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Abstract

In this thesis we are defining a refinemement of Kool-Thomas invariants
of local surfaces via the equivariant K-theoretic invariants proposed by
Nekrasov and Okounkov. Kool and Thomas defined the reduced obstruc-
tion theory for the moduli of stable pairs P, (X,i./3) as the degree of the
virtual class [Py (S, 8)]" afted we apply 7([pt])™ € H*(Py(X,i.5),Z).
7([pt]) contain the information of the incidence of a point and a curve
supporting a (F,s).

The K-theoretic invariants proposed by Nekrasov and Okounlkov is the
equivariant holomorphic Euler characteristic of (’);’;:( xip) ® K2 . We in-
troduce two classes v (Oy) and 7(0;) in the Grothendieck group of vector
bundles on the moduli space of stable pairs of the local surfaces that
contains the information of the incidence of a curve with a point.. Let
P = Py(X,i.3). By the virtual localization formula the equivariant K
theoretic invariant is then
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We found that the contribution of P,(S,3) ¢ PY to Pxgy(51,...,5m)
and to Pxg, (S1,...,5,) are the same. Moreover, if we evaluate this
contribution at t =1 we get the Kool-Thomas invariants.

The generating function of this contribution contain the same information
as the generating function of the refined curve counting invariants defined
by Géttsche and Shende in [12]. After a change of variable there exist a co-
efficient Ng[ 5.c] (y) of the generating function of the refined curve counting
that counts the number of d-nodal curve in P c |£]|. We conjecture that
after the same change of variable the corresponding coefficient Mg[ s, L](y)
coming from the generating function of the controbution of P, (S, ) to
Px g, (51,...,5m) is identical with Ng[s,c](y)'
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Introduction

Fix a nonsingular projective surface S and a sufficently ample line bundle £ on S.
A d0-nodal curve C' on S is a 1 dimensional subvariety of S which has nodes at
points and is regular outside these singular points. For any scheme Y, let Y[l be
the Hilbert scheme of n-points i.e. Y[ parametrizes subschemes Z c Y of length
n. Given a family of curves C — B over a base B, we denote by Hilb"(C/B) the
relative Hilbert scheme of points. Kool, Thomas and Shende showed that some linear
combinations n, o of the Euler characteristic of C!"] counts the number of curves of
arithmetic genus r mapping to C'. Applying this to the family C — P9 where P° c |L],
the number of d-nodal curves is given by a coefficient of the generating function of
the Euler characteristic of Hilb(C/IP?) after change of variable[18]. By replacing euler
characteristic with Hirzebruch yx,-genus, Gotsche and Shende give a refined counting
of é-nodal curves.

Pandharipande and Thomas showed that a stable pair (F,s) on a surface S is
equivalent to the pair (C,Z) of a curve C' on S supporting the sheaf F with Z c C' a
subscheme of finite length. Thus the moduli space of stable pairs on a surface S is a
relative Hilbert scheme of points corresponding to a family of curves on S.

The study of the moduli space of stable pairs on Calabi-Yau threefold Y is an
active area of research. This moduli space gives a compactification of the moduli
space of nonsingular curves in Y. To get an invariant of the moduli space Behrend
and Fantechi introduce the notion of perfect obstruction theory. With this notion we
can construct a class in the Chow group of dimension 0 that is invariant under some
deformations of Y[1].

The homological invariants of the stable pair moduli space P, (X,i./) of the
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total space X of Kg of some smooth projective surface S contain the information
of the number of §-nodal curves in a hyperplane P? c |£|. Notice that X is Calabi-
Yau. There exist a morphism of schemes div : P,(X,i.3) — |£| that maps a point
(F,s) e Py(X,i.p) to a divisor div (7, F) that support 7. F on S where 7: X - S
is the structure morphism of X as a vector bundle over S. Using descendents, Kool
and Thomas translate the information of the incidence of a curve with a point into
cutting down the moduli space by a hypersurface pulledback from |£| so that after
cutting down, we have a moduli space that parameterize Hilbert scheme of curves in
P9[19].

The famous conjecture of Maulik, Nekrasov Okounkov and Pandharipande states
that the invariants corresponding to the moduli space of stable pairs have the same
information as the invariants defined from the moduli space of stable maps and the
Hilbert schemes.

The next development in the theory of PT invariants is to give a refinement of the
homological invariant. The end product of this homological invariant is a number. A
refinement of this invariant would be a Laurent polynomial in a variable ¢ such that
when we evaluate ¢ at 1 we get the homological invariant.

There are several methods that have been introduced to give a refinement for DT
invariants, for example both motivic and K-theoretic definitions. In this thesis we
use the K-theoretic definition which has been proposed by Nekrasov and Okounkov
in [23] where we compute the holomorphic Euler characteristic of the twisted virtual
structure sheaf of the coresponding moduli space. In the case when S =P? or S = P! x
P! Choi, Katz and Klemm have computed a K-theoretic invariant of the moduli space
of stable pairs in the paper [2]. Their computation does not include any information
about the incidence of subschemes of S.

In this thesis we will use K-theoretic invariants to define a refinement of the Kool-
Thomas invariant in [19]. To do this we introduce the incidence class in K¢(P, (X, i./3))
that will give the information of the incidence of a curve with a point

Here is a summary of this thesis

In Chapter 1 we review some equivariant algebraic geometry that we need in this
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thesis. In Section 1 we review the definition of equivariant sheaves and principal G-
bundles. In Section 2 we review an equivariant version of Chow groups by Graham
and Edidin[5]. In Section 3 we review the Grothendieck group of equivariant coherent
sheaves and equivariant vector bundles. In Section 4, we are trying to describe a
parallelization between the construction of equivariant Chow groups and equivariant
K-theory.

In Chapter 2 we review the moduli of stable pair and stable pair invariants defined
via virtual fundamental class. We also review the reduced obstruction theory on the
moduli of stable pairs. Kool-Thomas invariants are defined using the class constructed
using reduced deformation theory.

In chapter 3 we review the definition of K-theoretic invariants proposed by Nekrasov
and Okounkov and we also introduce the incidence class. We apply the K-theoretic
invariants to the moduli space of stable pairs on Kg.

In chapter 4 we collect the results of our work which are Theorem 4.3.1 and
4.3.2. In Theorem 4.3.2 we compute the contribution of P, (S, 3) in the K-theoretic
invariants of the moduli space of stable pairs on Kg. In Theorem 4.3.1 we show that
this contribution gives a refinement of Kool-Thomas invariants. We also conjecture

that our refinement coincide with the refinement defined by Gottsche and Shende.
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Chapter 1

Equivariant algebraic geometry

In this chapter we will review some basic materials concering equivariant K-theory
and equivariant intersection theory. For equivariant intersection theory we use [4, 5]
as references. And for equivariant K-theory our references are [35, 17, 32| and chapter
V of [3].

A group scheme G is a scheme with multiplication map p: G x G - G | inverse
v:G - G and identity element e : SpecC — G satisfying the usual axiom of groups,
e.g. associative etc. An example of a group scheme is a torus 7T,, of dimension n which
is defined as the Spec of R,, := C[ty, 7!, ..., t,, t;'] with multiplication p: T, xT,, - T,,
defined by ut : R, - R, ®c R,, t; » t; ® t;, inverse map v : T,, - T, is defined by
t; ~ t;! and the identity element e : SpecC — T, is defined by ¢; —» 1. The set of
C-valued points of T), is then (C*)".

A morphism ¢ : Gx X - X defines an action of G on X if it satisfies (idg x o) o0 =
(uxidx) oo and (exidy) oo =idx. For example, u defines an action of G on G.
If G acts on X we call X a G-scheme. Note that oxand prx are flat morphism.
Let ox and oy define actions of G on X and Y. A morphism f: X — Y is called
a G-equivariant morphism (or G-morphism) if foox = oy o (idg x f). If f is an

isomorphism we will say f is a G-isomorphism.



1.1 Equivariant sheaves and principal bundles

In this thesis, any sheaf on a scheme X is an Ox-module.

Definition 1.1.1. [22]Let X be a G-scheme. A G-equivariant structure for an Ox-

module F is an isomorphism a of Ogyx-modules o : 0*F — pri F satisfying:

1. Its pullbacks by id x ¢ and pu x id are related by the equation
prizao (idx o) a=(uxid)" a

where proz : G x G x X - G x X is the projection to the second and the third

factors

2. The restriction of a to {e} x X ¢ G x X is identity .

If F has a G-equivariant structure, we call the pair (F,«) a G-equivariant Ox-
module. Let (F,«) and (F',a’) be two G-equivariant Ox-modules. A G-equivariant
morphism f : (F,«a) - (F',«a) of two G-equivariant sheaves is a morphism of Oyx-
modules f:F — F' satisfying o’ o 0* f = pri f o . We will drop « from the notation
if the equivariant structure is clear.

Let G-act on X. Here is a short list of G-equivariant sheaves and of G-equivariant

morphisms:

1. The structure sheaf Oy of a GG scheme has a natural G-equivariant structure

induced by the unique isomorphisms 0*Ox ~ Ogxx ~ 1*Ox.

2. For a G-map f the corresponding relative differential w; has a natural G-

equivariant structure.

3. The usual constructions of sheaves—kernel, cokernel, tensor product, direct sum,
internal hom, local Exty, (€,F) and Torg, (&,F)-have natural G-equivariant
structures. In particular, the symmetric algebra SymF := @, Sym'F has a
G-equivariant structure induced from the G-equivariant structure on F. Since

Spec gives a n equivalence from the opposite category of Ox-algebras to the



category of affine schemes over X, then for a G-equivariant Ox-algebra A,
the corresponding affine scheme over X has a natural G-action such that the
projection Spec A — X is a G-map by. In particular G-acts on the vector bundle

corresponding to a G-equivariant locally free sheaf F.

. Let (F,«) be a G-equivariant locally free sheaf and V' = Spec (SymFV) be the
corresponding vector bundle. Let P(V') := Proj (SymZV) and let 7: P(V) - X
be the structure morphism. Recall that P(V') represents the functor from the
category of schemes over X to the category of sets defined as follows: for each
f:5 = X we assign the set of pairs (£, 5) where L is a line bundle on S and (3 :
f*FY - L is a surjection modulo isomorphism i.e we identify (£, 3) and (L', 3’)
if there exist an isomorphism A : £’ — £ such that 8= Xo 3’. We will use P(V)
also to denote this functor. Let §: m*F¥ — Op(vy(1) correspond to the identity
morphism idp(y). For any morphism g : X’ - X the pullback f~'P(V') represent
the functor from the category of schemes over X’ to the categroy of sets defined
as follows: for each f’:S — X’ we assign the set of pairs (£, 5) where L is a
line bundle on S and g : f*¢g*F" — L is a surjection modulo isomorphism. Let
7y : g 'P(V) - X' be the structure morphism. Any isomorphism v : F) - Fy
of locally free sheaves on X corresponds to natural transformation m., : P(V5) —
P(V1) by sending the surjection f*Fy — L to the surjection f*F) — f*F) - L.
The equivariant structure of F thus induces an isomorphism v : o*FY — pri F¥
which then induces an isomorphism m., : GxP(V') = pri' P(V) - ¢~ 1P(V'). One
can check that the composition op(y) := 1o o m,, will define an action of G on
P(V') such that the structure morphism 7 is a G-map. Note that m., correspond

to the element

(P12 O (1), T30 " F = 5, o FY = 013y Oy (1))
and also to the element

(U]}D(V)O]P’(V)(l) m O —11@(‘/)(1), PTX f ~m T*U*fv —>m O lp(v)(l))



of o 1P(V)(7pry : GxP(V) - G x X), so that we can conclude the existence of

the unique isomorphism

ao(1) * () Opv) (1) = Prpy Orvy (1)
that makes the following diagram commutes.

T O FY ——= 051 Opv) (1) (1.1)

prx

W;rxal Laou)

T DT FY —— D1y Opry (1)

One can check that ap() satisfies the cocycle condition so that we can con-
clude that (Op(v)(l), ao(1)) is a G-equivariant sheaf. For more details, reader
could consult [17]. The above diagram also shows that the canonical morphism

T*F¥ = Opvy(1) is an equivariant morphism of sheaves.

. Given a separated G morphism f: X - Y of finite type. If (€, ) (resp. (F,[3) )
is an equivariant sheaf on X (resp. on Y') then f.€ (resp. f*F) is an equivariant

sheaf on Y (resp. on X) with the folllowing composition

(idGXf)*a

oy [.€ = (idg x [), ox& (ide < f), pry€ = pry f.€

(idexf)*B
_—

(resp. oy f*F = (idg x f) oy F (idg x f)" pryF = pri f*F)

as the equivariant structure sheaf. Moreover by the naturality of the morphism

[ foF = F (resp. € » f.f*E) we have the following commuttaive diagram

0% & — (idg x £)" (idg x f), 0%E
aj J(ichf)*(idGXf)*a
pri€ — (idg x f)" (idg x f), pri.€



(idg x f), (idg x f)*a;]: — oy F
resp. (ichf)*(idGXf)*ﬁi lﬁ (1.2)

(idg x f), (idg x f)" pryyF —— pryF

Thus we can conclude that f*f,F — F (resp. €& — f.f*E) is an equivariant
morphism of sheaves. Similarly for higher direct images, R f,F have a natural

equivariant structure.

If X = SpecC and G = Spec R for some commutative ring R over C, then an Ox-
module F is a C-vector space V. V is a G-equivariant sheaf if and only if there
exist a C-linear map vy : V - R®c V such that (idg, ® y) oy = (n®idy) oy and
(el ®idy ) oy = idy. We also call V' a G-module and the set of all G-modules over
SpecC is a ring denoted by Rep(G). A subvector space W c V is called G-invariant
if v (W) c W e R. It’s easy to see that a G-invariant subvector space is also a
G-module.

Let G = Spec R .An element y € R is called a character of G if x is invertible and
whi(x) =x®yx. We use X*(G) to denote the abelian group of characters of G where
the group operation is given by the multiplication in G. For example if G =T,,, each
monomial [T;'¢{* is a character of T},, in fact any character of 7}, is a monomial in R,,.
Thus X*(7),) ~ Z" by identifying the monomials with their degree.

If v (v) = v ® x for a character x, we call v semi-invariant of weight y. The set
of semi-invariant vectors of weight x is a G-invariant subspace of V. We call this
subspace a weight space and we use V,, to denote this subspace. It is well known that
for any 7T,,-module V', we can write it as the direct sum of weight spacesi.e V ~ @, V,.
Thus a T,-module is a Z"-graded vector space. Furthermore, we can conclude that
Rep(T,) ~ Z[x1,x7%, ... 2y, 2t

For a G-module V' of finite C-dimension, the corresponding vector bundle
Spec (SymVV) over SpecC is an affine space with a G-action. We will also use
V' to denote this affine space and we call V' a G-space. For a T,-module V' =V,
where x = (x1,.--,Xn) , the C-valued points of T}, acts on the C-valued points of the
T,-space V by b.a =b{"...bX"a where b= (by,...,b,) € (C*)".



Definition 1.1.2. For any scheme S, we call pxidg: G xG xS - G xS an action by
multiplication. Let G act on X and let f: X - Y be a morphsim of schemes such that
foo=fopryx. Then f: X - Y is called principal G-bundle if there exist a covering
of Y by open subschemes {U;} of Y and G-isomorphisms ¢; : G x U; - f~1(U;) for

each 7 such that the following diagram commutes

WU) +—2— T, x U,

\ / (1.3)

In this definition G x U; is given the action by multiplication and we call the pair

(Vi @i);ep @ trivialization of f.

Remark 1.1.3. There is a more general definition of principal bundle for example
definition 0.10 of [22] but in the case of G = T,, both definitions are equivalent.

The morphism i : GxG - G, g,h — hg™! also defines a G action on G and also G
action on G x X such that vx : Gx X - G x X,(g,2) - (¢7!,x) is a G-isomorphism.
We call this twisted G-action.

If f: X - Y is a principal G-bundle and £ a coherent sheaf on Y, the canonical
isomorphism ag : 0* o f*E€ ~ pri o f*€ induced by the equality foo = fopr, is
a G-equivariant structure for f*€. If £ : & — & is a morphism of sheaves on Y,
by the naturality of ag we have ag, o (foo) & = (foprx) €oag,ie. f*€ is an
equivariant map of sheaves. Thus there exist a functor f*: Coh(Y') - Cohg(X) and
fr:Vece(Y) - Vecg(X) by sending £ to its pullback f*€. The following proposition
is a special case of Theorem 4.46 of (author?) [34]. We prove it here using a more

elementary technique.
Proposition 1.1.4. If f : X - Y s a principal G-bundle then f* : Coh(Y) —

Cohg(X) (resp. fr:Vec(Y) > Vecg(X)) is an equivalence of categories.

Proof. From the definition there exist an open cover {V;};a of Y and G-isomorphism

i G x Vi > [7(V;) for each i. Let ;= ¢, 0 iyl



For any (7, 7) we will use V;; to denote V; n'V; and for any triple (¢, j, k) we will
use V;ji to denote V;nV;nVj. Let (F,a) be a G-equivariant coherent sheaves on X.

We will consctruct a coherent sheaves F'(F) on Y by gluing
Fi=(exidy,)" o g} Fly1vsy € Coh(V).

