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Abstract 

Correlated electrical activity in neurons is a prominent characteristic of cortical 

microcircuits. Despite a growing amount of evidence concerning both spike-count and 

subthreshold membrane potential pairwise correlations, little is known about how different 

types of cortical neurons convert correlated inputs into correlated outputs. We studied 

pyramidal neurons and two classes of GABAergic interneurons of layer 5 in neocortical 

brain slices obtained from rats of both sexes, and we stimulated them with biophysically 

realistic correlated inputs, generated using dynamic clamp. We found that the physiological 

differences between cell types manifested unique features in their capacity to transfer 

correlated inputs.  We used linear response theory and computational modeling to gain 

clear insights into how cellular properties determine both the gain and timescale of 

correlation transfer, thus tying single-cell features with network interactions. Our results 

provide further ground for the functionally distinct roles played by various types of 

neuronal cells in the cortical microcircuit. 

 

Introduction 
Throughout the brain, the activity of neurons is correlated across multiple spatial and 

temporal scales (Cohen and Kohn, 2011, Doiron et al., 2016). In the cortex, neurons 

embedded in the same microcircuit show a high degree of functional similarity, not only in 

the correlations between spike trains (Erisken et al., 2014, Bair et al., 2001, deCharms and 

Merzenich, 1996), but also in sub-threshold voltage fluctuations (Poulet and Petersen, 

2008, Gentet et al., 2010, Gentet et al., 2012). Several studies investigated the magnitude 

and timescales of spike-count correlations, known also as noise correlations (Cohen and 

Kohn, 2011). In primates, for example, correlations arise on relatively short timescales (i.e., 

up to a few hundred milliseconds) in the visual area MT (Bair et al., 2001) and their 

magnitude is strongly modulated both by the stimulus properties and internal brain state 

(Steinmetz et al., 2000).  

The cortical origin of spike-count correlations has been investigated extensively in vitro 

and in theoretical studies. By artificially constraining the fraction of common inputs 

received by pairs of neurons, de la Rocha et al. (2007) demonstrated experimentally that 
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spike-count correlations between spike trains increase with the mean firing rate of the cell 

pair. Albeit general, this result was based on current-clamp stimuli, which only roughly 

approximate the summed activity of a large number of excitatory and inhibitory inputs. The 

in vitro and in silico study of (Litwin-Kumar et al., 2011) removed this limitation, 

considering the high-conductance state of intact cortical circuits (Destexhe et al., 2001, 

Destexhe et al., 2003). The high-conductance state transferred short time scale (~10 ms) 

correlations better than the low-conductance state.  However, the opposite was true for long 

time scale (~100 ms), prompting the overall effect of a shift in background conductance to 

be termed correlation-shaping (Litwin-Kumar et al., 2011). These theoretical results were 

further experimentally validated in vitro, although for only one value of the mean firing 

rate. 

Theoretical arguments (de la Rocha et al., 2007, Doiron et al., 2016, Litwin-Kumar et 

al., 2011) explain these modulations in correlation transfer by associated shifts in the 

dynamical transfer functions of each cell in the pair (Kondgen et al., 2008, Linaro et al., 

2018). This is consistent with studies showing that intrinsic properties—such as whether 

the neuron acts like an integrator or a coincidence detector (Konig et al., 1996)—also 

determine correlation transfer (Hong et al., 2012).  It is well known that the input-output 

transfer and other intrinsic properties of neurons are quite distinct between cell classes 

(Connors and Gutnick, 1990, Markram et al., 2004). Nevertheless, despite this vast 

literature, little is known about the way in which different cell types transmit correlations. 

Here, we present the results of dynamic-clamp experiments carried out in pyramidal 

cells and in fast-spiking (FS) and non-fast-spiking (NON-FS) interneurons from slices of 

rat cortical tissue. We found that, for low input correlation and across all cell types, the 

experimentally measured values of output covariance and their dependency on firing rate 

are in quantitative agreement with the values computed using linear response theory 

(Litwin-Kumar et al., 2011, Ocker and Doiron, 2014). Interestingly however, FS 

interneurons displayed significantly larger values of output covariance, making this cell 

type particularly suited for transmitting correlations to its postsynaptic targets. These 

results can be explained by considering single-cell properties—the steepness of the 

stationary rate-current curve, the membrane time constant and the degree of spike-

frequency adaptation—and how they are modulated by dynamic-clamp stimuli. Indeed, by 
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using single-compartment integrate-and-fire models that recapitulate the 

electrophysiological response properties of the three cell types considered here, we could 

produce covariance values that qualitatively replicate our experimental observations. 

Additionally, we found that in pyramidal cells the correlation-shaping mechanism 

introduced by (Litwin-Kumar et al., 2011) crucially depends on the properties of the 

stimulation paradigm. 

In summary, our results highlight how the intrinsic properties of distinct neuronal types 

affect their correlated firing and hint at possible functionally distinct roles of different cell 

types in propagating correlations within cortical circuits. 

 

Materials and methods 
 

Brain tissue slice preparation 

Experiments were performed in accordance with international and institutional guidelines 

on animal welfare. All procedures were approved by the Ethical Committee of the 

Department of Biomedical Sciences of the University of Antwerp (permission no. 

2011_87), and licensed by the Belgian Animal, Plant and Food Directorate-General of the 

Federal Department of Public Health, Safety of the Food Chain and the Environment 

(license no. LA1100469). Wistar rats of either sex (2-4 weeks old) were anesthetized using 

Isoflurane (IsoFlo, Abbott, USA) and decapitated. Brains were rapidly extracted and 

immersed, to be sliced, in ice cold Artificial CerebroSpinal Fluid (ACSF), containing (in 

𝑚𝑀): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 25 glucose, 

saturated with 95% O2 and 5% CO2. Parasagittal sections (300 𝜇𝑚 thick) of the primary 

somatosensory cortex were cut using a vibratome (Leica VT1000 S, Leica Microsystems 

GmbH, Germany) and then incubated in ACSF at 36℃ for at least 45 minutes. Slices were 

then stored at room temperature, until transfer to the recording chamber.  

An upright microscope (Leica Microsystems, DMLFS), equipped with infrared 

Differential Interference Contrast videomicroscopy, was employed to visually identify 

layer 5 (L5) cortical neurons in a submerged slice recording chamber, under 60x 

magnification. Recordings were performed at 32 ± 1℃, under continuous perfusion with 
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ACSF at a rate of 1	𝑚𝐿/𝑚𝑖𝑛. All chemicals were obtained from Sigma-Aldrich (Diegem, 

Belgium). 

 

Electrophysiological recordings 

Patch-clamp recordings were obtained from the cell somata in the whole-cell configuration, 

employing glass pipettes pulled on a horizontal puller (P97, Sutter Instruments, Novato 

CA, USA) from filamented borosilicate glass capillaries (Hilgenberg, Malsfeld, Germany). 

Pipette electrode resistance was in the range 4 − 8 𝑀Ω, when filled with an intracellular 

solution containing (in 𝑚𝑀): 115 K-gluconate, 20 KCl, 10 HEPES, 4 Mg-ATP, 0.3 Na2-

GTP, 10 Na2-phosphocreatine, pH adjusted to 7.3 with KOH. 

Recordings and current injections were performed with a single electrode by a current-

clamp amplifier (EPC 10, HEKA Electronics, Lambrecht/Pfalz, Germany), but neither the 

bridge balance nor capacitance neutralization circuitries of the amplifiers were activated 

during the experiments. Instead, signal transfer properties of the glass microelectrodes were 

repeatedly estimated, by a linear non-parametric identification method (Brette et al., 2008), 

throughout each recording session. Quantified as the impulse response, the microelectrode 

transfer properties were employed to compensate for artifacts in the recorded membrane 

potential offline or online (i.e. in conductance-clamp experiments). All experiments were 

performed using the software toolbox LCG (Linaro et al., 2014). Liquid junction potentials 

were left uncorrected, but are not expected to affect our conclusions. Signals were sampled 

at a rate of 20 𝑘𝐻𝑧 and digitized at 16 bits, with an A/D conversion board (NI PCI-6221, 

National Instruments, USA). The D/A converter of the same board was used to synthesize 

the external voltage-commands to the patch-clamp amplifier, at 20 𝑘𝐻𝑧 and 16 bits of 

resolution. 

 

Current-clamp and conductance-clamp stimulation waveforms 

Our stimulation protocol closely follows the framework introduced in (de la Rocha et al., 

2007), repeats it, and extends it to the case of conductance inputs, recreated by the dynamic-

clamp technique (Chance et al., 2002, Robinson and Kawai, 1993) (Fig. 3A). While only 

one neuron was stimulated and recorded at a time, our entire set of experiments was 

examined a posteriori to study and quantify the similarity between the responses from pairs 
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of (unconnected) neurons. In fact, synaptic inputs to these neuronal pairs had been 

synthesized a priori with a desired degree of similarity.   

In the case of current-driven stimuli as in (de la Rocha et al., 2007), each of the currents 

𝐼9(𝑡) and 𝐼=(𝑡) injected (non-simultaneously) into two neurons was defined as the sum of 

an independent term and of a common term: 

(1)	 𝐼9(𝑡) = 𝜇9 + 𝜎9 ∙ B√1 − 𝑐 	 ∙ 𝜂9(𝑡) + √𝑐 	 ∙ 𝜂F(𝑡)G

𝐼=(𝑡) = 𝜇= + 𝜎= ∙ B√1 − 𝑐 	 ∙ 𝜂=(𝑡) + √𝑐 ∙ 	 𝜂F(𝑡)G
	

	

where 𝑐, 𝜇9, 𝜎9, 𝜇=, 𝜎= are numerical parameters varied experimentally, while 𝜂9(𝑡), 𝜂=(𝑡), 

and 𝜂F(𝑡) are randomly fluctuating waveforms, generated offline as independent 

realizations of an Ornstein-Uhlenbeck stochastic process (Uhlenbeck and Ornstein, 1930, 

Cox and Miller, 1965). These waveforms have Gaussian amplitude distribution, zero mean, 

unitary variance, and an auto-correlation function exponentially decaying with time 

constant of 𝜏 = 5 𝑚𝑠. They are generated as discrete-time approximations, by 

independently iterating for each sampling interval Δ𝑡 (i.e. Δ𝑡 = (20	𝑘𝐻𝑧)M9) the algebraic 

expressions 𝜂N(𝑡 + Δ𝑡) = (1 − Δ𝑡/𝜏) ∙ 𝜂N(𝑡) + O2Δ𝑡/𝜏 ∙ 𝜉N(𝑡) with x ∈ {1,2, c}, where 

the quantities 𝜉9(𝑡), 𝜉=(𝑡), and	𝜉F(𝑡) are three independent sequences of Gaussian numbers 

obtained by employing three distinct initial seeds for a pseudo-random number generator 

(Press, 2007). By such a construction, 𝐼9(𝑡) and 𝐼=(𝑡) are realizations of colored Gaussian 

stochastic processes, with means 𝜇9	and 𝜇=, standard-deviations 𝜎9 and 𝜎=, respectively, 

and identical autocorrelation length 𝜏 = 5 𝑚𝑠. Importantly, their cross-correlation 

coefficient 𝑐, which is under the direct control of the experimenter, determines a priori the 

degree of similarity between the waveforms and represents, in a compact form, both the 

fraction of common inputs and the synchronous inputs coming from distinct presynaptic 

sources (0 ≤ 𝑐 ≤ 1) (Fig. 3B). 

