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Can grid cell ensembles represent multiple spaces?
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2
Laboratoire de Physique Thorique de l’ENS, 24 rue Lhomond, 75231 Paris Cedex 05 - France

(Dated: January 21, 2019)

The way grid cells represent space in the rodent brain has been a striking discovery, with theoret-
ical implications still unclear. Di↵erently from hippocampal place cells, which are known to encode
multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space
through a single low dimensional manifold, in which coactivity relations between di↵erent neurons
are preserved when the environment is changed. Does it have to be so? Here, we compute – using
two alternative mathematical models – the storage capacity of a population of grid-like units, em-
bedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct
representations of multiple environments can coexist, as existing models for grid cells have the po-
tential to express several sets of hexagonal grid patterns, challenging the view of a universal grid
map. This suggests that a population of grid cells can encode multiple non-congruent metric rela-
tionships, a feature that could in principle allow a grid-like code to represent environments with a
variety of di↵erent geometries and possibly conceptual and cognitive spaces, which may be expected
to entail such context-dependent metric relationships.

Keywords: cognitive map | continuous attractor | storage capacity | spatial memory | saddle-point equations

I. INTRODUCTION

Grid cells appear to comprise an essential component
of the cognitive representation of space in rodents [1] and
in other species, e.g. bats [2]. A study of the activity of
grid cells in multiple environments [3] has shown that
while the grid expressed by each neuron varies across en-
vironments in its spatial phase and orientation, between
neurons the co-activity relations are largely preserved,
at least for those recorded nearby in the tissue, with
the same tetrode. The subsequent discovery of quasi-
discrete “modules” [4] indicates that these relations are
maintained at the local network level, presumably by
recurrent collateral connections among grid cells. This
finding has led to the hypothesis that local ensembles
of grid cells comprise each a single continuous attrac-
tor network, expressing a “universal”, two-dimensional
map, which encodes the metric of space independently of
the environmental context. There is a crucial di↵erence
with the context-dependent spatial representations pro-
vided by hippocampal place cells, which display “global
remapping” [5] even between very similar rooms, in par-
ticular in the CA3 field [6]: cells which were silent ac-
quire one or more place fields, others lose theirs, and the
fields that seem to have been maintained typically are in
a di↵erent location (Fig.1B). Recent evidence of context-
dependent distortions in the grid pattern have begun to
question the view that the collective map expressed by a
grid module is universal, that is, that it applies to any en-
vironment. Stensola et al. [7] have shown that, when rats
explore large environments, a single grid can exhibit mul-
tiple orientations, likely due to anchoring e↵ects to the
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closest wall, which in any case amount to distortions of
the hexagonal pattern. Krupic et al. [8], [9] have shown
that the grid pattern deviates from perfect hexagonal-
ity, with both global and local distortions, in response
to environmental features such as the geometry of the
walls. These observations, moreover, refer solely to the
position of the peaks of activity, i.e. the place fields of
each cell, and do not take into account the fact that they
vary reliably in height, independently across peaks, from
one environment to the other [10]. Should we still regard
grid cells as a sort of stack of millimeter paper, providing
a universal metric for space?
Recent studies conducted in both rodents and humans,

moreover, suggest that regular grids may not “measure”
only physical space. Aronov and colleagues [11] find that
both place cells and grid cells, in rats, are involved in
the representation of a non-spatial but continuous, one-
dimensional variable, such as the frequency of a sound.
An fMRI study by Constantinescu et al. [12] shows an
hexagonal modulation of the BOLD signal in human En-
torhinal Cortex, and elsewhere, in a task that requires
subjects to “navigate” the 2D space spanned by the vary-
ing leg and neck lengths of a drawing of a bird. The rep-
resentation of abstract or conceptual spaces, which could
in principle be topologically and geometrically complex,
would require of the grid cell system a flexibility that can
hardly be reconciled with the universal grid hypothesis.
In a most interesting study [13], a subset of grid units

were depolarized in transgenic mice, leading to what ap-
pears to be global remapping in the hippocampus. What
is so striking is that the manipulation induces extensive
changes, up and down, in the peak firing rates of the dif-
ferent fields of individual grid units, but not in their posi-
tion. This elaborates the observation in [3], and suggests
that what might be universal in the grid representation
expressed by an ensemble of units, if anything, are the
relative positions of the fields, whereas their peak firing
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rates are variable (Fig.1C). On the other hand, a strict
hexagonal periodicity of the field positions of individual
units is only possible in flat 2D environments. The adap-
tation model of grid formation [14] predicts instead, on
surfaces with constant positive or negative Gaussian cur-
vature, and appropriate radius, the emergence of grids
with e.g. pentagonal [15] or heptagonal [16] symmetry.
In all other cases, including ecologically plausible natural
environments, non-flat surfaces have varying curvature,
making strictly periodic grids dubious, and rigid phase
coherence most unlikely. But then, what happens to the
universality of the grid in natural environments?

