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Probabilistic Schubert calculus
By Peter Bürgisser at Berlin and Antonio Lerario at Trieste

Abstract. We initiate the study of average intersection theory in real Grassmannians.
We define the expected degree edegG.k; n/ of the real Grassmannian G.k; n/ as the average
number of real k-planes meeting nontrivially k.n � k/ random subspaces of Rn, all of dimen-
sion n � k, where these subspaces are sampled uniformly and independently fromG.n � k; n/.
We express edegG.k; n/ in terms of the volume of an invariant convex body in the tangent
space to the Grassmannian, and prove that for fixed k � 2 and n!1,

edegG.k; n/ D degGC.k; n/
1
2
"kCo.1/;

where degGC.k; n/ denotes the degree of the corresponding complex Grassmannian and "k is
monotonically decreasing with limk!1 "k D 1. In the case of the Grassmannian of lines, we
prove the finer asymptotic

edegG.2; nC 1/ D
8

3�5=2
p
n

�
�2

4

�n
.1CO.n�1//:

The expected degree turns out to be the key quantity governing questions of the random enum-
erative geometry of flats. We associate with a semialgebraic set X � RPn�1 of dimension
n � k � 1 its Chow hypersurface Z.X/ � G.k; n/, consisting of the k-planes A in Rn whose
projectivization intersects X . Denoting N WD k.n � k/, we show that

E#.g1Z.X1/ \ � � � \ gNZ.XN // D edegG.k; n/ �
NY
iD1

jXi j

jRPmj
;

where each Xi is of dimension m D n � k � 1, the expectation is taken with respect to inde-
pendent uniformly distributed g1; : : : ; gm 2 O.n/ and jXi j denotes them-dimensional volume
of Xi .

1. Introduction

1.1. Motivation. Classical enumerative geometry deals with questions like “How many
lines intersect four lines in three-dimensional space in general position?” or, more generally,
“How many lines intersect four curves of degrees d1; : : : ; d4 in three-space in general posi-
tion?”
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2 Bürgisser and Lerario, Probabilistic Schubert calculus

The answer to this type of questions is provided by a beautiful, sophisticated machinery,
which goes under the name of Schubert calculus. The problem is reduced to a computation in
the cohomology ring of the Grassmann manifold: the set of lines intersecting a given line (or
curve) represents a codimension-one cycle (a Schubert variety) in the complex Grassmannian
GC.2; 4/ of 2-dimensional vector subspaces in C4 (i.e., lines in CP3), and one has to count the
number of points of intersection of four generic copies of this cycle. When counting complex
solutions, the answer to the first question is 2; for the second the answer is 2 � d1 � � � d4.

We refer to the survey [28] and any of the monographs [14, 17, 24, 35] for a treatment of
Schubert calculus.

Over the real numbers this approach fails – there is no generic number of real solutions,
which can already be seen in the basic problem of counting the real solutions to a polynomial
equation. Understanding even the possible outcomes for higher-dimensional versions of the
problem becomes increasingly complicated. A main question considered in real enumerative
geometry is whether the number of complex solutions can be realized over the reals, in which
case one speaks of a fully real problem, see Sottile [47, 48]. Schubert calculus is known to be
fully real [46,54]. Recently Finashin and Kharlamov [15] have identified a class of enumerative
problems for which one can get an analog of Schubert calculus over the reals, where solutions
are counted with signs (these are Schubert problems which are expressible in terms of what
in [15] is called Euler–Pontryagin ring).

The goal of our work is to study enumerative problems over the reals in a probabilistic
way, by answering questions like:

Question 1.1. On average, how many real lines intersect four random lines in RP3?

This approach offers a broad point of view to the subject, by seeking typical properties of
random arrangements. As we will see, the theory we will present will blend ideas from (real)
algebraic geometry with integral geometry and the theory of random polytopes.

Classical Schubert calculus deals with the intersection of Schubert varieties in general
position. Our paper is a first attempt at developing such a theory over the reals from the prob-
abilistic point of view. By probabilistic Schubert calculus we understand the investigation of
the expected number of points of intersection of real Schubert varieties in random position. We
confine our study to special Schubert varieties, thus ignoring the more complicated flag condi-
tions. For the sake of simplicity, we also restrict our presentation to the codimension-one case,
i.e., intersection of hypersurfaces in the real Grassmannian, even though our methods work in
more generality, as pointed out in different remarks throughout the text. It may be interesting to
note that many results in Schubert calculus, going back to Schubert and Pieri, were first shown
in the special cases of codimension one, for GC.2; nC 1/, and for special Schubert varieties,
before reaching complete generality. In that sense, our paper fits in nicely with that tradition.
We plan to treat the case of higher codimension in a future publication.

1.2. Expected degree of real Grassmannians. Generalizing Question 1.1, the number
of lines meeting 2n � 2 generic projective subspaces of dimension n � 2 in CPn equals the
degree of the complex Grassmann manifold GC.2; nC 1/, which is known to be the Catalan
number 1

n

�
2n�2
n�1

�
and asymptotically, when n!1, behaves as

(1.1) degGC.2; nC 1/ D
4n�1

n3=2
p
�
.1CO.n�1//:
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Bürgisser and Lerario, Probabilistic Schubert calculus 3

Similarly, the degree of GC.k; n/ equals the number of k-planes in Cn meeting nontrivially
k.n � k/ generic subspaces, all of dimension n � k.

For the study of the corresponding problem over the reals, we can introduce the following
probabilistic setup. Recall that for every .k; n/ there is a unique probability distribution on the
real Grassmannian G.k; n/, which is invariant under the action of O.n/; we call this distribu-
tion the uniform distribution. A random k-dimensional linear subspace of Rn is obtained by
sampling from this distribution.

Definition. We define the expected degree of the real Grassmannian G.k; n/ as the
average number edegG.k; n/ of real k-planes meeting nontrivially k.n � k/ many random,
real, independent subspaces of Rn, all of dimension n � k.

More specifically, we define the special Schubert variety †.k; n/ � G.k; n/ as the set of
k-planes in Rn intersecting a fixed linear subspace V of dimension n � k nontrivially. Then
†.k; n/ is a codimension-one real algebraic subset of G.k; n/, and the expected degree equals

edegG.k; n/ D E#.g1†.k; n/ \ � � � \ gN†.k; n//;

whereN WD k.n � k/ D dimG.k; n/, and the expectation is taken over independent uniformly
distributed g1; : : : ; gN 2 O.n/.

The expected number of lines meeting four random lines in RP3 equals

edeg.2; 4/ D 1:7262 : : :

(the exact value is not known, see Proposition 6.7 for an explicit expression involving an iter-
ated integral). More generally, for the Grassmannian of lines, we prove the following asymp-
totic (Theorem 6.8), which should be compared with its complex analogue (1.1).

Theorem. The expected degree of the Grassmannian of lines equals

edegG.2; nC 1/ D
8

3�5=2
p
n

�
�2

4

�n
.1CO.n�1//:

For the general case, we define �k WD EkXk, whereX 2 Rk is a standard normal Gauss-
ian k-vector. (It is known that �k �

p
k, which is asymptotically sharp; see (2.15).) We show

the following explicit upper bound:

edegG.k; n/ �
jG.k; n/j

jRPk.n�k/j
�

�r
�

2

�k
p
k

�N
:

Note that this specializes to edegG.2; n/ � .�
2

4
/n�2. Moreover, we prove that (in the logarith-

mic scale) this upper bound is asymptotically sharp, deducing the following (see Theorem 6.5).

Theorem. For fixed k, as n!1; the following asymptotic holds:

log edegG.k; n/ D kn log

 p
��.kC1

2
/

�.k
2
/

!
�O.logn/:

A general, guiding theme of our work is to compare the number of complex solutions
with the expected number of real solutions. With this regard, we obtain the following.
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4 Bürgisser and Lerario, Probabilistic Schubert calculus

Corollary. For fixed k � 2, we have

edegG.k; n/ D degGC.k; n/
1
2
"kCo.1/ for n!1,

where "k is monotonically decreasing with limk!1 "k D 1. (See Corollary 6.6 for an explicit
expression for "k .)

This means that for large n, the expected degree of the real Grassmannian exceeds the
square root of the degree of the corresponding complex Grassmannian, and 1

2
."k � 1/measures

the deviation in the exponent. If also k !1, we have an asymptotic square root law,

edegG.k; n/ D degGC.k; n/
1
2
Co.1/;

saying that the expected number of solutions is roughly the square root of the number of com-
plex solutions.

1.3. Random incidence geometry over the reals. The expected degree of Grassman-
nians turns out to be the key quantity governing questions of random incidence geometry, as
we discuss now. Given semialgebraic subsets X1; : : : ; XN � RPn�1 of dimension n � k � 1,
where N D k.n � k/, we will say that they are in random position if they are randomly trans-
lated by elements g1; : : : ; gN sampled independently from the orthogonal groupO.n/ with the
uniform distribution. The problem of counting the number of k-planes whose projectivization
intersects X1; : : : ; XN in random position can be geometrically described as follows.

We associate with a semialgebraic subset X � RPn�1 of dimension n � k � 1 the Chow
hypersurface

Z.X/ WD ¹k-planes in G.k; n/ whose projectivization intersects Xº � G.k; n/;

which is the real analog of the associated Chow variety in complex algebraic geometry. The
special real Schubert variety †.k; n/ is obtained by taking for X a linear space. In the follow-
ing, we denote by jX j the .n � k � 1/-dimensional volume of the set of smooth points of X .

A translation of X by an element g 2 O.n/ corresponds to a translation of the associated
Chow hypersurface Z.X/ by the induced action of the same element on G.k; n/. In the geom-
etry of the Grassmannian, the random incidence problem is equivalent to the computation of
the average number of intersection points of random translates of the sets Z.X1/; : : : ; Z.XN /.

The following theorem decouples the problem into the computation of the volume of
X1; : : : ; XN and the determination of the expected degree of the Grassmann manifold (see
Theorem 4.10). Note that over the complex numbers, the same decoupling result is a conse-
quence of the ring structure of the cohomology of the Grassmannian (compare Section 2.5).

Theorem. The average number of k-planes whose projectivization intersects semialge-
braic sets X1; : : : ; XN of dimension n � k � 1 in random position in RPn�1 equals

E#.g1Z.X1/ \ � � � \ gNZ.XN // D edegG.k; n/ �
NY
iD1

jXi j

jRPn�k�1j
:(1.2)

Example 1.2 (Lines intersecting four random curves in three-space). Let us consider
the problem of counting the number of lines intersecting four random curves in RP3. A possible
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Bürgisser and Lerario, Probabilistic Schubert calculus 5

model for random algebraic varieties, which has attracted a lot of attention over the last
years [7, 18–21, 32, 33], is the so-called Kostlan model, which we describe now for the case
of space curves. First let us recall that a random Kostlan polynomial f 2 RŒx0; : : : ; x3�.d/ is
defined as

f .x/ D
X
j˛jDd

�˛x
˛0
0 � � � x

˛3
3 ;

where the �˛ are independent centered gaussian variables with variance dŠ
˛0Š���˛3Š

. This model
is invariant under the action of O.4/ by change of variables (there are no preferred points
or directions in projective space). A random Kostlan curve is defined as the zero set of two
independent Kostlan polynomials

C D ¹f .x/ D g.x/ D 0º:

It is well known [30] that the expectation of the length of C equals .degf degg/
1
2 jRP1j. By

using this fact in the above theorem, applied to four random independent curves C1; : : : ; C4,
and combined with the O.4/-invariance of the model, it is easy to show that the expected
number of lines intersecting the four curves equals

E#¹lines intersecting C1; : : : ; C4º D edegG.2; 4/ �
4Y
iD1

.degfi deggi /
1
2 :

Observe that the randomness in this problem does not come from putting the curves in random
position, but rather from sampling them from a distribution which is invariant under random
translations: this allows to exchange the order of the expectations without changing the result.
(More generally a similar argument can be applied to other invariant models and in higher
dimensions.)

1.4. Iterated kinematic formula and volume of Schubert varieties. A key technical
ingredient of our work is a generalization of the kinematic formula for homogeneous spaces
in Howard [26] to multiple intersections (Theorem A.2). This generalization is novel, but the
proof is technically inspired by [26], so that we have moved it to Appendix A.5. What one
should stress at this point is that there is no “exact” kinematic formula for the Grassmann
manifold G.k; n/, meaning that the evaluation of kinematic integrals depends on the class
of submanifolds we consider. This is in sharp contrast with the case of spheres or projective
spaces, and is essentially due to the fact that the stabilizerO.k/ �O.n � k/ of the action is too
small to enforce transitivity at level of tangent spaces. In the context of enumerative geometry,
however, one can still produce an explicit formula, thanks to the observation that the orthogonal
group acts transitively on the tangent spaces of Chow hypersurfaces (and in particular Schubert
varieties).

We use the resulting formula for the derivation of (1.2). In practice this requires the
computation of the volume of the associated Chow hypersurfaces (Theorem 3.19), as well as
the evaluation of an average angle between them (see Section 1.5).

By means of classical integral geometry in projective spaces, in Proposition 4.8 we prove
that

jZ.X/j

j†.k; n/j
D

jX j

jRPdimX j
:
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6 Bürgisser and Lerario, Probabilistic Schubert calculus

We note this is analogous to the corresponding result over C; see (2.8). The computation of
the volume of the special Schubert variety†.k; n/ requires more work, and constitutes a result
of independent interest (Theorem 4.2), due to its possible applications in numerical algebraic
geometry [8].

Theorem. The volume of the special Schubert variety †.k; n/ satisfies

j†.k; n/j

jG.k; n/j
D � �

jRPk�1j
jRPkj

�
jRPn�k�1j
jRPn�kj

;

where the volume jG.k; n/j of the Grassmann manifold is given by (2.14).

This result shows a striking analogy with the corresponding result over C; see (2.7).

Remark 1.3. A known result in integral geometry, [40, equation (17.61)], gives the
measure of the set of projective .k � 1/-planes meeting a fixed spherically convex set Q
in RPn�1. A natural idea would be to apply this result to the "-neighborhood Q" in RPn�1

around a fixed .n � k � 1/-plane and to consider the limit for "! 0 (after some scaling).
However, this argument is flawed since neighborhoods Q" are not spherically convex!

Finally, let us mention that the integral geometry arguments can also be applied to the
classical setting over C. There, the situation is considerably simpler, since the scaling constant
˛C.k;m/ appearing in the corresponding integral geometry formula (Theorem 4.14) can be
explicitly determined. On the other hand, we do not have a closed formula for its real ver-
sion ˛.k;m/, which is captured by the expected degree of Grassmannians. As a consequence,
it turns out that classical results of enumerative geometry over C can be obtained via the com-
putation of volumes and the evaluation of integrals. We illustrate this general observation by
the computation of the degree of GC.k; n/ in the proof of Corollary 4.15.

Remark 1.4. It is interesting to observe that over the complex numbers the degree of
GC.k; n/ can be obtained in two different ways:

(1) intersecting the Grassmannian in the Plücker embedding with N D k.n � k/ generic
hyperplanes,

(2) intersecting N many generic copies of the Schubert variety †C.k; n/ inside GC.k; n/

itself.

The second method is equivalent to intersecting the image of the Plücker embedding with N
very nongeneric hyperplanes.

By contrast, over the real numbers the two procedures give very different answers:

(1) averaging the intersection of the real Grassmannian in the Plücker embedding with N
random hyperplanes gives jG.k;n/j

jRPN j (by classical integral geometry),

(2) averaging the intersection of N random copies of †.k; n/ produces an intrinsic answer
and gives the expected degree.

1.5. Link to random convex bodies. The proof of our results on the expected degree
employs an interesting and general connection between expected absolute random determinants
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Bürgisser and Lerario, Probabilistic Schubert calculus 7

and random polytopes that are zonoids (Vitale [55]). This allows to express the average angle
between random Schubert varieties in terms of the volume of certain convex bodies, for which
we coined the name Segre zonoids C.k;m/, see Section 5.1. These are zonoids of matrices
in Rk�m that are invariant under the action of the group O.k/ �O.m/. Via the singular value
decomposition, the Segre zonoid fibers over a zonoidD.k/ of singular values in Rk (if k � m)
and its volume can be studied this way. Via a variant of Laplace’s method [16] we prove that,
asymptotically for m!1 and up to a subexponential factor eo.m/, the volume of C.k;m/
equals the volume of the smallest ball including C.k;m/. The volume of this ball is not the
same, but related to what one gets when carrying out the analogous argument for computing
the degree of the complex Grassmann manifold.

1.6. Related work. A square root law (in the form of an equality) was for the first
time discovered by Kostlan [30] and Shub and Smale [44], who found a beautiful result on
the expected number of real solutions to random polynomial systems. This work has strongly
inspired ours. Paul Breiding [5] has recently discovered results in the same spirit for the
(expected) number of (real) eigenvalues of tensors. Related to this work, the second author of
the present paper, together with S. Basu, E. Lundberg and C. Peterson have recently obtained
results on counting real lines on random real hypersurfaces [3], obtaining a similar square root
law (already conjectured by the first author of the current paper). When the zero set of a ran-
dom system of polynomial equations is not zero-dimensional, its size may be measured either
in terms of volume or Euler characteristic, which was investigated by the first author of the
current paper in [7]. We refer to the papers [11, 12] that investigate the average number of real
solutions in different contexts. More recently, the subject of random algebraic geometry, meant
as the study of topological properties of random real algebraic sets, has become very popular.
Asymptotic square root laws have been found for Betti numbers of Kostlan hypersurfaces by
Gayet and Welschinger [19–21] (and in general for invariant models by the second author of
the current paper, Fyodorov and Lundberg [18]); similar results for Betti numbers of inter-
section of random quadrics have been obtained by the second author of the current paper and
Lundberg [32, 33].

Acknowledgement. We are very grateful to Frank Sottile who originally suggested this
line of research. We thank Paul Breiding, Kathlén Kohn, Chris Peterson, and Bernd Sturmfels
for discussions. We also thank the anonymous referees for their comments.