In the case of conductance-driven stimuli, the total currents 𝐼9(𝑡) and 𝐼=(𝑡) were 

computer-generated in real time by conductance-clamp (Chance et al., 2002, Destexhe and 

Pare, 1999, Destexhe et al., 2001, Linaro et al., 2014) as a barrage of excitatory and 

inhibitory synaptic conductance inputs: 

 



	 7	

(2)	 𝐼9(𝑡) = 𝐺Z,9(𝑡)(𝐸Z − 𝑉9(𝑡)) + 𝐺],9(𝑡)(𝐸] − 𝑉9(𝑡))
𝐼=(𝑡) = 𝐺Z,=(𝑡)(𝐸Z − 𝑉=(𝑡)) + 𝐺],=(𝑡)(𝐸] − 𝑉=(𝑡))

	 	

 

where 𝐺Z,9(𝑡), 𝐺Z,=(𝑡) (𝐺],9(𝑡), 𝐺],=(𝑡)) are randomly fluctuating excitatory (inhibitory) 

synthetic synaptic conductance waveforms, whose apparent reversal potential is chosen as 

𝐸Z = 0 𝑚𝑉 (𝐸] = −80 𝑚𝑉) (Chance et al., 2002), and where 𝑉9(𝑡) and 𝑉=(𝑡) are the 

membrane potentials instantaneously recorded from the two cells, as shown schematically 

in Fig. 3A. 

Similarly to Eq. 1, the excitatory (inhibitory) conductance waveform 𝐺Z,9(𝑡), 𝐺Z,=(𝑡), 

(𝐺],9(𝑡), 𝐺],=(𝑡)) were defined by the sum of an independent term and of a common term:  

 

	

	

(3)	

𝐺Z,9(𝑡) = 𝑔Z,9 + σZ,= ∙ B√1 − 𝑐 	 ∙ 𝜂Z,9(𝑡) + √𝑐 	 ∙ 𝜂Z,F(𝑡)G

𝐺Z,=(𝑡) = 𝑔Z,= + σZ,= ∙ B√1 − 𝑐 	 ∙ 𝜂Z,=(𝑡) + √𝑐 	 ∙ 𝜂Z,F(𝑡)G

𝐺],9(𝑡) = 𝑔],9 + σ],9 ∙ B√1 − 𝑐 	 ∙ 𝜂],9(𝑡) + √𝑐 	 ∙ 𝜂],F(𝑡)G

𝐺],=(𝑡) = 𝑔],= + σ],= ∙ B√1 − 𝑐 	 ∙ 𝜂],=(𝑡) + √𝑐 	 ∙ 𝜂],F(𝑡)G

 

	

 

where 𝜂Z,9(𝑡),	𝜂Z,=(𝑡), 𝜂Z,F(𝑡), 𝜂],9(𝑡),	𝜂],=(𝑡), 𝜂],F(𝑡), are six independent realizations of 

an Ornstein-Uhlenbeck stochastic process, generated offline as already described. These 

processes have heterogeneous auto-correlation time lengths (𝜏Z = 5 𝑚𝑠 and 𝜏] = 10 𝑚𝑠 

for excitatory and inhibitory inputs, respectively), capturing the distinct decay kinetics of 

synaptic currents mediated by AMPA- and by GABA-A-receptors (Tuckwell, 1989). 

𝑔Z,9and 𝑔Z,= (𝑔],9 and 𝑔],=) and σZ,9 and σZ,= (σ],9 and σ],=) represent the means and 

standard deviations of the total excitatory (inhibitory) synaptic conductances, for each of 

the cells in the pair. Under the diffusion approximation (Tuckwell, 1989), Eq. 3 mimics the 

collective effect of the asynchronous activation of a large number of presynaptic excitatory 

(inhibitory) afferents, each with a corresponding a unitary excitatory (inhibitory) 

postsynaptic peak conductance gZabc  (g]abc). If the presynaptic mean frequency of 

excitatory (inhibitory) activation is indicated by 𝑅Z (𝑅]), then 𝑔Z (𝑔]) and σZ (σ]) can be 

expressed as (Destexhe and Bal, 2009): 
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(4)	 𝑔Z = gZabc ∙ 𝜏Z ∙ 𝑅Z 𝜎Z = O0.5 ∙ gZabc= ∙ 𝜏Z ∙ 𝑅Z
𝑔] = g]abc ∙ 𝜏] ∙ 𝑅] 𝜎] = O0.5 ∙ g]abc= ∙ 𝜏] ∙ 𝑅]

 	

 

In all our experiments, gZabc  was fixed to 2% of the inverse of the input resistance of 

the cell, while g]abc  was fixed to 6% of the same value, as proposed in (Chance et al., 

2002). The mean firing rate of the presynaptic inhibitory population was fixed to 𝑅] =

3000 𝐻𝑧, while 𝑅Z was determined as the value balancing the mean excitatory and 

inhibitory drives, whenever the postsynaptic membrane potential fluctuates around a value 

𝑉g. By construction, at such a value 𝑉g of the membrane potential, the mean current injected 

into each neuron (Eq. 2) vanishes: 

 

(5)	
0 = 〈𝐼(𝑡)〉 ≈ 𝑔Z ∙ (𝐸Z − 𝑉g) + 𝑔] ∙ (𝐸] − 𝑉g)

⟺ 						𝑅Z = [g]abc ∙ 𝜏] ∙ 𝑅] ∙ (𝐸] − 𝑉g)]/[gZabc ∙ 𝜏Z ∙ (𝐸Z − 𝑉g)]
 	

 

By this definition, acting on the value of a single parameter 𝑉g allows one to change the 

ratio between excitatory and inhibitory inputs and thus to alter the output firing rate of the 

patched neuron. In analogy to the current-driven synaptic inputs (Eq. 1), where 𝜇, 𝜎 were 

employed to increase or decrease the neuronal firing rate of each patched cell, 𝑉g was 

employed to study the dependence of the correlation transfer on the neuronal firing rate in 

the case of conductance injection. 

All electrophysiological experiments were carried out with LCG (Linaro et al., 2014). 

 

Experimental design 

As in (de la Rocha et al., 2007), for each recorded neuron we delivered blocks of 𝑁 = 100 

stimulation trials, each lasting 1.1	𝑠 and interleaved by inter-stimulus intervals lasting 1-

6 𝑠, depending on the elicited firing rate (i.e. the higher the rate the longer the resting 

interval). Each block was repeated for 1–5 times, during which the parameters of the 

stimulation (e.g. 𝑐 and the pair	𝜇, 𝜎	or the value of 𝑉g) were kept constant. This series of 
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repetitions was termed a stimulus set, and each neuron was presented with 1-7 distinct 

stimulus sets, differing in the values chosen for 𝑐 and 𝜇, 𝜎, or for c and 𝑉g. 

The identification of each patch electrode transfer properties, required for the Active 

Electrode Compensation, was performed once at the beginning of each block (i.e. every 5-

10 min of recording), although in some instances it was repeated halfway through the block. 

 The initial seeds of the pseudo-random number generator, used for generating the 

shared component of each stimulus, were identical across the repetitions of the stimulation 

blocks and across cells. Within a block, each trial was generated by a distinct seed, so that 

a total of 𝑁 seeds for generating 𝜂F(𝑡) in Eq. 1 and of 2𝑁 seeds for generating 𝜂Z,F(𝑡), 

𝜂],F(𝑡) in Eq. 3 were chosen once for all the experiments. On the other hand, the seeds of 

all the independent components (i.e. 𝜂9(𝑡), 𝜂=(𝑡) in Eq. 1; 𝜂Z,9(𝑡),	𝜂Z,=(𝑡), 𝜂],9(𝑡),	𝜂],=(𝑡) 

in Eq. 3) were never fixed, but instead varied across trials, repetitions, and cells. All LCG 

scripts, configuration files, and command line strings required to precisely replicate our 

experimental protocols, together with the MATLAB scripts for the offline analysis of the 

recorded data, are available from FigShare.com.	

After establishing the whole-cell configuration, in a subset of the experiments (Figures 1 

and 5) we initially also probed the steady-state frequency-current curve of the neuron as in 

(Chance et al., 2002). Specifically, we injected 1 𝑠-long DC depolarizing current steps 

increasing amplitude, superimposed to conductance-driven recreated synaptic inputs, and 

measured the evoked firing rate as the number of emitted spikes divided by 0.9 𝑠, after 

discarding the first 0.1 𝑠 of the response to each stimulation step. Equation 3 was used to 

generate the synaptic inputs, with c set to zero and 𝜂Z,9(𝑡),	𝜂Z,=(𝑡), 𝜂],9(𝑡),	𝜂],=(𝑡) 

generated as independent realizations. The value of 𝑉g was fixed so that the neuron fired 

on the average at ~0.5 𝐻𝑧, in the absence of any additional DC current step. This ensured 

that the modulation effect of the conductance-driven inputs was purely divisive for the 

frequency-current curve (Chance et al., 2002).  