To address these issues, the aim of the present work is
to answer a first fundamental question: is it at all pos-
sible to conceive of multiple, hence non-universal, ideal
grid representations expressed in the same local network,
when the animal is placed in distinct, even if flat, envi-
ronments? In other words, would the storage capacity
of a recurrent network of grid cells be above unity, so
that multiple continuous attractors can coexist, encoded
in the same synaptic e�cacies? We pose this question
within two alternative mathematical models, both ac-
cepting the idealized assumptions which underlie the uni-
versal map hypothesis, that is, of strict periodicity and
equal peak rates, depicted in Fig.1D, but allowing for
several uncorrelated grid representations. Under these
assumptions, we analyze an ensemble of grid cells as
a Continuous Attractor Neural Network, extending the
frameworks developed in [17], [18] and [19] for the de-
scription of place cells.

II. COMPLEMENTARY NETWORK MODELS

We model the grid cell population as an ensemble of
units interacting through recurrent connections, whose
structure defines which activity states are robust - the
dynamical attractors. We assume, however, that a sep-
arate process, based e.g. on adaptation [14], has deter-
mined the emergence of a periodic grid, independently
for each unit, during familiarization with each of p dis-
tinct environments; meanwhile, recurrent connections are
shaped by a Hebbian learning process, such that neu-
rons that happen to have nearby fields tend to fire to-
gether, strengthening their connections, while neurons
with fields far apart remain weakly connected. The con-
nection strength Jij is therefore taken to be a sum of con-
tributions from the exploration of p environments, with
each contribution, once averaged across many trajecto-
ries, a function of the relative position of the fields in that
environment. Exploiting the simplifying assumption that
each grid is strictly periodic, we can focus on the elemen-
tary repetitive tile, which has only one field per unit and
is, in the mathematical formulation, connected by “pe-
riodic boundary conditions” to adjacent tiles. The con-
tribution to the connection strength between two units i
and j is then reduced to a function of their field centers

FIG. 1. Types of change in grid cell activity in mEC (bot-

tom) concurrent with global remapping in the CA3 field of the

hippocampus (top). The universal grid map model, idealized

from [3] allows only for a coherent translation (and possibly

a rotation) into a new map B, when changing environment.

Under a manipulation which does not entail changing envi-

ronment, the individual fields of each unit have been observed

to independently vary their peak rates, keeping their relative

position ([13], new map C). We assess the hypothesis that the

same network may also express other maps, such as map D,

with a complete re-positioning of the grids of di↵erent units.

~x⇡i and ~x⇡j on the elementary tile in environment ⇡

Jij =
pX

⇡=1

K(~x⇡i , ~x
⇡
j ) (1)

where we refer to K(·) as the “interaction kernel”. The
field peaks, or centers ~xi of N units are taken to be ran-
domly and uniformly distributed over the elementary tile.
Our analysis focuses on two di↵erent models of neurons
(binary and threshold-linear) and two types of attractor
symmetry (square and hexagonal), which stem from the
tile shape or the interaction kernel. Both neuron mod-
els allow, from complementary angles, a full statistical
analysis, leading to otherwise inaccessible results. The
storage capacity turns out to depend more on how in-
terference reverberates through loops (expressed by the
parameter  , see below) than on the type of units; and
interference, in the densely coded and densely connected
regime, a↵ects square much more than hexagonal grids.

A. Binary units

The first model we consider is an extension of the
model proposed by Monasson & Rosay [18] for the mod-
eling of place cells in CA3. Here the activity of neurons
is described by binary variables, such that the pattern of
activity of a network of N units is a vertex {�} 2 {0, 1}N .
For the binary model, the kernel K(i, j) between units i
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and j relative to one environment is taken to be a step
function of the distance between their field centers

K(·) = 1

N
⇥(dc � |~xi � ~xj |) (2)

where ⇥(x)=1 for x > 0 and 0 otherwise – note that the
distance |~xi � ~xj | is along the shortest path, considering
the periodic boundary conditions. The periodic structure
of the attractor depends on the shape of the rhomboid
unitary tile in which the field center ~xi of each unit is
located. The lattice symmetry is specified by the angle
✓ between its two primitive vectors. ✓ = 60° corresponds
to the standard case of hexagonal grids, while ✓ = 90°
describes a square grid pattern. These two cases and the
resulting interaction kernel are depicted in Fig.2 (a) and
(b). The cut-o↵ distance dc sets the number of non-zero
connections each unit receives from the storage of a given
environment, denoted by wN : dc =

p
(w/⇡) sin ✓. This

measure of connectivity within one environment should
not be confused with the global connectivity taking into
account all environments, C = (N�1)(1�(1�w)p) ⇠ N
for large p.

