de-

scribed by a local Fermi-Liquid (FL) theory [20]. Consequently, electrons (particles) and holes

picture manifests itself in the quasi-particle description of thermoelectric transport. Being pro-

tected by particle-hole (PH) symmetry the conventional spin 1/2, SU(2) Kondo impurity offers

vanishingly small power output [1, 65]. This trouble is circumvented elegantly by uplifting the

degeneracy of quantum impurity keeping the integer occupancy. These properties are exploited in

beyond half-filled SU(N) Kondo effects. In addition, these SU(N) quantum impurity with integer
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2.2. Thermoelectric transport

occupancy m=1, 2 · · ·N−1, could provide much higher Kondo temperature over conventional SU(2)

Kondo systems.

While the transport characteristics of conventional SU(2) Kondo effects has long been inves-

tigated [32, 103–105], the exotic SU(N) quantum impurities are of current interests. The authors of

Ref. [81] have proposed two different realizations of SU(3) Kondo effect in QDs, namely, triple QDs

with three and four edge states of the quantum Hall effects. Proposal and numerical demonstration

of the SU(3) Kondo effect in spin less triple QDs have been also reported in recent years [82]. The

paradigmatic SU(4) Kondo physics has been experimentally realized in CNTs [35, 68–70], double

QDs [73] and single-electron transistor [74]. These studied were supplemented by different analyti-

cal and numerical approaches [75–78, 80]. In addition, several perseverance has been devoted in the

cold atomic realization of SU(2l+1), l being the orbital quantum number, Kondo physics [85, 87].

These perseverances have paid much attention towards the particular SU(3) Kondo effects [85].

Very recently, proposal of SU(6) Kondo effects in cold atom has been also reported [88] in addition

to its earlier proposal using three-orbital Anderson impurity [83]. Utilizing the spin, orbital and

valley degeneracy one can expects Kondo effects even with much higher symmetry group, for ex-

ample, the SU(12) Kondo effects in CNTs [84]. Given that, the investigation of power production

in SU(N) quantum impurity is very fundamental open problem of the field.

2.2 Thermoelectric transport

The charge and the heat currents in the linear response theory are connected by the Onsagar

relations [63, 64], (
Ic

Ih

)
=

(
L11 L12

L21 L22

)(
∆V

∆T

)
, (2.2)

with the setting e=~=1. The Onsagar transport coefficients Lij in Eq. (2.2) provide all the thermo-

electric measurements of interests in linear response regime [65]. As we anticipated earlier, the low

energy transport via fully screened SU(N) Kondo impurity is completely described by a local FL

theory [20]. Therefore the coefficients Lij are characterized by the single particle T-matrix Tr(ε) of

FL quasi-particles [29, 65]. Such connection is governed by defining the transport integrals In(T )

(n=0, 1 and 2) in terms of the imaginary part of the T-matrix [29],

In(T )=
∑

r

∫ ∞

−∞

dε

2π
εn
[
−∂f(ε)

∂ε

]
Im [−πνTr(ε)] . (2.3)

Here f(ε)= [1 + exp (ε/T )]−1 is the equilibrium Fermi-distribution function of the reference reser-

voir. The orbital index is represented by the symbol r which takes all possible values starting from

1 to N . Density of states per species for the one-dimensional channel ν and the Fermi-velocity vF

are related as ν = 1/2πvF. Then the transport coefficients characterizing the charge current are

expressed in terms of the transport integrals, namely, L11 = I0 and L12 = −I1/T [66]. This reduces

our task to find the expression of the T-matrix of Eq. (2.3) using a local FL-paradigm. Suppose

G0
kr(ε) and Gkr(ε) represents the bare and full Green’s functions (GFs) of FL quasi-particles. In

addition, we consider the k-independence of the T-matrix which is valid for the local interactions
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2.2. Thermoelectric transport

considered in this work. Then the diagonal part of a single-particle T-matrix Tr(ε) is defined by

the Dyson equation [29],

Gkr,k′r′(ε) = δrr′G0
kr(ε) + G0

kr(ε)Trr′(ε)G0
k′r′(ε). (2.4)

Where δrr′ is the Kronecker delta function. Fourier transformation of Eq. (2.4) into the position

space reads

Grr′(x, x
′; ε) =

1

L

∑

kk′

ei(kx−k
′x′)
[
δrr′G0

kr(ε) + G0
kr(ε)Trr′(ε)G0

k′r′(ε)
]

=
1

ivF
ei(ε/vF+kF)(x−x′) [θ(x− x′)δrr′ − θ(x)θ(−x′)2iπνTrr′(ε)

]
. (2.5)

In Eq. (2.5), θ(x) is the step function and we used the linearized dispersion relation: ξk=vF(k−kF).

From Eq. (2.5) it is seen that the element Srr′(ε) ≡ [δrr′ − 2iπνTrr′(ε)] must be a 2×2 unitary matrix

to ensure the particle conservation. To compute the T-matrix accounting for the scattering effects

in FL, we can safely assume that the low-energy electron cannot flip spin due to the scattering

events. This argument ensures that the scattering matrix Srr′(ε) should be diagonal. Then the

elastic part (scattering) of T-matrix T el
rr′(ε) is defined as

T el
rr′(ε) =

iδrr′

2πν

[
Sel

rr′(ε)− 1
]

=⇒ −πνT el
r (ε) =

1

2i

[
e2iδel

r (ε) − 1
]
. (2.6)

In Eq. (2.6) we express the elastic part of the scattering matrix Sel
r (ε) in terms of the scattering

phase shift δel
r (ε) such that Sel

r (ε)=e2iδel
r (ε). For the SU(N) Kondo impurity the equilibrium phase

shift accounting for the scatting effects and Hartree contribution to the self energy is written in

terms of the Nozieres FL parameters [20, 106]

δel
σ (ε) = δ0 + α1ε+ α2

[
ε2 − (πT )2

3

]
. (2.7)

This general expression for the elastic phase shift is applicable to the strong-coupling regime of

SU(N) Kondo impurity with upto m=N−1 electrons. The phase shift corresponds to the perfect

transmission is given by [106]

δ0 = mπ/N. (2.8)

The first and second generations of FL coefficients, α1 and α2 respectively, are related to the Kondo

temperature of the system [1]. For the sake of simplicity, we define the Kondo temperature such

that

T
SU(N)
K =1/α1, (2.9)

where the N -dependence in the FL parameters is implicit. The exact relation between α1 and α2

is given by the Bethe-ansatz solution [107]:

α2

α2
1

=
N − 2

N − 1

Γ(1/N) tan(π/N)√
πΓ
(

1
2 + 1

N

) cot
[mπ
N

]
. (2.10)

Where Γ(x) is the Euler’s gamma-function. Note that for the half-filled systems, m=N/2 (with

even N), the second generation of the FL-coefficients gets nullified. The T-matrix accounting for
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2.3. Output power of a heat engine in SU(N) Kondo regime

the inelastic effects (leaving aside the corresponding Hartree contributions) associated with the

quasi-particle interaction in FL theory is given by [20, 24]

T in
r (ε) =

N − 1

2iπν

[
ε2 + (πT )2

]
φ2. (2.11)

Here φ is the FL-coefficient representing the interaction effects originated from the four-fermions

interaction, the interactions beyond four fermions is neglected for the description of low-energy

transport processes. It has been proved that the coefficient φ is related with α1 such that α1=(N −
1)φ [107]. In addition, the inelastic part of the T-matrix Eq. (2.11) is an even function of en-

ergy, that is the inelastic transmission function is symmetric with respect to the energy. Such

a perfect symmetry tends to nullify the thermoelectric response as will be clear in the following

section. Therefore in the linear response level of calculations the thermoelectric coefficient I1 is

solely governed by the scattering effects associated with the FL quasi-particles plus the Hartree

contribution to the self energy. The T-matrix accounting for the scattering and interactions in the

FL is expressed as [29],

T tot
r (ε) ≡ Tr(ε) = T el

r (ε) + e2iδ0T in
r (ε). (2.12)

Note that the expression of −πνImTr(ε) in Eq. (2.12) contains the cosine factor cos 2δ0 coupled with

the inelastic part Eq. (2.11). Interestingly, the factor cos 2δ0 dramatically modifies some transport

behaviors. For the quarter filled SU(N) impurity such that, m/N = 1/4 or 3/4, the imaginary

part of second term in Eq. (2.12) vanishes. Such systems are merely described by the phase shift

expression Eq. (2.7). This ideal situation corresponds to the Kondo effects in CNT (see Fig 2.2),

where the SU(4) Kondo effect comes into play with m=1, 2 or 3. While the m = 2, SU(4) systems

have poor thermoelectric performance due to the emergent PH symmetry, the systems of SU(4)

impurity beyond half-filled regime are the ideal test-bed for the study of transport behavior. Use

of T-matrix expression given in Eq. (2.12) into the transport integrals Eq. (2.3) followed by the

Taylor series expansion up to the second order in energy yields,

In(T ) =
G

SU(N)
0

4T

∫ ∞

−∞
dε

εn

cosh2 (ε/2T )

[
sin2 δ0

+
(πT )2

2N − 2

(
α2

1 cos 2δ0 −
2N − 2

3
α2 sin 2δ0

)

+α1 sin 2δ0ε+

(
2N−1

2N−2
α2

1 cos 2δ0+α2 sin 2δ0

)
ε2
]
. (2.13)

Here G
SU(N)
0 =N/2π is the unitary conductance of SU(N) system. All the fundamental measures

of thermoelectricity in the linear response level of calculation can be extracted from Eq. (2.13).

2.3 Output power of a heat engine in SU(N) Kondo regime

Though all the fundamental measure of thermoelectricity can be extracted from Eq. (2.13), here

we shall focus only on the power production. Any thermoelectric devices would need finite output

power P= − Ic∆V for the successful operation. In addition, the output power can be optimized
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2.3. Output power of a heat engine in SU(N) Kondo regime

with respect to the applied bias for the given temperature drop across the impurity. For instance,

from Eq. (2.2) we express the charge current as

Ic = L11∆V + L12∆T. (2.14)

Maximizing the output power P=− Ic∆V using Eq. (2.14) we get

Pmax =
1

4

L2
12

L11
∆T 2. (2.15)

Using the transport integral provided by the Eq. (2.13) we cast the maximum power produced by

the SU(N) Kondo correlated nano devices into the form

PKondo
max =

Nπ2

h
AKondo

0 ∆T 2. (2.16)

In Eq. (2.16) we retained the constant h for its transparency. The numerical factor AKondo
0 is the

characteristics of the SU(N) Kondo impurity which is given by

AKondo
0 =

1

36

sin2
(

2πm
N

)(
πT

T
SU(N)
K

)2

sin2
(
πm
N

)
+1

3

(
πT

T
SU(N)
K

)2
N+1
N−1 cos

(
2πm
N

) . (2.17)

Note that the maximum power production Eq. (2.16) of thermoelectric devices with SU(N) Kondo

impurity has analogous form with the corresponding Whitney’s formula. While in non-interacting

system studied in Ref. [90] the factor A0 is purely a constant number, the SU(N) Kondo impurity

offers its generalization that also depends on the system properties. Note that, for the low energy

description of problem considered in this work, we set the reference temperature T≤T SU(N)
K /7 to

fulfill all the assumptions made in deriving the non-interacting upper bound in Ref. [90].

From Eq. (2.17) it is clearly seen that the PH symmetry of the problem, mainly the half

filling m/N=1/2 situation, tends to nullify the power production. Furthermore, the SU(N) Kondo

impurity with large N and small m are again not preferable for the propose of achieving appreciable

power production. Another very interesting limit of Eq. (2.17) is the quarter filled situation,

m/N=1/4. In this limit the power production is universal, irrespective of m and N as far as their

ratio is one quarter,

AKondo
0

∣∣∣
m/N=1/4

=
π2

18

(
T

T
SU(4)
K

)2

. (2.18)

The factor AKondo
0 characterizing the power output per degeneracy of SU(N) Kondo effect is

plotted (in the unit of A0) in Fig. 2.3 as a function of occupancy m for fixed N (upper panel) and in

reverse order (lower panel). As seen from the Fig 2.3, about 50% of quantum upper bound of output

power can be generated with SU(N) Kondo effects. Though the power output per degeneracy is

half of the quantum bound, SU(N) Kondo effect offers the possibility of N�1 and results in a

giant output power. Note that, mere increase of N fixing m to the small value would not be at

all advantageous to increase the power output (see lower panel of Fig. 2.3). This generic feature

of strong interplay between the Kondo resonance and filling factor is in striking contrast to the

non-interacting system studied in Ref. [90]. In addition, the optimal value for the coefficient AKondo
0

given in Eq. (2.17) is achieve with the filling factor m/N=1/6 relevant to the existing proposed

realizations [83, 84, 88].
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Figure 2.3: Upper panel: The output power of SU(N) Kondo impurity per degeneracy in the unit

of corresponding quantum upper bound as a function of occupancy m for fixed N . Lower panel:

The decay of output power of SU(N) Kondo impurity with N for given m. For both plots the

reference temperature has been fixed to T=T
SU(N)
K /7.
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2.4. Summary

2.4 Summary

We develop a Fermi-liquid based approach to investigate the output power of a generic nano device

in the presence of strong electron interactions and resonance scattering. The developed formalism

is employed to reveal the output power of a SU(N) Kondo impurity which offers the nontrivial

occupations away from the half-filling. The strong interplay of Kondo resonance and the filling-

factors in a beyond half-filled Kondo effect is found to be a key of enhancing output power which

results in about 50% of quantum upper bound of power output. We provide an efficient experimental

way of increasing the total power of a nano device by uplifting the degeneracy factor N as well as

the electrons occupation m fulfilling the ratio m/N∼1/6 since the power production grows linearly

with N . Our suggestion is in contrast to the previous suggestion [90] of using many properly

engineered quantum systems in parallel to increase the factor N .
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Chapter 3

Nonequilibrium theory of

thermoelectrics of a SU(N) Kondo

impurity

In this chapter we explore the nonlinear thermoelectric associated with the SU(N) Kondo effect.

The content of this chapter was previously published as:

1. D. B. Karki and Mikhail N. Kiselev,

Nonlinear Seebeck effect of SU(N) Kondo impurity,

Phys. Rev. B 100, 125426 (2019) .

2. D. B. Karki and Mikhail N. Kiselev,

Thermoelectric transport through a SU(N) Kondo impurity,

Phys. Rev. B 96, 121403 (2017) [Rapid Communication].

3.1 Background

Recent progress in understanding of thermoelectric phenomena on the nanoscale stimulated both

new experiments [33–35] and development of new theoretical approaches to this problem [57]. One

of the fundamental properties of the quantum transport through nano-sized objects (quantum dots

(QD), carbon nanotubes (CNT), quantum point contacts (QPC) etc) is associated with the charge

quantization [59]. It offers a very efficient tool for the quantum manipulation of the single-electron

devices being building blocks for quantum information processing. The universality of the heat flows

in the quantum regime, scales of the quantum interference effects and limits of the tunability are the

central questions of the new emergent field of the quantum heat transport [32–35, 108, 109]. Besides,

the effects of strong electron correlations and resonance scattering become very pronounced at low

temperatures and can be measured with high controllability (e.g. external electric and magnetic

fields, geometry, temperature etc) of the semiconductor nano-devices. Therefore, investigation
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3.1. Background

of the quantum effects and influence of strong correlations and resonance scattering on the heat

transport (both experimentally and theoretically) is one of the cornerstones of quantum electronics.

A generic nano device consists of a quantum impurity with intrinsic spin S which is tunnel

coupled to two electron reservoirs, the source and the drain. The low energy transport processes

are then controlled by the strong interaction between localized spin S and itinerant electrons in

the reservoirs. The spin S=1/2 impurity interacting with a single orbital channel of conduction

electrons forms a fully screened ground state resulting in quasi-particle resonances at the Fermi

level. This paradigmatic screening phenomenon is termed as Kondo effect [7] which is characterized

by a low energy scale TK, the Kondo temperature. As follows from the Fermi-liquid (FL) theory, the

thermoelectric power (Seebeck coefficient) of bulk metals is directly proportional to the temperature

T and inversely proportional to the Fermi energy εF [62]. The resonance scattering on a quantum

impurity, however, dramatically enhances this effect due to the emergence of new quasi-particle

resonances at the Fermi level described by the Kondo effect [10, 20, 22]. The contribution to the

Seebeck coefficient then scales as T/TK [10, 62] with TK�εF. Therefore, the many-body Kondo

resonance at the Fermi level opens an effective path towards the enhancement of thermoelectric

production at the nano scale level [32]. Recent experiments [33–38] have further expanded the scope

of transport measurements in Kondo correlated nano scale systems. Most of these studies have been

focused on the transport measurement of the conventional spin S=1/2 Kondo impurity described

by the SU(2) symmetry group. However, the conventional SU(2) Kondo effects, being protected

by particle-hole (PH) symmetry, offer vanishingly small thermoelectric conversion [65]. To achieve

appreciable thermopower, the occupation factor of the quantum impurity should be integer, while

the PH symmetry should be lifted [1]. The SU(N) Kondo model with integer occupancy m offers

the possibility of avoiding half-filled regime so as to achieve the enhanced thermoelectric production

over the conventional SU(2) Kondo correlated systems [1, 4, 67].

The orbital degeneracy of the quantum impurity combines with the true spin symmetry to

form the Kondo effect described by higher symmetry group SU(N). Here the occupancy factor

m takes all possible values starting from 1 to N−1. The paradigmatic SU(4) Kondo physics has

been experimentally studied in CNTs [35, 68–72], double QDs [73] and single-atom transistor [74].

Various theoretical works [75–80] have contributed towards the better understanding of SU(4)

Kondo physics over the past years. In addition, exciting proposals has been put forth for the

experimental realization of different variants of SU(N) Kondo systems. Possible realization of

SU(3) Kondo effects using triple QDs with three and four edge states of the quantum Hall effects

was suggested in Ref. [81], which been verified recently using numerical renormalization group

study [82]. The proposals for the solid-state realization of SU(6) [83] and SU(12) [84] Kondo

effects have likewise attracted considerable attentions both theoretically and experimentally. Beside

obtaining the solid-state realization of these exotic SU(N) Kondo effects, an increasing effort has

been put in their cold atomic realization [85–88]. These studies on SU(N) Kondo effects have been

concentrated solely on the charge current measurements. However, thermoelectric characterization

in a generic nano device usually involves two reciprocal processes, namely, the Seebeck effects

and the Peltier effects. To the best of our knowledge very few studies have tried to uncover the

thermoelectric measurements of Kondo effects described by higher symmetry group, such as the
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3.1. Background

Figure 3.1: Upper panel: A SU(N) quantum impurity is sandwiched between two conducting

reservoirs. The left (red) and right (blue) reservoirs are in thermal equilibrium, separately, at tem-

perature TL and TR respectively. The tunneling-matrix elements from the impurity to the left/right

reservoirs are characterized by tL=t cos θ and tR=t sin θ with θ ∈ (0, π/2). The particular case of

θ=π/4 reproduces a perfectly symmetric setup. The intrinsic total local level width associated

with the tunneling is given by ΓL/R=πρres|tL/R|2, ρres being the density of states of the reservoirs.

Lower panel: The asymmetry of the tunneling junction is accounted for by introducing a parameter

C ≡ (ΓL−ΓR)/(ΓL + ΓR)= cos 2θ. The magenta line represents the variation of asymmetry param-

eter C with respect to the asymmetry angle θ. For the sake of simplicity we choose the Fermi level

in such a way that the chemical potentials of the left and right reservoirs take some specific values

µL/R=± e∆V
2 (1∓C). This choice of chemical potentials amounts to greatly simplify the calculation

of charge and heat current through a strongly coupled Kondo impurity (see text for detail). These

chemical potentials are represented by the red and blue curve respectively.

Seebeck effects with a SU(4) Kondo effects have been studied in Ref. [67].

In this chapter we develop a fully-fledged theory for the thermoelectric transport through a

SU(N) Kondo model in the strong coupling regime T�TK. The approach is based on real time

out-of equilibrium Keldysh calculations. We use the local Fermi-liquid paradigm for constructing

a perturbative expansion for the electric current around the strong coupling fixed point of the

model. We illustrate the thermoelectric properties of the experimentally studied SU(N) Kondo

effects described by the SU(2) and SU(4) model. We present the discussion of thermoelectrics of

the theoretically proposed SU(N) Kondo variants such as the SU(3), SU(6) and SU(12) Kondo

effects. We compute the thermoelectric power for arbitrary temperature drop between the electron

reservoirs and discuss the significance of non-linear effects in temperature drop. The local Fermi-

liquid theory of thermoelectricity presented in this chapter also accounts for the effects associated

with the coupling asymmetry which could provide important informations about the underlying

many body effects [106].
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3.2 Theoretical formulation

We consider a quantum impurity tunnel coupled to two conducting reservoirs as shown in Fig. 3.1.

The impurity possess N -fold degeneracy by combining the spin and other degrees of freedom, such

as the orbital degeneracy. In addition, there are N -species (orbitals) of electrons in both left

(L) and right (R) reservoirs. The rotation of the reservoir’s electrons is then described by the

SU(N) transformation. Therefore, to describe our system we start form SU(N) impurity Anderson

model [21, 110],

H=
∑

k,r

εk

[
c†L,krcL,kr + c†R,krcR,kr

]
+Himp +Htun. (3.1)

Here we introduce the notation “r” to represent the orbital index that takes all possible values

starting from 1 to N . The operator c†γ,kr creates an electron with momentum k in r-th orbital

of the γ (=L,R) reservoir. The energy of conduction electrons εk is measured with respect to

the chemical potential µ. The second term of Eq. (3.1) represents the Hamiltonian of the impurity

possessingN degenerate flavors with single energy level εd. Then we write the impurity Hamiltonian

as

Himp = εd
∑

r

d†rdr + U
∑

r<r′

d†rdrd
†
r′dr′ , (3.2)

where d†r is the electron creation operator of the impurity and U represents the charging energy

which is assumed to be the largest energy scale of the model. The tunneling processes from the

impurity to the reservoirs are accounted for by the very last term of the Eq. (3.1),

Htun =
∑

k,r

(
tLc
†
L,kr + tRc

†
R,kr

)
dr + H.c., (3.3)

We explicitly assume the tunneling asymmetry by assigning the tunneling-matrix elements tγ such

that tL=t cos θ and tR=t sin θ with θ∈ (0, π/2). Then the intrinsic total local level width associated

with the tunneling is given by Γγ=πρres|tγ |2 with ρres being the density of states of the reservoirs.

For the sake of clarity, we introduce the parameter C ≡ (ΓL−ΓR)/(ΓL +ΓR)= cos 2θ to characterize

the asymmetry of the tunneling junction. This asymmetry further appears in the Glazman-Raikh

rotation [111] of Eq. (3.1) in the basis of reservoirs electrons

(
bkr

akr

)
=

(
cos θ sin θ

sin θ − cos θ

)(
cL,kr

cR,kr

)
. (3.4)

Note that the transformation Eq. (3.4) effectively decouples the operators akr from the impu-

rity degrees of freedom. Here we consider the general case of having arbitrary number of electrons

m=1, 2, · · · , N−1 in the impurity. Therefore, the specific choice of impurity level εd=U(1−m−m/N)

provides the fundamental representation with
∑

r d
†
rdr ≡

∑
r nr=m. We then perform the Schrieffer-

Wolff transformation [112] followed by the rotation Eq. (3.4) of the Hamiltonian Eq. (3.1) to project

out the charge states, which results in

H =
∑

k,r

εk

(
a†krakr + b†krbkr

)
+HKondo. (3.5)
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3.2. Theoretical formulation

The Kondo Hamiltonian is expressed in terms of anti-ferromagnetic coupling JK between the im-

purity spin ~S and the spin operator of reservoir electrons placed at the origin ~T as [106, 107, 113]

HKondo = JK ~S · ~T , JK =
t2

U

N2

m(N −m)
. (3.6)

The N2−1 traceless components of impurity spin Si(i=1, 2 · · ·N2−1) are given by

Sr,r′=d†rdr′−m/Nδr,r′ , (3.7)

with the constraint r, r′ 6=N,N ′. Likewise, the spin operator of reservoir electrons placed at the

origin is expressed as ~T=
∑

kk′,rr′ b
†
krΛ

i
rr′bk′r′ , Λi being the N ×N generators of SU(N) group. Note

that Si are N !
m!(N−m)! × N !

m!(N−m)! matrices acting on states with m electrons.

