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Abstract

In this thesis we are defining a refinemement of Kool-Thomas invariants
of local surfaces via the equivariant K-theoretic invariants proposed by
Nekrasov and Okounkov. Kool and Thomas defined the reduced obstruc-
tion theory for the moduli of stable pairs Pχ(X, i∗β) as the degree of the

virtual class [Pχ(S,β)]red afted we apply τ([pt])m ∈ H∗(Pχ(X, i∗β),Z).
τ([pt]) contain the information of the incidence of a point and a curve
supporting a (F , s).
The K-theoretic invariants proposed by Nekrasov and Okounkov is the

equivariant holomorphic Euler characteristic of Ovir
Pχ(X,i∗β)

⊗K 1

2

vir. We in-

troduce two classes γ (Os) and γ̄(Os) in the Grothendieck group of vector
bundles on the moduli space of stable pairs of the local surfaces that
contains the information of the incidence of a curve with a point.. LetP = Pχ(X, i∗β). By the virtual localization formula the equivariant K
theoretic invariant is then

PX,β,χ(s1, . . . , sm) ∶= RΓ

⎛⎜⎜⎜⎝
PG, O

vir
PG ⊗ K 1

2

vir∣
PG

⋀●−1 (N vir)∨ ⊗ m

∏
i=1

γ (Osi
)∣
PG

⎞⎟⎟⎟⎠
and

P̄X,β,χ (s1, . . . , sm) ∶= RΓ

⎛⎜⎜⎜⎝
PG, O

vir
PG ⊗ K 1

2

vir∣
PG

⋀●−1 (N vir)∨ ⊗ m

∏
i=1

γ̄(Osi
)∣
PG

⎞⎟⎟⎟⎠
.

We found that the contribution of Pχ(S,β) ⊂ PG to PX,β,χ(s1, . . . , sm)
and to P̄X,β,χ (s1, . . . , sm) are the same. Moreover, if we evaluate this
contribution at t = 1 we get the Kool-Thomas invariants.

The generating function of this contribution contain the same information
as the generating function of the refined curve counting invariants defined
by Göttsche and Shende in [12]. After a change of variable there exist a co-
efficient N δ

δ[S,L](y) of the generating function of the refined curve counting

that counts the number of δ-nodal curve in Pδ ⊂ ∣L∣. We conjecture that
after the same change of variable the corresponding coefficient M δ

δ[S,L](y)
coming from the generating function of the controbution of Pχ(S,β) to
P̄X,β,χ (s1, . . . , sm) is identical with N δ

δ[S,L](y).



Keywords: Kool-Thomas invariants, K-theoretic invariants, Göttsche
Shende invariants
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Introduction

Fix a nonsingular projective surface S and a sufficently ample line bundle L on S.

A δ-nodal curve C on S is a 1 dimensional subvariety of S which has nodes at δ

points and is regular outside these singular points. For any scheme Y , let Y [n] be

the Hilbert scheme of n-points i.e. Y [n] parametrizes subschemes Z ⊂ Y of length

n. Given a family of curves C → B over a base B, we denote by Hilbn(C/B) the

relative Hilbert scheme of points. Kool, Thomas and Shende showed that some linear

combinations nr,C of the Euler characteristic of C[n] counts the number of curves of

arithmetic genus r mapping to C. Applying this to the family C → Pδ where Pδ ⊂ ∣L∣,
the number of δ-nodal curves is given by a coefficient of the generating function of

the Euler characteristic of Hilb(C/Pδ) after change of variable[18]. By replacing euler

characteristic with Hirzebruch χy-genus, Götsche and Shende give a refined counting

of δ-nodal curves.

Pandharipande and Thomas showed that a stable pair (F , s) on a surface S is

equivalent to the pair (C,Z) of a curve C on S supporting the sheaf F with Z ⊂ C a

subscheme of finite length. Thus the moduli space of stable pairs on a surface S is a

relative Hilbert scheme of points corresponding to a family of curves on S.

The study of the moduli space of stable pairs on Calabi-Yau threefold Y is an

active area of research. This moduli space gives a compactification of the moduli

space of nonsingular curves in Y . To get an invariant of the moduli space Behrend

and Fantechi introduce the notion of perfect obstruction theory. With this notion we

can construct a class in the Chow group of dimension 0 that is invariant under some

deformations of Y [1].

The homological invariants of the stable pair moduli space Pχ(X, i∗β) of the
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total space X of KS of some smooth projective surface S contain the information

of the number of δ-nodal curves in a hyperplane Pδ ⊂ ∣L∣. Notice that X is Calabi-

Yau. There exist a morphism of schemes div ∶ Pχ(X, i∗β) → ∣L∣ that maps a point

(F , s) ∈ Pχ(X, i∗β) to a divisor div (π∗F) that support π∗F on S where π ∶ X → S

is the structure morphism of X as a vector bundle over S. Using descendents, Kool

and Thomas translate the information of the incidence of a curve with a point into

cutting down the moduli space by a hypersurface pulledback from ∣L∣ so that after

cutting down, we have a moduli space that parameterize Hilbert scheme of curves in

Pδ[19].

The famous conjecture of Maulik, Nekrasov Okounkov and Pandharipande states

that the invariants corresponding to the moduli space of stable pairs have the same

information as the invariants defined from the moduli space of stable maps and the

Hilbert schemes.

The next development in the theory of PT invariants is to give a refinement of the

homological invariant. The end product of this homological invariant is a number. A

refinement of this invariant would be a Laurent polynomial in a variable t such that

when we evaluate t at 1 we get the homological invariant.

There are several methods that have been introduced to give a refinement for DT

invariants, for example both motivic and K-theoretic definitions. In this thesis we

use the K-theoretic definition which has been proposed by Nekrasov and Okounkov

in [23] where we compute the holomorphic Euler characteristic of the twisted virtual

structure sheaf of the coresponding moduli space. In the case when S = P2 or S = P1×

P1 Choi, Katz and Klemm have computed a K-theoretic invariant of the moduli space

of stable pairs in the paper [2]. Their computation does not include any information

about the incidence of subschemes of S.

In this thesis we will use K-theoretic invariants to define a refinement of the Kool-

Thomas invariant in [19]. To do this we introduce the incidence class inKG(Pχ(X, i∗β))

that will give the information of the incidence of a curve with a point

Here is a summary of this thesis

In Chapter 1 we review some equivariant algebraic geometry that we need in this
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thesis. In Section 1 we review the definition of equivariant sheaves and principal G-

bundles. In Section 2 we review an equivariant version of Chow groups by Graham

and Edidin[5]. In Section 3 we review the Grothendieck group of equivariant coherent

sheaves and equivariant vector bundles. In Section 4, we are trying to describe a

parallelization between the construction of equivariant Chow groups and equivariant

K-theory.

In Chapter 2 we review the moduli of stable pair and stable pair invariants defined

via virtual fundamental class. We also review the reduced obstruction theory on the

moduli of stable pairs. Kool-Thomas invariants are defined using the class constructed

using reduced deformation theory.

In chapter 3 we review the definition ofK-theoretic invariants proposed by Nekrasov

and Okounkov and we also introduce the incidence class. We apply the K-theoretic

invariants to the moduli space of stable pairs on KS.

In chapter 4 we collect the results of our work which are Theorem 4.3.1 and

4.3.2. In Theorem 4.3.2 we compute the contribution of Pχ(S,β) in the K-theoretic

invariants of the moduli space of stable pairs on KS. In Theorem 4.3.1 we show that

this contribution gives a refinement of Kool-Thomas invariants. We also conjecture

that our refinement coincide with the refinement defined by Göttsche and Shende.
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Chapter 1

Equivariant algebraic geometry

In this chapter we will review some basic materials concering equivariant K-theory

and equivariant intersection theory. For equivariant intersection theory we use [4, 5]

as references. And for equivariant K-theory our references are [35, 17, 32] and chapter

V of [3].

A group scheme G is a scheme with multiplication map µ ∶ G ×G → G , inverse

ν ∶ G → G and identity element e ∶ SpecC → G satisfying the usual axiom of groups,

e.g. associative etc. An example of a group scheme is a torus Tn of dimension n which

is defined as the Spec of Rn ∶= C[t1, t−1
1 , . . . , tn, t

−1
n ] with multiplication µ ∶ Tn×Tn → Tn

defined by µ♮ ∶ Rn → Rn ⊗C Rn, ti ↦ ti ⊗ ti, inverse map ν ∶ Tn → Tn is defined by

ti ↦ t−1
i and the identity element e ∶ SpecC → Tn is defined by ti ↦ 1. The set of

C-valued points of Tn is then (C×)n.

A morphism σ ∶ G×X →X defines an action of G on X if it satisfies (idG × σ)○σ =
(µ × idX) ○ σ and (e × idX) ○ σ = idX . For example, µ defines an action of G on G.

If G acts on X we call X a G-scheme. Note that σXand prX are flat morphism.

Let σX and σY define actions of G on X and Y . A morphism f ∶ X → Y is called

a G-equivariant morphism (or G-morphism) if f ○ σX = σY ○ (idG × f). If f is an

isomorphism we will say f is a G-isomorphism.
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1.1 Equivariant sheaves and principal bundles

In this thesis, any sheaf on a scheme X is an OX-module.

Definition 1.1.1. [22]Let X be a G-scheme. A G-equivariant structure for an OX-

module F is an isomorphism α of OG×X-modules α ∶ σ∗F → pr∗XF satisfying:

1. Its pullbacks by id × σ and µ × id are related by the equation

pr∗23α ○ (id × σ)∗α = (µ × id)∗α

where pr23 ∶ G ×G ×X → G ×X is the projection to the second and the third

factors

2. The restriction of α to {e} ×X ⊂ G ×X is identity .

If F has a G-equivariant structure, we call the pair (F , α) a G-equivariant OX-

module. Let (F , α) and (F ′, α′) be two G-equivariant OX-modules. A G-equivariant

morphism f ∶ (F , α) → (F ′, α) of two G-equivariant sheaves is a morphism of OX-

modules f ∶ F → F ′ satisfying α′ ○ σ∗f = pr∗Xf ○ α. We will drop α from the notation

if the equivariant structure is clear.

Let G-act on X. Here is a short list of G-equivariant sheaves and of G-equivariant

morphisms:

1. The structure sheaf OX of a G scheme has a natural G-equivariant structure

induced by the unique isomorphisms σ∗OX ≃ OG×X ≃ π∗OX .

2. For a G-map f the corresponding relative differential ωf has a natural G-

equivariant structure.

3. The usual constructions of sheaves–kernel, cokernel, tensor product, direct sum,

internal hom, local ExtiOX
(E ,F) and T oriOX

(E ,F)–have natural G-equivariant

structures. In particular, the symmetric algebra SymF ∶= ⊕i≥0 SymiF has a

G-equivariant structure induced from the G-equivariant structure on F . Since

Spec gives a n equivalence from the opposite category of OX-algebras to the

2



category of affine schemes over X, then for a G-equivariant OX-algebra A,

the corresponding affine scheme over X has a natural G-action such that the

projection SpecA→X is a G-map by. In particular G-acts on the vector bundle

corresponding to a G-equivariant locally free sheaf F .

4. Let (F , α) be a G-equivariant locally free sheaf and V = Spec (SymF∨) be the

corresponding vector bundle. Let P(V ) ∶= Proj (SymF∨) and let π ∶ P(V )→X

be the structure morphism. Recall that P(V ) represents the functor from the

category of schemes over X to the category of sets defined as follows: for each

f ∶ S →X we assign the set of pairs (L, β) where L is a line bundle on S and β ∶
f∗F∨ → L is a surjection modulo isomorphism i.e we identify (L, β) and (L′, β′)
if there exist an isomorphism λ ∶ L′ → L such that β = λ ○ β′. We will use P(V )
also to denote this functor. Let β̃ ∶ π∗F∨ → OP(V )(1) correspond to the identity

morphism idP(V ). For any morphism g ∶X ′ →X the pullback f−1P(V ) represent

the functor from the category of schemes over X ′ to the categroy of sets defined

as follows: for each f ′ ∶ S → X ′ we assign the set of pairs (L, β) where L is a

line bundle on S and β ∶ f∗g∗F∨ → L is a surjection modulo isomorphism. Let

πg ∶ g−1P(V ) → X ′ be the structure morphism. Any isomorphism γ ∶ F∨1 → F∨2
of locally free sheaves on X corresponds to natural transformation mγ ∶ P(V2)→
P(V1) by sending the surjection f∗F∨2 → L to the surjection f∗F∨1 → f∗F∨2 → L.

The equivariant structure of F thus induces an isomorphism γ ∶ σ∗F∨ → pr∗XF∨
which then induces an isomorphism mγ ∶ G×P(V ) = pr−1

X P(V )→ σ−1P(V ). One

can check that the composition σP(V ) ∶= π−1σ ○mγ will define an action of G on

P(V ) such that the structure morphism π is a G-map. Note that mγ correspond

to the element

(pr∗P(V )OP(V )(1), π∗prX
σ∗F∨ → π∗prX

pr∗XF∨ → pr∗P(V )OP(V )(1))

and also to the element

(σ∗P(V )OP(V )(1) =m∗γOσ−1P(V )(1), π∗prX
σ∗F∨ ≃m∗γπ∗σσ∗F∨ →m∗γOσ−1P(V )(1))

3



of σ−1P(V )(πprX
∶ G×P(V )→ G×X), so that we can conclude the existence of

the unique isomorphism

αO(1) ∶ σ∗P(V )OP(V )(1)→ pr∗P(V )OP(V )(1)

that makes the following diagram commutes.

π∗prX
σ∗F∨ //

π∗prX
α

��

σ∗
P(V )OP(V )(1)

αO(1)

��

π∗prX
pr∗XF∨ // pr∗

P(V )OP(V )(1)

(1.1)

One can check that αO(1) satisfies the cocycle condition so that we can con-

clude that (OP(V )(1), αO(1)) is a G-equivariant sheaf. For more details, reader

could consult [17]. The above diagram also shows that the canonical morphism

π∗F∨ → OP(V )(1) is an equivariant morphism of sheaves.

5. Given a separated G morphism f ∶X → Y of finite type. If (E , α) (resp. (F , β) )

is an equivariant sheaf on X (resp. on Y ) then f∗E (resp. f∗F) is an equivariant

sheaf on Y (resp. on X) with the folllowing composition

σ∗Y f∗E ≃ (idG × f)∗ σ∗XE (idG×f)∗α // (idG × f)∗ pr∗XE ≃ pr∗Y f∗E

( resp. σ∗Xf
∗F ≃ (idG × f)∗ σ∗YF (idG×f)

∗β
// (idG × f)∗ pr∗YF ≃ pr∗Xf∗F )

as the equivariant structure sheaf. Moreover by the naturality of the morphism

f∗f∗F → F (resp. E → f∗f∗E) we have the following commuttaive diagram

σ∗XE
α

��

// (idG × f)∗ (idG × f)∗ σ∗XE
(idG×f)

∗(idG×f)∗α
��

pr∗XE // (idG × f)∗ (idG × f)∗ pr∗XE

4



⎛⎜⎜⎜⎜⎜⎜⎝
resp.

(idG × f)∗ (idG × f)∗ σ∗YF σ∗YF

(idG × f)∗ (idG × f)∗ pr∗YF pr∗YF
(idG×f)∗(idG×f)

∗β β

⎞⎟⎟⎟⎟⎟⎟⎠
(1.2)

Thus we can conclude that f∗f∗F → F (resp. E → f∗f∗E) is an equivariant

morphism of sheaves. Similarly for higher direct images, Rif∗F have a natural

equivariant structure.

If X = SpecC and G = SpecR for some commutative ring R over C, then an OX-

module F is a C-vector space V . V is a G-equivariant sheaf if and only if there

exist a C-linear map γV ∶ V → R ⊗C V such that (idRn
⊗ γ) ○ γ = (µ⊗ idV ) ○ γ and

(e♮ ⊗ idV ) ○ γV = idV . We also call V a G-module and the set of all G-modules over

SpecC is a ring denoted by Rep(G). A subvector space W ⊂ V is called G-invariant

if γV (W ) ⊂ W ⊗ R. It’s easy to see that a G-invariant subvector space is also a

G-module.

Let G = SpecR .An element χ ∈ R is called a character of G if χ is invertible and

µ♮(χ) = χ⊗ χ. We use X∗(G) to denote the abelian group of characters of G where

the group operation is given by the multiplication in G. For example if G = Tn, each

monomial ∏n
i t

ai

i is a character of Tn, in fact any character of Tn is a monomial in Rn.

Thus X∗(Tn) ≃ Zn by identifying the monomials with their degree.

If γV (v) = v ⊗ χ for a character χ, we call v semi-invariant of weight χ. The set

of semi-invariant vectors of weight χ is a G-invariant subspace of V . We call this

subspace a weight space and we use Vχ to denote this subspace. It is well known that

for any Tn-module V , we can write it as the direct sum of weight spaces i.e V ≃ ⊕χVχ.
Thus a Tn-module is a Zn-graded vector space. Furthermore, we can conclude that

Rep (Tn) ≃ Z[x1, x
−1
1 , . . . , xn, x

−1
n ].

For a G-module V of finite C-dimension, the corresponding vector bundle

Spec (SymV ∨) over SpecC is an affine space with a G-action. We will also use

V to denote this affine space and we call V a G-space. For a Tn-module V = Vχ
where χ = (χ1, . . . , χn) , the C-valued points of Tn acts on the C-valued points of the

Tn-space V by b.a = bχ1

1 . . . b
χn
n a where b = (b1, . . . , bn) ∈ (C×)n.

5



Definition 1.1.2. For any scheme S, we call µ× idS ∶ G×G×S → G×S an action by

multiplication. Let G act on X and let f ∶X → Y be a morphsim of schemes such that

f ○ σ = f ○ prX . Then f ∶X → Y is called principal G-bundle if there exist a covering

of Y by open subschemes {Ui} of Y and G-isomorphisms ϕ̄i ∶ G × Ui → f−1(Ui) for

each i such that the following diagram commutes

f−1(Ui) Tn ×Ui

Ui

f

ϕi

prUi

(1.3)

In this definition G ×Ui is given the action by multiplication and we call the pair

(Vi, ϕ̄i)i∈Λ a trivialization of f .

Remark 1.1.3. There is a more general definition of principal bundle for example

definition 0.10 of [22] but in the case of G = Tn both definitions are equivalent.

The morphism µ̄ ∶ G×G→ G, g, h↦ hg−1 also defines a G action on G and also G

action on G ×X such that ν̄X ∶ G ×X → G ×X,(g, x) → (g−1, x) is a G-isomorphism.

We call this twisted G-action.

If f ∶ X → Y is a principal G-bundle and E a coherent sheaf on Y , the canonical

isomorphism αE ∶ σ∗ ○ f∗E ≃ pr∗X ○ f∗E induced by the equality f ○ σ = f ○ pr
X

is

a G-equivariant structure for f∗E . If ξ ∶ E1 → E2 is a morphism of sheaves on Y ,

by the naturality of αE we have αE2
○ (f ○ σ)∗ ξ = (f ○ prX)∗ ξ ○ αE1

,i.e. f∗ξ is an

equivariant map of sheaves. Thus there exist a functor f∗ ∶ Coh(Y )→ CohG(X) and

f∗ ∶ V ec(Y )→ V ecG(X) by sending E to its pullback f∗E . The following proposition

is a special case of Theorem 4.46 of (author?) [34]. We prove it here using a more

elementary technique.

Proposition 1.1.4. If f ∶ X → Y is a principal G-bundle then f∗ ∶ Coh(Y ) →
CohG(X) (resp. f∗ ∶ V ec(Y )→ V ecG(X)) is an equivalence of categories.

Proof. From the definition there exist an open cover {Vi}i∈Λ of Y and G-isomorphism

ϕ̄i ∶ G × Vi → f−1(Vi) for each i. Let ϕi ∶= ϕ̄i ○ ν̄−1
Vi

.
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For any (i, j) we will use Vij to denote Vi ∩ Vj and for any triple (i, j, k) we will

use Vijk to denote Vi ∩Vj ∩Vk. Let (F , α) be a G-equivariant coherent sheaves on X.

We will consctruct a coherent sheaves F (F) on Y by gluing

F̃i ∶= (e × idVi
)∗ ○ϕ∗i F∣f−1(Vi) ∈ Coh(Vi).

We will use λi ∶ Vi → f−1 (Vi) to denote ϕi ○ (e × idVi
) for i ∈ Λ. Let ϕji ∶= ϕ−1

j ○ ϕi ∶
G × Vij → G × Vij and ψji ∶= prG ○ ϕji ○ (e × idVij

) ∶ Vij → G. Then since ϕji is a

G-isomorphism we can write ϕji(g, v) = (ψji(v)g, v) and ϕ−1
ji (g, v) = (ψji(v)−1g, v) for

(g, v) ∈ G × Vij. Furthermore for any triple (i, j, k) we have ψki(v) = ψkj(v).ψji(v)
where “.” is multiplication in G.

Given a pair (i, j). Morphisms ϕi and ϕj are G-morphisms so that σ ○(idG ×ϕi) =
ϕi ○ µ̄ and similarly for j. Since µ̄ ○ (ψji, e × idVij

) (v) = (ψ−1
ji (v), v) we can conclude

that µ̄ ○ (ψji, e × idVij
) = ϕ−1

ji ○ (e× idVij
) by checking it on each factor of G×Vij. Thus

σ ○ (idG ×ϕi) ○ (ψji, e × idVij
) = λj

and

prVij
○ (idG ×ϕi) ○ (ψji, e × idVij

) = λi
so that ᾱji ∶= (ψji, e × idVij

)∗ ○ (idG ×ϕi)∗α ∶ λ∗jF → λ∗iF .

Given any triple (i, j, k) we will show that ᾱji, ᾱkj, ᾱki satisfy the gluing condition

i.e. ᾱkj ○ᾱji = ᾱki. Let Ψijk ∶= (ψkj, ψji, e, idVijk
) and Ψ̃ijk ∶= (idG×G×ϕi)○Ψijk. We will

show that the pullback of the identity (µ × id∗f−1(Vijk))∗α = (idG × σ)∗α○pr∗23α by Ψ̃ijk

is ᾱkj ○ᾱji = ᾱki. By checking it on each factors of G×f−1(Vijk) and G×G×Vijk we can

show that (µ × idf−1(Vijk))○Ψ̃ijk = (idG ×ϕi)○(µ × idVijk
)○Ψijk and (µ × idVijk

)○Ψijk =
(ψki, e, idVijk

) so that we can conclude

((µ × idf−1(Vijk)) ○ Ψ̃ijk)∗α = (ψki, e, idVijk
)∗ ○ (idG ×ϕi)∗α = ᾱki.
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Similarly pr23 ○ Ψ̃ijk = (idG ×ϕi) ○ pr23 ○Ψijk = (idG ×ϕi) ○ (ψji, e, idVijk
) so that

(pr23 ○ Ψ̃ijk)∗α = ᾱji.