2. Preliminaries

2.1. Real Grassmannians. Suppose thatE is a Euclidean vector space of dimension n.
We have an inner product on the exterior algebraƒ.E/ D

L1
kD0ƒ

k.E/, which in coordinates
is described as follows. Let e1; : : : ; en be an orthonormal basis ofE and put eI WD ei1^� � �^eik
for I D ¹i1; : : : ; ikº with i1 < � � � < ik . Then the eI form an orthonormal basis of ƒk.E/,
where I runs over all subsets of Œn� with jI j D k. Hence, for aI 2 R,



X

U

aI eI





2 DX
I

jaI j
2:

Let vi D
Pp
jD1 xij ej with xij 2 R. Then v1 ^ � � � ^ vk D

P
I det.XI /eI , where XI is the
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8 Bürgisser and Lerario, Probabilistic Schubert calculus

k � k submatrix obtained from X D .xij / by selecting the columns indexed by the numbers
in I . Hence

(2.1) kv1 ^ � � � ^ vkk
2
D

X
I

jdet.XI /j2 D det.hvi ; vj i/1�i;j�k;

where the second equality is the well-known Binet–Cauchy identity. (Clearly, the above quan-
tity does not change if we substitute the vi by

Pk
jD1 gij vj with .gij / 2 SLk .) If we have

wi D
Pp
jD1 yij ej with yij 2 R, we obtain for the scalar product between two simple k-vectors

(compare [31])

hv1 ^ � � � ^ vk; w1 ^ � � � ^ wki D det.hvi ; wj i/1�i;j�k :

Let GC.k; E/ denote the set of oriented k-planes in E. Let L 2 GC.k; E/ and let
v1; : : : ; vk be an oriented orthonormal basis of E. Then v1 ^ � � � ^ vk is independent of the
choice of the basis. Via the (injective) Plücker embedding

GC.k; E/! ƒk.E/; L 7! v1 ^ � � � ^ vk

we can identify GC.k; E/ with the set of norm-one, simple k-vectors in ƒ.E/. We note that
the orthogonal group O.E/ acts isometrically on ƒ.E/ and restricts to the natural action on
GC.k; E/ that, for g 2 O.E/, assigns to an oriented k-planeL its image gL. By this identifica-
tion,GC.k; E/ is a smooth submanifold ofƒk.E/ and inherits anO.E/-invariant Riemannian
metric from the ambient euclidean space. We denote by jU j the volume of a measurable subset
of GC.k; E/.

The real Grassmann manifold G.k;E/ is defined as the set of k-planes in E. We can
identifyG.k;E/with the image ofGC.k; E/ under the quotient map qWS.ƒ.E//! P .ƒ.E//
from the unit sphere ofƒ.E/, which forgets the orientation. The Riemannian metric onG.k;E/
is defined as the one for which qWGC.k; E/! G.k;E/ is a local isometry. (Note that this map
is a double covering.)

The uniform probability measure on G.k;E/ is defined by setting

Prob.V / WD
jV j

jG.k;E/j
for all measurable V � G.k;E/.

We just writeG.k; n/ WD G.k;Rn/ andGC.k; n/ WD GC.k;Rn/, whereE D Rn has the stan-
dard inner product.

The Plücker embedding allows to view the tangent space TAG.k;E/ at A 2 G.k; n/ as
a subspace of ƒk.E/. While this is sometimes useful for explicit calculations, it is often help-
ful to take a more invariant viewpoint. We canonically have TAG.k; n/ D Hom.A;A?/, com-
pare [25, Lecture 16]. To a homomorphism ˛ 2 Hom.A;A?/ there corresponds the tangent
vector

Pk
iD1 a1 ^ � � � ^ ai�1 ^ ˛.ai / ^ aiC1 ^ � � � ^ ak , whereA D a1 ^ � � � ^ ak . Moreover,

if g�WG.k;E/! G.k;E/ denotes the action corresponding to g 2 O.E/, then its derivative
DAg�WTAG.k;E/! Tg.A/G.k;E/ at A 2 G.k;E/ is the map

Hom.A;A?/! Hom.g.A/; g.A/?/; ˛ 7! g ı ˛ ı g�1:

It is easy to verify that the norm of a tangent vector ˛ 2 Hom.A;A?/ in the previously defined
Riemannian metric equals the Frobenius norm of ˛.
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Bürgisser and Lerario, Probabilistic Schubert calculus 9

Remark 2.1. It is known that (see [31, Section 6.4]) that for .k; n/ ¤ .2; 4/, there is
a unique (up to multiples) O.n/-invariant Riemannian metric on GC.k; n/; moreover for all
k; n there is a unique (up to multiples) O.n/-invariant volume form and consequently a unique
O.n/-invariant probability distribution on GC.k; n/.

2.2. Regular points of semialgebraic sets. We refer to [4] as the standard reference
for real algebraic geometry and recall here some not so well-known notions from real algebraic
geometry. Let M be a smooth real algebraic variety, e.g., Rn or a real Grassmannian, and let
S �M be a semialgebraic subset. A point x 2 S is called regular of dimension d if x has
an open neighborhood U in M such that S \ U is a smooth submanifold of U of dimen-
sion d . The dimension of S can be defined as the maximal dimension of regular points in S
(which is well defined since regular points always exist). The points which fail to be regular
are called singular. We denote the set of singular points by Sing.S/ and say that S is smooth if
Sing.S/ D ;. Moreover, we write Reg.S/ WD S n Sing.S/. The following is stated in [10, Sec-
tion 4.2] without proof, referring to [34]. A proof can be found in [50].

Proposition 2.2. The set Sing.S/ is semialgebraic and dim Sing.S/ < dimS . In par-
ticular, S ¤ Sing.S/.

In the sequel it will be convenient to say that generic points of a semialgebraic set S
satisfy a certain property if this property is satisfied by all points except in a semialgebraic
subset of positive codimension in S . (For example, in view of the previous proposition, generic
points of a semialgebraic set S are regular points.)

2.3. Complex Grassmannians. The complex Grassmann manifoldGC.k; n/ is defined
as the set of complex k-planes in Cn. It can be identified with its image under the (com-
plex) Plücker embedding �WGC.k; n/! P .ƒ.Cn//, that is defined similarly as over R in Sec-
tion 2.1. We note that the unitary group U.n/ acts isometrically on ƒ.Cn/ and restricts to the
natural action on GC.k; n/ that, for g 2 U.n/, assigns to a complex k-plane L its image gL.
Since the image of � is Zariski closed, we can view GC.k; n/ as a complex projective variety,
which inherits an U.n/-invariant Hermitian metric from the ambient space. The real part of
this Hermitian metric defines a Riemannian metric on GC.k; n/. We denote by jV j the volume
of a measurable subset V of GC.k; n/. The degree of GC.k; n/ as a projective variety is well
known, see Corollary 4.15.

Let H � GC.k; n/ be an irreducible algebraic hypersurface in GC.k; n/. It is known
that the vanishing ideal of H in the homogeneous coordinate ring of GC.k; n/ is generated by
a single equation in the Plücker coordinates; cf. [22, Chapter 3, Proposition 2.1]. We shall
call its degree the relative degree rdeg H of H . This naming is justified by the following
observation. The image �.H / of H under the Plücker embedding � is obtained by intersect-
ing �.GC.k; n// with an irreducible hypersurface of degree rdeg H and hence, by Bézout’s
theorem,

(2.2) deg �.H / D rdeg H � degGC.k; n/:

For dealing with questions of incidence geometry, we introduce the Chow variety

ZC.X/ � GC.k; n/
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10 Bürgisser and Lerario, Probabilistic Schubert calculus

associated with an irreducible complex projective varietyX � CPn�1 of dimension n � k � 1.
One defines ZC.X/ as the set of k-dimensional linear subspaces A � Cn such that their pro-
jectivization satisfies P .A/ \X ¤ ;. Is it known that Z.X/ is an irreducible algebraic hyper-
surface in GC.k; n/; moreover rdegZC.X/ D degX ; cf. [22, Chapter 3, Section 2.B]. If we
choose X to be a linear space, then ZC.X/ is a special Schubert variety of codimension one
that we denote by †C.k; n/ (notationally ignoring the dependence on X ).

2.4. Degree and volume. A fundamental result in complex algebraic geometry due
to Wirtinger states that degree and volume of an irreducible projective variety X � CPn are
linked via

(2.3) jX j D degX � jCPmj; where m D dimX I

see [38, Section 5.C] or [43, Chapter VIII, Section 4.4]. This is a key observation, since the
interpretation of the degree as a volume ratio paves the way for arriving at analogous results
over the reals.

Equation (2.3), combined with the fact that the Plücker embedding is isometric, implies

(2.4) jGC.k; n/j D degGC.k; n/ � jCPN j;

where N WD dimGC.k; n/ D k.n � k/. If X � CPn�1 is an irreducible projective variety of
dimension n � k � 1, we obtain for the Chow hypersurface ZC.X/ by the same reasoning,
using (2.2),

(2.5) jZC.X/j D deg �.ZC.X// � jCPN�1j D rdegZC.X/ � degGC.k; n/ � jCPN�1j:

In particular, taking for X a linear space, we get for the special Schubert variety

(2.6) j†C.k; n//j D degGC.k; n/ � jCPN�1j:

Dividing this equation by (2.4), we obtain for the volume of †C.k; n/ (cf. [8])

(2.7)
j†C.k; n/j

jGC.k; n//j
D
jCPN�1j
jCPN j

D
N

�
D � �

jCPk�1j
jCPkj

�
jCPn�k�1j
jCPn�kj

:

We remark that this formula can also by obtained in a less elegant way by calculus only (see
first version of [8]). In Theorem 4.2 we derive a real analogue of (2.7), based on the calculation
of the volume of the tube around the special Schubert variety †.k; n/.

We can easily derive more conclusions from the above: dividing equations (2.5) and (2.6),
we get

(2.8)
jZC.X/j

j†C.k; n//j
D rdegZC.X/ D degX D

jX j

jCPdimX j
:

In Proposition 4.8 we derive an analogous result over R.

2.5. Intersecting hypersurfaces in complex Grassmannians. For the sake of com-
parison, we describe the classical intersection theory in the restricted setting of intersecting
hypersurfaces of GC.k; n/.

Brought to you by | UCL - University College London
Authenticated

Download Date | 5/5/18 1:21 AM



Bürgisser and Lerario, Probabilistic Schubert calculus 11

Many results in enumerative geometry over C can be obtained from the following well-
known consequence of Bézout’s theorem. In Theorem 4.10 we provide a real analogue of
this result.

Theorem 2.3. Let H1; : : : ;HN be irreducible algebraic hypersurfaces in GC.k; n/,
where N WD k.n � k/. Then we have

#.g1H1 \ � � � \ gNHN / D degGC.k; n/ � rdeg H1 � � � rdeg HN

for almost all .g1; : : : ; gN / 2 .GLn/N . In particular, if X1; : : : ; XN � Pn.C/ are irreducible
projective subvarieties of dimension n � k � 1, then

#.g1ZC.X1/ \ � � � \ gNZC.XN // D degGC.k; n/ � degX1 � � � degXN

for almost all .g1; : : : ; gN / 2 .GLn/N .

Proof. A general result by Kleiman [27] implies that g1H1; : : : ; gNHN meet transver-
sally, for almost all g1; : : : ; gn. Recall the Plücker embedding �WGC.k; n/ ,! P .ƒkCn/. Note
that �.Hi / is obtained by intersecting �.GC.k; n// with an irreducible hypersurface Hi in
P .ƒkCn/ of degree rdeg Hi . We thus have

�.g1H1/ \ � � � \ �.g1HN / D �.GC.k; n// \ g1H1 \ � � � \ gNHN

and the assertion follows from Bézout’s theorem.

2.6. Convex bodies. For the following see [41]. By a convex body K we understand
a nonempty, compact, convex subset of Rd with nonempty interior. The support function hK
of K is defined as

hK.u/ WD max¹hx; ui j x 2 Kº for u 2 Rd .

One calls ¹x 2 Rd j hx; ui D hK.u/º the supporting hyperplane in the direction u 2 Rd n ¹0º.
The support function hK is a positively homogeneous, subadditive function that, by the hyper-
plane separation theorem, characterizes K as follows:

x 2 K ” hx; ui � hK.u/ for all u 2 Rd :

If 0 2 K, one defines the radial function rK of K by

rK.u/ WD max¹t � 0 j tu 2 Kº for u 2 Rd n ¹0º.

The radius kKk of K is defined as the maximum of the function rK on the unit sphere Sd�1.

Lemma 2.4. LetK � Rd be a convex body containing the origin. Then the radial func-
tion rK and the support function hK of K have the same maximum on Sd�1. Moreover, a di-
rection u 2 Sd�1 is maximizing for rK if and only if u is maximizing for hK .

Proof. Let r denote the maximum of rK . Then K � B.0; r/ and hence hK � hB.0;r/,
which implies max hK � max hB.0;r/ D r . For the other direction let u 2 Sd�1. Then we
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12 Bürgisser and Lerario, Probabilistic Schubert calculus

have hx; ui � hK.u/ for all x 2 K. In particular, setting x WD rK.u/u, which lies in K, we
obtain rK.u/ D hrK.u/u; ui � hK.u/, and consequently max rK � max hK . The claim about
the maximizing directions follows easily by tracing our argument.

We recall also the following useful fact [41, Corollary 1.7.3].

Proposition 2.5. Let K � Rd be a convex body and u 2 Rd n ¹0º. Then the support
function hK of K is differentiable at u if and only if the intersection of K with the supporting
hyperplane of K in the direction u contains only one point x. In this case x D .rhK/.u/. In
particular, if S denotes the set of nonzero points at which hK is smooth, we haverhK.S/� àK.

The set Kd of convex bodies in Rd can be turned into a metric space by means of the
Hausdorff metric. The Hausdorff distance of the sets K;L 2Kd is defined by

ı.K;L/ WD min¹t � 0 j K � LC tBd and L � K C tBd º;

where Bd denotes the closed unit ball andC the Minkowski addition.
We introduce now special classes of convex bodies that will naturally arise in our work.

A zonotope is the Minkowski sum of finitely many line segments. A zonoid is obtained as the
limit (with respect to the Hausdorff metric) of a sequence of zonotopes. It is easy to see that
closed balls are zonoids.

2.7. The zonoid associated with a probability distribution. The following is from
Vitale [55]. A random convex body X is a Borel measurable map from a probability space
to Kd . Suppose that the radius kXk of X has a finite expectation. Then one can associate with
X its expectation EX 2Kd , which is characterized by its support function as follows:

(2.9) hEX .u/ D EhX .u/ for all u 2 Rd .

Suppose now that Y is a random vector taking values in Rd . We associate with Y the zonoid
CY WD EŒ0; Y � in Rd , which is defined if EkY k <1. In the following we assume that Y
and �Y have the same distribution. By (2.9), the support function h of CY is given by

(2.10) hCY .u/ D
1

2
Ejhu; Y ij for u 2 Rd .

Example 2.6. Suppose that Y 2 Rd is standard Gaussian. The support function h1
of CY satisfies by (2.10)

h1.e1/ D
1

2
Ejhe1; Y ij D

1

2
EjY1j D

1
p
2�
:

The function h1 is O.d/-invariant and hence

h1.u/ D
kuk
p
2�
:

It follows that the associated zonoid CY is the ball 1p
2�
Bd with radius 1p

2�
and centered at

the origin.
The random variable QY WD Y

kY k
is uniformly distributed in the sphere Sd�1 and QY and

kY k are independent. Hence the support function h2 of C QY satisfies

h2.u/ D
1

2
E
jhu; Y ij

kY k
D

1

�d
h1.u/:
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Bürgisser and Lerario, Probabilistic Schubert calculus 13

Hence the zonoid associated with QY equals the ball 1
�d

1p
2�
Bd . Therefore, if we sample uni-

formly in the sphere of radius �d around the origin, the associated zonoid is the same as for the
standard normal distribution, namely 1p

2�
Bd .

Let MY 2 Rd�d be the random matrix whose columns are i.i.d. copies of Y . Our goal is
to analyze the expectation of the absolute value of the determinant ofMY . The following result
due to Vitale [55] is crucial for our analysis in Section 5.

Theorem 2.7. If Y is a random vector taking values in Rd such that EkY k <1, then

EjMY j D dŠjCY j:

More information on this can be found in Schneider’s book [41, Section 3.5], where
CY is called the zonoid whose generating measure is the distribution of Y . (This is under
the assumption that Y 2 Sd�1.) More results in the spirit of Theorem 2.7 can be found in
[41, Section 5.3].

2.8. Various volumes. In order to express the volume of orthogonal groups, etc., we
introduce the multivariate Gamma function �k.a/, defined by

�k.a/ WD

Z
A>0

e� trA.detA/a�
kC1
4 dA

for <.a/ > 1
2
.k � 1/, where the integral is over the cone of positive definite k � k real sym-

metric matrices. This clearly generalizes the classical Gamma function: �1.a/ D �.a/. It is
known [37, Theorem 2.1.12] that

�k.a/ D �
k.k�1/
4 �.a/�.a � 1

2
/ � � ��.a � 1

k�1
2/:

The orthogonal group

O.k/ WD ¹Q 2 Rk�k j QTQ D 1º

is a compact smooth submanifold of Rk�k . Its tangent space at 1 is given by the space of
skew-symmetric matrices

T1O.k/ D ¹A 2 Rk�k j AT C A D 0º;

on which we define the inner product hA;Bi WD 1
2

tr.ATB/ for A;B 2 T1O.k/. We extend
this to a Riemannian metric on O.k/ by requiring that the left-multiplications are isometries
and call the resulting metric the canonical one. (Note that this differs by a factor 1

2
from the

metric on O.k/ induced by the Euclidean metric on Rk�k .) Then, for v in the unit sphere
Sk�1 WD ¹x 2 Rk j kxk D 1º, the orbit map O.k/! Sk�1, Q 7! Qv is a Riemannian sub-
mersion.