We will use A; : Vi - f~1(V;) to denote ;o (e xidy;) for i € A. Let i = ;o :
G x Vi = G xVy; and ¢y; = prg o @y 0 (e x idy,;) + Vij = G. Then since pj; is a
G-isomorphism we can write ¢;i(g,v) = (¢;:(v)g,v) and ¢3! (g,v) = (¥;i(v)'g,v) for
(g,v) € G x V;;. Furthermore for any triple (4,7, k) we have 1 (v) = ¥y;(v).¢;:(v)
where “” is multiplication in G.

Given a pair (4, 7). Morphisms ¢; and ¢; are G-morphisms so that oo (idg x ¢;) =

@; o i1 and similarly for j. Since jio (wji,e X idv”.) (v) = (¢¥:1(v),v) we can conclude

Je

that fio (wji, e x idvij) = goj‘.il o (exidy;,;) by checking it on each factor of G x Vj;. Thus
oo (idg x ;) o (s, e xidy;, ) = X

and

pry,, o (ide x ¢1) o (i, € x idy, ) = X

so that ay; = (15, e x idy;, )" o (ide x ;) s NI F = A/ F.

Given any triple (i, j, k) we will show that o, ay;, tu; satisty the gluing condition
ie. agjo = Q. Let Wy, i= (Y, ¥y, €,idy,,, ) and \ilijk = (Idexax i) o Wy, We will
show that the pullback of the identity (u X id;*l(Vijk))* a = (idg x 0)" aopriya by U
is ayjo0vj; = au;. By checking it on each factors of Gx f=1(V;;;) and G x G xV;j;, we can
show that (,u X idf—l(v;jk)) o\ifijk = (idg x ¢;) 0 (u X idwjk) oW, and (,u X idwjk) oW, =

(Y, €,idy;, ) so that we can conclude

((rxidp1qv) 0 Vi) @ = (Y, e,idy,, ) o (ida x ;)" a = ay.



Slmllarly Praz © \I]'Uk = (ldG X 901) O PTrag © \Ij”k = (ldG X 801) o (wﬂn e, ld\/”k) so that
(pr23 o \ilijk)* o= Q.

We also can conclude that (idg x 1) o Wy = (ide x ¢5}) o (¢r;, €,idy;,, ) by checking it

on each factors of G x G x V}j;,. Thus we have

((idG xg)o \ilijk)* a= ((idG x ;) o (idg x goj_-il) o (wkj,e,idw].k))* a
= (g eidy,,, ) o (ide x ;) a
= ay.
We can conclude that there exist a sheaf F' () on Y and isomorphism ~; : F((F)|,, =
F; satisfying Qi © Vi = -

For G-maps & : F; - F, between equivariant sheaves (Fy,aq) and (Fa, as), we
want to show that there exist a corresponding morphism of sheaves F\(¢) : F/(Fy) -
F(F,) on Y. It is sufficient to show that the pullback of £ by A; and A; can be glued
for any pair (4,7) i.e. agjioAj§ = Af{ oy ;. This is exactly the pullback of the
identity o*oay = an Oprj’;,l(vij)f' on G x f~1(Vi;) by (idg x ¢;) 0 (Q/in, e, idvij). Finally
if F is an equivariant coherent sheaf (resp. locally free sheaf) on X then F(F) is
a coherent sheaf (resp. locally free sheaf) on Y since F(F)[,, is aisomorphic to a
coherent sheaf (resp. locally free sheaf).

Now we have constructed a functor F' : Cohg(X) - Coh(Y), F — F(F). Since
fowio(eidy,) =idy,, then locally there is a canonical isomorphism 7g : F(f*€)ly, =
& |V for any coherent sheaf £ on Y. Since the isomorphism is canonical it can be glued
to isomorphism on Y. We leave it to the reader to show that n: F'f* — idcon(y)(resp.
Ff* - idy.c(y)) is a natural transformation.

It remains to show that there exist a natural transformation € : ideong(x) = f*F
(resp. € @ idyecg(x) = f*F. Let §; : f71(V7) » G defined as prg o ¢;! so that
e H(x) = (Bi(x), f(z)) € G x V. It’s easy to show that 5;(x) = ¢;;(f(x))Bi(z) and
x = Bi(x)Ypi(e, f(z)) for all z € X. Define a morphism §; : f~1(V;) - G x f~1(V})



as 2 0> (B,(2) ", oile, £(2))). Thus 0 0 6(x) = B,(2) " (pi(e, £(2)) = & and pryagyy o
d;(z) = pi(e, f(x)) so that 670* F|;1y,) = Fly, and ;P v Fliryy = f*F;. We
will show that

0ja: Flpagy =~ [

can be glued to a G-morphism ez : F — f*F(F). Define a morphism Aj; : f~1(V;) -
GxGx f Y V), v = (Bi(x) L, Bi(x).0i(x) L, pi(e, (x))). It’'s easy to show that
(u X idfq(vij))OAji =0;, (idg x 0)oAj; = 0; and prazoA;; =(idg x go,;)o(zﬁh-, e x idVij)Of.
The pullback of the cocycle condition by Aj; gives us the gluing condition for d;a,
ie.

5;0& = f*@ji o (S;Oé

We leave it to the reader to show that ex will give a natural transformation. To show
that er is a G-morphism, it’s enough to show that for each i, we have &; o 0*0;cx =
pr}t,l(vi )5; a o« where ¢; is the canonical isomorphism induced by the equality foo =
foprgiw,. It’s easy to show that (;L x idf-l(m) o (idg xd7) = §; 00, (idgxo) o
(idg x 6;) = idgus-1(v;), and prog o (idg x ;) = 0; 0 pry-1¢y;). One can show that the
pullback of the cocylce condition of « by (idg x d;) gives the desired identity. [

We will use the following Lemmas in the next section in the construction of equiv-

ariant Chow groups.

Lemma 1.1.5. Let f: X - Y be a G-morphism. Assume that mx : X - Xg and
my 1Y = Yg are principal bundles. Then there exist a unique map fq: Xg — Yo such
that

x—1.y (1.4)

Xa e Yo

is a cartesian diagram.

Proof. From the definition of principal bundle we have a covering by open subschemes
{Wi}ien of Yg such that 7Ty|ﬂ_§/1(wi) is trivial bundle. Thus we have a G-isomorphism

©; : GxW; » 7t (W) such that my op; = pry,. Let d; := prgog;tof : (my o f)_1 (W;) -
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G. Let V; == mx((my o f) ™ (W;)). One can show that ¢; := (6;, 7x) : (my o ) (W;) -
G x V; is an isomorphism. Thus we have a morphism g; := 7y o f o971 o (e x idy;)
: Vi > W;. One can show that g; can be glued to a morphism ¢g : Xg — Y. Let
fi: G xV;—> G xW,; defined as ¢; o f o1)7!. Any morphism ¢’ : X¢ - Y that makes

equation (1.4) commute must satisfy 7y o fi = ¢'|;, omx . It’s easy to show that

!

9

v =i and we can conclude that ¢ is unique.
To show that diagram (1.4) is cartesian, it is sufficient to show it for any of the
open subschemes W; of Y. By checking it on each factor of GxW,; we have f; = idgxg;.

Locally diagram (1.4) is isomorphic to

GxVi fi G x W,
pf‘vil lprvi
Vi W;

9i
which is clearly cartesian. Thus we can conclude that diagram (1.4) is cartesian. [

Remark 1.1.6. From Lemma 1.1.5 if f; : X - Y] and f5 : X - Y5 are principal G-
bundles then there exists a unique isomorphism ¢ :Y; - Y5 such that go f; = fo. We
can conclude that if f: X — Y is a principal G-bundles then f is the initial object in
the category of morphsims g : X — Y satisfying goo = gopryx. We call Y the quotient
of X by G we will use X/G or X to denote Y.

Let ox and oy defines G-action on X and Y. For any two schemes Si,S; let
Tsy .85 - 91 X Sg = Sy xSy, (s1,52) = (s2,51) and let Ag, : Sy = Sy x Sy,51 > (81,51).
And we define o,y to be the morphism (Ag x idxxy ) o (idg xTxxgxidy ) o (ox x oy).
One can show that ox,y defines an action of G on X xY and we say that G acts

diagonally on X x Y.

Lemma 1.1.7. If G acts on X and 7w:U - U/G is a principal G-bundle. There exist
a principal G-bundle 1x : X xU - (X x U) |G where G acts on X xU diagonally. By
Lemma 1.1.5 there exist a morphism g : X xqg U - U[G induced from the projection
pry : X x U - U. Moreover, the fiber of g is X i.e. g7 (u) = X for any closed point

UEUg.
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Proof. Let ({V;}iea, i) be a trivialization of 7 : U - U/G and let @; := ¢; o v~! so
that idy x ¢; : X x G x V; > X x 1=1(V;) is a G-isomorphisms where both the domain
and the target of idg x ¢ has diagonal G-actions. Let 0 = co7xg: X xG - X,
then we have a G-isomorphism 7 : G x X - X x G, (g,z) = (gx,g97') where G x X
has a trivial G action and X x G has a diagonal action. By simple calculation we
have g oy = pry. Given a pair (7,7), let p;; = apjfl 0w , Yji = (exidy,) o @ji 0 pra
and 7;; =00 (idX X (wji,idvij)): X xV;; > X x Vj;. Recall that for any triple (4, j, k)
we have 1y; = ;.45 so that v = Y 0 751 so that there exist a scheme Y and open
immersions 7; : X x V; = Y such that ~; = v; o y;;and for any point y € Y there exist
i and (z,v) € X x V; satisfying v;(x,v) = y. Let Y; be the image of ; and let ;! be
the inverse of v; : X xV; - Y.

Let m; : X x m=1(V;) = Y; be defined by 7; 05 o (idg x goi)_l. From the definition of
©;; we have 7Tj|Xx7r—1(vij) = 7Ti|erl(Vij) so that 7; can be glued to 7x : X xU - Y. One
can show that mx o (idx x ¢;) o (v xidy,) o (idg x ;1) = pry, and we can conclude that
(Vi, (idx x ;) o (y xidy;) o (idg x ;1) )ien is a trivialization of g. It’s clear that the
restriction of g: X xg U — Ug to V is isomorphic to the projection pry, : X xV; = V;

so that the fiber of g is X. O

1.2 Equivariant chow group and Its completion

In this section we review the definition of equivariant Chow groups given in [4, 5].
We will use g to denote the dimension of our group G as a scheme over C.

Given 7 € Z. Let X be a G-scheme with dim X = d. Let V be G-vector space
of dimension [. Assume that there exists an open subscheme U c V and a principal
G-bundle 7 : U - Ug.By giving X x V' a diagonal action of G, assume furthermore
that there exist a principal G-bundle 7x : X x U - (X xU) /G. We will use X xg U
to denote (X xU) /G. Assume also that V' \ U has codimension greater than d - i,

then the equivariant Chow group is defined as
AZG(X) = Ai+l—g(X Xaq U)

11



The definition is independent up to isomorphism of the choice of a representation as
long as V' \ U is of codimension greater than d —17 .

For a G-equivariant map f : X — Y with property P where P is either proper, flat,
smooth, or regular embedding the G-equivariant map fx1: X xU — Y x U has the
property P since all of these properties are preserved by a flat base change. Moreover,
the corresponding morphism fs: X xqU — Y x5 U also has property P. In fact, these
properties are local on the target in the Zariski topology and for any trivialization
(Vi, @i )ien of m: U - Ug the restriction of fg on mx (X x 7=1(V})) is isomorphic to
f xidy,. So from the definition, for a flat G -map f: X — Y of codimension [ we can
define pullback map f*: A%(Y) - A% (X) for equivariant Chow groups. Similarly,
for regular embedding f : X - Y of codimension d we have a Gysin homomorphism
f*: AS(Y) > AY (X)) and for proper G-map f: X - Y we can define pushforward
fe: AF(X) » A9(Y) for equivariant Chow groups.

For G = T; and an [ + 1-dimensional weight space V, we have a principal G-
bundle 7y == V) ~ {0} - P(V}). By Lemma 1.1.7, there exist a principal G-bundle
mx : X xU - X xgU. And since codimV, \U is [ + 1, for each 7 € Z we can take
A (X xg U)) to represent AY(X) if [+i > d. We can also fix y to be -1 to cover
all 1.

Thus we fix the following notation. For each positive integer [ let V; be a Ti-
space of weight —1 with coordinate zq,...,x;. Thus V,_; is the zero locus of the
last coordinate of V;. We use U; to denote V; \ {0} and X, to denote X x5 U; and
mx,; : X x Uy — X the corresponding principal bundle. Thus we have the following
direct system

JX,1+1

Jx,
X X

(1.5)

There is a projection from & : Vi1 - V; by forgetting the last coordinate such
that j; : V; - Vj1 is the zero section of . By removing the fiber of p := (0 :
0:...:0:1) e P(V41), the corresponding projection & : X1 N 7 (p) - X
is a line bundle over X; such that jy; : X; - X N 7T;(1J+1(p) is the zero sec-

tion. Note that dim7y!,,  (z)=dim X =d. Thus for ¢ > d - [ the restriction map
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A1 (Xi1) = Ain (X 7r;(17l+1(p)) is an isomorphism. In general this restriction
is a surjection. Since 5)(,1 X - XN w;(l’lﬂ(p) is the zero section of ¢ | the Gysin
homomorphism an t Aper (X N7y L1 (p) = Ax(X)) is an isomorphism. Since j is a
regular embedding we have a Gysin homomorphism j': Az (X;11) = Ax(X;) which

is the composition of the above homomorphisms.

Lemma 1.2.1. The Gysin homomorphism j’Xl D Api1(Xi41) = Ak(X)) is a surjection.

Furthermore, j', is an isomorphism for k> d - 1.

The direct system 1.5 induces an inverse system

JXll JXl

o A (X)) AL (X)) <2 AL(X)

of abelian groups. Let (limA(X;), \;) be the inverse limit of the above inverse system.
>d-n

i=d- L A%(X) with the group [T A;(X,). Recall that
( [T A% (X), VZ) where v, : H AG(X) - 1L, A9(X) is defined by (ag,aq_1...) =

From the definition of equivariant Chow groups, A¥(X) = A;;,(X,) for i
so that we can identify []¢

1=—00

(ag,...,a4-n) is the 1nverse hrmt of the inverse system defined by the projection

DX :]'[i_d 1 AG(X) - ]'[i_d ZAG(X), (ag, ..., 04-n,04-n-1) = (ag,...,04-n). By

Lemma 1.2.1, after indentifying [1%, , AS(X) with TIZ7 Ay(X,), px. and Ixm

i=d-n

are the same homomorphism. The compostion of the projections ﬁn A(X,) —

MIEr A(X,) with X, limA, (X;) - A.(X,) are homorphisms ¢; :liinA*(X) -
HZ " AY(X) satisfying px ni1 © & = px.n so that by the universal property of in-
verse limit we have a group homomorphism ¢ limA, (X,) - li[ A% (X)) satisfying

Px.mn© §=%n

d
Proposition 1.2.2. ¢:limA,(X;) > [] AY(X) is an isomorphism .

Proof. We will show that for each a = (ag,aq 1,...) € [1%_o AS(X) there exist a
unique b € limA, (X;) such that {(b) = a. b € limA,(X;) can be written as (b1, bs, ... ,)
such that j'b.1 = by. For each [, let b; = Y 4y € Ay (Xi.q) where we identify A%(X)
with Agy.q(Xpeq) for =1 < k < d. Set by as the restriction of by to A, (X)) by succesively

applying j;, d times. Since ¢ := j;l;m b € Ag1(Xipq) its restriction to A_1(X;) =0
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must be zero so that jl!bm =b;. For -l +d < k < d we can still identify A,f(X) with
Apa (X)) even after applying j/, d times. Thus the projection A,(X;) - IT:9 A;(X))
send b to Yy aq_i. We can conclude that £(b) = a.

To prove injectivity we will show that if £(b) = 0 then b = 0. For any [, (i), €
A; (X)) is the restriction of (bj.q),, € Aiva(Xi+a) which we can identify as an element

of AG  (X). Since £(b) =0 (bisa);., is also zero which implies that (b;), = 0. O

1.3 Equivariant K-theory

1.3.1 K%(X) and G¢(X)

Let A be an abelian category. A full subcategory B of A is called closed under

extension if for any short exact sequence
O—-a—-b—-c—0 (1.6)

(1.6) a,c € B implies that b is also an object of B. On the other hand, a full subcate-
gory B is called closed under kernels of surjections if for any short exact sequence (1.6)
b,c € B implies a € B. If a,b and ¢ of (1.6) are in B we call (1.6) an exact sequence
in B. We call a full subcategory B of an abelian category A an exact category if B
is closed under extension. In particular, the abelian category A is an exact category.
The Grothendieck group Ky(B) of an exact category B is defined as the free abelian
group Z [ B] generated by the objects of B modulo the relation a+c = b for every short
exact sequence (1.6) in B. We will use [a]z to denote a class in K(B) represented
by the object a of B. We will drop the subscript if the corresponding exact category
is clear from the context.

A functor F': A - B between exact categories is called exact if F' maps exact
sequences into exact sequences. From the definition, an exact functor induces a
group homomorphism between Grothendieck groups of exact categories. For example
the inclusion B c A defines the group homomorphism i : Ko(B) - Ky(A) by mapping
the class [a]p € Ko(B) to its class [a]a € Ko(A) as an object of A.