The dynamics of the network is governed by the energy
function:

EJ [{�}] = �
X

i<j

Jij�i�j (3)

and constrained by the requirement that at any time
a fixed fraction f of units be in the active state, i.e.P

i �i = fN . We call f the coding level, or sparsity
of the representation. This constraint is taken to reflect
some form of global inhibition. Later we shall focus only,
given w, on the optimal coding level in terms of storage
capacity, hence on a specific value f⇤(w), which turns out
to be a monotonic function of w (see Fig.3). This model
then allows an explicit focus on the dependence of the
storage capacity on the width of the kernel and on the
resulting optimal sparsity of the representation.

B. Threshold-linear units

We extend our analysis to firing-rate units, whose ac-
tivity is described by a continuous positive value corre-
sponding to their instantaneous firing rate. This second
model allows us to capture the graded nature of neural
activity, which is salient when it represents space, which
is itself continuous. The activity of the network is given
by a configuration {Vi} 2 (R+)N , and each unit inte-
grates the inputs it receives through a threshold-linear
transfer function [20]

Vi =

(
g(hi � h0) if hi � h0

0 if hi  h0
(4)

where g (the linear gain) and h0 (the activation thresh-
old) are global parameters of the network, and the “local

field” hi is a real-valued variable summarizing the input
influence on unit i from the rest of the network, which
we take to come from a random but fixed set of C among
the N � 1 other units, as well as from external sources.
The interaction kernel K(·) is given by the special sum-
of-cosines form

K(·) = 1

C

dX

l=1

(cos[�l(~xi)� �l(~xj)] + 1) (5)

which had been considered as a toy case by [17], before
the discovery of grid cells. The field center of each unit on
the elementary tile is expressed by a set of angles �l(~x).
We shall see that d = 2 and 3 are equally valid choices
on the plane, as well as d = 1, which leads to “band”
solutions (see below). This model therefore allows de-
coupling the form of the kernel, which is extended, with
interactions among units far away on the elementary tile
(and the resulting coding level is correspondingly non
sparse) from the connectivity, which can be made arbi-
trarily sparse if C/N ! 0. As a superposition of d cosine
functions, the kernel can also be conveniently written as
a sum of dot products. The +1 term is added to en-
force excitatory connections. While not circularly sym-
metric like the radial kernel used in the binary model,
this cosine kernel allows for the analytical study of pe-
riodic patterns that are spread out on the plane, with a
large fraction of the units active at any given time. The
solutions for the hexagonal kernel (Fig.2(d)), in particu-
lar, given by three cosine functions at a 60° angle from
one another, have been considered as a reasonable model
for experimentally observed grid cells. In the figure, the
hexagonal elementary tile extends in the range x = ±1/2
and y = ±1/

p
3, and the three angles span the directions

�1 = 2⇡x,�2,3 = ⇡(x ±
p
3y). The square kernel is ob-

tained for d = 2 and the two cosines at 90° from each
other (Fig.2 (c)). Note that, as with the binary model,
N units are concentrated on an elementary tile that in
the hexagonal case is

p
3/2 of the area of the square case.

An energy function would look similar to the one in
Eq. [3], but now expressed in terms of the continuous
variables {V }. When C < N�1 and connections are not
symmetric, the energy formalism does not apply but we
can still analyze the model (see below and in appendix
B), and again we take global inhibition, which can now
also act through a modulation of the common gain g, to
depend on the average activity of the network and to be
such as to optimize storage capacity.

III. STORAGE CAPACITY

Both models can store a single population map, as in
the bottom panels of Fig.1A,B, and the equations for
such a map admit periodic bump solutions that repro-
duce the shape of the tile/kernel (as well as potentially
other solutions, e.g. stripes, to be discussed later). We
are interested however in their capacity to store several
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FIG. 2. Interaction kernels for the binary (a,b) and rate (c,d)

models. The white lines show the elementary tile of each lat-

tice.

distinct maps, as in Fig.1A and D, and in the possibil-
ity to calculate such storage capacity analytically, in the
mean field approximation. The general strategy involves
formulating and resolving a set of self consistent equa-
tions relating the activity of the units in the network.
When the model admits an energy function, these are
the saddle point equations derived from the computation
of the “free energy” of the system with the replica trick,
which allows to take into account the statistics of the field
centers in each environment. Without an energy func-
tion, e.g. when the connections are sparse and not sym-
metric, equivalent equations can be derived through the
so-called Self Consistent Signal-to-Noise Analysis [21].
The solutions to these equations, that describe the ac-
tivity in one map, disappear sharply at a critical value
↵c of the storage load ↵ = (p/C), which measures the ra-
tio of the number of maps to the number of connections
to each unit. ↵c then gives the maximum number of
maps that the network can store and retrieve or express,
normalized by the connectivity. Crucially, we have de-
veloped a novel method to assess whether below ↵c these
solutions are indeed stable and prevail on others (Fig. 6
and 7). The details of these methods, that build on [18]
and [19] for the binary model and on [22] and [17] for the
rate model, can be found in appendix. We focus, in the
calculation of the storage capacity, on so-called “bump
states”, in which activity is localized along each of the
two dimensions of the elementary tile (anywhere on the
tile, given the translation invariance of the interaction
kernel). Other solutions however exist, as discussed in
section IV.