Similarly, ifG.k; n/ is given the Riemannian metric defined above, it is easy to verify that
the quotient map O.n/! G.k; n/ is a Riemannian submersion. We also define a Riemannian
metric on the Stiefel manifold

S.k;m/ WD ¹Q 2 Rm�k j QTQ D 1º for 1 � k � m
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14 Bürgisser and Lerario, Probabilistic Schubert calculus

such that O.m/! S.k;m/, Q D Œq1; : : : ; qm� 7! Œq1; : : : ; qk� is a Riemannian submersion,
where qi denotes the i th column of Q. The following is well known [37, Theorem 2.1.15,
Corollary 2.1.16]:

(2.11) jO.k/j D
2k�

k2Ck
4

�.k
2
/�.k�1

2
/ � � ��.1

2
/
D
2k�

k2

2

�k.
k
2
/
; jS.k;m/j D

2k�
km
2

�k.
m
2
/
:

In particular, we note that

jSk�1j D
2�

k
2

�.k
2
/
:

The unitary group

U.k/ WD ¹Q 2 Ck�k
j Q�Q D 1º

is a compact smooth submanifold of Ck�k . Its tangent space at 1 is given by the space of
skew-Hermitian matrices

T1U.k/ D ¹A 2 Ck�k
j A� C A D 0º:

We define an inner product on T1U.k/ by setting for A D Œaij �; B D Œbij �,

(2.12) hA;Bi WD
X
i

=.ai i /=.bi i /C
1

2

X
i¤j

aij Nbij D
X
i

=.ai i /=.bi i /C
X
i<j

aij Nbij ;

where =.z/ denotes the imaginary part of z 2 C. We extend this to a Riemannian metric on
U.k/ by requiring that the left-multiplications are isometries and call the resulting metric
the canonical one. It is important to realize that this metric is essentially different from the
Riemannian metric on U.k/ that is induced by the Euclidean metric of Ck�k . (The reason
is the contribution in (2.12) from the imaginary elements on the diagonal; in the analogous
situation of the orthogonal group, the Riemannian metrics differ by a constant factor only.)
A useful property of the canonical metric (whose induced volume form is proportional to the
Haar measure) is that for v in the unit sphere S.Ck/ of Ck , the orbit map U.k/! S.Ck/,
Q 7! Qv is a Riemannian submersion. This implies jU.k/j D jU.k � 1/j � jS.Ck/j and we
obtain from this

(2.13) jU.k/j D
2k�

k2Ck
2Qk�1

iD1 i Š
:

We also state the following well-known formulas:

(2.14) jG.k; n/j D
jO.n/j

jO.k/j � jO.n � k/j
; jGC.k; n/j D

jU.n/j

jU.k/j � jU.n � k/j
:

2.9. Some useful estimates. We define �k WD EkXk, whereX 2 Rk is a standard nor-
mal Gaussian k-vector. It is well known that

�k D

p
2�.kC1

2
/

�.k
2
/

:(2.15)
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Bürgisser and Lerario, Probabilistic Schubert calculus 15

For example, �2 D
q
�
2

. For the following estimate see [9, Lemma 2.25]:

(2.16)

s
k

k C 1
�
p
k � �k �

p
k:

Hence �k is asymptotically equal to
p
k.

Lemma 2.8. For fixed k and n!1 we have

log jG.k; n/j D �
1

2
kn lognC

1

2
kn log.2e�/CO.logn/;

log jGC.k; n/j D �kn lognC kn log.e�/CO.logn/;

log degGC.k; n/ D kn log k CO.logn/:

Proof. By (2.14) we have jG.k; n/j D jO.n/j
jO.k/j�jO.n�k/j

. From (2.11) we get

jO.n/j

jO.n � k/j
D 2k�

kn
2
Ck�k

2

4 �

nY
jDn�kC1

1

�.j
2
/
:

Consequently, using the asymptotic log�.x/ D x log x � x CO.log x/ as x !1, we get

log
jO.n/j

jO.n � k/j
D
1

2
kn log� � k log�.n

2
/CO.logn/

D
1

2
kn log� � k

�
n

2
log
�
n

2

�
�
n

2

�
CO.logn/

D
kn

2
log� �

1

2
kn lognC

1

2
kn log 2C

1

2
knCO.logn/;

from which the assertion on log jG.k; n/j follows.
For jGC.k; n/j we argue similarly. Using (2.13), we get

jU.n/j

jU.n � k/j
D 2k�knC

k�k2

2

k�1Y
iD0

1

.n � k C i/Š
:

and the assertion on log jGC.k; n/j follows.
The third assertion follows from the formula for degGC.k; n/ in Corollary 4.15.

3. Integral geometry of real Grassmannians

3.1. Joint density of principal angles between random subspaces. Let A ' Rk and
B ' R` be two subspaces of Rn with corresponding orthonormal bases .a1; : : : ; ak/ and
.b1; : : : ; b`/. By slightly abusing notation we denote byA D Œa1; : : : ; ak� andB D Œb1; : : : ; b`�
also the matrices with the columns ai and bj , respectively. By the singular value decomposition
theorem, there exist U 2 O.k/ and V 2 O.`/ such that

(3.1) U TATBV D

"
D 0

0 0

#
;
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16 Bürgisser and Lerario, Probabilistic Schubert calculus

whereD D diag.�1; : : : ; �r/, r D min¹k; `º; we adopt the convention 1 � �1 � � � � � �r � 0.
We recall that the principal angles 0 � �1 � � � � � �r � �

2
between A and B are defined by

�i D cos �i for i D 1; : : : ; r . Clearly, they are independent of the choice of the orthonormal
bases. We note that m WD dim.A \ B/ equals the number of zero principal angles between A
and B .

Lemma 3.1. There exist orthonormal bases .a1; : : : ; ak/ and .b1; : : : ; b`/ of A and B ,
respectively, such that ai D bi for i � m and hai ; bj i D ıij cos �i for all i and j .

Proof. PutC WD A \ B . IfC D 0, then the columns of the matricesAU andBV satisfy
the desired property. In the general case, we apply this argument to the orthogonal complement
of C in A and B .

The following theorem is a generalization of [1, equation (3)] and can be found in
[2, Appendix D.3]. We present a different and considerably shorter proof in Appendix A.1.

Theorem 3.2. Let k � ` and k C ` � n. We fix an `-dimensional subspace B � Rn

and sample A 2 G.k; n/ with respect to the uniform distribution. Then the joint probability
density of the principal angles 0 � �1 � � � � � �k �

�
2

between A and B is given by

(3.2) p.�1; : : : ; �k/ D ck;l;n

kY
jD1

.cos �j /l�k.sin �j /n�l�k
Y
i<j

..cos �i /2 � .cos �j /2/;

where

ck;l;n WD
2k�

k2

2 �k.
n
2
/

�k.
k
2
/�k.

l
2
/�k.

n�l
2
/
:

Example 3.3. For a fixed 2-plane B � R4, the joint density of the principal angles
0 � �1 � �2 �

�
2

between B and a uniform A 2 G.2; 4/ is given by

p.�1; �2/ D 2..cos �1/2 � .cos �2/2/

and we can easily verify thatZ �
2

0

Z �
2

�1

2..cos �1/2 � .cos �2/2/ d�2 d�1 D 1:

More generally, the joint density p.�1; �2/ of the principal angles 0 � �1 � �2 � �
2

between
a random 2-plane in G.2; nC 1/ and a fixed subspace of RnC1 of dimension n � 1 is given by

p.�1; �2/ D .n � 1/.n � 2/.cos �1/n�3.cos �2/n�3..cos �1/2 � .cos �2/2/:

3.2. Subvarieties of Grassmannians with transitive action on tangent spaces. The
orthogonal groupO.n/ acts transitively and isometrically onG.k; n/. For an element g 2O.n/,
let g�WG.k;n/!G.k;n/ be the corresponding action andDAg�WTAG.k;n/! Tg�.A/G.k;n/

its derivative at A 2 G.k; n/. See Section 2.2 for the definition of generic points.

Brought to you by | UCL - University College London
Authenticated

Download Date | 5/5/18 1:21 AM



Bürgisser and Lerario, Probabilistic Schubert calculus 17

Definition 3.4. Let Z � G.k; n/ be a semialgebraic set. We say that Z has transitive
action on its tangent spaces if, for generic regular points A1; A2 of Z, there exists g 2 O.n/
such that g�.A1/ D A2 and DA1g�.TA1Z/ D TA2Z.

Example 3.5. Consider the subvariety� WD ¹A 2G.k; n/ jRk�1 �A�RkC1º, which
is isomorphic to a real projective line. For determining the tangent space of � at A we can
assume without loss of generality that A D Rk . Then the tangent vectors ˛ 2 Hom.A;A?/
to � are characterized by ˛.Rk�1/ D 0 and ˛.ek/ 2 RekC1, so that TA� D Rek ˝ ekC1.
This implies that � has transitive action on its tangent spaces.

Tangent spaces of Grassmannians have a product structure: in fact, we have a canonical
isometry (cf. Section 2.1)

TAG.k; n/ ' Hom.A;A?/ ' A˝ A?

and note that dimA D k and dimA? D n � k.
We will focus on a special type of hypersurfaces, whose normal spaces exploit the product

structure of TAG.k; n/.

Definition 3.6. A semialgebraic subset M � G.k; n/ of codimension one is called
a coisotropic hypersurface, if, for generic points A 2M, the normal spaceNAM is spanned by
a rank one vector (see [22, Section 4.3] and [29]).

Lemma 3.7. A coisotropic hypersurface has transitive action on its tangent spaces.

Proof. Let A1; A2 2M be regular points. By assumption, there are unit length vectors
ui 2 A and vi 2 A? for i D 1; 2 such thatNA1M D Ru1˝v1 andNA2M D Ru2˝v2. There
is g 2 O.n/ such that g.A1/ D A2, g.u1/ D u2, and g.v1/ D v2. Let g�WG.k; n/! G.k; n/

denote the multiplication with g. ThenDA1g� mapsNA1M toNA2M, and hence it maps TA1M
to TA2M (compare Section 2.1).

Remark 3.8. Proposition 4.6 below implies that codimension-one Schubert varieties
(and more generally Chow hypersurfaces) have transitive actions on their tangent space. One
can show that the same is true for all Schubert varieties. This shows that the method of this
paper in principle extends to include random intersections of general Schubert varieties, as we
plan to discuss in a future work.

The integral geometry formula to be discussed involves a certain average scaling factor
between random subspaces, that we introduce next.

3.3. Relative position of real subspaces. The relative position of two subspaces V;W
of a Euclidean vector space E can be quantified by a volume like quantity that we define now.
This quantity is crucial in the study of integral geometry in homogeneous spaces (see [26]).

3.3.1. Relative position of two real subspaces. Suppose that E is a Euclidean vector
space of dimension n. We have an induced inner product on ƒ.E/, cf. Section 2.1. Let V;W
be linear subspaces of E of dimensions k;m, respectively, such that k Cm � n. We define the
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18 Bürgisser and Lerario, Probabilistic Schubert calculus

following quantity:

(3.3) �.V;W / WD kv1 ^ � � � ^ vk ^ w1 ^ � � � ^ wmk;

where v1; : : : ; vk and w1; : : : ; wm are orthonormal bases of V and W , respectively. (This is
clearly independent of the choice of the orthonormal bases.) Note that if k D m and oriented
versions of V andW are interpreted as simple k-vectors inƒk.E/, then �.V;W / is the sine of
the angle between V andW (viewed as vectors in the Euclidean spaceƒk.E/). So the quantity
�.V;W / in a sense measures the relative position of V;W . We can make this more precise by
expressing �.V;W / in terms of the principal angles between V and W .

Lemma 3.9. The following is true:

(1) �.W; V / D �.V;W /.

(2) �.V;W / D sin �1 � � � sin �k if k � m and the �i are the principal angles between V
and W .

(3) 0 � �.V;W / � 1.

(4) We have �.V;W / D 0 if and only if V \W ¤ 0 and �.V;W / D 1 if and only if V
and W are orthogonal.

Proof. The first assertion is obvious. For the second we use the well-known fact (cf.
[8, Corollary 2.4]) that there is an orthonormal basis e1; f1; : : : ; ek; fk; g1; : : : ; gn�2k of E
such that V is the span of e1; : : : ; ek and

W D span¹e1 cos �1 C f1 sin �1; : : : ; ek cos �k C fk sin �k; g1; : : : ; gm�kº:

This implies the second claim. The remaining assertions follow immediately from this.

3.3.2. Relative position of two complex subspaces. We briefly discuss how to extend
the previous discussion to complex spaces. Suppose that F is a Hermitian vector space with
n D dimC F and V;W � F are C-subspaces of C-dimensions k andm, respectively. We note
that an analogue of Lemma 3.9 holds. As in (3.3) we define

�C.V;W / WD kv1 ^ � � � ^ vk ^ w1 ^ � � � ^ wmk;

where v1; : : : ; vk and w1; : : : ; wm are orthonormal bases of V and W , respectively. On the
other hand, we can view F as a Euclidean vector space of dimension 2n with respect to the
induced inner product hv;wiR WD <hv;wi. Then v1; iv1; : : : ; vk; ivk is an orthonormal basis
of V , seen as an R-vector space (note that v and iv are orthogonal for all v 2 F ). We conclude
that

�C.V;W / D �.V;W /
2:

3.3.3. Average relative position of two subspaces in a tensor product. We assume
now that E is a product E D E1 ˝E2 of Euclidean vector spaces Ei such that

hx ˝ y; x0 ˝ y0i D hx; x0ihy; y0i

for x; x0 2 E1, y; y0 2 E2. The product of orthogonal groups K WD O.E1/ �O.E2/ acts iso-
metrically on E. Clearly, K is a compact group with a uniform invariant measure.
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Bürgisser and Lerario, Probabilistic Schubert calculus 19

If V andW are given linear subspaces ofE, we measure their average relative position by
moving V and W with uniformly random transformations k1; k2 2 K and taking the average
value of �.k1V; k2W /. Of course, it suffices to move one of the subspaces.

Definition 3.10. Let V and W be linear subspaces of E. The average scaling factor
of V and W is defined as

N�.V;W / WD Ek2K�.kV;W /;

taken over a uniform k 2 K D O.E1/ �O.E2/.

From the definition it is clear that N�.V;W / only depends on the K-orbits of V and W ,
respectively.

Remark 3.11. In many cases, the subspaces V andW factor themselves into subspaces
as V D V1 ˝ V2 andW D W1 ˝W2. In this case, it is clear that N�.V;W / only depends on the
dimensions of the involved spaces Vi ; Wi ; Ei , i D 1; 2.

3.4. Intersecting random semialgebraic subsets of Grassmannians. In this subsec-
tion we provide tailor made formulations of general results in Howard [26] in the situation of
real Grassmannians.

3.4.1. Intersecting two random semialgebraic sets. We begin with a general obser-
vation. Let A 2 G.k; n/ be the subspace spanned by the first k standard basis vectors, that is,
A WD e1^� � �^ek 2 G.k; n/, and note that the tangent spaceE WD TAG.k; n/ ' A˝A? can be
seen as a tensor product of vector spaces. The stabilizer subgroup ofA inO.n/ can be identified
withK WD O.A/�O.A?/ and acts on TAG.k; n/. Recall thatDAg�WTAG.k; n/! TAG.k; n/

denotes the derivative of the action g�WG.k; n/! G.k; n/ induced by g 2 O.n/. Moreover,
NAM � TAG.k; n/ denotes the normal subspace of a semialgebraic subset M � G.k; n/ at
a regular point A.

Lemma 3.12. Suppose that M is a semialgebraic subset of G.k; n/ with transitive
action on its tangent spaces. Let Bi 2M be generic regular points of M and gi 2 O.n/ such
that Bi is mapped to A for i D 1; 2. Then DB1g1�.NB1M/ and DB2g2�.NB1M/ are sub-
spaces of TAG.k; n/ that lie in the same K-orbit.

Proof. There is h 2 O.n/ such that hB1 D B2 andDB1h� maps TB1M to TB2M, since
M has transitive action on its tangent spaces. We have

g1 D kg2h;

where k WD g1.g2h/�1 2 K. Moreover,

DB1g1�.TB1M/ D DAk�.DB2g2�.DB1h�.TB1M///

D DAk�.DB2g2�.TB2M//:

Therefore, the derivativeDAk�, which can be seen as an element ofK, mapsDB2g2�.NB2M/

to DB1g1�.NB1M/.
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20 Bürgisser and Lerario, Probabilistic Schubert calculus

We can now define an important quantity that enters the integral geometry formula to be
discussed.

Definition 3.13. Let M and N be semialgebraic subsets of G.k; n/ with transitive
action on their tangent spaces. We pick a regular point B of M, a regular point C of N ,
and g; h 2 O.n/ such that g.B/ D A and h.C / D A. Then we define

N�.M;N / WD N�.DBg�.NBM/;DCh�.NCN //:

It is important to note that N�.M;N / does not depend on the choice of the regular points
B;C and the maps g; h and hence is well defined. This is a consequence of Lemma 3.12.

Remark 3.14. Suppose that the normal spacesNBM of M at regular pointsB of M are
tensor products NBM D VB ˝WB , with subspaces VB � B and WB � B? of a fixed dimen-
sion �1 and �2, respectively. Similarly, we assume that at regular points C of N we have
NCN D V 0C ˝W

0
C with subspaces V 0C � C and W 0C � C

? of fixed dimensions �1 and �2,
respectively. Then N�.M;N / only depends on the dimensions �1; �2; �1; �2 and k; n; see
Remark 3.11. For instance, this assumption is satisfied if we are considering semialgebraic
subsets of the projective space RPn�1 D G.1; n/.

The following result follows by combining Howard [26, Theorem 3.8] with Lemma 3.7.

Theorem 3.15. Let M and N be semialgebraic subsets of G.k; n/ of codimension �
and �, respectively, with transitive action on their tangent spaces. Then we have

Eg2O.n/jM \ gN j D �.M;N / �
1

jG.k; n/j
� jMj � jN j:

Here, jM \ gN j denotes the volume in the expected dimension k.n � k/ � � � �, and jMj
and jN j denote the volumes in the dimensions of M and N , respectively.

Remark 3.16. Howard [26, Theorem 3.8] states his result under the assumption of two
smooth compact submanifolds ofG.k; n/ (possibly with boundary). However, the compactness
assumption is not needed so that we can apply his result to the regular loci Reg.M/ and Reg.N /

of M and N , respectively. For this, note that the singular locus Sing.M/ has dimension strictly
smaller than M (see Section 2.2). Moreover,

Eg2G jM \ gN j D Eg2G jReg.M/ \ g Reg.N /j

since, almost surely, the dimension of the difference .M \ gN / n .Reg.M/ \ g Reg.N // is
strictly smaller than the typical dimension of M \ gN .

Example 3.17. Here we study a typical application of Theorem 3.15 in the special case
G.1; n/ D RPn�1. It is clear that any semialgebraic subset M of G.1; n/ has transitive action
on its tangent spaces. Let m WD dim M. Applying Theorem 3.15 to M and N WD RPn�m�1,
we obtain

Eg2O.n/#.M \ gRPn�m�1/ D � �
1

jG.1; n/j
� jMj � jRPn�m�1j

where the average scaling factor � WD �.M;N / only depends on m and n; see Remark 3.14.
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In particular, this gives for M D RPm,

Eg2O.n/#.RPm \ gRPn�m�1/ D � �
1

jG.1; n/j
� jRPmj � jRPn�m�1j;

the left-hand side of which clearly equals one. Solving this for � and plugging it in the previous
equation gives the well-known formula (compare [9, A.55])

(3.4) Eg2O.n/#.M \ gRPn�m�1/ D
jMj

jRPmj
:

3.4.2. Intersecting many random coisotropic hypersurfaces. The previous discus-
sion extends to the situation of intersecting many semialgebraic sets; we focus here on the
special case of intersecting coisotropic hypersurfaces in the Grassmannian, which is particu-
larly simple. The general case is discussed in the Appendix.