14



Another condition that lets us have a group homomorphism from Ky(A) to Ko(B)
is if there exist a group homomorphism f from Z[A] to Ky(B) such that f(b) =
f(a)+ f(c) for any short exact sequence (1.6) in A. Thus the kernel of f contains the
subgroup of Z[ A] generated by the element a +c¢—b for every exact sequence (1.6) so
that f factors through a unique group homomorphism f : Ko(A) - Ko(B).

The category Coh(X) of coherent sheaves on X is an abelian category. The full
subcategory Vec(X) of locally free shevaes is an exact category since Vec(X) is
closed under extension. Moreover, Vec(X) is also closed under kernels of surjection.
G(X)(resp. K(X)) is defined as the Grotendieck group of C'oh(X)(resp. of Vec(X)).

Similarly, the category Cohg(X) of G-equivariant coherent sheaves with G-
equivariant morphism is an abelian category and the full subcategory Vecg(X) of
locally free sheaves is an exact category. Moreover Vecg(X) is also closed under
kernel of surjection. We will use G4(X) (resp. K% (X)) to denote Ky(Cohg(X))
(resp. Ko(Veca(X)).

The inclusion Vecg(X) ¢ Cohg(X) induce a group homomorphism i : K¢(X) —
G (X) by sending the class of a locally free sheaf to its class as a coherent sheaf.
This map in general is not injective nor surjective. For any G-equivariant morphism
of schemes f: X — Y, the pullback f* induces a morphism f*: K2(Y) - KZ(X)
since f* map exact sequence of locally free sheaves into exact sequence of locally
free sheaves. For any flat morphism f : X — Y of a G-equivariant schemes, the
pullback functor induces a group homomorphism f*: G4(Y) - G&(X). For any finite
morphism f, the pushforward f, : Cohg(X) — Cohg(X) is an exact functor, thus it
induces the pushforward map f, : GE(X) - GE(Y). If f is projective i.e. f is the
composition of a closed embedding i : X — Py (&) and the projection ¢ : Py (€) - Y,
then f, : GG(X) - GE(Y),[F] » X(-1)7[R!f.F] is a group homomorphism.

1.3.1.1 Pushforward for K&(X)

We will skecth the construction of pushforward map f, : K¢(X) - K%(Y) in some
special cases. For more details, readers should consult chapter 2 of [35] or section 7

and 8 of [28].
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First we need the following Lemma.

Lemma 1.3.1. Let Nx be a full subcategory of Cohg(X) staisfying the following
conditions:

1. Nx contains Vecg(X)

2. Nx is closed under extension

3. Each objects of Nx has a resolution by a bounded complex of elements in
Veca(X)

4. Nx is closed under kernels of surjections.

Then

1. N is exact and the inclusion Vecg(X) ¢ Ny induces the group homomorphism
i: K9(X) - Ko (Nx) by mapping the class [Ply...(x) of any locally free sheaf P to
its class [P]NX in Ko(N,)

2. all resolutions of F by equivariant locally free sheaves

0 P, P e Py Po F 0

define the same element x(F) = Y% (-1)" [P:] in KG(X). Furthermore, x
define a group homomorphism x : Ko(Nx) — K% (X) which is the inverse of i :
KG(X) - Ko(Nx)

Proof. 1. It’s imeediate from the definition.
2. The first statement can be conclude from Lemma 7.6.1 and corollary 7.5.1 of
chapter IT of [35] so that for any object F of Nx the class y (F) = ¥ (=1) " [P;] €

K%(X) is well defined. For any short exact sequence

0 & F g 0

we have x(€) + x(G) = x(F). Thus there exist a homomorphism of abelian groups
X : Ko(Nx) = KG(X),[F] » x(F). Since for any locally free sheaf P the identity
morphism idp is a resolution for P then y(P) = [P] and x oi = id. Since [F] =
Y70 (-1) " [P;] € Ko(Nx) we can conclude that 7o y = id. O
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Corollary 1.3.2. Let f: X = Y be a finite G-morphism such that f, : Vecg(X) —
Cohg(X) factors through a subcatcategory Ny c Cohg(Y') satisfying all 4 conditions

of Lemma 1.3.1 above. Then there exist a group homomorphism f. : K¢(X) —
KC&(Y) such that f.[E] = x(f.&) for any locally free sheaf & on X.

Proof. Since f, : Vecg(X) — Ny is exact we can define the pushforward map f, :
K%(X) - K%(Y) as the composition K%(X) - Ko(Ny) ~ K&(Y) where the last
isomorphism is y : Ko (Ny) — KE(Y). O

Now let X =Py (€) and f: X — Y be the projection where £ is an equivariant
locally free sheaf on Y of rank r+ 1. Let Ox (1) be the dual of the tautological line
bundle on X with its natural G-equivariant structure. Let Mx c Vecg(X) be the
full subacategory of locally free sheaves F such that RIf,F(-q) =0 for all ¢ >0 i.e
F is Mumford regular. Here, we suse F(n) to denote F ® Ox(n). In the following

Lemma we collect some properies of Mumford-regular vector bundles.

Lemma 1.3.3. Let F be a vector bundle on X.

1. There exist a large enough integer n depending on F such that F(n) is
Mumford-reqular.

2. If F is Mumford-regular then F(n) is also Mumford regular for all n > 0.

3. If F is Mumford-regular then R f,F =0 for alli >0 and f,F is a vector bundle
onY.

Proof. The first and the third staments are consequences of Lemma 1.12 of sSection

8 of [28]. The second statement is Lemma 1.3 of Section 8 of [28] O

By Lemma 8.7.4 of [35] My is an exact subacategory of Vecg(X). By Lemma
1.3.3 there exist a functor f, : Mx - Vecg(X), F — f.F which is exact so that there
is a homomorphism f, : Ko(Myx) - K¢(Y). In the next several paragraphs, we will
show that the group homomorphism i : Ko(Myx) - K%(X) induced by the inclusion
Mx c Vecg(X) is an isomorphim. The pushforward map f, : K¢(X) - K4(Y) is
then defined as i-! o f,.
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Let Mx () be the full subcategory of Vecg(X) of objects F such that F(l) is
Mumford-regular. Since tensoring by line bundle is exact, Mx(l) are exact for all [.

By Lemma 1.3.3 the following nested inclusion of exact categories
MX c Mx(l) CMx(l+ 1) C ...VGCG(X)

satisfies Vecg(X) = Uy M(1). This implies that K¢(X) = lim;_, Ko(M(l)). By
the following Lemma the inclusion Mx(l) ¢ Mx (Il + 1) induces isomorphisms i; :
Ko(Mx (1)) > Ko(Mx(1+1)) so that we can conclude that i : Ko(Mx) - KG(X) is

an isomorphism.
Lemma 1.3.4. i;: Kg(Mx (1)) > Ko(Mx({+1) is an isomorphism
Proof. By Lemma 1.3.5, we can follow the proof of Proposition 8.7.10 of [35]. m

Let A =@,z A; be a graded Oy-module. The graded Oy-module A(n) is defined
as follows :A(n) := ®;50.A4(n); where A(n); = A;;,,. Recall the definition of graded Oy-
algebra ', (Ox) = @1 f.Ox (i) then I',(Ox) = ®2,Sym’E”. Consider a morphism of
graded I',(Ox)-modules dy : Y @ I',(Ox)(-1) » T'.(Ox), £ ® 1 » £ where we have
identified Sym'EV with V. If we fortget the shift, this morphism of O y-modlues

define the zero section of V. This morphism then induces a Koszul resolution
0+ A1EveD, (Ox)(-r-1)% ... 5 £ 0T, (Ox)(-1) B T.(0x) » 0 (L7

where d,, : A" EV T, (Ox)(-n-1) = A" EY @I, (Ox)(-n) is given by

n+1

do((EL A AEpsr) ®1) = Z;(—l)i(fl/\.../\éi/\.../\fnﬂ)®f¢

where & A .. ./\éi A...N&qpe1 means that we ommit the factor & from & A...AE,1. By

taking the Proj of (1.7) we get a resolution of Oy by equivariant locally free sheaves.

Lemma 1.3.5. For any equivariant locally free sheaf F on X we have the following

exact complex of equivariant locally free sheaves induced from the Koszul resolution
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(1.7)
0+ F3>F)®E+ ... > Fr+1)eA™E 30 (1.8)

Proof. 1t is sufficient to prove it for the case F = Ox. Diagram 1.1 shows that the
canonical morphism of Ox-modules A: f*£Y - Ox(1) is equivariant so that its dual
is also equivariant. One can show that the contraction morphism of Oy-modules
6 s NTEV R E > NEY, (G1A ... N&p1) ®U > TP (1) W)E A AE A A
&q41 18 equivariant. By checking it locally one can show that d,, is the composition
6y © (idans1 pegv ® A(n)) where A(n) := A ® idos). Thus we can conclude that d,, is

equivariant for all n. O
We summarise the above discussion in the following corollary

Corollary 1.3.6. Let G act on Y and & is an equivariant locally free sheaf. Let
f: Proj (Sym&V) - Y be the structure morphism. Then there exist a group homo-
morphism f,. : K& (Proj (Sym&Y)) - KE(Y') such that f.[E] = [f.€] for Mumford

reqular vector bundle £.

In the case when f is the composition poi where ¢ is a finite morphism satisfying
the conditions of corollary 1.3.2 and p is the structure morphism Proj (Sym&v) - Y,
we do not know if p, o7, : K¢(X) - K&(Y') is independent of the factorization p o .
However, in the case when i is a regular embedding, by Lemma 2.7 of [16] we have
an affirmative answer so that we can define f, as the composition p, o,.

Beside addition, K¢ (X ) has multiplication structure given by tensor product with
[Ox] as the identity element. For any morphism of scheme f: X — Y the pullback
[ K4(Y) > K%(X) is a ring homomorphism. In particular, K&(X) has a K&(Y')-
module structure via f*. Moreover, given a morphism satisfying the condition of
corollary 1.3.2 or being the projection ¢ : Py (V) - Y, by the following proposition,
f+ is a morphism of K (Y')-modules.

Proposition 1.3.7 (Projection Formula). Let f: X — Y be a morphism satisfying
the condition in corollary 1.3.2 or the projection ¢ : Py (V) = Y where V is a G-
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equivariant vector bundle. Then for any x € K¢(X) and y € K¢(Y') we have

ez fry) = (fox) .y e KE(Y).

Proof. Since all operations involved is Z-linear, we can assume that z and y are
represented by G-equivariant locally free sheaves £ and F. For a G morphism f :
X - Y and G-equivariant locally free sheaves £ on X and F on Y the canonical
morphism

[LE@F = fu(E® f*F) (1.9)

is G-equivariant and is an isomorphism. Since f*F is a vector bundle and Ny is closed
under extension, f.£® F and f, (€ ® f*F) are objects of Ny. This conclude the first
case. If f is the structure morphism ¢ : Py (V) - Y since Ko(Myx) ~ K(X) we can
assume that & € My. Since the canonical morphism Rif,(€ ® f*F) - R f,.£ ® F
is an isomorphism, if £ is Mumford-regular, then £ ® f*F is also Mumford-regular

so that fy[€® f[*F] = [f. (E® f*F)] and we can conclude that f.([E].f*[F]) =
(fLELLFD). O

Proposition 1.3.8 (Base change formula).

1. Consider the following cartesian diagram

9. x

!

<

— X

9

such that f and f' are G-reqular embeddings of codimension r. Then g* o f, =

foogr: K9(X) » K9(Y)

2. Let A be a smooth projective variety and let p: AxY —Y be the projection to

the second factor. Let g:Y — Y be any morphism and consider the following
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cartesian diagram

AxY T AxY .
ﬁL lp
Y Y
Then the pushforward maps p, : KG(AxY) - KG(Y) and p, : K¢(AxY) -

K¢ (Y) are well defined and p, o g* = g*op, : KG(AxY) - KC (}7) Let
d:D —- AxY be a G-closed embedding such that D is flat over Y and let

g

d : D" - AxY' be the corresponding pullback so that we have the following

cartesian diagram

D g

D
]
xY.

AXY/—,>A

g

Then g* [Op] = [Op] e KE(AxY).

Proof. 1. Since f, f are closed embeddings both of them are affine morphisms so that
f.g*F = ¢g*f.F. Given a finite resolution £* — f,F of f.F, we need to show that
g E* - ¢* f.F ~ f.g*F is a resolution of f,g*F. Let F be an equivariant locally free
sheaf and given a finite resolution £* — f.F of f,F the proof of Proposition 4.5 of [9]
shows that g*£® - g* f.F is a resolution of g* f,.F .

2. For the first assertion, since A is smooth and projective, we can factorize p into
a regular embedding i : A xY — PY and a projection 7 : P — Y. In the case of the
projection m, It’s sufficient to check it for a Mumford-regular vector bunlde F on P¥.
Since Rim,F =0 for all i > 0 we have ¢*7,F = 7,.5*F on Y where 7 is the projection
Pg - Y and § is the canonical morphism ]P’g — PY. For i we can use the assertion in
point 1. of this Lemma.

For the second assertion it is sufficient to show that for a resolution F* - Op of
Op by a bounded complex of equivariant locally free sheaves, g*F'* - g*Op = Op,
is exact. Since the question is local, we can assume that all schemes are affine, let
AxY = SpecR, Y = SpecS and Y = SpecS. Let F* - Op be given by M* — M
for some S-modules M, M?. Note that M and M? are flat as S-modules. By the
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natural isomorphism (S’ ®g R) ®r N ~ S®g N for all R -modules N so that Q*N o

(_ ®s R) ®r®B8~ ®gN. So we can conclude that g*M*® — g* M is exact. O]

Tensor product defines on G¢(X) a K(X)-module structure. If f: X - Y is a flat
morphism, the pullback f*: GY(Y) - GY(X) is a morphism of K%(X)-modules.
If f:X — Y is a proper morphism, by replacing z € K¢(X) with # € GY(X) in
Proposition 1.3.7, we can conclude that f, : GE(X) - GE(Y) is a morphism of
K%(Y)-modules.

1.3.2 G%(X) with support

Let i : X - Y be a G-equivariant closed embdedding and let U =Y \ X with open
embedding j : U — Y. Then there exist group homomorphism i, : GE(X) - G¢(Y)
and j*: GE(Y) - GE(U). These two homomorphism is related as follows

Lemma 1.3.9. The following complex of abelian groups is exact
GO(X) e GE(Y) - GE(U) — 0.

Proof. This is Theorem 2.7 of [32]. O

We call a class 3 € GE(Y) is supported on X if 3 is in the image of i,. Equivalently
S is supported on X if j7*3 = 0.

Let Coh (Y') be the abelian group of coherent sheaves supported on X. Note that
F € CohX(Y) is not necessarily an Oy-module. Let G¢(Y) be the corresponding
Grothendieck group. The pushforward functor i, : Cohg(X) - Cohg(Y') factors
through CohX(Y) so that there exist a group homomorphism i : GF(X) - G¢(Y),
[F]+ [i.F]. There exist an inverse of i described as follows.

Let F € Coh(Y') and let Z be the ideal of X. Then there exist positive integer n
such that Z"F = 0 so that we have a filtration

FOIF2TI?Fo.. 2I"'FoI"F=0.
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Note that each Z"F/I™'F is an Ox-module. One can show that [F] ~
S o [Z7F I+ F] defines a group homomorphism i : G$(Y) - GE(X). For a co-
herent sheaf F supported on X we will use [F]y to denote its class in G(Y") and we
will use [F]x to denote Y."0 [Z7F/Z7*1F]. Observe that if W+ X LY with i and
Jj are closed embedding and a coherent sheaf F supported on W then i, [F]y, = [Flx
and j.i.[Flw = j« [Flx = [Fly-

Lemma 1.3.10. i: GS(X) - G$(Y) is an isomorphism.

Given a cartesian diagram

=~

N

<

|

-~

P
~.

S
b.<

f
with ¢, f are closed embeddings and a coherent sheaf £ on X such that f.£ has a
finite resolution by a complex of locally free sheaves. Then we can define a group
homomorphism fl€] : GG(Y) - G(X), described as follows. Let F be a coherent

sheaf on Y supported on Y. For each y € Y | the stalk of Tori (f.&,F) on y is
7'01"29” (( £:€)y,, fy) so that Tor}, (f.€,F) is supported on X. For any exact sequence

0=-F =-F=F"=0
of coherent sheaves on Y we have a long exact sequence
TorZ (f.£,F) = Tory(f.&,F') = Tori,(f.£,F) = Tori(f.£,F")
so that

> (“)'[Torsy (£.£,F)] = Y (-1)'[Tory (£, F)+ 3 (-1) [ Tory (f.£,F")] € GS(Y).

120 >0 >0

Thus there exist a group homomorphism f€1: GG(Y) - G%(Y). By Lemma 1.3.10,

we can define fl€] as the composition i1 o fI€].
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Lemma 1.3.11. Let f : X - Y be a closed embedding and a coherent sheaf & on
X such that f.€ has a finite resolution by locally free sheaves. For any closed em-
bedding i : Y — Y, there exist a group homomorphism fl€l : GE(Y) - GE(Y n
X) that maps [F] to Lio(-1)" [Tori (fo&,F)]y.x- Furthermore, k. fIEV[F]) =
Yico(“1) T [Tory (f.€,F) ]y -

1.4 th(Xl)

Let GG be the torus 77 and let X be a G-scheme. Recall that by Proposition 1.2.2there

d

exist an isomorphism £ : imA, (X,,) = [1{__., A% (X). In this section we want to recall

some results of the corresponding liinK (X,).
From the direct system 1.5, we have the inverse system
o K(X) L R(0) <2 K (X))
We denote the inverse limit of the above inverse system as liln K(X;) and use px; to
denote the canonical morphism limK (X;) - K(X;). The pullback functor induced
from the projection map prx : X xU; — X and the equivalence between Vecg (X xU))
and Vec(X;) induces group homomorphims rx; : K¢(X) - K(X;). It’s easy to show
that kx; = I, ° Kx+1 SO that we have a uniqe group homomorphism rx : K¢(X) —
lian (X)) such that kx; = px; o kx. In this section, to distinguish bertween the
ordinary and the equivariant version of pullback and pushforward map, we will use
superscript ¢ to denote the equivariant version, for example we will use f&* to denote

the pullback in the equivariant setting.