The ground state of spin S=1/2 SU(N) impurity considered in this work is characterized

by the complete screening of impurity spin which results in the formation of Kondo singlet. The

low-energy regime of fully-screened Kondo effect is consistently describe by FL theory [20, 24, 114].

Applying the standard point-splitting procedure [1, 24, 106, 107] to the Hamiltonian Eq. (3.6) rsults

in the low energy FL Hamiltonian of SU(N) Kondo impurity,

H0 = ν
∑

r

∫

ε
ε
[
a†εraεr + b†εrbεr

]
, (3.8)

Hel = −
∑

r

∫

ε1−2

[α1

2π
(ε1+ε2)+

α2

4π
(ε1+ε2)2

]
b†ε1rbε2r,

Hint =
∑

r<r′

∫

ε1−4


φ1

πν
+
φ2

4πν

4∑

j=1

εj


 :b†ε1rbε2rb

†
ε3r′bε4r′ :.

The PH symmetric version of Eq. (3.8) was originally proposed by Nozieres [20] which is commonly

known as Nozieres FL theory. In Eq. (3.8) the density of states per species for a one dimensional

channel is represented by the symbol ν. The scattering (elastic) effects in the FL are accounted

for by the Hamiltonian Hel, where α1 and α2 are the first and second generations of Nozieres FL

coefficients respectively. The four fermions term represents the interaction part of the Hamiltonian

Hint which is expressed in terms of FL parameters φ1 and φ2. These FL parameters are related

to the associated Kondo temperature of the corresponding SU(N) impurity. The FL parameters

characterizing the scattering effects are connected to those of interaction effects by the relation,

α1=(N−1)φ1 and α2=(N−1)φ2/4. In addition the Bethe ansatz provides further link between α1

and α2 [106, 107],
α2

α2
1

=
N − 2

N − 1

Γ(1/N) tan(π/N)√
πΓ
(

1
2 + 1

N

) cot
[mπ
N

]
. (3.9)

Where Γ(x) is the Euler’s gamma-function. Therefore the low energy FL Hamiltonian Eq. (3.8)

is completely specified by only one FL parameter, say α1. We make a connection of α1 with the

corresponding Kondo temperature such that T
SU(N)
K =1/α1, the N -dependence in FL parameters

is implicit. Note that we have retained upto the four fermions term in Eq. (3.8), the higher-order

terms produce the current correction beyond cubic order in applied bias and temperature gradient

which is beyond the scope of present work.
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It is then a straightforward procedure to proceed with the calculation of physical observables

by treating the scattering Hamiltonian Hel and interaction part Hint perturbatively. However,

in the spirit of Nozieres phenomenology, the scattering effects are fully described by an energy-

dependent phase shift δel
r (ε). The Kondo singlet acts as the scatterer for the incoming electrons

from the leads. The outgoing and incoming electrons then differ from each other by the elastic phase

shift δel
r (ε). The Nozieres FL parameters α1 and α2 are the first and second order coefficients in

the Taylor-series expansion of elastic phase shift. While the scattering effects are easily accounted

for by the elastic phase-shift, the perturbative treatment of Hint produces complicated self-energy

diagrams. This complication can be simplified a bit by including the Hartree contribution of self-

energy in the elastic phase shift [106, 107]. Then the Taylor expansion of phase shift reads

δr(ε) = δ0 + α1ε+ α2ε
2 −

∑

r′ 6=r

[
φ1

∫ ∞

−∞
dεδnr′(ε)

+
φ2

2

(
ε

∫ ∞

−∞
dεδnr′(ε) +

∫ ∞

−∞
dεεδnr′(ε)

)]
. (3.10)

Here the zero-energy phase shift of SU(N) Kondo impurity with m electrons is

δ0 =
mπ

N
. (3.11)

In Eq. (3.10) we used the definition of the actual FL quasi-particle distribution relative to the

Fermi-energy εF as δnr(ε) ≡ nr(ε) − Θ(εF − ε) = 〈b†krbkr〉 − Θ(εF − ε), Θ being the step function.

Using Eq. (3.4) we expressed the average 〈b†krbkr〉 in terms of the equilibrium Fermi-distribution

functions fγ(ε)=
[
1 + exp

(
ε−µγ
Tγ

)]−1
of the left and right reservoirs; 〈b†krbkr〉 = cos2 θfL + sin2 θfR.

In the following discussion, we chose the Fermi-level such that

∫ ∞

−∞
dεδnr(ε) = 0. (3.12)

This equation is always satisfied as far as the condition µL cos2 θ + µR sin2 θ = εF is full-filled. We

then made the following specification for the chemical potentials of the reservoirs,

µL = e∆V sin2 θ ≡ e∆V

2
(1− C) , (3.13)

µR = −e∆V cos2 θ ≡ −e∆V
2

(1 + C) , (3.14)

to make εF=0. It is also noted that the details related to the choice of the temperatures in the

reservoirs do not affect the necessary condition to satisfy the Eq. (3.12). To be more general,

we do not yet impose any restriction on the choice of TL and TR. Using these specification of

chemical potentials and temperatures of the reservoirs, the straightforward integration of phase

shift expression Eq. (3.10) leads

δr(ε) = δ0 + α1ε+ α2

(
ε2 −A

)
. (3.15)

To obtain Eq. (3.15) we used the FL identity α2 = (N−1)φ2/4 and the new definition,

A=
1

6

[
(πTL)2(1+C)+(πTR)2(1−C)+3

2
(1−C2)(e∆V )2

]
.
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3.3. Current Calculation

In the following section the scattering effects in addition to the Hartree contribution to the self

energy correction will be accounted for by the Eq. (3.15). To obtain the self energy correction

beyond Hartree contribution we will be treating the interaction Hamiltonian Hint perturbatively

with the small parameters (e∆V, TL, TR) /T
SU(N)
K .

3.3 Current Calculation

Using the basis of scattering states that includes the elastic effects and Hartree term, we cast the

charge current expression into the form [2, 106]

Î=
e

2hν

∑

r

sin 2θ
[
a†r(x)br(x)−a†r(−x)Sbr(−x)+H.c.

]
, (3.16)

for br(x)=
∑

k bkre
ikx and Sbr(x)=

∑
k Skbkre

ikx. To write Eq. (3.16) we have also omitted the

terms of the form
∑

r,p=± pa†r(px)ar(px) since they do not produce finite contribution to the mean

current. In addition, we expressed N ×N scattering matrix Sk in terms of phase shift expression

Eq. (3.15) such that Sk= exp[2iδr(ε)]. To compute the various observables from Eq. (3.16) we need

the following averages directly obtained from the Glazman-Raikh rotation


〈b†kbk〉
〈a†kak〉
〈b†kak〉


=




cos2 θ sin2 θ 0

sin2 θ cos2 θ 0
sin 2θ

2 − sin 2θ
2 0







fL(εk)

fR(εk)

0


 . (3.17)

The average of Eq. (3.16) provides the elastic current (including the corresponding Hartree contri-

bution) which have the compact form analogous to the Landauer-Büttiker expression

Iel =
e

h

N∑

r

∫ ∞

−∞
dε Tr(ε) [fL(ε)− fR(ε)] . (3.18)

The effective transmission coefficient Tr(ε) is completely specified by the phase shift expression

Eq. (3.15); Tr(ε)≡
(
1− C2

)
sin2[δr(ε)]. To write Tr(ε) into more tractable form, we perform its

second-order Taylor expansion in energy,

Tr(ε) =
(
1− C2

)[
T0 − α2A sin 2δ0 + α1 sin 2δ0 ε+

(
α2

1 cos 2δ0 + α2 sin 2δ0

)
ε2
]
. (3.19)

Here T0= sin2 δ0 is the zero energy transmission coefficient. Then it is trivial procedure to compute

the elastic current by plugging in Eq. (3.19) into Eq. (3.18). The exact computation of Eq. (3.18)

follows from the consideration of following integrals [2, 3],

Kn =

∫ ∞

−∞
εn [fL(ε)− fR(ε)] dε, n = 0, 1 and 2. (3.20)

Conventional way of calculating the integrals in Eq. (3.20) consists of Sommerfeld expansion of

∆f(ε) ≡ fL(ε) − fR(ε) in the small parameters ∆T≡TL−TR and ∆V . However, the Fourier-

transform technique allows us to compute Eq. (3.20) exactly. Fourier transforming the function

∆f(ε) into real time reads,

∆f(t) =
1

2π

∫ ∞

−∞
dε e−iεt∆f(ε). (3.21)

32



3.3. Current Calculation

Performing the n-times partial differentiation of Eq. (3.21) and taking the limit t→0 we get,

2π

(−i)n

∂n∆f(t)

∂tn

∣∣∣∣
t=0

=

∫ ∞

−∞
dεεn∆f(ε). (3.22)

Fourier transformation of the Fermi distributions of left and right reservoirs allows us to write

∆f(t) =
i

2

[
TLe

−iµLt

sinh(πTLt)
− TRe

−iµRt

sinh(πTRt)

]
. (3.23)

Plugging in Eq. (3.23) into Eq. (3.22) with the chemical potentials as specified in Eqs. (3.13)

and (3.14) we obtain K0=e∆V , K1=
[
(πTL)2−(πTR)2−3C(e∆V )2

]
/6 and

K2=
e∆V

3

[(e∆V )2

4

(
1+3C2

)
+

1−C
2

(πTL)2+
1+C

2
(πTR)2

]
.

For completeness we re-express the elastic current in terms of the integrals in Eq. (3.20) as

Iel=
Ne
(
1−C2

)

h

[
(T0−α2A sin 2δ0)K0+α1 sin 2δ0K1+

(
α2

1 cos 2δ0+α2 sin 2δ0

)
K2

]
. (3.24)

Now we turn to the discussion of inelastic effects leaving aside the Hartree contributions,

which has been already accounted for by the phase shift expressed in Eq. (3.15). As we anticipated

earlier, the perturbative treatment of Hint imparts the interaction corrections to the charge current.

This approach requires the expressions of non-interaction Green’s functions (GFs) characterized

by H0. Making use of non-equilibrium calculations based on Keldysh approach [115], we obtained

following four non-interaction GFs in Keldysh space

Gbb/aa(k, ε)=
1

ε−εk
τz+iπ

(
Fb/a Fb/a+1

Fb/a−1 Fb/a

)
δ(ε−εk),

Gba/ab(k, ε) = iπ

(
1 1

1 1

)
Fab δ(ε− εk). (3.25)

Here the parameters Fb/a(ε) and Fab(εk) are expressed in terms of different populations; Fb(εk) =

2〈b†kbk〉−1, Fa(εk) = 2〈a†kak〉−1 and Fab = 2〈b†kak〉. The z-component of Pauli-matrix is represented

by τz. However, in the flat-band limit only the off-diagonal parts of Gbb(k, ε), namely G+−
bb (k, ε) and

G−+
bb (k, ε) produce the finite contribution to the charge current. The straightforward mathematical

steps provide the following Fourier-transformed real-time GFs

G+−
bb (t)=−πν

2

[
TL(1+C)e−iµLt

sinh(πTLt)
+
TR(1−C)e−iµRt

sinh(πTRt)

]
,

Gab/ba(t)=−
πν

2

√
1− C2

[
TLe

−iµLt

sinh(πTLt)
− TRe

−iµRt

sinh(πTRt)

]
. (3.26)

The GFs G+−
bb (t) and G−+

bb (t) are connected by causality relations. In practice, the GFs expressed in

Eqs. (3.25) and (3.26) are sufficient for the calculation of charge current. To calculate the inelastic

correction to the charge current we then apply the perturbation theory using Keldysh formalism

[115],

δIin = 〈TC Î(t)e−i
∫
dt′Hint(t

′)〉, (3.27)
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3.3. Current Calculation

where C denotes the double-side η=± Keldysh contour and TC is corresponding time-ordering

operator. We used the expression of charge current operator Eq. (3.16) and interaction Hamiltonian

Hint into Eq. (3.27) to obtain the interaction correction to the charge current

δIin =
N(N − 1)

h
eπ
(
1− C2

)
cos 2δ0

∫ ∞

−∞

dε

2π

(
Σ−+ − Σ+−) (ε)iπν∆f(ε). (3.28)

To arrived from Eq. (3.27) to Eq. (3.28) we have already subtracted the diverging terms, which

amounts to the renormalization of FL coefficients (see Ref. [106] for detail). The self-energies in

Eq. (3.28) are expressed in real-time as

Ση1η2(t) =

(
φ1

πν2

)2 ∑

k1−3

[
Gη1η2

bb (k1, t)Gη2η1

bb (k2,−t)Gη1η2

bb (k3, t)
]
. (3.29)

To compute the self-energies, now we specify the temperatures of the left and right reservoirs TR=T

and TL=T+∆T with ∆T>0. In practice one can numerically solve for the self-energy using the

GFs of Eq. (3.26). However, it is manageable to find the analytical expression of the self energy

difference to the first order in ∆T and second order in e∆V which reads

(
Σ−+−Σ+−) (ε) =

φ2
1

iπν

[3

4
(e∆V )2(1− C2) + ε2 + (πT )2 +

∆T

T
(πT )2 (1+C)

]
. (3.30)

To arrive from Eq. (3.29) to Eq. (3.30) we came across the integral of the form,

Z(a, T ) =

∫ ∞

−∞

eiat

sinh3(πTt)
dt. (3.31)

The singularity of the integral in Eq. (3.31) is removed by shifting the time contour by iη, η → 0

in the complex plane. We chose the rectangular contour enclosing the singularity at t=0 and use

the Cauchy’s residue theorem to arrive at the result,

Z(a, T ) = −iπ a2 + (πT )2

(πT )2

1

exp(a/T ) + 1
. (3.32)

Since the self-energy difference Eq. (3.30) contains all possible terms up to the linear response,

plugging it into Eq. (3.28) provides interaction correction up to the quadratic order in ∆T and

∆V . To make interaction contributions to the charge current more symmetrical with that of elastic

effects, we write

δIin =
Ne(1− C2)

h

1

2

1

N − 1
cos 2δ0 α

2
1

[
K2 +

(
∆T

T
(πT )2 (1 + C) + (πT )2

)
K0

]
. (3.33)

This equation correctly reproduces the interaction correction up to the quadratic response with the

coefficients K0,2 given in Eq. (3.20). Using Eq. (3.24) and (3.33), the charge current is given by

Ic = Iel + δIint. (3.34)

Alternatively the charge current of a SU(N) Kondo impurity is directly expressible in terms of

effective transmission coefficient Teff
r ≡ Tr(ε, T,∆V,∆T ),

Ic =
e

h

N∑

r

∫ ∞

−∞
dε Teff

r [fL(ε)− fR(ε)] . (3.35)
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3.4. Seebeck effects

The effective transmission coefficient can be directly read from the Eqs. (3.18) and (3.28), which

for isothermal condition ∆T = 0 is given by the relation

Teff
r (ε)

1−C2

∣∣∣∣
∆T=0

= T0− sin 2δ0α2

[
(πT )2

3
+

(e∆V )2

4
(1−C2)

]

+ sin 2δ0α1ε+
(
cos 2δ0α

2
1 + sin 2δ0α2

)
ε2

+
1

2(N − 1)
cos 2δ0

[
ε2 + (πT )2 +

3

4
(e∆V )2(1− C2)

]
α2

1. (3.36)

The Peltier coefficient is defined as the ratio of heat current to the charge current at isothermal

condition. Therefore, the effective transmission coefficient Eq. (3.36) plays a fundamental role

for the characterization of the Peltier coefficient of a strongly coupled SU(N) Kondo impurity

as will be discussed in the following section. The thermoelectric characterization of a generic

nano device usually involves two reciprocal processes, namely, the Seebeck effects and the Peltier

effects [116, 117]. While the Seebeck effect quantifies the generation of the voltage driven by the

temperate difference at zero charge current condition, the heating or cooling of a junction in the

presence of finite charge current is accounted for by Peltier effect. Though the linear response

measurements of these two effects are related by the Kelvin relation, the non-linearly drives them

to behave quite differently. In the following section we discuss our results for the measure of

Seebeck and Peltier effects in the strong-coupling regime of an asymmetrically coupled SU(N)

Kondo impurity.

3.4 Seebeck effects

The non-linear Seebeck effect is quantified by the Seebeck coefficient defined as the ratio of thermo-

voltage developed under the condition of zero charge current, ∆Vth ≡ ∆V |Ic=0, to the applied

temperature gradient [66, 118],

S ≡ − ∆Vth

TL − TR

∣∣∣∣
Ic=0

. (3.37)

In fact, the Seebeck coefficient Eq. (3.37) contains additional information than the electrical and

thermal conductance measurements [116]. While the electrical conductance depends merely on

the density of states at the Fermi level, Seebeck coefficient reveals its slope [62]. In addition,

the Seebeck coefficient provides the useful informations related to the average energy of charge

carriers contributing to the transport processes [119]. We characterize the Seebeck coefficient of a

SU(N) Kondo impurity by defining the dimensionless form of charge current considering up to the

quadratic responses in voltage bias and temperature gradient,

J (N,m) ≡ Ic(N,m)

G0(N)T
SU(N)
K

= L 1
1 ∆V+L 1

2 ∆T+L 2
1 ∆V

2
+L 2

2 ∆T
2
+L 11

12 ∆V∆T . (3.38)

The maximum conductance of SU(N) Kondo impurity in the presence of asymmetry is expressed

by the relation G0(N) =
(
1− C2

)
Ne2/h. From now we specify the electronic charge e=−1 and the

convention ∆V >0 and ∆T > 0. The quantities written in over-line letters represent that they are

normalized with corresponding Kondo temperature, for instance, T ≡ T/T
SU(N)
K and similarly the
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3.4. Seebeck effects

others. From Eq. (3.24) and (3.33) we obtained the transport coefficients L i
j and L 11

12 , i, j = 1, 2

for the SU(N) Kondo impurity,

L 1
1 =

[
sin2

(πm
N

)
+

1

3

N + 1

N − 1
cos

(
2πm

N

)
(πT )2

]
,

L 1
2 =− π2

3
T sin

(
2πm

N

)
, L 2

1 =
1

2
C sin

(
2πm

N

)
,

L 2
2 =− π2

6
sin

(
2πm

N

)
,

L 11
12 =− π2

3
T
[
B cos

(
2πm

N

)
+ 2CA sin

(
2πm

N

)]
. (3.39)

The coefficients A , see Eq. (3.9), and B are defined as

A ≡ α2/α
2
1, B ≡ C(N − 2)−N − 1

N − 1
. (3.40)

From Eq. (3.39) it is seen that the transport coefficients accounting for the linear and quadratic

correction in temperature gradient are connected by the relation L 1
2 = 2TL 2

2 . It is apparent that,

merely the asymmetry of the junction is responsible to have the quadratic correction in voltage bias.

For half-filled SU(N) Kondo effects, we observe that L 1
2 = L 2

1 = L 2
2 = 0, therefore, corresponding

thermoelectric properties are governed by only two coefficients L 1
1 and L 11

12 . This fact explains that

the half-filled SU(N) Kondo impurity do not offers finite thermo-power even in quadratic-response

level of calculations. Another important conclusion can be drawn form Eq. (3.39) is as follows;

for the perfectly symmetrical quarter-filled SU(N) Kondo correlated systems, the combine effects

of temperature gradient and voltage bias tend to vanish L 11
12

∣∣
C=0

(N,N/4)=0. Furthermore, the

coefficients characterizing the voltage response do not acquire the temperature correction. These

facts should make the non-linear thermoelectric measurement of beyond half-filled SU(4) systems

as a trivial procedure. To have more insights of the thermoelectric production in SU(N) Kondo

systems, we solve the zero current condition of the Eq. (3.38) to get the thermo-voltage upto the

quadratic terms in ∆T ,

−∆V th = SLR∆T + δS(∆T )2 +O(∆T )3. (3.41)

The Seebeck coefficient S as defined in Eq. (3.37) then takes the form,

S = SLR + δS∆T +O(∆T )2. (3.42)

Here SLR is the linear response Seebeck coefficient and its first order ∆T correction is defined by

δS,

SLR ≡ L 1
2

L 1
1

, (3.43)

δS ≡
[

L 2
2

L 1
1

− L 1
2 L 11

12(
L 1

1

)2 +

(
L 1

2

)2
L 2

1(
L 1

1

)3

]
. (3.44)

The transport coefficients defining the linear response Seebeck coefficient SLR are independent of

asymmetry parameter C. However, the first order correction δS bears the strong dependences on the

asymmetry parameter via the transport coefficients L 2
1 and L 11

12 . In addition, for the symmetrical
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Figure 3.2: Linear (LR) and non linear (BLR) Seebeck coefficients with PH symmetric SU(2) and

SU(4) Kondo effects for fixed value of the potential scattering δP.

setups, we use the Eq. (3.39) to express the correction factor δS entirely in terms of linear-response

coefficients,

δS|C=0 =
SLR

T

[
sin2

(
πm
N

)

L 1
1

− 1

2

]
. (3.45)

To study the effects of coupling asymmetry on the thermoelectric transport properties, we categorize

the SU(N) Kondo impurity into two broad classes, namely, half-filled (PH symmetric) and beyond

half-filled and discuss them separately.