We also can conclude that (idG × µ̄) ○Ψijk = (idG ×ϕ−1
ji ) ○ (ψkj, e, idVijk

) by checking it

on each factors of G ×G × Vijk. Thus we have

((idG × σ) ○ Ψ̃ijk)∗α = ((idG ×ϕi) ○ (idG ×ϕ−1
ji ) ○ (ψkj, e, idVijk

))∗α
= (ψkj, e, idVijk

)∗ ○ (idG ×ϕj)∗α
= ᾱkj.

We can conclude that there exist a sheaf F (F) on Y and isomorphism γi ∶ F (F)∣Vi
→

F̃i satisfying ᾱji ○ γi = γj.
For G-maps ξ ∶ F1 → F2 between equivariant sheaves (F1, α1) and (F2, α2), we

want to show that there exist a corresponding morphism of sheaves F (ξ) ∶ F (F1) →
F (F2) on Y . It is sufficient to show that the pullback of ξ by λi and λj can be glued

for any pair (i, j) i.e. ᾱ2,ji ○ λ∗j ξ = λ∗i ξ ○ ᾱ1,ji. This is exactly the pullback of the

identity σ∗ξ ○α1 = α2 ○ pr∗f−1(Vij)
ξ on G× f−1(Vij) by (idG ×ϕi) ○ (ψji, e, idVij

). Finally

if F is an equivariant coherent sheaf (resp. locally free sheaf) on X then F (F) is

a coherent sheaf (resp. locally free sheaf) on Y since F (F)∣Vi
is aisomorphic to a

coherent sheaf (resp. locally free sheaf).

Now we have constructed a functor F ∶ CohG(X) → Coh(Y), F ↦ F (F). Since

f ○ ϕi ○ (e, idVi
) = idVi

, then locally there is a canonical isomorphism ηE ∶ F (f∗E)∣Vi
≃

E∣Vi
for any coherent sheaf E on Y. Since the isomorphism is canonical it can be glued

to isomorphism on Y . We leave it to the reader to show that η ∶ Ff∗ → idCoh(Y )(resp.

Ff∗ → idV ec(Y )) is a natural transformation.

It remains to show that there exist a natural transformation ǫ ∶ idCohG(X) → f∗F

(resp. ǫ ∶ idV ecG(X) → f∗F . Let βi ∶ f−1(VI) → G defined as prG ○ ϕ−1
i so that

ϕ−1(x) = (βi(x), f(x)) ∈ G × Vi. It’s easy to show that βj(x) = ψji(f(x))βi(x) and

x = βi(x)−1ϕi(e, f(x)) for all x ∈ X. Define a morphism δi ∶ f−1(Vi) → G × f−1(Vi)
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as x ↦ (βi(x)−1, ϕi(e, f(x))). Thus σ ○ δi(x) = βi(x)−1(ϕi(e, f(x)) = x and prf−1(Vi) ○
δi(x) = ϕi(e, f(x)) so that δ∗i σ

∗ F∣f−1(Vi) = F∣Vi
and δ∗i pr

∗
f−1(Vi)

F∣f−1(Vi) = f∗F̃i. We

will show that

δ∗i α ∶ F∣f−1(Vi) → f∗F̃i
can be glued to a G-morphism ǫF ∶ F → f∗F (F). Define a morphism ∆ji ∶ f−1(Vi)→
G × G × f−1(V ), x ↦ (βj(x)−1, βj(x).βi(x)−1, ϕi(e, (x))). It’s easy to show that

(µ × idf−1(Vij))○∆ji = δi, (idG × σ)○∆ji = δj and pr23○∆ij =(idG ×ϕi)○(ψJi, e × idVij
)○f .

The pullback of the cocycle condition by ∆ji gives us the gluing condition for δ∗Iα,

i.e.

δ∗i α = f∗ᾱji ○ δ∗Jα.
We leave it to the reader to show that ǫF will give a natural transformation. To show

that ǫF is a G-morphism, it’s enough to show that for each i, we have α̃i ○ σ∗δ∗Iα =
pr∗

f−1(Vi)
δ∗i α ○α where α̃i is the canonical isomorphism induced by the equality f ○σ =

f ○ prf−1(Vi). It’s easy to show that (µ × idf−1(Vi)) ○ (idG × δI) = δi ○ σ, (idG × σ) ○
(idG × δi) = idG×f−1(Vi), and pr23 ○ (idG × δi) = δi ○ prf−1(Vi). One can show that the

pullback of the cocylce condition of α by (idG × δi) gives the desired identity.

We will use the following Lemmas in the next section in the construction of equiv-

ariant Chow groups.

Lemma 1.1.5. Let f ∶ X → Y be a G-morphism. Assume that πX ∶ X → XG and

πY ∶ Y → YG are principal bundles. Then there exist a unique map fG ∶XG → YG such

that

X
f

//

πX

��

Y

πY

��

XG fG

// YG

(1.4)

is a cartesian diagram.

Proof. From the definition of principal bundle we have a covering by open subschemes

{Wi}i∈Λ of YG such that πY ∣π−1

Y
(Wi) is trivial bundle. Thus we have a G-isomorphism

ϕi ∶ G×Wi → π−1
Y (Wi) such that πY ○ϕi = prWi

. Let δi ∶= prG○ϕ−1
i ○f ∶ (πY ○ f)−1 (Wi)→
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G. Let Vi ∶= πX((πY ○ f)−1 (Wi)). One can show that ψi ∶= (δi, πX) ∶ (πY ○ f)−1 (Wi)→
G × Vi is an isomorphism. Thus we have a morphism gi ∶= πY ○ f ○ ψ−1

i ○ (e × idVi
)

∶ Vi → Wi. One can show that gi can be glued to a morphism g ∶ XG → YG. Let

fi ∶ G × Vi → G ×Wi defined as ϕi ○ f ○ ψ−1
i . Any morphism g′ ∶ XG → YG that makes

equation (1.4) commute must satisfy πY ○ fi = g′∣Vi
○ πX . It’s easy to show that

g
′ ∣
Vi
= gi and we can conclude that g is unique.

To show that diagram (1.4) is cartesian, it is sufficient to show it for any of the

open subschemes Wi of YG. By checking it on each factor ofG×Wi we have fi = idG×gi.
Locally diagram (1.4) is isomorphic to

G × Vi fi //

prVi

��

G ×Wi

prVi

��

Vi gi

//Wi

which is clearly cartesian. Thus we can conclude that diagram (1.4) is cartesian.

Remark 1.1.6. From Lemma 1.1.5 if f1 ∶ X → Y1 and f2 ∶ X → Y2 are principal G-

bundles then there exists a unique isomorphism g ∶ Y1 → Y2 such that g ○ f1 = f2. We

can conclude that if f ∶X → Y is a principal G-bundles then f is the initial object in

the category of morphsims g ∶X → Y satisfying g○σ = g○prX . We call Y the quotient

of X by G we will use X/G or XG to denote Y .

Let σX and σY defines G-action on X and Y . For any two schemes S1, S2 let

τS1,S2
∶ S1 × SS → S2 × S1 , (s1, s2) ↦ (s2, s1) and let ∆S1

∶ S1 → S1 × S1,s1 ↦ (s1, s1).

And we define σX×Y to be the morphism (∆G × idX×Y )○(idG×τX×G× idY )○(σX × σY ).
One can show that σX×Y defines an action of G on X × Y and we say that G acts

diagonally on X × Y .

Lemma 1.1.7. If G acts on X and π ∶ U → U/G is a principal G-bundle. There exist

a principal G-bundle πX ∶X ×U → (X ×U) /G where G acts on X ×U diagonally. By

Lemma 1.1.5 there exist a morphism g ∶ X ×G U → U/G induced from the projection

prU ∶ X × U → U . Moreover, the fiber of g is X i.e. g−1(u) = X for any closed point

u ∈ UG.
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Proof. Let ({Vi}i∈Λ, ϕ̄i) be a trivialization of π ∶ U → U/G and let ϕi ∶= ϕ̄i ○ ν̄−1 so

that idX ×ϕi ∶X ×G × Vi →X × π−1(Vi) is a G-isomorphisms where both the domain

and the target of idG × ϕ has diagonal G-actions. Let σ̄ ∶= σ ○ τX×G ∶ X × G → X,

then we have a G-isomorphism γ ∶ G ×X → X ×G, (g, x) ↦ (gx, g−1) where G ×X
has a trivial G action and X × G has a diagonal action. By simple calculation we

have σ̄ ○ γ = prX . Given a pair (i, j), let ϕji = ϕ−1
j ○ ϕi , ψji ∶= (e × idVij

) ○ ϕji ○ prG
and γji ∶= σ̄ ○ (idX × (ψji, idVij

))∶ X × Vij → X × Vij. Recall that for any triple (i, j, k)
we have ψki = ψkj.ψji so that γki = γkj ○ γji so that there exist a scheme Y and open

immersions γi ∶ X × Vj → Y such that γi = γj ○ γjiand for any point y ∈ Y there exist

i and (x, v) ∈ X × Vi satisfying γi(x, v) = y. Let Yi be the image of γi and let γ−1
i be

the inverse of γi ∶X × Vi → Yi.

Let πi ∶X ×π−1(Vi)→ Yi be defined by γi ○ σ̄ ○ (idG ×ϕi)−1
. From the definition of

ϕji we have πj ∣X×π−1(Vij)
= πi∣X×π−1(Vij) so that πi can be glued to πX ∶X×U → Y . One

can show that πX ○(idX ×ϕi)○(γ × idVi
)○(idG × γ−1

i ) = prYi
and we can conclude that

(Yi, (idX ×ϕi) ○ (γ × idVi
) ○ (idG × γ−1

i ))i∈Λ is a trivialization of g. It’s clear that the

restriction of g ∶X ×G U → UG to VI is isomorphic to the projection prVi
∶X × Vi → Vi

so that the fiber of g is X.

1.2 Equivariant chow group and Its completion

In this section we review the definition of equivariant Chow groups given in [4, 5].

We will use g to denote the dimension of our group G as a scheme over C.

Given i ∈ Z. Let X be a G-scheme with dim X = d. Let V be G-vector space

of dimension l. Assume that there exists an open subscheme U ⊂ V and a principal

G-bundle π ∶ U → UG.By giving X × V a diagonal action of G, assume furthermore

that there exist a principal G-bundle πX ∶ X ×U → (X ×U) /G. We will use X ×G U
to denote (X ×U) /G. Assume also that V ∖ U has codimension greater than d − i,
then the equivariant Chow group is defined as

AGi (X) ∶= Ai+l−g(X ×G U).
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The definition is independent up to isomorphism of the choice of a representation as

long as V ∖U is of codimension greater than d − i .

For a G-equivariant map f ∶X → Y with property P where P is either proper, flat,

smooth, or regular embedding the G-equivariant map f × 1 ∶ X ×U → Y ×U has the

property P since all of these properties are preserved by a flat base change. Moreover,

the corresponding morphism fG ∶X×GU → Y ×GU also has property P . In fact, these

properties are local on the target in the Zariski topology and for any trivialization

(Vi, ϕ̄i)i∈Λ of π ∶ U → UG the restriction of fG on πX(X × π−1(Vi)) is isomorphic to

f × idVi
. So from the definition, for a flat G -map f ∶X → Y of codimension l we can

define pullback map f∗ ∶ AGi (Y ) → AGi+l(X) for equivariant Chow groups. Similarly,

for regular embedding f ∶ X → Y of codimension d we have a Gysin homomorphism

f∗ ∶ AGi (Y ) → AGi−d(X) and for proper G-map f ∶ X → Y we can define pushforward

f∗ ∶ AGi (X)→ AGi (Y ) for equivariant Chow groups.

For G = T1 and an l + 1-dimensional weight space Vχ we have a principal G-

bundle πU ∶= Vχ ∖ {0} → P(Vχ). By Lemma 1.1.7, there exist a principal G-bundle

πX ∶ X × U → X ×G U . And since codimVχ ∖ U is l + 1, for each i ∈ Z we can take

Ai+l (X ×G U)) to represent AGi (X) if l + i ≥ d. We can also fix χ to be −1 to cover

all i.

Thus we fix the following notation. For each positive integer l let Vl be a T1-

space of weight −1 with coordinate x0, . . . , xl. Thus Vl−1 is the zero locus of the

last coordinate of Vl. We use Ul to denote Vl ∖ {0} and Xl to denote X ×G Ul and

πX,l ∶ X × Ul → Xl the corresponding principal bundle. Thus we have the following

direct system

. . . // Xl−1

jX,l−1
// Xl

jX,l
// Xl+1

jX,l+1
// . . . (1.5)

There is a projection from ξ ∶ Vl+1 → Vl by forgetting the last coordinate such

that jl ∶ Vl → Vl+1 is the zero section of ξ. By removing the fiber of p ∶= (0 ∶
0 ∶ . . . ∶ 0 ∶ 1) ∈ P(Vl+1), the corresponding projection ξ ∶ Xl+1 ∖ π−1

X (p) → Xl

is a line bundle over Xl such that jX,l ∶ Xl → Xl+1 ∖ π−1
X,l+1(p) is the zero sec-

tion. Note that dimπ−1
X,l+1(x)=dim X = d. Thus for i ≥ d − l the restriction map
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Ai+l+1(Xl+1) → Ai+l+1(Xl+1 ∖ π−1
X,l+1(p)) is an isomorphism. In general this restriction

is a surjection. Since ĵX,l ∶ Xl → Xl+1 ∖ π−1
X,l+1(p) is the zero section of ξ , the Gysin

homomorphism ĵ!
X,n ∶ Ak+1(Xl+1∖π−1

X,l+1(p))→ Ak(Xl) is an isomorphism. Since j is a

regular embedding we have a Gysin homomorphism j! ∶ Ak+1 (Xl+1) → Ak(Xl) which

is the composition of the above homomorphisms.

Lemma 1.2.1. The Gysin homomorphism j!
X,l ∶ Ak+1(Xl+1)→ Ak(Xl) is a surjection.

Furthermore, j!
X,l is an isomorphism for k ≥ d − l.

The direct system 1.5 induces an inverse system

. . . A∗(Xl−1)oo A∗(Xl)j!

X,l−1
oo A∗(Xl+1)j!

X,l
oo . . .

of abelian groups. Let (lim
←
A(Xl), λl) be the inverse limit of the above inverse system.

From the definition of equivariant Chow groups, AGi (X) = Ai+n(Xn) for i ≥ d − n
so that we can identify ∏d

i=d−nA
G
i (X) with the group ∏d+n

i=d Ai(Xn). Recall that

( d

∏
i=−∞

AGi (X), νi) where νn ∶ d

∏
i=−∞

AGi (X) → ∏d
i=d−nA

G(X) is defined by (ad, ad−1 . . .) ↦
(ad, . . . , ad−n) is the inverse limit of the inverse system defined by the projection

pX,n ∶∏d
i=d−n−1A

G(X) → ∏d
i=d−nA

G(X), (ad, . . . , ad−n, ad−n−1) ↦ (ad, . . . , ad−n). By

Lemma 1.2.1, after indentifying ∏d
i=d−nA

G
i (X) with ∏d+n

i=d Ai(Xn), pX,n and j!
X,n

are the same homomorphism. The compostion of the projections ξ̂n ∶A∗(Xn) →
∏d+n
i=d A(Xn) with λn ∶lim← A∗(Xl) → A∗(Xn) are homorphisms ξi ∶lim← A∗(X) →
∏d
i=d−nA

G
i (X) satisfying pX,n+1 ○ ξn = pX,n so that by the universal property of in-

verse limit we have a group homomorphism ξ ∶lim
←
A∗(Xn) → d

∏
i=−∞

AGi (X) satisfying

pX,n ○ ξ = ξn.

Proposition 1.2.2. ξ ∶ lim
←
A∗(Xl)→ d

∏
i=−∞

AGi (X) is an isomorphism .

Proof. We will show that for each a = (ad, ad−1, . . .) ∈ ∏d
i=−∞A

G
i (X) there exist a

unique b ∈ lim
←
A∗(Xl) such that ξ(b) = a. b ∈ lim

←
A∗(Xl) can be written as (b1, b2, . . . , )

such that j!bl+1 = bl. For each l, let b̂l = ∑l+di=0 ad−i ∈ A∗(Xl+d) where we identify AGk (X)
with Ak+l+d(Xl+d) for −l ≤ k ≤ d. Set bl as the restriction of b̂l to A∗(Xl) by succesively

applying j!
l , d times. Since δ ∶= j!

l b̂l+1 − b̂l ∈ Ad−1(Xl+d) its restriction to A−1(Xl) = 0
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must be zero so that j!
lbl+1 = bl. For −l + d ≤ k ≤ d we can still identify AGk (X) with

Ak+l(Xl) even after applying j!
l , d times. Thus the projection A∗(Xl) → ∏l+d

i=dAi(Xl)
send bl to ∑li=0 ad−i. We can conclude that ξ(b) = a.

To prove injectivity we will show that if ξ(b) = 0 then b = 0. For any l, (bl)i ∈
Ai(Xl) is the restriction of (bl+d)i+d∈ Ai+d(Xl+d) which we can identify as an element

of AGi+d−l(X). Since ξ(b) = 0 (bl+d)i+d is also zero which implies that (bl)i = 0.

1.3 Equivariant K-theory

1.3.1 KG(X) and GG(X)
Let A be an abelian category. A full subcategory B of A is called closed under

extension if for any short exact sequence

0→ a→ b→ c→ 0 (1.6)

(1.6) a, c ∈ B implies that b is also an object of B. On the other hand, a full subcate-

gory B is called closed under kernels of surjections if for any short exact sequence (1.6)

b, c ∈ B implies a ∈ B. If a, b and c of (1.6) are in B we call (1.6) an exact sequence

in B. We call a full subcategory B of an abelian category A an exact category if B

is closed under extension. In particular, the abelian category A is an exact category.

The Grothendieck group K0(B) of an exact category B is defined as the free abelian

group Z [B] generated by the objects of B modulo the relation a+c = b for every short

exact sequence (1.6) in B. We will use [a]B to denote a class in K0(B) represented

by the object a of B. We will drop the subscript if the corresponding exact category

is clear from the context.

A functor F ∶ A → B between exact categories is called exact if F maps exact

sequences into exact sequences. From the definition, an exact functor induces a

group homomorphism between Grothendieck groups of exact categories. For example

the inclusion B ⊂ A defines the group homomorphism i ∶K0(B)→K0(A) by mapping

the class [a]B ∈K0(B) to its class [a]A ∈K0(A) as an object of A.
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Another condition that lets us have a group homomorphism from K0(A) to K0(B)
is if there exist a group homomorphism f̄ from Z[A] to K0(B) such that f̄(b) =
f̄(a)+ f̄(c) for any short exact sequence (1.6) in A. Thus the kernel of f̄ contains the

subgroup of Z[A] generated by the element a+ c− b for every exact sequence (1.6) so

that f̄ factors through a unique group homomorphism f ∶K0(A)→K0(B).
The category Coh(X) of coherent sheaves on X is an abelian category. The full

subcategory V ec(X) of locally free shevaes is an exact category since V ec(X) is

closed under extension. Moreover, V ec(X) is also closed under kernels of surjection.

G(X)(resp. K(X)) is defined as the Grotendieck group of Coh(X)(resp. of V ec(X)).
Similarly, the category CohG(X) of G-equivariant coherent sheaves with G-

equivariant morphism is an abelian category and the full subcategory V ecG(X) of

locally free sheaves is an exact category. Moreover V ecG(X) is also closed under

kernel of surjection. We will use GG(X) (resp. KG(X)) to denote K0(CohG(X))
(resp. K0(V ecG(X)).

The inclusion V ecG(X) ⊂ CohG(X) induce a group homomorphism i ∶KG(X) →
GG(X) by sending the class of a locally free sheaf to its class as a coherent sheaf.

This map in general is not injective nor surjective. For any G-equivariant morphism

of schemes f ∶ X → Y , the pullback f∗ induces a morphism f∗ ∶ K0
G(Y ) → K0

G(X)
since f∗ map exact sequence of locally free sheaves into exact sequence of locally

free sheaves. For any flat morphism f ∶ X → Y of a G-equivariant schemes, the

pullback functor induces a group homomorphism f∗ ∶ GG(Y )→ GG(X). For any finite

morphism f, the pushforward f∗ ∶ CohG(X) → CohG(X) is an exact functor, thus it

induces the pushforward map f∗ ∶ GG(X) → GG(Y ). If f is projective i.e. f is the

composition of a closed embedding i ∶ X → PY (E) and the projection ϕ ∶ PY (E)→ Y ,

then f∗ ∶ GG(X)→ GG(Y ),[F]↦∑(−1)−i[Rif∗F] is a group homomorphism.

1.3.1.1 Pushforward for KG(X)
We will skecth the construction of pushforward map f∗ ∶ KG(X) → KG(Y ) in some

special cases. For more details, readers should consult chapter 2 of [35] or section 7

and 8 of [28].
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First we need the following Lemma.

Lemma 1.3.1. Let NX be a full subcategory of CohG(X) staisfying the following

conditions:

1. NX contains V ecG(X)
2. NX is closed under extension

3. Each objects of NX has a resolution by a bounded complex of elements in

V ecG(X)
4. NX is closed under kernels of surjections.

Then

1. NX is exact and the inclusion V ecG(X) ⊂ NX induces the group homomorphism

i ∶ KG(X) → K0 (NX) by mapping the class [P]V ecG(X)
of any locally free sheaf P to

its class [P]NX
in K0(Nx)

2. all resolutions of F by equivariant locally free sheaves

0 // Pn // Pn−1
// . . . // P1

// P0
// F // 0

define the same element χ(F) ∶= ∑ni=0 (−1)−i [Pi] in KG(X). Furthermore, χ

define a group homomorphism χ ∶ K0(NX) → KG(X) which is the inverse of i ∶
KG(X)→K0(NX).
Proof. 1. It’s imeediate from the definition.

2. The first statement can be conclude from Lemma 7.6.1 and corollary 7.5.1 of

chapter II of [35] so that for any object F of NX the class χ (F) ∶= ∑ni=0 (−1)−i [Pi] ∈
KG(X) is well defined. For any short exact sequence

0 // E // F // G // 0

we have χ(E) + χ(G) = χ(F). Thus there exist a homomorphism of abelian groups

χ ∶ K0(NX) → KG(X),[F] ↦ χ(F). Since for any locally free sheaf P the identity

morphism idP is a resolution for P then χ(P) = [P] and χ ○ i = id. Since [F] =
∑ni=0 (−1)−i [Pi] ∈K0(NX) we can conclude that i ○ χ = id.
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Corollary 1.3.2. Let f ∶ X → Y be a finite G-morphism such that f∗ ∶ V ecG(X) →
CohG(X) factors through a subcatcategory NY ⊂ CohG(Y ) satisfying all 4 conditions

of Lemma 1.3.1 above. Then there exist a group homomorphism f∗ ∶ KG(X) →
KG(Y ) such that f∗[E] = χ(f∗E) for any locally free sheaf E on X.

Proof. Since f∗ ∶ V ecG(X) → NY is exact we can define the pushforward map f∗ ∶
KG(X) → KG(Y ) as the composition KG(X) → K0(NY ) ≃ KG(Y ) where the last

isomorphism is χ ∶K0 (NY )→KG(Y ).
Now let X = PY (E) and f ∶ X → Y be the projection where E is an equivariant

locally free sheaf on Y of rank r + 1. Let OX(1) be the dual of the tautological line

bundle on X with its natural G-equivariant structure. Let MX ⊂ V ecG(X) be the

full subacategory of locally free sheaves F such that Rqf∗F(−q) = 0 for all q > 0 i.e

F is Mumford regular. Here, we suse F(n) to denote F ⊗OX(n). In the following

Lemma we collect some properies of Mumford-regular vector bundles.