Let E be a Euclidean vector space of dimension n. Let V1; : : : ; Vs be linear subspaces of
the dimensions m1; : : : ; ms , respectively, such that

Ps
jD1mj � n. We define the quantity

(3.5) �.V1; : : : ; Vs/ WD kv11 ^ � � � ^ v1m1 ^ � � � ^ vs1 ^ � � � ^ vsmsk;

where vj1; : : : ; vjmj are orthonormal bases of Vj . (This is clearly independent of the choice
of the orthonormal bases.) Note that �.V1; : : : ; Vs/ � 1. In the special case where mj D 1 for
all j , we can interpret �.V1; : : : ; Vs/ as the volume of the parallelepiped spanned by the unit
vectors v11; : : : ; vs1. In order to deal with the coisotropic case, we introduce the following
definition.

Definition 3.18. For k;m � 1 we define the (real) average scaling factor ˛.k;m/ as

˛.k;m/ WD Ek.u1 ˝ v1/ ^ � � � ^ .ukm ˝ vkm/k;

where uj 2 S.Rk/ and vj 2 S.Rm/, for 1 � j � km, are independently and uniformly chosen
at random.

Note that ˛.k;m/ is nothing but the generalization to the case of many coisotropic
submanifolds of the quantity �.M;N / introduced in Definition 3.13. It has the special prop-
erty that in the coisotropic case, it does not depend on the choice of the hypersurfaces; compare
Remark 3.14.

We will need the following result in the spirit of Theorem 3.15 about intersecting codi-
mension many coisotropic hypersurfaces in G.k; n/.

Theorem 3.19. Let H1; : : : ;HN be coisotropic hypersurfaces of the real Grassmann-
ian G.k; n/, where N WD k.n � k/. Then we have

E.g1;:::;gN /2O.n/N #.g1H1 \ � � � \ gNHN /dg1 � � � dgN

D ˛.k; n � k/ � jG.k; n/j �

NY
iD1

jHi j

jG.k; n/j
:

This theorem is a consequence of a generalized Poincaré formula in homogeneous spaces,
stated as Theorem A.2 in Appendix A.5. Its statement and proof is very similar to [26, Theo-
rem 3.8]. Since we have been unable to locate this result in the literature, we provide a proof in
the Appendix.
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22 Bürgisser and Lerario, Probabilistic Schubert calculus

4. Probabilistic enumerative geometry

4.1. Special Schubert varieties. By the special real Schubert variety associated with
a linear subspace B 2 G.n � k; n/ we understand the subvariety

�.B/ WD ¹A 2 G.k; n/ j A \ B ¤ 0º:

If the dependence on B is not relevant, which is mostly the case, we write †.k; n/ WD �.B/.
The Schubert cell1) associated with B is the open subset

e.B/ WD ¹A 2 G.k; n/ j dim.A \ B/ D 1º

of�.B/. It is a well-known fact that e.B/ is the regular locus of�.B/, e.g., see [36,57]. More-
over, e.B/ is a hypersurface in G.k; n/. Its normal spaces can be described by the following
result, which is a special case of [45, Section 2.7].

Lemma 4.1. Let A 2 e.B/ and let a1; a2; : : : ; ak be an orthonormal basis of A such
that A \ B D Ra1. Moreover, let .AC B/? D Rf with kf k D 1. Then ˛ 2 Hom.A;A?/
lies in the normal space NA�.B/ if and only if ˛.a1/ 2 Rf and ˛.ai / D 0 for i > 1. In other
words, f ^ a2 ^ � � � ^ ak spans the normal space NA�.B/, when interpreted as a subspace
of ƒkRn as in Section 2.1.

4.2. Volume of special Schubert varieties. We can determine now the volume of the
special Schubert varieties †.k; n/. It is remarkable that the result is completely analogous to
the corresponding result (2.7) over C.

Theorem 4.2. The volume of the special Schubert variety †.k; n/ satisfies

j†.k; n/j

jG.k; n/j
D
�.kC1

2
/

�.k
2
/
�
�.n�kC1

2
/

�.n�k
2
/
D � �

jRPk�1j
jRPkj

�
jRPn�k�1j
jRPn�kj

:

Proof. The isometry G.k; n/! G.n � k; n/, A 7! A? maps �.B/ to �.B?/. There-
fore, we may assume that k � n

2
without loss of generality.

The proof relies on a general principle. LetM be a compact Riemannian manifold, letH
be a smooth hypersurface of M , and let K be a nonempty compact subset of H . We define the
"-tube T ?.K; "/ of K in M by

T ?.K; "/ WD ¹expx.�/ j x 2 K; � 2 NxH; k�k � "º;

where expx WTxM !M denotes the exponential map of M at x and NxH is the (one-dimen-
sional) orthogonal complement of the tangent space TxH in TxM ; compare [9, Section 21.2]
and [49]. Let m WD dimH . The m-dimensional volume jKj of K can be computed from the
.mC 1/-dimensional volumes of the tubes T ?.K; "/ as follows (see [23]):

(4.1) jKj D lim
"!0

1

2"
jT ?.K; "/j:

1) We observe, as pointed out by an anonymous referee, that in general e.B/ is not a topological cell, but
instead a vector bundle over a product of Grassmannians, see [57, Theorem 2.1].
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We shall apply this formula to a Schubert cell H D e.B/ for a fixed B 2 G.n � k; n/ in the
Grassmann manifold M D G.k; n/ and K belonging to an increasing family of compact sets
exhausting e.B/ (see below).

Let us denote by �1; �2WG.k; n/! R the functions giving, respectively, the smallest
and the second smallest principal angle between A 2 G.k; n/ and the fixed B . We note that
e.B/ D ¹A 2 G.k; n/ j �1.A/ D 0º. For 0 < ı < �

2
, we consider the following compact sub-

set of e.B/:
e.B/ı WD ¹A 2 G.k; n/ j �1.A/ D 0; �2.A/ � ıº:

Note that e.B/ı2 � e.B/ı1 if ı1 < ı2 and e.B/ D
S
ı>0 e.B/ı . Therefore, we have

j�.B/j D je.B/j D lim
ı!0
je.B/ı j:

Combining this with (4.1), we can write the volume of the Schubert variety as the double limit

(4.2) j�.B/j D lim
ı!0
je.B/ı j D lim

ı!0
lim
"!0

1

2"
jT ?.e.B/ı ; "/j:

We need the following technical result, whose proof will be provided in Appendix A.2.

Lemma 4.3. In the above situation, we have for 0 < " � ı < �
2

that

T ?.e.B/ı ; "/ D ¹A 2 G.k; n/ j �1.A/ � "; �2.A/ � ıº:

Let p.�1; : : : ; �k/ denote the joint density of the (ordered) principal angles �1 � � � � � �k
betweenA 2 G.k; n/ andB , as in Theorem 3.2. Due to Lemma 4.3 we can write for " � ı < �

2

that

jT ?.e.B/ı ; "//j

jG.k; n/j
D Prob¹A 2 G.k; n/ j �1.A/ � "; �2.A/ � ıº

D

Z
R.";ı/

p.�/ d�;

where Prob refers to the uniform distribution on G.k; n/ and

R."; ı/ WD

²
� 2 Rk j 0 � �1 � � � � � �k �

�

2
; 0 � �1 � "; ı � �2

³
:

Thus, from (4.2) we see that

j�.B/j

jG.k; n/j
D
1

2
lim
ı!0

lim
"!0

1

"

Z
R.";ı/

p.�/ d�;

and we have reduced the problem to the evaluation of the last limit. We have

lim
ı!0

lim
"!0

1

"

Z
R.";ı/

p.�/ d� D lim
ı!0

lim
"!0

1

"

Z "

0

�Z
�1�ı��2������k�

�
2

p.�/ d�2 � � � d�k

�
d�1

D lim
ı!0

Z
0�ı��2������k�

�
2

p.0; �2; : : : ; �k/ d�2 � � � d�k

D

Z
0��2������k�

�
2

p.0; �2; : : : ; �k/ d�2 � � � d�k :
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24 Bürgisser and Lerario, Probabilistic Schubert calculus

Theorem 3.2 on the joint density p gives

p.0; �2; : : : ; �k/ D ck;n�k;n �

kY
jD2

.cos �j /n�2k
kY

jD2

.1 � .cos �j /2/

�

Y
2�i<j�k

..cos �i /2 � .cos �j /2/

D
ck;n�k;n

ck�1;n�kC1;n
� Qp.�2; : : : ; �k/;

where Qp.�2; : : : ; �k/ is the joint density of the principal angles between a random .k � 1/-plane
and a fixed .n � k � 1/-plane in Rn. We conclude that

j�.B/j

jG.k; n/j
D
1

2

ck;n�k;n

ck�1;n�k�1;n
D
�.kC1

2
/

�.k
2
/
�
�.n�kC1

2
/

�.n�k
2
/
;

where the last equality follows by a tedious calculation after plugging in the formulas for the
constants ck;n�k;n and ck�1;n�k�1;n from Theorem 3.2.

4.3. Chow hypersurfaces. We generalize now the definition of special Schubert vari-
eties of codimension one. Let X � RPn�1 be a semialgebraic subset of dimension n � k � 1.
We associate with X the set of .k � 1/-dimensional projective subspaces of RPn�1 that inter-
sect X . We interpret this as a subset of G.k; n/ and define

Z.X/ WD ¹A 2 G.k; n/ j P .A/ \X ¤ ;º:

In analogy with the situation over C, we call Z.X/ the Chow hypersurface associated with X .
(The fact that Z.X/ is a hypersurface, i.e., a semialgebraic subset of codimension one, will
be proved in Lemma 4.5.) We note that Z.X/ D �.B/ if X is projective linear and B the
corresponding linear space.

Example 4.4. Let X � RP3 be the real twisted cubic, i.e., the image of the map

RP1 ! RP3; .s W t / 7! .s3 W s2t W st2 W t3/:

We claim that Z.X/ is not an algebraic subset of G.2; 4/. For seeing this, we intersect the
affine part

Xaff WD ¹.t; t
2; t3/ j t 2 Rº

of X with the open subset U WD ¹Lu1u2v1v2 j .u1; u2; v1; v2/ 2 R4º � G.2; 4/ of lines

Lu1u2v1v2 WD ¹.0; u1; u2/C s.1; v1; v2/ j s 2 Rº:

We have

Xaff \ U ¤ ; ” there exists t 2 R such that t2 � v1t � u1 D 0; t3 � v2t � u2 D 0:

The right-hand condition is equivalent to v22 C 4u2 � 0, res D 0, where

res WD u1v21v2 � u2v
3
1 � u

3
1 C 2u

2
1v2 � 3u1u2v1 � u1v

2
2 C u2v1v2 C u

2
2 D 0

is the resultant of the above quadratic and cubic equation. Intersecting now with the 2-plane
u2 D v2 D 0 gives ¹.u2; v2/ 2 R2 j v22 C 4u2 � 0º, which is not algebraic.
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It is essential that the tangent spaces of Chow hypersurfaces coincide with the tangent
spaces of closely related special Schubert varieties. We postpone the somewhat technical proof
to Appendix A.3.

Lemma 4.5. The Chow hypersurfaceZ.X/ � G.k; n/ is semialgebraic of codimension
one; if X is compact, then Z.X/ is compact and if X is connected, then Z.X/ is connected.
Moreover, for generic points A 2 Z.X/ the following is true: the intersection P .A/ \X con-
sists of one point only; let us denote this point by p; then p is a regular point of X and, denot-
ing by B � Rn the linear space of dimension n � k corresponding to the tangent space TpX ,
we have

(4.3) TAZ.X/ D TA�.B/:

The following result makes sure that we can apply the methods from integral geometry
to Chow hypersurfaces.

Proposition 4.6. Chow hypersurfaces are coisotropic and hence have transitive action
on their tangent spaces. In particular, this applies to special Schubert varieties of codimen-
sion one.

Proof. For the case of codimension-one special Schubert varieties, the assertion follows
from Lemma 4.1. The assertion on Chow hypersurfaces is a consequence of Lemma 4.5.

Remark 4.7. Special Schubert varieties of higher codimension are defined by

�.B;m/ WD ¹A 2 G.k; n/ j dim.A \ B/ � mº;

where B is an `-dimensional subspace such that k C ` � n � m � `. The codimension of
�.B;m/ equalsm.nCm � k � `/. For incorporating touching conditions, one can extend the
definition of the Chow hypersurface and study higher associated semialgebraic sets,

Zm.X/ WD ¹A 2 G.k; n/ j there exists p 2 Reg.X/ such that dimTpX \ Tp.P .A// � mº:

This is done in [22, Section 3.2, Section 4.3], [51], and [29] for complex projective varieties X
in the case dimX D n � k � 1Cm, where Zm.X/ typically is a hypersurface. Note that
Z0.X/ D Z.X/. The proof of Proposition 4.6 generalizes in a straightforward way to show
that �.B;m/ and Zm.X/ have transitive action on their tangent spaces.

As an application, we derive the following result that relates the volume of a semialge-
braic subset X � RPn�1 of dimension n � k � 1 with the volume of the associated Chow
hypersurface Z.X/ � G.k; n/. (This is analogous to equation (2.8) holding over C.)

Proposition 4.8. Let X be a semialgebraic subset of RPn�1 of dimension n � k � 1.
Then we have

jZ.X/j

j†.k; n/j
D

jX j

jRPdimX j
:

Proof. By equation (3.4) we can express the volume ratio jX j=jRPdimX j as the expec-
tation Eg2O.n/#.X \ gRPk/. Consider now the subvariety

� WD ¹A 2 G.k; n/ j Rk�1 � A � RkC1º
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26 Bürgisser and Lerario, Probabilistic Schubert calculus

from Example 3.5, which has transitive action on its tangent spaces. For almost all g, we
have a finite intersection X \ gRPk D ¹p1; : : : ; pd º. On the other hand, A 2 g� implies
A � gRkC1, hence P .A/ \X D ¹p1; : : : ; pd º. Therefore, we have for almost all g,

#.X \ gRPk/ D #.Z.X/ \ g�/;

and it remains to determine the expectation of the right-hand side.
The Chow hypersurface Z.X/ has transitive action on its tangent spaces by Proposi-

tion 4.6. Applying Theorem 3.15 to Z.X/ and �, we obtain

Eg2O.n/#.Z.X/ \ g�/ D �.Z.X/;�/ �
1

jG.k; n/j
� jZ.X/j � j�j:

Applying this formula to a linear space X yields

(4.4) Eg2O.n/#.†.k; n/ \ g�/ D �.†.k; n/;�/ �
1

jG.k; n/j
� j†.k; n/j � j�j:

However, it is clear that the left-hand side equals one. According to Definition 3.13, the average
scaling factor �.Z.X/;�/ is defined in terms of tangent (or normal) spaces of �.Z.X// and�.
Taking into account Lemma 4.5, we see that

�.Z.X/;�/ D �.†.k; n/;�/;

hence we can solve for this quantity and plugging this into (4.4) yields the assertion.

4.4. Random incidence geometry. As already indicated in the introduction, we study
the following problem. Fix semialgebraic subsetsX1; : : : ; XN �RPn�1 of the same dimension
dimXi D n� k � 1, where 0 < k < n and N WD k.n� k/. We ask how many .k � 1/-dimen-
sional projective linear subspaces intersect all random translations of the X1; : : : ; Xk.n�k/.
More specifically, the task is to determine the expectation E#.g1Z.X1/ \ � � � \ gNZ.XN //
with respect to independent uniformly distributed gi 2 O.n/. In the case where all Xi are
linear subspaces, we call the answer the expected degree of G.k; n/.

Definition 4.9. The expected degree of G.k; n/ is defined as the average number of
intersection points of N D k.n � k/ many random copies of †.k; n/, i.e.,

edegG.k; n/ WD E#.g1†.k; n/ \ � � � \ gN†.k; n//

with respect to independent uniformly distributed gi 2 O.n/.

We note that edegG.1; n/ D 1. In Theorem 6.5 we will provide an asymptotically sharp
upper bound on edegG.k; n/.

Theorem 3.19 combined with the fact that †.k; n/ is coisotropic implies (recall that
˛.k; n � k/ was defined in Definition 3.18)

edeg.G.k; n// D ˛.k; n � k/ � jG.k; n/j �
�
j†.k; n/j

jG.k; n/j

�k.n�k/
(4.5)

D ˛.k; n � k/ � jG.k; n/j �

�
�.kC1

2
/

�.k
2
/

�.n�kC1
2

/

�.n�k
2
/

�k.n�k/
;

where the last line follows from Theorem 4.2. Combining Theorem 3.19 with Proposition 4.6
and Proposition 4.8, we obtain a real version of Theorem 2.3.

Brought to you by | UCL - University College London
Authenticated

Download Date | 5/5/18 1:21 AM



Bürgisser and Lerario, Probabilistic Schubert calculus 27

Theorem 4.10. Let X1; : : : ; XN be semialgebraic subsets of RPn�1 of dimension
n � k � 1, where N WD k.n � k/. Then we have

E#.g1Z.X1/ \ � � � \ gNZ.XN // D edegG.k; n/ �
NY
iD1

jXi j

jRPn�k�1j

with respect to independent uniformly distributed g1; : : : ; gN 2 O.n/.

This result allows to decouple a random incidence geometry problem into a volume com-
putation in RPn�1 and the determination of the expected degree of the Grassmann manifold
(the “linearized” problem).

4.5. Classical Schubert calculus revisited. In Definition 3.18 we defined the real
average scaling factor ˛.k;m/. By following the reasonings in Section 3.3.2, it is natural to
define its complex variant as follows.

Definition 4.11. For k;m � 1 we define the complex average scaling factor ˛C.k;m/

as
˛C.k;m/ WD Ek.u1 ˝ v1/ ^ � � � ^ .ukm ˝ vkm/k

2;

where ui 2 S.Ck/ and vi 2 S.Cm/ are independently and uniformly chosen at random, for
i D 1; : : : ; km.

Unlike for ˛.k;m/, we can give a closed formula for its complex variant ˛C.k;m/.

Proposition 4.12. We have ˛C.k;m/ D
NŠ
NN

, where N D km.

The proof follows immediately from the following lemma.