3.4.1 PH symmetric SU(N) Kondo effects

As we anticipated earlier that for the half-filled SU(N) Kondo effects the transport coefficients

satisfy the relation L 1
2 =L 2

1 =L 2
2 =0, therefore, corresponding thermoelectric properties are derived

solely from the coefficients L 1
1 and L 11

12 . The non-zero transport coefficients of PH symmetric

SU(N) Kondo effects are summarized below,

L 1
1 (N,N/2) =

[
1− 1

3

N + 1

N − 1
(πT )2

]
, (3.46)

L 11
12 (N,N/2) =

1

3T

[C(N − 2)−N − 1

N − 1

]
(πT )2. (3.47)

While for the conventional SU(2) Kondo effects the parameter C does not affect the cross-coefficient,

the corresponding measurement in exotic SU(N > 2) PH symmetric systems depends on the cou-

pling asymmetry. However, the PH symmetry of the Kondo impurity realized in QDs is exact only

if the dot is tuned to the middle of Coulomb valley [120]. This indicates the possibility of breaking

the underlying PH symmetry. This weakly broken PH symmetry of Kondo correlated systems is

accounted for by re-normalizing the reference phase shifts such that [121–123],

δ0 → δ̃0 = δ0 + δP, δ0 � δP. (3.48)

This potential scattering provides the repulsive interactions which breaks the Kondo singlet and

contributes to inelastic processes [124]. The first order transport coefficients in Eq. (3.39) for PH
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symmetric Kondo correlated systems with an account of the potential scattering effects are then

given by

L 1
1 (N,N/2)

∣∣
P

= cos2 δP

[
1−(πT )2

3

N+1

N−1

2 cos 2δP

1+ cos 2δP

]
,

L 1
2 (N,N/2)

∣∣
P

= cos2 δP

[
(πT )2

3T

2 sin 2δP

1 + cos 2δP

]
. (3.49)

Eq. (3.49) allows us to compute the linear response Seebeck coefficient of PH symmetric SU(N)

Kondo effects with small potential scattering,

SLR(N,N/2)
∣∣
P

=
2

3

1

T

(πT )2

1− (πT )2

3
N+1
N−1

δP +O(δP)3. (3.50)

Note that due to the numerical factor (N+1)/(N−1) in the denominator of Eq. (3.50), among

PH symmetric generalizations of SU(N) the SU(2) Kondo correlated systems offer highest value of

the linear response Seebeck coefficient in the presence of finite potential scattering. Plugging the

Eq. (3.48) into the transport coefficients Eq. (3.39) and using them into Eq. (3.44), we get the first

order correction to the Seebeck coefficient upto the linear order in δP,

δS(N,N/2)|P =
π2

3

1− (πT )2

3

(
N+1
N−1+2B

)

[
1− (πT )2

3
N+1
N−1

]2 δP+O(δP)3. (3.51)

For SU(2) Kondo effects the correction Eq. (3.51) is independent of the asymmetry parameter due

to the fact that B|N=2 = −3. However for SU(4) and other PH symmetric version of SU(N),

the first order correction to the Seebeck effect is weakly asymmetry dependent via the coefficient

B(C). The linear and non linear Seebeck coefficient with PH symmetric SU(2) and SU(4) Kondo

effects are shown in Fig. 3.2 with the choice of potential scattering term δP = 0.1 and temperature

gradient ∆T = 0.05. These significant enhancement of BLR Seebeck coefficients with respect to the

corresponding LR contribution becomes more pronounced at relatively high reference temperature

and large temperature drop across the junction.

3.4.2 Beyond half-filled SU(N) Kondo effects

The Kondo correlated systems with N>2 provide the realization of paradigmatic PH-asymmetric

setups. First we start form the SU(3) Kondo effects. The SU(3) Kondo effect can occur either with

single electron or two electrons. Since the SU(3) Kondo systems do not offer the PH symmetric

analog, they are expected to posses the good theromo-electric performance. The physics of SU(3)

Kondo effect with one and two electrons is related with each other by PH symmetry transformation.

Therefore, we discuss the single electron SU(3) Kondo systems, which will ultimately provide

the corresponding informations of two electron case. For single electron SU(3) Kondo effects the
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transport coefficients in Eq. (3.39) are simplified as

L 1
1 (3, 1) =

3

4

[
1− 4

9
(πT )2

]
, L 1

2 (3, 1) = −π
2T

2
√

3
,

L 2
1 (3, 1) = C

√
3

4
, L 2

2 (3, 1) = − π2

4
√

3
,

L 11
12 (3, 1) = −π

2

3
T

[
C
4

(
1− 2

√
3

π

Γ[1/3]

Γ[5/6]

)
− 1

]
. (3.52)

Therefore while the cross coefficient L 11
12 (3, 1) is weakly asymmetry dependent, the coefficient

L 2
1 (3, 1) is strongly influenced by C. Since all the transport coefficients in Eq. (3.52) are non-zero,

one can solve the zero-current equation to get the thermo-voltage developed in SU(3) Kondo effects.

Now we turn to the discussion of SU(4) Kondo effects out of PH symmetric situation. The SU(4)

Kondo effects can accommodate up to three electrons. While the two electron case suffers from the

PH symmetry, the single and three electron SU(4) systems are regarded to have good thermoelectric

performance. Furthermore, the single electron and three electron systems are related to each other

by the PH symmetry transformation. Therefore we discuss in details the thermoelectric of single

electron SU(4) Kondo effects. The corresponding transport coefficients are obtained as

L 1
1 (4, 1) =

1

2
, L 1

2 (4, 1) = −π
2

3
T , L 2

1 (4, 1) =
C
2
,

L 2
2 (4, 1) = −π

2

6
, L 11

12 (4, 1) = −4π2CT
9
√
π

Γ[1/4]

Γ[3/4]
. (3.53)

The cross coefficient L 11
12 (4, 1)'−7.32CT is very large as compared to other coefficients for rel-

atively large asymmetry parameter. In addition the other coefficient L 2
1 (4, 1) is also strongly

asymmetry dependent. Presence of these coefficients is solely manifested by the finite asymmetry

of the junction. Therefore we argue that measuring this cross coefficient would be useful while

identifying the asymmetry of the junction in addition to its physical implications. Just form the

structure of Eq. (3.53), it is seen that the thermoelectric transport properties of beyond half-filled

SU(4) Kondo effects can be easily manipulated by tuning the junction asymmetry. It appears

that the effect of asymmetry becomes more pronounced in relatively high temperature gradient

regime. The asymmetry parameter C mainly causes to shift the zero-current line either upward or

downward with respect to the perfectly symmetric setup. As shown in Fig. 3.3 the positive value

of the asymmetry parameter increases the thermo-voltage, while the opposite effects are apparent

for the corresponding negative values. In addition, the beyond linear response contribution always

overshoots the corresponding linear response value irrespective of the coupling asymmetry.

3.4.3 Paradigmatic SU(4) Kondo effects

The cosine factor cos 2δ0 in front of the expression of the inelastic current dramatically modifies the

low energy transport behavior of SU(N) Kondo effects. In case of the SU(N) systems with m elec-

trons satisfying the specific combination such that m/N=(2n + 1)/4, n = 0 and 1, the cosine factor

cos 2δ0 in Eq. (3.33) amounts to nullify the whole expression. For these specific systems, the non-

Hartree contribution to the self-energy becomes zero but the corresponding Hartree contribution

39



3.4. Seebeck effects

Figure 3.3: Left panel: Plot of asymmetry dependent zero current lines in PH asymmetric SU(4)

Kondo effects within the quadratic response level of calculations as a function of applied voltage bias

and temperature gradient at reference temperature T =0.2. Right panel: Corresponding Seebeck

coefficients for given asymmetry parameter.

remains finite. In addition, for PH symmetric SU(N) Kondo effects the Hartree contribution van-

ishes and non-Hartree contribution becomes finite. On one hand, the PH asymmetric SU(4) Kondo

impurity have good thermoelectric properties, on the other hand these systems offer vanishing non-

Hartree contribution to the self-energy. Since the Hartree contributions can be straightforwardly

accounted for by including it in phase shift, the beyond-half filled SU(4) systems can be exactly

solved within cubic response and even beyond. This paradigmatic simplication is also applicable

for some SU(12) generalizations. From Eq. (3.24) we obtained two non-zero cubic response coeffi-

cients L 3
1 (4, 1) and L 12

12 (4, 1) contributing to the charge current of beyond-half filled SU(4) Kondo

impurity as

J (4, 1)|cubic = L 3
1 (4, 1)(∆V )3 + L 12

12 (4, 1)∆V (∆T )2.

Here the transport coefficients are

L 3
1 (4, 1)=−1−3C2

9
√
π

Γ[1/4]

Γ[3/4]
, L 12

12 (4, 1)=−C 2π2

9
√
π

Γ[1/4]

Γ[3/4]
.

These equations show that for the perfectly symmetrical single electron SU(4) Kondo setups, the

effects of voltage bias and temperature gradient are not correlated even in cubic response level of

calculations. Therefore, only the presence of junction asymmetry can results the combine interplay

of voltage bias and temperature gradient. The effects of asymmetry parameter on the Seebeck

coefficient in cubic response level of calculations have been presented in Fig. 3.4 with an example of

single electron SU(4) Kondo effects. From Fig. 3.4 it is seen that with the proper choice (positive

value) of asymmetry parameter C the non-linear Seebeck coefficient gets significantly enhanced

over the corresponding perfectly symmetrical coupling. This effect is associated with the fact that

the transmission coefficient Eq. (3.19) is strongly asymmetry dependent when the beyond linear

response is considered.

At the end of this section we want to mention that the nonlinearly has been also studied

by generalizing the definition of Seebeck coefficient with constant current condition [125–127] such
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3.4. Seebeck effects

that

S(N,m) =
∂J (N,m)

∂∆T

/
∂J (N,m)

∂∆V
. (3.54)

In the linear response level of calculation the response coefficient defined in Eq. (3.54) coincides with

the Seebeck coefficient given by Eq. (3.37). Though their behaviors in non-linear regime is quite

different, it has been argued that the coefficient S is indeed experimentally accessible [125] and

can provide an important ingredient that could be useful for the temperature sensing application.

These effects have been already studied in conventional SU(2) Kondo regime accounting for the

linear response of temperature gradient and finite voltage bias [125, 126]. Our result expressed

in Eq. (3.39) paved a straightforward way of extending their study with an account of strong

non-linearity in more exotic Kondo correlated system.

Figure 3.4: Left panel: Lines of zero charge currents in a single electron SU(4) Kondo impurity

within cubic response level of calculations. The temperatures of left and right reservoirs (normalized

with corresponding Kondo temperature) are varied for given asymmetry parameter at fixed voltage

drop ∆V=0.1. Right panel: The Seebeck coefficient as a function of asymmetry parameter with

beyond half-filled SU(4) Kondo effects.

3.4.4 Possible resolution of the thermovoltage offset observed in experiment

In linear response level of calculation, the Eq. (3.39) results in the charge current

Ic = G(T )∆V +G12(T )∆T, (3.55)

with G and G12 being the electrical conductance and thermo-electric coefficient respectively,

G(T ) =

[
sin2

(πm
N

)
+

1

3

N + 1

N − 1
cos

(
2πm

N

)
(πT )2

]
, (3.56)

G12(T ) =−
[
π2

3
T sin

(
2πm

N

)]
. (3.57)

As we anticipated earlier and also seen from Eq. (3.57), the thermo-electric coefficient G12(T ) van-

ishes for the PHS variants of SU(N) Kondo effects such as the conventional SU(2) Kondo effect.
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3.4. Seebeck effects

This effect is responsible also for the nullification of the thermopower (differential thermopower) of

PH symmetric Kondo effects. This observation results in the following interesting questions:

i) Does the non-differential thermopower (beyond linear response) of PHS Kondo effects also van-

ishes?

ii) What causes to have the experimentally observed finite thermoelectric response at the apparent

PH symmetric point [32]?

0.50
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0.2

0 0.1
LR

0.50

0.50

-0.35
0 0.1

Figure 3.5: Main frame: Thermopower S of a SU(4) Kondo impurity with m=1 and m=2 electrons

as a function of the reference temperature T=TR where the blue dashed curve shows the differential

S (linear response) and the solid curves correspond to S defined under zero-current condition

including upto the cubic response on the voltage bias and temperature gradient. Insert: evolution

of the zero current steady state as a function of the temperatures of L-R reservoirs at finite voltage

bias e∆V=0.02. For this plot we fixed the potential scattering at δP=0.3 and asymmetry parameter

C=0. All of the parameters in this figure have been choosen so as to have the close matching with

the experiment [32].

The model geometry under consideration resembles the experimental setup in Ref. [32]. The

temperature of the drain reservoir (R) is taken as the reference temperature of the system. The

temperature of the source reservoir (L) is controlled by the Joule heat released due to the finite

current flowing along the lead [32]. Thus, the temperature drop ∆T is fixed for all measurements.

The bias voltage ∆V is applied between the source and the drain in order to stop the thermo-current

as shown in Fig. 3.1.

The thermopower measurements [32] refer however not to the differential Seebeck effects.

Since there were no independent measurements of TL and TR, the temperature drop was estimated

from the Joule heat. It appeared that the ∆T was finite and not fulfilling the condition |∆T |�TR.

To demonstrate the significance of non-linear effects associated with finite temperature drop we

show on Fig. 3.5 the thermopower of SU(4) model computed by two different methods: i) the

dashed blue line stands for the differential thermopower S(T )=G12/G where G12 is obtained at

zero voltage drop while G is calculated at equal temperatures of the leads; ii) the solid lines

42



3.5. Peltier effects

corresponds to S=−∆V /∆T resembling the experimental situation in [32] : the temperature drop

is fixed ∆T/TK= 0.05 (red) 0.025 (green) 0.01 (orange) and the thermo-voltage is obtained from the

zero current condition. As one can see, at small reference temperatures “finite ∆T” thermopower

always overshoots the differential S. The effect is more pronounced in PH symmetric regime. The

offset can be easily understood on trivial example of SU(4) m=1 and δP=0. In that case the

inelastic contribution to the current vanishes and the non-linear effect is ∝ (∆T )2. Therefore, the

offset is linear in ∆T and can be used as a measure of the temperature drop. This observation

can explain the thermo-voltage offset observed in the experiment [32] in the Kondo limit of SU(2)

quantum impurity (PHS regime). According to our calculations this offset is associated with a

non-linear ∆T dependence of the current at low reference temperatures (see Fig. 3.5 inserts). We

suggest to check this statement experimentally by performing Seebeck effect measurements varying

the temperature in the “hot” lead.

3.5 Peltier effects

Peltier effect describes the generation of a heat current Ih due to the charge current Ic driven in

a circuit under isothermal condition TL=TR by an applied voltage bias e∆V [128]. The Peltier

coefficient Πγ associated with the γ reservoir is defined as

Πγ =
Iγh
Ic

∣∣∣∣
TL=TR

. (3.58)

This coefficient imparts valuable informations on the characterization of how good a material is for

thermoelectric solid-state refrigeration or power generation. While the linear response Peltier coef-

ficient Π0 is related to the corresponding Seebeck coefficient SLR via the Kelvin relation Π0=TSLR,

their behavior in non-linear regime is quite different [129–131]. Since the Peltier heat is measured

under the isothermal condition, its computation is straightforward using the the effective transmis-

sion coefficient given in Eq. (3.36) to compute the heat current following out of the left reservoir,

IL
h

∣∣
∆T=0

=
1

h

N∑

r

∫ ∞

−∞
dε (ε−µL) Teff

r [fL(ε)− fR(ε)] .

For the propose of demonstration we consider the perfectly symmetrical setup with C=0 and write

the heat current up to the cubic order in ∆V as

Ih ≡
IL

h

Ne2

h

(
T

SU(N)
K

)2 =M1∆V + M2(∆V )2 + M3(∆V )3. (3.59)

Here the heat-transport coefficients M1,2,3 (with e = −1) are given as

M1|C=0 = −(πT )2

3
sin 2δ0, (3.60)

M2|C=0 = −1

2
sin2 δ0, (3.61)

M3|C=0 = − 1

12
sin 2δ0. (3.62)
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Figure 3.6: Peltier coefficients of beyond half-filled SU(N) Kondo effects. Right panel: The correc-

tion to the linear response Peltier coefficient for single electron SU(4) Kondo effect according to the

Eq. (3.68). The dotted line represents the Peltier coefficients associated with the linear response

contribution which is independent of charge current. Left panel: Variation of Peltier coefficient

of single electron SU(3) Kondo effect with normalized reference temperature T . Inset shows the

Peltier coefficient at fixed T with varying normalized charge current.

Note that the transport coefficients M1,2,3 are obtained by constraining the heat current Eq. (3.59)

within cubic order in energy, namely the terms of the form∝ T 2(∆V )2 has been neglected. Similarly

upto the cubic order in ∆V the charge current calculated under the isothermal condition is

Jc ≡
Ic

Ne2

h T
SU(N)
K

= L 1
1 ∆V+L 2

1 ∆V
2
+L 3

1 ∆V
3
. (3.63)

While the coefficient L 2
1 vanishes for symmetrical setup, the first and third order response coeffi-

cients L 1,3
1 are given by

L 1
1

∣∣
C=0

=

[
sin2 δ0 +

1

3

N + 1

N − 1
cos 2δ0(πT )2

]
, (3.64)

L 3
1

∣∣
C=0

=

[
1

12

N + 4

N − 1
cos 2δ0 −

A

6
sin 2δ0

]
. (3.65)

We then proceed with the calculation of the dimensionless Peltier coefficient defined by

Π ≡ ΠL
/
T

SU(N)
K = Ih

/
Jc. (3.66)

Inverting the normalized charge current Eq. (3.63) we get

∆V
∣∣
C=0

=
1

L 1
1

Jc −
L 3

1(
L 1

1

)4J 3
c + · · · (3.67)

Plugging in the expression of ∆V from Eq. (3.67) into the expression of normalized heat current

Eq. (3.59) and using the Eq. (3.66), we get the expression of dimensionless form of Peltier coefficient

Π
∣∣
C=0

= Π0 +
M2(
L 1

1

)2Jc +
L 1

1 M3 −L 3
1 M1(

L 1
1

)4 J 2
c + · · · (3.68)
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Here we defined the dimensionless form of linear response Peltier coefficient as Π0 = M1/L 1
1 . As

presented in Eqs. (3.60)−(3.62), the heat transport coefficient M1 get nullified for PH symmet-

ric SU(N) Kondo impurity thereby vanishes the corresponding linear response Peltier coefficient

Π0

∣∣
PH

= 0. Since the coefficient M2 is non-zero even for the PH symmetric systems, the first order

correction to the Peltier coefficient remain finite for all the variants of SU(N) Kondo effects. In-

terestingly PH symmetric setups do not offer the second order correction to the Peltier coefficient,

only the odd-order corrections remain finite. This indicates the poor rectification performance of

half-filled Kondo impurity as compared to the corresponding beyond half-filled setups. The Peltier

coefficients of single electron SU(3) and SU(4) Kondo effects as given in Eq. (3.68) are shown in

Fig. 3.6. It is seen from Fig. 3.6 that the non-linear correction to the Peltier coefficients for SU(4)

Kondo effects are very significant. Appreciable non-linear correction are also apparent for SU(3)

Kondo effects. Finite value of asymmetry parameter C 6= 0 amounts to produce the second order

term in the voltage expression Eq. (3.67) and renormalizes the coefficient in its third order correc-

tion. These effects tend to modify the first and second order correction to the Peltier coefficient

Eq. (3.68) without affecting the zeroth order term Π0. Therefore role of coupling asymmetry to-

ward the enhancement of Peltier coefficient is similar to that for Seebeck coefficient as discussed

earlier. In addition, Eq. (3.36) would be sufficient to explore the correction to the Wiedemann-

Franz law [132], connecting electronic and thermal conductivities, associated with the non-linear

effects in SU(N) Kondo effects.

3.6 Summary

We developed a theoretical framework based on the local Fermi-liquid theory in combination with

the out of equilibrium Keldysh approach to study the thermoelectric transport in the strong-

coupling regime of a SU(N) Kondo impurity. Two reciprocal measurements of thermoelectricity,

namely, the Seebeck and Peltier effects are investigated in strongly non-linear regime. We demon-

strated the importance of non-linearity in thermoelectric characterization by considering experi-

mentally studied SU(2) and SU(4) Kondo effects in QDs and CNTs. We observed that the finite

temperature gradient thermopower (non-differential) always overshoots the corresponding differen-

tial one in all studied SU(N) Kondo variants. This effect in likely to be sufficient for the resolution

of the experimental puzzle on the observation of finite thermopower on PH symmetric point of

SU(2) Kondo impurity. The local Fermi-liquid theory of thermoelectricity presented in this chap-

ter also accounts for the effects associated with the coupling asymmetry. While in linear response

the Seebeck and Peltier coefficients and hence the thermopower are independent of coupling asym-

metry, the fundamental role of coupling asymmetry towards the enhancement of thermopower of

a SU(N) Kondo setup is explored. The presented analytical expressions of asymmetry dependent

transport coefficients for general SU(N) Kondo effects allow us to make a close connection of our

findings with the experimentally studied SU(2) and SU(4) Kondo effects in complex QDs nano

structures. Heat and charge transport with theoretically proposed SU(3) Kondo effects is discussed

in detail. Application of developed theoretical framework for the investigation of thermoelectric

properties of more exotic Kondo problems such as multi-stage [2, 3] and multi-terminal Kondo

screening appears to be the valid avenues for future research.
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Chapter 4

Two-color Fermi liquid theory for

transport through a multilevel Kondo

impurity

In this chapter we investigate the charge current through the two-stage Kondo effect and analyze

various transport properties. The content of this chapter has been previously published as:

D. B. Karki, Christophe Mora, Jan von Delft, and Mikhail N. Kiselev,

Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity,

Phys. Rev. B 97, 195403 (2018) [Selected as Editors’ Suggestion].

4.1 Background

It is almost four decades since the seminal work of Nozieres and Blandin (NB) [22] about the

Kondo effect in real metals. The concept of the Kondo effect studied for impurity spin S=1/2

interacting with a single orbital channel K=1 of conduction electrons [7, 16–18, 20, 23, 39–41] was

extended in [22] for arbitrary spin S and arbitrary number of channels K. A detailed classification

of possible ground states corresponding to the under-screened K<2S, fully screened K=2S and

overscreened K>2S Kondo effect has been given in [26, 42, 43]. Furthermore, it has been argued

that in real metals the spin-1/2 single-channel Kondo effect is unlikely to be sufficient for the

complete description of the physics of a magnetic impurity in a non-magnetic host [29, 47–52]. In

many cases truncation of the impurity spectrum to one level is not possible and besides there are

several orbitals of conduction-electrons which interact with the higher spin S>1/2 of the localized

magnetic impurity [10], giving rise to the phenomenon of multi-channel Kondo screening [24, 53].

In the fully screened case the conduction electrons completely screen the impurity spin to form

a singlet ground state [44]. As a result, the low-energy physics is described by a local Fermi-
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Liquid (FL) theory [20, 22]. In the under-screened Kondo effect there exist not enough conducting

channels to provide complete screening [45, 46]. Thus, there is a finite concentration of impurities

with a residual spin contributing to the thermodynamic and transport properties. In contrast to

the underscreened and fully-screened cases, the physics of the overscreened Kondo effect is not

described by the FL paradigm resulting in dramatic change of the thermodynamic and transport

behaviour [10].

S = 0S = 0

︸ ︷︷ ︸
second stage

S =
1

2
S =

1

2

︸ ︷︷ ︸
first stage

S = 1S = 1
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G/G0

T e
KT o

K T

�

�
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π2

2

[
1
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− 1
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Figure 4.1: (Color online) Cartoon for non-monotonic behaviour of the differential conductance

G/G0 (G0 = 2e2/h is the conductance quantum) as a function of temperature resulting from a

two-stage Kondo effect. There are three characteristic regimes: (A) weak, (B) intermediate and

(C) strong coupling. Crossover energy scales T eK and T oK are defined in the Section 4.2. In the weak

coupling (A)-regime the screening is absent (see top panel) and the transport coefficients are fully

described by the perturbation theory [29]. In the intermediate regime (B), the Kondo impurity is

partially screened (see the first stage at the top panel); the residual interaction of electrons with

the under-screened spin is antiferromagnetic [22]. The description of the FL transport coefficients

in the strong coupling regime (C) at the second stage of the screening is the central result of this

chapter.

The simplest realization of the multi-channel fully screened Kondo effect is given by the model

of a S=1 localized impurity screened by two conduction electron-channels. It has been predicted

[29] that in spite of the FL universality class of the model, the transport properties of such FL are

highly non-trivial. In particular, the screening develops in two stages (see Fig. 4.1), resulting in

non-monotonic behaviour of the transport coefficients (see review [29] for details).