Lemma 1.3.3. Let F be a vector bundle on X.

1. There exist a large enough integer n depending on F such that F(n) is

Mumford-regular.

2. If F is Mumford-regular then F(n) is also Mumford regular for all n > 0.

3. If F is Mumford-regular then Rif∗F = 0 for all i > 0 and f∗F is a vector bundle

on Y .

Proof. The first and the third staments are consequences of Lemma 1.12 of sSection

8 of [28]. The second statement is Lemma 1.3 of Section 8 of [28]

By Lemma 8.7.4 of [35] MX is an exact subacategory of V ecG(X). By Lemma

1.3.3 there exist a functor f∗ ∶ MX → V ecG(X), F ↦ f∗F which is exact so that there

is a homomorphism f̄∗ ∶K0(MX) →KG(Y ). In the next several paragraphs, we will

show that the group homomorphism i ∶K0(MX)→KG(X) induced by the inclusion

MX ⊂ V ecG(X) is an isomorphim. The pushforward map f∗ ∶ KG(X) → KG(Y ) is

then defined as i−1 ○ f̄∗.
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Let MX(l) be the full subcategory of V ecG(X) of objects F such that F(l) is

Mumford-regular. Since tensoring by line bundle is exact, MX(l) are exact for all l.

By Lemma 1.3.3 the following nested inclusion of exact categories

MX ⊂ . . .MX(l) ⊂MX(l + 1) ⊂ . . . V ecG(X)

satisfies V ecG(X) = ⋃lM(l). This implies that KG(X) = liml→∞K0(M(l)). By

the following Lemma the inclusion MX(l) ⊂ MX(l + 1) induces isomorphisms il ∶
K0(MX(l))→K0(MX(l+1)) so that we can conclude that i ∶K0(MX)→KG(X) is

an isomorphism.

Lemma 1.3.4. il ∶K0(MX(l))→K0(MX(l + 1) is an isomorphism

Proof. By Lemma 1.3.5, we can follow the proof of Proposition 8.7.10 of [35].

Let A =⊕i∈Z Ai be a graded OY -module. The graded OY -module A(n) is defined

as follows :A(n) ∶= ⊕i≥0A(n)i where A(n)i = Ai+n. Recall the definition of graded OY -

algebra Γ∗(OX) ∶= ⊕i∈Zf∗OX(i) then Γ∗(OX) = ⊕∞i=0SymiE∨. Consider a morphism of

graded Γ∗(OX)-modules d0 ∶ E∨ ⊗ Γ∗(OX)(−1) → Γ∗(OX), ξ ⊗ 1 ↦ ξ where we have

identified Sym1E∨ with E∨. If we fortget the shift, this morphism of OX-modlues

define the zero section of V . This morphism then induces a Koszul resolution

0 ∧r+1E∨ ⊗ Γ∗(OX)(−r − 1) . . . E∨ ⊗ Γ∗(OX)(−1) Γ∗(OX) 0
dr d0 (1.7)

where dn ∶ ⋀n+1 E∨ ⊗ Γ∗(OX)(−n − 1)→ ⋀n E∨ ⊗ Γ∗(OX)(−n) is given by

dn((ξ1 ∧ . . . ∧ ξn+1)⊗ 1) = n+1∑
i=1

(−1)i(ξ1 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξn+1)⊗ ξi

where ξ1∧ . . .∧ ξ̂i∧ . . .∧ξn+1 means that we ommit the factor ξi from ξ1∧ . . .∧ξn+1. By

taking the Proj of (1.7) we get a resolution of OX by equivariant locally free sheaves.

Lemma 1.3.5. For any equivariant locally free sheaf F on X we have the following

exact complex of equivariant locally free sheaves induced from the Koszul resolution
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(1.7)

0 F F(1) ⊗ E . . . F(r + 1) ⊗⋀r+1 E 0 (1.8)

Proof. It is sufficient to prove it for the case F = OX . Diagram 1.1 shows that the

canonical morphism of OX-modules λ ∶ f∗E∨ → OX(1) is equivariant so that its dual

is also equivariant. One can show that the contraction morphism of OY -modules

δn ∶ ⋀n+1 E∨ ⊗ E → ⋀n E∨, (ξ1 ∧ . . . ∧ ξn+1) ⊗ v ↦ ∑ni=1(−1)iξi(v)ξ1 ∧ . . . ∧ ξ̂i ∧ . . . ∧
ξn+1 is equivariant. By checking it locally one can show that dn is the composition

δn ○ (id∧n+1f∗E∨ ⊗ λ(n)) where λ(n) ∶= λ ⊗ idO(n). Thus we can conclude that dn is

equivariant for all n.

We summarise the above discussion in the following corollary

Corollary 1.3.6. Let G act on Y and E is an equivariant locally free sheaf. Let

f ∶ Proj (SymE∨) → Y be the structure morphism. Then there exist a group homo-

morphism f∗ ∶ KG (Proj (SymE∨)) → KG(Y ) such that f∗[E] = [f∗E] for Mumford

regular vector bundle E.
In the case when f is the composition p ○ i where i is a finite morphism satisfying

the conditions of corollary 1.3.2 and p is the structure morphism Proj (SymE∨)→ Y ,

we do not know if p∗ ○ i∗ ∶KG(X)→KG(Y ) is independent of the factorization p ○ i.
However, in the case when i is a regular embedding, by Lemma 2.7 of [16] we have

an affirmative answer so that we can define f∗ as the composition p∗ ○ i∗.
Beside addition, KG(X) has multiplication structure given by tensor product with

[OX] as the identity element. For any morphism of scheme f ∶ X → Y , the pullback

f∗ ∶KG(Y )→KG(X) is a ring homomorphism. In particular, KG(X) has a KG(Y )-
module structure via f∗. Moreover, given a morphism satisfying the condition of

corollary 1.3.2 or being the projection ϕ ∶ PY (V ) → Y , by the following proposition,

f∗ is a morphism of K(Y )-modules.

Proposition 1.3.7 (Projection Formula). Let f ∶ X → Y be a morphism satisfying

the condition in corollary 1.3.2 or the projection ϕ ∶ PY (V ) → Y where V is a G-
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equivariant vector bundle. Then for any x ∈KG(X) and y ∈KG(Y ) we have

f∗ (x.f∗y) = (f∗x) .y ∈KG(Y ).

Proof. Since all operations involved is Z-linear, we can assume that x and y are

represented by G-equivariant locally free sheaves E and F . For a G morphism f ∶
X → Y and G-equivariant locally free sheaves E on X and F on Y the canonical

morphism

f∗E ⊗F → f∗(E ⊗ f∗F) (1.9)

is G-equivariant and is an isomorphism. Since f∗F is a vector bundle and NY is closed

under extension, f∗E ⊗F and f∗ (E ⊗ f∗F) are objects of NY . This conclude the first

case. If f is the structure morphism ϕ ∶ PY (V ) → Y , since K0(MX) ≃ K(X) we can

assume that E ∈ MX . Since the canonical morphism Rif∗(E ⊗ f∗F) → Rif∗E ⊗ F
is an isomorphism, if E is Mumford-regular, then E ⊗ f∗F is also Mumford-regular

so that f∗[E ⊗ f∗F] = [f∗ (E ⊗ f∗F)] and we can conclude that f∗([E].f∗[F]) =
(f∗[E].[F]).

Proposition 1.3.8 (Base change formula).

1. Consider the following cartesian diagram

X̄
ḡ

//

f̄
��

X

f

��

Ȳ g
// X

such that f and f ′ are G-regular embeddings of codimension r. Then g∗ ○ f∗ =
f̄∗ ○ ḡ∗ ∶KG(X)→KG(Ȳ )

2. Let A be a smooth projective variety and let p ∶ A × Y → Y be the projection to

the second factor. Let g ∶ Ȳ → Y be any morphism and consider the following
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cartesian diagram

A × Ȳ
p̄
��

ḡ
// A × Y

p

��

Ȳ g
// Y

.

Then the pushforward maps p∗ ∶ KG(A × Y ) → KG (Y ) and p̄∗ ∶ KG(A × Ȳ ) →
KG (Ȳ ) are well defined and p̄∗ ○ ḡ∗ = g∗ ○ p∗ ∶ KG(A × Y ) → KG (Ȳ ). Let

d ∶ D → A × Y be a G-closed embedding such that D is flat over Y and let

d′ ∶ D′ → A × Y ′ be the corresponding pullback so that we have the following

cartesian diagram

D̄
ĝ

//

d̄
��

D

d

��

A × Ȳ
ḡ

// A × Y.
Then ḡ∗ [OD] = [OD̄] ∈KG(A × Ȳ ).

Proof. 1. Since f, f̄ are closed embeddings both of them are affine morphisms so that

f̄∗ḡ∗F = g∗f∗F . Given a finite resolution E● → f∗F of f∗F , we need to show that

g∗E● → g∗f∗F ≃ f̄∗ḡ∗F is a resolution of f̄∗ḡ∗F . Let F be an equivariant locally free

sheaf and given a finite resolution E● → f∗F of f∗F the proof of Proposition 4.5 of [9]

shows that g∗E● → g∗f∗F is a resolution of g∗f∗F .

2. For the first assertion, since A is smooth and projective, we can factorize p into

a regular embedding i ∶ A × Y → PNY and a projection π ∶ PNY → Y . In the case of the

projection π, It’s sufficient to check it for a Mumford-regular vector bunlde F on PNY .

Since Riπ∗F = 0 for all i > 0 we have g∗π∗F = π̄∗ĝ∗F on Ȳ where π̄ is the projection

PN
Ȳ
→ Ȳ and ĝ is the canonical morphism PN

Ȳ
→ PNY . For i we can use the assertion in

point 1. of this Lemma.

For the second assertion it is sufficient to show that for a resolution F ● → OD of

OD by a bounded complex of equivariant locally free sheaves, ḡ∗F ● → ḡ∗OD = OD′
is exact. Since the question is local, we can assume that all schemes are affine, let

A × Y = SpecR, Y = SpecS and Ȳ = SpecS̄. Let F ● → OD be given by M̃ ● → M̃

for some S-modules M , M i. Note that M and M i are flat as S-modules. By the
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natural isomorphism (S̄ ⊗S R) ⊗R N ≃ S̄ ⊗S N for all R -modules N so that ḡ∗Ñ ≃
̃( ¯ ⊗S R) ⊗R ⊗NS≃ ¯̃ ⊗S NS. So we can conclude that ḡ∗M̃ ● → ḡ∗M̃ is exact.

Tensor product defines on GG(X) a KG(X)-module structure. If f ∶X → Y is a flat

morphism, the pullback f∗ ∶ GG(Y ) → GG(X) is a morphism of KG(X)-modules.

If f ∶ X → Y is a proper morphism, by replacing x ∈ KG(X) with x̂ ∈ GG(X) in

Proposition 1.3.7, we can conclude that f∗ ∶ GG(X) → GG(Y ) is a morphism of

KG(Y )-modules.

1.3.2 GG(X) with support

Let i ∶ X → Y be a G-equivariant closed embdedding and let U = Y ∖X with open

embedding j ∶ U → Y . Then there exist group homomorphism i∗ ∶ GG(X) → GG(Y )
and j∗ ∶ GG(Y )→ GG(U). These two homomorphism is related as follows

Lemma 1.3.9. The following complex of abelian groups is exact

GG(X) i∗ // GG(Y ) j∗
// GG(U) // 0 .

Proof. This is Theorem 2.7 of [32].

We call a class β ∈ GG(Y ) is supported on X if β is in the image of i∗. Equivalently

β is supported on X if j∗β = 0.

Let CohXG(Y ) be the abelian group of coherent sheaves supported on X. Note that

F ∈ CohXG(Y ) is not necessarily an OX-module. Let GG
X(Y ) be the corresponding

Grothendieck group. The pushforward functor i∗ ∶ CohG(X) → CohG(Y ) factors

through CohXG(Y ) so that there exist a group homomorphism ī ∶ GG(X) → GG
X(Y ),

[F]↦ [i∗F]. There exist an inverse of ī described as follows.

Let F ∈ CohXG(Y ) and let I be the ideal of X. Then there exist positive integer n

such that InF = 0 so that we have a filtration

F ⊇ IF ⊇ I2F ⊇ . . . ⊇ In−1F ⊇ InF = 0.
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Note that each IrF/Ir+1F is an OX-module. One can show that [F] ↦
∑n−1
r=0 [IrF/Ir+1F] defines a group homomorphism ī−1 ∶ GG

X(Y ) → GG(X). For a co-

herent sheaf F supported on X we will use [F]Y to denote its class in GG(Y ) and we

will use [F]X to denote ∑n−1
r=0 [IrF/Ir+1F]. Observe that if W

i // X
j
// Y with i and

j are closed embedding and a coherent sheaf F supported on W then i∗ [F]W = [F]X
and j∗i∗[F]W = j∗ [F]X = [F]Y .

Lemma 1.3.10. ī ∶ GG(X)→ GG
X(Y ) is an isomorphism.

Given a cartesian diagram

X̄
f̄

//

ī
��

Ȳ

i
��

X
f

// Y

with i, f are closed embeddings and a coherent sheaf E on X such that f∗E has a

finite resolution by a complex of locally free sheaves. Then we can define a group

homomorphism f [E] ∶ GG(Ȳ ) → GG(X̄), described as follows. Let F be a coherent

sheaf on Y supported on Ȳ . For each y ∈ Y , the stalk of T oriY (f∗E ,F) on y is

T oriOY,y
((f∗E)y ,Fy) so that T oriy (f∗E ,F) is supported on X̄. For any exact sequence

0 // F ′ // F // F” // 0

of coherent sheaves on Ȳ we have a long exact sequence

T ori+1
Y (f∗E ,F”) // T oriY (f∗E ,F ′) // T oriY (f∗E ,F) // T oriY (f∗E ,F ′) //

so that

∑
i≥0

(−1)i[T oriY (f∗E ,F)] =∑
i≥0

(−1)i[T oriY (f∗E ,F ′)+∑
i≥0

(−1)i[T oriY (f∗E ,F”)] ∈ GG
X̄
(Y ).

Thus there exist a group homomorphism f̄ [E] ∶ GG(Ȳ ) → GG
X̄
(Y ). By Lemma 1.3.10,

we can define f [E] as the composition ī−1 ○ f̄ [E].

23



Lemma 1.3.11. Let f ∶ X → Y be a closed embedding and a coherent sheaf E on

X such that f∗E has a finite resolution by locally free sheaves. For any closed em-

bedding i ∶ Ȳ → Y , there exist a group homomorphism f [E] ∶ GG(Ȳ ) → GG(Ȳ ∩
X) that maps [F] to ∑i=0(−1)−1 [T oriY (f∗E ,F)]Ȳ ∩X . Furthermore, k∗f [E]([F]) =
∑i=0(−1)−1 [T oriY (f∗E ,F)]Y .

1.4 lim← K(Xl)
Let G be the torus T1 and let X be a G-scheme. Recall that by Proposition 1.2.2there

exist an isomorphism ξ ∶ lim← A∗(Xn)→∏d
i=−∞AGi (X). In this section we want to recall

some results of the corresponding lim← K(Xn).
From the direct system 1.5, we have the inverse system

. . . // K(Xl−1)oo K(Xl)j∗
X,l−1
oo K(Xl+1)j∗

X,l
oo . . .

We denote the inverse limit of the above inverse system as lim← K(Xl) and use ρX,l to

denote the canonical morphism lim← K(Xl) → K(Xl). The pullback functor induced

from the projection map prX ∶X ×Ul →X and the equivalence between V ecG(X ×Ul)
and V ec(Xl) induces group homomorphims κX,l ∶KG(X)→K(Xl). It’s easy to show

that κX,l = j∗X,l ○ κX,l+1 so that we have a uniqe group homomorphism κX ∶KG(X)→
lim← K(Xl) such that κX,l = ρX,l ○ κX . In this section, to distinguish bertween the

ordinary and the equivariant version of pullback and pushforward map, we will use

superscript G to denote the equivariant version, for example we will use fG,∗ to denote

the pullback in the equivariant setting.

1.4.1 Derived category and K-theory

The ordinary K theory of a scheme X is defined in the same way as in subsection 1.3.1.

For any morphism f ∶X → Y there exist a group homomorphism f∗ ∶K(Y )→K(X),
[F]↦ [f∗F]. Furthermore, for ordinary morphism f ∶X → Y satisfying the condition

of corollary 1.3.2 and for g the structure morphism Y ∶= PZ(V ) → Z there are group
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homomorphisms f∗ ∶K(X)→K(Y ) and g∗ ∶K(Y )→K(Z). Certainly when h is the

compoisition g ○ f we can define h∗ ∶= g∗ ○ f∗. In this section we want to show that

this definition is independent of the factorization of h. In order to do this we will

use the derived category of coherent sheaves and derived functor to define the group

homomorphism between the correspnding K-groups.

Right derived functors Rf∗ between derived categories of bounded complex of co-

herent sheaves maps exact sequence of coherent sheaves to an exact triangle. This

properties allow us to define morphism between the corresponding Grothendieck

groups. For more general morphism we will use derived functor to define the group

homomorphis between K-groups.

Let (T , T ) be a triangulated category with shift functor T ∶ T → T . The

Grothendieck group of a triangulated category T is the quotient of a free abelian

group generated by the objects of T modulo [A] + [C] − [B] for any exact triangle

A→ B → C → TA .

One can show that the inclusion Coh(X) → Db(X) defined by identifying a co-

herent sheaf as a complex concentrated in 0th-order, gives an isomorphism of abelian

group G(X) → K0(Db(X)) with inverse [A●] ↦ ∑i∈Z[hiA●] where hiA● is the ith-

homology of the complex A●.

We recall the definition and some results about perfect complexes from section 2 of

[33]. Let X be a noetherian, quasi compact and quasiseparated scheme. The complex

C● ∈Db(X) is called perfect if for each x ∈X there exists an open neighborhood U of

x such that C● is quasi isomorphic to a bounded complex of free sheaves E● ∈Db(U).
If we also assume that X is quasiprojective then C● is perfect if and only if C● is

quasiisomorphic to a bounded complex of locally free sheaves. The fullsubcategory

Xperf ⊂Db(Coh(X))of perfect complexes is a tringulated subcategory. By identifiying

a locally free sheaves as a complex concentrated in the 0th-order, we have a ring

homomorphism ιX ∶ K(X) → K0(Xperf). For a perfect complex C●, there exist a

quasiisomorphism α ∶ C̄● → C● from a bounded complex of locally free sheaves C̄●.

Moreover, if α′ ∶ C̃● → C● is another such quasiisomorphism then one can show

that ∑i(−1)i [C̃i] = ∑(−1)i [C̄i] ∈ K(X). Thus there exist a group homomorphism
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χ̄ ∶ Z [Xperf ] → K(X),C● ↦ ∑i(−1)i [Ci]. One can show that for any exact triangle

C●1 → C●2 → C●3 → TC●1 , χ̄ (C●1) − χ̄ (C●2) + χ̄ (C●3) = 0 so that we have a group

homomorphism χ ∶ K0(Xperf) → K(X). Since [C●] = ∑(−1)i [Ci] ∈ K0(Xperf) it’s

easy to show that χ is the inverse of ι.

For any morphism f ∶ X → Y , the derived pullback L●f maps bounded complex

of locally free sheaves to bounded complex of locally free sheaves, indeed L●f∗ (C●) =
f∗C● for C● any bounded complex of locally free sheaves. Since the properties of being

perfect is local we can check it on open subscheme on which C●is quasi isomorphic to

a bounded complex of locally free sheaves. Thus there exist a group homomorphsim

f∗ ∶ K0(Yperf) → K0(Xperf), [C●] ↦ [L●f∗C●]. If X and Y are quasi isomorphism

we can define a group homomorphism f̂∗ ∶ K(Y ) → K(X),[E] ↦ χ [L●f∗E] which

coincide with the one we have defined before.

Let f ∶ X → Y be a proper morphism between quasiprojective scheme with the

property that there exist an open cover {Ui} of Y such that the restriction fi of f

to Wi ∶= f−1(Ui) maps perfect complex C● ∈ Db(Wi) to perfect complex R●fi,∗C● ∈

Db(Ui). Since being perfect is local, we can conclude that R●f∗C● ∈Db(Y ) is perfect

if C● ∈ Db(X) is perfect. Furthermore, Rf∗C● maps exact triangle to exact triangle

so that there is a group homomorphsim f∗ ∶K0(Xperf)→K0(Yperf),[C●]↦ [R●f∗C●] .
Then we can define a pushforward map f̂∗ ∶ K(X) → K(Y ) as f̂∗ = χ ○ f∗ ○ ιX . The

following gives an example when R●f∗ maps perfect complex to perfect complex.

Proposition 1.4.1. Let f ∶ X → Y be a morphism between quasi projective scheme

over C. If f ∶ X → Y is a finite morphism satisfying condition in corollary 1.3.2 or

f is the projection ϕ ∶ PY (V ) → Y where V is a vector bundle of rank r + 1 , then

R●f∗C● is a perfect complex for any perfect complex C●.

Proof. Let f be a finite morphism satisfying condition in corrolary 1.3.2 and since X

is quasiprojective, we can assume that C● is a bounded complex of locally free sheaves.

Since f is finite, f∗is exact and presereves quasiisomorphism. By Lemma 7.6.1 of [35],

there exist a double complex P ●,● with horizontal morphism di,j ∶ P i,j → P i+1,j and

vertical differential δi,j ∶ P i,j+1 → P i,j and a morphism of complex β● ∶ P ●,0 → f∗C●
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such that for each i,

. . . P i,n+1 P i,n . . . P i,0 C̄i 0δn δn−1 δ0 βi

(1.10)

is exact. Note that P i,j = 0 for almost all (i, j) ∈ Z×Z except for a finitely many (i, j).
Let C̃● be the total complex of P i,j and let β̃ ∶ C̃● → f∗C● be a morphism of complex

defined on the mth-order by the composition C̃m = ⊕i−j=mP i,j → Pm,0 → f∗Cm where

the first arrow is the projection to the factor Pm,0. By Lemma 12 of section III.7

of [10] we can conclude that β̃ is a quasi isomorphism. Thus we can conclude that

R●f∗C● = f∗C● is perfect.