Lemma 4.13. Let Z D Œzij � 2 CN�N be a random matrix such that for all i; j; k,

Ejzij j
2
D

1

N
and Ezij Nzik D 0 if j ¤ k:

Then EjdetZj2 D NŠ
NN

.

Proof. We have

jdetZj2 D
X

�;�2SN

sgn.�/ sgn.�/
NY
iD1

zi�.i/ Nzi�.i/:

Taking expectations yields

EjdetZj2 D
X

�;�2SN

sgn.�/ sgn.�/
NY
iD1

Ezi�.i/ Nzi�.i/

D

X
�2SN

Ejzi�.i/j
2
D

NŠ

NN
;

which completes the proof.
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28 Bürgisser and Lerario, Probabilistic Schubert calculus

The following theorem is analogous to Theorem 3.19 and can be proved similarly. How-
ever, we can easily derive this result from Theorem 2.3, which even shows that the coisotropy
assumption is not needed here.

Theorem 4.14. Let H1; : : : ;HN be irreducible algebraic hypersurfaces of GC.k; n/,
where N WD k.n � k/. Then we have

1

jU.n/jN

Z
U.n/N

#.g1H1 \ � � � \ gNHN / dg1 � � � dgN

D ˛C.k; n � k/ � jGC.k; n/j �

NY
iD1

jHi j

jGC.k; n/j
:

Proof. By Theorem 2.3, the left-hand side in the assertion of Theorem 4.14 equals
degGC.k; n/ �

Q
i rdeg Hi . We analyze now the right-hand side. Note that

jHi j D rdeg Hi � j†C.k; n/j

since the proof of equation (2.8) works for any irreducible hypersurface in GC.k; n/. Using
equation (2.7), we get

jHi j D rdeg Hi � jGC.k; n/j �
jCPN�1j
jCPN j

:

Moreover, jGC.k; n/j D degGC.k; n/ � jCPN j by (2.4). Therefore, it suffices to verify that

˛C.k; n � k/ D
1

jCPN j
�

�
jCPN j
jCPN�1j

�N
:

This follows from Proposition 4.12 using jCPN j D �N

NŠ
.

This argument showed that complex algebraic geometry implies the integral geometry
formula of Theorem 4.14. One can also argue in the reverse direction. For instance, we can
give a new, integral geometric derivation of the formula for degGC.k; n/. (This formula was
first obtained by Schubert [42].)

Corollary 4.15. We have

degGC.k; n/ D
0Š1Š � � � .k � 1/Š

.n � k/Š.n � k C 1/Š � � � .n � 1/Š
� .k.n � k//Š:

Proof. We apply Theorem 4.14 in the case Zi WD †C.k; n/ and argue similarly as for
Theorem 2.3. Let � denote the Plücker embedding. Then �.†C.k; n// is obtained by intersecting
�.GC.k; n// with a hyperplane Hi . The translates g1H1; : : : ; gNHN meet transversally for
almost all g1; : : : ; gn 2 U.n/. (This follows from Sard’s theorem as for [9, Proposition A.18].)
By Bézout’s theorem, the left-hand side of Theorem 4.14 equals degGC.k; n/.

From (2.7) we know that †C.k; n/j D jGC.k; n/j �
1
�
�N (and we already mentioned

that this formula was obtained in the first version of [8] without algebraic geometry). Plugging
into the right-hand side of Theorem 4.14 formula (2.14) for the volume GC.k; n/ and the
formula for ˛C.k; n � k/ from Proposition 4.12, we obtain after some calculations the claimed
expression for degGC.k; n/.
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Bürgisser and Lerario, Probabilistic Schubert calculus 29

5. Random convex bodies

In this section we will analyze the average scaling factors ˛.k;m/ using properties of the
singular value decomposition and concepts from the theory of random convex bodies.

5.1. The Segre zonoid. We consider the embedding Rk�Rm ! Rk�m, .u; v/ 7! uvT

and assume k � m. Recall that in Section 2.7, we associated a zonoid CY with a random
vector Y .

Definition 5.1. The Segre zonoid C.k;m/ is the zonoid associated with the random
variable xyT 2 Rk�m, where x 2 Rk and y 2 Rm are independent and standard Gaussian
vectors.

If we sample instead x 2 Sk�1 and y 2 Sm�1 in the spheres independently and uni-
formly, then the corresponding zonoid equals .�k�m/�1C.k;m/, compare Example 2.6.

Corollary 5.2. We have

edegG.k; n/ D jG.k; n/j �
.k.n � k//Š

2k.n�k/
� jC.k; n � k/j:

Proof. Recall equation (4.5), which states

edegG.k; n/ D ˛.k; n � k/ � jG.k; n/j �
�
j†.k; n/j

jG.k; n/j

�k.n�k/
:

Moreover, Theorem 4.2 states that

j†.k; n/j

jG.k; n/j
D
1

2
�k � �n�k

(recall the definition of �k in (2.15)). By the definition of ˛.k;m/ (Definition 3.18), Theo-
rem 2.7 (Vitale), the definition of C.k;m/ (Definition 5.1), and the comment following it
(exchanging Gaussian by uniform distributions on spheres), we obtain

˛.k;m/ D
.km/Š

.�k�m/
km
� jC.k;m/j:

By combining all this, the assertion follows.

The group O.k/ �O.m/ acts on the space Rk�m of matrices X via .g; h/X WD gXhT .
It is well known that the orbits under this action are determined by the singular values of X .
More specifically, we denote by sv.X/ the list of singular values of X (in any order). Let the
matrix diagk;m.�/ be obtained from the diagonal matrix diag.�/ by appending a zero matrix of
format k � .m � k/. Then X is in the same orbit as diagk;m.�/ if and only if � equals sv.X/
up to a permutation and sign changes.

We note that the distribution underlying the definition of the Segre zonoid C.k;m/ is
O.k/ �O.m/-invariant, which implies that C.k;m/ is invariant under this action. Therefore,
C.k;m/ is determined by the following convex set, which we call the singular value zonoid:

D.k/ WD ¹� 2 Rk j diagk;m.�/ 2 C.k;m/º:
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30 Bürgisser and Lerario, Probabilistic Schubert calculus

We will see in Proposition 5.8 below that D.k/ does not depend on m, which justifies the
notation. Moreover,D.k/ can be realized as a projection ofC.k;m/, hence it is indeed a zonoid
(see Remark 5.9). The hyperoctahedral group Hk is the subgroup of O.k/ generated by the
permutation of the coordinates and by the sign changes xi 7! "ixi , where "i 2 ¹�1; 1º. Clearly,
the convex set Dk is invariant under the action of Hk .

We note that C.k;m/ is the union of the O.k/ �O.m/-orbits of the diagonal matrices
diagk;m.�/, where � 2 D.k/.

We next determine the support function of the convex body C.k;m/. By the invariance,
this is anO.k/ �O.m/-invariant function and hence it can only depend on sv.X/. For describ-
ing this in detail, we introduce the function gk WRk ! R by

gk.�1; : : : ; �k/ WD E.�21 z
2
1 C � � � C �

2
kz
2
k/
1
2 ;

where z1; : : : ; zk are i.i.d. standard normal.

Lemma 5.3. The function gk is a norm on Rk . It is invariant under permutation of its
arguments. If k�k D 1, we have

�1
p
k
� gk.�/ �

1
p
k

and the maximum of the function gk on Sk�1 is attained exactly on the Hk-orbit of the point
�u WD

1p
k
.1; : : : ; 1/.

Proof. The Cauchy–Schwarz inequality gives

X
i

�i�iz
2
i �

�X
i

�2i z
2
i

� 1
2

�

�X
i

�2i z
2
i

� 1
2

:

This easily implies gk.� C �/ � gk.�/C gk.�/. It follows that gk is a norm on Rk . The
Sk-invariance is clear. Suppose now k�k D 1. Then there exists i with j�i j � k�

1
2 and hence

gk.�/ � k
� 1
2Ejzi j D k

� 1
2�1:

We consider now the auxiliary function Qgk.�/ WD E.�21u
2
1 C � � � C �

2
k
u2
k
/
1
2 , where u 2 Sk�1

is chosen uniformly at random. Then we have gk.�/ D �k Qgk.�/. Thus we need to show that
maxk�kD1 Qgk.�/ D 1p

k
, and that the maximum is attained exactly on the Hk-orbit of �u. For

this, note first that

Qg.�u/ D
1
p
k
k�uk D

1
p
k
:

Moreover, by the Cauchy–Schwarz inequality,

Qgk.�/ �

 
E

kX
iD1

�2i u
2
i

! 1
2

D

 
kX
iD1

�2i Eu2i

! 1
2

D
k�k
p
k
;

since Eu21 D � � � D Eu2
k
D

1
k

. Equality holds if and only if �21u
2
1 C � � � C �

2
k
u2
k

is constant for
u 2 Sk�1. This is the case if and only if � is in the Hk-orbit of �u.
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Remark 5.4. The function gk.�/ can be given the following interpretation in terms of
the ellipsoid E.�/ WD ¹x 2 Rk j �21x

2
1 C � � � C �

2
k
x2
k
� 1º:

gk.�/ D
�k

k
�
jàE.�/j
jE.�/j

:

This follows from [39, equation (3)]. The isoperimetric ratio jàE.�/j
jE.�/j

can be expressed in terms
of certain hypergeometric functions, see [39, equation (13)].

Lemma 5.5. The support function of the convex body C.k;m/ is given by

hC.k;m/.X/ D
1
p
2�
gk.sv.X// for X 2 Rk�m:

Proof. Let h denote the support function of C.k;m/ and define �.�/ WD h.diagk;m.�//.
We have

h.X/ D �.sv.X//

since X is in the same orbit as diagk;m.sv.X// and h is O.k/ �O.m/-invariant. From (2.10)
we obtain

�.�/ D
1

2
Ejhdiagk;m.�/; xy

T
ij D

1

2
E

ˇ̌̌̌
ˇ
kX
iD1

�ixiyi

ˇ̌̌̌
ˇ;

where x 2 Rk and y 2 Rm are independent standard normal. For fixed x, the random variablePk
iD1 �ixiyi is normal distributed with mean zero and variance

Pk
iD1 �

2
i x

2
i . Therefore, the

expectation of its absolute value equals .
Pk
iD1 �

2
i x

2
i /
1
2�1, where we recall that

�1 D Ejzj D

r
2

�
;

z 2 R denoting a standard Gaussian. Summarizing, we obtain

�.�/ D
1

2
�1E

 
kX
iD1

�2i x
2
i

! 1
2

D
1
p
2�
gk.�/;

which finishes the proof.

Corollary 5.6. The zero matrix is an interior point of C.k;m/.

Proof. By Lemma 5.5 and Lemma 5.3 we have

min
kXkD1

hC.k;m/.X/ D
1
p
2�

min
k�kD1

gk.�/ �
1
p
2�

�1
p
k
D
1

�

1
p
k
:

Hence C.k;m/ contains the ball of radius ��1k�
1
2 around the origin.

We need a convexity property of singular values in the spirit of the Schur–Horn theorem
for eigenvalues of symmetric matrices.
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32 Bürgisser and Lerario, Probabilistic Schubert calculus

Theorem 5.7. LetA D .aij / 2 Rk�m, k � m, with singular values �1 � � � � � �k � 0.
Then the diagonal .a11; : : : ; akk/ lies in the convex hull of the Hk-orbit of .�1; : : : ; �k/ of the
hyperoctahedral group Hk .

Proof. Let B 2 Rk�k be obtained from A 2 Rk�m by selecting the first k columns. Let
�1 � � � � � �k � 0 denote the singular values of B . The Courant–Fischer min-max characteri-
zation of singular values (e.g., see [52, Exercise 1.3.21]) implies that �i � �i for all i . Hence
the convex hull of the Hk-orbit of � WD .�1; : : : ; �k/ is contained in the convex hull of the
Hk-orbit of � WD .�1; : : : ; �k/.

A result by Thompson [53] implies that the diagonal .a11; : : : ; akk/ of B lies in the
convex hull of the Hk-orbit of � . Hence it lies in the convex hull of the Hk-orbit of � .

We can now prove that the support functions and radial functions of C.k;m/ and D.k/
are linked in a simple way.

Proposition 5.8. The following properties hold:

(1) The support function of D.k/ equals 1p
2�
gk . In particular, D.k/ does not depend on m.

(2) The radial function ofC.k;m/ is given by Rk�m!R,X 7! rk.sv.X//, where rk denotes
the radial function of D.k/.

Proof. (1) We have � 2 D.k/ if and only if diagk;m.�/ 2 C.k;m/, which, by Lem-
ma 5.5, is equivalent to

(5.1)
kX
iD1

�iYi i �
1
p
2�
gk.sv.Y // for all Y 2 Rk�m:

We need to prove that this is equivalent to

(5.2)
kX
iD1

�i�i �
1
p
2�
gk.�/ for all � 2 Rk :

One direction being trivial, assume that � satisfies (5.2) and let Y 2 Rk�m. Then we have for
all � 2 Hk ,

h�; � sv.Y /i �
1
p
2�
gk.� sv.Y // D

1
p
2�
gk.sv.Y //:

Theorem 5.7 states that .Y11; : : : ; Ykk/ lies in the convex hull of theHk-orbit of sv.Y /. There-
fore, (5.1) holds, which proves the first assertion.

(2) For the second assertion, let R denote the radial function of C.k;m/. By invariance,
it is sufficient to prove that R.diagk;m.�// D rk.�/. We have, using the above equivalences,

R.diagk;m.�// D max¹t j t diagk;m.�/ 2 C.k;m/º

(5.1)
D max

´
t j

kX
iD1

t�iYi i �
1
p
2�
gk.sv.Y // for all Y

µ
(5.2)
D max

²
t j ht�; �i �

1
p
2�
gk.�/ for all �

³
D rk.�/

and the proof is complete.
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Remark 5.9. Proposition 5.8 easily implies that D.k/ is the image of C.k;m/ under
the projection taking the diagonal of a rectangular matrix

Rk�m ! Rk; X D .xij / 7! .x11; : : : ; xkk/:

In particular, D.k/ is a zonoid in Rk .

Lemma 5.10. The maximum of the radial function rk of D.k/ on Sk�1 equals

Rk WD max
k�kD1

rk.�/ D
1
p
2�

�k
p
k

and the maximum is attained exactly on the Hk-orbit of the point �u WD 1p
k
.1; : : : ; 1/. In

particular, C.k;m/ is contained in the ball B.k;m/ of radius Rk around in the origin, and
this is the ball of smallest radius with this property.

Proof. According to Proposition 5.8, 1p
2�
gk is the support function ofD.k/. According

to Lemma 5.3, the maximum of the function gk on Sk�1 is attained exactly on the Hk-orbit
of �u. We conclude now with Lemma 2.4.

Remark 5.11. Corollary 5.6 implies that 0 is an interior point of D.k/. This can also
be seen in a different way as follows. A standard transversality argument shows that

g1†.k; n/ \ � � � \ gN†.k; n/ ¤ ;

for all .g1; : : : ; gN / in a nonempty open subset of O.n/N ; cf. [9, Proposition A.18]. This
implies that edegG.k; n/ is positive. Via Theorem 5.13 below we conclude that D.k/ has full
dimension. Since D.k/ is symmetric with respect to the origin, it again follows that 0 is an
interior point of D.k/.

5.2. Volume of the Segre zonoid. We keep assuming k � m. We first state how to
integrate an O.k/ �O.m/-invariant function of matrices in Rk�m in terms of their singular
values. This is certainly known, but we include the proof for lack of a suitable reference.

Let us denote by Skm�1 � Rk�m the unit sphere with respect to the Frobenius norm.
Moreover, it will be convenient to abbreviate

Sk�1C WD ¹� 2 Sk�1 j �1 � � � � � �k � 0º:

Also, recall the Stiefel manifold S.k;m/ WD ¹Q 2 Rm�k j QTQ D 1º. We postpone the proof
of the following technical result to Appendix A.4.

Proposition 5.12. Let f WSkm�1 ! R be a continuousO.k/�O.m/-invariant function
and put g.�/ WD f .diagk;m.�//. Then we haveZ

Skm�1
f .X/ dSkm�1

D
jO.k/jjS.k;m/j

2k

Z
Sk�1
C

g.�/

kY
iD1

�m�ki

Y
1�i<j�k

.�2i � �
2
j / dS

k�1:
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34 Bürgisser and Lerario, Probabilistic Schubert calculus

We can now derive a formula for the volume of C.k;m/. We introduce the Hk-invariant
functions pk WRk ! R and qk WRk ! R by

pk.�1; : : : ; �k/ WD

kY
iD1

j�i j;(5.3)

qk.�1; : : : ; �k/ WD pk.�1; : : : ; �k/
�k
�

Y
i<j

j�2i � �
2
j j:

Theorem 5.13. The volume of C.k;m/ equals

jC.k;m/j D
jO.k/jjS.k;m/j

km2k

Z
Sk�1
C

�
pkr

k
k

�m
qk dS

k�1;

where rk denotes the radial function of the singular value zonoid D.k/.

Proof. According to Lemma 5.10, the radius function of C.k;m/ is given by

X 7! rk.sv.X//:

The volume of C.k;m/ satisfies (see [41, equation (1.53)])

jC.k;m/j D
1

km

Z
Skm�1

.rk ı sv/km dSkm�1:

Since the radial function is continuous and O.k/ �O.m/-invariant, we can apply Proposi-
tion 5.12 to obtain

jC.k;m/j D
1

km

jO.k/jjS.k;m/j

2k

Z
Sk�1
C

rk.�/
kmpk.�/

m�k
Y

1�i<j�k

.�2i � �
2
j / dS

k�1

D
jO.k/jjS.k;m/j

km2k

Z
Sk�1
C

�
rk.�/

kpk.�/
�m
qk.�/ dS

k�1

as claimed.

Remark 5.14. The proof of Theorem 5.13 works for anyO.k/�O.m/-invariant convex
body. In particular, for the ball B.k;m/ WD ¹X 2 Rk�m j kXkF � Rkº containing C.k;m/
(see Lemma 5.10), we obtain

jB.k;m/j D Rkmk
�
km
2

�.1C km
2
/
D
jO.k/jjS.k;m/j

km2k

Z
Sk�1
C

�
pkR

k
k

�m
qk dS

k�1:

6. Asymptotics

6.1. Laplace method. In this section we recall a useful result for the asymptotic eval-
uation of integrals depending on a large parameter. This technique will be crucial in the proofs
of Theorem 6.3 and Theorem 6.8 and goes under the name of Laplace’s method. The following
statement is classical (see for example [56, Section II, Theorem 1]).
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Theorem 6.1. Consider the integral

I.�/ D

Z t2

t1

e��a.t/b.t/ dt;

where the functions a; bW Œt1; t2�! R satisfy the following conditions:

(1) The function a is smooth on a neighborhood of t1 and there exist � > 0 and a0 ¤ 0 such
that as t ! t1,

a.t/ D a.t1/C a0.t � t1/
�
CO.jt � t1j

�C1/:

(2) The function b is smooth on a neighborhood of t1 and there exist � � 1 and b0 ¤ 0 such
that as t ! t1,

b.t/ D b0.t � t1/
��1
CO.jt � t1j

�/ with b0 ¤ 0.