The interest in the Kondo effect revived during the last two decades due to progress in

fabrication of nano-structures [8]. Usually in nanosized objects such as quantum dots (QDs),

carbon nanotubes (CNTs), quantum point contacts (QPCs) etc., Kondo physics can be engineered

by fine-tuning the external parameters (e.g. electric and magnetic fields) and develops in the

presence of several different channels of the conduction electrons coupled to the impurity. Thus,
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it was timely [8, 29, 49, 133–136] to uncover parallels between the Kondo physics in real metals

and the Kondo effect in real quantum devices. The challenge of studying multi-channel Kondo

physics [22, 24] was further revived in connection with possibilities to measure quantum transport

in nano-structures experimentally [35, 73, 137–140] inspiring also many new theoretical suggestions

[26, 45, 89, 141–143].

Unlike the S=1/2, K=1 Kondo effect (1CK), the two-channel S=1 Kondo problem suffers

from lack of universality for its observables [22]. The reason is that certain symmetries (e.g.

conformal symmetry) present in 1CK are generally absent in the two-channel S=1 model. This

creates a major obstacle for constructing a complete theoretical description in the low-energy sector

of the problem. Such a description should, in particular, account for a consistent treatment of the

Kondo resonance [24] appearing in both orbital channels. The interplay between two resonance

phenomena, being the central reason for the non-monotonicity of transport coefficients [29], has

remained a challenging problem for many years [45, 89].

A sketch of the temperature dependence of the differential electric conductance is shown

on Fig. 4.1. The most intriguing result is that the differential conductance vanishes at both

high and low temperatures, demonstrating the existence of two characteristic energy scales (see

detailed discussion below). These two energy scales are responsible for a two-stage screening of

S=1 impurity. Following [45, 89] we will refer to the S=1, K=2 Kondo phenomenon as the two-stage

Kondo effect (2SK).

While both the weak (A) and intermediate (B) coupling regimes are well-described by the

perturbation theory [29], the most challenging and intriguing question is the study of strong-

coupling regime (C) where both scattering channels are close to the resonance scattering. Indeed,

the theoretical understanding of the regime C (in- and out-of-equilibrium) constitutes a long-

standing problem that has remained open for more than a decade. Consequently, one would like

to have a theory for the leading dependence of the electric current I and differential conductance

G=∂I/∂V on magnetic field (B), temperature (T ) and voltage (V ),

G(B, T, V )/G0 = cBB
2 + cT (πT )2 + cV V

2.

Here G0=2e2/h is unitary conductance. Computation of these parameters cB, cT and cV using

a local FL theory and to show how are these related constitute the main message of this work.

In this chapter we develop a full-fledged theory of the two-stage Kondo model at small but finite

temperature, magnetic field and bias voltage to explain the charge transport (current, conductance)

behavior in the strong-coupling regime of the 2SK effect.
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4.2 Theoretical formulation

We consider a multi-level quantum dot sandwiched between two external leads α (=L,R) as shown

in Fig. 4.2. The generic Hamiltonian is defined by the Anderson model

H =
∑

kασ

(
ξk + εZσ

)
c†αkσcαkσ +

∑

αkiσ

tαic
†
αkσdiσ + H.c.

+
∑

iσ

(εi + εZσ )d†iσdiσ + EcN̂ 2 − J Ŝ2, (4.1)

where cα stands for the Fermi-liquid quasiparticles of the source (L) and the drain (R) leads,

ξk = εk−µ is the energy of conduction electrons with respect to the chemical potential µ, and spin

σ =↑ (+), ↓ (−) and εZσ = −σB/2. The operator diσ describes electrons with spin σ in the i-th

orbital state of the quantum dot and tαi are the tunneling matrix elements, as shown in Fig. 4.2.

Here εi+εZσ is the energy of the electron in i-th orbital level of the dot in the presence of a Zeeman

field B, Ec is the charging energy (Hubbard interaction in the Coulomb blockade regime [144]),

J � Ec is an exchange integral accounting for Hund’s rule [89] and N̂ =
∑

iσ d
†
iσdiσ is the total

number of electrons in the dot. We assume that the dot is occupied by two electrons, and thus

the expectation value of N̂ is n̄d = 2 and the total spin S = 1 (see Fig. 4.2). By applying a

Schrieffer-Wolff (SW) transformation [112] to the Hamiltonian Eq. (4.1) we eliminated the charge

fluctuations between two orbitals of the quantum dot and project out the effective Hamiltonian,

written in the L-R basis, onto the spin-1 sector of the model [29, 89]:

Heff =
∑

kασ

ξkc
†
αkσcαkσ +

∑

αα′

Jαα′ [sαα′ · S] , (4.2)

with α, α′ = L,R, B=0 and

sαα′ =
1

2

∑

kk′σ1σ2

c†αkσ1
τσ12cα′k′σ2 , (4.3)

S =
1

2

∑

iσ1σ2

d†iσ1
τσ12diσ2 , (4.4)

Jαα′ =
2

Ec

(
|tL1|2 + |tL2|2 t∗L2tR2 + t∗L1tR1

tL2t
∗
R2 + tL1t

∗
R1 |tR2|2 + |tR1|2

)
, (4.5)

where we use the short-hand notation τσij ≡ τσiσj for the Pauli matrices.

The determinant of the matrix Jαα′ in Eq. (4.5) is non-zero provided that tL2tR1 6=tL1tR2.

Therefore, one may assume without loss of generality that both eigenvalues of the matrix Jαα′

are non-zero and, hence, both scattering channels interact with the dot. There are, however, two

important cases deserving an additional discussion. The first limiting case is achieved when two

eigenvalues of Jαα′ are equal and the matrix Jαα′ is proportional to the unit matrix in any basis of

electron states of the leads. As a result, the net current through impurity vanishes at any tempera-

ture, voltage and magnetic field [89] (see Fig. 4.1 which shows that thethe differential conductance

vanishes when symmetry between channels emerges). This is due to destructive interference be-

tween two paths [89] (Fig. 4.2) occurring when e.g. tL1=tL2=tR1=t, tR2=− t. Precise calculations

done later in this chapter highlight the role of destructive interference effects and quantify how the
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current goes to zero in the vicinity of the symmetry point. The second limiting case is associated

with constructive interference between two paths (Fig. 4.2) when tL1=tL2=tR1=tR2=t. In that

case the determinant of the matrix Jαα′ in Eq. (4.5) and thus also one of the eigenvalues of Jαα′ ,

is zero. As a result, the corresponding channel is completely decoupled from the impurity. The

model then describes the under-screened S=1 single-channel Kondo effect.

Applying the Glazman-Raikh rotation [111] b†e/o=(c†L±c
†
R)/
√

2 to the effective Hamiltonian

Eq. (4.2) we re-write the Kondo Hamiltonian in the diagonal basis 1, introducing two coupling

constants Je, Jo

Heff =
∑

a

(Ha
0 + Jasa · S) . (4.6)

In writing Eq. (4.6) we assigned the generalized index “a” to represent the even and odd

channels (a=e, o). Ha
0 =
∑

akσ(εk−µ)b†akσbakσ is the non-interacting Hamiltonian of channel a in

the rotated basis. The spin density operators in the new basis are: sa=1/2
∑

kk′σ1σ2
b†akσ1

τσ12bak′σ2 .

For equal leads-dot coupling, the Ja are of the order of t2/Ec. The interaction between even and

odd channels is generated by the next non-vanishing order of Schrieffer-Wolff transformation

Heo = −Jeose · so, (4.7)

where Jeo is estimated as Jeo∼JeJo/max[Ec, µ]. As a result this term is irrelevant in the weak

coupling regime. However, we note that the sign of Jeo is positive, indicating the ferromagnetic

coupling between channels necessary for the complete screening of the S = 1 impurity [22] (see

Fig. 4.1).

The Hamiltonian (4.6) describes the weak coupling limit of the two-stage Kondo model. The

coupling constants Je and Jo flow to the strong coupling fixed point (see details of the renormal-

ization group (RG) analysis [18, 41, 146] in Appendix 4.A.1). In the leading-log (one loop RG)

approximation, the two channels do not talk to each other. As a result, two effective energy scales

emerge, referred as Kondo temperatures, T aK = D exp(−1/(2NFJa)) (D is a bandwidth and NF is

3-dimensional electron’s density of states in the leads). These act as crossover energies, separating

three regimes: the weak-coupling regime, T � max[T aK ] (see Appendix 4.A.1); the intermedi-

ate regime, min[T aK ] � T � max[T aK ] characterized by an incomplete screening (see Fig. 4.1)

when one conduction channels (even) falls into a strong coupling regime while the other channel

(odd) still remains at the weak coupling (see Appendix 4.A.2); and the strong-coupling regime,

T � min[T aK ]. In the following section we discuss the description of the strong coupling regime by

a local Fermi-liquid paradigm.

4.3 Fermi-Liquid Hamiltonian

1For the sake of simplicity we assume certain symmetry in the dot-leads junction. Namely, the new basis diago-

nalizing the Hamiltonian Eq. (4.2) corresponds to symmetric (even) and anti-symmetric (odd) combinations of the

states in the L-R leads. The effects of coupling asymmetry can straightforwardly be accounted by using methods

developed in Ref. [106, 107]
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�� ��
tL1

tL2 tR1

tR2

s px py pz

︸ ︷︷ ︸
S=1

s px py pz

︸ ︷︷ ︸
S=1

Figure 4.2: (Color online) Cartoon of some possible realization of a multi-orbital Anderson model

setup: two degenerate p-orbitals (magenta and green) of a quantum dot are occupied by one elec-

tron each forming a triplet S=1 state in accordance with the Hund’s rule [145] (see lower panel).

The third p-orbital (not shown) is either empty or doubly occupied. Two limiting cases are im-

portant: i) totally constructive interference tL1=tL2=tR1=tR2=t; ii) totally destructive interference

tL1=tL2=tR1=t, tR2=− t. Besides, if tL2=tR2=0, only one orbital is coupled to the leads, resulting

in the 1CK model. If tL2=tR1=0, each orbital is coupled to a “dedicated lead” and the net current

through the dot is zero.

The RG analysis of the Hamiltonian (4.6) (see Appendix 4.A.1 for details) shows that the 2SK model

has a unique strong coupling fixed point corresponding to complete screening of the impurity spin.

This strong-coupling fixed point is of the FL-universality class. In order to account for existence

of two different Kondo couplings in the odd and even channels and the inter-channel interaction,

we conjecture that the strong-coupling fixed point Hamiltonian contains three leading irrelevant

operators:

H = −
∑

aa′

λaa′ :sa(0) · sa′(0) : , (4.8)

with λee=λe, λoo=λo and λeo=λoe. The notation : ... : corresponds to a normal ordering where

all divergences originating from bringing two spin currents sa close to each other are subtracted.

The conjecture (4.8) is in the spirit of Affleck’s ideas [24] of defining leading irrelevant operators

of minimal operator dimension being simultaneously (i) local, (ii) independent of the impurity

spin operator S, (iii) rotationally invariant and (iv) independent of the local charge density. We

do not assume any additional (SO(3) or SU(2)) symmetry in the channel subspace except at the

symmetry-protected point λe=λo=λeo=λ. At this symmetry point a new conservation law for the

total spin current [24] emerges and the Hamiltonian reads as

H = −λ :S(0) · S(0) :, S = se + so.

This symmetric point is obtained with the condition Je=Jo in Heff , see Eq. (4.6). Under this

condition, as has been discussed in the previous section, the net current through the impurity is

zero due to totally destructive interference. This symmetry protects the zero-current state at any

temperature, magnetic and/or electric field (see Fig. 4.2).

Applying the point-splitting procedure [24, 147] to the Hamiltonian Eq. (4.8), we get H =
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He +Ho +Heo with

Ha = −3
4 iλa

∑

σ

[
b†aσ

d
dxbaσ−

(
d
dxb
†
aσ

)
baσ

]
+3

2λaρa↑ρa↓,

Heo = −λeo [:se(0) · so(0) + so(0) · se(0) :] . (4.9)

The Hamiltonian Eq. (4.9) accounts for two copies of the s=1/2 Kondo model at strong coupling

with an additional ferromagnetic interaction between the channels providing complete screening at

T=0.

An alternative derivation of the strong-coupling Hamiltonian (4.9) can be obtained, following

Refs. [107, 148, 149], with the most general form of the low-energy FL Hamiltonian. For the two-

stage Kondo problem corresponding to the particle-hole symmetric limit of the two-orbital-level

Anderson model, it is given by H = H0 +Hα +Hφ +HΦ with

H0=
∑

aσ

∫

ε
ν
(
ε+ εZσ

)
b†aεσbaεσ

Hα=−
∑

aσ

∫

ε1−2

αa
2π

(ε1 + ε2)b†aε1σbaε2σ

Hφ=
∑

a

∫

ε1−4

φa
πν

:b†aε1↑baε2↑b
†
aε3↓baε4↓ :

HΦ=−
∑

σ1−4

∫

ε1−4

Φ

2πν
:b†oε1σ1

τσ12boε2σ2b
†
eε3σ3

τσ34beε4σ4 :, (4.10)

where ν=1/(2π~vF ) is the density of states per species for a one-dimensional channel. In Eq. (4.10)

Hα describes energy-dependent elastic scattering [24]. The inter and intra-channel quasiparticle

interactions responsible for the inelastic effects are described by HΦ and Hφ respectively. The

particle-hole symmetry of the problem forbids to have any second-generation of FL-parameters

[107] in Eq. (4.10). Therefore, the Hamiltonian Eq. (4.10) constitutes a minimal model for the

description of a local Fermi-liquid with two interacting resonance channels. The direct comparison

of the above FL-Hamiltonian with the strong-coupling Hamiltonian Eq. (4.9) provides the relation

between the FL-coefficients at PH symmetry, namely αa=φa. The Kondo floating argument (see

[107]) recovers this relation. As a result we have three independent FL-coefficients αe, αo and Φ

which can be obtained from three independent measurements of the response functions. The FL-

coefficients in Eq. (4.10) are related to the leading irrelevant coupling parameters λ’s in Eq. (4.9)

as

αa = φa =
3λaπ

2
and Φ = πλeo, (4.11)

The symmetry point λe=λo=λeo=λ constrains αe=αo=3Φ/2 in the Hamiltonian Eq. (4.10).

To fix three independent FL parameters in (4.10) in terms of physical observables, three

equations are needed. Two equations are provided by specifying the spin susceptibilities of two

orthogonal channels. The remaining necessary equation can be obtained by considering the impurity

contribution to specific heat. It is proportional to an impurity-induced change in the total density

of states per spin [10], νimp
aσ (ε)= 1

π∂εδ
a
σ(ε), where δaσ(ε) are energy dependent scattering phases in
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odd and even channels (see the next Section for more details)

C imp

Cbulk
=

∑
aσ

1
π∂εδ

a
σ(ε)|ε=0

4ν
=
αe + αo

2πν
. (4.12)

The quantum impurity contributions to the spin susceptibilities of the odd and even channels (see

details in [147]) are given by

χimp
e

χbulk
=
αe + Φ/2

πν
,

χimp
o

χbulk
=
αo + Φ/2

πν
. (4.13)

The equations (4.12-4.13) fully determine three FL parameters αe, αo and Φ in (4.10). Total spin

susceptibility χimp=χimp
e +χimp

o together with the impurity specific heat (4.12) defines the Wilson

ratio, R=(χimp/χbulk)/(C imp/Cbulk) [24, 150] which measures the ratio of the total specific heat to

the contribution originating from the spin degrees of freedom

R = 2

[
αe + αo + Φ

αe + αo

]
= 2

[
1 +

2

3

λeo
λe + λo

]
. (4.14)

For λe=λo=λeo, Eq. (4.14) reproduces the value R=8/3 known for the two-channel, fully screened

S=1 Kondo model [25]. If however λeo=0 we get R=2, in agreement with the text-book result for

two not necessarily identical but independent replicas of the single channel Kondo model.

4.4 Charge Current

The current operator at position x is expressed in terms of first-quantized operators ψ attributed

to the linear combinations of the Fermi operators in the leads

Î(x)=
e~

2mi

∑

σ

[
ψ†σ(x)∂xψσ(x)− ∂xψ†σ(x)ψσ(x)

]
. (4.15)

In the present case both types of quasi-particles bakσ(a=e, o) interact with the dot. Besides, both

scattering phases (e/o) are close to their resonance value δ
e/o
0,σ=π/2. This is in striking contrast to

the single channel Kondo model, where one of the eigenvalues of the 2×2 matrix of Jαα′ in Eq. (4.5)

is zero, and hence the corresponding degree of freedom is completely decoupled in the interacting

regime. For the sake of simplicity, we are going to consider the 2SK problem in the absence of an

orbital magnetic field so that magnetic flux is zero. However, our results can be easily generalized

for the case of finite orbital magnetic field. In this section we obtain an expression of charge current

operator for the two-stage Kondo problem following the spirit of seminal works [106, 107, 151, 152].

The principal idea behind the non-equilibrium calculations is to choose a basis of scattering states

for the expansion of the current operator Eq.(4.15). The scattering states in the first quantization

representation are expressed as

ψekσ(x)=
1√
2





[
ei(kF+k)x − Se,σ(k)e−i(kF+k)x

]
x < 0

[
e−i(kF+k)x − Se,σ(k)ei(kF+k)x

]
x > 0

ψokσ(x)=
1√
2





[
ei(kF+k)x − So,σ(k)e−i(kF+k)x

]
x < 0

[
−e−i(kF+k)x + So,σ(k)ei(kF+k)x

]
x > 0
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The phase shifts in even/odd channels are defined through the corresponding S-matrix via the

relation Sa,σ(k)=e2iδaσ(εk). Proceeding to second quantization, we project the operator ψσ(x) over

the eigenstates ψekσ(x) and ψokσ(x), choosing x < 0 far from the dot, to arrive at the expression

ψσ(x)=
1√
2

∑

kσ

[
(ei(kF+k)−Se,σ(k)e−i(kF+k))bekσ + (ei(kF+k)−So,σ(k)e−i(kF+k))bokσ

]
. (4.16)

Substituting Eq. (4.16) into Eq. (4.15) and using

baσ(x) =
∑

k

bakσe
ikx, Sbaσ(x) =

∑

k

S(k)bakσe
ikx,

we obtain an expression for the current for symmetrical dot-leads coupling,

Figure 4.3: Left panel: Feynman codex used for the representation of different Greens functions:

blue (red) line (in the black and white printout the colors are different by intensity of gray (red is

more intensive)) for Green function of even (odd) channel Ge(o) and the mixed line for the mixed

Green function Geo (see definition in Section 4.4.2). Right panel: two-particle elastic vertices for

even and odd channels. Crosses denote energy-dependent scattering.

Î(x)=
e

2hν

∑

σ

[
b†oσ(x)beσ(x)−b†oσ(−x)Sbeσ(−x) + H.c.

]
, (4.17)

where S=S∗oSe. There are two contributions to the charge current, coming from elastic and inelastic

processes. The elastic effects are characterized by the energy-dependent phase-shifts, the inelastic

ones are due to the interaction of Fermi-liquid quasi-particles. In the following section we outline

the elastic and inelastic current contribution of two-stage Kondo model Eq. (4.10).

4.4.1 Elastic current

We assume that the left and right scattering states are in thermal equilibrium at temperature

TL=TR=T and at the chemical potentials µR and µL=µR+eV . The population of states reads

2〈b†akσbak′σ〉=δkk′ [fL(εk)+fR(εk)] and 2〈b†akσbāk′σ〉=δkk′ [fL(εk)−fR(εk)] = δkk′∆f(εk), with fL/R(εk)

= f(εk − µL/R) and f(εk) = (1+exp [εk/T ])−1 is the Fermi distribution function. The zero tem-

perature conductance in the abscence of bias voltage is [29]

G(T = 0, B 6= 0, V = 0)/G0 = B2 (αe − αo)2 . (4.18)

The elastic current in the absence of Zeeman field B is the expectation value of the current operator

Eq. (4.17). Taking the expectation value of Eq. (4.17) reproduces the Landauer-Büttiker equation

[59]

Iel =
2e

h

∫ ∞

−∞
dεT (ε)∆f(ε), (4.19)
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where the energy dependent transmission coefficient, T (ε)=1
2

∑
σ sin2(δeσ(ε)−δoσ(ε)) and ∆f(ε) =

fL(ε)−fR(ε). Diagrammatically (see Ref. [24] and Ref. [147] for details), the elastic corrections

to the current can be reabsorbed into a Taylor expansion for the energy-dependent phase shifts

through the purely elastic contributions to quasi-particles self-energies [24]. That is the scattering

phase-shifts can be read off [24] via the real part of the retarded self-energies ΣR
a,σ(ε) (see Fig. 4.3)

as

δaσ(ε)=− πνReΣR
a,σ(ε) = π/2 + αaε. (4.20)

The Kondo temperatures of the two-channels in the strong-coupling limit are defined as

T aK =
1

αa
. (4.21)

This definition is consistent with Nozieres-Blandin [22] and identical to that used in [147], however,

is differ by the coefficient π/4 from the spin-susceptibility based definition [149]. The elastic phase-

shifts in the presence of the finite Zeeman field B bears the form [29] (see schematic behaviour of

δa↓(B) in Fig. 4.4)

δaσ(B)=π/2− (αa + φa + Φ)σ̄B/2. (4.22)

Finally, we expand Eq. (4.19) up to second order in αa to get the elastic contribution to the current

π/2

π δ

B� Be
KBo

K

δe
↓

δo
↓

Figure 4.4: Schematic behaviour of the even (blue) and odd (red) scattering phases at σ =↓ as

a function of the Zeeman magnetic field. Both phases approach the resonance value π/2 at zero

field. The tangential lines illustrate corresponding energy scales inversely proportional to the spin

susceptibilities (4.13) in the even/odd channels, Ba
K = π/(2αa + Φ) (see also Eqs.(4.20)-(4.22)).

[151],
Iel

2e2V/h
=

[
B2 +

(eV )2

12
+

(πT )2

3

]
(αe − αo)2. (4.23)

The B2 elastic term is attributed to the Zeeman field in Eq. (4.1). Note that we do not consider the

orbital effects assuming that the magnetic field is applied parallel to the plane of the electron gas.

The expression Eq. (4.23) remarkably highlights the absence of a linear response at T=0, B=0,

due to the vanishing of conductance when both scattering phases achieve the resonance value π/2.

The current is exactly zero at the symmetry point αe=αo [29] due to the diagonal form of S-matrix

characterized by two equal eigen values and therefore proportional to the unit matrix.
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4.4.2 Inelastic current

To calculate the inelastic contribution to the current we apply the perturbation theory using

Keldysh formalism [115],

δIin = 〈TC Î(t)e−i
∫
dt′Hint(t

′)〉, (4.24)

where Hint=Hφ + HΦ and C denotes the double-side η=± Keldysh contour. Here TC is corre-

sponding time-ordering operator. The average is performed with the Hamiltonian H0. The effects

associated with quadratic Hamiltonian Hα are already accounted in Iel. Therefore, to obtain the

second-order correction to the inelastic current we proceed by considering Hint=Hφ+HΦ, with the

Feynman diagrammatic codex as shown in Fig. 4.5.

Figure 4.5: Feynman diagrammatic codex used for the calculation of inelastic current. Blue (red)

circles denote the density-density intra-channel interaction in even (odd) channel respectively (see

Eq. 4.10). Green circle denotes the inter-channel spin-spin interaction Eq. 4.10.