Let P ⊂ V ec(X) be the subcategory of locally free sheaves F satisfying Rif∗F = 0

for i ≠ r and Rrf∗F is a vector bundle. It’s easy to see that P is closed under

extension. Proposition 2.1.10 of [14] implies that we can apply Lemma 7.6.1 of [35]

and conclude that for a bounded complex of locally free sheaves there exist a double

complex P ●,● with horizontal morphism di,j ∶ P i,j → P i+1,j and vertical differential

δi,j ∶ P i,j+1 → P i,j and a morphism of complex β● ∶ P ●,0 → C● such that P i,j ∈ P for

all (i, j) and for each i, the complex (1.10) is exact. Let C̃● be the total complex

of the double complex P ●,● and let β̃ ∶ C̃● → C● be a morphism of complex defined

on the mth-order by the composition C̃m = ⊕i−j=mP i,j → Pm,0 → Cm where the first

arrow is the projection to the factor Pm,0. By Lemma 12 of section III.7 of [10] we can

conclude that β̃ is a quasi isomorphism so that R●f∗C̃● ≃ R●f∗C●. Again by Lemma

12 of section III.7 of [10] we can conclude that that R●f∗C̃● is quasi isomorphic to

Rrf∗C̃●. This conclude the prove of the second case.

For the case when f is a finite morphism satisfying the condition in corrolary

1.3.2, since on the objects of V ec(X) , f∗, f̂∗ ∶ K(X) → K(Y ) are the same we can

conclude that f∗ = f̂∗ since V ec(X) generates K(X). Similarly for the case when f

is the structure morphism PY (V ) → Y . So we will use f∗ to denote f̂∗ even when f∗
is not defined.

Corollary 1.4.2. Let f ∶ X → Y be a morphism between quasiprojective scheme

such that f can be factorized into i ∶ X → Z and p ∶ Z → Y where i is a finite
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morphism satisfying the condition in corollary 1.3.2 and p is the structure morphism

ϕ ∶ PY (V ) → Y of a projectivied vector bundle. Then for any perfect complex C● ∈

Db(Coh(X)) , R●f∗C● ∈Db(Y ) is also perfect.

Proof. For any complex C● ∈Db(Coh(X), there exist a canonical quasi isomorphism

R●(p ○ i)∗C● → R●p∗ ○ R●i∗C●. From the above proposition we can conclude that

R●f∗C● is perfect if C● is perfect.

Given a factorization f = p ○ i, by corrolary 1.4.2 we can conclude that for any

vector bundle E in X we have

p∗ ○ i∗ [E] = χp∗ιY χi∗ιX [E]
= χp∗i∗ιX [E]
= χp∗ [i∗E]
= χ [R●p∗(i∗E)]
= χ [R●p∗ ○R●i∗E]
= χ [R●(f)∗E]

so that if we define f∗ ∶= p∗○i∗ ∶K(X)→K(Y ), it is independent of the factorization.

1.4.2 Pullback for lim
←

K(Xl)
Let f ∶ X → Y be a G-map of G-schemes. Recall that for each G-equivariant map

f ∶ X → Y the induced map fn ∶ Xn → Yn is flat (resp. smooth, proper, regular em-

bedding) if f is flat (resp. smooth, proper, regular embedding). By the functoriality

of the pullback we have a commutative diagram

KG(Y )
κn

��

f∗
// KG(X)

κn

��

K(Yn)
f∗n

// K(Xn)
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Again by the functoriality of the pullback and the universal property of inverse limit

we have ring homomorphisms
←Ð
f∗ ∶ lim← K(Y ) → lim← K(X), κX ∶ KG(X) → lim← K(Xn)

and κY ∶KG(X)→ lim← K(Yn). Futhermore these maps satisfy
←Ð
f∗ ○ κY = κX ○ fG,∗.

1.4.3 Pushforward for lim
←

K(Xn)
Let G be the torus T1 and let f ∶ X → Y be a G-morphism between quasiprojective

schemes. Recall that Ul = Cl+1 ∖ {0} where Cl+1 is a G-space of weight 1.

First assume that f is a finite morphism satisfying the condition in the corrolary

1.3.2. For any G-morphism g ∶ Z → Y , the pullback f ′ ∶ Z ×Y X → Z of f by g

is also finite. Assume also that f ′ satisfies the condition in corollary 1.3.2 when

g = prX ∶ X × Ul → X. In particular, idUl
× f ∶ X × Ul → Y × Ul induce a group

homomorphism (idUl
× f)∗ ∶ KG(Ul ×X) → KG(Ul × Y ). Since the pullback functor

π∗X,l∶ V ec(Xl) → V ecG(X × Ul) and πY,l ∶ V ec(Yl) → V ecG(Ul × Y )) are equivalence

of abelian categories, then there exist a group homomorphism fl,∗ ∶ K(Xl) → K(Yl)
which one can show that it maps [E] ∈ K(Xl) to the class [fl,∗E] ∈ K(Yl) for any

locally feee sheaf E on X.

Next we will show that fl,∗ ascend to a homomorphism
←Ð
f∗ ∶ lim← K(Xl)→ lim← K(Yl)

which satifies κY ○ fG∗ =←Ðf∗ ○ κX . First, by working locally on Yl+1, one can show that

fl,∗ satisfy the identity fl,∗ ○ j∗X,l = j∗Y,l ○ fl+1,∗ so that j∗Y,l ○ (fl+1,∗ ○ ρX,l+1) = (fl,∗ ○ ρX,l)
so that there exist a group homomorphism

←Ð
f∗ ∶ lim← K(Xl) → lim← K(Yl) such that

ρY,l ○ ←Ðf∗ = fl,∗ ○ ρX,l. The canonical morphism pr
G,∗
Y ○ fG∗ E → (f × idUl

)G∗ ○ prG,∗X E
induced from the following cartesian diagram

X ×Ul prX //

(f×id)
��

X

f

��

Y ×Ul prY

// D

is an isomorphism so that fl,∗ ○ κX,l = κY,l ○ fG∗ . Since for any l ,

ρY,l ○ κY ○ fG∗ = κY,l ○ fG∗
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= fl,∗ ○ κX,l
= fl,∗ ○ ρX,l ○ κX
= ρY,l ○←Ðf ∗ ○ κX

we can concluce that κY ○fG∗ =←Ðf∗ ○κX . Similarly for the case when f is the projection

PY (V ) → Y . In this case we use the fact that the canonical morphism L●j∗Y,l ○
R●fl+1,∗ → R●fl,∗ ○L●j∗X,l is a quasiisomorphism.

We summarise the above discussion in the following Lemma:

Lemma 1.4.3. Let f ∶X →X be a G morphism.

1. If f ∶X → Y is a finite G-morphism satisfying the condition in corrolary 1.3.2.

Assume also that for all l , (f × idUl
) also satisfies the condition in corrolary 1.3.2

. Then there exist a group homomorphism
←Ð
f∗ ∶ lim← K(Xl) → lim← K(Yl) satisfying the

identity κY ○ fG∗ =←Ðf∗ ○ κX .

2. If f ∶X → Y is the structure morphism PY (V )→ Y where V is a G-equivariant

vector bundle. Then there exist a group homomorphism
←Ð
f ∗ ∶ lim← K(Xl) → lim← K(Yl)

satisfying the identity κY ○ fG∗ =←Ðf∗ ○ κX .

3. If f ∶X → Y is a G-morphism that can be factorized into p ○ i where i ∶X → Z

is a finite morphism satisfying the condition 1. and p satisfies condition 2. then

the group homomorphsim
←Ð
f∗ ∶= ←Ðp∗ ○←Ði∗ ∶lim← K(X) → lim← K(Y ) is independent of the

factorization.

1.5 Equivariant operational chow ring, Chern class

and Chern character

An element of the operational Chow group AiG(X) is defined as a class of maps

clG(f ∶ Y → X) ∶ AGi (Y ) → AGi−l(Y ) for each G-map f ∶ X → Y satisfying 3 conditions

in chapter 18 of [8]:

1. It commutes with proper pushforward,

30



2. It commutes with flat pullback

3. It commutes with the refined Gysin map induced by a regular embedding.

Similar to the non-equivariant case , we can also define product, pushforward by

proper map, and pullback on the equivariant operational Chow groups. The direct

sum A∗G(X) ∶= ⊕∞i=0AiG(X) and its completion ∏∞i=0AiG(X) are rings with the product

operation as the multiplication.

Let (lim← A∗(Xn), βn) be the inverse limit of the following inverse system

. . . A∗(Xn−1)oo A∗(Xn)j∗X,n−1
oo A∗(Xn+1)j∗X,n

oo . . .oo .

The pullback by the composition X × Un ⊂ X × Cn+1 → X gives a ring homomor-

phism γ ∶ ∏∞i=0AiG(X) → ∏∞i=0AiG(X × Un) and for any principal G-bundle Y → YG,

AGi (Y ) ≃ Ai(YG). Then by the definition of operational Chow groups, we have a ring

homomorphism ᾱn ∶
∞
∏
i=0

AiG(X ×Un) →
∞
∏
i=0

Ai(Xn) and the composition αn = ᾱn ○ γ is

a ring homomorphism
∞
∏
i=0

AiG(X) → A∗(Xn). One can show that the ring homomor-

phisms αn satisfy αn = j∗X,n ○αn+1. By the universal property of inverse limit, we have

a map α ∶ ∏∞i=0AiG(X)→ lim← A∗(Xn) such that βn ○ α = αn.

Let ρn ∶ A∗(Xn)×A∗(Xn)→ A∗(Xn) be the action ofA∗(Xn) onA∗(Xn) defined by

ρn(c, a) = c(a) for (c, a) ∈ A∗(Xn) ×A∗(Xn). Since the elements of operational Chow

groups commute with the Gysin map induced by regular embedding jn ∶ Xn → Xn+1

we have j!
X,nc(α) = c(j!

X,nα) where both j!
X,n are the refined Gysin homomorphism.

By the definition of the pullback j∗X,n ∶ A∗(Xn+1) → A∗(Xn) we have c(j!
X,nα) =

j∗X,nc(j!
X,nα) and we have the following commutative diagram

A∗(Xn+1) ×A∗(Xn+1) A∗(Xn+1)

A∗(Xn) ×A∗(Xn) A∗(Xn).

ρn+1

j∗n×j!
n j!

n

ρn

(1.11)
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By 1.11 we have the action map

lim← A∗(Xn) × lim← A∗(Xn) ≃ lim← (A∗(Xn) ×A∗(Xn))→ lim← A∗(Xn)

as the unique map induced by the universal property of inverse limit. Note that j∗n is

a graded morphism of order 0. Thus lim← A∗(Xn) is also graded.

For each equivariant vector bundle E on X, its pullback Ẽ to X×Un correspond to a

vector bundle En on Xn such that π∗En = Ẽ . By the identification AGj (X) = Aj+n(Xn),
ciG(E) ∶ AGj (X) → AGj−i(X) is given by ci(En) ∶ Aj+n(Xn) → Aj−i+n(Xn). Since Chern

class commutes with pullback this definition is well defined. Furthermore, cjG(E) is

an element of AiG(X).
In the non equivariant case, each vector bundle E of rank r has Chern roots

x1, . . . , xr such that ci(E) = ei(x1, . . . , xr) where ei is the ith symmetric polynomial.

Furthermore, its Chern character is defined as ch(E) = ∑ri=1 exi . From this definition,

we have the following formula of Chern chararacter in terms of Chern classes

ch(E) = r + c1(E) + 1

2
(c1(E)2 − 2c2(E)) + ..

= ∞∑
i=0

Pj(c1(E), . . . , ci(E))

where Pj (c1(E), . . . , cj(E)) is a polynomial of order j with ci(E) has weight i.

In [5], Edidin and Graham define an equivariant Chern character map chG ∶
KG(X)→∏∞i=0AiG(X) by the following formula

chG (E) = ∞∑
i=0

Pi(c1
G(E), . . . , ciG(E)).

One can show that chG is a ring homomorphism. Let
←Ð
ch ∶ KG(X) → lim← A∗(Xn)

denote the composition α ○ chG.

For each n there is a Chern character map chn ∶K(Xn)→ A∗(Xn) which commutes

with refined Gysin homomorphisms. By the universal property of inverse limits we

have a ring homomorphism ĉh ∶ lim← K(Xn) → lim← A∗(Xn). Since each chn is a ring
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homomorphis, ĉh is also a ring homomorphism. Furthermore the following diagram

commutes

KG(X) ∞
∏
i=0

AiG(X)

lim← K(Xn) lim← A∗(Xn)

chG

κ
α

ĉh

(1.12)

Recall the group homomorphism ξ from subsection 1.2.

Lemma 1.5.1. For all x ∈ lim← A∗(Xn) and for any β ∈KG(X) we have ξ (←Ðch(β)(x))=
chG(β)(ξx).

Proof. An element x ∈ lim← A∗(Xn) can be written as infinite tuples (x0, x1, . . .) where

xi ∈ A∗(Xi) satisfying j!
X,i(xi+1) = xi. An element y ∈

d

∏
i=−∞

AGi (X) can be written as

infinite tuple (yd, yd−1,yd−2, . . .) where yi ∈ AGi (X).
It’s sufficient to prove it for an equivariant vector bundle E on X. Let

x = (x0, x1, . . .) ∈ lim← A∗(Xn), then
←Ð
ch(E)(x) = (ch(E0) (x0) , ch(E1)(x1), . . .).

For each k there exist n big enough such that νkξ (←Ðch(E)(x)) =
((ch(En)xn)d , (ch(En)xn)d−1 , . . . , (ch (En)xn)d−k) where νk is the projection

νk ∶ d

∏
i=−∞

AGi (X) → d

∏
i=d−k

AGi (X) and (ch(En)xn)i is the homogeneous component of

ch(En)xn in degree i.

On the other hand, for each xi there exist large enough ni such that ξ(x) =
((xn0

)d , (xn1
)d−1 , . . .) where (xni

)d−i is the homogeneous component of xni
of degree

d − i. We can also choose ni large enough so that if chG (E) (ξx) = (yd, yd−1, . . .) then

yd−i = ∑
0≤l≤i

Pl (c1(Eni
), c2 (Eni

) , . . . , cl (Eni
)) (xni

)d−i+l .

Since Chern class commutes with Gysin homomorhism for i ≤ i′ we have

yd−i = ∑
0≤l≤i

Pl (c1(Eni′
), c2 (Eni′

) , . . . , cl (Eni′
)) (xni′

)
d−i+l

= (ch(Eni′
)xni′
)
d−i
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and we can conclude that νkξ (←Ðch(E)(x)) = νkchG(E)(ξx). Thus by the universal

property of inverse limit ξ (←Ðch(β)(x)) = chG(β)(ξx).
From previous Lemma we can write chG(α)(x) =←Ðch(α)(x) after indentifying ele-

ments of lim← A∗(Xn) with ∏∞i=0AGi (X) by ξ .
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Chapter 2

Kool-Thomas Invariants

The moduli space of stable pairs attempts to compactify the space of embedded

curves in a nonsingular projective variety X. It was shown that the moduli of sta-

ble pairs have a perfect obstruction theory and thus a virtual fundamental class.

Pandharipande-Thomas invariants are defined as the degree of the virtual fundamen-

tal class. Historically, there were moduli of stable maps and Hilbert scheme which

leads to Gromov-Witten invariants and Donaldson-Thomas Invariants. It was con-

jectured that if X is a threefold all of these invariants contain the same informations.

In this chapter we will review the definition of stable pair invariants defined in

[24] and the reduced obstruction theory of [19] its relation to δ-nodal curve counting

[19, 18]. Our reference is [24, 21, 19, 18]

Before we continue we want to fix some notations that we will use later. For a

flat morphism f ∶ X → Y of schemes and for any closed subscheme Z of Y with the

closed embedding g ∶ Z → Y , we will use XZ to denote the fiber product X ×Y Z and

fZ ∶ XZ → Z to denote the corresponding morphism so that we have the following

cartesian diagram

XZ

ḡ
//

fZ

��

X

f

��

Z g
// Y

For a sheaf F on X, we will use FZ to denote the sheaf ḡ∗F on XZ . For a closed

subscheme Z ⊂X of X, we will use ḡ−1(Z) ⊂XZ to denotes its pullback by ḡ.
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2.1 Pandharipande-Thomas Invariants

2.1.1 Stable Pairs

Let X be a smooth projective variety of dimension 3 with an ample line bundle L.

The dimension of a coherent sheaf F on X is the dimension of its support. A coherent

sheaf F on X is called pure of dimension d if for any subsheaf E ⊂ F of F , E is of

dimension d. In particular, the supporting subscheme has no embedded components.

Definition 2.1.1. Let X be a projective smooth varietiy of dimension 3. A pair

(F , s) where F is a coherent sheaf of dimension 1 and s is a section of F is called

stable if the following two conditions holds:

1. F is pure

2. The cokernel Q of s is of dimension 0.

Remark 2.1.2. In [26], Le Potier described the stability condition for the GIT problem

of pairs OX s // F using a polynomial q ∈ Q[k] as a parameter. For sufficicently large

q the semistable condition is equivalent to the above 2 conditions. Furthermore for

sufficiently large q semistable pairs are stable.

For every stable pair (F , s) we then have 2 exact sequence

0 // I // OX s // F // Q // 0 .

Lemma 1.6 of [24] tells us that I is the ideal describing the scheme theoretic support

of F . By the purity of F , the scheme theoretic support CF of F is a Cohen Macaulay

curve i.e. CF has no embedded points.

Here are some examples of stable pairs on X:

1. Every structure sheaf of a Cohen-Macaulay curve is a stable pair. A divisorD on

a Cohen Macaulay curve C in X correspond to a section s ∶ OC → OC(D) with

cokernel OD. Thus OX // OC s // OC(D) is a stable pair. This is the prototype

for stable pairs
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2. This is example from Martijn Kool. Let C = {xy = 0} ⊂ C2 be the node and let

C1 = {y = 0} and C2 = {x = 0}. Let p = (0,0). Then p is a divisor for C1 and C2.

OC1
(p) can be identified with C[x] as OC1

module with section C[x] → C[x],
1 ↦ x. Similarly for OC2

(p). Let i1 ∶ C1 → C and i2 ∶ C2 → C be the closed

embedding. Consider the morphism OX → OC → i1∗OC1
(p) ⊕ i2∗OC2

(p) which

after the identification

C[x, y] // C[x,y]
(xy)

(x,y)
// C[x,y]
(y) ⊕

C[x,y]
(x) .

The cokernel of the above morphism is supported on p and is generated by (1,0)
and (0,1) and (x,0). There is no surjective map from C[x, y] to the cokernel.

If we map 1 ∈ C[x, y] to (1,0) , there is no element of C[x, y] that we can map

to (0,1). This gives an example that the cokernel of the stable pairs might not

be a structure sheaf of a subscheme. In particular, it cannot be a section of a

divisor on the curve.

2.1.2 Moduli of Stable Pairs

Definition 2.1.3. A family of stable pairs on X over a base scheme B is a the pair

(F , s) where F is a coherent sheaf on B ×X flat over B and s is a section of F such

that for each closed point b of B, (Fb, sb) is a stable pair on X where Fb and sb are

the restriction of F and s to b . Two families (F1, s1) and (F2, s2) are isomorphic if

there exists an isomorphism ϕ ∶ F1 → F2 such that s2 = ϕ ○ s1.

Let X be a smooth projective 3-fold and let χ be an interger and β be a class in

H2(X,Z). Let Pχ(X,β) be the functor from the category of scheme to the category

of sets that assign to a scheme S the set of families of stable pairs (F , s) over S

modulo isomorphism such that for each closed point s ∈ S we have χ (Fs) = χ and

the scheme theoretic support CFs
of Fs is of class β. Then there exists a projective

scheme Pχ (X,β) representing the functor Pχ(X,β)[26]. Furthermore on the product

Pχ (X,β)×X there exists a universal sheaf F and a universal section S of F. We

denote by p and q the projection from Pχ (X,β) ×X to the factor Pχ (X,β) and X
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respectively.

Let P be the moduli space Pχ(X, i∗β). If G acts on X there is a natural G

action on P described as follows: Let f ∶ G × P ×X → P ×X, (g, p, x) → (p, g−1x).
Then (f∗F, f∗S) is a family of stable pairs over G × P . So there exists a morphism

σP ∶ G ×P → P such that ((σP × idX)∗ F, (σP × idX)∗ S) is isomorphic to (f∗F, f∗S) .

Moreover, if G acts diagonally on P ×X i.e. σP×X ∶ G × P ×X → P ×X, (g, p, x) ↦
(g.p, g.x) , then the universal sheaf F is an equivariant sheaf and S ∶ OP×X → F is an

equivariant morphism of sheaves. Let σ̂X ∶ G×P ×X → G×P ×X,(g, p, x)↦ (g, p, gx)
so that σP×X = (σP × idX) ○ σ̂X . Since f∗F ≃ (σP × idX)∗ F and f ○ σ̂X = prP×X where

prP×X ∶ G × P ×X → P ×X is the projection, there exists a canonical isomorphism

σ∗P×XF ≃ σ̂∗X (σP × idX)∗ F ≃ σ̂Xf∗F ≃ pr∗P×XF. Since the isomorphism is the canonical

isomorphism induced from the functoriality of the pullback functor, it automatically

satisfies the cocyle condition. This isomorphism is the natural equivariant structure

of F.

2.1.3 Perfect obstruction theory and virtual fundamental

class

First we recall the notions of perfect obstruction theory of [1] and the construction

of virtual fundamental class.

Let Y be a scheme and assume that there exists a closed embedding ι ∶ Y →M to

a smooth scheme. Let J be the ideal sheaf describing the closed embedding ι. Let

{J /J 2 → ι∗ΩM} ∈Db(X) be a complex concentrated in degree −1 and 0 where ΩM is

the cotangent bundle of M . Given another such embedding ι̂ ∶X → M̂ with ideal Ĵ ,

the complex {J /J 2 → ι∗ΩM} and {Ĵ /Ĵ 2 → ι̂∗ΩM̂} are quasiisomorphic. We will use

LX to denote the complex {J /J 2 → ι∗ΩM} and we call it the truncated cotangent

complex of X. Note that H0(LX) is the sheaf of Kähler differentials of X.

Definition 2.1.4 (Behrend-Fantechi). Let E● ∈ Db(Y ) be a two term complex of

vector bundles concentrated in degree −1 and 0. A morphism φ ∶ E● → LY in Db(X)
is called a perfect obstruction theory if the induced morphism on homology h0(φ) is
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an isomorphism and h−1(φ) is surjective.

There exists a two term complex of vector bundles Ê● quasi isomorphic to E● and

a morphism of complexes φ̂ ∶ Ê● → LY representing φ. So we can assume that φ is a

morphism of complexes and write φ as the following commutative diagram

E−1 ∂ //

φ−1

��

E0

φ0

��J /J 2
d

// ΩM ∣Y

(2.1)

Given a perfect obstruction theory φ ∶ E● → LY , Behrend and Fantechi construct a

class [Y ]vir ∈ ArkE0−rkE−1(Y ) called virtual fundamental class[1]. We call vd ∶= rkE0 −
rkE−1 the virtual dimension of Y . The virtual fundamental class is the image of a cone

in a vector bundle E0 over Y by the refined Gysin homomorphism corresponding to the

embedding of Y to E0 as the zero section. In [1], the above cone is constructed using

the notion of stacks. Here we will review the construction of the virtual fundamental

class in [30], which only uses schemes.

A cone over a scheme Y is a scheme over Y of the form Spec ⊕i≥0S where ⊕i≥0Si is

a graded OY -algebra such that S0 = OY and ⊕i≥0Si is generated by the coherent sheaf

S1. For any coherent sheaf F on Y the scheme Spec(SymF) over Y is a cone and we

denote it by C(F). If ι ∶ Y → Ȳ is a closed embedding, then NY ∣Ȳ ∶= C(I/I2) is called

the normal space of Y in Ȳ . And we call CY ∣Ȳ ∶= Spec (⊕i≥0I i/I i+1) the normal cone

to Y in Ȳ .