1.4.1 Derived category and K-theory

The ordinary K theory of a scheme X is defined in the same way as in subsection 1.3.1.
For any morphism f: X — Y there exist a group homomorphism f*: K(Y) - K(X),
[F]~ [f*F]. Furthermore, for ordinary morphism f: X — Y satisfying the condition
of corollary 1.3.2 and for g the structure morphism Y := P (V') — Z there are group
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homomorphisms f, : K(X) - K(Y) and ¢, : K(Y) > K(Z). Certainly when h is the
compoisition g o f we can define h, := g, o f.. In this section we want to show that
this definition is independent of the factorization of h. In order to do this we will
use the derived category of coherent sheaves and derived functor to define the group
homomorphism between the correspnding K-groups.

Right derived functors Rf, between derived categories of bounded complex of co-
herent sheaves maps exact sequence of coherent sheaves to an exact triangle. This
properties allow us to define morphism between the corresponding Grothendieck
groups. For more general morphism we will use derived functor to define the group
homomorphis between K-groups.

Let (7,T) be a triangulated category with shift functor 7' : 7 — 7. The
Grothendieck group of a triangulated category Tis the quotient of a free abelian
group generated by the objects of 7 modulo [A] + [C] - [B] for any exact triangle
A-B->C->TA.

One can show that the inclusion Coh(X) — D!(X) defined by identifying a co-
herent sheaf as a complex concentrated in 0*'-order, gives an isomorphism of abelian
group G(X) — Ko(D?(X)) with inverse [A*] = ¥,.z[h?A*] where hiA® is the i*h-
homology of the complex A°.

We recall the definition and some results about perfect complexes from section 2 of
[33]. Let X be a noetherian, quasi compact and quasiseparated scheme. The complex
C* e D*(X) is called perfect if for each x € X there exists an open neighborhood U of
x such that C* is quasi isomorphic to a bounded complex of free sheaves E* € D*(U).
If we also assume that X is quasiprojective then C* is perfect if and only if C* is
quasiisomorphic to a bounded complex of locally free sheaves. The fullsubcategory
Xperg € DP(Coh(X))of perfect complexes is a tringulated subcategory. By identifiying
a locally free sheaves as a complex concentrated in the O*-order, we have a ring
homomorphism ¢x : K(X) - Ko(Xpers). For a perfect complex C*, there exist a
quasiisomorphism « : C* - C* from a bounded complex of locally free sheaves C*.
Moreover, if o’ : C* - C* is another such quasiisomorphism then one can show

that »,(-1)? [CN'Z] = Y (-1) [C_”] € K(X). Thus there exist a group homomorphism
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X L[ Xperp] = K(X),C® = ¥;(-1)*[C?]. One can show that for any exact triangle
Cy - C5 - Cy - TCy , x(C7) —x(C5) +x(Cs) = 0 so that we have a group
homomorphism x : Ko(Xperr) > K(X). Since [C*] = X(-1) [C?] € Ko(Xperf) it’s
easy to show that y is the inverse of «.

For any morphism f: X — Y, the derived pullback L*f maps bounded complex
of locally free sheaves to bounded complex of locally free sheaves, indeed L* f* (C*) =
f*C* for C* any bounded complex of locally free sheaves. Since the properties of being
perfect is local we can check it on open subscheme on which C*is quasi isomorphic to
a bounded complex of locally free sheaves. Thus there exist a group homomorphsim
£ 1 Ko(Ypers) = Ko(Xpers), [C*] = [L*f*C®]. If X and Y are quasi isomorphism
we can define a group homomorphism f* : K(Y) - K(X),[E] » x[L*f*€] which
coincide with the one we have defined before.

Let f: X — Y be a proper morphism between quasiprojective scheme with the
property that there exist an open cover {U;} of Y such that the restriction f; of f
to W; := f~1(U;) maps perfect complex C* € D*(W;) to perfect complex R*f; .C* €
D(U;). Since being perfect is local, we can conclude that R®f,C* € D*(Y) is perfect
if C* e D?(X) is perfect. Furthermore, Rf,C* maps exact triangle to exact triangle
so that there is a group homomorphsim £, : Ko(Xpers) = Ko(Ypers),[C*] = [R*f.C*].
Then we can define a pushforward map f, : K(X) - K(Y) as f. = yof, oux. The

following gives an example when R*f, maps perfect complex to perfect complex.

Proposition 1.4.1. Let f: X - Y be a morphism between quasi projective scheme
over C. If f: X =Y is a finite morphism satisfying condition in corollary 1.5.2 or
f is the projection ¢ : Py (V) = Y where V is a vector bundle of rank r + 1 , then
R*f.C* is a perfect complex for any perfect complex C*.

Proof. Let f be a finite morphism satisfying condition in corrolary 1.3.2 and since X
is quasiprojective, we can assume that C'* is a bounded complex of locally free sheaves.
Since f is finite, f.is exact and presereves quasiisomorphism. By Lemma 7.6.1 of [35],
there exist a double complex P** with horizontal morphism d*J : P — Pi*1Li and

vertical differential §%7 : P%»*1 - P% and a morphism of complex 3*: P*0 —» f,C*
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such that for each i,
o= pinst B pin 008 pio By iy g (1.10)

is exact. Note that P/ = ( for almost all (i, j) € Z xZ except for a finitely many (i, 7).
Let C* be the total complex of Pi and let §: C* — f,C* be a morphism of complex
defined on the mth-order by the composition C™ = ®i_jey P47 — P™0 — f,C™ where
the first arrow is the projection to the factor P™0. By Lemma 12 of section III.7
of [10] we can conclude that (3 is a quasi isomorphism. Thus we can conclude that
Ref.C* = f,C* is perfect.

Let P c Vec(X) be the subcategory of locally free sheaves F satisfying R f,F =0
for ¢« # r and R"f.F is a vector bundle. It’s easy to see that P is closed under
extension. Proposition 2.1.10 of [14] implies that we can apply Lemma 7.6.1 of [35]
and conclude that for a bounded complex of locally free sheaves there exist a double
complex P** with horizontal morphism d*/ : P% — P#*Li and vertical differential
0% ¢ Phitl — Pii and a morphism of complex §° : P*9 — (C* such that P% € P for
all (4,7) and for each i, the complex (1.10) is exact. Let C* be the total complex
of the double complex P** and let 5 : C* - C* be a morphism of complex defined
on the m*-order by the composition cm = ®;_jey P — P™0 — C™ where the first
arrow is the projection to the factor P™Y. By Lemma 12 of section II1.7 of [10] we can
conclude that 3 is a quasi isomorphism so that R*f,C* ~ R*f,C*. Again by Lemma
12 of section II1.7 of [10] we can conclude that that R* f.C* is quasi isomorphic to
R f.C*. This conclude the prove of the second case. m

For the case when f is a finite morphism satisfying the condition in corrolary
1.3.2, since on the objects of Vec(X) , fo, fx : K(X) - K(Y) are the same we can
conclude that f, = f, since Vec(X) generates K (X). Similarly for the case when f
is the structure morphism Py (V') - Y. So we will use f, to denote f. even when f,

is not defined.

Corollary 1.4.2. Let f : X - Y be a morphism between quasiprojective scheme

such that f can be factorized into i : X - Z and p : Z - Y where i is a finite
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morphism satisfying the condition in corollary 1.3.2 and p is the structure morphism
0 : Py (V) > Y of a projectivied vector bundle. Then for any perfect complex C* €
D*(Coh(X)) , R*f.C* e D*(Y') is also perfect.

Proof. For any complex C* € D*(C'oh(X), there exist a canonical quasi isomorphism
R*(poi),C* - R*p, o R*,C*. From the above proposition we can conclude that
Ref.C* is perfect if C* is perfect. n

Given a factorization f = po i, by corrolary 1.4.2 we can conclude that for any

vector bundle £ in X we have

pe 0 ix [E] = XPuty xiatx [€]
= XP.ictx [£]
= XPx [1:€]
= X [Rp(i.€)]
= x[R*p. o R*i,£]
= x [R*(f).€]

so that if we define f, = p,oi, : K(X) - K(Y), it is independent of the factorization.

1.4.2 Pullback for limK (X))

Let f: X - Y be a G-map of G-schemes. Recall that for each G-equivariant map
f:X =Y the induced map f, : X,, » Y, is flat (resp. smooth, proper, regular em-
bedding) if f is flat (resp. smooth, proper, regular embedding). By the functoriality

of the pullback we have a commutative diagram
KG(Y) -1~ KG(X)
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Again by the functoriality of the pullback and the universal property of inverse limit
we have ring homomorphisms J(”_* limK(Y) - limK (X)), kx : KE(X) - limK(X,,)

and ry : K¢(X) - limK(Y,,). Futhermore these maps satisfy <f_* oKy =Ky o fO*,

1.4.3 Pushforward for limK (X))

Let G be the torus 77 and let f: X - Y be a G-morphism between quasiprojective
schemes. Recall that U; = C*! \ {0} where C*! is a G-space of weight 1.

First assume that f is a finite morphism satisfying the condition in the corrolary
1.3.2. For any G-morphism g : Z — Y, the pullback f': Z xy X - Z of f by g
is also finite. Assume also that f’ satisfies the condition in corollary 1.3.2 when
g=prx : X xU; - X. In particular, idy, x f : X xU; - Y x U; induce a group
homomorphism (idy, x f), : K¢(U; x X) - K%(U, xY'). Since the pullback functor
T Vee(Xp) = Vecg(X x Up) and my, : Vec(Y;) - Vecg(Up x Y)) are equivalence
of abelian categories, then there exist a group homomorphism f; . : K(X;) - K(Y})
which one can show that it maps [€] € K(X;) to the class [f;.£] € K(Y;) for any
locally feee sheaf & on X.

Next we will show that f; . ascend to a homomorphism (ﬁ lim K (Xy) — limK (Y1)
which satifies Ky o fC = }_* o kx. First, by working locally on Y;,;, one can show that
[i+ satisfy the identity fi .o j%; =y, 0 firr,x so that j5; 0 (fier« 0 pxis1) = (fie © px)
so that there exist a group homomorphism (f_* : lim K (X)) — lim K (Y;) such that
Py © (ﬁ = fi. o pxs. The canonical morphism pri™* o fG€ - (f x idUl)f o pr$*E

induced from the following cartesian diagram
XxU™==X
(f Xid)t jf

YXUlWD

is an isomorphism so that f. o kx; =Ky o f&. Since for any [ ,

pyioky o f<& =Ky o f¢
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= fl,* ORX,
= fz,* OPXI1ORX

<
:pY,lof*OHX

-
we can concluce that ky o f& = f, okx. Similarly for the case when f is the projection
Py(V) - Y. In this case we use the fact that the canonical morphism L°®j;, o
R* fii10 = R® fi» 0 L*j% , is a quasiisomorphism.

We summarise the above discussion in the following Lemma:

Lemma 1.4.3. Let f: X - X be a G morphism.

1. If f: X =Y is a finite G-morphism satisfying the condition in corrolary 1.3.2.
Assume also that for all 1 , (f x idy,) also satisfies the condition in corrolary 1.3.2
. Then there exist a group homomorphism <f_* : lian(Xl) - lian(Yl) satisfying the
identity ky o fC = }_* oK.

2. If f: X =Y is the structure morphism Py (V) =Y where V is a G-equivariant
vector bundle. Then there exist a group homomorphism 7* HlimK (X)) - limK(Y))
satisfying the identity ky o f& = <f_* °oKx.

3. If f: X =Y is a G-morphism that can be factorized into poi wherei: X — Z
is a finite morphism satisfying the condition 1. and p satisfies condition 2. then
the group homomorphsim <f_* = P, o Z :1ian(X) - liinK(Y) is independent of the

factorization.

1.5 Equivariant operational chow ring, Chern class
and Chern character

An element of the operational Chow group AL (X) is defined as a class of maps
(f:Y = X): A (Y) » A9, (Y) for each G-map f: X — Y satisfying 3 conditions
in chapter 18 of [§]:

1. It commutes with proper pushforward,
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2. It commutes with flat pullback
3. It commutes with the refined Gysin map induced by a regular embedding.

Similar to the non-equivariant case , we can also define product, pushforward by
proper map, and pullback on the equivariant operational Chow groups. The direct
sum A% (X) = @2, AL(X) and its completion []7%) AL (X) are rings with the product
operation as the multiplication.
Let (limA*(X,),,) be the inverse limit of the following inverse system
e AN(X )2 A (X)) A (X ) ~—

The pullback by the composition X x U, ¢ X x C**! - X gives a ring homomor-
phism 7y : [T AL(X) - [12p AL (X x U,) and for any principal G-bundle Y - Y,
A9(Y) ~ A;(Ye). Then by the definition of operational Chow groups, we have a ring

homomorphism a, : [ [AL(X x U,) - [JAY(X,) and the composition o, = @&, o~ is
i=0 i=0

a ring homomorphism ﬁAg(X ) = A*(X,,). One can show that the ring homomor-
phisms «,, satisfy «, = }}?n oay41. By the universal property of inverse limit, we have
amap a:[[72)AL(X) - limA*(X,,) such that 3, 0 a = a,.

Let p, : A*(X,)xA.(X,) = A.(X,,) be the action of A*(X,,) on A,(X,,) defined by
pn(c,a) = c(a) for (c,a) € A*(X,) x A,(X,,). Since the elements of operational Chow
groups commute with the Gysin map induced by regular embedding 7, : X,, = X1
we have j c(a) = c¢(jx ) where both j  are the refined Gysin homomorphism,

By the definition of the pullback ji, : A*(Xn) » A*(X,) we have c(jy,a) =

JxnC( j;(,na) and we have the following commutative diagram
A*(Xn+l) x A*(Xn+1) ﬂ) A*(Xn+1)

j;xjill ljil (1.11)

A (X)) x Au(X,) —— Au(X0).
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By 1.11 we have the action map
lim A*(X,) x limA, (X,,) ~ lim (A" (X,,) x A.(X,)) = limA,(X,)

as the unique map induced by the universal property of inverse limit. Note that j* is
a graded morphism of order 0. Thus limA*(X5,) is also graded.

For each equivariant vector bundle £ on X, its pullback € to X xU,, correspond to a
vector bundle &, on X,, such that 7*&, = €. By the identification AG(X) = Ajn (X)),
(€)1 AS(X) —» AY (X)) is given by ¢/(€,) : Ajin(Xn) = Aji4n(X,). Since Chern
class commutes with pullback this definition is well defined. Furthermore, 07@(5 ) is
an element of AL(X).

In the non equivariant case, each vector bundle £ of rank r has Chern roots
x1,...,x, such that ¢*(£) = e;(x1,...,z,) where ¢; is the it symmetric polynomial.
Furthermore, its Chern character is defined as ch(€) = Y.;_; e¥. From this definition,

we have the following formula of Chern chararacter in terms of Chern classes
1
ch(&)=r+c'(&) + 5 (cl(é')2 - 202(8)) +
= L P(e(E),- -, ¢(E))
i=0
where P; (c}(€),...,c/(€)) is a polynomial of order j with ¢/(€) has weight i.

In [5], Edidin and Graham define an equivariant Chern character map ch® :

K% X) -T2 AL(X) by the following formula
ch® (&) = Pi(cg(E), ..., cu(8)).
i=0

One can show that ¢h® is a ring homomorphism. Let ch: K “(X) - limA*(X,)
denote the composition a o ch®.

For each n there is a Chern character map ch,, : K(X,,) - A*(X,,) which commutes
with refined Gysin homomorphisms. By the universal property of inverse limits we

have a ring homomorphism ¢h : imK (X,) — limA*(X,,). Since each ch, is a ring
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homomorphis, ch is also a ring homomorphism. Furthermore the following diagram
commutes

KO(x) —2 TTA5(X)

{ - "l (1.12)

limK(X,) — limA*(X,,)
Recall the group homomorphism £ from subsection 1.2.

Lemma 1.5.1. For allz € limA,(X,,) and for any 3 K%(X) we have £ (E(ﬁ)(x)):
chS(8)(&x).