The perturbative expansion of Eq. (4.24) in (B, T, eV ) � T o
K starts with the second-order

contribution [24] and is illustrated by Feynman diagrams of four types (see Fig. 4.6). The type-1

and type-2 diagrams contain only one mixed Green’s function, GF (dashed line) proportional to

∆f(t)∼eV , where ∆f(t) is the Fourier transform of ∆f(ε) defined in Eq. (4.73). Therefore, both

diagrams fully define the linear-response contribution to the inelastic current, but also contain some

non-linear ∝(eV )3 contributions. The type-1 diagram contains the mixed GF directly connected to

the current vertex (Fig. 4.6) and can be expressed in terms of single-particle self-energies. The type-

2 diagram contains the mixed GF completely detached from the current vertex and therefore can

not be absorbed into self-energies. We will refer to this topology of Feynman diagram as a vertex

correction. Note, that the second-order Feynman diagrams containing two (and also four) mixed GF

are forbidden due to PH symmetry of the problem. The type-3 and type-4 diagrams contain three

mixed GF’s and therefore contribute only to the non-linear response being proportional to (eV )3.

The type-3 diagram, similarly to the type-1 diagram, can be absorbed into the single-particle

self-energies. The type-4 diagram, similarly to the type-2 diagram is contributing to the vertex

corrections. This classification can be straightforwardly extended to higher order perturbation

corrections for the current operator. Moreover, the diagrammatic series will have similar structure

also for the Hamiltonians without particle-hole symmetry where more vertices are needed to account

for different types of interactions. A similar classification can also be done for current-current

(noise) correlation functions. The mathematical details of the computation of the diagrammatic

contribution of current correction diagrams type-1, type-2, type-3 and type-4 as shown in Fig. 4.6

proceed as follows:
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σ

σ

σ

σσ

︸ ︷︷ ︸
type 1

σ

σ

σ

σσ

︸ ︷︷ ︸
type 2

σ

σ

σ

σσ

︸ ︷︷ ︸
type 3

σ

σ

σ

σσ

︸ ︷︷ ︸
type 4

Figure 4.6: Examples of four different types of Feynamn diagrams contributing to the inelastic

current. The open circle represents the current vertex. The other notations have been defined in

Fig. 4.3 and Fig. 4.5.

Evaluation of type-1 diagram

The straightforward calculation of the Keldysh GFs at x = 0 takes the form (see Refs. [1, 106] for

details)

Gaa(k, ε) =
1

ε− εk
τz + iπ

(
F0 F0 + 1

F0 − 1 F0

)
δ(ε− εk),

Gba/ab(k, ε) = iπ

(
1 1

1 1

)
∆f(k, ε)δ(ε− εk), (4.25)

where F0=fL + fR − 1 and the Pauli matrix τz=

(
1 0

0 −1

)
. The current contribution proportional

to Φ2 corresponding to the diagram of type-1 as shown in Fig. 4.6 is given by [106]

δIΦ2

int =
e

νh

∑

η1,η2

η1η2 × Yη1,η2
1 , (4.26)

with

Yη1,η2
1 =

∫
dε

2π

[
iSG+η1

ee (−x, ε)Ση1η2(ε)Gη2−
eo (x, ε)+c.c.

]
,

where S = S∗oSe, η1/2 are the Keldysh branch indices which takes the value of + or −. The

self-energy Ση1η2 in real time is

Ση1η2(t)=

(
Φ

πν2

)2 ∑

k1,k2,k3

Gη1η2
ee (k1, t)G

η2η1
ee (k2,−t)Gη1η2

ee (k3, t). (4.27)

Using Eq. (4.25) we express the diagonal and mixed GFs in real space as

Gη1η2
aa (αx, ε) = iπνeiαεx/vf


F0 +





η1, if α = 1

−η2, if α = −1


 ,

Gη1η2
aā (x, ε) = iπνeiεx/vf∆f(ε), (4.28)
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The expression of corresponding GFs in real time is obtained by writing the Fourier transform of

(F0(ε)± 1) as follows:

=

∫
dε

2π
(F0(ε)± 1) e−iεt =

i

2π

[
± πT

sinh(πTt)

(
e−iµLt + e−iµRt

)
− 2

e±iDt

t

]
. (4.29)

Summing Eq. (4.26) over η1 and η2 using Eq. (4.28) results in two terms involving Σ++−Σ−− and

Σ−+ − Σ+−. The first term produces the contribution which is proportional to model cut-off D,

which can be eliminated by introducing the counter terms in the Hamiltonian Eq. (4.68). In rest

of the calculation we consider only the contribution which is finite for D →∞. As a result we get

δIΦ2

int =
2eπ

h

∫
dε

2π

(
Σ−+(ε)− Σ+−(ε)

)
iπν∆f(ε). (4.30)

In Eq. (4.30) we used S + S∗ = 2 cos(δe0,σ − δo0,σ) = 2 with δe0,σ=δo0,σ=π/2. Fourier transformation

of Eq. (4.30) into real time takes the form

δIΦ2

int =
2eπ

h

∫
dt
(
Σ−+(t)− Σ+−(t)

)
iπν∆f(−t). (4.31)

From Eq. (4.29) the required Greens function in real time are

G+−
aa (t) = −πνT cos( eV2 t)

sinh(πTt)
, (4.32)

Geo(t) = iπνT
sin( eV2 t)

sinh(πTt)
. (4.33)

The Greens function G−+
aa (t) is related with that of G+−

aa (t) by causality identity. The self-energies

in Eq. (4.31) are accessible by using above Greens functions Eqs. (4.32) and (4.33) into self energy

Eq. (4.27). Then Eq. (4.31) results in

δIΦ2

int =
2eπ

h

(
φe
πν2

)2

× 2i(πνT )4

∫
dt

cos3( eV2 t) sin( eV2 t)

sinh4(πTt)
. (4.34)

The integral Eq. (4.34) is calculated in Appendix 4.E. Hence the interaction correction to the

current corresponding to the type-1 diagrams shown in Fig. 4.6 is

δIΦ2

type−1

2e2V/h
=
[
A

(1)
V (eV )2 +A

(1)
T (πT )2

]
Φ2, (4.35)

where A
(1)
V = 5/12 and A

(1)
T = 2/3. Alternatively, for the calculation of the integral Eq. (4.30)

one can proceed with scattering T-matrix formalism. The single particle self energy difference

accociated with the diagram of type-1 is expressed in terms of inelastic T-matrix to obtain [1, 29]

Σ−+(ε)−Σ+−(ε)=
Φ2

iπν

[
3

4
(eV )2+ε2+(πT )2

]
. (4.36)

Using this self-energy difference and following the same way as we computed elastic current in

Appendix 4.C, one easily get the final expression for the current correction contributed by the

diagram of type-1.

58



4.4. Charge Current

Evaluation of type-2 diagram

The diagrammatic contribution of the type-2 diagram shown in Fig. 4.6 proportional to φeΦ given

by

δIφeΦint =
e

νh
J =

e

νh

∑

η1,η2

η1η2Yη1,η2
2 , (4.37)

with

Yη1,η2
2 =

∫
dε

2π

[
iSG+η1

ee (−x, ε)Λη1η2
1 (ε)Gη2−

oo (x, ε)+c.c.
]
.

The self energy part Λ1 in real time is expressed as

Λη1η2
1 (t) =

φeΦ

(πν2)2

∑

k1,k2,k3

Gη1η2
ee (k1, t)G

η2η1
ee (k2,−t)Gη1η2

eo (k3, t). (4.38)

Now using Eq. (4.28) into Eq. (4.37) followed by the summation over Keldysh indices, we get

J = 2iS(πν)2

∫
dt[(F0 + 1)(t)Λ−+

1 (−t)− (F0 − 1)(t)Λ+−
1 (−t)] + c.c. (4.39)

Let us define the Greens function as G
+−/−+
ee (t) = G

+−/−+
oo (t) ≡ G+−/−+(t). Then we write

iπν(F0 ± 1)(t) = G+−/−+(t), (4.40)

where (F0 ± 1)(t) is a shorthand notation for the Fourier transform of F0(ε)± 1 defined by (4.29).

Hence, Eq. (4.39) takes the form

J=2Sπν
∫
dt
[
G+−(t)Λ−+

1 (−t)−G−+(t)Λ+−
1 (−t)

]
+c.c. (4.41)

Now the self energies in Eq. (4.38) cast the compact form

Λη1η2
1 (−t) =

φeΦ

(πν2)2
Gη1η2(−t)Gη2η1(t)Geo(−t). (4.42)

Then the Eq. (4.41) becomes

J = 4Sπν φeΦ

(πν2)2

∫
dt
[
G+−(t)

]3
Geo(t) + c.c. (4.43)

Using the explicit expressions of the Greens functions Eqs. (4.32) and (4.33) together with

Eq. (4.43) leads to

J = −4i(πν)2ST (πνT )3 φeΦ

(πν2)2

∫
dt

cos3( eV2 t) sin( eV2 t)

sinh4(πTt)
. (4.44)

Substituting the value of integral given by Eq. (4.89) into Eq. (4.44) and using Eq. (4.37) we get

δIφeΦtype−2

2e2V/h
=
[
A

(2)
V (eV )2+A

(2)
T (πT )2

]
φeΦ, (4.45)

where A
(2)
V = −5/6 and A

(2)
T = −4/3.
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Evaluation of type-3 diagram

Here we calculate the contribution to the current given by the diagram which consists of the self

energy with two mixed Greens functions and one diagonal Greens function (type-3 diagram). The

diagram shown in Fig. 4.6 describes correction proportional to φeΦ and is given by

δIφeΦint =
e

νh

∑

η1,η2

η1η2Yη1,η2
3 , (4.46)

with

Yη1,η2
3 =

∫
dε

2π

[
iSG+η1

ee (−x, ε)Λη1η2
2 (ε)Gη2−

eo (x, ε)+c.c.
]
.

The self-energy Λη1η2
2 in real time is

Λη1η2
2 (t) =

φeΦ

(πν2)2

∑

k1,k2,k3

Gη1η2
eo (k1, t)G

η2η1
oe (k2,−t)Gη1η2

ee (k3, t). (4.47)

Summing Eq. (4.46) over η1 and η2 using Eq. (4.28), we get

δIφeΦint =− e

νh
× πνS

∫
dε

2π

(
Λ−+

2 (ε)− Λ+−
2 (ε)

)
iπν∆f(ε) + c.c. (4.48)

The Fourier transformation of Eq. (4.48) into real time gives

δIφeΦint =− e

νh
× πνS

∫
dt
(
Λ−+

2 (t)− Λ+−
2 (t)

)
iπν∆f(−t) + c.c. (4.49)

Using the expressions of Greens functions in real time Eq. (4.32) and Eq. (4.33) allows to bring the

interaction correction to the current Eq. (4.49) to a compact form

δIφeΦint =
2eπ

h
×2i(πνT )4 φeΦ

(πν2)2

∫
dt

cos( eV2 t) sin3( eV2 t)

sinh4(πTt)
. (4.50)

Using Eq. (4.92) into Eq. (4.50) we get

δIφeΦtype−3

2e2V/h
=
[
A

(3)
V (eV )2 +A

(3)
T (πT )2

]
φeΦ,

where A
(3)
V = −1/4 and A

(3)
T = 0.

Evaluation of type-4 diagram

In this Section we calculate the diagrammatic contribution of the φeφo current diagrams (type-4

diagram) shown in Fig. 4.6. Similar to type-2 diagram calculation, the current correction reads

δIφeφoint =
e

νh
L =

e

νh

∑

η1,η2

η1η2Yη1,η2
4 , (4.51)

with

Yη1,η2
4 =

∫
dε

2π

[
iSG+η1

ee (−x, ε)Λη1η2
3 (ε)Gη2−

oo (x, ε)+c.c.
]
. (4.52)
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4.4. Charge Current

The self-energy part Λη1η2
3 is given by the expression

Λη1η2
3 (t) =

φeφo
(πν2)2

∑

k1,k2,k3

Gη1η2
oe (k1, t)G

η2η1
eo (k2,−t)Gη1η2

eo (k3, t). (4.53)

Now substituting Eq. (4.28) into Eq. (4.52) followed by the summation over Keldysh indices, we

get

L = 2iS(πν)2

∫
dt[(F0 + 1)(t)Λ−+

3 (−t)− (F0 − 1)(t)Λ+−
3 (−t)] + c.c. (4.54)

Plugging in Eq. (4.40) into Eq. (4.54) results

L=2Sπν
∫
dt
[
G+−(t)Λ−+

3 (−t)−G−+(t)Λ+−
3 (−t)

]
+c.c. (4.55)

The self-energy Eq. (4.55) takes the form

Λ−+
3 (−t) =

φeφo
(πν2)2

[Geo(t)]
3 = Λ+−

3 (−t). (4.56)

Hence combining Eq. (4.32) and Eq. (4.33) we bring the required integral Eq. (4.55) to the form

L = − φeφo
(πν2)2

× 4iSπν(πνT )4

∫
dt

cos( eV2 t) sin3( eV2 t)

sinh4(πTt)
+ c.c. (4.57)

The integral in Eq. (4.57) is given by Eq. (4.92). Hence plugging in Eq. (4.57) into Eq. (4.51) we

obtain the current correction:

δIφeφotype−4

2e2V/h
=
[
A

(4)
V (eV )2 +A

(4)
T (πT )2

]
φeφo, (4.58)

where A
(4)
V = 1/2 and A

(4)
T = 0. As we discussed above, all the current diagrams are of the form of

type-1, type-2, type-3 and type-4. However, same type of diagrams may contain different numbers

of fermionic loops and also different spin combinations. In addition, there is the renormalization

factor of −1
2 in HΦ, which has to be accounted for the diagrams containing at least one Φ vertex.

Same type of diagrams containing at least one Φ vertex with different spin combination have the

different weight factor because of product of Pauli matrices in HΦ. Each fermionic loop in the

diagrams results in extra (−1) multiplier in the corresponding weight factor. These facts will be

accounted for by assigning the weight to the given current diagram (e.g. as shown in Fig. 4.7,

Fig. 4.8 and Fig. 4.9). However, in these equations proper weight factors which emerge from

(i) the number of closed fermionic loops, (ii) SU(2) algebra of Pauli matrices and (iii) additional

factors originating from the definition of the FL constants in the Hamiltonian (the extra factor of

−1/2 in HΦ) are still missing and are accounted for separately. As a result our final expression for

the second-order perturbative interaction corrections to the current is given by (see Appendix 4.D)

δIin

2e2V/h
=

[
2

3
(φ2
e + φ2

o) + 3Φ2 − 2(φe + φo)Φ

]
(πT )2

+
[ 5

12
(φ2
e + φ2

o) + 3Φ2 − 2(φe + φo)Φ

+
1

2
φeφo

]
(eV )2. (4.59)
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Figure 4.7: The Φ2 type-1 diagram (Left panel) and the corresponding diagram with the splitting

of local Φ vertices (Right panel). In the diagram the upper Φ vertex consist in the Pauli matrices

product τσσ̄.τσ̄σ=2. Similarly the lower Φ vertex contain the product of τσ̄σ.τσσ̄=2. The diagram

contains an even number of fermionic loops (two) and hence no extra negative sign occur due to

the fermionic loop. Each Φ vertex has the renormalization factor of −1
2 . Hence the overall weight

factor of this diagram is 1
4×4 as will be seen in Fig. 11 and Fig. 12 given in the Appendix.

σ

σ

σ

σσ

σ

σ

σσ σ

Figure 4.8: The φeΦ type-2 current correction diagram (Left panel) and the corresponding diagram

with the splitting of local Φ vertices (Right panel). In the diagram the Φ vertex consist in the Pauli

matrices product τσσ.τσ̄σ̄=− 1. The diagram contain an even number of fermionic loops (two) and

hence no extra negative sign occur due to the fermionic loop. The Φ vertex has the renormalization

factor of −1
2 . Hence the overall weight factor of this diagram is −1

2×(−1) as will be seen in Fig. 11

and Fig. 12.

The first term ∝ (πT )2 in Eq. (4.59) is the linear response result given by type-1 and type-2

diagrams. The second term (surviving also at T = 0) is the non-linear response contribution

arising from all type 1-4 diagrams. The inelastic current Eq. (4.59) vanishes at the symmetry point.

Moreover the linear response and the non-linear response contributions vanish at the symmetry

point independently. Also the elastic and inelastic currents approach zero separately when the

system is fine-tuned to the symmetry point. These properties will be reproduced in arbitrary order

of perturbation theory.
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σ
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σ
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Figure 4.9: The Φ2 type-2 current correction diagram (Left panel) and the corresponding diagram

with the splitting of local Φ vertices (Right panel). In the diagram the upper Φ vertex consist

in the Pauli matrices product τσσ.τσ̄σ̄= − 1. Similarly the lower Φ vertex contain the product of

τσ̄σ.τσσ̄=2. The diagram contain no fermionic loops and hence no extra negative sign occur due to

the fermionic loop. Each Φ vertex has the renormalization factor of −1
2 . Hence the overall weight

factor of this diagram is 1
4×(−2) as will be seen in Fig. 11 and Fig. 12

4.5 Transport properties

The total current consists of the sum of elastic and inelastic parts which upon using the FL-identity

αa=φa takes the form

δI

2e2V/h
=
[
(πT )2+(eV )2

]
3(Φ− 2

3
αe)(Φ−

2

3
αo)

+

[
B2 + (πT )2 +

1

2
(eV )2

]
(αe − αo)2 . (4.60)

This Eq. (4.60) constitutes the main result of this work where the second term describes universal

behaviour [29] scaled with (1/T eK−1/T oK)2, while the first one, containing an extra dependence on

the ratio T oK/T
e
K accounts for the non-universality associated with the lack of conformal symmetry

away from the symmetry-protected points. The Eq. (4.60) demonstrates the magnetic field B,

temperature T and voltage V behaviour of the charge current characteristic for the Fermi-liquid

systems. Therefore, following [147] we introduce general FL constants as follows:

1

G0

∂I

∂V
= cBB

2 + cT (πT )2 + cV (eV )2. (4.61)

cT
cB

= 1 + 3F , cV
cB

=
3

2
+ 9F . (4.62)

Here the parameter

F =
(Φ− 2

3αe)(Φ− 2
3αo)

(αe − αo)2 =
4

9

(λeo − λe)(λeo − λo)
(λe − λo)2 . (4.63)

The parameter F vanishes in the limit of strong asymmetry, λeo�λe�λo in which the ratios

cT /cB|λeo�λe�λo =1, cV /cB|λeo�λe�λo =3/2 (4.64)

correspond to the universality class of the single-channel Kondo model [29, 49].
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On the other hand, near the symmetry point λe=λo=λeo, the function F evidently depends

sensitively on the precise manner in which the symmetry point is approached. In fact, a priori it

appears unclear whether F even reaches a well-defined value at this point. To clarify this, additional

information on the parameters λe, λo and λeo is required.

In full generality, the three parameters λe, λo and λeo of the FL theory are independent

from each other. Nonetheless, we are considering here a specific Hamiltonian Eq. (4.6) with only

two independent parameters Je and Jo, which implies that λeo is in fact a function of λe and

λo. Although the corresponding functional form is not known, it can be deduced in the vicinity

of the symmetric point λe=λo=λeo from the following argument: the obvious e ↔ o symmetry

imposes that the Wilson ratio R=8/3 is an extremum at the symmetric point (see Fig. 4.10), or

else said, that its derivative with respect to the channel imbalance ratio λo/λe vanishes. The only

expression compatible with this requirement and the e ↔ o symmetry is λeo=(λe+λo)/2, valid in

the immediate vicinity of the symmetry point. Inserting this dependence in Eq. (4.63) predicts

limλe→λo F=− 1/9 at the symmetric point, and

cT /cB|λeo=λe=λo =2/3, cV /cB|λeo=λe=λo =1/2. (4.65)

To summarize, under the assumption that the Wilson ratio is maximal at the symmetry point,

we have arrived at the following conclusion: as the degree of asymmetry is reduced, i.e. the ratios

λe/λo and λeo/λe increased from 0 to 1, the ratios of Fermi liquid coefficients cT /cB and cV /cB

decrease from the maximal values of Eq. (4.64), to the minimal values of Eq. (4.65), characteristic

of the 1CK and 2SK fixed points, respectively.

4.6 Summary

We constructed a Fermi-liquid theory of a two-channel, two-stage Kondo model when both scatter-

ing channels are close to the resonance. This theory completely describes the transport in in- and

out-of-equilibrium situation of the 2SK model. The elastic and inelastic contributions to the charge

current through the 2SK model have been calculated using the full-fledged non-equilibrium Keldysh

formalism for arbitrary relation between two Kondo energy scales. While computing the current

correction, we performed the full classification of the Feynman diagrams for the many-body per-

turbation theory on the Keldysh contour. We demonstrated the cancellation of the charge current

at the symmetry protected point. The linear response and beyond linear response contributions

to the current vanish separately at the symmetry point. Moreover, the independent cancellation

of the elastic and inelastic currents at the symmetry protected point was verified. The theoretical

method developed in the chapter provides a tool for both quantitative and qualitative description of

charge transport in the framework of the two-stage Kondo problem. In particular, the two ratios of

FL constants, cT /cB and cV /cB, quantify the “amount” of interaction between two channels. The

interaction is strongest at the symmetry protected point due to strong coupling of the channels.
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Figure 4.10: Cartoon sketching the evolution of the Wilson ratio as a function of increasing “asym-

metry”, meaning that the ratios λe/λo and λeo/λe both decrease from 1 at the left to 0 at the

right. When λe=λo=λeo, meaning that the even and odd Kondo temperatures coincide, the total

spin current is conserved [24] and R=8/3 [25]. In the limit of extremely (exponentially) strong

channel asymmetry of 2SK model, the (C) regime shown on Fig. 4.1 shrinks to zero. As a result,

the 1CK universality class appears and Wilson Ratio is R=2 [25]. The behaviour of the Wilson

ratio between these to limits is presumably monotonic, since the 2SK model has no other strong

coupling fixed points.

The interaction is weakest at single-channel Kondo limit where the odd channel is completely de-

coupled from the even channel. While we illustrated the general theory of two resonance scattering

channels by the two-stage Kondo problem, the formalism discussed in the chapter is applicable

for a broad class of models describing quantum transport through nano-structures [153, 154] and

behaviour of strongly correlated systems [31].

As an outlook, the approach presented in this chapter can be applied to the calculation of

current-current correlation functions (charge noise) of the 2SK problem and, by computing higher

cumulants of the current, to studying the full-counting statistics [155, 156]. It is straightforward to

extend the presented ideas for generic Anderson-type models away from the particle-hole symmetric

point [157–159], and generalize it for the SU(N) Kondo impurity [1] and multi-terminal (multi-

stage) as well as multi-dot setup. The general method developed in this chapter is not limited by

its application to charge transport through quantum impurity, it can be equally applied to detailed

description of the thermo-electric phenomena on the nano-scale [1, 4, 5].
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4.A. Overview of flow from weak to strong coupling

Appendices

4.A Overview of flow from weak to strong coupling

4.A.1 Weak coupling regime

We assume that at sufficiently high temperatures (a precise definition of this condition is given

below) the even and odd channels do not talk to each other. As a consequence, we renormalise the

coupling between channels and impurity spins ignoring the cross-channel interaction. Performing

Anderson’s poor man’s scaling procedure [146] to the even and odd channels independently we

obtain the system of two decoupled renormalization group (RG) equations:

dJe
dΛ

= 2NFJ
2
e ,

dJo
dΛ

= 2NFJ
2
o , (4.66)

where NF is the 3D-density of states in the leads. The parameter Λ= ln
(
D
ε

)
depends on the

ultraviolet cutoff of the problem (conduction bandwidth D). Note that the RG Eqs. (4.66) are

decoupled only in one-loop approximation (equivalent to a summation of so-called parquet di-

agrams). The solution of these RG equations defines two characteristic energy scales, namely

T aK=D exp (−1/(2NFJa)), which are the Kondo temperatures in the even and odd channels re-

spectively. The second loop corrections to RG couple the equations, generating the cross-term

∝ −Jeo se · so with Jeo ∼ NFJe · Jo. This emergent term flows under RG and becomes one of

the leading irrelevant operators of the strong coupling fixed point (the others are : se · se : and

: so · so :, see Eq.4.8). In addition, the second-loop corrections to RG lead to a renormalization of

the pre-exponential factor in the definition of the Kondo temperatures.