The morphism of sheaves ϕ ∶ E → F induces a morphism of schemes C(ϕ) ∶
C(F)→ C(E). Let F be a locally free sheaf. The morphism C(ϕ) gives an action of

C(F) on C(E) defined by f ● e = e +C(ϕ)(f) for every e ∈ C(E)x and f ∈ C(F)Y .

If a cone C is embedded in C(E) such that C is invariant under the action of C(F)
we call C a C(F) cone. For example, CY ∣M is a TM ∣Y cone where action of TM ∣Y is

defined through the morphism d ∶ J /J 2 → ΩM ∣Y .

Let the morphism of complexes φ ∶ E● → LY be a perfect obstruction theory. Then
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the following sequence is exact

E−1 E0 ⊕J /J 2 ΩM ∣Y 0.
(∂,φ−1)T (φ0,−d)

(2.2)

We will use Ei to denote C(E−i) for i = 0,1. Let Q be the kernel of (φ0,−d). Since

E0 ×Y CY ∣M is a TM ∣Y cone, by Proposition 2.7 of [30] there exists a unique cone

D embedded in C(Q) such that locally there exists an isomorphism E0 ×Y CY ∣M →

TM ×Y D. Moreover the following diagram is cartesian

TM ∣Y C(E0) ×Y CY ∣M

Y E1

0E1

(2.3)

Since CY ∣M is equidimensional of dimension dimM, D is equidimensional of dimension

rkE0. Since C(Q) is embedded in E1, we can send the class in ArkE0(E1) represented

by the cycle of D to a class ArkE0−rkE−1(Y ) using the refined Gysin homomorphism

corresponding to the zero section 0C(E−1) ∶ Y → E1. The resulting class [Y ]vir ∶=
0!
E1
[D] is shown in [30] to be independent of the embedding ι ∶ Y → M and also

independent of the representation of E●. Moreover, Theorem 4.6 of [30] tells us that

[Y ]vir only depend on the K-theory class [E0] − [E1] if Y is projective.

If φ is an equivariant perfect obstruction theory i.e. φi for i = 0,−1 and d ∶ E−1 →

E0 are equivariant map and the closed embedding ι is also equivariant then the same

construction can be carried out equivariantly and we have [Y ]vir ∈ AGvd(Y ).
In the remaining we will review the perfect obstruction theory of the moduli of

stable pairs defined in [24]. Let p, q be the projections Pχ (X,β)×X → Pχ (X,β) and

Pχ (X,β) ×X →X.

Pandharipande and Thomas showed that Pχ (X,β) parameterizes objects in the

derived category Db(X) with fixed determinant. Each stable pair (F , s) corresponds

to a complex I● ∶= {OX s // F} ∈ Db(X). On Pχ(X, i∗β) ×X the universal pair (F,S)
defines a complex I● ∶= {OP×X S // F }. Let ωp be the dualizing sheaf of p, which is the

pullback q∗ωX of the canonical bundle of X.
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As a moduli space of objects in the derived category with fixed determinant the

deformation-obstruction theory is described in [15] as follows. For any scheme Y and

any complex of locally freee sheaf E● there are morphisms ι ∶ O → RHom (E●,E●) ,
1 → idE● and tr ∶ RHom (E●,E●) → OY such that tr ○ ι = rk(E●)idE● . The traceless

part RHom(E●,E●)0[1] of RHom(E●,E●) is the cone of the tr morphism. If rkE● > 0

then RHom(E●,E●) ≃ RHom(E●,E●)0 ⊕OY .

Consider the following diagram

Pχ (X,β) ×X

Pχ (X,β) X

p q (2.4)

To save space we use P to denote Pχ (X,β). Let A(I●) ∈ Ext1 (I●, I● ⊗LP×X) =
Hom (RHom (I●, I●),LP×X)) be the truncated Atiyah class of I● defined in [15].

The composition of A(I●) with the canonical morphisms RHom (I●, I●)0 →

RHom (I●, I●) and the canonical morphism LP×X → LP×X/X ≃ p∗LP is an

element in Ext1 (RHom(I●, I●)0, p∗LP). Here LP×X/X is the relative cotan-

gent complex corresponding to the morphism q. Since X is projec-

tive we can apply Verdier duality so that the above element corresponds

to an element in Ext−2 (Rp∗RHom (I●, I●)0 ⊗ ωX ,LP). By the identification

Ext2 (Rp∗RHom (I●, I●)0 ⊗ ωX ,LP) = Hom (Rp∗ (RHom (I●, I●)0 ⊗ ωX) [2],LP) we

have a morphism φ ∶ Rp∗ (RHom (I●, I●)0 ⊗ ωX) [2]→ LP .

Pandharipande and Thomas have shown that Rp∗ (RHom (I●, I●)0 ⊗ ωX) [2] is

a two term complex of locally free sheaves. We will use E● to denote the com-

plex Rp∗ (RHom (I●, I●)0 ⊗ ωp) [2]. The virtual dimension of Pχ (X,β) is then

−χ(RHom (I●, I●)0) = ∫β c1(X). If X is Calabi-Yau ωX ≃ OX so that by Serre duality

vd = 0. If vd = 0 then PX,β,χ ∶= ∫[P]vir 1 ∈ Z is invariant along a deformation of X.

PX,β,χ is called Pandharipande-Thomas invariant or PT-invariant.

One technique to compute PT-invariants is using the virtual localization formula

by Graber and Pandharipande. If G = C× acts on Pχ (X,β) then LPχ(X,β) has a

natural equivariant structure. If all morphisms in (2.1) are equivariant, we call φ an
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equivariant perfect obstruction theory. Let PG be the fixed locus of P , then E● has

a sub-bundle (E●∣PG)fix which has weight 0 and a sub-bundle (E●∣PG)mov with non

zero weight such that E●∣PG = (E●∣PG)fix ⊕ (E●∣PG)mov. Graber and Pandharipande

showed that there exists a canonical morphism φ̂ ∶ (E●∣PG)fix → LPG that induces

a perfect obstruction theory for PG. So that we have the virtual fundamental class

[PG]vir of PG. Graber and Pandaripandhe gives a formula that relates [PG]vir with

[P]vir as follows :

[P]vir = i∗ ( [PG]vir
e(N vir)) ∈ AG∗ ⊗Z Q[t, t−1]

where e (N vir) is the top Chern class of the vector bundle N vir = ((E●∣PG)mov)∨ and

t is the first Chern class of the equivariant line bundle with weight 1.

2.2 Kool-Thomas Invariants

2.2.1 Stable Pairs on Local Surfaces

Let S be a nonsingular projective surface with canonical bundle ωS and let X be

the total space of ωS i.e. X = Spec (Sym(ω∨S)). Then there is a closed embedding i

of S into X as the zero section. Let π ∶ X → S be the structure morphism. Since

ωX ≃ π∗ωS ⊗ π∗ω∨S ≃ OX , X is Calabi-Yau. Let X̄ = P(X ⊕A1
S), then X is an open

subscheme of X̄ and let j ∶ X → X̄ be the inclusion and π̄ ∶ X̄ → S be the structure

morphism of X̄ as a projective bundle over S. Since S is projective, ī ∶= j ○ i ∶ S → X̄

is a closed embedding.

Let β ∈ H2(S,Z) be an effective class and χ ∈ Z. By [24] there is a projective

scheme Pχ (X̄, ī∗β) parametrizing stable pairs (F , s) with χ(F) = χ and the cycle

[CF] of the supporting curve is in class β. By removing the pairs (F , s) with sup-

porting curve CF which intersect the closed subschem X̄ ∖ X , we have an open

subscheme Pχ(X, i∗β) that parametrize stable pairs (F , s) with F supported on X

and let ĵ ∶ Pχ(X, i∗β)→ Pχ (X̄, ī∗β) be the inclusion. Let F̄ be the universal sheaf on

Pχ (X̄, ī∗β)×X̄ and S̄ ∶ OPχ(X̄,̄i∗β)×X̄ → F̄ be the universal section, then their restriction

F, S to Pχ(X, i∗β) ×X is the universal sheaf and the universal section correspond-
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ing to the moduli space Pχ(X, i∗β). Notice that (idPχ(X,i∗β) × j)∗ F = (ĵ × idX̄)∗ F̄ on

Pχ(X, i∗β) × X̄. We also use F to denote (idPχ(X,i∗β) × j)∗ F on Pχ(X, i∗β) × X̄.

There exists an action of G = C× on X̄ by scaling the fiber such that X is an

invariant open subscheme. In Section 2.1.2 we described the canonical action of G

on Pχ (X̄, ī∗β). Since X is an invariant open subscheme, Pχ(X, i∗β) is also invariant

in Pχ (X̄, ī∗β). Thus F̄ and F are equivariant sheaves and S̄ and S are equivariant

morphism of sheaves.

Consider the following diagrams

Pχ(X, i∗β) × X̄ Pχ(X, i∗β) ×X

Pχ(X, i∗β) X̄ Pχ(X, i∗β) X.

p̄ q̄ p q (2.5)

Let Ī● be the complex [ OPχ(X,i∗β)×X̄
S̄ // F] in D(Pχ(X, i∗β) × X̄) and let I● be

the complex [ OPχ(X,i∗β)×X
S // F] in D(Pχ(X, i∗β) × X). Since F is supported

on Pχ(X, i∗β) × X one can show that Rp∗ (RHom(I●, I●)0 ≃ Rp̄∗ (RHom (Ī●, Ī●)0)
and Rp∗ (RHom (I●, I●)0 ⊗ ωX) ≃ Rp̄∗ (RHom (Ī●, Ī●)0 ⊗ ωX̄). Thus, the dual of

the morphism L∨Pχ(X,i∗β) → Rp∗RHom(I●, I●)0[1] induced by the Atiyah class

A(F) is a perfect obstruction theory on Pχ(X, i∗β). Let E● be the complex

Rp∗ (RHom (I●, I●)0 ⊗ ωX) [2]. Notice that ωX ≃ OX ⊗ t∗. By Serre duality we have

an isomorphism (E●)∨ → E●[−1] ⊗ t and E is a symmetric equivariant obstruction

theory.

Let Pχ(S,β) be the scheme parameterizing stable pairs (F , s) on S such that

the support CF of F is in class β and F has Euler characteristic χ(F) = χ. On

Pχ(S,β) × S there exists a universal sheaves F and universal section S. With the

closed embedding î ∶= idPχ(S,β) × i∶ Pχ(S,β) × S → Pχ(S,β) ×X , OPχ(S,β)×X //

î∗OPχ(S,β)×S
î∗S // î∗F is a family of pairs over Pχ(S,β). This family induces a closed

embedding Pχ(S,β) → Pχ(X, i∗β). Indeed, Pχ(S,β) is a connected component of

Pχ(X, i∗β)G.

Let I●S denote the complex [OPχ(S,β)×S → F] and I● denotes the complex
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[OPχ(S,β)×X → î∗F]. Proposition 3.4 of [19] gives us the decomposition of E∣Pχ(S,β)
into its fixed and moving part as follows:

(E●∣Pχ(S,β))fix ≃ Rp̂∗RHom (I●S,F)∨ (E●∣Pχ(S,β))mov ≃ Rp̂∗RHom (I●S,F) [1]⊗ t∗

(2.6)

We will use E● to denote (E●∣Pχ(S,β))fix.

2.2.1.1 Reduced obstruction theory

If there is a deformation of S such that the class β is no longer algebraic, then the

virtual fundamental class will be zero because the the virtual class is deformation

invariant. If we restrict the deformation inside the locus when β is always algebraic

we get the reduced obstruction theory.

Recall that Ext2p̄ (Ī●, Ī●)0 is the obstruction sheaf of the Pandaripandhe-Thomas

obstruction theory. We also use β to enote the Poincaré dual of β ∈ H2(S,Z). As-

sume that the map ∪β ∶ H1(TS) → H2(OS) induced by the pairing ΩS ⊗ TS → OS
is surjective. Then Theorem 2.7 of [19] tells us that the following composition is

surjective

Ext2p̄ (Ī●, Ī●)0 Ext2p̄(Ī●, Ī●) Ext3p̄ (Ī●, Ī● ⊗LPχ(X,i∗β)×X̄)

Ext3p̄(Ī●, Ī● ⊗ q̄∗ΩX̄) R3p̄∗q̄∗ΩX̄ ≃H1,3(X̄)⊗Pχ(X, i∗β)

∪A(̄I●)

tr

(2.7)

Theorem 2.7 of [19] also tells us that there exists a perfect obstruction theory φ̂ ∶
E●red → LPχ(X,i∗β) where E●red is the cone of the morphism H3(ΩX̄)⊗OPχ(X,i∗β)[1]→ E●

constructed as the composition of the dual of (4.2) shifted by 1 and the canonical

morphism Ext2p̄(Ī●, Ī●)∨0[1] = H1((E●)∨)∨[1] → E●. φ̂ is called reduced obstruction

theory for Pχ(X, i∗β).
Proposition 3.4 of [19] gives us the decomposition of E●red∣Pχ(S,β) into fixed part

and moving part as follows:
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((E●red∣Pχ(S,β))fix)
∨ = Cone( Rp̂∗RHom (I●S,F) ψ

// H2(OS) ⊗OPχ(S,β)[−1] )
(E●red∣Pχ(S,β))mov = Rp̂∗RHom(I●S,F)[1]⊗ t

where ψ is the composition

Rp̂∗RHom (I●S,F) // Rp̂∗RHom(F,F)[1] tr // Rp̂∗O[1] // R2p̂∗O[−1]

We will use E●red to denote (E●red∣Pχ(S,β))
fix

.

2.2.1.2 div map and point insertions

We will give a proof of the existence of the map div ∶ Pχ(X, i∗β) → Hilbβ(S) that

maps (F , s) ∈ Pχ(X, i∗β) to a divisor D ∈ Hilbβ(S) such that π∗F is supported on D.

The morphism has been used by Kool and Thomas in [19]. We prove it here because

we could not find the proof in the literature.

First we review the construction of a divisor divF from a coherent sheaf F on Y

or more generally from a bounded complex of locally free sheaves F● defined in [22]

and [7]. Recall the notion of depth of a Noetherian local ring R with maximal ideal

m. A sequence (a1, . . . , an) of elements of m is called R-regular if for all 0 ≤ i ≤ n

, ai is not a zero divisor for the R-module R
⟨a1,...,ai−1⟩R and n is called the length of

the sequence. The length of the longest R-regular sequence is called the depth of R.

Equivalently the depth of R is the smallest p such that Extp (R/m,R) ≠ 0. The depth

of a point p ∈ Y is the depth of the local ring Op. If Y is nonsingular then the generic

point of Y is the only point of depth 0 and the points of depth 1 are exactly those

that correspond to the generic point of codimension 1 irreducible subscheme.

Let F● be bounded complex of free sheaves on a scheme U such that F● is torsion

i.e. the support of F● does not contain any point of depth 0. Then detF i ≃ OU so that

there is an isomorphism κ ∶⊗
i∈Z
(detF i)(−1)i ≃ OU . Outside the support V of F●, F●

is exact so that we have a canonical isomorphism λ ∶⊗
i∈Z
(detF i)(−1)i → OU∖V . Thus
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λ ○ κ−1 ∶ OU∖V → OU∖V is an isomorphism so it correspond to unit f ∈ Γ(U ∖ V,OU).
Since U ∖V contains all points of depth 0 of U, by Lemma 1 of [7] f defines a Cartier

divisor div (F●) on U . div (F●) has the following properties

Proposition 2.2.1 (Proposition 1 of [7]). Let F● be a torsion bounded complex of

free sheaves on a scheme U . Then div (F●) satisfies the following properties:

1. If F●1 and F●2 are quasi isomorphic then div●F1 and div●F2 are equal.

2. If g ∶ U ′ → U is a morphism of schemes then if g∗F● is torsion then g−1 (divF●)
is a Cartier divisor and div (g∗F●) = g−1divF●

3. If H0(F●) = F and H i(F●) = 0 for i ≠ 0 then div(F●) is an effective Cartier

divisor. Moreover if H0(F●) = OD of an effective Cartier divisor D then

div(F●) =D.

4. Given a morphism φ ∶ F●1 → F●2 of complexes and let Cone(φ) be the mapping

cone of φ then div (Cone (φ)) = div (F●2) − div (F●1).
Let F● be a torsion bounded complex of locally free sheaves on a scheme Y . Then

locally F● is a bounded complex of free sheaves so that div (F●) can be defined. By

point 1. and 2. of the above proposition we can define div (F●) globally by gluing the

locally constructed divisors. If F is a torsion coherent sheaf with a resolution F●, we

can define div (F) ∶= div(F●). In the above proposition we can replace free sheaves

by locally free sheaves.

Let f ∶ Y ′ → Y be a projective morphism of Noetherian schemes such that (i)

Rif∗OY ′ = 0 for i > 0 , (ii) f∗OY ′ has a resolution by a bounded complex of locally

free sheaves and (iii) if y ∈ Y has depth 0 (resp. depth 1) then f−1(y) is empty

(resp. finite). Then div(f) is defined as div(f∗OY ′). If Y ′ is a closed subscheme

of a scheme Ȳ with a projective morphism f̄ ∶ Ȳ → Y such that f̄ ∣
Y ′
= f then

f̄∗cycleȲ (Y ′) = cycleY (div(f)) where cycleȲ (Y ′) ∈ Z∗(Ȳ ) is the corresponding cycle

of Y ′ as a subscheme of Ȳ .
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Proposition 2.2.2. There exists a G-equivariant morphism of schemes div ∶
Pχ(X, i∗β) → ∣L∣ that maps the closed point (F , s) to div (π̄P∗ F) where π is the pro-

jection π ∶X → S.

Proof. Let F be the universal sheaf. Let π̄P ∶= idP ×π ∶ Pχ(X, i∗β)×X̄ → Pχ(X, i∗β)×
S. We will show that div π̄P∗ F is a flat family of effective Cartier divisors of S such that

for every p ∈ Pχ(X, i∗β), the class of cycleS (div π̄∗F)p in H2(S,Z) is β. The support

C of F is proper relative to Pχ(X, i∗β) so that π̄P∗ F is coherent. π̄P∗ F is also flat over

Pχ(X, i∗β) so that π̄P∗ F has a resolution by a complex of locally free sheaves of finite

length. Moreover for each closed point p ∶ SpecC→ Pχ(X, i∗β), the restriction of π̄p∗F

to {x}×X do not contain an points of depth 0 so that by L emma 5 of [7], π̄P∗ F do not

contain any points of depth 0 and we can construct div π̄P∗ F as an effective Cartier

divisor of Pχ(X, i∗β)×S. By the functoriality of the div construction for each point p

of Pχ(X, i∗β), (div π̄P∗ F)p = div (π̄P∗ F)p = div (π̄∗ (Fp)) is an effective Cartier divisor

of S so that div π̄P∗ F is flat by Lemma 2.2.3.

It remains to show that the the corresponding cycle of div π̄∗Fp is in class β. Since

Fp is supported on X the composition CFp
→ X̄ → S is an affine morphism so that we

have an exact sequence

0 // π̄∗OCp
// π̄∗Fp // π̄∗Qp

// 0

where π̄∗Qp is supported on subscheme of codimension 2. Then we have divπ∗Fp =
divπ∗OCp

. By the proof of Lemma 5.9 of [[22]] we have

cycleS (div π̄∗Fp) = cycleS (div π̄∗OCp
) = π̄∗cycleX̄ (Cp) .

Notice that cycleX̄ (Cp) is in class ī∗β ∈ H2(X̄,Z). Since π̄∗ ○ ī∗ is identity we can

conclude that cycle (div π̄∗Fp) is in class β.

It remains to show that div ∶ Pχ(X, i∗β) → ∣L∣ is an equivariant morphism where

the action of G on ∣L∣ is described in Lemma 2.2.4. Consider the following cartesian
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diagram

G × P ×X
πG×P

��

f
// P ×X

πP

��

G × P × S
idG×div

��

ḟ
// P × S

div
��

G ×Hilbβ(S) × S f̂
// Hilbβ(S) × S

where ḟ ∶ G × P × S → P × S ,(g, p, s)↦ (p, g−1s). Since

(σP × idS)−1
div−1D = (σP × idS)−1

div (πP∗ F)
= div (σP × idS)∗ πP∗ F
= div (πG×P∗ (σP × idX)∗ F)
= div (πG×P∗ f∗F)
= div (ḟ∗πP∗ F)
= ḟ−1div (πP∗ F)
= ḟ−1div−1D
= (idG × div)−1

f̂−1D
= div−1(σHilbβ(S) × idS)−1D

we can conclude that div ○ σP = σHilbβ(S) ○ (idG × div).
Lemma 2.2.3. If D ⊂ B × S be an effective Cartier divisor, then D is flat over B if

and only if Db is an effective Cartier divisor for all closed point b ∈ B.

Proof. Since D is a Cartier divisor, we have a short exact sequence

0 // O(−D) // O // OD // 0

If OD is flat over B then for each point b ∈ B, the restriction of the above exact

sequence to b is still exact the ideal sheaf of Db is the line bundle O(D)b. For the

converse, since Db is a Cartier divisor, the restriction to b of the above exact sequence
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is exact, in particular O(−D)b → (OB×s)b is injective. Since O(−D) is a line bundle, it

is flat over B and by Lemma 2.14 of [14] we can conclude that OD is flat over B.

Lemma 2.2.4. Let G act on a surface S and β ∈ H2(S,Z). Let D ⊂ Hilbβ(S) × S
be the universal divisor. Let f̂ ∶ G × Hilbβ(S) × S→ Hilbβ × S, (g, h, s) ↦ (h, g−1s).
Since f̂ is flat f̂−1D ⊂ G×Hilbβ(S)×S is an effective divisor and induces a morphism

σHilbβ(S) ∶ G × Hilbβ(S) → Hilbβ(S) since Hilbβ(S) is a fine moduli space. Then

σHilbβ(S) defines an action of G on Hilbβ(S).
For a cohomology classes σi ∈ H∗(X,Z), i = 1, . . . ,m Kool and Thomas assign a

class τ(σi) ∶= p∗ (c2 (F) q∗σ) ∈H∗ (Pχ(X, i∗β)) where c2 (F) is the second Chern class

of F and define the reduced invariants as

Predβ,χ(X,σ1, . . . , σm) ∶= ∫
[Pχ(X,i∗β)G]vir

1

e (N vir)
m

∏
i=1

τ(σi).

Assume that b1(S) = 0 so that Hilbβ = ∣L∣. It was shown that if for all i , σi is the

pullback of the Poincaré dual of the [pt] ∈ H4(S,Z) represented by a closed point

then

Predβ,χ (X, [pt]m) = ∫
j![Pχ(X,i∗β)G]vir

1

e (N vir)
where j! is the refined Gysin homomorphim corresponding to the following cartesian

diagram

Pǫ ×∣L∣ Pχ(X, i∗β)
��

// Pχ(X, i∗β)
div

��

Pǫ
j

// ∣L∣
where j is a regular embedding Pǫ ⊂ ∣L∣ of a sublinear system and ǫ = dim ∣L∣ −m.