Proof. An element x € limA, (X,,) can be written as infinite tuples (zg,x1,...) where

d
z; € A (X;) satisfying j ;(zi11) = 7;. An element y € [] AY(X) can be written as
infinite tuple (Y4, Ya-1,Ya-2,--.) where y; € A (X). -
It’s sufficient to prove it for an equivariant vector bundle £ on X. Let

v o= (zp,21,...) € mA(X,), then ch(E)(x) = (ch(&)(x0),ch(€)(x1),...).
For each £k there exist n big enough such that € (cTz(E)(x)) =
((ch(&)wn)y, (ch(En)xn) gy s- -, (ch (&) xpn), ) Where 1, is  the projection
Vg ﬁ AY(X) - li[ AY(X) and (ch(&,)r,); is the homogeneous component of
ch(EZ:)_;on in degree ;'?d_k

On the other hand, for each x; there exist large enough n; such that £(x) =

((#ng) s (#ny) gy »---) where (2,,),; is the homogeneous component of z,, of degree

d —i. We can also choose n; large enough so that if ch® (€) (¢x) = (Ya, Ya-1,- - ) then

Ya-i = Z Pl (Cl(gm)7 C2 (gnz) A 7Cl (Em)) (xm)d—m :

0<I<e

Since Chern class commutes with Gysin homomorhism for ¢ < i’ we have

vai= 3 P (). (Eny) oo (En)) (20 i

0<i<t

- (ch(ﬁni,)il?nif)d—i

33



and we can conclude that v (E(E)(cc)) = vpch®(E)(&x). Thus by the universal
property of inverse limit {(E(ﬁ)(w)) =ch®(B)(&x). O

From previous Lemma we can write ch®(a)(x) = é?z(a)(x) after indentifying ele-

ments of limA,(X,,) with [T;2, AY(X) by £ .
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Chapter 2

Kool-Thomas Invariants

The moduli space of stable pairs attempts to compactify the space of embedded
curves in a nonsingular projective variety X. It was shown that the moduli of sta-
ble pairs have a perfect obstruction theory and thus a virtual fundamental class.
Pandharipande-Thomas invariants are defined as the degree of the virtual fundamen-
tal class. Historically, there were moduli of stable maps and Hilbert scheme which
leads to Gromov-Witten invariants and Donaldson-Thomas Invariants. It was con-
jectured that if X is a threefold all of these invariants contain the same informations.

In this chapter we will review the definition of stable pair invariants defined in
[24] and the reduced obstruction theory of [19] its relation to J-nodal curve counting
[19, 18]. Our reference is [24, 21, 19, 18]

Before we continue we want to fix some notations that we will use later. For a
flat morphism f : X - Y of schemes and for any closed subscheme Z of Y with the
closed embedding g: Z - Y, we will use Xz to denote the fiber product X xy Z and
f%: X, - Z to denote the corresponding morphism so that we have the following

cartesian diagram

X,-2-X

el

For a sheaf F on X, we will use F; to denote the sheaf g*F on X . For a closed
subscheme Z c X of X, we will use g71(Z) c Xz to denotes its pullback by g.
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2.1 Pandharipande-Thomas Invariants

2.1.1 Stable Pairs

Let X be a smooth projective variety of dimension 3 with an ample line bundle L.
The dimension of a coherent sheaf F on X is the dimension of its support. A coherent
sheaf F on X is called pure of dimension d if for any subsheaf £ ¢ F of F, £ is of

dimension d. In particular, the supporting subscheme has no embedded components.

Definition 2.1.1. Let X be a projective smooth varietiy of dimension 3. A pair
(F,s) where F is a coherent sheaf of dimension 1 and s is a section of F is called
stable if the following two conditions holds:

1. F is pure

2. The cokernel @ of s is of dimension 0.

Remark 2.1.2. In [26], Le Potier described the stability condition for the GIT problem
of pairs Ox > F using a polynomial q € Q[k] as a parameter. For sufficicently large
¢ the semistable condition is equivalent to the above 2 conditions. Furthermore for

sufficiently large ¢ semistable pairs are stable.

For every stable pair (F,s) we then have 2 exact sequence

0 A Ox —==F Q 0.

Lemma 1.6 of [24] tells us that Z is the ideal describing the scheme theoretic support
of F. By the purity of F, the scheme theoretic support C'r of F is a Cohen Macaulay
curve i.e. C'r has no embedded points.

Here are some examples of stable pairs on X:

1. Every structure sheaf of a Cohen-Macaulay curve is a stable pair. A divisor D on
a Cohen Macaulay curve C' in X correspond to a section s: O¢c - Oc(D) with
cokernel Op. Thus Ox = Oc < Oc(D) is a stable pair. This is the prototype

for stable pairs
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2. This is example from Martijn Kool. Let C' = {xy =0} c C? be the node and let
Cy1={y=0} and Cy = {x =0}. Let p=(0,0). Then p is a divisor for C; and Cj.
Oc, (p) can be identified with C[x] as O¢, module with section C[z] - C[z],
1 » x. Similarly for O¢,(p). Let iy : C; - C and iy : Cy - C be the closed
embedding. Consider the morphism Ox - O¢ - i1.O¢, (p) ® i2.O¢, (p) which

after the identification

Clavy] — = S o 1
The cokernel of the above morphism is supported on p and is generated by (1,0)
and (0,1) and (x,0). There is no surjective map from C[x,y] to the cokernel.
If we map 1€ C[z,y] to (1,0) , there is no element of C[z,y] that we can map
to (0,1). This gives an example that the cokernel of the stable pairs might not
be a structure sheaf of a subscheme. In particular, it cannot be a section of a

divisor on the curve.

2.1.2 Moduli of Stable Pairs

Definition 2.1.3. A family of stable pairs on X over a base scheme B is a the pair
(F,s) where F is a coherent sheaf on B x X flat over B and s is a section of F such
that for each closed point b of B, (Fy,sp) is a stable pair on X where F;, and s, are
the restriction of F and s to b . Two families (Fy,s1) and (Fs, s2) are isomorphic if

there exists an isomorphism ¢ : F; - F» such that s, = p o sy.

Let X be a smooth projective 3-fold and let x be an interger and 3 be a class in
Hy(X,Z). Let B, (X, ) be the functor from the category of scheme to the category
of sets that assign to a scheme S the set of families of stable pairs (F,s) over S
modulo isomorphism such that for each closed point s € S we have y (Fs) = x and
the scheme theoretic support Cz, of Fs is of class 5. Then there exists a projective
scheme P, (X, B) representing the functor B, (X, 5)[26]. Furthermore on the product
Py (X, 5)xX there exists a universal sheaf F and a universal section S of F. We

denote by p and ¢ the projection from P, (X, ) x X to the factor P, (X, ) and X
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respectively.

Let P be the moduli space P, (X,i.5). If G acts on X there is a natural G
action on P described as follows: Let f: GxPxX - Px X, (g,p,z) - (p,g7'z).
Then (f*F, f*S) is a family of stable pairs over G x P. So there exists a morphism
op: G x P — P such that ((op xidx)"F, (op xidx)"S) is isomorphic to (f*F, f*S) .
Moreover, if G acts diagonally on P x X i.e. opxx :GxPx X > Px X, (g,p,z) —
(g.p,g.z) , then the universal sheaf F is an equivariant sheaf and S: Op.x - F is an
equivariant morphism of sheaves. Let 6x : GxPx X - GxPx X (g,p,z) ~ (9,p,97)
so that op,y = (op xidx) 0 6x. Since f*F ~ (op xidx) F and f o bx = prp.xy where
proxx G x P x X - P x X is the projection, there exists a canonical isomorphism
0% xF = 6% (op xidx) ' F = 6x f*F ~ pr5, F. Since the isomorphism is the canonical
isomorphism induced from the functoriality of the pullback functor, it automatically

satisfies the cocyle condition. This isomorphism is the natural equivariant structure

of F.

2.1.3 Perfect obstruction theory and virtual fundamental

class

First we recall the notions of perfect obstruction theory of [1] and the construction
of virtual fundamental class.

Let Y be a scheme and assume that there exists a closed embedding ¢: Y — M to
a smooth scheme. Let J be the ideal sheaf describing the closed embedding ¢. Let
{T|T? = 1*Qu} € DY(X) be a complex concentrated in degree —1 and 0 where ) is
the cotangent bundle of M . Given another such embedding 7: X — M with ideal 7,
the complex {J/J2% — v*Qy} and { T/ T? - 1*Q xr) are quasiisomorphic. We will use
Lx to denote the complex {J/J? — ¢*Q} and we call it the truncated cotangent
complex of X. Note that H°(ILy) is the sheaf of Kéhler differentials of X.

Definition 2.1.4 (Behrend-Fantechi). Let E* € D*(Y) be a two term complex of
vector bundles concentrated in degree —1 and 0. A morphism ¢ : E* - Ly in D?(X)

is called a perfect obstruction theory if the induced morphism on homology h%(¢) is
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an isomorphism and h~!(¢) is surjective.

There exists a two term complex of vector bundles E* quasi isomorphic to E* and
a morphism of complexes (ﬁ cFB* > Ly representing ¢. So we can assume that ¢ is a

morphism of complexes and write ¢ as the following commutative diagram

E1—2 L o (2.1)
Ak
j/j2 _d> QM|y

Given a perfect obstruction theory ¢ : E* — Ly, Behrend and Fantechi construct a
class [Y]"" € Aypo_ng-1(Y) called virtual fundamental class[1]. We call vd := rkE° -
rkE-! the virtual dimension of Y. The virtual fundamental class is the image of a cone
in a vector bundle Ej over Y by the refined Gysin homomorphism corresponding to the
embedding of Y to Ejy as the zero section. In [1], the above cone is constructed using
the notion of stacks. Here we will review the construction of the virtual fundamental
class in [30], which only uses schemes.

A cone over a scheme Y is a scheme over Y of the form Spec ®,50S where ®;50S; is
a graded Oy-algebra such that Sy = Oy and @,50S; is generated by the coherent sheaf
8. For any coherent sheaf F on Y the scheme Spec(SymF) over Y is a cone and we
denote it by C(F). If 1: Y - Y is a closed embedding, then Nyy = C(I/I?) is called
the normal space of Y in Y. And we call Cyy = Spec (®i0'/I"!) the normal cone
toY inY.

The morphism of sheaves ¢ : &€ — F induces a morphism of schemes C(y) :
C(F) - C(&). Let F be a locally free sheaf. The morphism C(p) gives an action of
C(F) on C(€) defined by fee=e+C(p)(f) for every e e C(E), and f e C(F)y.
If a cone C' is embedded in C' (&) such that C' is invariant under the action of C'(F)
we call C'a C(F) cone. For example, Cy|ys is a Ty|y cone where action of Ty, is
defined through the morphism d: J/J? = Quly-.

Let the morphism of complexes ¢ : [E* — Ly be a perfect obstruction theory. Then
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the following sequence is exact

(<9¢ HF

B Beg/7? Y ), —— 0. (2.2)

We will use E; to denote C'(E~*) for i = 0,1. Let @ be the kernel of (¢°,-d). Since
Eo xy Cyy is a Ty cone, by Proposition 2.7 of [30] there exists a unique cone
D embedded in C(Q) such that locally there exists an isomorphism FEy xy Cyja —

Ty xy D. Moreover the following diagram is cartesian

TM|, —— C(E°) xy Cy|m

l l (2.3)

Y : SN

Since Cy |y is equidimensional of dimension dim M, D is equidimensional of dimension
rkE°. Since C(Q) is embedded in E;, we can send the class in A, go(E)) represented
by the cycle of D to a class Aypo_p-1(Y) using the refined Gysin homomorphism
corresponding to the zero section O¢(g-1y @ Y — Ej. The resulting class [Y]"" :=
0%, [D] is shown in [30] to be independent of the embedding ¢ : ¥ - M and also
independent of the representation of E*. Moreover, Theorem 4.6 of [30] tells us that
[Y]¥ only depend on the K-theory class [Ey] - [FE4] if Y is projective.

If ¢ is an equivariant perfect obstruction theory i.e. ¢; for i =0,-1 and d: E~1 —»
EY are equivariant map and the closed embedding ¢ is also equivariant then the same
construction can be carried out equivariantly and we have [Y v e A% (V).

In the remaining we will review the perfect obstruction theory of the moduli of
stable pairs defined in [24]. Let p, ¢ be the projections P, (X, ) x X — P, (X, 3) and
P(X,B) x X > X.

Pandharipande and Thomas showed that P, (X, 3) parameterizes objects in the
derived category D?(X) with fixed determinant. Each stable pair (F,s) corresponds
to a complex I*:={Ox*F} e D¥(X). On Py (X,i.0) x X the universal pair (F,S)
defines a complex I* := {Op,y >F }. Let w, be the dualizing sheaf of p, which is the
pullback ¢*wx of the canonical bundle of X.
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As a moduli space of objects in the derived category with fixed determinant the
deformation-obstruction theory is described in [15] as follows. For any scheme Y and
any complex of locally freee sheaf E* there are morphisms ¢ : O - RHom (E*, E*),
1 - idge and tr : RHom (E*, E*) - Oy such that tro. = rk(£*)idg.. The traceless
part RHom(E*, E*)o[1] of RHom(E*, E*) is the cone of the tr morphism. If rkE* >0
then RHom(E*, E*) ~ RHom(E*, E*)y ® Oy-.

Consider the following diagram

Py (X, ) x X

% X (2.4)

,PX(Xaﬂ) X

To save space we use P to denote P, (X, ). Let A(I*) € Ext' (I*,I*® Lp.x) =
Hom (RHom (I*,1*),Lp.x)) be the truncated Atiyah class of I* defined in [15].
The composition of A(I*) with the canonical morphisms RHom (I*,1*), -
RHom (I*,I*) and the canonical morphism Lp.x — Lp.x/x = p*Lp is an
clement in Ext'(RHom(I*,1*)o,p*Lp).  Here Lp, x/x is the relative cotan-
gent complex corresponding to the morphism gq. Since X is projec-
tive we can apply Verdier duality so that the above element corresponds
to an element in Ext™(Rp,RHom (I*,I*),®wx,Lp). By the identification
Ext® (Rp.RHom (I*,1*), ® wx,Lp) = Hom (Rp. (RHom (I*,I*), ® wx) [2],Lp) we
have a morphism ¢ : Rp. (RHom (I*,1°*), ® wx ) [2] = Lp.

Pandharipande and Thomas have shown that Rp, (RHom (I°,I°), ® wx)[2] is
a two term complex of locally free sheaves. We will use E* to denote the com-
plex Rp.(RHom (I*,I*),®w,)[2]. The virtual dimension of P, (X,3) is then
-x(RHom (I*,1°),) = fB c1(X). If X is Calabi-Yau wy ~ Ox so that by Serre duality
vd = 0. If vd = 0 then Pxg, = f[mm 1 € Z is invariant along a deformation of X.
Px g, is called Pandharipande-Thomas invariant or PT-invariant.

One technique to compute PT-invariants is using the virtual localization formula
by Graber and Pandharipande. If G = C* acts on P, (X,3) then Lp (xg) has a

natural equivariant structure. If all morphisms in (2.1) are equivariant, we call ¢ an
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equivariant perfect obstruction theory. Let P& be the fixed locus of P, then E* has
a sub-bundle (E*|,¢)"™ which has weight 0 and a sub-bundle (E*|,¢)™* with non
zero weight such that E*|,e = (E’|Pc)f @ (E*|pe)™”. Graber and Pandharipande
showed that there exists a canonical morphism ¢ : (]E’\Pc)f “ & Lpc that induces
a perfect obstruction theory for P&. So that we have the virtual fundamental class
[PG]MT of P%. Graber and Pandaripandhe gives a formula that relates [P¢]""" with
[P]"" as follows :
[PCTvir

v | E——] e AC 7 (7t
P =i s ) e A enatn )

where e (N¥") is the top Chern class of the vector bundle Nv" = ((E*|,¢)™")" and

t is the first Chern class of the equivariant line bundle with weight 1.

2.2 Kool-Thomas Invariants

2.2.1 Stable Pairs on Local Surfaces

Let S be a nonsingular projective surface with canonical bundle wg and let X be
the total space of wg i.e. X = Spec(Sym(wy)). Then there is a closed embedding 4
of S into X as the zero section. Let m: X — S be the structure morphism. Since
wy ~ mws ® T'wY ~ Oy, X is Calabi-Yau. Let X = P(X ® A}), then X is an open
subscheme of X and let j: X - X be the inclusion and 7 : X - S be the structure
morphism of X as a projective bundle over S. Since S is projective, i:= joi: S - X
is a closed embedding.

Let € Hy(S,Z) be an effective class and x € Z. By [24] there is a projective
scheme P, ()_(,5*6) parametrizing stable pairs (F,s) with x(F) = x and the cycle
[Cr] of the supporting curve is in class 5. By removing the pairs (F,s) with sup-
porting curve Cr which intersect the closed subschem X \ X , we have an open
subscheme P, (X,i,) that parametrize stable pairs (F,s) with F supported on X
and let J : P(X,i.5) = Py ()_(,g*ﬁ) be the inclusion. Let F be the universal sheaf on
P, (X 1.3 ) xX and S : Op, (xi.8)xx = FF be the universal section, then their restriction

F, S to P, (X,i.8) x X is the universal sheaf and the universal section correspond-
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ing to the moduli space P, (X,i./3). Notice that (idPX(X,i*,B) X j)* F= (3 x id;()* F on
P (X,i,3) x X. We also use F to denote (ide(Xﬂ-*ﬁ) xj)*]F on P, (X,i.3) x X.

There exists an action of G = C* on X by scaling the fiber such that X is an
invariant open subscheme. In Section 2.1.2 we described the canonical action of G
on Py, ()_( i3 ) Since X is an invariant open subscheme, P, (X,4./3) is also invariant
in P, (X 1.3 ) Thus F and F are equivariant sheaves and S and S are equivariant
morphism of sheaves.