 

Data analysis: passive and active membrane electrical properties 

Data were analyzed off line, using custom MATLAB scripts (The Mathworks, Natick MA, 

USA). Passive membrane electrical properties, such as the input resistance and membrane 

time constant, were evaluated. The time constant was estimated as the longest time constant 
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of a double exponential function, best fitted to the repolarizing phase following the 

application of a 10 𝑚𝑠-long pulse of −300 𝑝𝐴 amplitude. The input resistance was 

estimated as the slope of a steady-state current-voltage relationship, obtained by injecting 

3 𝑠-long subthreshold step current pulses with increasing amplitude. The rheobase current 

amplitude was estimated as the minimal DC stimulus amplitude necessary to elicit 

sustained firing. 

The “sag” in the transient membrane potential trajectory in response to the injection of 

a 3 𝑠-long hyperpolarizing step of current, was quantified as the ratio 𝛥𝑉ss/𝛥𝑉tuvw: the 

steady state voltage deflection 𝛥𝑉ss was computed as the difference between 𝑉xusy, the 

resting potential averaged over the 500 𝑚𝑠 preceding the step onset, and the 

(hyperpolarized) potential averaged in the final 500 𝑚𝑠 of the step; 𝛥𝑉tuvw was computed 

as the difference between the above defined 𝑉xusy and the minimum hyperpolarized 

potential, within the 300 𝑚𝑠 following the onset of the step. The amplitude of the 

hyperpolarizing current was chosen such that Δ𝑉zz was ∼ 10	𝑚𝑉. 

The times of occurrence |𝑡}~	of the spikes fired by the neuron, in response to a given 

stimulation trial, were detected by finding the peaks of the intracellular voltage traces 

exceeding a threshold of −20 𝑚𝑉. Other quantities were also extracted from each spike, 

such as (i) its threshold, defined as the voltage corresponding to the maximum of the third 

derivative of the membrane potential (Gentet et al., 2010, Henze and Buzsaki, 2001, Kole 

and Stuart, 2008); (ii) its amplitude, defined as the difference between its peak amplitude 

and the threshold; and (iii) its duration, measured as the width of the spike waveform at its 

half-amplitude.  

In order to quantify the degree of spike frequency adaptation across cortical cell types, 

the accommodation index 𝐴 was also computed as (Druckmann et al., 2007, Shinomoto et 

al., 2003) 

(6)	 𝐴 = �𝑁z��z − 4 − 1�
M9 ∙ � �ISI} − ISI}M9�/�ISI} + ISI}M9�

�����M9

}��

 	

 

where 𝑁z��z is the number of spikes evoked by a constant depolarizing 1 𝑠-long step of 

current, ISI} is the 𝑞-th inter-spike interval (i.e. ISI} = 𝑡}�9 − 𝑡}), and where the first four 
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spikes were always discarded from the analysis (i.e. the sum starts from 𝑞 = 4). The 

amplitude of the step of current was chosen such that it elicited 15, 50 and 20 spikes/s for 

pyramidal, FS and NON-FS cells, respectively. 

 

Experimental estimation of the spike-count covariance, in neuronal pairs 

For estimating the covariance of the spike counts, we closely followed the procedure 

outlined in (de la Rocha et al., 2007). In detail, under current-driven and conductance-

driven recreated synaptic inputs, and after discarding the first 0.1 𝑠 of each stimulation trial 

to minimize transient effects, we detected the spike times |𝑡9, 𝑡=, … , 𝑡}, … ~ over the 

remaining interval of duration 𝐿 = 1 𝑠. For each trial, the spike times were equivalently 

expressed as a discrete-time spike train, converting them into a binary string 𝑦(𝑗), 𝑗 =

[0,1, 2, … , � �
��
�] upon uniform discretization of time, with a step of Δ𝑡 = 1.2 𝑚𝑠, where ⌊𝑥⌋ 

indicates the largest integer not greater than x: 

	

(7)	 𝑦(𝑗) = �1 if	there	exists	(a	spike)	𝑞: 𝑡} 	∈ [	𝑗 ∙ Δ𝑡	; (𝑗 + 1) ∙ Δ𝑡	)
0 otherwise

 	

 

The discrete-time spike train 𝑦(𝑗) was then used to estimate the spike count, computed 

over a sliding window of duration 𝑇 (Dayan and Abbott, 2001): 

 

(8)	 𝑛(𝑗) = � 𝑦(𝑖)
¨�⌊©/��⌋

ª�¨

 with 𝑗 = {0,1, 2, … ,𝑀} 	

where 𝑀 = ⌊(𝐿 − 𝑇)/Δ𝑡⌋. 

The spike count was obtained for every trial in a block of 𝑁	stimulations, for every block 

out of 𝑅 repetitions, and for every cell. In the following, we use the notation 𝑛9
�,(𝑗) and 

𝑛=
�,®(𝑗) to indicate, for two neurons, the spike counts of the response of cell 1 and cell 2, 

computed for the 𝑘-th trial and the 𝑟-th (or 𝑟′-th) repetition (i.e. as the number of repetitions 

𝑅9 and 𝑅= may be different across cells). As in (de la Rocha et al., 2007), the estimate of 

the covariance of the spike counts of the cell pair, obtained during the corresponding trial, 
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was corrected for the time-shift and averaged across all 𝑅9 and 𝑅= repetitions and 𝑁	trials1 

as: 

(9) 

Cov(𝑛9, 𝑛=)

=
1

𝑁 ∙ 𝑅9 ∙ 𝑅=
�

�∑ 𝑛9
�,(𝑗) ∙ 𝑛=

�,®(𝑗)´
¨�g �

(𝑀 + 1)
�,µ¶,µ·

�,,®
−
�∑ 𝑛9

�,(𝑗) ∙ 𝑛=
��9,®(𝑗)´

¨�g �
(𝑀 + 1) , 

 

Finally, the correlation coefficient 𝜌© between the response of two neurons was obtained 

from the spike-count covariance as: 

(10)	 𝜌© =
Cov(𝑛9, 𝑛=)

OVar(𝑛9)Var(𝑛=)
, 	

with Var(𝑛ª) = Cov(𝑛ª, 𝑛ª). Throughout our work, we used the spike-count covariance, 

except for section “Output correlation depends on the fraction of common inputs” (Fig. 3), 

where the linear relationship between input and output correlations is discussed. 

Finally, as already mentioned in the previous sections, each cell was presented with several 

stimulus sets, each characterized by distinct values for 𝑐 and 𝜇, 𝜎 or c and 𝑉g. As those 

parameters affect the mean spiking rate of the neurons, care was required to choose 

comparable responses across cells, out of the entire experimental data set. Therefore, we 

computed the correlation coefficient only for those stimulus-set pairs 𝑙, 𝑚 that elicited 

firing rates 𝜈9 and 𝜈= (estimated over the whole stimulus set) that did not differ by more 

than 50%, i.e., 0.5 ≤ 𝜈9¼/	𝜈=½ ≤ 2. We also tested more stringent conditions on the ratio 

𝜈9¼/	𝜈=½ to select the stimulus-set pairs to include in the analysis (up to 0.8 ≤ 𝜈9¼/	𝜈=½ ≤

1.25) and found that this does not alter qualitatively the dependence of the covariance on 

the geometric mean firing rate of the cell pair. 

 

 

	
1 In order to make the notation consistent, it is intended that across the sum over k there is 
one trial after the last, which equals the first, i.e. 𝑛=

´�9,® = 𝑛=
9,®.  
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Statistical analysis 

Unless otherwise noted, all data are presented as mean ± standard deviation and statistical 

significance was assessed using a two-sample Kolmogorov-Smirnov test (Press, 2007). 

 

Theoretical prediction of the covariance values 

We compared the empirical spike-count covariance to the values obtained from a 

theoretical prediction. This prediction is based on a well-established linear response theory 

for spike train covariability (de la Rocha et al., 2007). We first indicate in continuous time 

the spike train 𝑦(𝑡) as a sum of Dirac’s Delta functions, 

(11)	 𝑦(𝑡) =� 𝛿�𝑡 − 𝑡}�
}

  	

and the corresponding spike count 𝑛(𝑡) as its convolution with the window function 𝑤©(𝑡), 

(12)	 𝑛(𝑡) = À 𝑦(𝑥)𝑑𝑥
��©

�
= 𝑦(𝑡) ∗ 𝑤©(𝑡), 	

where 𝑤©(𝑡) = 1, for	𝑡 ∈ [−𝑇	; 0] and otherwise zero. The	cross-covariance	function	of	

the	 spike	 counts	of	 the	 two	neurons	 receiving	 common	 input	 can	be	 expressed	 in	

terms	of	the	cross-covariance	function	of	the	spike	trains	(Cox	and	Isham,	1980) as 

(13)	
Cov(𝑛9, 𝑛=)(𝜏) = Cov(𝑦9, 𝑦=)(𝜏) ∗ Δ©(𝜏) 	

 

where Δ©(𝜏) is an even function defined as Δ©(𝜏) = ∫ 𝑤©(𝑠)𝑤©(𝜏 + 𝑠)𝑑𝑠
�Ä
MÄ  taking the 

value of 𝑇 − |𝜏|, for	𝜏 ∈ [−𝑇	; 𝑇], and otherwise zero. 

By the Wiener-Khinchin theorem, the cross-covariance function Cov(𝑦9, 𝑦=)(𝜏) is the 

Fourier anti-transform of the cross-spectrum of the spike trains CovÆ �YÈ9, YÈ=�(𝜔):: 

(14)	 Cov(𝑦9, 𝑦=)(𝜏) =
1
2𝜋 ∙ À CovÆ �YÈ9, YÈ=�(𝜔)	e¨ËÌd𝜔	

�Ä

MÄ
 	

Considering current-clamp stimuli as in de la Rocha et al. (2007), and assuming a small 

amplitude for the common input 𝑞(𝑡) (i.e. 𝜎 ∙ √c), we approximate the instantaneous 

spiking responses of the neurons as dominated by linear dynamical transfer properties. In 

the Fourier domain this corresponds to (Brunel et al., 2001)	
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(15)	
YÈ9(𝜔) ≅ YÈ9,g(𝜔) + AÈ9(𝜔) ⋅ QÈ(𝜔) 

YÈ=(𝜔) ≅ YÈ=,g(𝜔) + AÈ=(𝜔) ⋅ QÈ(𝜔) 
	

 

where QÈ(𝜔) is the Fourier transform of 𝑞(𝑡), YÈª,g(𝜔) corresponds to the baseline spike 

train (when	𝑞(𝑡) = 0, i=1,2),  and where AÈ9(𝜔) and AÈ=(𝜔) are the dynamical response 

functions of the two neurons. For these quantities, a full experimental characterization was 

demonstrated previously (Higgs and Spain, 2009, Ilin et al., 2013, Kondgen et al., 2008, 

Linaro et al., 2018). 