(3) We have a.t/ > a.t1/ for all t 2 .t1; t2/ and for every ı > 0 the infimum of a.t/ � a.t1/
in Œt1 C ı; t2/ is positive.

(4) The integral I.�/ converges absolutely for all sufficiently large �:

Then we have the asymptotic

(6.1) I.�/ D e��a.t1/ �
1

��=�
�
b0�.

�
�
/

a
�=�
0 �

�
�
1CO.��

1C�
� /

�
as �!1:

Remark 6.2. (1) The hypotheses of [56, Section II, Theorem 1] are weaker than those
of Theorem 6.1: it is only required that a and b are continuous in a neighborhood of t1 (except
possibly at t1) and that they have asymptotic series at t1 (which is certainly true if they are both
smooth). Moreover, the conclusion given there is also stronger than what we stated here: it is
proved that I.�/ also has an asymptotic series in descending powers of �, while we are just
writing the leading order term and the order of the error of this series.

(2) Note that the exponent of the exponential growth in (6.1) is determined by the min-
imum a.t1/, the growth of the pre-exponential factor is determined by the orders �; � of the
expansions of the functions a and b, and the leading constant in (6.1) involves the constants a0
and b0.

6.2. An asymptotically sharp upper bound for the expected degree. From Lem-
ma 5.10, we see that the Segre zonoid C.k;m/ is contained in the ball

B.k;m/ WD

²
X 2 Rk�m

ˇ̌̌̌
kXkF �

1
p
2�

�k
p
k

³
:

In particular, jC.k;m/j � jB.k;m/j, which implies an upper bound for ˛.k;m/. We next show
that this inequality, for fixed k, is asymptotically sharp up to a subexponential factor.

Theorem 6.3. For fixed k we have

log jC.k;m/j D log jB.k;m/j �O.logm/ for m!1.

Proof. We introduce first some useful notation that we will use in the proof. Recall from
Lemma 5.10 that

Rk D
.2�/�

1
2�k

p
k
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36 Bürgisser and Lerario, Probabilistic Schubert calculus

is the maximum of the radial function rk on Sk�1
C

, and that the maximum is attained exactly at
�u WD

1p
k
.1; : : : ; 1/. It is convenient to define the normalized radius function Qrk WD

rk
Rk

, which
has the maximum value 1.

Theorem 5.13 and Remark 5.14 imply now that we can rewrite the two volumes jC.k;m/j
and jB.k;m/j as

jC.k;m/j D
jO.k/jjS.k;m/j

km2k
Rkmk � IC .k;m/;(6.2)

jB.k;m/j D
jO.k/jjS.k;m/j

km2k
Rkmk � IB.k;m/;

where

IC .k;m/ WD

Z
Sk�1
C

�
Qrkkpk

�m
qk dS

k�1;(6.3)

IB.k;m/ WD

Z
Sk�1
C

pmk qk dS
k�1:

The idea of the proof is now to compute the asymptotics of two integrals IB.k;m/ and
IC .k;m/, the first one explicitly and the second one using Laplace’s method, and then to com-
pare them. Because of jC.k;m/j � jB.k;m/j, and since the factors in front of the two integrals
in (6.2) are the same, we just have to verify that

(6.4) log IC .k;m/ � log IB.k;m/ �O.logm/ for m!1.

We first look at the asymptotic growth of IB.k;m/. Note that by rearranging (6.2), we get

IB.k;m/ D
km2k

jO.k/jjS.k;m/j
� jBRkm.0; 1/j;

since Rk is the radius of the ball B.k;m/. Using the explicit formulas

jBRkm.0; 1/j D
�km=2

�.1C km
2
/
;

jS.k;m/j D
2k�km=2

�k.
m
2
/

and the asymptotics log�.z/ D z log z�zCO.log z/ and log�k.z/ D k.z log z�z/CO.log z/
for z !1, we easily deduce that

(6.5) log IB.k;m/ D km log
�
1
p
k

�
CO.logm/ as m!1:

For the asymptotic growth of IC .k;m/ we will need the following result, whose proof we
postpone.

Lemma 6.4. There exist �0; �1; ı > 0, depending on k, such that �1ı � 1 and for allm,

IC .k;m/ � �0

Z ı

0

�
k�

k
2 .1 � �1�/

�m
�
k2Ck�4

2 d�:
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Bürgisser and Lerario, Probabilistic Schubert calculus 37

We rewrite the right-hand side integral in Lemma 6.4 as
R ı0
0 e�ma.�/b.�/ d� with the

smooth functions

a.�/ WD � log
�
k�

k
2 .1 � �1�/

�
D
k

2
log k C �1�CO.�2/;

b.�/ WD �
k2Ck�4

2 ;

where the expansion is for �! 0.
Note now that both functions a and b are smooth (b is a polynomial since for k � 2

the exponent k
2Ck�4
2

is a positive natural number). We can then apply Theorem 6.1 with the
choices a0 D �1; � D 1; b0 D 1; � D k2Ck�4

2
C 1 and obtain for m!1,Z ı0

0

�
k�

k
2 .1 � �1�/

�m
�
k2Ck�4

2 d� D

�
1
p
k

�km 1

m�
�.�/

��1

�
1CO.m�.�C1//

�
:

In particular, combining this asymptotic with Lemma 6.4, we deduce that for m!1,

log IC .k;m/ � log
�
�0

Z ı0

0

�
k�

k
2 .1 � �1�/

�m
�
k2Ck�4

2 d�

�
� km log

�
1
p
k

�
�O.logm/:

Together with (6.5), this shows (6.4) and proves Theorem 6.3.

Proof of Lemma 6.4. It will be convenient to replace the singular value zonoid D.k/ by
a convex body Y � D.k/ that is simpler to analyze. By Corollary 5.6 (see also Remark 5.11),
the zero vector is an interior point ofD.k/, hence there is an " > 0 such thatBRk .0; "/�D.k/.
We define Y as the convex hull of BRk .0; "/ and y WD Rk�u 2 D.k/. Thus Y is the cone with
base BRk .0; "/ and apex y. Note that Y is rotation symmetric with respect to the line passing
through 0 and �u.

In the definition (6.3) of IC .k;m/, we can integrate over the full sphere Sk�1,

IC .k;m/ D

Z
Sk�1
C

�
Qrkkpk

�m
qk dS

k�1
D

1

kŠ2k

Z
Sk�1

�
Qrkkpk

�m
qk dS

k�1;

by the Hk-invariance of the integrand. Recall that Qrk D R�1k rk is the normalized radial func-
tion of D.k/. Denoting by rY the radial function of Y and setting QrY WD R�1k rY , we have
Qrk � QrY , since Y � D.k/. Replacing Qrk by the smaller QrY , we obtain

IC .k;m/ �
1

kŠ2k

Z
Sk�1

�
QrkY pk

�m
qk dS

k�1:

For the integration of the right-hand side, we use a coordinate system adapted to the situation.
The exponential map

¹x 2 T�uS
k�1
j kxk < �º ! Sk�1 n ¹��uº; x 7! �.x/

is a diffeomorphism that maps 0 to �u. We describe tangent vectors in T�uS
k�1 with polar

coordinates .�; �/ 2 Œ0;1/ � Sk�2, where Sk�2 stands here for the unit sphere of T�uS
k�1.
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38 Bürgisser and Lerario, Probabilistic Schubert calculus

This way, we obtain a parametrization �.�; �/ of the points in Sk�1 n ¹��uº. It is easy to see
that its Jacobian is of the form �k�2w.�/ with a smooth function w satisfying w.0/ > 0. By
the transformation theorem we haveZ

Sk�1

�
QrkY pk

�m
qk dS

k�1

D

Z �

0

Z
Sk�2

�
QrY .�.�; �//

kpk.�.�; �/
�m
qk.�.�; �//�

k�2w.�/ dSk�2 d�:

Claim. There are c1; c2; c3; c4 > 0, � > ı1 > 0 and a nonzero continuous function
�WSk�2 ! R such that for all � � ı1 we have w.�/ � c1 and

QrY .�.�; �// � 1 � c2�;

pk.�.�; �// � k
�k
2 .1 � c3�

2/;

qk.�.�; �// � �
k.k�1/
2 .j�.�/j � c4�/:

Proof. (1) The lower bound on w.�/ follows from the continuity of w and w.0/ > 0.
(2) By the axial symmetry of Y , the function QrY .�.�; �// only depends on �. The lower

bound on QrY .�/ easily follows from the construction of Y .
(3) The function pk.�.x// is smooth in a neighborhood of the zero vector and has the

expansion

pk.�.x// D pk.�.0//C
1

2
xHxT CO.kxk3/

for x 2 T�uS
k�1, x ! 0. The matrix H is negative semidefinite since x D 0 is a local maxi-

mum of pk.�.x//. Note that

pk.�.0// D pk.�u/ D k
�k
2 :

In particular, there exists a constant c0 > 0 such that for small enough � D kxk we have

pk.�.x// � pk.0/ � c
0
kxk2;

which shows the stated lower bound on pk .
Recall from (5.3) that the function qk.�/ is defined as the modulus of the function

fk.�/ WD

kY
iD1

��ki �
Y
i<j

.�2i � �
2
j /:

The function fk is smooth at �u and it vanishes at �u to order ` WD
�
k
2

�
. We consider the Taylor

expansion
fk.�.x// D h.x/CO.kxk`C1/;

where h is a nonzero homogeneous polynomial of degree `. In particular, we get in polar
coordinates

fk.�.�; �// D �
`�.�/CO.�`C1/;

where the function � W Sk�2 ! R is nonzero. The stated lower bound on qk follows and the
claim is shown.
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Bürgisser and Lerario, Probabilistic Schubert calculus 39

To complete the proof of Lemma 6.4, we put

� WD

Z
Sk�2

jhj dSk�2;

which is positive. Using the claim, we obtain for 0 < ı � min¹ı1; �
2c4jSk�2j

º thatZ
Sk�1

�
QrkY pk

�m
qk dS

k�1

�

Z ı

0

�
.1 � c2�/

kk�
k
2 .1 � c3�

2/
�m
�
k.k�1/
2
Ck�2c1

Z
Sk�2

.jhj � c4�/ dS
k�2 d�

�
c1�

2

Z ı

0

�
k�

k
2 .1 � c2�/

k.1 � c3�
2/
�m
�
k2Ck�4

2 d�

�
c1�

2

Z ı

0

�
k�

k
2 .1 � 2kc2�/

�m
�
k2Ck�4

2 d�;

where the last inequality holds if � is sufficiently small. The assertion follows with �0 WD 1
2
c1�

and �1 WD 2kc2.

Finally, we arrive at the main result of this section, an asymptotically sharp upper bound
for the expected degree of real Grassmannians. The result should be compared with the corre-
sponding statement (2.4). Recall the quantity �k �

p
k from (2.15) and (2.16).

Theorem 6.5. Let N WD k.n � k/ D dimG.k; n/. The following statements are true:

(1) For all n � k > 0 we have

edegG.k; n/ � E.k; n/ WD
jG.k; n/j

jRPN j
�

�r
�

2

�k
p
k

�N
:

(2) For fixed k and n!1, the above inequality is asymptotically sharp in the sense that

log edegG.k; n/ D logE.k; n/ �O.logn/:

(3) For fixed k and n!1, we have

logE.k; n/ D kn log
�p

��.kC1
2
/

�.k
2
/

�
�O.logn/:

Proof. Recall the formula for edegG.k; n/ given in Corollary 5.2. In this formula, we
replace jC.k; n � k/j by the larger volume of the ball B.k; n � k/, obtaining the quantity

(6.6) E.k; n/ WD jG.k; n/j �
NŠ

2N
� jB.k; n � k/j;

which satisfies edegG.k; n/ � E.k; n/. Theorem 6.3 implies that

logE.k; n/ � log edegG.k; n/ D log jB.k; n � k/j � log jC.k; n � k/j D O.logn/

for fixed k and n!1.
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40 Bürgisser and Lerario, Probabilistic Schubert calculus

We verify now that theE.k; n/ defined in (6.6) indeed has the form stated in assertion (1).
Recall that B.k; n � k/ is the ball in RN with the radius Rk D

�kp
2�k

; cf. Lemma 5.10. We
have jB.k; n � k/j D RN

k
jBRN .0; 1/j and

jBRN .0; 1/j D
1

N
jSN�1j D

2

N

�
N
2

�.N
2
/
D

�
N
2

�.NC2
2
/
:

Plugging this into (6.6), and simplifying with the help of the duplication formula

NŠ D
2N
p
�
� �

�
N C 1

2

�
� �

�
N C 2

2

�
yields

E.k; n/ D jG.k; n/j �
�.NC1

2
/

�
NC1
2

�

�
�k

r
�

2k

�N
D jG.k; n/j �

1

jRPN j
�

�r
�

2

�k
p
k

�N
;

as claimed in assertion (1).
It remains to prove the asymptotic of E.k; n/ stated in assertion (3). By the first assertion

and (2.15),

logE.k; n/ D log
�
jG.k; n/j

jRPN j
�
1

kN=2
�

�p
��.kC1

2
/

�.k
2
/

�N�

D kn log
�p

��.kC1
2
/

�.k
2
/

�
C log

�
jG.k; n/j

jRPN j
�
1

kN=2

�
CO.logn/:

Lemma 2.8 states that for fixed k and n!1,

(6.7) log jG.k; n/j D �
1

2
kn lognC

1

2
kn log.2e�/CO.logn/:

Moreover, for jRPN j D 1
2
jSN j we obtain that, using log�.x/ D x log x � x CO.log x/ for

x !1,

(6.8) log jRPN j D �
1

2
kn lognC

1

2
kn log

�
2e�

k

�
CO.logn/

By combining (6.7) and (6.8), it follows that

log
�
jG.k; n/j

jRPN j
�
1

kN=2

�
D O.logn/;

which completes the proof.

We compare now the expected degree of the real Grassmannian with the degree of the
corresponding complex Grassmannian.

Corollary 6.6. For k � 2 we have

"k WD lim
n!1

log edegG.k; n/

log
p

degGC.k; n/
D logk

�
��2
k

2

�
:

Moreover, the sequence "k is monotonically decreasing and limk!1 "k D 1.
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Proof. The formula for "k follows from Theorem 6.5 and the asymptotic

edegGC.k; n/ D kn log k CO.logn/

from Lemma 2.8. We have limk!1 "k D 1 due to (2.16). The verification of the monotonicity
of "k is left to the reader.

Corollary 6.6 implies that for fixed k,

edegG.k; n/ D degGC.k; n/
1
2
"kCo.1/ for n!1.

This means that for large n, the expected degree of the real Grassmannian exceeds the square
root of the degree of the corresponding complex Grassmannian and in the exponent, the devia-
tion from the square root is measured by 1

2
."k � 1/. For example, "2 D 2 log2.

�
2
/ � 1:30. For

large k, the exponent "k goes to 1 so that we get the square root law

edegG.k; n/ D degGC.k; n/
1
2
Co.1/ for k; n!1.

6.3. The Grassmannian of lines.

6.3.1. The expected degree of G.2; 4/. We can express this as an integral of the mod-
ulus of the function

a.t1; t2; t3; s1; s2; s3/ D cos s2 sin s1 sin s3 sin t2 sin.t1 � t3/

� .sin s2/
�
cos s1 sin s3 sin t1 sin.t2 � t3/

C cos s3 sin s1 sin t3 sin.t1 � t2/
�
;

which can be written in the symmetric way (this observation is due to Chris Peterson)

ja.t; s/j D

ˇ̌̌̌
ˇ̌̌det

0B@sin t1 sin s1 sin t2 sin s2 sin t3 sin s3
cos t1 sin s1 cos t2 sin s2 cos t3 sin s3
sin t1 cos s1 sin t2 cos s2 sin t3 cos s3

1CA
ˇ̌̌̌
ˇ̌̌ :

Proposition 6.7. We have

edegG.2; 4/ D
1

213

Z
Œ0;2��6

ja.t; s/j dt ds D 1:72 : : : :

Proof. Formula (4.5) implies that

edegG.2; 4/ D jG.2; 4/j �
�
j†.2; 4/j

jG.2; 4/j

�4
� ˛.2; 2/:

By (2.14) we have jG.2; 4/j D 2�2 and from Theorem 4.2 we deduce

j†.2; 4/j

jG.2; 4/j
D
�

4
:

By definition, we have

˛.2; 2/ D Ek.u1 ˝ v1/ ^ � � � ^ .u4 ˝ v4/k;

where u1; u2; u3; v1; v2; v3 2 S1 are independently and uniformly chosen at random, and we
can assume u4 D v4 D .1; 0/ by the invariance of the problem. We can thus write

ui D .cos ti ; sin ti / and vi D .cos si ; sin si /;
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42 Bürgisser and Lerario, Probabilistic Schubert calculus

where .ti ; si / 2 Œ0; 2��2 are random with the uniform density. Setting wi WD ui ˝ vi , we have
by (2.1) that

k.u1 ˝ v1/ ^ � � � ^ .u4 ˝ v4/k
2
D det.hwi ; wj i/:

Moreover,

hwi ; wj i D hui ; uj ihvi ; vj i

D .cos ti cos tj C sin ti sin tj /.cos si cos sj C sin si sin sj /:

Expanding the determinant, we see after a few simplifications that det.hwi ; wj i/ D a2 with the
function a defined above. Consequently,

edegG.2; 4/ D 2�2 �
�
�

4

�4
�

1

.2�/6

Z
Œ0;2��6

ja.t; s/j dt ds;

which proves the claim.

6.3.2. The general case. In the case of G.2; nC 1/, Theorem 6.5 provides the asymp-
totic

log edegG.2; nC 1/ D 2n log
�

2
CO.logn/ as n!1:

We sharpen this by proving the following result.