Consider the following diagrams

P(X,i.B) x X (X, 8) x X

B \ / \ (2.5)

PX(X,i*ﬁ) X P (X 1*6)

Let I* be the complex [ Op (xi5ex —=F] in D(Py(X,i.3) x X) and let I* be
the complex [ Op, (x,i,8)xx —5.F] in D(P,(X,i.8) x X). Since F is supported
on Py (X, i) x X one can show that Rp, (RHom(I*,I*), ~ Rp. (R?—[,om (ﬁ',ﬁ')o)
and Rp, (RHom (I*,I*), ®wx) ~ Rp.(RHom (ﬁ',ﬁ')[)@w)—(). Thus, the dual of

the morphism LY - Rp.RHom(I*,I*)o[1] induced by the Atiyah class

Py (X,ixB)
A(F) is a perfect obstruction theory on P,(X,i.5). Let E*® be the complex
Rp. (RHom (I*,I°*), ® wx ) [2]. Notice that wx ~ Ox ® t*. By Serre duality we have
an isomorphism (E*)” — E°[-1] ® t and E is a symmetric equivariant obstruction
theory.

Let P,(S,5) be the scheme parameterizing stable pairs (F,s) on S such that
the support Cz of F is in class § and F has Euler characteristic x(F) = x. On

Py (S, B) x S there exists a universal sheaves F and universal section S. With the

closed embedding 7 := idp, (5,8 x it Py(S,8) xS = P (5, 8) x X , Op_(s8)xx —

E*O'px( 5,8)xS s 7, is a family of pairs over Py (S, ). This family induces a closed
embedding P, (5, 3) - Py(X,i.8). Indeed, P, (S, ) is a connected component of
Pr(X,i.8)C.

Let Iy denote the complex [Op (spxs — F] and I* denotes the complex
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[Op (s,8xx — i:F]. Proposition 3.4 of [19] gives us the decomposition of Elp, (s,

into its fixed and moving part as follows:

fizx . . R mov . . .
(E |7)x(575)) ~ Rp.RHom (]IS7F)V (E |7)X(S:6)> ~ Rp, RHom (]1371[?) []_] Rt
(2.6)

fix
We will use £°* to denote (E"PX(SWB))

2.2.1.1 Reduced obstruction theory

If there is a deformation of S such that the class [ is no longer algebraic, then the
virtual fundamental class will be zero because the the virtual class is deformation
invariant. If we restrict the deformation inside the locus when  is always algebraic
we get the reduced obstruction theory.

Recall that &Et% (ﬁ’,ﬁ‘) o 18 the obstruction sheaf of the Pandaripandhe-Thomas
obstruction theory. We also use 3 to enote the Poincaré dual of 5 € Hy(S,7Z). As-
sume that the map uf : H'(Ts) - H?(Os) induced by the pairing Q¢ ® Ts > Og
is surjective. Then Theorem 2.7 of [19] tells us that the following composition is

surjective

Ext2 (I, 1), — Ext2(l,Tr) —2 s got3 (10,1 ® L1 o) ——

Extd([*,I* ® ¢*Q5) 5 RPp.q*Qx ~ HY3(X) ® Py(X,i.5)
(2.7)
Theorem 2.7 of [19] also tells us that there exists a perfect obstruction theory ¢ :
Ee.; = Lp, (x,i.5) where E?_, is the cone of the morphism H3*(Q5)®O0p, (x5 [1] - E*
constructed as the composition of the dual of (4.2) shifted by 1 and the canonical
morphism Ext%(ﬁ‘,ﬁ’)(v)[l] = HY((E*)V)¥[1] - E*. ¢ is called reduced obstruction
theory for P, (X,i.[3).

Proposition 3.4 of [19] gives us the decomposition of E?_ d| into fixed part

PX(Svﬁ)
and moving part as follows:

44



fiz\V .
((E;ed|7,x(w)) ) _ Cone( Rp. RHom (I3, F) —~ H2(05) ® Op. (s [-1] )

(E;ed|73x(5,,8)) = Rp. RHom(I3,F)[1] ®t
where 1) is the composition
Rp. RHom (13, F) — Rp, RHom(F,F)[1] -~ Rp,O[1] — R2p,O[~1]
We will use €%, to d Er e
e will use &, ,; to denote ( red|7>x(s,/3)) .

2.2.1.2 div map and point insertions

We will give a proof of the existence of the map div : P, (X,4.8) - Hilbg(S) that
maps (F,s) € P,(X,i.[) to a divisor D € Hilbg(S) such that 7.F is supported on D.
The morphism has been used by Kool and Thomas in [19]. We prove it here because
we could not find the proof in the literature.

First we review the construction of a divisor div.F from a coherent sheaf F on Y
or more generally from a bounded complex of locally free sheaves F* defined in [22]
and [7]. Recall the notion of depth of a Noetherian local ring R with maximal ideal
m. A sequence (ai,...,a,) of elements of m is called R-regular if for all 0 <7 < n

, a; is not a zero divisor for the R-module 7 H and n is called the length of

ar a1 )R
the sequence. The length of the longest R-regular sequence is called the depth of R.
Equivalently the depth of R is the smallest p such that Ext? (R/m, R) # 0. The depth
of a point p € Y is the depth of the local ring O,. If Y is nonsingular then the generic
point of Y is the only point of depth 0 and the points of depth 1 are exactly those
that correspond to the generic point of codimension 1 irreducible subscheme.

Let F* be bounded complex of free sheaves on a scheme U such that F* is torsion
i.e. the support of F* does not contain any point of depth 0. Then det F? ~ O so that
there is an isomorphism « : ) (det ]—"i)(_l)i ~ Op. Outside the support V of F*, F*

ieZ
is exact so that we have a canonical isomorphism A : () (det }"i)(fl) . Ouy.v. Thus

i€Z
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Ao k™ Opy = Op.y is an isomorphism so it correspond to unit f € I'(U NV, Oy).
Since U NV contains all points of depth 0 of U, by Lemma 1 of [7] f defines a Cartier

divisor div (F*) on U. div (F*) has the following properties

Proposition 2.2.1 (Proposition 1 of [7]). Let F* be a torsion bounded complex of

free sheaves on a scheme U. Then div(F*®) satisfies the following properties:

1. If F? and F3 are quasi isomorphic then div*Fy and div’Fy are equall

2. If g:U" - U is a morphism of schemes then if g* F* is torsion then g~ (divF®)
is a Cartier divisor and div(g*F*) = g~ divF*

3. If HO(F*) = F and Hi(F*) =0 for i # 0 then div(F*) is an effective Cartier
divisor.  Moreover if H(F*) = Op of an effective Cartier divisor D then
div(F*) = D.

4. Given a morphism ¢ : F; — F3 of complezes and let Cone(¢) be the mapping
cone of ¢ then div(Cone (¢)) = div(F3) — div(F?).

Let F* be a torsion bounded complex of locally free sheaves on a scheme Y. Then
locally F* is a bounded complex of free sheaves so that div (F*®) can be defined. By
point 1. and 2. of the above proposition we can define div (F*) globally by gluing the
locally constructed divisors. If F is a torsion coherent sheaf with a resolution F*, we
can define div (F) := div(F*). In the above proposition we can replace free sheaves
by locally free sheaves.

Let f:Y’ - Y be a projective morphism of Noetherian schemes such that (i)
Rif.Oyr =0 for i >0, (ii) f.Oys has a resolution by a bounded complex of locally
free sheaves and (iii) if y € Y has depth 0 (resp. depth 1) then f~!(y) is empty
(resp. finite). Then div(f) is defined as div(f.Oy). If Y’ is a closed subscheme

of a scheme Y with a projective morphism f : Y — Y such that f y» = J then
foeycleg (Y') = cycley (div(f)) where cycley (Y?) € Z,(Y) is the corresponding cycle

of Y’ as a subscheme of Y.
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Proposition 2.2.2. There exists a G-equivariant morphism of schemes div :
Py (X, 1.8) = |L]| that maps the closed point (F,s) to div(xwTF) where m is the pro-

jection m: X - S.

Proof. Let F be the universal sheaf. Let 77 = idpx7: P, (X,7,8) x X — P (X,i. ) x
S. We will show that div 77T is a flat family of effective Cartier divisors of S such that
for every p € P, (X, i.[3), the class of cycleg (divmF), in Hy(S,Z) is B. The support
C of F is proper relative to P, (X,4.0) so that 77T is coherent. 77F is also flat over
Py(X,1./) so that #7’TF has a resolution by a complex of locally free sheaves of finite
length. Moreover for each closed point p: SpecC — P, (X,i.3), the restriction of 74F
to {z} x X do not contain an points of depth 0 so that by L emma 5 of [7], 77F do not
contain any points of depth 0 and we can construct diva”F as an effective Cartier
divisor of P, (X, i.0)xS. By the functoriality of the div construction for each point p
of P\(X,i.f), (dival'F), = div (77F), = div (7. (F,)) is an effective Cartier divisor
of S so that divz?TF is flat by Lemma 2.2.3.

It remains to show that the the corresponding cycle of div 7, [F, is in class 3. Since
I, is supported on X the composition Cp, — X - S is an affine morphism so that we

have an exact sequence

0— 7.0, 7.F, T.Qp—0

where 7,0, is supported on subscheme of codimension 2. Then we have divr,.[F, =

divm,Oc,. By the proof of Lemma 5.9 of [[22]] we have
cycleg (divm.F,) = cycleg (div @, Oc, ) = T.cycleg (Cp) .

Notice that cycleg (C,) is in class i,3 € Hy(X,Z). Since 7, o i, is identity we can
conclude that cycle (div,F,) is in class .
It remains to show that div: P, (X,i.5) — |£| is an equivariant morphism where

the action of G on |£| is described in Lemma 2.2.4. Consider the following cartesian
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diagram

GxPxX—1 PxX
ﬂ.Gx'P L lﬂ_'l’
GxPxS—1 PxS
idg xdivt Ldiv

G x Hilbs(S) x S - Hilbs(S) x S

where f:GxPxS—-PxS (g,p,5)~ (p,gts). Since

(op xids) " div'D = (op x idg) " div (77F)
=div(op xidg)* 7T F
=div (fop (op xidx)"F)
= div (7&7 f*F)
= div (f*«TF)
= fdiv (Wf]F)
= f'div'D
= (idg x div) ™" D

= diV_l(O'Hﬂbﬁ(S) X ids)_lp

we can conclude that divo op = o, (s) © (ide x div). O

Lemma 2.2.3. If Dc B xS be an effective Cartier divisor, then D is flat over B if

and only if Dy is an effective Cartier divisor for all closed point be B.

Proof. Since D is a Cartier divisor, we have a short exact sequence

0—O(-D) @ Op 0

If Op is flat over B then for each point b € B, the restriction of the above exact
sequence to b is still exact the ideal sheaf of Dy is the line bundle O(D),. For the

converse, since D is a Cartier divisor, the restriction to b of the above exact sequence
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is exact, in particular O(-D), - (Opxs), is injective. Since O(-D) is a line bundle, it

is flat over B and by Lemma 2.14 of [14] we can conclude that Op is flat over B. [

Lemma 2.2.4. Let G act on a surface S and B € Hy(S,Z). Let D c Hilbg(S) x S
be the universal divisor. Let f : G x Hilbg(S) x S— Hilbg x S, (g,h,s) = (h,g's).
Since f is flat f-1D c G x Hilbs(S) xS is an effective divisor and induces a morphism
Tring(sy © G x Hilbg(S) — Hilbg(S) since Hilbg(S) is a fine moduli space. Then

Ty (sy defines an action of G on Hilbg(S).

For a cohomology classes 0; € H*(X,Z), i = 1,...,m Kool and Thomas assign a
class 7(0;) = p. (2 (F) ¢*0) € H* (Py(X,1.0)) where ¢? (F) is the second Chern class
of F and define the reduced invariants as
1 m

P/gf;l(X,al,...,am)::f HT(O’i).

[Py(X,ix8)C]vr € (NVI) i1

Assume that b;(S) = 0 so that Hilbg = |£]. It was shown that if for all 7 , o; is the
pullback of the Poincaré dual of the [pt] € H*(S,Z) represented by a closed point

then
1

Py (1) = [ |
o (X 1t)™) PP (X,iu)CTvir e (NVIT)

where j' is the refined Gysin homomorphim corresponding to the following cartesian

diagram

Pe x| Py (X, 0. 8) —= Py (X, 0. 3)

L,

P : [£]

where j is a regular embedding P¢ c |£| of a sublinear system and € = dim |£| — m.

2.2.2 ¢$-nodal Curve Counting via Kool-Thomas invariants

Recall that a line bundle £ on a surface S is n-very ample if for any subscheme Z
with length <n +1 the natural morphsim H°(X, L) - H°(Z, L|,) is surjective.

We assume that b1(.S) =0 and let £ be (26 + 1)-very ample line bundle on S with
HY(L) = 0. We also assume that the first Chern class ¢,(£) = 8 € H2(S,Z) of L
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satisfies the condition that the the morphism ug : H'(Ts) - H?(Og) is surjective;
in particular then H?(L) = 0 also. Given a curve C' not necessarily reduced and
connected, we let g(C') to denote its arithmetic genus, defined by 1 - ¢(C) := x(O¢).
If C is reduced its geometric genus §(C) is defined to be the g(C) the genus of
its normalisation. And let h denote the arithmetic genus of curves in |£], so that
2h—2=(%-c1(S)p5.

Proposition 2.1 of [18] and Proposition 5.1 of [19] tells us that the general o-
dimensional linear system P° c |£| only contains reduced and irreducible curves.
Moreover P° contains finitely many d-nodal curves with geometric genus h — 4§ and
other curves has geometric genus > h — 9.

Kool and Thomas also define

()"

Pr(s. o) = [ :

[P(sm1e e (NVT)
They compute P7%4(S, [pt]™) in [20] and P;<(S,[pt]™) is given by the following

expression

co(Toimy)ca (O(1)2X(2))

cn(LM(1)) co (LIM(1))

1 n+x(L)-1-m
) (2.8)

1x(£)X(Os) (__

t
S[n] xPx(£)-1-m

where £[" is the vector bundle of rank n on S with fiber H°(L|;) for a point
Z e Sl and £M(1) = LM = O(1).

Under the above assumption, only the contribution from P, (S, /) counts for
Pred (X, [pt]™) so Prd (X, [pt]™) = Preg(S, [pt]™). Define the generating function
for Pyed(X, [pt]™) as

> PEi(X, [pt]™) g

XEZ

then define g = ¢'~i(1 + ¢)%-2 then the coefficient of "~ is ng(L£)t"*~+/s<1(5) where
ns(L) is the number of d-nodal curves in P?.
ns(L) has been studied for example in [11] and [18]. In [18], it is shown that after

the same change of variable ns(£) can be computed as the coefficient of ¢"=° of the
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generating function

> e(Hilb"(C/P?))g™* "
i=0
where e(Hilb’(C/P?) is the Euler characteristic of the relative Hilbert scheme of points.

Moreover e(Hilb"(C/P?)) can be computed as

nle1yy & (Tstm) ca (O(1)*04)
[S[”]XIP"5 G(£()) Sc[i.](ﬁ["](l))

In [18], we have to assume that £ is sufficiently ample and H*(£) = 0 for i > 0 so
that Hilb"(C/P?) are smooth. While in [19], Pr4(S, [pt]™) can be defined under
the assumption that H2(L) = 0 for all £ with ¢;(£) = 0. We can think ns(L) as

a generalization of the one studied in [18]. In particular, we can think ns(L) as a

virtual count of 9-nodal curves for not necessarily ample line bundle L.
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Chapter 3

Equivariant K-theoretic PT

invariants of local surfaces

In this chapter we will recall the K-theoretic invariants proposed by Nekrasov and
Okounkov in [23] and introduce a class that will account for the incidence of the
supporting curve of a stable pairs and a point. The definition of this class is motivated

by the definition of points insertions in [19].

3.1 K 1/2 and twisted virtual structure sheaf

vir
Let ¢ : E* - Ly be a perfect obstruction theory. Let ¢ : Fy - Y be the structure
morphism of E; and let Op, : Y — E; be the zero section. In Section 2.1.3 we
describe the construction of the virtual fundamental class [Y ' € A,4(Y) where
vd := tkE* = rkEY —rk E~! as the image of the class in A, go(F}) represented by the
cycle of a cone D c E; by the Gysin homomorphism O!E1 s Apepo (B1) = Apcgo_eg—1 (V).
As the zero section of Ej, the Koszul sequence gives a resolution for 0g,.Ox so that

we can map the class of Op in G(E)) to a class O¥" in G(Y') defined in [6] as

[ee)

O%" =3 (-1)'[Torp,, (Ox,0p)]y e G(Y).

(2
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We call O the virtual structure sheaf of Y. Note that O¥" is not a sheaf but a class
in the Grothendieck group of coherent sheaves on Y. If ¢ is an equivariant perfect
deformation theory, D is an invariant subscheme of FE; so that we can construct
Ovr e GE(Y). If Y is proper over C, the virtual fundamental class and virtual
structure sheaf are related by the following virtual Riemann-Roch formula by Fantechi

and Gottsche in [6]

Xy = [ (3.1)

where T3 := [Eg] - [Er] € K(Y) . We call 7Y™ the virtual tangent bundle and the
dual of it’s determinant Ky := (det Eo)~' ® det By = det B0 ® (det E-1)™" € Pic(Y)

the virtual canonical bundle.