Assuming that the two neurons’ spike trains are conditionally independent, given the 

common input 𝑞(𝑡), we evaluate (Holden, 1976) and approximate the cross-spectrum by 

Eq. 15 and obtain 

 

(16)	 CovÆ �YÈ9, YÈ9�(𝜔) = 〈YÈ9
∗(𝜔) ⋅ YÈ=(𝜔)〉 ≅ AÈ∗9(𝜔) ⋅ AÈ=(𝜔) ⋅ SÑ(𝜔) 

 
	

where AÈ∗9(𝜔) is the complex conjugate of AÈ9(𝜔), and  SÑ(𝜔) = 〈QÈ∗(𝜔) ⋅ QÈ(𝜔)〉 is the 

power spectrum of the common input 𝑞(𝑡). 

Finally, estimating the covariance of the spike counts 𝑛9(𝑡) and 𝑛=(𝑡), requires evaluating 

Eq. 13 in 𝜏 = 0 and	substituting	eq.	16	into	eq.	14: 

(17)	 Cov(𝑛9, 𝑛=)(0) ≅
1
2𝜋 ∙ À AÈ∗9(𝜔) ⋅ AÈ=(𝜔) ⋅ SÑ(𝜔) ⋅ Δ©Æ(𝜔)d𝜔	

�Ä

MÄ
 	

where Δ©Æ(𝜔) is the Fourier transform of  Δ©(𝜏), and takes the form of Δ©Æ(𝜔) =

𝑇=sin=(𝜔𝑇/2)/(𝜔𝑇/2)=. For large values of 𝑇, Δ©Æ(𝜔) approaches a Dirac’s Delta 

function Δ©Æ(𝜔) ≈ 2𝜋𝑇 ∙ 𝛿(𝜔), thereby canceling the contribution to the integral for values 

of the integrand far from 𝜔 ≈ 0. In addition, the dynamical response of cortical cells is 

rather constant at low values of the Fourier frequencies (Fourcaud and Brunel, 2002, 

Kondgen et al., 2008, Testa-Silva et al., 2014, Linaro et al., 2018). For these two reasons, 

AÈ9(𝜔) and AÈ=(𝜔) are further approximated by their value in 𝜔 ≈ 0, which takes the form 

of the local slope (i.e., the steady-state gain) of the stationary rate-current curve 𝐹(𝐼), 

computed at the cell’s mean output firing rate 𝜈 (Brunel et al., 2001, Chance et al., 2002).	
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(18)	 Cov(𝑛9, 𝑛=)(0) ≈
𝑑	𝐹9(𝐼)
𝑑𝐼 Ó

	Ô¶

⋅
𝑑	𝐹=(𝐼)
𝑑𝐼 Ó

	Ô·

⋅
1
2𝜋 ∙ À SÑ(𝜔) ⋅ Δ©Æ(𝜔)d𝜔	

�Ä

MÄ
 	

 

The covariance is therefore expected to be proportional to the product of the slopes of 

the rate-current curves of the two cells. For some experiments, we thus probed the rate-

current curve of each neuron, in addition to the other stimulation protocol, and we 

employed its local slope to approximate the neuron linear response function at the low 

frequencies needed to estimate spike-count covariances over long windows.	 In fact, 

although fast experimental techniques for the characterization of AÈ9(𝜔) and AÈ=(𝜔) are 

available (Higgs and Spain, 2009, Ilin et al., 2013), using the full transfer function is 

anyway not practical: AÈ9(𝜔) and AÈ=(𝜔) are in fact modulated by the mean firing rate 	𝜈9 

and 	𝜈= of the neurons (Linaro et al., 2018) and their complete estimate, across a sufficiently 

wide range of firing rates, is incompatible with the limited duration of each experiment.  

 

Neuron models 

For modeling different cortical cell types, we used an adaptive exponential integrate-and-

fire model neuron (Brette and Gerstner, 2005), modified to incorporate a slow voltage-

gated adaptation current 𝐼z¼ÕÖ. The neuron subthreshold membrane potential V evolves in 

time as  

(19)	 C
𝑑V
𝑑𝑡 =

×�̅� ⋅ (𝑉� − 𝑉) + �̅� ⋅ 𝛥 ⋅ e(ÙMÙÚ)/ÛÜ + 𝐼z¼ÕÖ + 𝐼ÝN�

𝐼z¼ÕÖ = �̅�Ö ⋅ 𝑤 ⋅ (𝑉Ö − 𝑉) 𝜏Ö
𝑑𝑤
𝑑𝑡

= �1 + eM(ÙMÙÞß)/àÞ�
M9

𝐼ÝN� = 𝐺Z(𝑡)(𝐸Z − 𝑉) + 𝐺](𝑡)(𝐸] − 𝑉)

 

	

where 𝐶 and �̅� are the capacitance and conductance per unit of membrane surface, 

respectively, 𝑉� the resting potential, 𝛥 the spike steepness and 𝑉© the spike initiation 

threshold (Fourcaud and Brunel, 2002). 𝑔Ö represents the peak adaptation conductance, 𝑤 

its activation state variable and 𝑉Ö its reversal potential. The steady-state activation of the 

adaptation conductance is a logistic function, monotonically increasing with the membrane 

potential, with half-maximal activation at 𝑉Öâ and activation slope 𝐷Ö. As soon as 𝑉 
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crosses the peak threshold 𝑉�â, it repolarizes linearly to its resting value 𝑉�, over a 

(refractory) period 𝜏Ýä. 

In order to capture the features of each cortical cell type, we adapted the model parameter 

to reproduce the resting membrane potential, the accommodation index, the rheobase, and 

the slope of the rate-current relationship measured experimentally. We specifically 

adjusted the values of 𝑉�, 𝐶 and �̅� to match the resting membrane potential and membrane 

time constant for each neuron type. The spike initiation threshold of the model, 𝑉©, was 

adjusted to ensure that the models had the same ordering of rheobases as in the experiments 

(i.e., NON-FS < Pyr < FS). While the resulting ordering of 𝑉© was NON-FS < FS < Pyr, 

the value �̅�Ö of the adaptation conductance and the leak reversal potential also affect the 

rheobase. 

The peak adaptation conductance, 𝑔Ö, was then chosen to approximately match the 

accommodation indices for each neuron type, upon injecting a depolarizing constant 

current as in the experiments. All the parameters were identical across cell types for the 

three distinct model cells, as summarized in Table 1. 

 

Table 1: Numerical parameters employed in the integrate-and-fire model neurons. 

Parameter Description Pyramidal FS NON-FS 

𝐶 Membrane capacitance 1 uF/cm2 1 1 

𝜏 Passive membrane time constant 25 ms 15 ms 25 ms 

𝑉� Leak reversal potential -65 mV -80 mV -65 mV 

𝑔Ö Peak Kv7 conductance 0.002 mS/cm2 0 mS/cm2 0.1 mS/cm2 

𝜏Ö Kv7 activation time constant 200 ms 200 ms 200 ms 

𝑉Öâ Kv7 half-activation voltage -40 mV -40 mV -40 mV 

𝐷Ö Slope of Kv7 activation 8 mV 8 mV 8 mV 

𝑉Ö Kv7 reversal potential -85 mV -85 mV -85 mV 

Δ AP steepness 1.4 mV 0.2 mV 1.4 mV 

𝑉© AP initiation threshold -46 mV -50 mV -52 mV 

𝑉�â AP threshold 0 mV 0 mV 0 mV 
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𝜏Ýä Absolute refractory period 6 ms 1 ms 4 ms 

 

With the aim of reproducing the conductance-clamp protocols, the external current 

density 𝐼ÝN� was synthesized as in the experiments by Eq. 2. For simplicity however, we 

set gZabc = g]abc = 0.06 𝑚𝑆/𝑐𝑚=, and considered instantaneous synaptic coupling (i.e. 

𝜏Z, 𝜏] → 0) (Tuckwell, 1989), and 𝑅] = 10	𝑘𝐻𝑧, while changing the value of 𝑅Z in order 

to change the output firing rates. Such a choice for 𝑅] , used for Figure 8C-H, reflects the 

firing rate of the summed activity of the modeled presynaptic inhibitory neurons that is 

proportional, for large populations, to the (sample) mean of a neuron's presynaptic 

inhibitory pool. Population-averaged firing rates in rat cortex in vivo have been reported 

on the order of ~1-5 Hz, with fast-spiking putative inhibitory neurons firing faster than 

excitatory cells (e.g. Hengen et al. 2013; Buszaki & Misuzeki 2015). Within a 

thalamocortical projection column of the rat barrel cortex, there are ~20’000 neurons 

(Meyer et al. 2010). If 15% of those are inhibitory and their average connection probability 

is 1/3, the mean number of partners would be 1000, so that an average firing rate of 10 Hz 

per cell would yield a total inhibitory input rate of 10 kHz for the entire inhibitory pool.  In 

Fig. 8C, we set a low excitatory rate of 1.75 kHz to explore the static f-I curve, while we 

varied the excitatory input rate in Figure 8D-H. 