2.2.2 δ-nodal Curve Counting via Kool-Thomas invariants

Recall that a line bundle L on a surface S is n-very ample if for any subscheme Z

with length ≤ n + 1 the natural morphsim H0(X,L)→H0(Z, L∣Z) is surjective.

We assume that b1(S) = 0 and let L be (2δ + 1)-very ample line bundle on S with

H1(L) = 0. We also assume that the first Chern class c1(L) = β ∈ H2(S,Z) of L
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satisfies the condition that the the morphism ∪β ∶ H1(TS) → H2(OS) is surjective;

in particular then H2(L) = 0 also. Given a curve C not necessarily reduced and

connected, we let g(C) to denote its arithmetic genus, defined by 1− g(C) ∶= χ(OC).
If C is reduced its geometric genus ḡ(C) is defined to be the g(C̄) the genus of

its normalisation. And let h denote the arithmetic genus of curves in ∣L∣, so that

2h − 2 = β2 − c1(S)β.

Proposition 2.1 of [18] and Proposition 5.1 of [19] tells us that the general δ-

dimensional linear system Pδ ⊂ ∣L∣ only contains reduced and irreducible curves.

Moreover Pδ contains finitely many δ-nodal curves with geometric genus h − δ and

other curves has geometric genus > h − δ.
Kool and Thomas also define

Predχ,β(S, [pt]m) ∶= ∫
[Pχ(S,β)]red

1

e (N vir)τ ([pt])m .
They compute P red

χ,β (S, [pt]m) in [20] and P red
χ,β (S, [pt]m) is given by the following

expression

tn+χ(L)−χ(OS) (−1

t
)n+χ(L)−1−m

∫
S[n]×Pχ(L)−1−m

cn(L[n](1))c●(TS[n])c● (O(1)⊕χ(L))
c● (L[n](1)) , (2.8)

where L[n] is the vector bundle of rank n on S[n] with fiber H0(L∣Z) for a point

Z ∈ S[n] and L[n](1) = L[n] ⊠O(1).
Under the above assumption, only the contribution from Pχ(S,β) counts for

Predβ,χ (X, [pt]m) so Predβ,χ (X, [pt]m) = Predχ,β(S, [pt]m). Define the generating function

for Predβ,χ(X, [pt]m) as

∑
χ∈Z
Predβ,χ(X, [pt]m)qχ

then define q̄ = q1−i(1 + q)2i−2 then the coefficient of q̄h−δ is nδ(L)th−δ−1+∫β c1(S) where

nδ(L) is the number of δ-nodal curves in Pδ.

nδ(L) has been studied for example in [11] and [18]. In [18], it is shown that after

the same change of variable nδ(L) can be computed as the coefficient of q̄h−δ of the
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generating function
∞∑
i=0

e(Hilbn(C/Pδ))qi+1−h

where e(Hilbi(C/Pδ) is the Euler characteristic of the relative Hilbert scheme of points.

Moreover e(Hilbn(C/Pδ)) can be computed as

∫
S[n]×Pδ

ci(L[n](1))c● (TS[n]) c● (O(1)⊕δ+1)
c● (L[n](1)) .

In [18], we have to assume that L is sufficiently ample and H i(L) = 0 for i > 0 so

that Hilbn(C/Pδ) are smooth. While in [19], Predχ,β(S, [pt]m) can be defined under

the assumption that H2(L) = 0 for all L with c1(L) = 0. We can think nδ(L) as

a generalization of the one studied in [18]. In particular, we can think nδ(L) as a

virtual count of δ-nodal curves for not necessarily ample line bundle L.
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Chapter 3

Equivariant K-theoretic PT

invariants of local surfaces

In this chapter we will recall the K-theoretic invariants proposed by Nekrasov and

Okounkov in [23] and introduce a class that will account for the incidence of the

supporting curve of a stable pairs and a point. The definition of this class is motivated

by the definition of points insertions in [19].

3.1 K
1/2
vir and twisted virtual structure sheaf

Let φ ∶ E● → LY be a perfect obstruction theory. Let φ ∶ E1 → Y be the structure

morphism of E1 and let 0E1
∶ Y → E1 be the zero section. In Section 2.1.3 we

describe the construction of the virtual fundamental class [Y ]vir ∈ Avd(Y ) where

vd ∶= rkE● = rkE0 − rkE−1 as the image of the class in ArkE0(E1) represented by the

cycle of a coneD ⊂ E1 by the Gysin homomorphism 0!
E1
∶ ArkE0 (E1)→ ArkE0−rkE−1(Y ).

As the zero section of E1, the Koszul sequence gives a resolution for 0E1∗OX so that

we can map the class of OD in G(E1) to a class OvirX in G(Y ) defined in [6] as

OvirX ∶= ∞∑
i

(−1)i[T oriOE1

(OX ,OD)]Y ∈ G(Y ).
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We call OvirY the virtual structure sheaf of Y . Note that OvirY is not a sheaf but a class

in the Grothendieck group of coherent sheaves on Y . If φ is an equivariant perfect

deformation theory, D is an invariant subscheme of E1 so that we can construct

OvirY ∈ GG(Y ). If Y is proper over C, the virtual fundamental class and virtual

structure sheaf are related by the following virtual Riemann-Roch formula by Fantechi

and Göttsche in [6]

χ(OvirY ) = ∫
[Y ]vir

td(T vir) (3.1)

where T virY ∶= [E0] − [E1] ∈ K(Y ) . We call T virY the virtual tangent bundle and the

dual of it’s determinant KY,vir ∶= (detE0)−1 ⊗ detE1 = detE0 ⊗ (detE−1)−1 ∈ Pic(Y )
the virtual canonical bundle.

If vd = 0, by equation (3.1) we have

χ(OvirY ) = ∫
[Y ]vir

1 ∈ Z (3.2)

so that we can use either virtual structure sheaf or virtual fundamental class to

define a numerical invariant. If there exist an isomorphism θ ∶ E● → (E●)∨ [1] then

rkE● = rk ((E●)∨ [1]) = −rkE● so that vd = 0

The next development in enumerative geometry is to give refinements of these

numerical invariants. In [23], Nekrasov and Okounkov propose that we should choose

a square root of Kvir and work with the twisted virtual structure sheaf [28]

ÔvirY ∶=K 1

2

Y,vir ⊗OvirY .

To get a refinement of (3.2), we have to consider the action of the symmetry group

of Y so that χ (ÔvirY ) is a function with the equivariant parameter as variables. For

example let Y be the moduli space of stable pairs on a toric 3-folds X and (C×)3acts

on Y . Choi, Katz and Klemm have calculated χ(ÔvirY ) where X is the total space

of the canonical bundle KS for S = P2 and S = P1 × P1 in [2]. They have shown
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that the generating function with coefficients χ(ÔvirY ) calculates a refinement of BPS

invariants.

One advantage of working equivariantly is that to compute χ (ÔvirY ), we can use the

virtual localization formula for the Grothendieck group of coherent sheaves from [27]

by Qu . Let G = C× act on Y and φ ∶ E● → LY be an equivariant perfect obstruction

theory. Similar to the virtual localization formula by Graber and Pandaripandhe, it

states that, the virtual structure sheaf equals a class coming from the fixed locus.

On Y G we can decompose E● into (E●)fix ⊕ (E●)mov where (E●)fix is a two term

complex with zero weight and (E●)mov is a two term complex with non zero weight.

Let i ∶ Y G → Y be the closed embedding and let N vir = ((E●)mov)∨. Then the virtual

localization formula can be stated as

i∗ ( Ovir
Y G

⋀● (N vir)∨) = OvirY ∈ GG(Y )⊗Z[t,t−1] Q(t) (3.3)

where for a two term complex F ● = [F −1 → F 0], ⋀●F ● = ∑
r0

i=0
(−1)i⋀i F 0

∑
r1

j=0
(−1)j ⋀j F−1

with ri = rkF −i.

On the fixed locus, the Grothendieck group of coherent sheaves is isomorphic to the

tensor product G(Y G)⊗ZKG(pt) which is easier to work with.

To incorporate K
1

2

Y,vir in our computation we will consider a double cover G′ of

G so that t
1

2 is a representation of G′. Explicitly let ζ ∶ G′ ∶= C× → C× = G, z ↦ z2

be the double cover. Then G′ acts on Y via ζ by defining σ′Y ∶ G′ × Y → Y,(g′, y) ↦
σY (ζ(g′), y) where σ ∶ G × Y → Y is the morphism defining the action of G on Y .

Also via ζ any G-equivariant sheaf F on Y is a G′-equivariant sheaf by pulling back

the equivariant structure via ζ. This gives an exact functor CohG(Y ) → CohG
′(Y )

and a group homomorphism ζ̂ ∶ GG(Y ) → GG′(Y ). Moreover ζ̂ is a morphism of

KG(pt)-modules. For example, the primitive representation t of G has weight 2 at

G′ module. We can take the primitive representation of G′ as the canonical square

root of t and denote it by t
1

2 .

Next we have to compute the restriction of K
1

2

Y,vir on the fixed locus. Notice

that Y G′ = Y G. Assume that there exist an isomorphism θ ∶ E● → (E●)∨ [1] ⊗ t.
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The follwing argument by Richard Thomas in [31] shows that on Y G, K
1

2

Y,vir has a

canonical equivariant structure.

We decompose E●∣Y G into its weight spaces so that

E●∣Y C× =⊕
i∈Z
F iti

where F i are two-term complex of non-equivariant vector bundle which only finitely

many of them are nonzero and t is a representation of G of weight 1. detE● can be

computed as the determinant of its class in KG(Y ).The isomorphism θ implies that

[(F i)∨] = [F −i−1[−1]] in KG(Y ). Thus KY,vir is a squre twisted by a power of t ,

explicitly

KY,vir = (⊗
i≥0

det (F iti))
⊗2

tr0+r1+...

where ri = rkF i. Thus the canonical choice for K
1

2

Y,vir∣
Y G

is

⊗
i≥0

det (F iti)⊗ t
1

2
(r0+r1+...) ∈KG(Y G)⊗Z[t,t−1] Z[t 1

2 , t− 1

2 ].

Recall that N vir is the moving part of the dual of E●∣Y G so that in our case (N vir)∨ =
⊕i≠0F iti.

After choosing a square root of KY,vir, and assuming that the square root has an

equivariant structure, by equation (3.3) we then have

i∗
⎛⎜⎜⎜⎝
Ovir
Y G ⊗ K 1

2

Y,vir∣
Y G

⋀● (N vir)∨
⎞⎟⎟⎟⎠
= ÔvirY ∈KG(Y )⊗Z[t,t−1] Q(t 1

2 )

If Y is compact we can apply RΓ to both sides of the above equation and we have

RΓ

⎛⎜⎜⎜⎝
Y G,

Ovir
Y G ⊗ K 1

2

Y,vir∣
Y G

⋀● (N vir)∨
⎞⎟⎟⎟⎠
= RΓ (Y, ÔvirY ) ∈ Q(t 1

2 ). (3.4)

Thomas has proved the above identity in [31] without using equation (3.3). Further-
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more Thomas has shown that

RΓ

⎛⎜⎜⎜⎝
Y G,

Ovir
Y G ⊗ K 1

2

Y,vir∣
Y G

⋀● (N vir)∨
⎞⎟⎟⎟⎠

RRRRRRRRRRRRRRRRRt=1

= ∫
[M]vir

1

e (N vir)
∈ Q

In the case that we are interested on, the moduli space Y is not compact. Thus

we will use the left hand side of equation (3.4) to define our invariants.

3.2 Equivariant K-theoretic PT invariants of local

surfaces

3.2.1 Equivariant K-theoretic invariants

Let Y be the moduli space of stable pairs on the canonical bundle X ∶= Spec (Symω∨S)

of a smooth projective surface i.e. Y = Pχ(X, i∗β) for some χ ∈ Z and β ∈ H2(S,Z)

where i ∶ S →X is the zero section. We will use π to denote the structure map X → S

of X as a vector bundle over S. Note that Pχ(X, i∗β) is a quasiprojective scheme

over C. In particular, Pχ(X, i∗β) is separated and of finite type.

Let G = C× act on X by scaling the fiber of π. Consider the following diagram:

Pχ(X, i∗β) ×X

Pχ(X, i∗β) X

p q (3.5)

Recall form Chapter 2 that Pχ(X, i∗β) has an equivariant perfect obstructrion theory

φ ∶ E● → LPχ(X,i∗β) where E● is the complex Rp∗ (RHom (I●, I●)0 ⊗ ωp) [2] with ωP =
q∗ωX . Since X is Calabi-Yau ωX ≃ O ⊗ t∗ Serre duality gives us the isomorphism

(E●)∨ ≃ E●[−1]⊗ t. (3.6)

So that by Proposition 2.6 of [31] we have an equivariant line bundle
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K
1

2Pχ(X,i∗β),vir∣Pχ(X,i∗β)G
on Pχ(X, i∗β)G.

We want to study how to define a class that contains the information about the

incidence between a K-theory class in KT (X) and the class of the universal sheaf

F. From another direction we also want to give a refinement for the Kool-Thomas

invariants. In [19], Kool and Thomas take the cup product of the second Chern class

of the universal sheaf F with the cohomology class coming from X. Informally we

could think that as taking the intersection between the universal supporting curve

and the Poincaré dual of the supporting curve.

In this thesis we are exploring two approaches. In the first approach we are

trying to immitate the definition of descendent used in the article [19]. In [19] the

authors are cupping the cohomology class coming from X with the second Chern

class of F. Since we are unfamiliar on how to define Chern classes as a K-theory

class, we are considering to take the class of the structure sheaf of the supporting

scheme OCF and take the tensor product of OCF with the the class coming from X

through the projection q ∶ Pχ(X, i∗β) ×X → X. In the second approach we use the

K-theory class on Pχ(X, i∗β)×S of the structure sheaf of the divisor divπ∗F and take

the tensor product of Odivπ∗F with the class coming from S through the projection

qS ∶ Pχ(X, i∗β) × S → S.

The following proposition is an equivariant version of Proposition 2.1.0 in [14]

which we will use to define the K-theory class.

Proposition 3.2.1. Let f ∶ Y → T be a smooth projective G-map of relative dimension

n with G-equivariant f -very ample line bundle OY (1). Let F be a G-equivariant sheaf

flat over T . Then there is a resolution of F by a bounded complex of G-equivariant

locally free sheaves :

0 // Fn // Fn−1
// . . . // F0

// F
where all morphisms are G-equivariant such that Rnf∗Fν is locally free for ν = 0, . . . , n

and Rif∗Fν = 0 for i ≠ n and ν = 0, . . . , n.

Proof. The equivariant structure of all sheaves constructed in the proof of Proposition
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2.1.10 in [14] can be defined canonically.

If OCF is flat over Pχ(X, i∗β) then OCF define a K-theory class in Pχ(X, i∗β) ×X.

To push the tensor product down to a K-theory class in Pχ(X, i∗β), we push forward

OCF to Pχ(X, i∗β)× X̄ where X̄ is P(KS ⊕OS) the projective completion of X. Since

CF is proper relative to Pχ(S,β) the push forward i∗OCF by the open embedding

i ∶ Pχ(X, i∗β) ×X → Pχ(X, i∗β) × X̄ is a coherent sheaf on Pχ(X, i∗β) × X̄. Then

Proposition 3.2.1 implies that OCF has a resolution by a finite complex of locally free

sheaf F ● on Pχ(X, i∗β)×X̄ so that we can take [OCF] ∶= ∑i(−1)i[F i]. The class [OCF]
is independent of the resolution.

In Chapter 1 we have described the ring homomorphism f∗ ∶ KG(Ȳ ) → KG(Y )
for any morphism of sheaves f ∶ Y → Ȳ . We also described the group homomorphism

f∗ ∶ KG(Y ) → KG(Ȳ ) when f is the structure morphism of a projective bundle or

when f is finite and f∗F has a resolution by locally free sheaves.

Consider the following diagram

Pχ(X, i∗β) × X̄

Pχ(X, i∗β) X̄

p̄ q̄ (3.7)

Let π̄ ∶ X̄ → S be the structure morphism of X̄ as a projective bundle over S. We

assign for each class α ∈ KT (X) a class γ (α) in KT (Pχ(X, i∗β)) as follows. The

pullback map π∗ ∶ KT (S) → KT (X) is an isomorphism. Thus there exist a unique

class α̂ ∈ KT (S) such that π∗α̂ = α. We define γ (α) ∶= p̄∗ ([OC
F̄
] . [q̄∗ ○ π̄∗α̂]). By

Proposition 3.2.1, [OC
F̄
] ∈ KT (Pχ(X, i∗β) × X̄) and since X̄ is smooth and projec-

tive over C, p̄∗ can be defined as the composition of i∗ and r∗ where i is a regular

embedding and r is the structure morphism PNPχ(X,i∗β)→ Pχ(X, i∗β). Thus the class

γ(α) is well defined. In particular for every subscheme Z ⊂ X, γ(OZ) is an element

in KT (Pχ(X, i∗β)).
For the second approach, divπ∗F is a Cartier divisor on Pχ(X, i∗β)×S so that we
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have a line bundle O(divπ∗F) and exact sequence

0 // O(−divπ∗F) // O // Odivπ∗F
// 0 .

Thus the K-theory class of Odivπ∗F is 1 − [O(−divπ∗F)].
Consider the following diagram

Pχ(X, i∗β) × S

Pχ(X, i∗β) S.

p̂ qS

(3.8)

Similar to the first approach we assign for each α ∈ KT (X) the class γ̄(α) ∶=
p̂∗ ([Odivπ∗F].q∗Sα̂) .

In this thesis we only working for the case when α is represented by the class of

the pullback of a closed point s ∈ S. Instead of γ (π∗ [Os]) we will use γ ([Os]) to

denote this class. We also assume that b1(S) = 0 so that Hilbβ is simply ∣L∣ for a

line bundle L on S with c1(L) = β. In this thesis, we want to study the following

invariants

RΓ(PG, OvirPG

⋀● (N vir)∨ ⊗K
1

2P,vir∣PG ⊗ m

∏
i=1

βi∣
PG

) ∈ Q (t 1

2) (3.9)

where βi is either γ (Osi
) or γ̄(Osi

) with Osi
are the classes of the structure sheaves

of closed points si ∈ S. In a special case that we have worked out in this thesis, in

order to make the invariant coincide with Kool-Thomas invariant when we evaluate

it at t = 1 we have to replace γ(Osi
) by

γ(Osi
)

t−1/2−t1/2 and γ̄(Osi
) with

γ̄(Osi
)

t−1/2−t1/2 . Thus we

define the following invariants

PX,β,χ(s1, . . . , sm) ∶= RΓ(PG, OvirPG

⋀● (N vir)∨ ⊗K
1

2P,vir∣PG ⊗ m

∏
i=1

γ(Osi
)

t− 1

2 − t 1

2

∣
PG

)
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when OCF is flat and

P̄X,β,χ (s1, . . . , sm) ∶= RΓ(PG, OvirPG

⋀● (N vir)∨ ⊗K
1

2P,vir∣PG ⊗ m

∏
i=1

γ̄(Osi
)

t− 1

2 − t 1

2

∣
PG

)

3.2.2 Vanishing of contribution of pairs supported on a thick-

ening of S in X

In this subsection we will prove that under the assumption that all curve that pass

through all the m points are reduced and irreducible the contribution the invariants

PX,β,χ(s1, . . . , sm) and P̄X,β,χ (s1, . . . , sm) of the curves not supported on S is zero.

Proposition 2.1 of [18] tells us that if L is a 2δ + 1-very ample line bundle on S

then the δ-dimensional general sublinear system Pδ ⊂ ∣L∣ only contain reduced curves.

Proposition 5.1 of [19] also implies that these curves are also irreducible. Thus our

assumption that all curves passing through all m points are reduced and irreducible

is more likely to happen. If for all si, Osi
are in the same class, our assumption

automatically holds since we can replace {si} by {s′i} that satisfies our assumption.

First we work for PX,β,χ(s1, . . . , sm).
Let π̄P ∶ Pχ(X, i∗β) × X̄ → Pχ(X, i∗β) × S be the pullback of π̄ and let i ∶ C →

Pχ(X, i∗β) × X̄ be the closed embedding of the universal curve. As the composi-

tion of projective morphisms is projective then the composition π̄P ○ i is also projec-

tive. Notice the above composition equals to the composition C → Pχ(X, i∗β) ×X →
Pχ(X, i∗β)×S which is affine. Thus we can conclude that π̄P ○ i is a finite morphism.

We denote this morphism by ρ.

Recall the morphism div ∶ Pχ(X, i∗β) → ∣L∣ from Chapter 2 that maps the stable

pairs (F , s) to the supporting curve CF ∈ ∣L∣ of F . Let D ⊂ ∣L∣ × S be the universal

divisor and let DP ⊂ P ×S be the family of divisors that correspond to the morphism

div ∶ Pχ(X, i∗β) → ∣L∣ and let j ∶ DP → P × S be the closed embedding. Equivalently

DP = div−1D.

Lemma 3.2.2. ρ factors through j.
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Proof. The ideal I in OPχ(X,i∗β)×S corresponding to the divisor DP is flat over

Pχ(X, i∗β) and ρ factorize through j if the composition I → OPχ(X,i∗β)×S → ρ∗OC
is zero. By Nakayama’s Lemma it is sufficient to check whether the composition

is zero for each p ∈ Pχ(X, i∗β). Or equivalently, we can check whether ρ factorize

through j at each point p ∈ Pχ(X, i∗β) .

Let ρp ∶ Cp → {p}×S = S be the restriction of ρ to the point p ∈ Pχ(X, i∗β) and let

W ⊂ S be the scheme theoretic support of ρp∗OCp
. Notice that ∣W ∣ = Supp(ρ∗OCp

) is

a curve. We claim that W is a Cartier Divisor. We will show that W is a subscheme

of divF = divρ∗OCp
so that ρp factorize through jp. Let σ ∶ OS → ρ

p∗OCp
be the

morphism of sheaves corresponding to the morphism ρp ∶ Cp → S. Then OW is the

image of σ so that we have an injection OW → ρ
p∗OCp

→ ρ
p∗Fp. By Proposition 2.2.1 we

have divρp∗Fp = divOW +D where D is some effective divisor. Since W is a Cartier

divisor then divOW =W . So that we can conclude that W is a subscheme of divF .

It remains to show that W is a Cartier divisor. Let I ⊂ OS be the ideal sheaf of

W . It is sufficient to show that Ix is a free OS,x-module of rank 1 for every x ∈X. For

U = S ∖W , the inclusion I ⊂ OS is an isomorphism so that if x ∉W, Ix is isomorphic

to OS,x. Since S is nonsingular OS,x is a domain so that it is sufficient to show that

Ix is generated by one element f ∈ OS,x.
Note that the morphism ρ ∶ Cp → S is a finite morphism so that (ρp∗OCp

)
x

is a

finitely generated OS,x-module. In particular, (ρp∗OCp
)
x

is a Cohen-Macaulay OS,x-
module. By Proposition IV.13 of [29], any prime p ⊂ OS,x such that OS,x/p is isomor-

phic to a submodule of (ρp∗OCp
)
x

must be generated by a single irreducible element

g ∈ OS,x. There are finitely many of such p and we denote them by p1, . . . ,pk. Let

gi generate pi. By Proposition IV.11 of [29], Ix is the intersection ⋂ki=1 qi where qi is

an ideal of OS,x such that pni

i ⊂ qi ⊂ pi for some positive integer ni. Since OS,x is a

domain, qi must be generated by a single element gmi

i for some positive integer mi.