A. Binary units

The statistical analysis of the minima of the free energy
leads to the patterns of activity {�} that are likely to be
observed given the connectivity. More precisely, we have
derived self-consistent equations for the average activity
⇢(~x) = h�ii of unit i having its grid field centered in ~x
(in the elementary tile):

⇢(~x) =

Z
dz

e�z2/(2↵ r)

p
2⇡ ↵ r

⇥[µ(~x) + z + �] , (6)

where

µ(~x) =

Z
d~y K(~x, ~y) ⇢(~y) (7)

is the signal input received by the unit through the in-
teractions corresponding to the environment in which the
bump is localized, say, ⇡ = 1, and z is the noisy, Gaus-
sian input due to the interference from the other envi-
ronments, say, ⇡ = 2, ..., p, see Eq. (1). The variance ↵ r
of these Gaussian inputs is, in turn, self consistently de-
rived from the knowledge of the activity profile ⇢, see ap-
pendix A. The uniform (inhibitory) input � enforces the
constraint

R
d~x⇢(~x) = f . We have considered the limit

case of neurons responding deterministically to their in-
puts, although the analysis extends naturally to stochas-
tic noise.
We calculate, from the saddle point equations, the stor-

age capacity ↵c(w, f) as the maximal value of the load
↵ for which a bump-like solution to Eq. [6] exists. Then,
for a given value of w, we find the coding level f⇤(w)
that maximizes the storage capacity. Over a broad range
0  w  0.5 the optimal f⇤ turns out to be approx-
imately half the value of w (see Fig.3). This optimal
storage capacity is plotted in Fig.4, for the square and
hexagonal grids as a function of w. At low w the two
values are similar, but when w increases their trends di-
verge – a  -related e↵ect – leading to substantially higher
capacity value in the hexagonal case, of order 10�2 for
w ' 0.5. This value would definitely allow, in a real
cortical network with order thousands (or tens of thou-
sands) of neurons, the storage and retrieval of multiple
independent grid maps.

B. Threshold-linear units

In this model the coding level and the connectivity
range are both fixed by the shape of K(·). The mean
field approach can be however extended to the case of
arbitrary values of the connectivity density C/N , with
the Self-Consistent Signal-to-Noise Analysis [21]. The
storage capacity is given by the ↵ for which the solution
to the equation

µ̄2 � d


1 +

C

N

✓
(2�  ) 

(1�  )2

◆�
↵ r = 0 (8)
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FIG. 3. Optimal coding level for the binary model.
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FIG. 4. Storage capacity as a function of w for square and

hexagonal grids in the binary model, given an optimal coding

level f ' w/2.

disappear. In fact, the disappearance of the solution only
gives an upper bound on ↵c, as one has to check its sta-
bility as well. The details of the derivation and the ex-
pression of the average signal µ̄ and of the interference
noise r are reported in appendix B. We plot such critical
value for square and hexagonal grids with the respec-
tive kernels, as a function of the inverse density N/C, in
Fig.5 (full curves, blue and red). In the fully connected
regime, we find a result, corroborated also by computer
simulations, similar to the one obtained with the binary
model, with however a huge di↵erence in capacity be-
tween square and hexagonal grids, and a value ⇠ 10�2

only for the latter. Moreover, it turns out that for the
square kernel the stripe or band solutions of the next sec-
tion are the global minima, and the square solutions are
only marginally stable. In all cases the capacity increases
as the connectivity density decreases, reaching an asymp-
totic value as N/C ! 1. The quantitative results for
hexagonal grids has implications consistent with those of
the binary model: it suggests that, again, a network of

grid cells, for which a plausible number of synapses per
neuron may be in the order of thousands, and with a
connectivity, say, of order C/N ' 0.1, would have the
capacity to encode perhaps a hundred di↵erent environ-
ments.