Defining �̅�Ýää = �̅� + 𝑔Z + 𝑔] and 𝑉Ýää = �̅�ÝääM9 ⋅ ��̅� ⋅ 𝑉� + 𝑔Z ⋅ 𝐸Z + 𝑔] ⋅ 𝐸]� as 

effective membrane conductance and effective resting potential, respectively, eq. 19 can be 

equivalently rewritten as  

(20)	
	

C
𝑑V
𝑑𝑡

= ×�̅�Ýää ⋅ �𝑉Ýää − 𝑉� + �̅� ⋅ 𝛥 ⋅ eM(ÙMÙÚ)/ÛÜ + 𝐼z¼ÕÖ + 𝑖ÝN�

𝐼z¼ÕÖ = �̅�Ö ⋅ 𝑤 ⋅ (𝑉Ö − 𝑉) 𝜏Ö
𝑑𝑤
𝑑𝑡 =

�1 + eM(ÙMÙÞß)/àÞ�
M9

𝑖ÝN� = 𝑔Z(𝑡)(𝐸Z − 𝑉) + 𝑔](𝑡)(𝐸] − 𝑉)

	

	

	

where	 𝑔Z(𝑡)	 and	 𝑔](𝑡)	 are	 the	 randomly	 fluctuating	 components	 of	 the	 synaptic	

conductances,	with	zero	mean	and	with	Dirac’s	Delta	autocorrelation	function.	
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For our numerical simulations as well as theoretical analysis of the correlation transfer 

in the model, we set 𝑉 = 𝑉Ýää in the expression of 𝑖ÝN� ignoring the multiplicative nature 

of the random fluctuations, which then took the approximate form  

(21) 
 

𝑖ÝN� ≈ ×𝜎Z ∙ �𝐸Z − 𝑉Ýää� + 𝜎] ∙ �𝐸] − 𝑉Ýää�Ü ∙ 𝛾(𝑡) 
 

 

Under such an approximation, the dynamical response functions AÈ(𝜔) of the model 

neuron can be obtained directly, by numerical solution of the Fokker-Planck equation 

associated with Eqs. 20-21, as described in detail in (Ocker and Doiron, 2014, Richardson, 

2009). 

Similarly to the experiments, for a pair of neurons receiving partially correlated inputs, 

𝛾(𝑡) was chosen as 

(22) 𝛾9(𝑡) = √1 − 𝑐 	 ∙ 𝜂9(𝑡) + √𝑐 	 ∙ 𝜂F(𝑡)
𝛾=(𝑡) = √1 − 𝑐 	 ∙ 𝜂=(𝑡) + √𝑐 	 ∙ 𝜂F(𝑡)

 
 

where 𝜂9(𝑡), 𝜂=(𝑡), and 𝜂F(𝑡) are randomly fluctuating waveforms, generated as 

independent realizations of a Gaussian white noise, with zero mean and unitary variance, 

instead of an Ornstein-Uhlenbeck process to facilitate the mathematical analysis by 

Fokker-Planck equation (Brunel et al., 2001, Fourcaud and Brunel, 2002). 

For small values of 𝑐, eq. 18 could then be used instead of Eq. 17 to calculate the 

covariance of spike counts in the two model neurons. The MATLAB scripts for 

reproducing Fig. 8 are available on FigShare.com. 

 

Results 
We closely followed the approach of de la Rocha and colleagues (de la Rocha et al., 2007) 

and extended it by dynamic-clamp to the case of conductance inputs, in addition to 

conventional current inputs. We examined in the details how altering the fraction of 

common inputs changes the similarity of their output spike trains, in pairs of unconnected 

neurons. 
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Cell types and electrophysiological responses. 

We recorded in vitro from 𝑛 = 47 pyramidal cells and 𝑛 = 52 interneurons in L5 of the 

rat primary somatosensory cortex, during the application of current- and conductance-

clamp stimulation. Pyramidal cells were readily identified by the presence of a large apical 

trunk emanating from the cell body and oriented toward the pial surface. From an 

electrophysiological point of view, pyramidal neurons constituted a homogeneous group, 

characterized by a regular spiking phenotype with a variable degree of spike-frequency 

adaptation (accommodation index 0.0083 ± 0.002,	Fig. 1A,D). 

Interneurons were morphologically characterized by the absence of visible dendritic 

processes emanating from the cell body and presented either rounded or elongated shapes. 

Based on their distinct electrophysiological properties, they could be subdivided into two 

non-overlapping classes. The main features of the first interneuron type (𝑛 = 23; Fig 1B) 

were the short AP duration measured at half-width (0.38 ± 0.01	ms), the high maximal 

firing rate achievable upon current injection, typically in excess of 200 Hz, the almost 

complete lack of spike-frequency adaptation (accommodation index 0.0014 ± 0.0003, 

Fig. 1B,E) and the high values of sag ratio (0.94 ± 0.005) indicating very little sag in 

response to hyperpolarizing current pulses. Taken together, these features identify this 

neuronal type as a fast-spiking (FS) interneuron (Sippy and Yuste, 2013, Kawaguchi and 

Kondo, 2002, Markram et al., 2004, Petilla Interneuron Nomenclature et al., 2008, Tateno 

and Robinson, 2009), whose most abundant representative in the cortex is the parvalbumin-

positive basket cell (Wang et al., 2002).  

The second interneuron type (𝑛 = 29; Fig. 1C) was characterized by slightly broader 

APs (0.53 ± 0.02 ms), sag ratios comparable to those of pyramidal cells (0.77 ± 0.02), 

strong spike-frequency adaptation (accommodation index 0.02 ± 0.005, Fig. 1C,F), and 

rebound spikes in response to hyperpolarizing current steps, present in 20 out of 30 cells in 

this class (Fig. 2D). Taken together, these intrinsic properties suggest that this cell type can 

be identified as a non-fast-spiking (NON-FS) interneuron (Goldberg et al., 2004, Ma et al., 

2006, Petilla Interneuron Nomenclature et al., 2008), such as somatostatin-positive 

Martinotti cells (Kawaguchi and Kondo, 2002, Silberberg and Markram, 2007, Sippy and 

Yuste, 2013, Wang et al., 2002).  
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Figures 1 and 2 summarize the main electrophysiological features of the three cell types 

considered in this study. As mentioned in the Materials and Methods section, for a subset 

of cells (13 pyramidal, 10 FS and 14 NON-FS) we measured the stationary frequency-

current (f-I) curve, with and without the additional injection of background synaptic 

activity recreated by dynamic-clamp. FS cells had the steepest f-I curves, followed by 

NON-FS and by pyramidal cells (Fig. 1G-I). This ordering was observed both in the “noise-

free” condition (empty markers in Fig. 1G-I)—i.e., when only DC current steps were 

injected into the cell—and in the condition in which the DC steps were applied on top of 

recreated synaptic background (solid markers in Fig. 1G-I). These results are consistent 

with the divisive effect on the slope of the f-I curves produced by a balanced background 

synaptic activity (Chance et al., 2002). Another effect attributable to the dynamic-clamp 

stimulation is the reduction in the measured membrane time constant. This amounted to: 

for pyramidal cells, 22.2 ± 0.6 ms to 9.8 ± 1 ms, 𝑝 < 10M9g, for FS interneurons 6.1 ±

0.4 ms to 1.4 ± 0.1 ms, 𝑝 < 10M9g and for NON-FS interneurons 17.7 ± 1.6 ms to 3.9 ±

0.3 ms, 𝑝 < 10M9g, mean ± S.E.M., two-sample Kolmogorov-Smirnov test. 

	

Output correlation depends on the fraction of common inputs 

We first investigated the dependence of output spike-count correlation 𝜌© (T is the 

window length over which spikes are counted) on the degree of input correlation 𝑐, in the 

three cell types previously described. To this end, we performed conductance-clamp 

experiments and varied 𝑐 in the range [0,1] (Fig 3A-C), while measuring spike-count 

correlations using a time window of length 𝑇 = 40 ms: we chose this specific value of 𝑇 

because it constitutes a good compromise between the detection of firing rate synchronicity 

(low values of 𝑇) and covariability (high values of 𝑇). In this set of experiments, we kept 

the firing rate of the cells constant, in the range [10,12] Hz, to minimize the effects 

attributable to the dependency of 𝜌© on the cells’ firing rate (de la Rocha et al., 2007) and 

to facilitate the comparison across cell types. The results of this first set of experiments are 

shown in Fig. 3: similarly to what was described previously for pyramidal cells under a 

current-clamp stimulation (de la Rocha et al., 2007), 𝜌© increases monotonically with 𝑐 
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under conductance-clamp stimulation, while always remaining smaller than the input 

correlation value (Fig. 3A).  

Additionally, for values of input correlation lower than 0.5, 𝜌© depends roughly linearly 

on 𝑐 for all three cell types (Fig. 3B-D), albeit the linearity is more marked in pyramidal 

cells, where it extends up to 𝑐 = 0.5. These results indicate that, in terms of input-output 

transfer of correlations, the three neuronal types behave similarly and that, given the 

linearity of 𝜌© for low values of input correlation 𝑐, the linear response theory previously 

developed (de la Rocha et al., 2007, Litwin-Kumar et al., 2011) and summarized in the 

Materials and Methods section is suited for interpreting the experimental data. 

	

Spike-count covariance depends on cell pairs type 

By definition, evaluating the spike-count correlation involves computing the covariance 

between the spike counts from neuron pairs and then normalizing by their respective 

variances. Linear response theory is only used to approximate the covariance (in the regime 

where it is small relative to the variances). By contrast, building a theory for the output 

variance of a neuron where complex cellular processes, such as spike frequency adaptation, 

that persist beyond a single spike is often difficult (Deger et al., 2014, Naud and Gerstner, 

2012, Ocker and Doiron, 2014, Richardson, 2009). For this reason, we now focus on 

experimentally measuring and understanding the spike-count covariance between a neuron 

pair. 

We investigated whether pyramidal cells and FS and NON-FS interneurons behave 

similarly in terms of covariance transfer, over a range of geometric mean firing rates. To 

this end, we fixed 𝑐 = 0.5 and varied the ratio of excitatory to inhibitory presynaptic firing 

rates (Eq. 5) to span (geometric) mean firing rates of the pairs of cells over the range 

[0,25] 𝐻𝑧. For sufficiently irregular spike trains the absolute magnitude of spike-count 

covariation increases with the length of the window 𝑇. It is then convenient to examine the 

values of spike-count covariance for a given value of 𝑇 while comparing two conditions, 

e.g., different cell types or distinct stimulation paradigms.  

We first found that cortical interneurons display spike-count covariance values that are 

higher than pyramidal cells when using a conductance clamp stimulation, over a broad 
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range of firing rates (Fig. 4A and C) and for 𝑇 in the range 5 to 160 ms (Fig. 4B and D). 

In particular, the ratio between interneuron and pyramidal covariances is larger at higher 

values of geometric mean firing rates (compare diamond-shaped with asterisk markers in 

Fig. 4B and D), and it increases with the value of 𝑇, reaching values of approximately 5 

and of 2 times the covariance of pyramidal cells for FS and NON-FS interneurons, 

respectively. Interestingly, even when considering mixed cell-type pairs (e.g., one 

pyramidal cell and one FS interneuron, as shown in Fig. 7A-B), the resulting covariance 

values are always higher than what we observed in pyramidal pairs (Fig. 7). 