Thus we conclude that Ix is generated by a single element ∏k
i=1 g

mi

i .

Let R ⊂ Pχ(X, i∗β)G be a connected component different from Pχ(S,β). We

denote the inclusion R ⊂ Pχ(X, i∗β) by ι. For every (F, s) ∈ R the supporting curve

C ⊂ X is not supported by S but F is supported on an infinitesimal thickening of S
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in X. So we have the following diagram where all square are Cartesian

CR C

R × X̄ Pχ(X, i∗β) × X̄ X̄

R × S Pχ(X, i∗β) × S S

R Pχ(X, i∗β) .

iR i

ιX̄

π̄R

q̄

π̄P π̄

p̂R

ιS

p̂

qS

ι

(3.10)

By base change formula 1.3.8 and projection formula 1.3.7 we have

ι∗γ (Os) = ι∗ (p̂ ○ π̄P)∗ ([OC] .q̄∗π̄∗ [Os])
= (p̂R ○ π̄R)∗ ι∗̄X ([OC] .q̄∗π̄∗ [Os])
= (p̂R ○ π̄R)∗ (ι∗̄X[OC].ι∗̄X q̄∗π̄∗ [Os])
= p̂R∗ π̄R∗ ([OCR

]. (πR)∗ ι∗Sq∗S [Os])
= p̂x∗ (π̄R∗ [OCR

] .ι∗Sq∗S [Os]) . (3.11)

Now we restrict ρ from 3.2.2 to R ⊂ Pχ(X, i∗β). By the Lemma 3.2.2 we can write

ρR as the composition jR ○ λR. So now we have the following diagram

CR λR
// DR jR

// R × S
p̂R

��

qS○ιS // S

R

By Proposition 3.2.1 the subcategory of flat coherent sheaves on DR satisfies all

conditions in Lemma 1.3.1 so that by Corollary 1.3.2 we have a group homomorphism

λR∗ ∶ KG(CR) → KG (DR) that maps [F] to χ (λR∗F). By the same argument we can

conclude the existence of the group homomorphism jR∗ ∶KG (DR)→KG(R × S).
Recall the definition of the ring homomorphism κ ∶ KG(Y ) → limK(Yl) from

Section 1.4. Although we have not proved that πR∗ ○ iR∗ [OC] = jR∗ ○λR∗ [OC], by Lemma

1.4.3 we still have κR×S ○ πR∗ ○ iR∗ = κR×S ○ jR∗ ○ λR∗ .
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Lemma 3.2.3.

κR (γ (Os)∣R) ∶= κR (p̂R∗ (π̄R∗ ○ iR∗ [OCR
]⊗ ι∗Sq∗S [Os]))

= κR (p̂R∗ ((jR∗ ○ λR∗ [OC])⊗ ι∗Sq∗S [Os]))

We will use γ̂ (Os)∣R to denote p̂R∗ ((jR∗ ○ λR∗ [OCR
])⊗ ι∗Sq∗S [Os]) and [OCR

] to de-

note λ∗[OCR
].

Lemma 3.2.4.

RΓ
⎛
⎝R,
OvirR ⊗K 1

2

vir∣R⋀● (N ●vir)∨
m

∏
i=1

γ (Osi
)∣
R

⎞
⎠ = RΓ

⎛⎜⎜⎜⎝
R,

OvirR ⊗ K 1

2

vir∣
R

⋀● (N ●vir)∨
m

∏
i=1

γ̂ (Osi
)∣
R

⎞⎟⎟⎟⎠

Proof. The Chern character map chG ∶ Q(t 1

2 ) → Q((t)), t
1

2 ↦ e
1

2
t where t is the

equivariant first Chern class of t is an injection since e
1

2
t is invertible in Q((t)). By

virtual Riemann-Roch theorem of [6], Lemma 1.5.1 and Lemma 3.2.3 we have

chGRΓ
⎛
⎝R,
OvirR ⊗K 1

2

vir∣R∧ (N ●vir)∨
m

∏
i=1

γ (Osi
)∣
R

⎞
⎠ = ∫[R]vir

chG
⎛⎜⎜⎜⎝

K
1

2

vir∣
R

⋀●(N ●vir)∨
m

∏
i=1

γ (Osi
)∣
R

⎞⎟⎟⎟⎠
tdG (T virR )

= ∫
[R]vir

←Ð
ch ○ κ

⎛⎜⎜⎜⎝
K

1

2

vir∣
R

⋀●(N ●vir)∨
m

∏
i=1

γ (Osi
)∣
R

⎞⎟⎟⎟⎠
tdG (T virR )

= ∫
[R]vir

←Ð
ch ○ κ

⎛⎜⎜⎜⎝
K

1

2

vir∣
R

⋀●(N ●vir)∨
m

∏
i=1

γ̂ (Osi
)∣
R

⎞⎟⎟⎟⎠
tdG (T virR )

= ∫
[R]vir

chG
⎛⎜⎜⎜⎝

K
1

2

vir∣
R

⋀●(N ●vir)∨
m

∏
i=1

γ̂ (Osi
)∣
R

⎞⎟⎟⎟⎠
tdG (T virR )

= chGRΓ

⎛⎜⎜⎜⎝
R,

OvirR ⊗ K 1

2

vir∣
R

⋀● (N ●vir)∨
m

∏
i=1

γ̂ (Osi
)∣
R

⎞⎟⎟⎟⎠
.
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The injectivity of chG ∶ Q(t 1

2 )→ Q((t)) implies the lemma.

The above lemma also holds if we replace K
1

2

vir∣
R

by any class α ∈KG(R).
By the above lemma we can replace γ (Os) with γ̂ (Os) = p̂∗ (ρ∗ [OC] .q∗S [Os]).

The advantage of using γ̂ (Os) will become clear later.

Lemma 3.2.5. Let L be a globally generated line bundle on S. Let dim ∣L∣ = n
and D ⊂ ∣L∣ × S be the universal divisor. Then for any point s ∈ S the fiber product

D ×∣L∣×S (∣L∣ × {s}) is a hyperplane Pn−1 ⊂ ∣L∣ × {s}.
Proof. Let L be globally generated line bundle on S and let f ∶ S → SpecC be

the structure morphism. Then S × ∣L∣ = Proj (Symf∗ (f∗L)∨) and the canonical

morphism ξ ∶ f∗f∗L → L is surjective. Let ξ∨ ∶ L∨ → f∗ (f∗L)∨ be the dual of ξ. Let

ei be the basis of f∗L and let e∨i ∈ (f∗L)∨ defined as e∨i (ej) = 1 if i = j and 0 if i ≠ j.
Then ξ∨ sends a local section ψ of L∨ to ξ∨(ψ) ∶ ∑i aiei ↦ aiψ (ei) e∨i .

Sections of f∗ (f∗L)∨ are linear combinations v of {e∨i } with coefficient in OS and

sections of Symf∗(f∗L)∨ are polynomials P in {e∨i } with coefficient in OS. There

is a canonical graded morphism φ ∶ f∗(f∗L)∨ ⊗ Symf∗(f∗L)∨(−1) → Symf∗(f∗L)∨,
that sends v ⊗ P to the products of the polynomials v.P . The composition of ξ∨ ⊗
idSymf∗(f∗L)∨(−1) with φ sends ψ ⊗ P to ξ∨(ψ).P . Let θ be this composition. This

composition is injective since ξ∨is injective. This composition correspond to the

morphism σ ∶ L∨ ⊠O(−1)→ O on S × ∣L∣ which is injective because θ is injective and

Proj construction preserve injective morphism. The cokernel σ is the structure sheaf

of the universal divisor D ⊂ S × ∣L∣.
For any closed point s ∈ S, we want to show that the restriction of σ to ∣L∣ is still

injective. In this case D ×∣L∣×S (∣L∣ × {s}) is an effective divisor with ideal O(−1) so

that D×∣L∣×S (∣L∣ × {s}) is a hyperplane Pn−1. Since ξ is surjective, its restriction to s is

also surjective. Any element α ∈ L∨∣s is the restriction of a local section ψ ∈ L∨. Thus

if α is not zero there exist ψ ∈ L∨ such that its restriction to s is αand ei such that

the ψ(ei)∣s = ψ∣s (ei∣s) is not zero. We can conclude that ξ∨∣s is injective. Because

σ∣s ∶ ψ∣s ⊗ P ∣s ↦ ξ∨(ψ)∣s P ∣s we can conclude that σ∣s is injective.

We will use Pn−1
si

to denote D ×∣L∣×S (∣L∣ × {s}).
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Lemma 3.2.6. Let c1 (L) = β and let P = Pχ(X, i∗β). Then all squares in the

following diagram are Cartesian.

DP ×D Pn−1 Pn−1

P × {s} ∣L∣ × {s}

DP D
P × S ∣L∣ × S

h̄

j̄

h

j

(3.12)

Lemma 3.2.7. If β ∈ GT (P) is supported on V ⊂ P then β.γ̂ (Os) is supported on

V ×P Ws where Ws ∶= DP ×P×S (P × {s}).
Proof. Recall the morphism p̂ from diagram (3.10) and h, h̄ from (3.12). Since p̂○h =
idP we can conclude that γ̂ (Os) = h∗j∗ [OC] = h∗ [j∗OC]. Let E● be a finite resolution

of j∗OC by locally free sheaves. It’s sufficient prove the statement for the case when

β is the class of a coherent sheaf F on V . By Lemma 1.3.11, we have

[F].γ̂ (Os) = ∑
i

(−1)i [F ⊗OP×{s} (OP×{s} ⊗Ei)]P×{s}
= ∑

i

(−1)i [F ⊗OP×S
Ei]P×{s}

= ∑
i

(−1) [T oriP×S (F , j∗OC)]P×{s}
= j̄∗k∗j[OC](F).

where j[OC] is the refined Gysin homomorphism from Chapter 1 and k is the closed

embedding V ×P×{s}Ws →Ws where Ws = DP ×D Pn−1
s .

Lemma 3.2.8. Given m points s1, . . . , sm ∈ S in general position such that all curves

in ∣L∣ that passes through all m points are reduced and irreducible, then for any com-

ponent R ⊂ PG different from Pχ(S,β) we have ι∗OvirR .∏m
i=1 γ̂ (Osi

) = 0.

Proof. Let βl = ι∗OvirR .∏l
i=1 γ̂ (Osi

). By Lemma 3.2.7, β1 is supported on R ×P Ws =
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R×∣L∣Pn−1
s1

. Our assumptions implies that for any 1 ≤ l ≤m, ⋂l−1
i=1 P

n−1
s1

is not contained

in Pn−1
sl

. In particular, ⋂li=l Pn−1
sl
= Pn−m and by induction we can conclude that βm is

supported on R ×∣L∣ Pn−m. Note that all curves in Pn−m is reduced and irreducible.

We will show that for any (F , s) ∈ R, div (F , s) is not in Pn−m. Let CF be the

curve on X supporting an element (F , s) ∈ R. Note that the reduced subscheme CredF
of CF is a curve on S so that if CF is reduced and irreducible then CF = CredF is a

curve on S and (F , s) can’t be in R. If CF is not irreducible, then the support of

π∗OCF is not irreduble so that div (F , s) is not in Pn−m. So we are left with the case

when CF is irreducible. Let C be the reduced subscheme of CF . Let SpecA ⊂ S
be an open subset such that KS is a free line bundle over SpecA. We can write

C = SpecA/(f) for an irreducible element f ∈ A and X ∣SpecA = SpecA[x]. Then OCF
can be written as M ∶= ⊕ri=0A/(fni)xi for some positive integers r, ni and divM is

described by the ideal (f∑i ni). Since CF is not supported on S, then ∑i ni ≥ 2 and

divM is not reduced. Thus in this case div (F , s) is not in Pn−m.

Since div (R) is disjoint from Pn−m, we can conclude that R ×∣L∣ Pn−m is empty.

By lemma 1.3.9, βm is zero.

Following the proof of Lemma 3.2.7 and Lemma 3.2.8and by replacing [OC] with

[OD] we can prove that the contribution to P̄X,β,χ (s1, . . . , sm) of the component

R ⊂ PG where R ≠ Pχ(S,β) is zero when s1, . . . , sm is in general position and all

curves on S that passthrough all m points are reduced and irreducible.

Actually we have a stronger result for P̄X,β,χ (s1, . . . , sm). By Proposition 4.2.2 for

any point s ∈ S, γ̄(Os) is 1 − [div∗O(−1)]. In particular it’s independent from the

choosen point.

Proposition 3.2.9. Given a positive integer δ, let S be a smooth projective surface

with b1(S) = 0. Let L be a 2δ + 1-very ample line bundle on S with c1(L) = β and

H i(L) = 0 for i > 0. Let X = KS be the canonical line bundle over S. Then for

any connected component R of Pχ(X, i∗β)C× different from Pχ(S,β) and for m ≥
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H0(L) − 1 − δ, we have

RΓ(R, OvirR⋀● (N ●vir)∨K
1

2

vir∣R ⊗
m

∏
i=1

γ̄(Osi
)

t−1/2 − t1/2) = 0

where s1, . . . sm are closed points of S which can be identical. We then can conclude

that

P̄X,β,χ (s1, . . . , sm) = RΓ
⎛
⎝Pχ(S,β),

OvirPχ(S,β)
⋀● (N ●vir)∨K

1

2

vir∣Pχ(S,β) ⊗ m

∏
i=1

γ̄(Osi
)

t−1/2 − t1/2
⎞
⎠ .

The same result also holds for PX,β,χ(s1, . . . , sm) under additional assumption that

the structure sheaf OCF of the universal supporting curve CF is flat over Pχ(X, i∗β)
and s1, . . . , sm are closed points in S in general position such that all curves in ∣L∣
passing through all the given m points are irreducible.

3.2.3 The contribution of Pχ(S,β)
The component Pχ(S,β) of Pχ(X, i∗β)G parametrize stable pairs (F, s) supported

on S ⊂ X where S is the zero section. The restriction of I● to Pχ(S,β) × X is

I●X ∶= {OPχ(S,β)×X → F}, where F is the universal sheaf restricted to Pχ(S,β) ×X, so

that the restriction of E● to Pχ(S,β) is Rp∗RHom (I●X , I●X ⊗ t∗)
0
[2] . Thomas and

Kool showed that on Pχ(S,β), the decomposition of E●∣Pχ(S,β) into fixed and moving

part is

(E●)mov ≃ Rp∗RHom (I●S,F) [1]⊗ t∗ (E●)fix ≃ (Rp∗RHom (I●S,F))∨ (3.13)

where I●S = {OPχ(S,β)×S → F}. (E●)fix gives Pχ(S,β) a perfect obstruction theory.

We will use E● to denote (E●)fix. From equation (3.13) and (3.6) we have (E●)mov ≃
(E●)∨ [1]⊗ t∗.

Proposition 3.2.10. On Pχ(S,β) we have

K
1

2

vir∣Pχ(S,β)
⋀● (N ●vir)∨ = (−t

− 1

2)v⋀−tE●
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where vd = rkE● and ⋀−t E● = ∑rkE0

i=0
(−t)i⋀i E0

∑rkE−1

j=0
(−t)j ⋀j E−1

for E● = [E−1 → E0].
Proof. By equation (3.13) and (3.6) we have

Kvir∣Pχ(S,β) = detE● det ((E●)∨ ⊗ t∗)∨ = detE● detE●tv

where v = rkE●. Thus we can take K
1

2

vir∣Pχ(S,β) = detE●t 1

2
v. Let E● = [E−1 → E0] so that

(E●)∨ [1] ⊗ t∗ = [(E0)∨ ⊗ t∗ → (E−1)∨ ⊗ t∗] in the place of −1 and 0. Let ri = rkE i for

i = −1 and i = 0. Thus in KG(Pχ(S,β)) we have

K
1

2

vir∣Pχ(S,β)
⋀● (N ●vir)∨ =

detE0⋀● ((E0)∨ ⊗ t∗)
detE−1⋀● ((E−1)∨ ⊗ t∗)t

1

2
vd

= ∑r0

i=0 (−1)i⋀r0−i E0 ⊗ t−i

∑r1

j=0 (−1)j ⋀r1−j E−1 ⊗ t−j
t

1

2
vd

= ∑r0

i=0 (−1)r0−i⋀r0−i E0 ⊗ tr0−i

∑r1

j=0 (−1)r1−j ⋀r1−j E−1 ⊗ tr1−j (−t−
1

2)vd

= (−t− 1

2)vd⋀−tE●

The calculation of the contribution from this component is given in the next

Chapter. We recall Corollary 4.3.3 here.

Under the assumption of Proposition 3.2.9 we have the following formula for

P̄X,β,χ (s1, . . . , sm)

P̄X,β,χ (s1, . . . , sm) = (−1)vd ∫
[Pχ(S,β)]red

X−t (TS[n])X−t (O(1))δ+1

X−t (L[n] ⊠O(1)) (t−1/2 − t1/2e−H(t−1/2−t1/2)
t−1/2 − t1/2 )

m

Hm

where vd is the virtual dimension of Pχ(S,β) and O(1) is the dual of the pullback by

the morphism div ∶ Pχ(X, i∗β)→ ∣L∣ of the tautological line bundle and H = c1(O(1))
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and for any vector bundle E of rank r with Chern roots x1, . . . , xr,

X−t(E) = r

∏
i=1

xi (t−1/2 − t1/2e−xi(t−1/2−t1/2))
1 − e−xi(t−1/2−t1/2) .

We have the same formula for PX,β,χ(s1, . . . , sm) whenever PX,β,χ(s1, . . . , sm) can be

defined. This is because the restriction of γ (Osi
) and γ̄(Osi

) to Pχ(S,β) are identical.

We can observe from the above formula that PX,β,χ(s1, . . . , sm) is independent

from the choosen points. It’s natural to ask if without assuming that s1, . . . , sm are

in general positions such that all curves passing through all these points are reduced

and irreducible the above proposition still holds.
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Chapter 4

Refinement of Kool-Thomas

Invariant

Let S be a smooth projective surface and let L be a a line bundle on S. Then ∣L∣ =
P(H0(L)) parameterizes curves C with O(C) ≅ L. For a sufficiently ample line

bundle L, Kool, Shende and Thomas showed that for the general δ-dimensional linear

system Pδ ⊂ ∣L∣, there are finitely many δ-nodal curves in Pδ. They also compute

this number as BPS numbers of the generating function of the Euler characteristic

of smooth relative Hilbert scheme of points. In [19], Kool and Thomas compute this

number as the reduced stable pair invariants using reduced obstruction theory which

is invariant under the deformation of S such that β is always algebraic. Here we

will give a refinement of these numbers as a K-theoretic invariants and compare it

to the refinement given by Göttsche and Shende in [12]. We only consider the case

when h2(OS) = 0. In this case, the full obstruction theory coincide with the reduced

obstruction theory.
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4.1 Reduced obstruction theory of moduli space

of stable pairs on surface

In Chapter 2 we have reviewed the construction of reduced obstruction theory by Kool

and Thomas in [19]. In this section we will review the description of it’s restriction to

Pχ(S,β) as a two term complex of locally free sheaves following Appendix A of [19].

The Appendix is written by Martijn Kool, Richard P. Thomas and Dmitri Panov.

Pandharipande and Thomas showed that Pχ(S,β) is isomorphic to the relative

Hilbert scheme of points Hilbn(C/Hilbβ(S)) where C → Hilbβ(S) is the universal

family of curves C in S in class β ∈H2(S,Z) and χ = n+1−h where h is the arithmetic

genus of C. Notice that for n = 1 , Pχ(S,β) = Hilb1(C/Hilbβ(S)) = Hilbβ(S).
We will review first the description of Pχ(S,β) as the zero locus of a vector bundle

on a smooth scheme. We assume that b1(S) = 0 for simplicity and also because we

are only working for this case in this thesis. The following construction does not need

this assumption.

For n = 0, pick a sufficiently ample line divisor A on S such that L(A) = L⊗O(A)
satisfies H i(L(A)) = 0 for i > 0. Let γ = β + [A]. Then Hilbγ(S) = ∣L(A)∣ = Pχ(L(A)−1

has the right dimension. The map that send C ∈ ∣L∣ to C +A ∈ ∣L(A)∣ defines a closed

embedding Hilbβ(S)→ Hilbγ(S).
Let D ⊂ Hγ (S) × S be the universal divisor and let p̂ and qS be the projections

Hγ(S) × S → Hγ(S) and Hγ(S) × S → S respectively. Let sD ∈ H0 (O(D)) be the

section defining D and restrict it to Hγ (S) ×A and consider the section

ζ ∶= sD∣π−1

S
A ∈H0(Hγ(S) ×A,O(D)∣π−1

S
A) =H0(Hγ(S), πH∗(O(D)∣π−1

S
A))

where for a point D ∈ Hγ (S) we have ζ ∣D = sD∣A ∈ H0(A,L(A)) where sD is the

section of L(A) defining D. sD∣A = 0 if and only if A ⊂ D i.e D = A + C for some

effective divisor C with O(C)⊗O(A) = L(A). Thus the zero locus of ζ is the image of

the closed embedding Hilbβ(S) → Hilbγ(S). If H2(L) = 0 then F = πH∗(O(D)∣π−1

S
A)

is a vector bundle of rank χ(L(A)) − χ(L) = h0(L(A)) − h0(L) + h1(L) on Hilbγ(S)
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since RiπH∗ (O(D) ∣π−1

S
A) = 0 for i > 0. Consider the following diagram

F ●red = {F ∗ d○ζ∗
//

ζ∗

��

ΩHγ(S)∣Hβ(S)}
id

��

LHβ(S) = {I/I2∣Hβ(S)
d // ΩHγ(S)∣Hβ(S)}.

The above morphism is a perfect obstruction theory for Hilbβ(S).
Next, we embed Hilbn(C/Hilbβ(S)) into S[n]×Hilbβ(S). Let Z ⊂ S[n]×Hilbβ(S)×S

be the pullback of the universal length n subscheme of S[n] × S. Let C ⊂ S[n] ×
Hilbβ(S) × S be the pullback of the universal divisor of Hilbβ × S and let π ∶ S[n] ×
Hilbβ(S) × S → S[n] ×Hilbβ(S) be the projection. Then C correspond to a section sC

of the line bundle O(C) on S[n] × Hilbβ(S) × S. A point (Z,C) ∈ S[n] × Hilbβ(S) is

in the image of Hilbn(C/Hilbβ(S)) if Z ⊂ C. We denote by O(C)[n] the vector bundle

π∗ (O(C)∣Z) of rank n. Let σC be the pushforward of sC so that σC ∣(Z,C) = sC ∣Z ∈
H0(L∣Z). Thus a point (Z,C) ∈ S[n] ×Hilbβ(S) is in the image of Hilbn(C/Hilbβ(S))
if and only if σC ∣(Z,C) = sC ∣Z = 0. Thus we get a perfect relative obstruction theory :

E● = {(O(C)[n]) ∗
s∗

��

d○s∗ // ΩS[n]}
id

��

LHilbn(C/Hilbβ(S))/Hilbβ(S) = {J/J2 d // ΩS[n]}
where J is the ideal describing Hilbn (C/Hilbβ(S)) as a subscheme of S[n] ×Hilbβ(S).
Notice that in general ∣L∣ is not of the right dimension.