If vd = 0, by equation (3.1) we have

Ouir :f l1eZ 3.2
x(Oy") [y Joir € (3.2)

so that we can use either virtual structure sheaf or virtual fundamental class to
define a numerical invariant. If there exist an isomorphism 6 : E* — (E*)"[1] then
rkE* =1k ((E*)" [1]) = -tkE* so that vd =0
The next development in enumerative geometry is to give refinements of these

numerical invariants. In [23], Nekrasov and Okounkov propose that we should choose
a square root of K¥" and work with the twisted virtual structure sheaf [28]

L 1 A

Oy = I}, ® OF.
To get a refinement of (3.2), we have to consider the action of the symmetry group
of Y so that x ((’A)f/“") is a function with the equivariant parameter as variables. For
example let Y be the moduli space of stable pairs on a toric 3-folds X and (Cx)gacts

on Y. Choi, Katz and Klemm have calculated X(@g,“") where X is the total space
of the canonical bundle Kg for S = P2 and S = P! x P! in [2]. They have shown
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that the generating function with coefficients X(@;’,”") calculates a refinement of BPS

invariants.

One advantage of working equivariantly is that to compute y (@;’,”’), we can use the
virtual localization formula for the Grothendieck group of coherent sheaves from [27]
by Qu . Let G=C* act on Y and ¢ : E* —» Ly be an equivariant perfect obstruction
theory. Similar to the virtual localization formula by Graber and Pandaripandhe, it
states that, the virtual structure sheaf equals a class coming from the fixed locus.
On Y€ we can decompose E* into (E*)'™ @ (E*)™" where (E*)'™ is a two term
complex with zero weight and (E®)"™" is a two term complex with non zero weight.
Let i : Y > Y be the closed embedding and let NV = ((IE*)™v)V. Then the virtual

localization formula can be stated as

i (0% N_owr cao(v) ey ) (3.3)
* /\o (Nm‘r)\/ Y Z{t 1] .

0 (_1)¢ At O .
where for a two term complex F'* = [F~1 — FO], A® F* = % with r; = tkF.
=0
On the fixed locus, the Grothendieck group of coherent sheaves is isomorphic to the
tensor product G(Y¢) ®z K% (pt) which is easier to work with.

1
To incorporate Ky . in our computation we will consider a double cover G” of

G so that t is a representation of G'. Explicitly let ( : G’ :=C* - C* =G, z = 22
be the double cover. Then G’ acts on Y via ¢ by defining oy, : G’ xY - Y,(¢',y) ~
oy (€(g"),y) where 0 : G xY — Y is the morphism defining the action of G on Y.
Also via ¢ any G-equivariant sheaf F on Y is a G'-equivariant sheaf by pulling back
the equivariant structure via ¢. This gives an exact functor Coh%(Y) - Coh< (Y)
and a group homomorphism ¢ : GE(Y) - G (Y). Moreover ( is a morphism of
K%(pt)-modules. For example, the primitive representation t of G' has weight 2 at
G’ module. We can take the primitive representation of G' as the canonical square
root of t and denote it by t3.

1
Next we have to compute the restriction of Ky . on the fixed locus. Notice

Ui

that Y& = YG. Assume that there exist an isomorphism 6 : E* - (E*)"[1] ® t.
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1
The follwing argument by Richard Thomas in [31] shows that on Y¢ K2 . has a

VLT

canonical equivariant structure.

We decompose E*|,¢ into its weight spaces so that

E*lyex = P Fit
ieZ,
where F are two-term complex of non-equivariant vector bundle which only finitely
many of them are nonzero and t is a representation of GG of weight 1. det E£* can be
computed as the determinant of its class in K(Y").The isomorphism 6 implies that
[(F)V] = [F-71[-1]] in K¢(Y). Thus Ky, is a squre twisted by a power of t ,

explicitly

®2
KY,m'r = (® det (Fltl)) gro+rite

>0

is
YG

1
where r; = rkF". Thus the canonical choice for K¢ .

R det (Fit)) @ t200+71+) ¢ KE(YE) @y 1) Z[t7,£77].
i>0
Recall that N is the moving part of the dual of E*|,¢ so that in our case (NV")" =
Dizo 't
After choosing a square root of Ky, and assuming that the square root has an
equivariant structure, by equation (3.3) we then have

X 1
(’);J;g ® Ky

LT

/\‘ (Nvir)v

(B

= @1{/” € KG(Y) ®7[t,t1] Q(t%)

If Y is compact we can apply RI' to both sides of the above equation and we have

1
(’);’g ® Ky

LT

/\' (Nm'r)v

RI| Y€, = RT(Y,08") e Q(t2). (3.4)

Thomas has proved the above identity in [31] without using equation (3.3). Further-
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more Thomas has shown that

1
vir 2
OYG ® KY,vir

1
|| e e @

t=1

RT| V€,

In the case that we are interested on, the moduli space Y is not compact. Thus

we will use the left hand side of equation (3.4) to define our invariants.

3.2 Equivariant K-theoretic PT invariants of local

surfaces

3.2.1 Equivariant K-theoretic invariants

Let Y be the moduli space of stable pairs on the canonical bundle X := Spec (Symwy))
of a smooth projective surface i.e. Y =P, (X,i.3) for some x € Z and 3 € Hy(S,Z)
where i : S - X is the zero section. We will use 7 to denote the structure map X — S
of X as a vector bundle over S. Note that P, (X,i.03) is a quasiprojective scheme
over C. In particular, P, (X,.[) is separated and of finite type.

Let G = C* act on X by scaling the fiber of 7. Consider the following diagram:

P (X,i.B) x X

/ \ (3.5)

,PX(X)L%B) X

Recall form Chapter 2 that P, (X, i.3) has an equivariant perfect obstructrion theory
¢:E* - Lp (x5 where E® is the complex Rp, (RHom (I*,I*), ® w,) [2] with wp =

¢*wx. Since X is Calabi-Yau wy ~ O ® t* Serre duality gives us the isomorphism
(E*)" ~E°[-1] ®t. (3.6)

So that by Proposition 2.6 of [31] we have an equivariant line bundle

o6



1
Kbvoxicmom P P85

We want to study how to define a class that contains the information about the
incidence between a K-theory class in K7(X) and the class of the universal sheaf
F. From another direction we also want to give a refinement for the Kool-Thomas
invariants. In [19], Kool and Thomas take the cup product of the second Chern class
of the universal sheaf F with the cohomology class coming from X. Informally we
could think that as taking the intersection between the universal supporting curve
and the Poincaré dual of the supporting curve.

In this thesis we are exploring two approaches. In the first approach we are
trying to immitate the definition of descendent used in the article [19]. In [19] the
authors are cupping the cohomology class coming from X with the second Chern
class of F. Since we are unfamiliar on how to define Chern classes as a K-theory
class, we are considering to take the class of the structure sheaf of the supporting
scheme O¢, and take the tensor product of Og, with the the class coming from X
through the projection ¢ : P (X,i.5) x X - X. In the second approach we use the
K-theory class on P, (X, 7,0) xS of the structure sheaf of the divisor div 7, [F and take
the tensor product of Ogiyr,r with the class coming from S through the projection
qs: Py(X,i.8) xS - S.

The following proposition is an equivariant version of Proposition 2.1.0 in [14]

which we will use to define the K-theory class.

Proposition 3.2.1. Let f : Y — T be a smooth projective G-map of relative dimension
n with G-equivariant f-very ample line bundle Oy (1). Let F be a G-equivariant sheaf
flat over T. Then there is a resolution of F by a bounded complex of G-equivariant

locally free sheaves :

0 Fn Foa1 . Fo F

where all morphisms are G-equivariant such that R" f.F), is locally free forv =0,...,n

and R f,F, =0 fori+n andv=0,...,n.
Proof. The equivariant structure of all sheaves constructed in the proof of Proposition
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2.1.10 in [14] can be defined canonically. O

If Og, is flat over P, (X,i,3) then Oc, define a K-theory class in P, (X,i.0) x X.
To push the tensor product down to a K-theory class in P, (X,4.3), we push forward
Oc. to Py (X,i,8) x X where X is P(Kg® Og) the projective completion of X. Since
Cr is proper relative to P, (S, ) the push forward i,Oc, by the open embedding
it Py(X,i,8) x X » Py (X,i.8) x X is a coherent sheaf on P, (X,i,3) x X. Then
Proposition 3.2.1 implies that O¢, has a resolution by a finite complex of locally free
sheaf F'* on P, (X,i.3) x X so that we can take [O¢,.] = ¥,;(=1){[F]. The class [O¢,]
is independent of the resolution.

In Chapter 1 we have described the ring homomorphism f* : K¢(Y) - K(Y)
for any morphism of sheaves f:Y — Y. We also described the group homomorphism
f.: KG(Y) » K¢(Y) when f is the structure morphism of a projective bundle or
when f is finite and f,F has a resolution by locally free sheaves.

Consider the following diagram

,PX(Xvi*ﬁ) x X

/ \ ) (3.7)

,PX(Xa Z%B)

Let 7 : X — S be the structure morphism of X as a projective bundle over S. We
assign for each class o € KT(X) a class v («) in KT(P,(X,i.0)) as follows. The
pullback map 7* : K7(S) - K7(X) is an isomorphism. Thus there exist a unique
class & € K7(S) such that 7*& = a. We define v («) := p, ([OC]?:I g 07?*64]). By
Proposition 3.2.1, [OCF] € KT(Py(X,i.3) x X) and since X is smooth and projec-
tive over C, p, can be defined as the composition of i, and r, where ¢ is a regular
embedding and r is the structure morphism ]P’gx (XiuB)™ Py(X,i./3). Thus the class
() is well defined. In particular for every subscheme Z c X, v(Oy) is an element
in KT(P(X,i.5)).

For the second approach, div7,F is a Cartier divisor on P, (X, 7.3) x S so that we
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have a line bundle O(div7,F) and exact sequence
0— O(-divr,F) — O — Ogiy r,r — 0.

Thus the K-theory class of Ogiyr,r is 1 — [O(=divr,F)].

Consider the following diagram

Py(X,i.8) x S

N (3.8)

P (X,i.5) S.

Similar to the first approach we assign for each o € KT(X) the class y(«a) :=
i ([Odiva]-qg@) .

In this thesis we only working for the case when « is represented by the class of
the pullback of a closed point s € S. Instead of v (7* [Os]) we will use v ([Os]) to
denote this class. We also assume that b;(S) = 0 so that Hilbg is simply |£| for a
line bundle £ on S with ¢;(£) = 5. In this thesis, we want to study the following
invariants .

O 1
RT (PG —— 9 K}

SoAe ir\V vir|PG ® Bl
/\ (Nmr) P, g

) cQ(t?) (3.9)

PG
where ; is either v (Oy,) or 7(Oy,) with O, are the classes of the structure sheaves
of closed points s; € S. In a special case that we have worked out in this thesis, in
order to make the invariant coincide with Kool-Thomas invariant when we evaluate

it at t = 1 we have to replace v(Os,) by ) and 7(Os,) with ) Thus we

—1/2_¢1/2 1/2_¢1/2
define the following invariants
oy n 1(0.,)
P S1,...,8m) = RT|PY, — 2" _@K2  |pc® =
Xyﬁ:X( 1 ) ( /\. (Nmr)v P,vzr|’P E _% B t% PG
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when O, is flat and

: O 0.)
P S1y...,8m) = RD ’PQ#@KQ ¢ ®
Xﬁ,X( 1 ) ( /\- (Nmr)v P vir 7) H . % —t%

»

3.2.2 Vanishing of contribution of pairs supported on a thick-
ening of S in X

In this subsection we will prove that under the assumption that all curve that pass
through all the m points are reduced and irreducible the contribution the invariants
Px (815, 8m) and Px 5, (51,...,5m) of the curves not supported on S is zero.

Proposition 2.1 of [18] tells us that if £ is a 20 + 1-very ample line bundle on S
then the d-dimensional general sublinear system P c |£] only contain reduced curves.
Proposition 5.1 of [19] also implies that these curves are also irreducible. Thus our
assumption that all curves passing through all m points are reduced and irreducible
is more likely to happen. If for all s;, O, are in the same class, our assumption
automatically holds since we can replace {s;} by {s;} that satisfies our assumption.

First we work for Px g, (s1,...,5m).

Let 77 : P\ (X,i.8) x X - P,(X,i.3) x S be the pullback of 7 and let i : C —
P (X,i,3) x X be the closed embedding of the universal curve. As the composi-
tion of projective morphisms is projective then the composition 7% o1 is also projec-
tive. Notice the above composition equals to the composition C - P, (X,i.3) x X —
Py (X,1.) xS which is affine. Thus we can conclude that 77 o1 is a finite morphism.
We denote this morphism by p.

Recall the morphism div : P, (X,i./) — |£| from Chapter 2 that maps the stable
pairs (F,s) to the supporting curve Cx € |[£| of F. Let D c |£| x S be the universal
divisor and let Dp c P x S be the family of divisors that correspond to the morphism
div: P, (X,4.8) - |L] and let j : Dp - P x S be the closed embedding. Equivalently
Dp = div'D.

Lemma 3.2.2. p factors through j.
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Proof. The ideal I in Op, (x;.p5)xs corresponding to the divisor Dp is flat over
P, (X,i.0) and p factorize through j if the composition I - Op (x,.8)xs = p+Oc
is zero. By Nakayama’s Lemma it is sufficient to check whether the composition
is zero for each p € P (X,i.0). Or equivalently, we can check whether p factorize
through j at each point p € P, (X, i.5) .

Let pP: C, - {p} x S = S be the restriction of p to the point p € P, (X,7.3) and let
W c S be the scheme theoretic support of p{Oc,. Notice that |W|= Supp(p.Oc,) is
a curve. We claim that W is a Cartier Divisor. We will show that I is a subscheme
of divF = divp.O¢, so that pP factorize through jP. Let o : Og - piO¢, be the
morphism of sheaves corresponding to the morphism p? : C, - S. Then Oy is the
image of o so that we have an injection Oy — pLO¢, - piF,. By Proposition 2.2.1 we
have div p{F, = div Oy + D where D is some effective divisor. Since W is a Cartier
divisor then div Oy = W. So that we can conclude that W is a subscheme of div F.

It remains to show that W is a Cartier divisor. Let I c¢ Qg be the ideal sheaf of
W. It is sufficient to show that I, is a free Og,-module of rank 1 for every z € X. For
U =5\W, the inclusion I c Og is an isomorphism so that if x ¢ W, I, is isomorphic
to Og,. Since S is nonsingular Og, is a domain so that it is sufficient to show that
I, is generated by one element f € Og,.

Note that the morphism p : C, — S is a finite morphism so that (p’j@cp) is a

xT

finitely generated Og,-module. In particular, (p{f(’)c p) is a Cohen-Macaulay Og -

module. By Proposition IV.13 of [29], any prime p c Og, such that Og,/p is isomor-
phic to a submodule of (p’i(?cp)x must be generated by a single irreducible element
g € Og,. There are finitely many of such p and we denote them by py,...,ps. Let
g; generate p;. By Proposition IV.11 of [29], I, is the intersection ﬂf;l q; where q; is
an ideal of Og, such that p!" c q; c p; for some positive integer n,;. Since Og, is a
domain, g, must be generated by a single element ¢;** for some positive integer m,.

Thus we conclude that I, is generated by a single element Hle g.". O

Let R ¢ P, (X,i.0)¢ be a connected component different from P, (S5,5). We
denote the inclusion R c P, (X,i./3) by ¢. For every (F,s) € R the supporting curve
C c X is not supported by S but F' is supported on an infinitesimal thickening of S

61



in X. So we have the following diagram where all square are Cartesian

Cr > C

if i

RxX 25 P (X,ip)xX —15 X
7R 7P lﬁ (3.10)

RxS 25 P(X,i,f)xS £ S

P p

v v

R ———— P (X,i.5)

By base change formula 1.3.8 and projection formula 1.3.7 we have

vy (00) =t (po7”), ([Oc] .77 [0,])
= (p" o 7), 1% (O] .77 [04])
= (P m®), (1%[0c] %77 [04])
= 7L ([Oc, ). () 055 [0.])

= Pus (T [Oc,, ] 1545 [04]) - (3.11)

Now we restrict p from 3.2.2 to R c P, (X,i./). By the Lemma 3.2.2 we can write

pft as the composition j o A, So now we have the following diagram

AR if gsots
Cr——=Drp——=Rx5—=—=>85

R

R

p

By Proposition 3.2.1 the subcategory of flat coherent sheaves on Dy satisfies all
conditions in Lemma 1.3.1 so that by Corollary 1.3.2 we have a group homomorphism
A KG(Cr) » K& (Dgr) that maps [F] to x (AEF). By the same argument we can
conclude the existence of the group homomorphism j2: K¢ (Dg) > K¢(R x S).

Recall the definition of the ring homomorphism x : K¢(Y) - lim K(Y}) from
Section 1.4. Although we have not proved that 72 0iZ[O¢] = jE o AE[Oc], by Lemma

1.4.3 we still have kpxgo Tl oilt = kp, g0 jE o \E,
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Lemma 3.2.3.

ki (7 (0)|g) = kg (B (71 0 if[Oc,] ® 1545 [0,]))
= ki (P (5 0 MF[Oc]) ® t3q5 [04]))

We will use 4 (0;)|, to denote pE ((jF o AE[O¢,]) ® t5q% [Os]) and [Oc, ] to de-
note A\.[Oc,|.

Lemma 3.2.4.