Taken together, these results indicate that both interneuron types have a greater 

capability of transmitting covariation than pyramidal cells, especially on longer timescales 

and for higher geometric mean firing rates. 

	
Spike-count covariance in pyramidal cells depends on the stimulation paradigm 

In a second set of experiments, we quantified the extent to which a conductance-clamp 

stimulation shapes the transfer of covariance, compared to a more conventional current-

clamp stimulus. To this end, we performed additional recordings in pyramidal cells, 

employing the current-clamp stimulation described in the Methods, matching the protocol 

used by de la Rocha et al. (2007).  

We found that for the specific window used (𝑇 = 40 ms), covariance transfer in 

conductance clamp is significantly lower than in current-clamp, at geometric mean firing 

rates above approximately 10 spike/s (Fig. 4E). When performing the same analysis for 

different values of 𝑇, the phenomenon of covariance shaping became particularly 

prominent (Fig. 4F). In particular, for short time windows 𝑇 the spike-count covariance 

was higher when employing conductance-clamp stimulation, whereas on longer timescales 

it was higher in current clamp, especially at higher geometric firing rates.  

 

Single-cell properties predict cell type-specific correlation transfer 

When input correlations 𝑐 are sufficiently small there is an approximate linear relation 

between spike correlation 𝜌© and 𝑐 (Fig. 3). Previous work has leveraged this observation 

to give a simple theory that expresses the spike-count covariance between two neurons 

Cov(𝑛9©, 𝑛=©) in terms of single-cell transfer properties (de la Rocha et al., 2007, Litwin-
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Kumar et al., 2011) (see Methods). For large values of 𝑇, the window over which the spike 

counts 𝑛9©, 𝑛=© are estimated, this theory reduces to: 

(1)	 lim
©→Ä

Cov(𝑛9©, 𝑛=©)
𝑇 ≈ 𝑐𝜎= ∙ gain9 ∙ gain= 	

where gain9 and gain= are the slopes of the frequency-current curves of the two neurons. 

Indicating by 𝜇9 and 𝜇= the mean amplitudes of the current inputs experienced by the two 

neurons, this is formally written as gainª = 𝑑𝑟ª/𝑑𝜇ª for 𝑖 = {1,2}. Then, the functions 

𝑛ª© = 𝑇𝑟ª(𝐼ª©) link the integrated input experienced by each neuron 𝐼ª© = ∫ 𝐼ª
©
g (𝑡)𝑑𝑡 to its 

output spike count. Since 𝜇ª = lim©→Ä𝐼ª©/𝑇 and 𝑟ª = lim©→Ä𝑛ª©/𝑇 then, for large 𝑇, 𝑟ª(𝜇ª) 

is the frequency-current curve that we measured (see Fig. 1G-I), and 𝑑𝑟ª/𝑑𝜇ª is the firing 

rate gain. In other words, Eq. 1 approximates Cov(𝑛9©, 𝑛=©) as the input covariance 𝑐𝜎= 

scaled by the product of firing rate gains. 

If 𝑟ª(𝜇ª) is linear, then the gain 𝑑𝑟ª/𝑑𝜇ª remains fixed as 𝜇ª changes, so that 

Cov(𝑛ª©, 𝑛©) also does not shift. By contrast, a nonlinear 𝑟ª(𝜇ª) makes Cov(𝑛ª©, 𝑛©) depend 

on the “operating point” of the neuron pair (measured by 𝑑𝑟ª/𝑑𝜇ª), so that Cov(𝑛ª©, 𝑛©) is 

malleable despite the input covariance remaining fixed at 𝑐𝜎=. Intuition for this effect 

comes from an understanding of how the joint input density 𝑝(𝐼9©, 𝐼=©) is mapped to the joint 

output density 𝑝(𝑛9©, 𝑛=©). The Gaussian density of 𝑝(𝐼9©, 𝐼=©) is reshaped by the nonlinear 

mapping 𝑟9(𝐼9©) and 𝑟=(𝐼=©) of each cell in the pair, so that the density 𝑝(𝑛9©, 𝑛=©) is non-

Gaussian (Fig. 8A). Nevertheless, Cov(𝑛9©, 𝑛=©) reports the effective spread of 𝑝(𝑛9©, 𝑛=©) 

along the diagonal 𝑛9 = 𝑛=. For low 𝜇9 the spike threshold nonlinearity forces both the 

output firing rate 𝑛9/𝑇 and the gain 𝑑𝑟9/𝑑𝜇9 to be small, compromising the spread of 

𝑝(𝑛9©, 𝑛=©). When 𝜇9 is increased, the transfer of common fluctuations is enhanced through 

sampling larger firing rate gains in the 𝑛9 = 𝑇𝑟(𝐼9©) transfer. This results in an increased 

spread of 𝑝(𝑛9©, 𝑛=©) along 𝑛9 = 𝑛=, and naturally Cov(𝑛9©, 𝑛=©) is larger. Thus, by 

controlling the gain of the firing rate transfer (through 𝜇9 and 𝜇=) the output 𝐶𝑜𝑣(𝑛9©, 𝑛=©) 

is manipulated despite the input Cov(𝐼9©, 𝐼=©) being fixed. 

We next used this theory to investigate how the single-cell properties of pyramidal, 

FS, and NON-FS cell types determine Cov(𝑛9©, 𝑛=©), and how it changes with firing rate. 

Exponential integrate-and-fire models with slow adaptation currents (Badel et al., 2008, 
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Brette et al., 2008) were matched to the passive and firing rate characteristics of the 

experimentally measured pyramidal, FS, and NON-FS cells (Fig. 8B) (see Methods for 

details). Mimicking the experiments, we employed a stochastic bombardment of 

presynaptic excitatory and inhibitory conductance inputs to drive stochastic spike train 

responses (Fig. 8B). The simplicity of the spike generation mechanism combined with 

vanishing synaptic timescales and large pre-synaptic ensembles permits a theoretical 

calculation of the firing rate curves 𝑟ª(𝜇ª) and their gains 𝑑𝑟ª/𝑑𝜇ª (see Methods). We first 

computed the f-I curves by injecting static currents while fixing the input variance (Fig. 

4C), qualitatively matching the experimental results (compare Fig. 8C to Fig. 1G-I). The 

FS cells, however, had more similar f-I curves to the NON-FS and pyramidal cells in our 

model than in the averaged experimental f-I curves, perhaps due to the different noise levels 

(see Methods). 

To probe the input-output transfer function, we next increased the output firing rates 

𝑟ª by varying the presynaptic excitatory input rate, 𝑅Z. For the fitted cellular and synaptic 

parameters the model firing rate curves qualitatively matched those reported for pyramidal, 

FS, and NON-FS cells. For all models the firing rate gain 𝑑𝑟ª/𝑑𝜇ª increased with the output 

firing rate of the cells, with FS interneurons showing the highest dependence (Fig. 8D). 

Furthermore, as output firing rates were driven by a stochastic bombardment of presynaptic 

inputs, then as the output firing rate increased so did the overall input variance 𝜎=, again 

for all models (Fig. 8E). 

Finally, we modeled a pair of cells receiving correlated conductance fluctuations (𝑐 =

0.1) and numerically estimated Cov(𝑛9©, 𝑛=©) as firing rates varied. Our simulations 

recapitulated the experimental results, namely at high firing rates FS interneuron pairs 

showed the largest covariance, followed by NON-FS interneuron pairs, and with pyramidal 

cell pairs having the lowest covariance (Fig. 8F, open circles). Our theory based on single-

cell properties also gave a quantitative match to Cov(𝑛9©, 𝑛=©) for all cell types (Fig. 8F, 

solid lines). This provides evidence that the cell-type differences in the electrical properties 

that determine single-cell firing rate gain (Fig. 8D) underlie, in part, the cell-type 

distinctions in covariance transfer (Fig. 8F). 

Interestingly, the pyramidal cell model described previously qualitatively captures the 

shaping of the covariance values observed in the experiments (Fig. 8G-H). However, how 
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correlation shaping depends on the cell pair firing rates is reversed in the theory compared 

to the experiments. More to the point, in the experiments the highest values of 

𝐶𝑜𝑣©
�ð,FF	/𝐶𝑜𝑣©

�ð,ñF are observed for high values of geometric mean rate (in the range 

[16,17] 𝐻𝑧, diamond markers in Fig. 4F) and gradually decrease for decreasing geometric 

mean rates. In theory and in simulations, on the other hand, high geometric mean firing 

rates correspond to lower values of covariation shaping (diamond markers in Fig. 8H). In 

both theory and experiment the raw Cov(𝑛9©, 𝑛=©)  values increase with firing rates (Fig 4E 

and 8G), yet in the theory there is a saturation in Cov(𝑛9©, 𝑛=©) with firing rates in current 

clamp that is absent in the in vitro recordings (and vice versa for the conductance-clamp 

case). These discrepancies may be attributed to cellular processes that are ignored in our 

model, such as subthreshold voltage-gate conductances whose activation differs between 

current- and conductance-clamp activation in real neurons. 

	
Measured covariance values correlate with single-cell properties 

Our linear response theory predicts that the magnitude of covariance between two spike 

trains from distinct neurons should depend on the slopes of their f-I curves (Eq. 23). If the 

f-I curves were truly linear then the spike train covariance would be a fixed value, 

independent of the firing rates of the neuron pair.  However, in fluctuation driven regimes 

the f-I curves are markedly nonlinear, with a slope that grows with the firing rate (Fig. 9 

A-C). Thus, by changing the firing rates of a neuron pair we sample a range of gains and 

associated pairwise covariances by varying the cell pair firing rates.  This in turn provides 

an opportunity to quantitatively test our linear response prediction: for each pair of cells in 

our dataset we computed the coefficient of determination 𝑟= between the measured 

covariance values and the product of the slopes of the f-I curves of the individual cells, 

computed with the injection of recreated background synaptic activity, as shown in Fig. 