Summarizing, we see that the S=1, K=2 fully screened Kondo model has a unique strong

coupling fixed point, where couplings Je and Jo diverge in the RG flow. This strong coupling

fixed point falls into the FL universality class. The weak coupling regime is therefore defined

as (B, T, eV )�(T eK , T
o
K). Since the interaction between the even channel and local impurity spin

corresponds to the maximal eigenvalue of the matrix Eq. (4.5), we will assume below that the

condition T eK>T oK holds for any given B, T and eV and, we thus define Tmin
K =T oK . The differential

conductance decreases monotonically with increasing temperature in the weak-coupling regime (see

Fig. 4.1) being fully described by the perturbation theory [29] in [1/ ln(T/T eK), 1/ ln(T/T eK)]� 1.

4.A.2 Intermediate coupling regime

Next we consider the intermediate coupling regime T oK6(B, T, eV )6T eK depicted as the character-

istic hump in Fig. 4.1. Since the solution of one-loop RG Eqs. (4.66) is given with logarithmic

accuracy, we assume without loss of generality that T eK and T oK are of the same order of magnitude

unless a very strong (exponential) channel asymmetry is considered. Therefore, the “hump regime”

is typically very small and the hump does not have enough room to be formed. The intermediate

regime is characterized by an incomplete screening (see Fig. 4.1) when one conduction channels
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(even) falls into a strong coupling regime while the other channel (odd) still remains at the weak

coupling. Then the strong-coupling Hamiltonian for the even channel is derived along the lines of

Affleck-Ludwig paper Ref. [24] and is given by:

Heven=He
0+

3

2
λeρe↑ρe↓−

3

4vF
λe
∑

kk′σ

(
εk + ε′k

)
b†ekσbek′σ, (4.67)

where the b-operators describe Fermi-liquid excitations, ρeσ(x=0)=
∑

kk′ b
†
ekσbek′σ and λe ∝ 1/T eK

is the leading irrelevant coupling constant [24].

The weak-coupling part of the remaining Hamiltonian is described by a simp=1/2 Kondo-

impurity Hamiltonian Hodd=Joso ·simp. Here we have already taken into account that the impurity

spin is partially screened by the even channel during the first stage process of the Kondo effect.

We remind that the coupling between the even and odd channels is facilitated by a ferromagnetic

interaction which emerges, being however irrelevant in the intermediate coupling regime. Thus, the

differential conductance does reach a maximum G/G0≈1 with a characteristic hump [49], [89] at

the intermediate coupling regime. Corresponding corrections (deviation of the conductance at the

top of the hump from the unitary limit G0=2e2/h) can be calculated with logarithmic accuracy

|δG/G0|∝1/ ln2(T eK/T
o
K) [22], [146] (see also review [29] and [89] for details).

4.B Counterterms

We proceed with the calculation of the corrections to the current by eliminating the dependence

on the cutoff parameter D by adding the counter terms in the Hamiltonian [24, 106]

Hc = − 1

2πν

∑

a

∑

kk′σ

(δαa + δΦ) (εk + εk′) : b†akσbak′σ :, (4.68)

so that we consider only the contribution which remain finite for D→∞. The Eq. (4.68) corresponds

to the renormalization of leading irrelevant coupling constant αa such that αa → αa + δαa + δΦ

with

δαa =− αaφa
6D

π
log

(
4

3

)
. (4.69)

δΦ =− Φ2 9D

π
log

(
4

3

)
. (4.70)

During the calculation of the interaction correction we neglected those terms which produce the

contribution proportional to the cutoff D [for example, ∝
∫
dε
2π (Σ++(ε)− Σ−−(ε)) iπν∆f(ε)]. This

renormalization of leading irrelevant coupling constant Eq. (4.68) exactly cancel these terms.

4.C Elastic current

To get the elastic current Eq. (4.23), we start from the Landauer-Büttiker formula Eq. (4.19)

Iel =
2e

h

∫ ∞

−∞
dεT (ε)∆f(ε), (4.71)
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where the energy dependent transmission coefficient, T (ε)=1
2

∑
σ sin2(δeσ(ε)−δoσ(ε)) and ∆f(ε)=fL(ε)−

fR(ε). Taylor expanding the phase shifts to the first order in energy and retaining only upto second

order in energy terms in the T (ε), we arrive at the expression

Iel =
2e

h
(αe − αo)2

∫ ∞

−∞
dεε2∆f(ε). (4.72)

To compute the integral Eq. (4.72) we use the property of the Fourier transform. For the given

function ∆f(ε), the Fourier transform is defined as

∆f(t) =
1

2π

∫ ∞

−∞
e−iεt∆f(ε)dε. (4.73)

Taking n-th derivative of Eq. (4.73) at t = 0 we get

∫ ∞

−∞
εn∆f(ε)dε =

2π

(−i)n ∂
n
t [∆f(t)]|

t=0
. (4.74)

Substituting Eq. (4.74) for n = 2 into Eq. (4.72), the elastic current cast into the form

Iel =
2e

h
(αe − αo)2(−2π) ∂2

t [∆f(t)]
∣∣
t=0

. (4.75)

The Fourier transform of ∆f(ε) for µL/R = ±eV/2 is defined by

∆f(t) = T
sin( eV t2 )

sinh(πTt)
. (4.76)

Using Eq. (4.76) into Eq.(4.75), we can easily arrive at the expression Eq. (4.23) for the elastic

current at finite temperature T , finite bias voltage V and finite in-plane (Zeeman) magnetic field

B (assuming (T, eV,B)� T oK)

Iel

2e2V/h
=

[
B2 +

(eV )2

12
+

(πT )2

3

]
(αe − αo)2. (4.77)

4.D Net electric current

Here we present the detail of the computation of total electric current (sum of elastic and inelastic

parts) given by Eq. (4.60). We discuss the total current in linear-response (LR) and beyond linear-

response (BLR) regime separately. The elastic part is given by Eq. (4.23) and the inelastic part

which is composed of the four types of diagrams is expressed by Eq. (4.59).

4.D.1 Linear Response (LR)

As discussed in the main text, both elastic and inelastic processes contribute to the LR current.

The LR contribution of the elastic part is expressed by Eq. (4.23). The diagrams of type-1 and

type-2 has the finite linear response contribution to the inelastic current. As detailed in Fig. 11,
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4.D. Net electric current

we have the expression of total linear response current

δILR

2e2V/h

1

(πT )2
=
[ 1

3
(αe − αo)2

︸ ︷︷ ︸
LR elastic part

]
+

[
A

(1)
T (φ2

e+φ
2
o)+3A

(1)
T Φ2+

3A
(2)
T

2
(φe+φo)Φ−

3A
(2)
T

4
Φ2

︸ ︷︷ ︸
LR inelastic part (type-1 and type-2 diagrams)

]

=

[
1

3
(αe−αo)2 +

2

3
(φ2
e+φ

2
o)−2(φe+φo)Φ+3Φ2

]

=

[
(αe − αo)2 + 3(Φ− 2

3
αe)(Φ−

2

3
αo)

]
. (4.78)

At the symmetry point the linear response contribution to the current given by the Eq. (4.78)

exactly vanishes.

4.D.2 Beyond Linear Response (BLR)

The BLR contribution of the elastic part is expressed by Eq. (4.23). The diagrams of type-3

and type-4 produce the finite contribution to the inelastic current only beyond the LR regime.

In addition to the LR contribution, the type-1 and type-2 diagrams also contribute to non-linear

response. As detailed in Fig. 12, the total non-linear current is

δIBLR

2e2V/h

1

(eV )2
=
[ 1

12
(αe − αo)2

︸ ︷︷ ︸
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]

+
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2
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V Φ2+
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V

2
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3A
(2)
V

4
Φ2

︸ ︷︷ ︸
BLR inelastic part (type-1 and type-2 diagrams)




+


A

(4)
V φeφo + 3A

(3)
V (φe + φo) Φ +

3

2
(A

(4)
V −A

(3)
V )Φ2

︸ ︷︷ ︸
BLR inelastic part (type-3 and type-4 diagrams)




=
[ 1

12
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5

12
(φ2
e + φ2
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5

4
(φe + φo)Φ

+
15

8
Φ2+

1

2
φeφo−

3

4
(φe + φo) Φ+

9

8
Φ2
]

=

[
1

2
(αe − αo)2 + 3(Φ− 2

3
αe)(Φ−

2

3
αo)

]
. (4.79)

The BLR contribution to the current expressed by Eq. (4.79) goes to zero at the symmetry point

αe=αo=3Φ/2.

The sum of the LR and BLR contributions results in Eq. (4.60). For completeness

δI

2e2V/h
= 3

[
(πT )2+(eV )2

]
(Φ− 2

3
αe)(Φ−

2

3
αo)

+

[
(πT )2 +

1

2
(eV )2

]
(αe − αo)2 . (4.80)
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Figure 11: (Color online) Feynman diagrams of type-1 and type-2 contributing to the charge current

both in the linear response and beyond the linear response regime. The coefficients computed in the

Sec 4.4.2 and Sec 4.4.2 take the following values: A
(1)
T =2/3, A

(2)
T =− 4/3, A

(1)
V =5/12, A

(2)
V =− 5/6.
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Figure 12: (Color online) Feynman diagrams of type-3 and type-4 contributing to the charge

current beyond the linear response. The coefficients computed in the Sec 4.4.2 and Sec 4.4.2 take

the following values: A
(3)
T =A

(4)
T =0, A

(3)
V =−1/4, A

(4)
V =1/2.
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t

τ

+
i

T

− i

T

0

t + iγ

t + iγ − i

T

Figure 13: The contour of the integration for the integral Eq. (4.81) with negative shift.

This equation represents in a simple and transparent form contribution of the three FL constants

to the charge transport.

4.E Calculation of integrals

In this section we calculate two integrals that we used for the calculation of current correction

contributed by four types of diagram. The first integral to calculate is

I1 =

∫ ∞

−∞

cos3( eV2 t) sin( eV2 t)

sinh4(πTt)
dt. (4.81)

The singularity of the integral in Eq. (4.81) is removed by shifting the time contour by iγ in

the complex plane as shown in Fig. 13. The point splitting parameter γ is chosen to satisfy the

conditions γD� 1 and γT� 1, γeV� 1, where, D is the band cutoff. Then the Eq.(4.81) can be

written as

I+
1 =

∫ ∞+iγ

−∞+iγ

cos3(at) sin(at)

sinh4(πTt)
dt

=− i

16
[Z(4a, T )−Z(−4a, T ) + 2Z(2a, T )−2Z(−2a, T )].

(4.82)

In Eq. (4.82), a=eV/2 and we introduced the short hand notation,

Z(a, T )=

∫ ∞+iγ

−∞+iγ

eiat

sinh4(πTt)
dt=

∫ ∞+iγ

−∞+iγ
h(a, T ; t)dt. (4.83)

The poles of the integrand h(a, T ; t) in Eq. (4.83) are

πTt = ±imπ ⇒ t = ± im
T
, m = 0,±1,±2,±3... (4.84)

The integration of h(a, T ; t) over the rectangular contour Fig. 13 shifted by i/T upon using the

Cauchy residue theorem results

Z(a, T ) =

∫ ∞+iγ

−∞+iγ

eia(t− i
T

)

sinh4
(
πT (t− i

T )
)dt

− 2πi× Res[h(a, T ; t)]|t=0 ,

(4.85)
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where “Res” stands for the residue. By expanding the sinh function in Eq .(4.85) we get

Z(a, T )
(

1− e aT
)

= −2πi× Res[h(a, T ; t)]|t=0 . (4.86)

By using the standard formula for the calculation of the residue, we express the Eq. (4.86) into the

form

Z(a, T ) = −2π
(
a3 + 4a(πT )2

)

6(πT )4
× 1

1− e aT
. (4.87)

Use of Eq. (4.87) into Eq. (4.82) gives the required integral

I+
1 =

iπ

(πT )4

eV

2

[
5

12
(eV )2 +

2

3
(πT )2

]
. (4.88)

Choosing the contour with the negative shift results in the integral I−1 such that I−1 =− I+
1 . As a

result

I±1 (V, T ) = ± iπ

(πT )4

eV

2

[
5

12
(eV )2 +

2

3
(πT )2

]
. (4.89)

The second integral that we are going to compute is

I2 =

∫ ∞

−∞

cos( eV2 t) sin3( eV2 t)

sinh4(πTt)
dt. (4.90)

In the same way and using the same notations as for the first integral, Eq. (4.90) reads

I+
2 =

i

16
[Z(4a, T )−Z(−4a, T )−2Z(2a, T )+2Z(−2a, T )]

=− iπ

(πT )4

(
eV

2

)3

. (4.91)

Similar to Eq. (4.89), the integral I2 takes the form

I±2 (V, T ) = ∓ iπ

(πT )4

(
eV

2

)3

. (4.92)

For the calculations of all diagrams we used the corresponding results of contour integration with

positive shift.
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Chapter 5

Full counting statistics of the

two-stage Kondo effect

In this chapter we develop a method of full counting statistics applicable to the multi-stage Kondo

paradigm. The content of this chapter has been previously published as:

D. B. Karki and Mikhail N. Kiselev,

Full counting statistics of the two-stage kondo effect,

Phys. Rev. B 98, 165443 (2018).

5.1 Background

Quantized charge in nanoscale systems results in large current fluctuations [160]. Besides, ther-

mal fluctuations are ubiquitous at finite temperature. These fluctuations are prevalently measured

by charge current and its noise, the first and second cumulant of fluctuating current [59]. The

study of noise in a generic nanodevice provides underlying transport informations that cannot be

inferred from the average current measurements [59, 155, 156, 160–164]. In particular, noise mea-

surement imparts an effective way of probing the dynamics of charge transfer [59, 164]. Moreover,

noise has revealed the nature of quasi-particle interactions and different types of entanglements

associated with the system [165–167]. In addition to first and second cumulant of the fluctuating

current, the fundamental relevance of higher order cumulants to describe the transport processes

in nanostructure has been also demonstrated [165, 168–175].

The method of full counting statistics (FCS) furnishes an elegant way to scrutinize an ar-

bitrary (n-th) order cumulant of current through a nanodevice [155, 161, 162]. The probabilistic

interpretation of charge transport is at the core of FCS theory. The primary object of FCS is the

moment generating function (MGF) for the probability distribution function (PDF) of transferred

charges within a given time interval [155, 161, 162]. The moments of PDF of order n≥2 charac-
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terize the current fluctuations. The FCS scheme permits in this way a transparent study of the

quantum transport in various nanostructures. Notably, FCS of the normal metal-superconductor

hybrid structures, superconducting weak links, tunnel junctions, chaotic cavities, entangled elec-

trons, spin-correlated systems, charge shuttles, nanoelectromechanical systems are most striking

examples [176–183].

In nanoscale transport studies, an archetype of electronic device consists of an impurity sand-

wiched between two reservoirs of conduction electrons [59, 160]. The artificial atom, molecule,

quantum dot (QD), carbon nano tube (CNT) etc., plays the role of an impurity. Given their low

tunneling rate, the QDs represents archetypal setups for the study of a highly accurate FCS [184],

the main concern of present work. The transport through the QD depends strongly on the associ-

ated number of electronic levels, while the orbitals of the impurity play the major role to define the

underlying transport characteristics [10]. Out of all the impurities-mediated transport processes,

those with intrinsic magnetic moment; hence magnetic in nature, have attracted an ever increasing

interests [10, 31]. One can expect variant transport fingerprints when such magnetic impurities

exchange coupled to conduction electrons (for review see Ref. [26]).

In the low energy regime of transport measurements, the correlation between the localized spin

of impurity and the spin of conduction electrons results in the well known many-body phenomenon,

the Kondo screening effect [7]. The fundamental role of Kondo effect in enhancing and controlling

the transport through a nanostructure is the acknowledged evidence [8, 20, 22, 24, 27, 28, 33–35, 73,

185, 186]. In a transport setup with two reservoirs (leads), the Kondo screening of the localized spin

is caused by at most two conduction channels, the symmetric and anti-symmetric combination of

electron states in the leads. The interplay between the number of conduction channels (K=1, 2) and

the effective spin of magnetic impurity (S≥1/2) boosts up further the richness of Kondo physics.

In the particular case of K=2S, the effective spin of impurity gets completely screened by the spin

of conduction electrons. Such fully-screened Kondo effects are of immense interest given their low

energy behavior described by a local Fermi-Liquid (FL) theory [20, 22, 24].

The Kondo screening involving only a single channel of conduction electrons (K=1) and a spin

half impurity (S=1/2) forms the prototypical example of fully-screened Kondo effect. The magnetic

impurities with only one orbital manifest the single channel Kondo (1CK) effect. Tremendous

perseverance efforts [29, 106, 147, 151] has been devoted in understanding the transport behavior

in paradigmatic 1CK schemes. Moreover, various seminal works [93–97, 187] paved the way to

access the associated FCS in 1CK realm. Unlike the 1CK, the transport characteristics of a multi-

orbital impurity has been less explored. In this facet, many orbitals of the conduction channels are

involved in screening the impurity spin (multi-channel screening), which make the problem more

obscure [49]. Several theoretical and experimental evidences [47–49, 188, 189] have been put fourth

showing the relevance of multi-channel screening effect in a generic transport setup. The simplest

multi-channel screening involves two conduction channels (K=2) and S≥1/2; general manifestation

of a two leads geometry. In the present work we focus only on the particular case of multi-channel

screening such that K=2S in a two leads setup. Thus the S=1 impurity interacting with two

channels of conduction electrons forms the minimal description of multi-channel screening in FL
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Figure 5.1: Upper panel: Schematic representation of a generic 2SK effect setup. The effective

spin S=1 impurity is tunnel-coupled with two external leads, the source S and the drain D. Lower

panel: Flow diagram of 2SK model from weak to strong coupling. For the entries in the figure and

their explanations see Sec. 5.2.

regime [2, 45].

Multi-orbital quantum impurity with effective spin S=1 connected to two terminals can lead

to a Kondo effect exhibiting two-stage screening [2]. The first-stage screening process consti-

tutes an under-screened Kondo effect where the impurity spin is effectively reduced from S=1 to

S=1/2. Subsequently, second-stage screening leads to complete screening of the impurity spin and

the formation of a Kondo singlet. This feature of screening is called two-stage Kondo (2SK) ef-

fect [45, 49]. The low energy description of such 2SK effects is still governed by a local FL theory.

Nonetheless, transport properties of such FL get modified in dramatic ways compared to 1CK [2].

The strong interplay between two conduction channels, both close to resonance scattering, causes

aforesaid different transport features over 1CK. The lack of compatible cure of the two Kondo

resonances makes the 2SK paradigm far from being trivial [45, 49, 89]. To analyze the equilibrium

and non-equilibrium transport properties of a generic 2SK effect, a two-color local FL theory has

been recently developed [2]. Here, the absence of zero-bias anomaly and non-monotonicity of FL

transport coefficients are demonstrated as the hallmarks of 2SK effect.

These two traits of the 2SK effect, which are contrasting over 1CK, have raised many fas-

cinating concerns. For instance, how these fingerprints can affect the higher cumulants of charge

current, particularly the noise to signal ratio. This ratio is commonly known as the Fano factor

(F ). The zero temperature limit of F is of extreme experimental interest [106, 190]. In theoretical

perspective, the method of FCS pertaining to the two resonance channels of conduction electrons

has not been developed yet. In this chapter we aim to reveal the FCS for 2SK effect based on the

local Fermi-liquid theory in combination with the non-equilibrium Keldysh framework.
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5.2 Setup and model Hamiltonian

The cartoon representing the generic 2SK effect is as shown in upper panel of Fig. 5.1. The generic

quantum impurity sandwiched between two conducting leads (the source S and the drain D) is

described by the Anderson model with the Hamiltonian

HA =
∑

kασ

ξkc
†
αkσcαkσ +

∑

αkiσ

tαic
†
αkσdiσ + H.c. +

∑

iσ

εid
†
iσdiσ + EcN̂ 2 − J Ŝ2. (5.1)

The conducting leads are described by the first term of Eq. (5.1) such that the operator c†αkσ creates

an electron with momentum k and spin σ =↑ (+), ↓ (−) in the α (α =S, D) lead. Here ξk is the

energy of conduction electrons with respect to the chemical potential µ. The operator diσ describes

electrons with energy εi and spin σ in the i-th orbital state of the quantum impurity. The tunneling

matrix elements are represented by tαi, the charging energy of the impurity (dot) is Ec and J � Ec

is an exchange integral accounting for the Hund’s rule [89]. The total number of electrons in the dot

is given by an operator N̂ =
∑

iσ d
†
iσdiσ. The two electrons in the dot ensures the expectation value

of N̂ to be n̄d = 2 and the total spin S = 1. Application of the Schrieffer-Wolff transformation [112]

to the Hamiltonian Eq. (5.1) results in the effective Kondo Hamiltonian for the spin-1 quantum

impurity [29, 89].

To proceed with the calculation of FCS relevant to the setup in Fig. 5.1, we assume that the

thermal equilibrium is maintained in source and drain, separately, at temperature T . The chemical

potentials of source and drain electrodes are µS and µD respectively. The applied voltage bias across

source and drain drives the impurity-leads system out-of-equilibrium. For the sake of simplicity,

we consider symmetrically applied bias voltage such that µS−µD=eV , where e is the electronic

charge. In this frame, the symmetrical (even, e) and anti-symmetrical (odd, o) combinations of

electron operators in the two leads interact with the impurity. Assuming cS/D as an operator that

annihilates an electron in the source/drain, the even/odd combinations of electron operators are

be/o= (cS ± cD) /
√

2. These states are also known as conduction channels. In Fig. 5.1, we used

arrows with different color to show that the electrons form even and odd channels (↑, electron

forms channel-e and ↑, electron forms channel-o). Likewise, the interaction between even (odd)

channel and impurity is represented by two-headed arrow with blue (red) color. In our convention,

blue (red) color is generic for even (odd) channel.

In conventional 1CK effect the odd channel is completely decoupled from the impurity [20].

The interacting channel (even channel) is characterized by the Kondo temperature T eK . Depending

upon the applied bias eV and the temperature T in particular setup, different coupling regimes

come into play. Namely, (eV, T )≤T eK , the strong-coupling regime and (eV, T )≥T eK , the weak-

coupling regime. Immense efforts, experimental inclusive of theory, have been paid for the transport

description of 1CK effect in both of the above regimes (see Refs. [10, 29] for review).

In two-leads setup with a generic quantum impurity having more than one orbital, neither of

the electron combinations remain decoupled from the impurity [45, 49]. Consequently, both of the

conduction channels take part for the screening of localized spin of the impurity. In addition to T eK

another energy scale characterizing the Kondo temperature of the odd channel, T oK become impor-
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tant for the problem of 2SK effect. The interplay between two Kondo temperatures (T aK , a=e, o)

makes the 2SK problem very reach then 1CK, but, at the same time quite difficult. Perturbation

treatments of weak, (eV, T )>max(T eK , T
o
K) and intermediate, T oK≤(eV, T )≤T eK , coupling regimes

have been formulated [45, 89]. In the intermediate regime the impurity spin get partially screened

via first (1st)-stage of screening. Further decreasing the temperature and bias voltage down, to

satisfy the condition (eV, T ) � min(T eK , T
o
K), results in strong-coupling regime of 2SK effect. In

this second (2nd)-stage the complete screening of impurity spin is achieved. These three coupling

regimes are shown in lower panel of Fig. 5.1.