C. Sparsity and noise reverberation

The binary model shows that the di↵erence in capacity
between hexagonal and square grids results from the ef-
fective interactions among the fields in di↵erent tiles, as it
emerges only with wide kernels and dense coding. When
both are sparse, hexagonal and square grids are roughly
equivalent. The w ! 0 limit can be worked out analyt-
ically and ↵c ! 0 in both cases, but only after having
reached a maximum around ↵c ' 0.02 for quite sparse
codes, w ' 0.03 and f ' 0.015. Sparse coding is known
to suppress noise reverberation (leading to small  ), but
remarkably this relatively large capacity is approximately
preserved for hexagonal grids with dense coding, w ' 0.5
and f ' 0.25, illustrating the e�ciency with which this
compact arrangement minimizes interference.

The threshold-linear model a↵ords complementary in-
sight, again on how the hexagonal/square capacity di↵er-
ence depends on the units active in each attractor rever-
berating their activity. Mathematically, this is expressed
explicitly by the dependence of Eq.8 on the order pa-
rameter  , which quantifies the amount of reverberation
through the loops in the networks. The physical mean-
ing of  can be inferred from the expression derived in
appendix B and C:

 = g0
T0

d
f. (9)

The factor g0T0/d is in fact the typical noise T0/d am-
plified by the renormalized gain g0 and multiplied by the
average fraction of active units, the f parameter as in
the binary model.  is then the one-step loop term in
the reverberation of the noise; its e↵ect on the capac-
ity is illustrated by the dashed line in Fig.5, in which
such contribution is factored out. For densely connected
networks, storage capacity would massively increase and
relative di↵erences would decrease without noise rever-
beration. The optimal capacity for the hexagonal kernel
is then (mainly) the result of a reduced reverberation
of the noise, due to the shape of the activity distribu-
tion of its attractors: the average fraction of active units
(f ⇠ 0.46) in the attractive state of the hexagonal kernel
model is considerably lower than the same fraction in the
square kernel, where it would be f ⇠ 0.79 for the square
grids, and is only somewhat reduced to f ⇠ 0.68 for the
stripes, which replace them as the stable solutions for
this kernel.
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FIG. 5. Storage capacity in the threshold-linear model as a

function of the inverse connectivity density N/C, on a log-

log scale. Full lines give ↵c for the three di↵erent interaction

kernels (bands in green, square grids in red and hexagonal

grids in blue). Dashed lines indicate what the capacity would

be without noise reverberation. The crosses on the left show

the capacity obtained with numerical simulations for a fully

connected network.

IV. BAND SOLUTIONS

In the previous analysis, we focused on “bump” states,
in which activity is localized in a grid pattern. An-
other possibility are partially localized solutions: “band”
states, where activity is localized along a single direction
in the elementary tile, and extends along a stripe in the
orthogonal direction.

In the binary model, these band states can be oriented
along an edge of the tile (Fig.6(b,f)), or along the diago-
nal of the tile (Fig.6(c,g)), or in a discrete multiplicity of
other orientations. Individual units “fire” along stripes
of the same orientation, with relative o↵sets. We can
study the propriety of some of these band states in the
w � f parameter space, to find that they are particu-
larly favored in regions of high coding level. Given the
connectivity range set by w, bump states are the global
minima of the free energy for low f , and one of the band
states (which one depends on ✓) becomes the minimum
for higher f . For example, for both square and hexagonal
grids, at small connectivity range w = 0.1, band states
have lower free energy than the bump state for coding lev-
els beyond 0.25, while for the larger connectivity range
w = 0.5, this happens for coding levels beyond 0.4. This
is intuitive, since for su�ciently large f a band state has
a shorter boundary between active and quiescent units
than a bump, and it is the length of the boundary that

raises the free energy above its minimum value. More-
over, we can study how these di↵erent states are sep-
arated by computing the size of the free-energy barrier
to cross to go from one state to another. The method to
compute this barrier is sketched in Fig.7(c) and explained
in more details in appendix D. In Fig.7(d) we show the
size of the barriers to cross to go from a “bump” state to
“band” states. On the range of coding levels where these
two kinds of states co-exist, the “bump” state is always
more robust for an hexagonal grid compare to a square
grid, as shown by the higher barrier size in an hexago-
nal grid (blue curve, from Bump to Band Edge or Band
Diag. state) compare to square grid (full red curve, from
Bump to Band Edge state).

A di↵erent behaviour is observed in the threshold-
linear network. In this case, the rigid symmetry imposed
by the 3-cosine interaction kernel makes the bump pat-
tern a global minimum. In the 2-cosine case, instead,
band state are stable solutions, corresponding to a macro-
scopic overlap with only one of the two cosines. We can
describe bands also with a 1D interaction kernel, with a
single cosine, and compare the storage capacity for band
patterns with the one for square and hexagonal grids. In
Fig.5, the green line shows the capacity for band patterns
as a function of the connectivity. For a densely connected
network, it is above that for square grids, and the barrier
methods indicates that these are only marginally stable
to collapsing into stripes. This is in line with the reduc-
tion of the capacity from one to two dimensions shown
in [17]. Interestingly, as soon as the emergence of a third
cosine is allowed the capacity is instead enhanced, sur-
passing the 1D kernel except for very low values of con-
nectivity density.