1G-I at the population level (filled markers) and in Fig. 9A-C for the representative cells 

used in Fig. 9D-F. In agreement with the prediction of the linear response theory, we found 

a very strong correlation between the covariance and the product of the f-I curve gains, on 

a cell pair-by-cell pair basis (Fig. 9D-F and Fig. 10A-C), and for each of the three cell types 

under analysis. Interestingly, the distribution of coefficients 𝑟= (Fig. 9G-I and Fig. 10D-F) 

was more strongly skewed towards high values for the FS interneuron cell type, indicating 
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that the covariation dynamics of GABAergic fast-spiking interneurons are better captured 

by our linear response theory, at least for the intermediate value of input correlation used 

in these experiments (i.e., 𝑐 = 0.5). Taken together, these results demonstrate how 

microcircuit observables—the magnitude of covariation in the spike trains of two cells—

can be related to intrinsic, single cell properties of the neurons that constitute the 

microcircuit—in this case, the slope of their f-I curves. 	

 

Discussion 

We have shown that three distinct cell types—pyramidal cells and two types of 

GABAergic interneurons—in L5 of rat somatosensory cortex respond differently to the 

same level of correlated inputs. In our experiments, cells were stimulated with 

biophysically realistic conductance inputs that mimic the activation of synaptic receptors 

and that recapitulate the features of the high-conductance state observed in vivo (Destexhe 

et al., 2001). It is worth pointing out that our results could not have been obtained using 

current-clamp alone, as they crucially depend on the modulation of intrinsic cell properties 

that can only be ascribed to conductance injection. To the best of our knowledge, this is 

the first time that differences have been found in the capability of distinct neuronal types 

to transmit input correlations in a firing rate-dependent manner. 

 

Cell type-specific differences in covariation transfer 

We interpreted our experimental data through a theory that predicts how spiking 

neurons transfer co-fluctuations in inputs to their output spike trains  (Litwin-Kumar et al., 

2011). We observed that pairs of FS interneurons display a degree of covariation that is 

several factors larger than pairs of pyramidal cells, while pairs of NON-FS interneurons 

produced covariation values that were only slightly larger than pyramidal cells. 

Interestingly, this can be explained by an intrinsic cellular property—the greater steepness 

of FS interneurons’ static input-output relationship than pyramidal cells—therefore tying a 

single-cell feature to a network observable. Although our experiments were carried out in 

juvenile rats, which may not have reached yet a complete degree of neuronal maturation, 

the relative ordering of the steepness of the f-I curves of the three cell types considered 
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here is preserved also in adulthood (Jiang et al., 2015), thus making our main results valid 

beyond the juvenile stage investigated in the present study. 

 While our work highlights the importance of cellular differences between cell 

classes for correlation transfer, it ignores the specifics of how pyramidal cells and FS and 

NON-FS interneurons are positioned within the recurrent cortical circuit (Pfeffer et al., 

2013, Tremblay et al., 2016).  Linear response theory has a natural extension to recurrently 

coupled networks of spiking neurons (Ocker et al., 2017), where single neuron transfer 

functions are mixed with wiring structure to determine network correlations. However, 

previous studies that employ this theory have ignored differences in inhibitory neurons and 

rather simply model a single interneuron class (Bos et al., 2016). Furthermore, most 

modeling studies that include multiple interneuron subtypes have only focused on firing 

rate models (Del Molino et al., 2017, Kuchibhotla et al., 2016, Litwin-Kumar et al., 2016), 

and they do not discuss how fluctuations are distributed over a network. The cellular 

insights exposed in our study when combined with established recurrent circuit theory 

promise new insights into how biologically realistic cortical circuits produce and transfer 

network-wide correlations. 

	

Role of conductance-clamp stimulation 

Our conductance-clamp stimulation protocol was instrumental in clarifying how the 

modulation of spike-count covariance by the geometric mean firing rate strongly depends 

on the cell type. This is in contrast with what was shown in earlier experiments using a 

current-clamp stimulus alone (de la Rocha et al., 2007), where the authors found no major 

differences among regular spiking and intrinsic bursting pyramidal cells and fast-spiking 

interneurons. 

To understand this discrepancy, we explicitly compared conductance and current-

clamp stimulations in pyramidal cells (Fig. 4E-F). Our results are in agreement with the 

correlation-shaping mechanism first presented in (Litwin-Kumar et al., 2011), namely that 

high conductance states better transfers short timescale covariability, while a low 

conductance state (comparable to current clamp) better transfers long timescale 

covariability. However, in that study in vitro neurons were held at a constant firing rate, 

whereas here we explored a range of firing frequencies. Our work highlights that for higher 
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geometric mean firing rates the increased covariability transfer at short timescales in the 

high conductance state is diminished. This should be contrasted with the increased 

covariability transfer at long timescales in a low conductance state (current clamp), which 

is enhanced at high firing rates. 

In summary, our experimental and modeling results show that pyramidal neurons in 

the high-conductance state are more suited to transferring covariation on short timescales 

(i.e., via synchronous activation) than previously predicted by current-clamp experiments 

(de la Rocha et al., 2007). This despite the fact that the firing variability, measured as the 

coefficient of variation of the inter-spike intervals, is comparable in these two conditions 

(see Fig. 6).  

Of course, the major limitation of any dynamic-clamp stimulation consists in the 

point nature of the conductance injection. While this might be a reasonable assumption for 

neurons with relatively small dendritic trees, such as basket cells (Markram et al., 2004, 

Wang et al., 2002), L5 pyramidal cells like the ones considered in this study have extensive 

dendrites containing a variety of ion channels (Harnett et al., 2015, Stuart and Sakmann, 

1994), which, together with nonlinear mechanisms of synaptic integration (Harnett et al., 

2012, Xu et al., 2012), support a variety of complex processing tasks (for a review see 

(Spruston, 2008)). This adds a further dimension to the structure of the inputs, which can 

be not only temporally correlated, as is the case for the inputs considered in this work, but 

also spatially correlated, thus leading to potentially interesting phenomena of inputs 

cooperativity, which largely remain to be explored. 

 

Relating theory and experiment  

De la Rocha and colleagues (de la Rocha et al., 2007) put forth a theory that related the 

gain of single neuron input-output transfer to how correlated input fluctuations are 

transferred by neuron pairs to output spike-count correlations (Eq. 23). However, in that 

study, as well as subsequent ones, in vitro experiments were only qualitatively compared 

to theory. For instance, while the dependence of spike-count correlations upon the 

geometric mean firing rate can be derived from our linear theory at low firing rates (Shea-

Brown et al., 2008), it has only been shown to be qualitatively true in real neurons (de la 

Rocha et al., 2007). Similarly, theoretical work has shown how the timescale (Litwin-
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Kumar et al., 2011) or excitability class (Barreiro et al., 2010, Hong et al., 2012) of 

membrane integration determines the timescales over which correlations are transferred, 

nevertheless experimental tests were only qualitative in nature (e.g., an increase or decrease 

in correlation as membrane properties are changed).   

 The difficulty with a quantitative test of a linear response theory of correlations is 

that a systematic measurement of both neuronal gain and correlations transfer in neuron 

pairs is rarely performed over a range of firing rates.  Indeed, studies that focus upon single 

neuron gain control explicitly ignore populations of neurons, while studies of neuronal 

populations often only study the network in a single regime (and hence a single gain value).  

The results presented in Fig. 9 of our study thus constitute the most experimentally 

validated test of this theory, comparing the mapping between neuronal gain and 

covariability over a range of gain values. Furthermore, our work uses the heterogeneity 

over pyramidal cells and FS and NON-FS interneurons to test our theory over a broad range 

of cellular properties. 

	
Functional implications 

Overall, our results raise the intriguing possibility that principal cells in the 

neocortex—and possibly in other areas of the brain, such as the hippocampus—might be 

specifically tuned to operate in a low-correlation level, which could improve the coding 

capabilities of a population of principal cells. On the other hand, the higher covariance 

values measured in the two interneuron classes, and in particular in fast-spiking 

interneurons, are likely to play a role in the regulation of the activity of local circuits by 

interneurons. In particular, higher level of correlation might facilitate interneurons in their 

function as providers of a “blanket of inhibition” (Karnani et al., 2014, Packer and Yuste, 

2011), and, in the case of FS interneurons, could be implicated in the important role these 

cells play in orchestrating cortical oscillations (see (Freund and Katona, 2007) and 

references therein). Interestingly, it has recently been shown that a class of GABAergic 

cells in the prefrontal cortex sends long-range projections to subcortical areas (Lee et al., 

2014): it would be of great interest to investigate whether these cells present correlation 

transfer properties that differ from what we have described here. 
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In conclusion, our findings underline the importance of an in-depth characterization 

of cortical cell diversity by increased experimental realism and point to a richness of 

network behaviors arising from the diversity of intrinsic cell properties. 
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Figure  

	

Figure 1. Electrophysiological intrinsic properties of pyramidal cells and two types of 

interneurons. (A) Typical membrane potential of pyramidal cells in response to the 

injection of hyperpolarizing and depolarizing current steps. Inset: magnification of the first 

action potential fired by the cells. (B) Same as (A) but for fast-spiking interneurons with 

non-accommodating firing pattern and (C) for low-threshold-spiking, non-fast-spiking 

interneurons with accommodating firing pattern. (D) Instantaneous firing rate, computed 

as the inverse of the inter-spike intervals, in response to the depolarizing current steps 
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displayed in A. (E-F) Same as D, but for FS and NON-FS interneurons, respectively. (G) 

Population summary of the stationary transfer function for pyramidal cells (N = 13) in 

response to the injection of depolarizing current steps, with and without the background 

synaptic activity recreated in dynamic-clamp (solid and empty markers, respectively). The 

solid lines are power-law fits of the form 𝑓(𝐼) = 𝑎 ∙ 𝐼ô + 𝑐, with a, b, and c free parameters. 

Note both the divisive effect of the recreated synaptic background on the slope of the 

current-frequency curves, as well as the overall diversity of the average slope of the curves 

across cell types. (H-I) Same as G, but for FS (N = 10) and NON-FS (N = 14) interneurons, 

respectively. Figure 2 presents the distinct electrophysiological features of the three cell 

types. 