Appendix A of [19] shows how to combine the above obstruction theories to define

an absolute perfect obstruction theory for Hilbn (C/Hilbβ(S)). To do it we have

to consider the embedding of Hilbn (C/Hilbβ(S)) into S[n] × Hilbγ(S). E● is the

restriction of [(O(D −A)[n])∗ → ΩS[n]] to Hilbn (C/Hilbβ(S)). It was shown that the

complex E●red that correspond to the combined obstruction theory sits in the following

exact triangle

F ●red // E●red // E● .

Also in Appendix A of [19], it was shown that the combination of the above obstruc-
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tion theory have the same K-theory class with the reduced obstruction theory E●red.
Thus we can conclude that the K-theory class of E●red is

[ΩS[n]×Hilbγ(S)] − [(O(D −A)[n])∗] − [F ∗] (4.1)

Moreover, Theorem A.7 of [19] gives the virtual class corresponding to the reduced ob-

struction theory [Pχ(S,β)]red as the class cn (O(D −A)[n] .ctop (F )∩[S[n]×Hilbγ(S)].

4.2 Point insertion and linear subsystem

In this section we assume that h0,1(S) = 0 i.e. Picβ = {L} and Hilbβ(S) = ∣L∣.
Let D ⊂ S × ∣L∣ be the universal curve. Pandharipande and Thomas showed in [25]

that Pχ(S,β) is isomorphic to the relative Hilbert scheme of points Hilbn(D → ∣L∣).
There is an embedding of Hilbn(D → ∣L∣) into S[n]× ∣L∣ and the projection Hilbn(D →
∣L∣) → ∣L∣ gives a morphism div ∶ Pχ(S,β) → ∣L∣ that maps (F , s) ∈ Pχ(S,β) to the

supporting curve CF ∈ ∣L∣ of F .

Fix χ ∈ Z and let C be the universal curve supporting the universal sheaf F on

S ×Pχ(S,β). Consider the following diagram

Pχ(S,β) × S qS //

p̂

��

S

Pχ(S,β)
Of course when n = 1 , Pχ(S,β) is ∣L∣ and C = D.

Here we will compute explicitly the class γ (Os) restricted to Pχ(S,β) →
Pχ(X, i∗β)G. Note that G acts trivially on S and on Pχ(S,β). Let C ⊂ Pχ(S,β) × X̄
be the support of the universal sheaf. Note that C is supported on Pχ(S,β)×S where

S is the zero section of the bundle X → S. Thus ¯π ○ i ∶ C → Pχ(S,β) × S is a closed

embedding. By equation (3.11), γ (Os) = p̂∗ ([OC]⊗ q∗S [Os]) . Notice that G acts on

Os and OC trivially.

Proposition 4.2.1. Let s ∈ S be a point with structure sheaf Os. Let [Os] be its class
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in K(S). Then

p̂∗ ([OC] .q∗S [Os]) = 1 − [div∗O(−1)].
where O(−1) is the tautological line bundle on ∣L∣.
Proof. First consider the following diagram

∣L∣ × S qS //

p̂∣L∣

��

S

∣L∣

.

We will show that p̂∗ (q∗S[Oz].[OD]) = 1 − [O(−1)]. Since qS is a flat morphism

q∗S[Oz] = [q∗SOz] = k∗ [O∣L∣×{z}] where k is the inclusion k ∶ ∣L∣× {z}→ ∣L∣×S. C is the

universal divisor with L∗ ⊠ O(−1) as the defining ideal. By the projection formula

q∗S[Os].[OD] is equal to

k∗ [O∣L∣×{s}] . (1 − [L∗ ⊠O(−1)]) = k∗ ([k∗O∣L∣×S] − [k∗q∗SL∗ ⊗ k∗p̂∗O(−1)]) .

k∗q∗SL∗ = q∗sL∗∣s = O∣L∣×{s} where qs = qS ∣∣L∣×{s} and k∗p̂∗O(−1) = O(−1) since p̂ ○ k is

the identity morphism. Thus we conclude that

p̂∗ (q∗S[Os].[OD]) = p̂∗k∗ ([O∣L∣×{s}] − [O(−1)]) = 1 − [O(−1)]

Now we are working on Pχ(S,β). Consider the following Cartesian diagram

div−1D //

��

D

��

Pχ(S,β) × S div //

p̂Pχ(S,β)

��

∣L∣ × S
p̂∣L∣

��

Pχ(S,β) div // ∣L∣.
div−1D is the family of effective Cartier divisor corresponding to the morphism div ∶
Pχ(S,β) → ∣L∣, For each point p ∈ Pχ(S,β), div−1D∣p is the corresponding curve CFp
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supporting the sheaf Fp. We conclude that C and div−1C are the same families of

divisors on S so that we have a short exact sequence

0 // div∗(L∗ ⊠O(−1)) // OPχ(S,β)×S // OC // 0

and [OC] = div∗[OD]. Thus we have

p̂
Pχ(S,β)∗ ([OC] q∗S [Os]) = p̂Pχ(S,β)∗ (div∗ [OD] .div∗q∗S [Os])

= div∗p̂∣L∣∗ ([OC] .q∗S [Os])
= div∗ (1 − [O(−1)])

We also have similar result for Pχ(X, i∗β) if we replace OC with Odivπ∗F .

Proposition 4.2.2. Let Os be the structure sheaf of the points s ∈ S. Then

p̂([Odivπ∗F].q∗S[Os]) = 1 − div∗(O(−1)) where O(−1) is the tautological bundle of ∣L∣
and p̂ , qS are morphism from diagram 3.8.

Proof. From the definition of the morphism div, divπ∗F is exactly div−1D. Thus we

can use exactly the same proof as the previous Proposition.

Later we will drop div∗from div∗O(−1) for simplicity.

4.3 Refinement of Kool-Thomas invariants

Assume that b1(S) = 0. From Proposition 4.2.1 and Proposition 4.2.2 , the contribu-

tion of Pχ(S,β) to PX,β,χ(s1, . . . , sm) and to P̄X,β,χ (s1, . . . , sm) are equal. Consider

the contribution of Pχ(S,β) to P̄X,β,χ (s1, . . . , sm) invariants, i.e.

Ξ = RΓ
⎛⎜⎝Pχ(S,β),

OvirPχ(S,β) ⊗K
1

2

vir

⋀●(N vir)∨
m

∏
i=1

γ̄(Osi
)

t−1/2 − t1/2
⎞⎟⎠ .
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On Hilbβ(S) × S we have the following exact sequence

0 // O sC // O(C) // OC(C) // 0 (4.2)

which induces the exact sequence

H1(OC(C)) φ̂
// H2(OS) // H2(L) .

If H2(L) = 0 then φ̂ is surjective. Observe that RπH∗OC(C) is the complex E● from

Subsection 2.2.1 when χ = 2 − h or equivalently when n = 1. For n > 1, it was shown

in Appendix A of [19] that E● sits in the exact triangle

RπH∗OC(C) // E● // E● .

Thus if h2(OS) > 0 then E● contain a trivial bundle so that [Pχ(S,β)]vir vanish. In

particular, by virtual Riemann-Roch the contribution of Pχ(S,β) is zero.

If H2(OS) = 0, E●red and E● are quasi isomorphic. Let P be the moduli space

Pχ(S,β). By the virtual Riemann-Roch theorem and by Lemma 4.2.2 we then have

chG (Ξ) = (−t− 1

2)vd∫
[P ]red

ch(⋀−tE●red (⋀−1O(−1)
t−1/2 − t1/2 )

m) .td (T redP )

where T redP is the derived dual of E●red and (−t− 1

2)vd should be understood as (−e− 1

2
t)vd

where t is the equivariant first Chern class of t. Observe that chG (Ξ) can be computed

whenever H2(L) = 0 without assuming h2(OS) = 0. Thus for S with b1(S) = 0 and a

line bundle L with H2(L) = 0, we define PS,L,m,χ = chG(Ξ).
The K-theory class of E●red is given by equation (4.1). Since O(C) = L ⊠O(1), by

the projection formula we have F =H0(L(A)∣A)⊗O(1). From the exact sequence

0 // O(C) // O(C +A) // Oπ−1

S
A(C + π−1

S A) // 0
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on P , and since H i>0(L(A)∣A) = 0, we conclude that

F = O(1)⊕χ(L(A))−χ(L) (4.3)

And again by projection formula we have O(C)[n] = L[n] ⊠O(1) . By Theorem A.7 of

[19] we then can compute PS,L,m,χ as

(−t− 1

2)v ∫
S[n]×∣L(A)∣

Hχ(L(A))−χ(L)cn(O(D−A)[n])ch(⋀−tE●red (⋀−1O(−1))m(t−1/2 − t1/2)m ) td (T redP )
(4.4)

where H = c1(O(1) and n = χ + h − 1.

Theorem 4.3.1. PS,L,m,χ∣t=1 = (−1)vd ∫S[n]×Pε cn(L[n]⊗O(1)) c●(TS[n])c●(O(1))χ(L)c●(L{n]⊠O(1)) where

ε = χ(L) − 1 −m. Thus we can relate Kool-Thomas invariants with our invariants as

follows:

Predχ,β (S, [pt]m) = (−1)m tm+1−χ(OS) PS,L,m,χ∣t=1 .

Proof. Let X−t(T redP ) ∶= ch (⋀−t E●red) td (T redP ) and let d ∶= rkE●red = n + χ(L) − 1 be the

virtual dimension of P so that we can rewrite (4.4) as

(−1)m (−t− 1

2)d−m∫
S[n]×Pχ(L)−1

cn (L[n] ⊠O(1))X−t (T redP ) ch(⋀−1 (O(−1))
1 − t )m (4.5)

By Proposition 5.3 of [6] we can write

X−t(T redP ) = d

∑
l=0

(1 − t)d−lX l

where X l = cl(T redP ) + blwhere bl ∈ A>l(P ). Then we can write PS,L,m,χ as

(−1)m (−t− 1

2)d−m∫
S[n]×Pχ(L)−1

cn(L[n] ⊠O(1)) d

∑
l=0

(1 − t)d−m−lX lch (⋀−1 (O(−1)))m .
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Note that ch (⋀−1 (O(−1)))m =Hm +O (Hm+1) so that

∫
S[n]×Pχ(L)−1

cn (L[n] ⊠O(1))X lch (⋀−1 (O(−1)))m = 0

for l > d −m. Thus the summation ranges from l = 0 to l = d −m. In this range the

power of (1− t) is positive except when l = d−m in which the power of (1− t) is zero.

Thus we can conclude that PS,L,m,χ∣t=1equals to

(−1)m (−t− 1

2)d−m∫
S[n]×Pχ(L)−1

cn (L[n] ⊠O(1))X d−mch (⋀−1 (O(−1)))m .

Since bd−m ∈ A>d−m(P ) and cd−m(T redP ) ∈ Ad−m(P ) we have

∫
S[n]×Pχ(L)−1

cn (L[n] ⊠O(1)) bd−mch (⋀−1 (O(−1)))m = 0

and

∫
S[n]×Pχ(L)−1

cn (L[n] ⊠O(1)) cd−m(T redP )Hk = 0

for k >m and we can conclude that

PS,L,m,χ∣t=1 = (−1) 1

2
d∫

S[n]×Pχ(L)−1

cn (L[n] ⊠O(1)) .Hm.cd−m(T redP )

From (4.1) and (4.3) we have

T redP = T (S[n]) +O(1)χ(L(A)) −O −L[n] ⊠O(1) −O(1)χ(L(A))−χ(L)

and

cd−m(T redP ) = Coefftd−m

⎡⎢⎢⎢⎣
ct (TS[n]) ct (O(1))χ(L)

ct (L[n] ⊠O(1))
⎤⎥⎥⎥⎦ .

Finally we conclude that

PS,L,m,χ∣t=1 = (−1)− 1

2
d∫

S[n]×Pδ
cn(L[n] ⊗O(1))c● (TS[n]) c●(O(1))χ(L)

c● (L{n] ⊠O(1))
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Let X−y(x) ∈ Q[[x, y]] defined by

X−y(x) ∶= x (y
− 1

2 − y 1

2 e−x(y−
1
2 −y 1

2 ))
1 − e−x(y− 1

2 −y 1
2 )

.

For a vector bundle E on a scheme Y of rank r with Chern roots x1, . . . , xr we will

use X−y(E) to denote

r

∏
i=1

xi (y− 1

2 − y 1

2 e−xi(y− 1
2 −y 1

2 ))
1 − e−xi(y− 1

2 −y 1
2 )

.

Observe that X−y is additive on an exact sequence of vector bundle. Thus we can

extend Xy to K(Y ). For a class β ∈ K(Y ) we can write β = ∑i[E+i ] −∑j[E−j ] for

vector bundles E+i ,E−j and we can defineX−y(β) = ∏iX−y(E+i )
∏j X−y(E−j ) . For a proper nonsingular

scheme Y with tangent bundle TY

∫
Y
X−y (TY ) = (1

y
)

1

2
d

∑
i

(−1)p+qyqhp,q(Y )

where hp,q(Y ) are the Hodge number of Y i.e. ∫Y X−y (TY ) is the normalized χ−y
genus.

Theorem 4.3.2.

PS,L,m,χ =
(−1)vd ∫

[P ]red

X−t (TS[n])
X−t (L[n] ⊠O(1))X−t (O(1))

δ+1 (t−1/2 − t1/2e−H(t−1/2−t1/2)
t−1/2 − t1/2 )

m

Hm (4.6)

where [P ]red is cn (L[n] ⊠O(1)) ∩ [S[n] × Pχ(L)−1].

Proof. PS,L,m,χ equals to (4.5), and we can rewrite it as

PS,L,m,χ = (−1)vd∫
[P ]red

∏2n+χ(L)−1

i=1
φ−t(αi)
t1/2

∏n
i=1

φ−t(βi)
t1/2

( 1 − e−H
t−1/2 − t1/2)

m

where φ−t(x) = x(1−te−x)
1−e−x and αi are the Chern roots of T (S[n] ×Pχ(L)−1) and βi are
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the Chern roots of L[n] ⊠O(1). Let’s define

φ̄−t(x) ∶= φ−t(x)
t1/2

= x (t−1/2 − t1/2e−x)
1 − e−x = ∑

i≥0
φ̄ix

i.

Note that this power series starts with t−1/2 − t1/2. By substituting x with

x (t−1/2 − t1/2) and dividing it by (t−1/2 − t1/2) we have the power series

X−t(x) = x (t
−1/2 − t1/2e−x(t−1/2−t1/2))

1 − e−x(t−1/2−t1/2) = ∑
i≥0
ξix

i

such that ξ0 = 1 and ξi = φ̄i (t−1/2 − t1/2)i−1
. Thus by substituting x in

∏2n+χ(L)−1

i=1
φ−y(αi)

t1/2

∏n
i=1

φ−y(βi)
t1/2

( 1 − e−H
t−1/2 − t1/2)

m

with x (t−1/2 − t1/2) whenever x = αi, βi,H and dividing it by

(t−1/2 − t1/2)n+χ(L)−1

so that the coefficients of qn+χ(L)−1 in

∏2n+χ(L)−1

i=1 X−t(αiq)
∏n
i=1X−t(βiq) (1 − e−Hq(t−1/2−t1/2)

t−1/2 − t1/2 )
m

and
∏2n+χ(L)−1

i=1 φ̄−t(αiq)
∏n
i=1 φ̄−t(βiq) ( 1 − e−Hq

t−1/2 − t1/2)
m

are the same. Since [TPχ(L)−1] = [⊕χ(L)i=1 O(1)] − [OPχ(L)−1], PS,L,m,χ equals

(−1)vd∫
[P ]red

X−t (TS[n])X−t (O(1))χ(L)
X−t (L[n] ⊠O(1)) (1 − e−H(t−1/2−t1/2)

t−1/2 − t1/2
)
m

=
(−1)vd∫

[P ]red

X−t (TS[n])X−t (O(1))δ+1

X−t (L[n] ⊠O(1)) (t−1/2 − t1/2e−H(t−1/2−t1/2)
t−1/2 − t1/2

)
m

Hm
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In the following Corollary we want to complete the computation of

PX,β,χ(s1, . . . , sm).
Corollary 4.3.3. Given a positive integer δ, let S be a smooth projective surface with

b1(S) = 0. Let L be a 2δ+1-very ample line bundle on S with c1(L) = β and H i(L) = 0

for i > 0. Let X =KS be the canonical line bundle over S. Then for m = χ(L) − 1 − δ
points s1, . . . , sm which is not necessarily different

P̄X,β,χ (s1, . . . , sm) = (−1)vd∫
[P ]red

X−t (TS[n])X−t (O(1))δ+1

X−t (L[n] ⊠O(1)) (t−1/2 − t1/2e−H(t−1/2−t1/2)
t−1/2 − t1/2 )

m

Hm

where [P ]red = cn(L[n] ⊠O(1)) ∩ [S[n] × Pχ(L)−1] for m ≥H0(L) − 1 − δ.
If additionally OCF is flat over Pχ(X, i∗β) and s1, . . . , sm are closed points of S in

general position such that all curves on S that pass through all m points are reduced

and irredcible then PX,β,χ(s1, . . . , sm) is given by the same formula.

Proof. By Proposition 3.2.9 P̄X,β,χ (s1, . . . , sm) = PS,L,m,χ. Similarly for

PX,β,χ(s1, . . . , sm).
In [12, 13], for every smooth projective surface S and line bundle L on S, Göttsche

and Shende defined the following power series

DS,L(x, y,w) ∶=∑
n≥0

wn∫
S[n]

X−y (TS[n]) cn (L[n] ⊗ ex)
X−y (L[n] ⊗ ex) ∈ QJx, y,wK

where ex denotes a trivial line bundle with nontrivial C× action with equivariant first

Chern class x. Motivated by this power series we define a generating function

PS,L,m ∶=∑
n≥0
(−w)nPS,L,m,n+1−h. (4.7)

where h is the arithmetic genus of the curve C in S with O(C) ≃ L so that for the

pair (F , s) ∈ Pχ(S,β), n = χ − 1 + h .
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By Theorem 4.3.2, after substituting t by y we can rewrite PS,L,m as

Coeffxδ

⎡⎢⎢⎢⎢⎣
DS,L(x, y,w)X−y(x)δ+1 (y−1/2 − y1/2e−x(y−1/2−y1/2)

y−1/2 − y1/2 )
m⎤⎥⎥⎥⎥⎦

Note that

QS,L,m ∶= Coeffxδ [DS,L(x, y,w)X−y(x)δ+1]
is equation (2.1) of [13] and

(y−1/2 − y1/2e−x(y−1/2−y1/2)
y−1/2 − y1/2 )

m

is a power series starting with 1.

In [13], Gottsche and Shende defined the power series N i
χ(L)−1−k,[S,L](y) by the

following equation:

∑
i∈Z
N i
χ(L)−1−k,[S,L](y)( w

(1 − y−1/2w)(1 − y1/2w))
i+1−g

= QS,L,m (4.8)

Motivated by this we also define M i
χ(L)−1−m,[S,L](y) as

∑
i∈Z
M i

χ(L)−1−m,[S,L](y)( w

(1 − y−1/2w)(1 − y1/2w))
i+1−g

= PS,L,m (4.9)

Let’s define 1
Q
= (1−y−1/2w)(1−y1/2w)

w
= w + w−1 − y−1/2 − y1/2 and recall a conjecture

from [12].

Conjecture 4.3.4 (Conjecture 55 of [12]).

(w(Q)
Q
)1−g(L)

DS,L(x, y,w(Q)) ∈ Q[y−1/2, y1/2]Jx,xQK

Motivated by the conjecture above we define another power series

D̃S,L(x, y,Q) ∶= (w(Q)
Q
)1−g(L)

DS,L(x, y,w(Q)).
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Proposition 4.3.5. Assume Conjecture 4.3.4. For χ(L) − 1 ≥ k ≥ 0 we have

1. M i
χ(L)−1−k,[S,L](y) = 0 and N i

χ(L)−1−k(y) = 0 for i > χ(L) − 1 − k and for i ≤ 0.

2. M i
χ(L)−1−k,[S,L](y) and N i

χ(L)−1−k(y) are Laurent polynomials in y1/2.

3. Furthermore M
χ(L)−1−k
χ(L)−1−k,[S,L](y) = Nχ(L)−1−k

χ(L)−1−k,[S,L](y). Moreover

∑
i≥0
M δ

δ,[S,L](y) (s)δ = D̃S,L(x, y, s
x
)∣x=0 = ∑

δ≥0

N δ
δ,[S,L](y)sδ

Proof. After substituting w by w(Q) we rewrite equation (4.8) and (4.9)

∑
i∈Z

N i
δ,[S,L](y)xδ−i (xQ)i = [D̃S,L(x, y,Q)X−y(x)δ+1]

xδ

∑
i∈Z

M i
δ,[S,L](y)xδ−i (xQ)i =

⎡⎢⎢⎢⎢⎣
D̃S,L(x, y,Q)X−y(x)δ+1 (y1−/2 − y1/2e−x(y−1/2−y1/2)

y−1/2 − y1/2 )
m⎤⎥⎥⎥⎥⎦xδ

.

By Conjecture 4.3.4

∑
i∈Z

N i
δ,[S,L](y)xδ−i (xQ)i ,∑

i∈Z

M i
δ,[S,L](y)xδ−i (xQ)i ∈ Q[y−1/2, y1/2]Jx,xQK

so that the only possible power of Q that could appear is i = 0, . . . , δ. We can

directly conclude that N i
δ,[S,L],M i

δ,[S,L] are Laurent polynomial in y1/2. Set s = xQ,
so that by Conjecture 4.3.4 we can write D̃S,L(x, y,Q) as power series of x and s i.e

D̃S,L(x, y, s
x
) ∈ Q[y−1/2, y1/2]Jx, sK. And since

X−y(x = 0) = 1

(y1−/2 − y1/2e−x(y−1/2−y1/2)∣x=0
y−1/2 − y1/2 )

m

= 1

we can conclude that

∑
i≥0

M δ
δ,[S,L](y) (s)δ = D̃S,L(x, y, s

x
)∣x=0
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= ∑
δ≥0
N δ
δ,[S,L](y)sδ

If H i(L) = 0 for i > 0 and L is δ-very ample, then N δ
δ,[S,L](y) is the refinement

defined by Goettsche and Shende in [12] of nδ(L) that computes the number of δ-

nodal curves in ∣L∣. Theorem 4.3.2 and Theorem 4.3.1 gives geometric argument for

the equality M δ
δ,[S,L](y)∣y=1 = N δ

δ,[S,L](y)∣y=1. Without assuming the conjecture above

we would like to know if Proposition 4.3.5 still true.
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