FIG. 6. Di↵erent solutions to the saddle point equations in the

binary model. Bumps (a,e) are stable at low f (f=0.2 in the

figure). Edge-oriented and diagonal bands are stable solutions

for the ✓ = 60° tile at higher f (e.g. f=0.4, f,g), but only the

former (b) are stable for ✓ = 90°̇. Uniform solutions (d,h) are

always unstable below the critical capacity.
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FIG. 7. Bump and band states in the binary model. Free-

energies of the bump and band states for hexagonal grids (a)

and square grids (b). (c) Free-energy barriers are given by

the di↵erence in free-energies between an unstable mixed-state

(band edge + bump shown here) and a metastable state (bump

state shown here). (d) Size of the free-energy barriers to cross

to go from the bump state to band states. w = 0.1, ↵ ! 0.

V. DISCUSSION

Our results indicate that, given appropriate condi-
tions, a neural population with recurrent connectivity
can e↵ectively store and retrieve many hexagonally pe-
riodic continuous attractors. This possibility suggests
that a regular grid code may not be restricted to repre-
sent only physical space; it could also express continuous
abstract relations between arbitrary features, at least if
they can be mapped to a two-dimensional space. This
would however require a system flexible enough to store
and retrieve uncorrelated grid representations. Our re-
sults show that this flexibility does not need, in princi-
ple, separate neural populations for separate represen-
tations, but can be achieved by a single local ensem-
ble, provided it can learn e↵ectively orthogonal repre-
sentations. Given the recent observation of non-spatial
coding – a consistently tuned response to the “position”
along a 1D non-spatial variable, sound frequency, during
a sound manipulation task – by neurons that qualify as
grid cells in a 2D spatial exploration task [11], it would
be interesting to know whether a similar selectivity can
be observed for a 2D non-spatial variable, as suggested
by indirect observations of hexagonal modulation [12].
Several important questions are left open for future in-
vestigation. First of all, if global remapping is possible
within a grid cell population, why has it not been ob-
served experimentally? Possibly, a remapping capacity
of grid cells may have been hidden by the fact that mul-
tiple mappings were only studied in simple, empty, flat
environments - and then they turned out to be the same,
modulo translations [3]. The hypothesis of a universal
grid, that shifts without deformation across an environ-
ment and from one environment to the other, faces severe

di�culties as soon as curvature is taken into considera-
tion. In curved environments, rigid translations are not
possible, and the geodesic transformations that partially
substitute for them do not leave field-to-field relations
unchanged, making a universal grid a priori impossible.
Nevertheless, natural environments show a wide range
of both positive and negative curvature, which does not
seem to pose any problem to the navigational skills of
rodents, or of other species. It is then conceivable that
the apparent universality of the grid pattern comes from
the experimental restriction to flat environments, which
all belong to the same, rather special, class of two dimen-
sional spaces with zero curvature, and that a richer grid
behavior is required in order to code for position in more
general spaces. The emergence of grid representations in
curved environments has been investigated with a model
based on single cell adaptation [15][16], which illustrates
the emergence of di↵erent regular patterns for distinct
ranges of curvature. Estimating the storage capacity
of recurrent networks expressing curved grids, however,
poses some challenges. Since shifting the grid pattern
along a curved surface moves individual fields by a di↵er-
ent amount, the relationships between grid units cannot
be reduced to the relationships between a single pair of
their fields. Long-range translational coherence becomes
impossible. Curved grids can be only partially coher-
ent, and whether this partial coherence is su�cient to
build stable attractors is an open problem [23]. A sec-
ond issue concerns the learning dynamics that sculpts
the grid attractors. What is the mechanism that leads
to the attractors of the recurrent network? Does a single
grid dominate it, in the case of flat environments? Can
self-organization be unleashed by the interplay between
the neural populations of mEC, including non-grid units,
and hippocampal place cells, aided by the dentate gyrus
[24]. Including the hippocampus may be needed also to
understand the distortion of the grid pattern, reported in
several experimental studies [4][7][8], that by disrupting
long-range order also weakens coherence. At the system
level, a finite storage capacity for the grid cell network
implies the possibility that medial Entorhinal Cortex, or
any other area in the brain [12] that is observed to in-
clude grid-like units, can serve context memory. This
would turn upside down the widely shared notion that
memory for the specific spatial features of each environ-
ment is only available downstream, in the hippocampus,
and conceptually reunite medial Entorhinal Cortex with
other regions of the mammalian temporal lobe, known
to be dedicated to their own flavour of memory function
[25].
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Appendix A: Mean field equations: Binary Model