 

 

Figure 2. Distinct electrophysiological features of three cortical cell types. Our 

classification of pyramidal cells, FS and NON-FS interneurons is supported by a well-

known heterogeneity of passive and active electrophysiological observables, as reported in 
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the literature for basket cells and Martinotti cells and shown in (A) for our dataset. These 

observables were compared across 47 pyramidal cells, and 23 FS and 29 NON-FS 

interneurons, and their statistically significant differences complement the diversity of 

transient and stationary firing transfer properties described in Fig. 1. Two and three 

asterisks indicate a value of 𝑝 < 0.01 and 𝑝 < 0.001, respectively, for statistically 

significant differences as assessed by a Kruskall-Wallis test. (B) Representative voltage 

deflections in the three cell types in response to a step of current that caused a 

hyperpolarization of approximately 10 mV. Note the comparable amount of sag in the 

response of the pyramidal cell and NON-FS interneuron, and the almost complete lack of 

sag in the response of the FS interneuron. The membrane voltages have been vertically 

aligned to the value of the resting potential before the stimulus onset, for ease of 

comparison. (C) Representative voltage traces in the plane d𝑉 dt⁄  versus V of the average 

action potential for the three cell types. Note how pyramidal cells display the largest action 

potentials, with onset speeds comparable to those of FS interneurons, which however are 

also characterized by an extremely fast AP offset. (D-E) Rebound firing following 

hyperpolarization and burst generation in response to brief current pulses have been 

reported as distinctive features of somatostatin-positive NON-FS interneurons: these 

properties were observed in our experiments for NON-FS cells only, as shown here in 5 

representative cells. 
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Figure 3. Output correlation rT as a function of input correlation c, for three cortical 

cell types. Two sets of conductance-based fluctuating waveforms, sharing a common 

fraction c, were applied to pairs of anatomically unconnected neurons. At the steady-state, 

the correlation coefficient rT between their spike responses was estimated over a spike-

counting window of 𝑇 = 40	ms and found to increase monotonically with increasing input 

correlation c, as intuitively expected. (A) Schematic of the dynamic-clamp experimental 

setup: the total current injected into the cell is the sum of two conductance waveforms, one 

excitatory (red trace) and one inhibitory (blue trace), each multiplied by the appropriate 

driving force. This in turn depends on the instantaneous membrane potential, recorded in 

real-time by the system and filtered by the Active Electrode Compensation. (B) The 

stimulation to each cell in an unconnected pair comprises an independent and a shared 

component. The ratio of these two is regulated by the correlation coefficient 𝑐. (C) Effect 

of varying 𝑐 on the conductance waveforms injected into the two cells. Notice the high 

(low) degree of similarity of the traces corresponding to 𝑐 = 0.9 (𝑐 = 0.1). (D) Mean 

values of rT for 𝑇 = 40	ms over the possible range of c for pyramidal cells (black markers), 

FS (green markers) and NON-FS interneurons (purple markers) cells. Error bars indicate 
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the standard deviation. The dashed grey line has a unitary slope and highlights how the 

output correlation is always smaller than the input correlation. (E) For weak input 

correlations (𝑐 ≤ 0.5), the output correlation in pyramidal cells displayed a direct 

proportionality to c, a useful property for the subsequent theoretical interpretation of our 

results.  Shown is the same data as in (D), magnified in the interval 𝑐 ∈ [0,0.6] and fit with 

a linear function of the form 𝜌©(𝑐) = 𝑚	𝑐, where 𝑚 is the proportionality coefficient. The 

fit was performed in the interval 𝑐 ∈ [0,0.4] to highlight how the value of rT corresponding 

to 𝑐 = 0.6 departs from the linear relationship between input and output correlation. The 

data is the average of N = 6 cells firing at a firing rate 𝜈 = 12.5 ± 2.2	spike/s. (F) Same 

as (E), but for FS interneurons (N = 5 and 𝜈 = 11 ± 2.8	spike/s). (G) Same as (E), but 

for NON-FS interneurons (N = 6 and 𝜈 = 10 ± 1.7	spike/s). 
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Figure 4. Diversity of correlation transfer across cell type. The covariance of the output 

spike count was estimated in cell pairs of identical type, for a fixed input correlation 𝑐 =

0.5, across distinct firing regimes (A,C,E) and spike-count window sizes (B,D,F). (A) Each 

dot is a value of covariance for a given pair of cells and repeated stimulation block, 

computed over a count window 𝑇 = 40	ms and for increasing mean firing rates. Large 

markers represent the mean of all the individual values, taken in 1 spike/s bins, revealing 

over our entire data set a cell-type specific correlation transfer. The solid lines are optimal 

fits of the binned data with a power-law function of the form Cov(𝑓) = 𝑎 ∙ 𝑓ô + 𝑐, where 

𝑓 is the geometric mean firing rate of the pair and 𝑎, 𝑏 and 𝑐 are free parameters. Grey dots 
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and black markers and lines refer to pyramidal cells (N=25, with a total number of 855 

pairs), while light green dots and green markers and lines refer to FS interneurons (N=14, 

with 285 total number of pairs). (B) Quantification of covariance shaping in pyramidal 

cells and FS interneurons, across different spike counting window sizes, for firing 

frequency regimes in the ranges [4,5], [10,11] and [16,17] spike/s: note how FS 

interneurons transfer up to 4 times more input correlations than pyramidal cells, over long 

time-scales and for similar firing rates. (C-D) Same as (A-B), but comparing pyramidal 

cells and NON-FS interneurons, shown with light purple dots and purple markers and lines 

(N=15, with a total number of 621 pairs). (E-F) Same as (A-B), but comparing pyramidal 

cells subjected to conductance-clamp (same data as in panels A and B) and current clamp 

stimulation, shown with light red dots and red markers and lines (N=11, with a total 

number of 716 pairs). Figures 5 and 6 report representative membrane potential traces, the 

coefficient of variation of the interspike interval distributions, respectively. Figure 7 

repeats the analysis for mixed cell-pairs. 

 

 

Figure 5. Representative voltage traces in response to recreated synaptic stimulation 

in the three cell types. The average barrage of recreated excitatory and inhibitory synaptic 
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inputs was balanced at a voltage that elicited a firing rate in the range [3,5] spike/s. (A) 

Responses of two pyramidal neurons. (B) Responses of two FS cells. Note how the noisy 

stimulation employed here allows obtaining arbitrarily low firing rates, effectively turning 

this cell type into a type-1 oscillator. (C) Responses of two NON-FS interneurons. Note 

how the discharge patterns more closely resemble those of the pyramidal cells. 

 

 

Figure 6. Coefficient of variation (CV) of the inter-spike intervals (ISIs) across cell 

types, upon conductance and current stimulation. For each stimulation block used to 

compute the values of covariance shown in Fig. 4, we extracted the average CV of the ISIs 

and plotted it against the mean firing rate of the cell in that specific stimulation block. (A) 

CV as a function of mean firing rate for pyramidal cells upon conductance clamp 

stimulation. (B) CV as a function of mean firing rate for pyramidal cells upon current clamp 

stimulation. (C) Same as (A), but for FS interneurons. (D) Same as (A), but for low-

threshold-spiking NON-FS interneurons. 
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Figure 7. Correlation transfer in mixed cell-pairs. (A,C,E) Covariance values computed 

in heterogeneous pairs of cells: pyramidal and FS interneurons (A, green markers and 

traces), pyramidal and NON-FS interneurons (C, purple markers and traces) and FS and 

NON-FS interneurons (E, orange markers and traces). Notice how the resulting covariance 

is always greater than that computed in homogenous pairs composed of two pyramidal cells 

(black markers and traces in all panels, same data as in Fig. 4). (B,D,F) Covariance shaping 

of mixed pairs of cells. Same analysis as that of Fig. 4. 
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Figure8: Single-cell properties predict covariance transfer. (A) Schematics of 

covariance transfer with two cells. A correlated Gaussian input (bottom left) is transferred 

through each cell’s f-I curve (top left, bottom right) to produce a correlated, non-Gaussian 

output (top right). Linear response theory predicts the covariance of that output distribution 

by linearizing the f-I curves around the stimulus mean. (B) Cell type-specific adapting 

exponential integrate-and-fire models match the recorded single-cell properties. Units: 

Leak reversal potential (𝑉�) and spike threshold (𝑉©) in mV; passive membrane time 

constant (𝜏) in ms; rheobase in nA. (C) Static transfer functions (f(I) curves) for each 

model. (D) Slope of the f-I curve as a function of firing rate when the rate of the presynaptic 

excitatory population is increased (Methods: Neuron models). (E) Intensity of the input 

noise as the rate of the presynaptic excitatory population is increased. (F) Spike count 
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covariance versus geometric mean output rate for each cell type. (G) Spike count 

covariance versus firing rate.  

 

 

Figure 9. The product of the slopes of the f-I curves strongly correlates with the 

measured covariance values, on a cell-pair by cell-pair basis and in a frequency-

dependent manner. For each cell pair, we computed several covariance values 

corresponding to different geometric mean firing rates. We plotted them as a function of 

the product of the slopes of the f-I curves of each cell of the pair (i.e. gain1 and gain2), at 

the corresponding value of firing rate. This uncovers a strong correlation between measured 
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covariance and product of gain1 and gain2, as predicted by the linear response theory. (A) 

Individual f-I curves upon injection of constant steps of current in addition to recreated 

background synaptic activity for the pyramidal cells shown in D. (B-C) Same as A, but for 

the FS and NON-FS cells whose covariance values vs. product of f-I gains are shown in E 

and F, respectively. (D) Representative examples of correlation between measured 

covariance and slopes of the f-I curves, for three pairs of pyramidal cells. Actual values are 

shown with square markers, while solid lines are linear fits to the data. The r2 coefficients 

are indicated in the panel for each cell pair. (E-F) Same as D, but for FS and NON-FS 

interneurons, respectively. (G) Distribution of r2 coefficients for N = 20 pairs obtained 

from 8 pyramidal cells. (H-I) Same as G, but for FS (N = 15 pairs from 6 cells) and NON-

FS interneurons (N = 10 pairs from 5 cells), respectively. The value of the spike counting 

window is 𝑇 = 40	ms in all panels. Figure 10 repeats this analysis for mixed cell-pairs.  
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Figure 10. Correlation between the product of the gain of the f-I curves and the 

measured covariance values, in mixed cell pairs. Same analysis as that performed in Fig. 

9, but for pairs of cells composed of different cell types. Also in this case there is a very 

strong correlation between the experimentally measured values of covariance and the 

product of the slopes of the f-I curves of the two cells in the pair. 
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