Theorem 6.8. The expected degree of the Grassmannian of lines satisfies

edegG.2; nC 1/ D
8

3�5=2

1
p
n

�
�2

4

�n
.1CO.n�1//:

Proof. By Corollary 5.2 we have

edegG.2; nC 1/ D jG.2; nC 1/j �
.2n � 2/Š

22n�2
� jC.2; n � 1/j:(6.9)

The volume of the Grassmannian can be computed using (2.14):

jG.2; nC 1/j D
jO.nC 1/j

jO.2/j � jO.n � 1/j
(6.10)

D
jSnj � jSn�1j

jO.2/j

D
�n�

1
2

�.n
2
/�.nC1

2
/

D
.2�/n�1

.n � 1/Š
;

where we used the duplication formula for the last inequality. Moreover,

jS.2; n � 1/j
(2.11)
D

4�n�1

�
1
2�.n�1

2
/�.n�2

2
/
D
2n�1�n�2

.n � 3/Š
:
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Theorem 5.13 describes the volume of C.2; n � 1/:

jC.2; n � 1/j D
jO.2/j � jS.2; n � 1/j

.2n � 2/22

Z �
4

0

.r2.�/
2 cos � sin �/n�1(6.11)

�
.cos �/2 � .sin �/2

.cos � sin �/2
d�

D
2n�2�n�1

.n � 1/�.n � 2/

Z �
4

0

.r2.�/
2 cos � sin �/n�1

�
.cos �/2 � .sin �/2

.cos � sin �/2
d�;

where here and below, abusing notation, we denote by r2.�/ the function r2.cos �; sin �/.
Plugging (6.10) and (6.11) into (6.9), and simplifying, we obtain

edegG.2; nC 1/ D
�2n�2�.2n � 1/

.2n � 2/�.n � 2/�.n/
(6.12)

�

Z �
4

0

.r2.�/
2 cos � sin �/n�1

.cos �/2 � .sin �/2

.cos � sin �/2
d�:

We will now use Laplace’s method for the evaluation of the integral in the above equation; first
we will write it as

I.�/ D

Z �
4

0

e��a.�/b.�/ d�;

where � D n � 1 and we have set

a.�/ WD � log.r2.�/2 cos � sin �/;

b.�/ WD
.cos �/2 � .sin �/2

.cos � sin �/2
:

In order to apply Laplace’s method, we verify now that hypotheses (1)–(4) of Theorem 6.1
are satisfied. (Note that the minimum of a is attained at the right extremum of the interval of
integration, which leads to minor modifications.)

(1) By Proposition 6.9, the function r2.�/2 is smooth in a neighborhood of �
4

and has the
following asymptotic expansion for � ! �

4
:

r2.�/
2
D
1

8
�
1

8

�
� �

�

4

�2
CO

��
� �

�

4

�3�
:

Consequently, the function a.�/ D log.r2.�/2 cos � sin �/ is smooth in a neighborhood
of �

4
and, as � ! �

4
, we can easily deduce

a.�/ D 4 log 2C 3
�
� �

�

4

�2
CO

��
� �

�

4

�3�
:

(2) The function b is smooth in a neighborhood of �
4

, and, as � ! �
4

,

b.�/ D �8

�
� �

�

4

�
CO

��
� �

�

4

�2�
:
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44 Bürgisser and Lerario, Probabilistic Schubert calculus

(3) The function cos � sin � is monotonically increasing on Œ0; �
4
�, hence it has a unique max-

imum at �
4

; moreover, by Lemma 5.10, the function r2.�/ also has a unique maximum
on Œ0; �

4
� at �

4
. Therefore, a has a unique minimum at � D �

4
on the interval Œ0; �

4
�.

(4) The integrand in I.�/ is nonnegative and I.�/ <1 for every �, since edegG.2; nC 1/
is finite.

We can now apply Theorem 6.1 with � D � D 2, a0 D 3 and b0 D 8 (we have to change
the sign of b0 because the minimum is now attained at the right extremum of the interval of
integration). This implies for �!1,

I.�/ D e��4 log2 1

�
�
8

3 � 2
�
�
1CO.��

3
2 /
�

(6.13)

D 2�4.n�1/
1

n � 1
�
4

3
�
�
1CO.n�

3
2 /
�
:

We plug in now (6.13) into (6.12), obtaining

(6.14) edegG.2; nC1/ D
�2n�2�.2n � 1/

.2n � 2/�.n � 2/�.n/
�2�4.n�1/

1

n � 1
�
4

3
�
�
1CO.n�

3
2 /
�
:

We use the duplication formula for the Gamma function and write

(6.15) �.2n � 1/ D
�.2n/

.2n � 1/
D
�.n/�.nC 1

2
/22n�1

p
�.2n � 1/

:

Using (6.15) in (6.14), we get

edegG.2; nC 1/ D
�
�

2

�2n 8

3�5=2

1

n3

�.nC 1
2
/

�.n � 2/

�
1CO.n�1/

�
D

�
�

2

�2n 8

3�5=2

1
p
n

�
1CO.n�1/

�
;

where in the last step we have used the asymptotic

�.nC 1
2
/

�.n � 2/
D n

5
2

�
1CO.n�1/

�
:

This concludes the proof.

It remains to show the proposition used in the proof of Theorem 6.8.

Proposition 6.9. The radial function r2.�/ of the singular value zonoid D.2/, param-
eterized by the angle � , is smooth in a neighborhood of �

4
. Moreover, we have the following

expansion:

r2.�/
2
D
1

8
�
1

8

�
� �

�

4

�2
CO

��
� �

�

4

�4�
as � !

�

4
:

Proof. Let us first outline the idea. The main difficulty is that r2.�/ is only implicitly
defined. However, by Proposition 5.8, we explicitly know the support function h of D.2/. (See
Figure 1 for the shape of D.2/ and its polar body).
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Figure 1. The convex bodyD.2/ on the left and its polarD.2/ı on the right (the bodies are centered
at the origin, and the two pictures have the same scale).

Below we will show that h is smooth on R2 n ¹0º, hence on this open set its gradient
rh exists and it is a smooth function. Proposition 2.5 tells us that im.
/ � àD.2/, where the
function 
 W .0; �

2
/! R2 is defined by


.t/ WD .rh/.cos t; sin t /:

We use 
 to obtain local parametrization of àD.2/ around �
4

. Note that 
.�
4
/ D 1

4
.1; 1/ by

Lemma 5.10. Let �.t/ denote the angle that 
.t/ makes with the x-axis, that is,

�.t/ WD arctan
�

2.t/


1.t/

�
:

Then we have

(6.16) r2.�.t// D k
.t/k

and 
.�
4
/ D �

4
. We will show that the derivative of �.t/ does not vanish at �

4
. Then the im-

plicit function theorem implies that we can locally invert the function �.t/ around �
4

to obtain
a smooth function t .�/, and it follows from (6.16) that r2.�/ is indeed smooth in a neigh-
borhood of �

4
. The Taylor expansion of r2.�/ around �

4
will be derived by calculating the

expansions of the gradient of h and the resulting expansion of �.t/ around �
4

.
We proceed now to prove the smoothness of h. By Proposition 5.8, h can be written as

h.�1; �2/ D
1
p
2�
g2.�1; �2/

D
1

.2�/3=2

Z
R2

�
�21u

2
1 C �

2
2u
2
2

� 1
2 e�

1
2
.u21Cu

2
2/ du1 du2:

The above integral can be expressed in terms of the complete elliptic integral of the second
kind

E.s/ WD

Z �
2

0

q
1 � s.sin t /2 dt; 0 � s � 1;

which is a smooth function of s. We obtain after a short calculation that

h.�1; �2/ D
1

�
j�1jE

�
1 �

�22

�21

�
:

This formula, combined with h.�1; �2/ D h.�2; �1/, implies that h is a smooth function
on R2 n ¹0º.
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The elliptic integral E.s/ has the following expansion for s ! 0:

E.s/ D
�

2
�
�

8
s �

3�

128
s2 �

5�

512
s3 CO.s4/:

We can derive from this the third-order Taylor expansion of h at .�; �/, where � WD
p
2
2

.
Denoting xi WD �i � � and x WD .x1; x2/, we obtain after some calculation the third order
Taylor expansion of h around x D .0; 0/:

h.x1 C �; x2 C �/ D
�

2
C
1

4
x1 C

1

4
x2 C

�

16
x21 �

�

8
x1x2 C

�

16
x22

�
1

32
x31 C

1

32
x21x2 C

1

32
x1x

2
2 �

1

32
x32 CO.kxk4/:

From this, we obtain the Taylor expansion for the gradient rh around x D .0; 0/:

àx1h.x1 C �; x2 C �/ D
1

4
C
�

8
x1 �

�

8
x2 �

3

32
x21 C

1

16
x1x2 C

1

32
x22 CO.kxk3/;

àx2h.x1 C �; x2 C �/ D
1

4
�
�

8
x1 C

�

8
x2 C

1

32
x21 C

1

16
x1x2 �

3

32
x22 CO.kxk3/:

Taking into account the definition 
i .t/ D àxih.cos t; sin t / and substituting x1 D cos t � �,
x2 D sin t � �, we obtain from the above expansion of rh by a straightforward calculation
(best done with a computer) the following expansions for � ! 0:


1

�
� C

�

4

�
D
1

4
�
1

8
� �

1

16
�2 CO.�3/;(6.17)


2

�
� C

�

4

�
D
1

4
C
1

8
� �

1

16
�2 CO.�3/:

This implies 
2

1
.� C �

4
/ D 1C � C 1

2
�2 CO.�3/ for � ! 0, and hence

(6.18) �.� C
�

4
/ D arctan

�

2.� C

�
4
/


1.� C
�
4
/

�
D
�

4
C
1

2
� CO.�3/:

In particular, we see that � 0.�
4
/ D 1

2
¤ 0, hence the function �.t/ has a smooth inverse function

t .�/ around �
4

. Equation (6.17) implies with r2.�.t//2 D 
1.t/2 C 
2.t/2 (see (6.16)) that
for � ! 0,

(6.19) r2.�.� C
�

4
//2 D

1

8
�
1

32
�2 CO.�4/:

From the expansion (6.18) we obtain for � ! �
4

,

�.�/ WD t .�/ �
�

4
D 2

�
� �

�

4

�
CO

��
� �

�

4

�3�
:

Plugging this into (6.19), we finally arrive at

r2.�/
2
D
1

8
�
1

8

�
� �

�

4

�2
CO

��
� �

�

4

�4�
as � !

�

4
;

which concludes the proof.
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A. Appendix

A.1. Proof of Theorem 3.2. Since the density of A is invariant under the orthogonal
group O.n/, we can assume that B is spanned by the first l standard vectors, i.e.,

B D

"
1
0

#
and A D

"
A1

A2

#
;

where 1 is the ` � ` identity matrix, A1 is an ` � k matrix and A2 is an .n � `/ � k matrix.
(Again, abusing notation, we denote by A and B also matrices whose columns span the corre-
sponding spaces.) If we sample A with i.i.d. normal Gaussians, the corresponding probability
distribution for the span of its columns is O.n/ invariant, and consequently it coincides with
the uniform distribution. In order to compute the principal angles between A and B using (3.1),
we need to orthonormalize the columns of A. Defining

OA WD

"
A1

A2

#
.AT1 A1 C A

T
2 A2/

� 1
2

we see that the span of the columns of A and OA is the same, and the columns of OA are
orthonormal. The cosines of the principal angles between A and B are the singular values
1 � �1 � � � � � �k � 0 of the matrix

OATB D .AT1 A1 C A
T
2 A2/

� 1
2AT1 :

The �1; : : : ; �k coincide with the square roots of the eigenvalues 1 � u1 � � � � � uk � 0 of the
positive semidefinite matrix

.AT1 A1 C A
T
2 A2/

� 1
2AT1 A1.A

T
1 A1 C A

T
2 A2/

� 1
2 ;

which are the same as the eigenvalues of N D .AT1 A1 C A
T
2 A2/

�1AT1 A1 (eigenvalues are
invariant under cyclic permutations). Consider the Cholesky decomposition

MTM D AT1 A1 C A
T
2 A2:

Then the eigenvalues of N equal the eigenvalues of

U D .MT /�1AT1 A1M
�1:

We use now some facts about the multivariate Beta distribution (see [37, Section 3.3]). By its
definition, the matrix U has a Betak.12 l;

1
2
.n � l// distribution, and [37, Theorem 3.3.4] states

that the joint density of the eigenvalues of U is given by

(A.1)
�
k2

2 �k.
n
2
/

�k.
k
2
/�k.

l
2
/�k.

n�l
2
/

kY
jD1

u
l�k�1
2

j .1 � uj /
n�l�k�1

2

Y
i<j

.ui � uj /:

Recall now that ui D .cos �i /2 for i D 1; : : : ; k, which implies the change of variable

dui D �2 cos �i sin �id�i ;

and thus (A.1) becomes the stated density in (3.2).
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48 Bürgisser and Lerario, Probabilistic Schubert calculus

A.2. Proof of Lemma 4.3. We begin with a general reasoning. Assume that A 2 e.B/.
The unit normal vectors of e.B/ at A, up to a sign, are uniquely determined by A. Lemma 4.1
provides an explicit description for them as follows. Let a1; a2; : : : ; ak and a1; b2; : : : ; bn�k be
the orthonormal bases given by Lemma 3.1 forA andB , respectively; note that dim.A\B/ D 1
since A 2 e.B/. In particular, hai ; bi i D cos �i for i � k, where �1 � � � � � �k are the princi-
pal angles between A and B . Let Rf D .AC B/? with kf k D 1. According to Lemma 4.1,
the unit vector � WD f ^a2^� � �^ak spans the normal space of e.B/ atA. (We use here the rep-
resentation of elements of G.k; n/ and its tangent spaces by vectors in ƒkRn; cf. Section 2.1.)

Fix now B 2 G.n � k; n/ and recall that the functions �1; �2WG.k; n/! R give the
smallest and second smallest principal angle, respectively, between A 2 G.k; n/ and B . Let
0 < " � ı < �

2
and put

T WD ¹A 2 G.k; n/ j �1.A/ � "; �2.A/ � ıº:

We first prove that T ?.e.B/ı ; "/ � T .
For A 2 e.B/ we consider the curve NA.t/ WD .a1 cos t C f sin t / ^ a2 ^ � � � ^ ak for

t 2 R. We note that NA.t/ arises from A by a rotation with the angle t in the (oriented) plane
spanned by a1 and f , fixing the vectors in the orthogonal complement spanned by a2; : : : ; ak .
We haveNA.0/ D A and PNA.0/ D �. It is well known (see, e.g., [13]) thatNA.t/ is the geodesic
through A with speed vector �, that is,NA.t/ D expA.t�/ andNA.0/ D A. From the definition
of the "-tube, we therefore have

(A.2) T ?.e.B/ı ; "/ D ¹NA.t/ j A 2 e.B/ı ; jt j � "º:

Since both a1 and f are orthogonal to b2; : : : ; bn�k , the principal angles between NA.t/
and B are jt j; �2; : : : ; �k , where haj ; bj i D cos �j . By our assumption A 2 e.B/ı , we have
ı � �2 � � � � � �k . Hence we see that jt j is the smallest principle angle between NA.t/ and B
if jt j � ı. We have thus verified that T ?.e.B/ı ; "/ � T .

For the other inclusion, let C 2 T ; assume that C … e.B/ı , otherwise we clearly have
C 2 T ?.e.B/ı ; "/. Let .c1; : : : ; ck/ and .b1; : : : ; bn�k/ be orthonormal bases of C and B ,
respectively, as provided by Lemma 3.1. So we have hbj ; cj i D cos �j .C / for all j , where
�1.C / � " and ı � �2.C / � � � � � �k.C / by the assumption C 2 T . In particular, b1 is ortho-
gonal to c2; : : : ; ck and b1; c1 are linearly independent. We define A 2 G.k; n/ as the space
spanned by b1; c2; : : : ; ck . By construction, �1.A/ D 0 and �j .A/ D �j .C / for j � 2. Hence,
A 2 e.B/ı . Let NA.t/ 2 G.k; n/ be defined as above as the space resulting from A by a rota-
tion with the angle t in the oriented plane spanned by b1 and c1. By construction, we have
C D NA.�/, where � D �1.C / � ". Therefore, we indeed have C 2 T ?.e.B/ı ; "/ by (A.2).

A.3. Proof of Lemma 4.5. More generally, we consider a semialgebraic set Y �RPn�1

of dimension d � n � k � 1. Consider the semialgebraic set

C.Y / WD ¹.A; y/ 2 G.k; n/ � Y j y 2 P .A/º;

together with the projections on the two factors: �1WC.Y /! G.k; n/ and �2WB.Y /! Y . As
Z.Y / D �1.C.Y //, the set Z.Y / is semialgebraic. Note that C.Y / is compact if Y compact,
and C.Y / is connected if Y is connected (since �1 is continuous). In order to determine the
dimension of C.Y /, we note that the fiber ��12 .y/ over y 2 Y is isomorphic toG.k�1; n�1/.
As a consequence, we get

(A.3) dimC.Y / D dimY C .k � 1/.n � k/:
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The fibers ��11 .A/ over A 2 Z.Y / consist of exactly one point, except for the A lying in the
exceptional set

Z.2/.Y / WD ¹A 2 Z.Y / j P .A/ \ Y consists of at least two pointsº:

Note that P .A/ \ Y consists of one point only, for all A 2 Z.Y / nZ.2/.Y /.
In order to show that dimZ.2/.Y / < dimZ.Y /, we consider the semialgebraic set

C .2/.Y / WD ¹.A; y1; y2/ 2 G.k; n/ � Y � Y j y1; y2 2 P .A/; y1 ¤ y2º

with the corresponding projections �3WC .2/.Y /! G.k; n/ and �4WC .2/.Y /! Y � Y . Note
that Z.2/.Y / D �3.C .2/.Y //. For .y1; y2/ 2 Y � Y such that y1 ¤ y2, we have

dim��14 .y1; y2/ D k.n � k/ � 2.n � k/;

since the fibers of �4 are isomorphic to G.k � 2; n � 2/. Therefore,

dimC .2/.Y / D 2 dimY C k.n � k/ � 2.n � k/(A.4)

� dimY C n � k � 1C k.n � k/ � 2.n � k/

D dimY C .k � 1/.n � k/ � 1
(A.3)
D dimC.Y / � 1;

and we see that dim.C.Y / n C .2/.Y // D dimC.Y /. For the projection f WC .2/.Y /! C.Y /

defined by f .A; y1; y2/ WD .A; y1/, we have ��11 .Z.2/.Y // D f .C .2/.Y //, hence

dim��11 .Z.2/.Y // � dimf .C .2/.Y // � dimC .2/.Y / < dimC.Y /:

Moreover, the projection C.Y / n C .2/.Y /! Z.Y / nZ.2/.Y /, .A; y/ 7! y is bijective, hence

dim.Z.Y / nZ.2/.Y // D dim.C.Y / n C .2/.Y //
(A.4)
D dimC.Y /:

Using dimZ.Y / � dimC.Y /, we see that

(A.5) dimZ.Y / D dimC.Y / D dimY C .k � 1/.n � k/

and

(A.6) dimZ.2/.Y / � dimC .2/.Y / < dimC.Y / D dimZ.Y /:

In the special case where dimX D n � k � 1, we conclude that Z.X/ is a hypersurface.
We consider now the following set of “bad” A 2 Z.X/:

S.X/ WD Z.2/.X/ [Z.Sing.X// [ Sing.Z.X// [ �1.Sing.C.X///:

We claim that this semialgebraic set has dimension strictly less than Z.X/. This follows for
Z.2/.X/ from (A.6), for Z.SingX/ from (A.5) applied to Y D Sing.X/, for �1.Sing.C.X//
from Proposition 2.2 and (A.5), and finally for Sing.Z.X// by Proposition 2.2.