The free-energy can be written, in the large N limit,
in terms of macroscopic quantities:

F =
↵�

2
r(f � q)� ↵

�
⌦(q,�) +

Z
µ(~x)⇢(~x) (A1)

�1

2

Z
d~xd~y ⇢(~x)K(|~x� ~y|)⇢(~y)

� 1

�

Z
d~x

Z
Dz ln[1 + e�z

p
↵r+�µ(~x)]

where � is an inverse temperature or noise level, and the
function ⌦(q,�) is given by

⌦(q,�) = 2
NX

k1=1

NX

k2=1

⇢
�(q � f2)

1/�k1,k2 � �(f � q)
(A2)

� ln [1� �k1,k2�(f � q)]

)

+
NX

k=1

⇢
�(q � f2)

1/�0,k � �(f � q)
� ln [1� �0,k�(f � q)]

+
�(q � f2)

1/�k,0 � �(f � q)
� ln [1� �k,0�(f � q)]

�
.

The order parameters minimizing the free energy func-
tional are the average activity ⇢(~x) (see main text) and

q =

Z
d~x

Z
Dz
h
1 + e��z

p
↵r��µ(~x)

i�2
(A3)

r = 4(q � f2)
NX

k1=1

NX

k2=1


1

�k1,k2

� �(f � q)

��2

+ 2(q � f2)
NX

k=1

(
1

�0,k
� �(f � q)

��2

+


1

�k,0
� �(f � q)

��2
)

(A4)

where � enforces the constraint
R
d~x⇢(~x) = f and �k1,k2

are the eigenvalues of the kernel K and are given by

�k1,k2 = w
J1(2

p
zk1,k2)p

zk1,k2

(A5)

zk1,k2 = w⇡

 
k21 +

✓
k2 � k1 cos ✓

sin ✓

◆2
!

where J1 is the Bessel function of the first kind of order 1.

In the text we focus on the limit of vanishing stochastic
noise � ! 1, and the term �(q�f), which remains finite
in such limit, can be identified with the parameter  of
the threshold-linear model, quantifying the reverberation
through the loops of the network of the quenched noise,
which is due to the interference of the other maps.

Appendix B: Mean field equations: Threshold-linear

Model

When an energy functions can be defined (with full or
in any case symmetric connectivity) the thermodynamics
of the system is dominated by the minima of the free
energy density

F = �T

⌧⌧Z
Dz ln Tr(h, h2)

��
� 1

2

X

�,l

|m�,l|2(B1)

�B(m)�
X

�,l

(m�,l)2 +mB0(m)� r0y0 + r1y1

+
↵d

2�

✓
ln[1� T0�(y0 � y1)]�

�y1
1� T0�(y0 � y1)

◆

where we have maintained a notation consistent with
[22] and [17], for example

Tr(h, h2) = k +

✓
⇡g0

2�

◆1/2

exp

✓
�g0

2
(h0 � h)2

◆

(
1 + erf

"
�g0

2

1/2

(h0 � h)

#)
(B2)

h =
X

�l

ml� · ⌘l� +B0(m) (B3)

�z
p

(�2Tor1)

h2 = r1 � r0 (B4)

1/g0 = 1/g � 2h2 (B5)

Dz =
1p
2⇡

e�z2/2dz, (B6)

while hh·ii denotes an average over the quenched noise
(the field centers in all other stored maps, distinct from
the one which is currently expressed); and B(x), together
with the gain g, can be used to constrain the mean activ-
ity and the sparsity of the activity pattern [22], analogous
to the parameter � in the binary model.
The minima are given, in the limit T ! 0, by the

saddle point equations

ml� = g0
⌧⌧

⌘l�

Z

h>Th
Dz(h� Th)

��
(B7)

m = g0
⌧⌧Z

h>Th
Dz(h� Th)

��
(B8)

y0 = g02
⌧⌧Z

h>Th
Dz(h� Th)2

��
(B9)

r0 =
↵T0

2

1� T0�(y0 � 2y1)/d

(1� T0�(y0 � y1)/d)
2 (B10)

y1 = g02
⌧⌧Z

h>Th
Dz(h� Th)2

��
(B11)

�T0g
0
⌧⌧Z

h>Th
Dz

��

r1 =
↵T0

2d

T0�y1

(1� T0�(y0 � y1)/d)
2 . (B12)
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Introducing the variables

⇢2 =
↵T 2

0 y0
d(1�  )2

(B13)

 = g0
T0

d

⌧⌧Z +

Dz

��
(B14)

we can write the free energy as a function of macroscopic
quantities

F = �g0

2

⌧⌧Z

h>Th
Dz(h� Th)2

��
+
X

�l

(ml�)2

2

+mb(m)�B(m) +
T0⇢2 d

2
(B15)

with now

g0 =
1

1
g � ↵T0

1� 
. (B16)