Furthermore, it has been argued [45, 49] that the most nontrivial part of 2SK effect is the

strong-coupling regime, where both of the interacting channels are close to the resonance scattering.

Since, the 2SK effect satisfies the identity K=2S, it offers the transport description in terms of a

local FL. From now on, we focus only on the strong-coupling regime of 2SK effect. Owing to its low

energy behavior as a local FL, we describes the strong-coupling regime of 2SK effect in the spirit

of Nozieres FL theory [20, 24]. Accordingly, the Kondo singlet (Kondo cloud) acts as the scatterer

for the incoming electrons from the leads. Outgoing and incoming electrons then differ from each

other by the phase shifts δaσ(ε). At low energy, ε � min(T eK , T
o
K), we expand the phase shifts in

terms of phenomenological parameters to write [20]

δaσ(ε) = δa0 + αaε− φaδNa
σ̄ + Φσ

(
δN ā
↑ − δN ā

↓
)
. (5.2)

Here, δa0=π/2 are the resonance phase shifts considered to be the same for both channels and both

spin components. Writing Eq. (5.2) we explicitly consider the particle-hole (PH) symmetric limit;

σ= ↑, ↓ (σ̄= ↓, ↑). First two terms of Eq. (5.2) represents the purely elastic effects associated with

two channels. These are, equivalently, known as the scattering terms. The parameters αa are the

Nozieres FL coefficients characterizing the scattering. Although, for ε=T=eV=0 both channels

are at resonance, the way phase shifts changes with energy is different in two channels. This

consequence can be accounted for by defining the Kondo temperatures as [1, 147]

T aK = 1/αa. (5.3)

For definiteness, we consider T oK ≤ T eK throughout the chapter.

The third and fourth terms of Eq. (5.2) are due to the finite inelastic effects. These are

known as interaction terms. The parameters φa quantify the intra-channel interactions, and the

inter-channel interaction is accounted for by Φ. The notation δNa
σ is defined by,

δNa
σ=

∫ ∞

−∞

[
〈b†aεσbaεσ〉0 −Θ(εF − ε)

]
dε.

Here, εF , in the argument of step function Θ, is the Fermi energy. The average 〈..〉0 is taken with

respect to non-interacting Hamiltonian describing the free electrons in two channels,

H0 = ν
∑

aσ

∫

ε
ε b†aεσbaεσ, (5.4)

where, ν is the density of states per species for a one-dimensional channel. We see that the phase

shifts expression, Eq. (5.2), consist of five FL parameters (αe, αo, φe, φo and Φ). However, the
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invariance of phase shifts under the shift of reference energy (the floating of the Kondo reso-

nance [106]) recovers the FL identity αa=φa. Thereupon, three independent FL parameters (αe,

αo and Φ) completely describes the low energy sector of 2SK problem. With the specification of

T aK in terms of αa as in Eq. (5.3), we have only one FL parameter (Φ) to relate with the physical

observables. The response functions measurements could provide the way to access the param-

eter Φ [2]. Therefore, all the phenomenological parameters in Eq. (5.2) are under control in an

experiment.

The finding of seminal work [24] paved the way to formulate the Hamiltonian describing the

scattering and interaction processes in Eq. (5.2). The PH symmetry of the problem demands the

scattering terms to be represented by the Hamiltonian,

Hel = −αa
2π

∑

aσ

∫

ε1−2

(ε1 + ε2) b†aε1σbaε2σ. (5.5)

Similarly, the intra-channel and inter-channel quasi-particles interactions are represented by the

Hamiltonians Hφ and HΦ respectively, Hin = Hφ +HΦ represents the total interactions associated

with 2SK effect. Here,

Hφ =
φa

2πν

∑

aσ

∫

ε1−4

: ρaε1ε2σ ρ
a
ε3ε4σ̄ :, (5.6)

HΦ = − Φ

2πν

∑

σ1−4

∫

ε1−4

: Soε1ε2σ1σ2
Seε3ε4σ3σ4

: . (5.7)

The colon, : · · · :, denotes the normal ordering. In Eqs. (5.6) and (5.7) we used the short-hand

notations

ρaε1ε2σ ≡ b†aε1σbaε2σ, Saε1ε2σ1σ2
≡ b†aε1σ1

τσ1σ2baε2σ2 ,

with τσiσj the elements of Pauli-matrices. The scattering and interaction parts of Hamiltonian

given in Eqs. (5.5)−(5.7) are first-order in 1/T aK . The two-leg vertex αa and the four-leg vertices

φa and Φ are shown in Fig. 5.2. In general the symmetry of the problem also allows one to construct

the Hamiltonian with eight-leg vertex, for instance H̃ ∝ φ̃ (ρσρσ̄)a (ρσρσ̄)ā. Note that in the present

work we restrict ourselves to the second order correction to the CGF, thus the relevant terms are

upto the O(T/T aK)2. Since the vertex φ̃ is already second order in 1/T aK , it does not contribute

to the cumulants of charge current within second order perturbative calculation, hence has been

neglected. Thus the Hamiltonian H ≡ H0 +Hel +Hin constitutes the minimal model Hamiltonian

of a generic 2SK effect. This particular model has the channel symmetry at the point αe = αo

and αa = 3/2Φ, where the conductance vanishes due to the destructive interference between two

interacting channels [2]. It is worth noting that the effects of breaking PH symmetry can be

accounted for by introducing extra first and second generation of FL coefficients into Eq. (5.2) in

the spirit of Ref. [106]. The n-th generation of FL coefficients refers to the n-th order coefficients

in the Taylor expansion of the scattering phase shifts with respect to the energy. Moreover for

the description of FCS beyond PH symmetric point, the density-density inter-channel interaction

should be added. The finite potential scattering amounts to renormalizes the resonance phase shifts

in such a way that δa0 → δa0 + δaP , δaP � δa0 [1].
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5.3. Full counting statistics

5.3 Full counting statistics

The randomness of transferred charge (q) through a nanodevice during a measurement time (T ) is

specified by the PDF, P(q). Then, the central object of FCS, the MGF is given by

χ(λ)=
∑

q

P(q)eiλq. (5.8)

Here, λ is the charge counting field. Following the spirit of pioneering works [93, 94], we conceal

the 2SK many-body Hamiltonian into the MGF (see text below). The complete charge transferred

statistics of 2SK effect is, then, obtained via cumulant generating function (CGF) lnχ(λ). The

n-th order differentiation of CGF with respect to the counting field, delivers the arbitrary moment

(central) of charge current. Besides, the counting field, λ, is explicitly time dependent which takes

different value in forward (C−) and backward (C+) Keldysh contour

λ(t) =





λ, if 0 < t < T and t ∈ C−
−λ, if 0 < t < T and t ∈ C+

0, else

(5.9)

Here the Keldysh contour extends from −∞ to T and back to ∞. Note that, in order to calculate

the FCS, the current measurement device has to be included in the Hamiltonian description. Such

terms in the Hamiltonian due to the measuring device can be eliminated by means of unitary

transformation of the form U ∼ e−iλ(t)N̂α , N̂α being the number operator of the electrons in α

reservoir [94]. This transformation changes only the tunneling part of the Hamiltonian Eq. (5.1).

Analogously, in the strong-coupling regime the charge measuring field causes the rotation of the

even and odd electron states in the reservoirs such that [93]

bλa = cos (λ/4) ba − i sin (λ/4) bā. (5.10)

Under this transformation the free part of Hamiltonian, H0, remains unchanged. Nevertheless,

the Hamiltonian corresponding to the sum of scattering and interaction effects , H (≡ Hel +Hin),

transforms to Hλ = H+λ/4 Îbs. Here, we considered only the lowest order terms in counting field.

The backscattering current, Îbs, is given by the commutator Îbs = i [Q,H], where Q is the charge

transferred operator across the junction Q = 1/2
∑

kσ(b†ekσbokσ + H.c.). Since there are no zeroth

order transmission processes in 2SK [2], the MGF is given by

χ(λ) =
〈
TC exp

[
−i
∫

C
Hλ(t)dt

]〉
0
. (5.11)

Where TC is time ordering operator in Keldysh contour, C. The expansion of Eq. (5.11) in Hλ and

use of Wick’s theorem paved the way to proceed with the perturbative study of MGF, χ(λ). Then

the n-th order (arbitrary) moment of charge current is given by

Cn =
1

T (−i)n d
n

dλn
lnχ(λ)

∣∣∣∣
λ=0

. (5.12)
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≡ Green’s function of channel-e (Ǧee)
≡ Green’s function of channel-o (Ǧoo)
≡ Mixed Green’s function (Ǧeo/Ǧoe)
≡ Elastic scattering in channel-e (αe)

≡ Elastic scattering in channel-o (αo)

≡ Inelastic scattering in channel-e (φe)

≡ Inelastic scattering in channel-o (φo)

≡ Inter-channel inelastic scattering (Φ)

Figure 5.2: Feynman diagrammatic codex used for the calculation of FCS in the presence of two

conduction mode.

To proceed with the calculation for the higher cumulants of charge current, we require Keldysh

Green’s functions (GFs) in λ-rotated basis. As the odd conduction channel remains completely

decoupled, the Keldysh GFs of even channel (Ǧee) suffice to characterize the transport of 1CK

schemes. However, the consistent treatment of 2SK effect requires two additional Keldysh GFs,

the Keldysh GFs of odd channel (Ǧoo) and that of mixed channel (Ǧeo/oe). Note that, the spin index

in these GFs is implicit. Besides, we prefer the renaming of GFs Ǧee and Ǧoo as the channel-diagonal

GFs, and Ǧeo/oe as mixed GFs, whenever necessary. The energy representation of these Keldysh

GFs is

Ǧaa/aā(ε) =

[
G−−aa/aā(ε) G−+

aa/aā(ε)

G+−
aa/aā(ε) G++

aa/aā(ε)

]
, (5.13)

with the diagonal GFs,

G−−aa/aā(ε) = G++
aa/aā(ε) = iπν [(fS − 1/2)± (fD − 1/2)] , (5.14)

are independent of counting field λ. Here, fS/D ≡ fS/D(ε) is the free-electron Fermi distribution

function of source/drain reservoir. The off-diagonal GFs explicitly depend on λ, are given by

G+−
aa/aā(ε) = eiλ/2 (fS − 1)± e−iλ/2 (fD − 1) . (5.15)

G−+
aa/aā(ε) = e−iλ/2fS ± eiλ/2fD. (5.16)

The pictorial representation of these GFs is as shown in Fig. 5.2. Neither of the above GFs includes

the principal parts, since they do not contribute to the local quantities in the flat band model [93].

The Fourier transformation (FT) of Eq. (5.16) into the real time permits,

G−+
aa/aā(t) = ∓πνT ei(

λ
2

+ eV
2
t) ± e−i(λ2 + eV

2
t)

2 sinh (πTt)
. (5.17)

The singularity in Eq. (5.17) is removed by shifting the contour of integration upward from the

origin such that t→ t+ iη for η → 0. The GFs G+−(t) has the analogous expression as G−+(t) [95].

81



5.3. Full counting statistics

We substitute the scattering (elastic) part of the Hamiltonain, Hel, into Eq. (5.11) and use

Wick’s theorem to get the elastic contribution to CGF, lnχel(λ). Following the diagrammatic-

codex of Fig. 5.2, we succeed to re-express lnχel(λ) in terms of two topologically different Feynman

diagrams. These diagrams are classified as type-E1 and type-E2 (see upper panel of Fig. 5.3).

Following the standard technique of Feynman diagrammatic calculation with the GFs given in

Eqs. (5.14), (5.15) and (5.16), we obtained the CGF contribution of type-E1 and type-E2 diagram.

As detailed in Appendix 5.A, the CGF for 2SK effect contributed by the scattering effects is

lnχel

(αe − αo)2
=
T V
24π

V 2 + 4(πT )2

sinh(V/2T )

∑

x=±

(
e−iλx−1

)
exV/2T . (5.18)

We have used the generalized notation e=~=kB=1 to write Eq. (5.18) and for the rest of discussion.

Plugging the Eq. (5.18) into Eq. (5.12) and then taking the limit T → 0, we bring the zero

temperature contribution of scattering effects to the n-th moment of charge current,

Cel
n =

V 3

12π
(−1)n (αe − αo)2 . (5.19)

We follow the similar procedure, as for the calculation of scattering contribution, to get the

interaction correction to CGF. Substituting the interaction (inelastic) part of Hamiltonian, Hin,

into Eq. (5.11) and applying Wick’s theorem, we obtain the Feynman diagrams accounting for the

interaction effect in 2SK effect. These diagrams are shown in Fig. 5.4. We allocate these interaction

correction diagrams into three topologically different classes, namely type-I1, type-I2 and type-I3

as shown in lower panel of Fig. 5.3. We introduce the notation, lnχIj(λ) (j = 1, 2, 3), to represent

the interaction correction to CGF corresponding to the digram of type-Ij. The real time GFs given

in Eq. (5.17) pave the way for systematic calculation of lnχIj(λ). As detailed in Appendix 5.B, we

write the type-I1 and type-I3 diagrammatic contribution to CGF as,

lnχI1/I3=±Φ2T V
24π

[V 2+4(πT )2

sinh(V/2T )

∑

x=±

(
e−iλx−1

)
exV/2T

± 2
V 2+(πT )2

sinh(V/T )

∑

x=±

(
e−2iλx − 1

)
exV/T

]
. (5.20)

Furthermore, the type-I2 diagram produces the interaction correction to CGF as,

lnχI2 =
Φ2T V

12π

V 2+(πT )2

sinh(V/T )

∑

x=±

(
e−2iλx−1

)
exV/T . (5.21)

Substituting Eqs. (5.20) and (5.21) into Eq. (5.12) we get the n-th order cumulant of charge current,

CIj
n , corresponding to the diagram type-Ij. Of particular interest, the zero temperature results are

CI1/I3
n = ± V 3

12π
(−1)n

[
1± 2n+1

]
Φ2. (5.22)

CI2
n =

V 3

12π
(−1)n2n+1Φ2. (5.23)

Collecting all the interaction contributions as detailed in Fig. 5.4, and the scattering contribution

given in Eq. (5.19), we get the n-th cumulant of charge current at T = 0 as

Cn = (−1)n
V 3

6π
(αe − αo)2 [1 + 2nL] , (5.24)
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︸ ︷︷ ︸
type−E1

︸ ︷︷ ︸
type−E2

σ σ σσ

︸ ︷︷ ︸
type−I1

σ σ σ σ

︸ ︷︷ ︸
type−I2

σ σσ σ

︸ ︷︷ ︸
type−I3

Figure 5.3: Upper panel: Schematic representation of the CGF contribution of scattering effects,

lnχel(λ). Lower panel: Topologically different diagrams accounting for the interaction contribution

to the CGF, lnχin(λ).

with

L ≡ 1 + 9Z, Z =
(Φ−2/3αe) (Φ−2/3αo)

(αe − αo)2 . (5.25)

The parameter Z signifies the lack of universality away from the symmetry point, αe = αo and Φ =

2/3 αa of 2SK Hamiltonian. Besides, it has been predicted that the parameter Z is bounded such

that −1/9 ≤ Z ≤ 0 [2]. For the sake of simplicity, we introduce the new parameter L (≡ 1 + 9Z)

in such a way that 0 ≤ L ≤ 1. The minimum of L corresponds to the exact symmetry between two

channels at resonance. The case of infinite asymmetry between even and odd channel, T oK/T
e
K → 0,

is characterized by the upper bound of L. This particular point, where the odd channel is decoupled

from the impurity, recovers the 1CK paradigm. We see, form Eq. (5.24), that the n-th cumulant of

charge current exactly vanishes at the symmetry point due to the destructive interference between

two resonance channels. Same result holds true even at finite temperature. However, the l’Hopital’s

rule permits us to have the finite value of normalized n-th cumulant, Cn/C1. Then we define the

measure of backscattering via the generalized Fano factor

F ≡ | C2/C1| =
1 + 4L
1 + 2L . (5.26)

Plugging in the parameter L into Eq. (5.26), we get the Fano factor bounded from upper and

below in such a way that 1 ≤ F ≤ 5/3. The upper bound reproduces the Fano factor of 1CK

effect, the super-Poissonian charge transferred statistics [190]. The regime of maximum interaction

in 2SK effect results the lower bound of F . This minimum of F (= 1) represent the Poissonian

regime of charge distribution. Therefore, a generic 2SK effect exhibits the crossover regime of

charge transferred statistics, from Poissonian to super-Poissonian, depending upon the channel

asymmetry. This monotonic dependence of F on the channel-asymmetry parameter L is shown in

Fig. 5.5. The non-monotonic conductance of 2SK effect as a function of temperature, extracted

form C1|T 6=0,V→0, is shown in the inset of Fig. 5.5 (see Ref. [2] for detailed description).

In 1CK schemes, the definition of generalized Fano factor follows from F ≡ δC2/δC1|T→0,

where δC1/2 represents the corresponding quantity after subtracting the linear part (those terms

∝ V ). Nevertheless, the n-th cumulant of charge current in 2SK schemes, the Eq. (5.24), does not
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Cφ2

n =




+

︸ ︷︷ ︸
type−I1




CΦ2

n = +
1

4




σ σ σσ
+

σσσ σ
+ 4

σσσ σ

︸ ︷︷ ︸
type-I1




+
1

4



−

σ σ σσ
−

σ σ σσ
+ 2

σ σ σ σ

︸ ︷︷ ︸
type-I2




+
1

4




+2
σ σ σ σ

+2
σ σσ σ

+2
σ σσ σ

︸ ︷︷ ︸
type-I2




+
1

4




σ σ σσ
+

σ σσ σ
+ 4

σ σσ σ

︸ ︷︷ ︸
type-I3




CφaΦ
n = −1

2




+
σ σ σσ

+ 2
σ σ σ σ

︸ ︷︷ ︸
type−I2



× 2 + CφoΦn

Cφaφān =




+

︸ ︷︷ ︸
type-I3




Figure 5.4: Feynman diagrams representing the second order interaction corrections to the CGF

for 2SK model.

shows up the linear terms in V . This makes very straightforward extraction of F in 2SK effect,

since it does not require the proper subtraction of linear terms.

The differential conductance of 2SK effect as a function of B (the Zeeman field), T and V
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5.4. Summary

Figure 5.5: The evolution of Fano factor (F ) as a function of channel asymmetry parameter (L)

for a generic 2SK effect. Inset: The non-monotonic conductance behavior, the major hallmark of

2SK effect (see text for detail).

is given, in terms of FL transport coefficients, as G/G0 = cBB
2 + cT (πT )2 + cV V

2, where G0 is

the unitary conductance. The transport coefficients bear the compact form: cT /cB = (L+ 2) /3

and cV /cB = L + 1/2 [2]. Thus, the measurement of L would sufficient the study of transport

behaviors of 2SK effect. The compelling monotonic dependence of F on L, as shown in Fig. 5.5,

could furnish an experimental way to extract L as follows. Given an experimental setup in 2SK

scheme, the independent measurements of charge current and noise impart the Fano factor. Thus

obtained Fano factor uniquely defines the corresponding asymmetry parameter L via Eq. (5.5).

Following this way of measurements of transport coefficients could be less involved than measuring

the response functions.

5.4 Summary

We extended the method FCS from conventional 1CK schemes to multi-channel Kondo paradigm.

The developed framework of FCS has been demonstrated considering an example of 2SK effect.

We analyzed the charge transferred statistics in the strong-coupling regime of a 2SK model using

non-equilibrium Keldysh formulation. We found that the arbitrary cumulant of charge current

get nullified at the symmetry point of 2SK model due to the destructive interference between two

conducting channel. We studied the destructiveness/constructiveness of interference in terms of

channel asymmetry parameter, L. The n-th order normalized cumulant of charge current, Cn/C1 is

expressed into a compact function of L, only. A bounded value of Fano factor, 1 ≤ F ≤ 5/3, has

been discovered. Studying the observed monotonic growth of F as a function of L, we uncovered the

cross-over regimes of charge transfered statistics in 2SK effect, from Poissonian to super-Poissonian.

We proposed a novel way of obtaining the FL transport coefficients of 2SK effect by the independent

measurements of charge current and noise. The developed formalism imparts all the transport

informations of 1CK effect as well. All the calculations have been performed at finite temperature,
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one can easily study the effect of temperature on an arbitrary cumulant of charge current.

Appendices

5.A Scattering corrections to the CGF

The scattering correction to the MGF of 2SK model reads

χel(λ) =
〈
TC exp

[
−i
∫

C
Hλel(t)dt

]〉
0
. (5.27)

Where the scattering Hamiltonian is given in Eq. (5.5). The logarithm of Eq. (5.27), lnχel(λ),

provides the corresponding CGF. The second order expansion of lnχel(λ) in Hλel followed by the

use of Wick’s theorem results in four different Feynman diagrams as shown in Fig. 5.3 (upper

panel). The first and second diagrams are composed of only the channel-diagonal GFs. Owing to

their similar geometry, we classified them as type-E1 diagram. Note that, in our convention, the two

diagrams are geometrically similar if they contain equal number of channel-diagonal GFs (if present)

and equal number of mixed-GFs (if present). The type-E2 diagrams shown in Fig. 5.3, nonetheless,

consist of only mixed-GFs. The interference between two channels, due to the scattering effects,

is accounted for by these type-E2 diagrams. The contribution of type-E1 diagrams to the CGF is

proportional to α2
a. Similarly, the CGF contribution of type-E2 diagrams is proportional to αaαā.

Therefore, the overall scattering contribution to CGF is written as

lnχel =
∑

a

(
lnχα2

a
+ lnχαaαā

)
. (5.28)

Topologically the type-E1 and type-E2 diagrams are quite distinct. The type-E1 diagrams

have been already appeared in several previous works [93–97], however, the type-E2 diagrams has

not been considered yet. For completeness, we present the mathematical details of diagrammatic

contribution to CGF for both diagrams. For type-E1 diagrams we write

lnχα2
a
=−1

2

α2
a

(2πν)2

∑

kk′σ

∑

pp′σ′

(εk+εk′)
(
εp+εp′

) ∫

C
dt1dt2

〈
TCb
†
akσ(t1)bak′σ(t1)b†apσ′(t2)bap′σ′(t2)

〉
.

(5.29)

Here, we introduced the set of momentum indices (k, k′, p, p′), spin indices (σ, σ′) and time indices

(t1, t2). Equation. (5.29) provides the non-zero contribution only if k = p′, k′ = p and σ = σ′.

Therefore, use of the method of Keldysh disentanglement to the Eq. (5.29) results in

lnχα2
a
=−1

2

α2
aT

(2πν)2

∑

kk′σ

(εk + εk′)
2
∑

η1η2

η1η2

∫

C
dt Gη1η2

aa,k′σ(t)Gη2η1

aa,kσ(−t), (5.30)

where, T is the measurement time (see Section 5.3), ηi (i = 1, 2) are the Keldysh branch (for-

ward and backward) indices such that ηi= ± 1. The channel-diagonal GFs, Gη1η2
aa , are defined in
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5.B. Interaction corrections to the CGF

Eqs. (5.14), (5.15) and (5.16). These GFs acquire the special property; νGη1η2

aa,kσ(ε) = Gη1η2
aa,σ (ε)δ(ε−

εk), where δ(ε− εk) stands for the Kronecker delta symbol. Then, Eq. (5.30) reads

lnχα2
a
=−1

2

α2
aT

(πν)2

∑

η1η2,σ

η1η2

∫

C

dε

2π
ε2 Gη1η2

aa,σ (ε)Gη2η1
aaσ (ε). (5.31)

Summing Eq. (5.31) over η1/2 and then plugging in the various Keldysh GFs from Eqs. (5.14),

(5.15) and (5.16) leads

lnχα2
a

=
α2
aT
2π

∑

σ

Jel,σ, (5.32)

with the compact form of the integral characterizing the scattering effects

Jel=

∫ ∞

−∞
ε2dε

[
fS(1−fD)(e−iλ−1)+fD(1−fS)(eiλ−1)

]
. (5.33)

We called this integral as the “elastic integral”, the mathematical details of the computation of

this diagram will be discussed in Appendix 5.C.