Thus generic points A 2 Z.X/ are not in S.X/ and hence satisfy the following:

(1) The intersection P .A/ \X consists of one point only (let us denote this point by p),

(2) The point p is a smooth point of X ,

(3) The point A is a regular point of Z.X/,

(4) The point .A; p/ is a regular point of C.X/.
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It remains to prove that for every A 2 Z.X/ n S.X/ we have (4.3). To this end, let us
take .A; p/ 2 C.X/ with A 62 S.X/. We work in local coordinates .w; y/ 2 RN �Rn�1 on
a neighborhood U of .A; p/ in G.k; n/ �RPn�1, where N D k.n � k/. For simplicity we
center the coordinates on the origin, so that .0; 0/ are the coordinates of .A; p/. In this coordi-
nates, the set C.X/ \ U can be described as

(A.7) C.X/ \ U D ¹.w; x/ 2 RN �Rn�1 j F.w; x/ D 0; G.x/ D 0º;

where F.w; x/ D 0 represents the reduced local equations describing the condition x 2 P .W /
andG.x/ D 0 the reduced local equations giving the condition x 2 X: Since .A; p/ is a regular
point of C.X/, the tangent space of C.X/ at .A; p/ is described by

T.A;p/C.X/ D ¹. Pw; Px/ j .D.0;0/F /. Pw; Px/ D 0; .D0G/ Px D 0º:

Note that p is a smooth point of X , hence .D0G/ Px D 0 is the equation for the tangent space
to X at p. On the other hand, since Z.X/ D �1.C.X//, we have

TAZ.X/ D D.0;0/�1.T.A;p/C.X//:(A.8)

Let now B � Rn be the linear space corresponding to TpX and let us write the equations for
C.B/ in the same coordinates as above (by construction we have .A; p/ 2 C.B/):

C.B/ \ U D ¹.w; x/ j F.w; x/ D 0; .D0G/x D 0º:

Note that the same equation F.w; x/ D 0 as in (A.7) appears here (recall that this is the equa-
tion describing x 2 P .W /), but now G D 0 is replaced with its linearization at zero. In partic-
ular,

T.A;p/C.B/ D ¹. Pw; Px/ j .D.0;0/F /. Pw; Px/ D 0; .D0G/ Px D 0º;

which coincides with (A.8). Since �.B/ D �1.C.B//, this finally implies

TA�.B/ D D.0;0/�1.T.A;p/C.B// D D.0;0/�1.T.A;p/C.X// D TAZ.X/;

which finishes the proof.

A.4. Proof of Proposition 5.12. We extend the function f to Rk�m n ¹0º by setting

f .X/ WD f

�
X

kXk

�
;

denoting it by the same symbol. Similarly, we extend g by setting

g.�/ WD f .diagk;m.�//:

We assume now that X 2 Rk�m has i.i.d. standard Gaussian entries. Then we can write

1

jSkm�1j

Z
Skm�1

f .X/ dSkm�1 D Ef .X/

D

Z
�1>���>sk

g.�/pSVD.�1; : : : ; �k/ d�1 � � � d�k;

where pSVD denotes the joint density of the ordered singular values of X . This density can
be derived as follows. The joint density of the ordered eigenvalues �1 > � � � > �k > 0 of the
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Wishart distributed matrix XXT is known to be [37, Corollary 3.2.19]

p.�1; : : : ; �k/ D ck;m � e
� 1
2

Pk
iD1 �i

kY
iD1

�
m�k�1
2

i

Y
i<j

.�i � �j /;

where

ck;m WD
2k�

k2

2

2
km
2 �k.

k
2
/�k.

m
2
/
:

From this, using �i .XXT / D �i .X/2 and the change of variable d�i D 2�id�i , we obtain

pSVD.�1; : : : ; �k/ D ck;m � e
� 1
2

Pk
iD1 �

2
i

kY
iD1

�m�ki

Y
i<j

.�2i � �
2
j /:

As a consequence, we obtain

Ef .X/ D ck;m

Z
�1>���>�k>0

g.�/e�
1
2

Pk
iD1 �

2
i

kY
iD1

�m�ki

Y
i<j

.�2i � �
2
j / d�1 � � � d�k

D ck;m

Z 1
0

rkm�1e�
1
2
r2 dr

Z
�2Sk�1
C

g.�/

kY
iD1

�m�ki

Y
i<j

.�2i � �
2
j / dS

k�1.�/;

where in the second line we have switched to polar coordinates � D r� with � 2 Sk�1 and
r � 0. Note that the power of the r-variable arises as

k.m � k/C 2

 
k

2

!
C k � 1 D km � 1:

Using Z 1
0

rkm�1e�
1
2
r2 dr D �

�
km

2

�
2
km
2
�1;

we obtain

Ef .X/ D ck;m�

�
km

2

�
2
km
2
�1

Z
Sk�1
C

g.�/

kY
iD1

�m�ki

Y
1�i<j�k

.�2i � �
2
j / dS

k�1:

It is immediate to verify that

jSkm�1j � ck;m�

�
km

2

�
2
km
2
�1
D
jO.k/jjS.k;m/j

2k
;

which completes the proof.

A.5. Generalized Poincaré’s formula in homogeneous spaces. The purpose of this
subsection is to prove the kinematic formula in homogeneous spaces for multiple intersections
and to derive Theorem 3.19. The proofs are similar to [26], to which we refer the reader for
more details.
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A.5.1. Definitions and statement of the theorem. In the following, G denotes a com-
pact Lie group with a left and right invariant Riemannian metric.2) See [6] for background on
Lie groups. We denote by e 2 G the identity element and by Lg WG ! G; x 7! gx the left
translation by g 2 G. The derivatives of Lg will be denoted by g�WTeG ! TgG. By assump-
tion, this map is isometric.

In (3.5) we defined a quantity for capturing the relative position of linear subspaces of a
Euclidean vector space. We can extend this notion to linear subspaces Vi � TgiG in tangent
spaces of G at any points g1; : : : ; gm 2 G, assuming

P
i dimVi � dimG. This is done by

left-translating the gi to the identity e: so we define

�.V1; : : : ; Vm/ WD �
�
.g1/

�1
� V1; : : : ; .gm/

�1
� Vm

�
:

Let nowK � G be a closed Lie subgroup and denote by pWG ! G=K the quotient map.
We endow K with the Riemannian structure induced by its inclusion in G, and G=K with the
Riemannian structure defined by declaring p to be a Riemannian submersion. For example,
when G D O.n/ with the invariant metric defined in Section 2.8 and K D O.k/ �O.n � k/,
then G=K with the quotient metric is isometric to the Grassmannian G.k; n/ with the metric
defined in Section 2.1.

Note that G acts naturally by isometries on G=K; if g 2 G and y 2 G=K, we denote
by gy the result of the action. Further, we denote by y0 D p.e/ the projection of the identity
element. The multiplication with an element k 2 K fixes the point y0; as a consequence, the
differential of k induces a map denoted k�WTy0G=K ! Ty0G=K, so that we have an induced
action of K on Ty0G=K.

Given a submanifold X of a Riemannian manifold M , we denote by NX its normal
bundle in M (i.e., for all x 2 X the vector space NxX is the orthogonal complement to TxX
in TxM ). Also, the restriction of the Riemannian metric of M to X allows to define a volume
density on X ; if f WX ! R is an integrable function, we denote its integral with respect to this
density by

R
X f .x/ dx.

Definition A.1. For given submanifolds Y1; : : : ; Ym � G=K, we define the function

�K W Y1 � � � � � Ym ! R

as follows. For .y1; : : : ; ym/ 2 Y1 � � � � � Ym let �i 2 G be such that �iyi D y0 for all i . We
define

�K.y1; : : : ; ym/ WD E.k1;:::;km/2Km�.k1��1�Ny1Y1; : : : ; km��m�NymYm/;

where the expectation is taken over a uniform .k1; : : : ; km/ 2 K � � � � �K.

The reader should compare this definition with [26, Definition 3.3], which is just a special
case. The main result of this section is the following generalization of Poincaré’s kinematic
formula for homogeneous spaces, as stated in [26, Theorem 3.8] for the intersection of two
manifolds. We provide a proof, since the more general result is crucial for our work and we
were unable to find it in the literature.

2) The compactness assumption is not essential, but simplifies the statements, for example the modular
function of G is constant and does not have to be taken into account, see [26, Section 2.3].
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Theorem A.2. Let Y1; : : : ; Ym be submanifolds of G=K such that
mX
iD1

codimG=K Yi � dimG=K:

Then, for almost all .g1; : : : ; gm/ 2 Gm, the manifolds g1Y1; : : : ; gmYm intersect transversely,
and

E.g1;:::;gm/2Gm jg1Y1 \ � � � \ gmYmj

D
1

jG=Kjm�1

Z
Y1�����Ym

�K.y1; : : : ; ym/ dy1 � � � dym;

where the expectation is taken over a uniform .g1; : : : ; gm/ 2 G � � � � �G.

We note that when G acts transitively on the tangent spaces to each Yi (formally defined
as in Definition 3.4), then the function �K WY1 � � � � � Ym ! R introduced in Definition A.1 is
constant. As a consequence we obtain:

Corollary A.3. Under the assumptions of Theorem A.2, if moreover G acts transitively
on the tangent spaces to Yi for i D 1; : : : ; m, then we have

E.g1;:::;gm/2Gm jg1Y1 \ � � � \ gmYmj D �K.y1; : : : ; ym/ � jG=Kj �
nY
iD1

jYi j

jG=Kj
;

where .y1; : : : ; ym/ is any point of Y1 � � � � � Ym:

Let us look now at the special caseG D O.n/ andK D O.k/ �O.n � k/. If Y1; : : : ; Ym
are coisotropic hypersurfaces of G.k; n/, then G acts transitively on their tangent spaces by
Proposition 4.6. Moreover, when m D k.n � k/, it is easy to check that the constant value
of �K equals the real average scaling factor ˛.k; n � k/ defined in Definition 3.18. Hence in
this case, the statement of Corollary A.3 coincides with the statement of Theorem 3.19.

A.5.2. The kinematic formula in G . As before, G denotes a compact Lie group. We
derive first Theorem A.2 in the special case K D ¹eº, which is the following result (we can
without loss of generality assume gm D e).

Lemma A.4. Let X1; : : : ; Xm be submanifolds of G such that
mX
iD1

codimG Xi � dimG:

Then Z
Gm�1

jg1X1 \ � � � \ gm�1Xm�1 \Xmj dg1 � � � dgm�1

D

Z
X1�����Xm

�.Nx1X1; : : : ; NxmXm/ dx1 � � � dxm:

In the special case of intersecting two submanifolds, this is an immediate consequence of
the following “basic integral formula” from [26, Section 2.7] (take h D 1).
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Proposition A.5. Let M1;M2 be submanifolds of G such that

codimGM1 C codimGM2 � dimG:

For almost all g 2 G, the manifolds M1 and gM2 intersect transversely, and if h is an inte-
grable function on M1 �M2, thenZ

G

Z
gM1\M2

h.'g.y// dy dg D

Z
M1�M2

h.x1; x2/�.Nx1M1; Nx2M2/ dx1 dx2;

where 'g WgM1 \M2 !M1 �M2 is the function given by 'g.y/ WD .g�1y; y/.

In order to reduce the general case to that of intersecting two submanifolds, we first
establish a linear algebra identity.

Lemma A.6. For subspaces V1; : : : ; V`; W;Z of a Euclidean vector space, we have

�.V1; : : : ; V`; W;Z/ D �.V1; : : : ; V`; W CZ/ � �.W;Z/:

Proof. We may assume that W \Z D 0, since otherwise both sides of the identity are
zero. Let us denote by .vi;1; : : : ; vi;di /, .w1; : : : ; wa/ and .z1; : : : ; zb/ orthonormal bases of
Vi , W and Z, respectively. Moreover, we denote by .w1; : : : ; wa; Qz1; : : : ; Qzb/ an orthonormal
basis for Z CW obtained by completing .w1; : : : ; wa/. By definition we have

(A.9) �.V1; : : : ; V`; W CZ/ D





�^
i;j

vi;j

�
^ w1 ^ � � � ^ wa ^ Qz1 ^ � � � ^ Qzb





:
On the other hand, since W CZ D span¹w1; : : : ; wa; z1; : : : ; zbº, we have

w1 ^ � � � ^ wa ^ Qz1 ^ � � � ^ Qzb D ˙
w1 ^ � � � ^ wa ^ z1 ^ � � � ^ zb

kw1 ^ � � � ^ wa ^ z1 ^ � � � ^ zbk

D ˙
w1 ^ � � � ^ wa ^ z1 ^ � � � ^ zb

�.W;Z/
:

By substituting the last line into (A.9) and recalling the definition of �.V1; : : : ; V`; W;Z/ from
equation (3.5), the assertion follows.

Corollary A.7. Let M1;M2 be submanifolds of G and let V1; : : : ; V` be linear sub-
spaces of tangent spaces of G (possibly at different points) such that

codimGM1 C codimGM2 C

X
i

dimVi � dimG:

Then we have Z
G

Z
gM1\M2

�.V1; : : : ; V`; Ny.gM1 \M2// dy dg

D

Z
M1�M2

�.V1; : : : ; V`; Nx1M1; Nx2M2/ dx1 dx2:

Proof. We apply Proposition A.5 with the function hWM1 �M2 ! R defined by

h.x1; x2/ WD �
�
V1; : : : ; V`; .x1/

�1
� Nx1M1 C .x2/

�1
� Nx2M2

�
:
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When gM1 and M2 intersect transversely, we have Ny.gM1 \M2/ D Ny.gM1/CNy.M2/,
which implies h.'g.y// D �.V1; : : : ; V`; Ny.gM1 \ gM2// for y 2 gM1 \M2. Hence we
obtain with Proposition A.5,Z

G

Z
gM1\M2

�.V1; : : : ; V`; Ny.gM1 \M2// dy dg

D

Z
G

�Z
gM1\M2

h.'g.y// dy

�
dg

D

Z
M1�M2

h.x1; x2/�.Nx1M1; Nx2M2/ dx1 dx2

D

Z
M1�M2

�.V1; : : : ; V`; Nx1M1; Nx2M2/ dx1 dx2;

where the last equality is due to Lemma A.6.

Proof of Lemma A.4. Recall that we already established Lemma A.4 in the case m D 2
as a consequence of Proposition A.5. Let now m � 3 and abbreviate Y WD g2X2 \Z, where
Z WD g3X3 \ � � � \ gm�1Xm�1 \Xm. Then we haveZ

Gm�2

�Z
g12G

jg1X1 \ .g2X2 \ : : : gm�1Xm�1 \Xm/j dg1

�
dg2 � � � dgm�1

D

Z
Gm�2

�Z
X1

Z
Y

�.Nx1X1; NyY / dx1 dy

�
dg2 � � � dgm�1

D

Z
X1

Z
Gm�3

�Z
g22G

Z
Y

�.Nx1X1; Ny.g2X2 \Z/dg2 dy

�
dg3 � � � dgm�1 dx1

D

Z
X1

Z
Gm�3

�Z
x22X2

Z
z2Z

�.Nx1X1; Nx2X2; NzZ/dg2

�
dg3 � � � dgm�1;

where we first applied Lemma A.4 in the case m D 2, then interchanged the order of integra-
tion, and after that used Corollary A.7. Proceeding analogously, we see that the above integral
indeed equals Z

X1�����Xm

�.Nx1X1; : : : ; NxmXm/ dx1 � � � dxm;

which completes the proof.

Proof of Theorem A.2. We consider Xi WD p�1.Yi /, which is a submanifold, since the
projection pWG ! G=K is a submersion, cf. [9, Theorem A.15]. Moreover, g1X1; : : : ; gmXm
intersect transversally if Y1; : : : ; Ym do so. We can rewrite the integral in the statement as

E WD E.g1;:::;gm/2Gm jg1Y1 \ � � � \ gmYmj

D E.g1;:::;gm�1/2Gm�1 jg1Y1 \ � � � \ gm�1Ym�1 \ Ymj

D
1

jKj

1

jGjm�1

Z
Gm�1

jg1X1 \ � � � \ gm�1Xm�1 \Xmj dg1 � � � dgm�1;

For justifying the last equality, note that the coarea formula [9, Theorem 17.8] yields

jp�1.Y /j D jKjjY j
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for any submanifold Y of G=K, since p is a Riemannian submersion. Applying Lemma A.4 to
the integral in the last line, we obtain

E D
1

jKj

1

jGjm�1

Z
X1�����Xm

�.Nx1X1; : : : ; NxmXm/ dx1 � � � dxm:

The projection P WX1 � � � � �Xm ! Y1 � � � � � Ym defined by

p.x1; : : : ; xm/ WD .p.x1/; : : : ; p.xm//

is a Riemannian submersion with fibers isometric to Km. Using the coarea formulaZ
X1�����Xm

�.Nx1X1; : : : ; NxmXm/ dx1 � � � dxm

D

Z
y2Y1����Ym

Z
x2P�1.y/

�.Nx1X1; : : : ; NxmXm/ dx dy

D jKjm
Z
y2Y1����Ym

�K.y1; : : : ; ym/ dy;

where the last equality is due to Definition A.1. (Note that here is where we use the right
invariance of the metric under the action of the elements in K, as one can verify by a careful
inspection of the last steps. The reader can see the proof of [26, Theorem 3.8], which is almost
identical and where all the details of the calculation are shown). This completes the proof.
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