To calculate the storage capacity, we focus on the case
in which a single environment is retrieved by the network,

m1l > 0

m⇡l = 0, 8 ⇡ 6= 1,

although the analysis can be extended to the retrieval of
bump states that are localized in multiple environments.
Without loss of generality, we assume therefore that en-
vironment ⇡ = 1 is retrieved. With this assumption, and
introducing the two signal-to-noise ratios

vl =
ml

⇢
(B17)

w =
b(m)� Th

⇢
(B18)

that represent respectively the environment specific com-
ponent of the signal and the uniform background inhi-
bition acting on each unit, the saddle point equations
can then be reduced to a system of two equations in two
variables

E1(v, w) = A2
1(v, w)� d↵A3(v, w) = 0 (B19)

E2(v, w) = A1(v, w)

✓
d

gT0
�A2(v, w)

◆
�d↵A2(v, w) = 0

(B20)
where A1(w, v), A2(w, v) and A3(w, v) are the averages:

A1(w, v) =
1

v2T0

**
X

l

vl · ⌘l
Z +

Dz

 
w +

X

l

vl · ⌘l � z

!++

�
⌧⌧Z +

Dz

��
(B21)

A2(w, v) =
1

v2T0

**
X

l

vl · ⌘l
Z +

Dz

 
w +

X

l

vl · ⌘l � z

!++

(B22)

A3(w, v) =

**Z +

Dz

 
w +

X

l

vl · ⌘l � z

!2++

(B23)
Solutions to equations (B19) and (B20) give the minima
of the free energy that correspond to the retrieval of one
of the stored environments. E1(v, w) = 0 describes a
closed curve in the w � v plane, and these solutions are
the intersections with E2(v, w) = 0, which depends on
the gain g.
As the storage load ↵ = p/C increases, this closed

curve shrinks and eventually disappears. The value
↵ = ↵c at which the curve vanishes marks a phase tran-
sition: for ↵ > ↵c retrieval solutions do not exist. The
storage capacity ↵c can therefore be calculated by finding
the vanishing point of E1 = 0, and in this way one auto-
matically selects the optimal value of the gain g, which
therefore

Appendix C: Finite connectivity and noise

reverberation

Equations B19 and B20 can be extended to arbitrary
value of connectivity density C/N following the self-
consistent signal-to-noise analysis developed in [21]. This
gives

E1 = A2
2 �

✓
1 +

C

N

✓
(2�  ) 

(1�  )2

◆◆
d↵A3 = 0 (C1)

E2 =

✓
d

gT0
� d↵

C 

N(1�  )

◆
�A2 = 0 (C2)

These equations interpolate, as the free parameter C/N
varies, between the two limiting cases of a fully con-
nected network (C/N = 1) and the extremely diluted
case (C/N ! 0) studied in [26]. We see that the re-
verberation factor  enters in the equation for the stor-
age capacity as a correction on the loopless equation
A2

2 � d↵A3 = 0, modulated by the connectivity density
C/N , and that the lower the  , the higher the storage
capacity.
For the fully connected network this correction gives

 

1�  
=

NX

k=1

 k (C3)

which is the sum over all the k-loops contributions to the
reverberation of the noise.
Note, finally, that for ease of comparison with the bi-

nary model we have written in the main text

µ̄ = A2

r = A3. (C4)
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Appendix D: Free-energy barriers in the binary

model

Free-energy values for the di↵erent metastable states
are calculated using (A4) after order parameters have
been computed by solving the saddle-point equations.
These equations are solved iteratively, starting from
an initial condition for order parameters, and iterat-
ing the values of the order parameters until convergence
to fixed values. The free-energiy values of the di↵er-
ent metastable states are obtained by initializing ⇢(~x)
as ⇢Bp(~x) for Bump States (Fig.6(a,e)) and ⇢BaE(~x)
for Band Edge states (Fig.6(b,f)) or ⇢BaD(~x) for Band

Diagonal states (Fig.6(c,g)). In order to estimate the
size of the barrier that must be jumped over in order
to go from one state X to another state Y , we pro-
ceed as follows. The activity profile is initialized as
⇢k=0,z(~x) = z⇢X(~x) + (1 � z)⇢X(~x), with z chosen such
that ⇢k!+1,z(~x) = ⇢X(~x) and ⇢k!+1,z�✏(~x) = ⇢Y (~x)
for ✏ ⌧ z. When solving equations from such an initial
condition, the network state goes close to a saddle-point
lying at the boundary between the two basins of attrac-
tion associated to states X and Y , before sliding into
state X as shown in Fig.7(c). The size of the barrier is
then given by the di↵erence between the free-energy of
the saddle-point and that of the meta-stable state X.
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