Repeating all above calculations for type-E2 diagrams with same notations we get the quite

similar result

lnχαaαā =− αaαāT
2π

∑

σ

Jel,σ. (5.34)

Though the origin of these two elastic diagrams and corresponding topology is very different, it

turns out that they produce equal but opposite contribution to the CGF. Plugging in the Eqs. (5.32)

and (5.34) into Eq. (5.28) provides the contribution of scattering effects to the CGF, which is written

as

lnχel =
(αe − α0)2 T

2π

∑

σ

Jel,σ. (5.35)

Substituting the value of elastic integral from Eq. (5.54) into Eq. (5.35), we get the final expression

for the scattering contribution to the CGF in 2SK model, which is the Eq. (5.18) in the main text

of this chapter.

5.B Interaction corrections to the CGF

In the same way and using the same notations as for the scattering contribution, we get several

Feynman diagrams contributing to the CGF of 2SK model as shown in Fig. 5.4. These diagrams are

classified into three different group, type-Ij (j=1, 2, 3) diagram, based upon the numbers of channel-

diagonal GFs and mixed-GFs present in a particular diagram (see the lower panel of Fig. 5.3). For

instance, the diagram with all (four) channel-diagonal GFs has been classified as type-I1 diagram,

those with two channel-diagonal and remaining two mixed-GFs as the type-I2 and diagrams with

all mixed-GFs has been termed as type-I3. As shown in the Fig. 5.4, we expressed the interaction

contribution to the CGF in terms of these three diagrams. The two diagrams belonging to the

same group might have different weight factor. The numbers of close fermion loops, the product
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of Pauli matrices and the renormalization factor in the Hamiltonian determines the weight factor

corresponding to a particular diagram (for detail see Ref. [2]).

A single diagram of type-I1 (with CGF contribution proportional to φ2
e/o) completely char-

acterizes the FCS of 1CK schemes [93–97]. However, the type-I2 and type-I3 diagrams are generic

feature of multi-channel, multi-stage screening effects. These diagrams have not been studied yet.

In this Appendix 5.B we provide the mathematical details of computing CGF contribution of type-Ij

diagram.

The type-I1 diagram shown in lower panel of Fig. 5.3 produces the CGF contribution propor-

tional to Φ2. Following the standard technique of Feynman diagram calculation, we cast the CGF

contribution of type-I1 diagram into the form

lnχI1=−1

2

(
Φ

πν

)2 ∫

C
dt1dt2

[
Gee,σ(t1 − t2)Gee,σ(t2 − t1)Goo,σ(t1 − t2)Goo,σ(t2 − t1)

]
. (5.36)

In Eq. (5.36) we did not consider the spin summation for being more general (implying that the

spin index σ is either down or up). Using the technique of Keldysh disentanglement we rewrite the

Eq. (5.36) as

lnχI1=−T
2

(
Φ

πν

)2 ∑

η1η2

η1η2×
∫

C
dt
[
Gη1η2
ee,σ (t)Gη2η1

ee,σ (−t)Gη1η2
oo,σ (t)Gη2η1

oo,σ (−t)
]
. (5.37)

Summing Eq. (5.37) over Keldysh indices η1/2 and using the expressions of GFs in Eq. (5.17), we

get

lnχI1 = (πΦT 2)2T
∫ ∞+iγ

−∞+iγ

cos4
(
λ
2 + V

2 t
)

sinh4(πTt)
dt. (5.38)

Coming from Eq. (5.37) to Eq. (5.38), we retain only the λ-dependent terms. The integral Eq. (5.38)

is computed in Appendix 5.D. Then we write the CGF contribution of type-I1 diagram into the

form

lnχI1 =
Φ2T
96π

[8V
(
V 2 + (πT )2

)

sinh(V/T )

∑

x=±
e2ixλe−xV/T

4V
(
V 2 + 4(πT )2

)

sinh(V/2T )

∑

x=±
eixλe−xV/2T

]
+
πΦ2T 3T

2
. (5.39)

For proper renormalization of PDF we subtract the λ = 0 contribution of Eq. (5.39) from the same

Eq. (5.39), to write the final expression of CGF contributed by a diagram of type-I1

lnχI1 =
Φ2T V

24π

[
2 · V

2+(πT )2

sinh(V/T )

∑

x=±

(
e2ixλ−1

)
e−xV/T

+
V 2+4(πT )2

sinh(V/2T )

∑

x=±

(
eixλ−1

)
e−xV/2T

]
. (5.40)

In the same way and using the same notations as for the type-I1 diagram, the CGF contri-

bution of type-I2 diagram as shown in Fig. 5.3 reads

lnχI2=−(πΦT 2)2T
∫ ∞+iγ

−∞+iγ

sin2
(
λ
2 +V

2 t
)

cos2
(
λ
2 +V

2 t
)

sinh4(πTt)
dt. (5.41)
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Using the integral given in Appendix 5.D followed by the proper renormalization of PDF, the

Eq. (5.41) results in

lnχI2 =
Φ2T V

12π

V 2 + (πT )2

sinh(V/T )

∑

x=±

(
e2ixλ − 1

)
e−xV/T . (5.42)

Similarly, the CGF contribution of a type-I3 diagram as shown in Fig. 5.3 is given by

lnχI3 = (πΦT 2)2T
∫ ∞+iγ

−∞+iγ

sin4
(
λ
2 +V

2 t
)

sinh4(πTt)
dt. (5.43)

The simplification of Eq. (5.43) upon proper renormalization of PDF imparts

lnχI3 = −Φ2T V
24π

[V 2+4(πT )2

sinh(V/2T )

∑

x=±

(
eixλ−1

)
e−xV/2T

− 2 · V
2+(πT )2

sinh(V/T )

∑

x=±

(
e2ixλ−1

)
e−xV/T

]
. (5.44)

5.C Elastic integral

This section contains the detail of the calculation of the elastic integral Eq. (5.33) using the prop-

erties of Fourier transform (FT). First we factorized the elastic integral as,

Jel = (e−iλ − 1)J 1
el + (eiλ − 1)J 2

el. (5.45)

Here, we introduced the short hand notations;

J 1
el=

∫ ∞

−∞
ε2dεfS(1−fD), J 2

el=

∫ ∞

−∞
ε2dεfD(1−fS). (5.46)

At T = 0 we have, fS/D(ε) = Θ(µS/D − ε) and 1 − fS/D(ε) = Θ(ε − µS/D). Thus the zero

temperature limit of Eq. (5.45) is quite trivial

Jel|T=0 = (e−iλ − 1)

∫ µL

µR

ε2dε = (e−iλ − 1)
V 3

12
. (5.47)

However, the Fermi distribution functions of the source and drain, and their FT at finite tempera-

ture are

fS/D(ε)=
e−(ε−µS/D)/2T

2 cosh
[
(ε−µS/D)/2T

] ; fS/D(t)=
iT

2

e−itµS/D

sinh(πTt)
. (5.48)

For the sake of simplicity we define another function hL/R(ε) and its FT as

hS/D(ε) = e−
ε
T fS/D(ε); hS/D(t)=− iT

2

e−itµS/D−
µS/D
T

sinh(πTt)
. (5.49)

The function hS/D(ε) in Eq. (5.49) imparts the way to convert the product of Fermi functions into

weighted sum. For instance,

fS(ε)fD(ε) =
hS(ε)− hD(ε)

e−
µD
T − e−

µS
T

=
hS(ε)− hD(ε)

2 sinh(V/2T )
. (5.50)
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5.D. Inelastic Integral

Then, J 1
el and J 2

el get simplified to

J 1/2
el =

∫ ∞

−∞
ε2dεfS/D(ε)−

∫∞
−∞ ε

2dε [hL(ε)− hR(ε)]

2 sinh(V/2T )
. (5.51)

Having defined the FT of the functions fS/D and hS/D, we performed the integration of Eq. (5.51)

by using the property of FT [2],
∫ ∞

−∞
εny(ε)dε =

2π

(−i)n ∂
n
t [y(t)]|

t=0
. (5.52)

Here, y(ε) is an arbitrary function with FT y(t) and ∂nt represents the n-th order differentiation

with respect to t. Substitution of Eq. (5.52) for n=2 into Eq. (5.51) and then using the definitions

of fS/D(t) and hS/D(t) defined in Eqs. (5.48) and (5.49) leads the result

J 1/2
el = ±V

2

[
(πT )2

3
+
V 2

12

]
×
[
1± coth

(
V

2T

)]
. (5.53)

Plugging in J 1/2
el , from Eq. (5.53), into Eq. (5.45) we obtain the final expression for the elastic

integral

Jel=
V

24

V 2+4(πT )2

sinh(V/2T )

[
(e−iλ−1)eV/2T+(eiλ−1)e−V/2T

]
. (5.54)

This is the central equation governing the CGF contribution of scattering effects in 2SK model.

5.D Inelastic Integral

For the computation of integrals in Eqs. (5.38), (5.41) and (5.43), we expand their numerators in

powers of e±i(λ/2+V t/2). Each term gives an integral of the form

I± =

∫ ∞+iγ

−∞+iγ

e±iAt

sinh4(πTt)
dt, A > 0. (5.55)

The singularity of the integral in Eq. (5.55) is removed by shifting the time contour by iγ in the

complex plane such that γD � 1, γT � 1 and γA � 1. Here, D is the band cutoff. The poles of

the integrand of I± are given by the solution of sinh(πTt) = 0 for t. Which leads,

πTt = ±imπ ⇒ t = ± im
T
, m = 0,±1,±2,±3...

With the choice of the rectangular contour shifted by i/T in the complex plane which includes the

pole of the integrand at t = 0, the standard method of complex integration results in

I+

(
1− eA/T

)
= −2πi× Res|t=0 , (5.56)

where Res|t=0 stands for Cauchy residue of the integrand in Eq. (5.55) at t = 0. Plugging in the

residue into Eq. (5.56) results in

I+ = −2π
(
A3 + 4A(πT )2

)

6(πT )4
× 1

1− eAT
. (5.57)

Similarly we computed I−. These integrals I± are sufficient for the computation of all the inelastic

diagrams shown in Fig. 5.4.
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Chapter 6

Conclusions and perspectives

In this thesis we developed a low energy theory of thermoelectric transport through a multi-level

Kondo impurity based on the multi-color Fermi-liquid (FL) theory in combination with non-

equilibrium Keldysh approach. In particular, the quantum transport through the strong-coupling

regime of spin-1/2 and spin-1 quantum impurity tunnel coupled to two conducting reservoirs has

been investigated. The effects of voltage bias and temperature gradient are consistently described

within the out-of-equilibrium Keldysh framework. Note that, though both setups considered in this

thesis fall into the same universality class described by a local FL theory, they are characterized

by strikingly different transport fingerprints. The findings of this thesis could be useful for low

temperature quantum technologies, and significantly improve the understanding of the many-body

physics associated with the strongly-correlated electronic systems. This thesis not only suggests

possible resolution of some long-standing puzzle observed in the experiment but also propose some

new experiments to understand further the nano scale transport properties. The outcomes of this

work are divided into two broad categories: i) investigation of thermoelectric transport through

the SU(N) Kondo impurity as presented in chapter 2 and chapter 3, and ii) exploration of charge

transport statistics in the strong-coupling regime of the generic multi-stage Kondo effect composing

the chapter 4 and chapter 5 of this thesis.

The emergent particle-hole (PH) symmetry at the low energy regime of conventional SU(2)

spin S=1/2 Kondo effects tends to produce vanishingly small thermopower since the current car-

ried by the hole exactly compensates that by the electrons. Interestingly, the difficulty associated

with the undesirable PH symmetry can be elegantly circumvented by uplifting the degeneracy of

Kondo ground state. Therefore, we chose to explore the thermoelectric associated with the general

SU(N≥2) Kondo impurity motivated by the recent experiments on carbon nano tubes and double

quantum dot setups [36, 68–74]. The paradigmatic SU(N) Kondo effect offer lots of freedom on the

electron occupancy m, which can takes all the possible values starting from 1 to N−1 resulting in

various filling factors m/N . Therefore, unlike the N=2 case, for general N the SU(N) model allows

a nontrivial occupation away from half filling. For such occupations PH symmetry is lifted, which

results in a much larger thermoelectric response than in the presence of PH symmetry. Note that

the broken PH symmetry within SU(N) Kondo model is not analogous to the other systems beyond
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PH symmetric regime. In the SU(N) regime, the strong interplay of filling factor and Kondo reso-

nance allows to be away from the PH symmetric regime but still utilizing the advantage (enhanced

electronic feature) of Kondo effect thereby producing a giant thermopower or the power output.

In this work, the thermoelectric performance of a SU(N) Kondo impurity has been characterized

via two reciprocal measurements, namely the Seebeck coefficient (thermopower) and Peltier coeffi-

cient. From the information of electronic conductance and thermoelectric coefficient, we analyzed

the maximum power output of a heat engine in SU(N) Kondo regime. As presented in chapter 2,

about 50% of quantum upper bound of power output can be easily produced with the SU(N) Kondo

impurity. Though the power output per degeneracy is half of the quantum upper bound, the SU(N)

Kondo effect provides an universal mean of increasing total power production by increasing both the

degeneracy factor N and the electron occupation factor m as far as the filling factor of m/N∼1/6 is

mentioned. This is because, as revealed in chapter 2, the power production grows linearly with N

for some suitable choice of electron occupancy. After analyzing the output power of a heat engine

in SU(N) Kondo regime and its relation with the corresponding non-interacting upper bound, we

moved to the investigation of nonlinear effects on the thermoelectric characterization as presented

in chapter 3. We identified all the thermoelectric transport coefficients characterizing the charge

current through the SU(N) Kondo impurity up to the cubic response coefficients in voltage bias and

temperature gradient. By solving the zero charge current condition, we analyzed the thermopower

associated with the linear and nonlinear effects. The nonlinear effects are found to be very signifi-

cant at low temperature regime since the investigated nonlinear thermopower always overshoots the

corresponding linear response contribution. In addition, we explained this finite offset associated

with nonlinear thermopower in relation to the long-standing experimental puzzle of thermo-voltage

offset in the SU(2) Kondo effect [32] and suggested some new experiments to clarify further the

issue of observed offset. The developed theoretical framework is also able to capture the influence

of coupling asymmetry on the low energy thermoelectric of a SU(N) Kondo impurity. We explored

the greatly enhanced thermopower by tailoring the coupling asymmetry of beyond PH-symmetric

SU(N) Kondo effects. Our investigation related to the enhancing thermopower via properly engi-

neering of coupling asymmetry could also be of great value for the propose of temperature sensing.

Summarizing, in chapter 2 and chapter 3, we presented a very general theoretical framework for

the description of thermoelectric in the strong-coupling regime of a SU(N) Kondo impurity and

various measures of thermoelectric such as upper bound of power output, thermopower and Peltier

coefficients are explored in fully nonlinear regime. These findings have open diverse valid avenues

for future research, both theoretical and experimental. Our formalism could be easily extended

for the exploration of thermoelectric in AB-interferometer with embedded SU(N) Kondo impurity,

which is still an open fundamental problem of the field. Embedding a SU(N) Kondo impurity in

one arm of AB-ring leaving another arm open, one can also study the coherent properties (such

as transmission phase shifts and normalized visibility) of Kondo correlated systems described by

higher symmetry group in the spirit of seminal work [120]. Likewise, thermoelectric description

with multi-terminal SU(N) Kondo impurity also appears to be a valid avenue for future research.

The presented theory could also be of great value while investigating the magneto-Seebeck effect

associated with the SU(N) Kondo impurity, to the best of our knowledge, this is also the open

problem persisting for many years. In addition, the presented framework would be useful for the
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study of gate voltage dependences on the thermoelectric of a SU(N) quantum impurity.

The transport properties of Kondo correlated system studied in chapter 2 and chapter 3 has

been limited to the setup with S=1/2 quantum impurity described by the single-level Anderson

model. In many cases truncation of the impurity spectrum to one level is not possible and besides,

there are several orbitals of conduction electrons which interact with the higher spin S>1/2 of

the localized magnetic impurity, giving rise to the phenomenon of multistage, multichannel Kondo

screening [47–49, 135]. Therefore in the chapter 4 and chapter 5, we investigated the low energy

transport properties of the spin S=1 Kondo effect as a prototypical example of multi-stage Kondo

screening mechanism. The spin S=1 Kondo impurity tunnel coupled to two conducting reservoirs

results in the fully-screened ground state in two separate processes: the first stage consist of under-

screened S=1/2 Kondo effect which subsequently got fully-screened at the second stage. This

two stage screening mechanism is generic for any systems containing two interacting resonance

channels. Unlike the S=1/2 Kondo effect, the two stage Kondo effect occurring with the S=1

quantum impurity results in the non-monotonic conductance as a function of temperate (similarly

with the magnetic filed or the voltage bias). Thought, the non-monotonic nature of conductance

has been reported in several previous theoretical and experimental work [47], complete explanation

of the strong-coupling regime of the problem has remained open for almost two decades. The

main difficulty for the description of the strong-coupling regime of two-stage Kondo effect has been

associated with the fact that both channels are interacting with the quantum impurity and are

close the the resonance. Consistent transport description, thus, requires to introduce the inter-

channel interaction in addition to the intra-channel interaction. The lack of correct form of the

inter-channel interaction was one of the problem for the persistence of this open problem for many

years. The channel interaction, if known, introduces the vertex-correction in the theory which

adds the complexity problem in great amount. However, in this contribution, we developed a

theoretical framework for the description of quantum transport in the strong-coupling regime of

the two-stage Kondo effect based on the local FL theory. By using the current algebra approach,

we first constructed the low energy Hamiltonian of the problem including both intra- and inter-

channel interactions. Using the low energy Hamiltonian, we calculated the charge current following

out of the S=1 Kondo impurity using fully-fledged Keldysh out of equilibrium approach. The

introduction of the inter-channel interaction has resulted to produce six topologically different

transport diagrams (current, noise etc.); two for elastic effects and remaining for the interactions

associated with the FL quasi-particles. Note that for the single channel two diagrams, one for

elastic effects and the other for the interactions, would be enough for the low energy transport

description. The four new diagrams, appeared in our work, in addition to the two conventional

diagrams (characterizing single channel Kondo effects) are also the new finding of this project. After

computing all the diagrams using Keldysh approach, we analyzed the new emergent symmetry of

the problem and computed all the FL transport coefficients characterizing the effects of magnetic

field (Zeeman field), temperature and voltage bias in strongly nonlinear regime. The significant

deviation of FL coefficients from the corresponding single channel values are observed and explained

in terms of the asymmetry of the two Kondo temperature of the resonance channels. With this

contribution, we believe that, the long-standing problem for the explanation of non-monotonic
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conductance in two-stage Kondo effect has been closed. In addition, we developed a method

of full counting statistics applicable to the multi-stage Kondo paradigm in order to analyze all

the moments of corresponding charge current. The investigation of charge current in two-stage

Kondo effect and the noise associated with it allowed us to explore the Fano factor quantifying the

effective charge of FL quasi particles. We proposed a novel way of measuring all the FL transport

coefficient of two-stage Kondo paradigm by the independent measurements of charge current and

its noise. Note that, though we restrict ourself for the investigation of Kondo effect, the multi-

stage transport framework developed in this work would be applicable to any systems with two

interacting resonance channels (not necessarily of the Kondo origin). Furthermore, the transport

diagrams identified in this work would be enough for the extension of our two-stage Kondo theory

for the general SU(N) spin system. Generalizing our work to the SU(N) systems and computing

the thermoelectric response in multi-stage Kondo setup would be the ambitious future research

project. We also believe that the extensive ongoing research for the spin-1/2 Kondo effects in cold

atomic setup would be soon pointing towards the search of multi-stage Kondo paradigm.
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[67] J. Azema, A.-M. Daré, S. Schäfer, and P. Lombardo, “Kondo physics and orbital degeneracy

interact to boost thermoelectrics on the nanoscale,” Phys. Rev. B, vol. 86, p. 075303, Aug

2012.

[68] P. Jarillo-Herrero, J. Kong, H. S. van der Zant, C. Dekker, L. P. Kouwenhoven, and S. D.

Franceschi, “Orbital Kondo effect in carbon nanotubes,” Nature, vol. 434, pp. 484–488, 2005.

[69] A. Makarovski, J. Liu, and G. Finkelstein, “Evolution of Transport Regimes in Carbon Nan-

otube Quantum Dots,” Phys. Rev. Lett., vol. 99, p. 066801, Aug 2007.

[70] A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein, “SU(2) and SU(4) Kondo effects in

carbon nanotube quantum dots,” Phys. Rev. B, vol. 75, p. 241407, Jun 2007.

[71] M. Ferrier, T. Arakawa, T. Hata, R. Fujiwara, R. Delagrange, R. Deblock, Y. Teratani,

R. Sakano, A. Oguri, and K. Kobayashi, “Quantum Fluctuations along Symmetry Crossover

in a Kondo-Correlated Quantum Dot,” Phys. Rev. Lett., vol. 118, p. 196803, May 2017.

99



Bibliography

[72] T. Hata, R. Delagrange, T. Arakawa, S. Lee, R. Deblock, H. Bouchiat, K. Kobayashi, and

M. Ferrier, “Enhanced Shot Noise of Multiple Andreev Reflections in a Carbon Nanotube

Quantum Dot in SU(2) and SU(4) Kondo regimes,” Phys. Rev. Lett., vol. 121, p. 247703,

Dec 2018.

[73] A. J. Keller, S. Amasha, I. Weymann, C. P. Moca, I. G. Rau, J. A. Katine, H. Shtrikman,

G. Zarand, and D. Goldhaber-Gordon, “Emergent SU(4) Kondo physics in a spin charge

entangled double quantum dot,” Nature Physics, vol. 10, pp. 145–150, 2014.

[74] G. C. Tettamanzi, J. Verduijn, G. P. Lansbergen, M. Blaauboer, M. J. Calderón, R. Aguado,

and S. Rogge, “Magnetic-Field Probing of an SU(4) Kondo Resonance in a Single-Atom

Transistor,” Phys. Rev. Lett., vol. 108, p. 046803, Jan 2012.

[75] K. Le Hur, P. Simon, and D. Loss, “Transport through a quantum dot with SU(4) Kondo

entanglement,” Phys. Rev. B, vol. 75, p. 035332, Jan 2007.
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Detection of the Third Moment of Shot Noise by a Hysteretic Josephson Junction,” Phys.

Rev. Lett., vol. 98, p. 207001, May 2007.

[173] G. Gershon, Y. Bomze, E. V. Sukhorukov, and M. Reznikov, “Detection of Non-Gaussian

Fluctuations in a Quantum Point Contact,” Phys. Rev. Lett., vol. 101, p. 016803, Jul 2008.

[174] J. Gabelli and B. Reulet, “Full counting statistics of avalanche transport: An experiment,”

Phys. Rev. B, vol. 80, p. 161203, Oct 2009.

[175] C. Flindt, C. Fricke, F. Hohls, T. Novotný, K. Netočný, T. Brandes, and R. J. Haug, “Uni-
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