Omv ® K2
OUW@KQ m vir m
RE | R =5 22258 []9/(0,)] |- AT R—H
/\ ( vzr) i=1 R /\ ( mr) R

Proof. The Chern character map ch® : Q(t2) — Q((t)), & — e2' where ¢ is the
equivariant first Chern class of t is an injection since ez’ is invertible in Q((¢)). By

virtual Riemann-Roch theorem of [6], Lemma 1.5.1 and Lemma 3.2.3 we have

VT 2 m K’L}%T
ch“RU | R, %]’h (0:)] | = / L chC - HV(OSZ) td“ (")
( mr) =1 R [R] ( mr)
Kol \
_ A G vir
- ‘[[R]m.r chon ( mr)v HW(OSZ) R 1 (TR )
K| \
= [ chok Hy((’) )| [td® (T3
(R A (NS,)Y W)V "l "
K%
— G Os th Tvir
S gy (@] |1 (73
Ovzr ® Kszr m
=ch®RI'| R, ————2 ][4 (O si) .
/\ ( mr) 13 R
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The injectivity of chG : Q(t2) - Q((t)) implies the lemma. O

1
The above lemma also holds if we replace K2,.| by any class a € K%(R).

R
By the above lemma we can replace v (O,) with 4 (0;) = p. (p. [Oc].q5[Os]).

The advantage of using 4 (Os) will become clear later.

Lemma 3.2.5. Let L be a globally generated line bundle on S. Let dim |L| = n
and D c |L]| x S be the universal divisor. Then for any point s € S the fiber product
D x x5 (|L] x {s}) is a hyperplane P~ c |L] x {s}.

Proof. Let L be globally generated line bundle on S and let f : S - SpecC be
the structure morphism. Then S x |£| = Proj (Symf* (f*E)v) and the canonical
morphism & : f*f,£ — L is surjective. Let & : LY — f*(f.L£)" be the dual of £&. Let
e; be the basis of f,£ and let e} € (f.£)" defined as e}(e;) =1if i = j and 0 if i # j.
Then £V sends a local section ¢ of LY to £ (¢) : ¥ ae; = a;y) (e;) €.

Sections of f* (f.L)" are linear combinations v of {e)'} with coefficient in Og and
sections of Symf*(f.L)V are polynomials P in {e!} with coefficient in Og. There
is a canonical graded morphism ¢ : f*(f.£)Y ® Symf*(f.L)V(-1) = Symf*(f.L)Y,
that sends v ® P to the products of the polynomials v.P. The composition of £V ®
idsymps(f.0)Y(-1) With ¢ sends ¢ ® P to £(y).P. Let 6 be this composition. This
composition is injective since £Vis injective. This composition correspond to the
morphism o : LY ®O(-1) - O on S x |£| which is injective because 0 is injective and
Proj construction preserve injective morphism. The cokernel o is the structure sheaf
of the universal divisor D c S x |L|.

For any closed point s € S, we want to show that the restriction of o to |£] is still
injective. In this case D x|zxs (|£] x {s}) is an effective divisor with ideal O(-1) so
that Dx g5 (|£] x {s}) is a hyperplane P"~!. Since £ is surjective, its restriction to s is
also surjective. Any element « € L[, is the restriction of a local section ¢ € LY. Thus
if o is not zero there exist 1) € LY such that its restriction to s is aand e; such that
the ¥(e;)|, = ¢, (eil,) is not zero. We can conclude that £V|, is injective. Because

ol,: Y|, ® P|,~ £ ()], P|, we can conclude that o, is injective. O
We will use P21 to denote D xzjxg (|£] x {s}).
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Lemma 3.2.6. Let ¢; (L) = 8 and let P = P (X,i.3). Then all squares in the

following diagram are Cartesian.

DP Xp Pr-1 RN Pr-1

A
Px{s} —— |L]x {s}
P (3.12)

h  Dp ——|——D

/5 /

PxS —— ||xS

Lemma 3.2.7. If € GT(P) is supported on V c P then 5.5 (0Q,) is supported on
V xp Wy where Wy := Dp xpys (P x {s}).

Proof. Recall the morphism p from diagram (3.10) and h, h from (3.12). Since poh =
idp we can conclude that 4 (Os) = h*j. [Oc¢] = h* [j.Oc]. Let E* be a finite resolution
of 7.0¢ by locally free sheaves. It’s sufficient prove the statement for the case when

S is the class of a coherent sheaf 7 on V . By Lemma 1.3.11, we have

51400 S [F60n, Onia 0 B,
= Zi:(_l)i [f ®0p,s Ei]px{s}
= Z(_l) I:TOT’Z}JXS (fvj*oc)]px{s}
= ok O(F).
where j[9c] is the refined Gysin homomorphism from Chapter 1 and k is the closed

embedding V xp, sy Wy = W, where Wy = Dp xp P71
]

Lemma 3.2.8. Given m points si,...,S, €S in general position such that all curves
in |L] that passes through all m points are reduced and irreducible, then for any com-

ponent R c PY different from P, (S, ) we have 1,O%". T2 4 (Os,) = 0.
Proof. Let f; = 1,O%". [T'.,7(0,,). By Lemma 3.2.7, 3, is supported on R xp W, =
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R x| /Pr=t. Our assumptions implies that for any 1 <1 <m, Nz IP7=1 is not contained
in P7-'. In particular, N}, P72~ = P~ and by induction we can conclude that S, is
supported on I x|z P*~™. Note that all curves in P*~™ is reduced and irreducible.

We will show that for any (F,s) € R, div (F,s) is not in P»™. Let Cx be the
curve on X supporting an element (F,s) € R. Note that the reduced subscheme C%¢
of Cr is a curve on S so that if C'r is reduced and irreducible then Cr = C’;_-ed is a
curve on S and (F,s) can’t be in R. If Cx is not irreducible, then the support of
7.Oc, is not irreduble so that div (F,s) is not in P*™. So we are left with the case
when Cg is irreducible. Let C be the reduced subscheme of Cr. Let SpecA c S
be an open subset such that Kg is a free line bundle over Spec A. We can write
C = Spec A/(f) for an irreducible element f € A and X|speca = Spec A[z]. Then O¢,
can be written as M = @!_jA/(f™)z? for some positive integers r,n; and div M is
described by the ideal (f%i"). Since C'r is not supported on S, then ¥, n; > 2 and
div M is not reduced. Thus in this case div (F,s) is not in P,

Since div (R) is disjoint from "™, we can conclude that R x|z P*™™ is empty.

By lemma 1.3.9, (,, is zero. O

Following the proof of Lemma 3.2.7 and Lemma 3.2.8and by replacing [O¢] with
[Op] we can prove that the contribution to Px s, (s1,...,8m) of the component
R c PY where R # P,(S,3) is zero when s,...,8,, is in general position and all
curves on S that passthrough all m points are reduced and irreducible.

Actually we have a stronger result for Px 5., (1, .., Sm). By Proposition 4.2.2 for
any point s € S, ¥(Oy) is 1 - [div'O(-1)]. In particular it’s independent from the

choosen point.

Proposition 3.2.9. Given a positive integer §, let S be a smooth projective surface
with b1(S) = 0. Let L be a 26 + 1-very ample line bundle on S with ¢;(L) = 8 and
H{(L) =0 fori>0. Let X = Kg be the canonical line bundle over S. Then for
any connected component R of P (X,i.0)C" different from P, (S,3) and for m >
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HO(L)-1-0, we have

O%T 3 = 7(0s,) _
RT (R, WKW|R ® g cr_pz) =0

where sq,...Sy, are closed points of S which can be identical. We then can conclude

that
Ovir L m _
PXﬁJ{ (817 ] Sm) = Rl (PX(S7 6)7 /\. (N;ZT)V Kvir|7)x(5w5) ® g t71/2 _ t1/2 :
The same result also holds for Px g (s1,-..,sm) under additional assumption that

the structure sheaf Og, of the universal supporting curve Cy is flat over Py (X, i.[3)
and $1,...,8, are closed points in S in general position such that all curves in |L|

passing through all the given m points are irreducible.

3.2.3 The contribution of P, (S, 3)

The component P, (S,5) of P, (X,i.0)¢ parametrize stable pairs (F,s) supported
on S ¢ X where S is the zero section. The restriction of I* to P, (S,5) x X is
I% = {Op, (s,8)xx = F}, where F is the universal sheaf restricted to P, (9, ) x X, so
that the restriction of E* to Py (S,f) is Rp.RHom (I%, 1% ® t*),[2] . Thomas and
Kool showed that on P, (5, 3), the decomposition of E‘|PX (s,5) into fixed and moving

part is
(E*)™" ~ Rp,RMom (Iy, F) [1] ® t* (E*)* ~ (Rp.RHom (I3, F))"  (3.13)

where Iy = {Op, (s8)xs = F}. (E*)"™ gives Py (S, B) a perfect obstruction theory.
We will use £* to denote (E*)’™. From equation (3.13) and (3.6) we have (E*)™ =
(&) [1] .

Proposition 3.2.10. On P, (S, ) we have

1
Klpo(sp _

ey - ) A
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— . o _ Z;I:CEO _t)i /\Z £° o _ -
where vd = TkE® and \_(E° = Z;’iﬁgl(ft)j e for £+ =[E71 > £°].

Proof. By equation (3.13) and (3.6) we have
Koirlp(s,5) = det E*det ((£°)" ® ’c*)v =det & det £°tY

2 (s = det £2437. Let £* = [€-1 > £9] so that
(&) [1]et =[(£%)" @ t* - (1) ® t*] in the place of —~1 and 0. Let r; = rk&* for
i=-1and i=0. Thus in K%(P,(S,3)) we have

1
where v = rk€°®. Thus we can take K2

K2 |p (s _ det EON" ((£°)" ® t*) (Lo
A (N3, detETAT((E1) @tr)
_ Z;”SO (_1)'1' /\m—z‘ E0 @ i t%”d
Yy (F1)Y A EL et
L ZRCUTATIE O
Tty (D) ATT E e

- (_t-%)vd AE®

[]

The calculation of the contribution from this component is given in the next
Chapter. We recall Corollary 4.3.3 here.

Under the assumption of Proposition 3.2.9 we have the following formula for

PX,ﬂ,x (Sl7 ce ,Sm)

X_(TS) X_(0(1))" (t—l/2 — {12 H(E2-472) )m -

P S L |
X8 (5155 8m) = (=1) X (LT m0(1)) 12 _ /2
[Py (S,8)]7

where vd is the virtual dimension of P, (S, 5) and O(1) is the dual of the pullback by
the morphism div : P, (X, i./) — |£] of the tautological line bundle and H = ¢;(O(1))
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and for any vector bundle F of rank r with Chern roots x4, ..., z,,

roT; (t—1/2 _ t1/2e—x¢(t‘1/2—t1/2))
X_(E) = H

i=1

1 _ e_xi(£—1/2_£1/2)

We have the same formula for Px g, (s1,...,5,) whenever Px ,(51,...,5y,) can be
defined. This is because the restriction of v (Oj,) and (Os,) to P, (S, §) are identical.

We can observe from the above formula that Px g, (s1,...,Sy) is independent
from the choosen points. It’s natural to ask if without assuming that sq,...,s,, are
in general positions such that all curves passing through all these points are reduced

and irreducible the above proposition still holds.
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Chapter 4

Refinement of Kool-Thomas

Invariant

Let S be a smooth projective surface and let £ be a a line bundle on S. Then |£| =
P(HY(L)) parameterizes curves C' with O(C) = L. For a sufficiently ample line
bundle £, Kool, Shende and Thomas showed that for the general )-dimensional linear
system P° c |L|, there are finitely many d-nodal curves in P°. They also compute
this number as BPS numbers of the generating function of the Euler characteristic
of smooth relative Hilbert scheme of points. In [19], Kool and Thomas compute this
number as the reduced stable pair invariants using reduced obstruction theory which
is invariant under the deformation of S such that g is always algebraic. Here we
will give a refinement of these numbers as a K-theoretic invariants and compare it
to the refinement given by Gottsche and Shende in [12]. We only consider the case
when h?(Og) = 0. In this case, the full obstruction theory coincide with the reduced

obstruction theory.
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4.1 Reduced obstruction theory of moduli space
of stable pairs on surface

In Chapter 2 we have reviewed the construction of reduced obstruction theory by Kool
and Thomas in [19]. In this section we will review the description of it’s restriction to
Py (S, ) as a two term complex of locally free sheaves following Appendix A of [19].
The Appendix is written by Martijn Kool, Richard P. Thomas and Dmitri Panov.

Pandharipande and Thomas showed that P, (S, ) is isomorphic to the relative
Hilbert scheme of points Hilb"(C/Hilbg(S)) where C — Hilbg(S) is the universal
family of curves C'in S in class € Hy(S,Z) and x = n+1—h where h is the arithmetic
genus of C. Notice that for n =1, P, (S, 8) = Hilb' (C/Hilbs(S)) = Hilbs(S).

We will review first the description of P, (S, 3) as the zero locus of a vector bundle
on a smooth scheme. We assume that b,(S) = 0 for simplicity and also because we
are only working for this case in this thesis. The following construction does not need
this assumption.

For n =0, pick a sufficiently ample line divisor A on S such that L(A) = L& O(A)
satisfies H*(L(A)) =0 for i > 0. Let v =+ [A]. Then Hilb,(S) = |L£(A)| = Px(£(A)-1
has the right dimension. The map that send C € |£]| to C'+ A € |[L(A)| defines a closed
embedding Hilbg(S) — Hilb,(5).

Let D c H,(S) xS be the universal divisor and let p and gs be the projections
H,(S)xS - H,(5) and H,(S) xS — S respectively. Let sp € H°(O(D)) be the

section defining D and restrict it to H, (S) x A and consider the section
Q= 5plagia € H'(Hy(8) x A, O(D)|rz14) = H(Hy(S), 7112 (O(D)]r514))

where for a point D € H, (S) we have (|p = sp|la € H°(A,L(A)) where sp is the
section of L(A) defining D. sp|a =0 if and only if Ac D ie D= A+ C for some
effective divisor C' with O(C)®O(A) = L(A). Thus the zero locus of  is the image of
the closed embedding Hilbg(5) — Hilb,(5). If H*(L) =0 then F' = 74, (O(D)|r;14)
is a vector bundle of rank x(L(A)) - x(£) = h°(L(A)) - h°(L) + h*(L) on Hilb,(5)
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since Ry, (O(D) |r514) =0 for ¢ > 0. Consider the following diagram

do(*

e = {F~ Qi (s)lmas)

| Ju

d
Lpy(s) = {1/ 21,050 — Qe s)|H405) -

The above morphism is a perfect obstruction theory for Hilbg(5).

Next, we embed Hilb™(C/Hilbs(S)) into St xHilbs(S). Let Z ¢ StlxHilbs(S)xS
be the pullback of the universal length n subscheme of SI" x S. Let C ¢ S x
Hilbg(S) x S be the pullback of the universal divisor of Hilbs x S and let 7 : SI*] x
Hilbs(S) x S = St x Hilbs(.S) be the projection. Then C correspond to a section s¢
of the line bundle O(C) on S x Hilbg(S) x S. A point (Z,C) € SI* x Hilbg(S) is
in the image of Hilb"(C/Hilbg(S)) if Z c C. We denote by O(C)[" the vector bundle
7« (O(C)|z) of rank n. Let o¢ be the pushforward of s¢ so that oc|zc) = sclz €
HOY(L|z). Thus a point (Z,C') € SI" x Hilbg(9) is in the image of Hilb"(C/Hilbs(S))

if and only if o¢|(z,cy = sc|z = 0. Thus we get a perfect relative obstruction theory :

E" - {(0(C)m) * = Qg
s"j lid
LHilb” (C/Hilbg(8))/Hilbg(S) ~ {J/J2 d Qs[n] }

where J is the ideal describing Hilb" (C/Hilbg(S)) as a subscheme of SI" x Hilbg(S).
Notice that in general |£] is not of the right dimension.

Appendix A of [19] shows how to combine the above obstruction theories to define
an absolute perfect obstruction theory for Hilb" (C/Hilbg(S)). To do it we have
to consider the embedding of Hilb" (C/Hilbg(S)) into S®l x Hilb,(S). E* is the
restriction of [(O(D - A)l")* - Q1] to Hilb” (C/Hilbg(S)). It was shown that the
complex E* , that correspond to the combined obstruction theory sits in the following

exact triangle

F.

red

EO

red

£
Also in Appendix A of [19], it was shown that the combination of the above obstruc-
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tion theory have the same K-theory class with the reduced obstruction theory £°,,.

Thus we can conclude that the K-theory class of £, is

[Qstrtttinn, ()] = [(O(D = A1) ] - [F7] (4.1)

Moreover, Theorem A.7 of [19] gives the virtual class corresponding to the reduced ob-

struction theory [P, (S, 8)]"" as the class ¢, (O(D - A)™ ¢, (F)n[SI xHilb., (S)].

4.2 Point insertion and linear subsystem

In this section we assume that h%1(S) =0 i.e. Picg = {L} and Hilbg(S) =|L]|.

Let D c S x|L| be the universal curve. Pandharipande and Thomas showed in [25]
that P, (.S, 3) is isomorphic to the relative Hilbert scheme of points Hilb"(D — |L]).
There is an embedding of Hilb™ (D — |£]) into S"! x|£| and the projection Hilb™ (D —
|L]) = |£] gives a morphism div : P, (S, 3) — |£| that maps (F,s) € P, (S, ) to the
supporting curve Cr € |L| of F.

Fix x € Z and let C be the universal curve supporting the universal sheaf F on

S x Py (S, ). Consider the following diagram

P(S,8) xS =S
/|
Py (5, 6)

Of course when n =1, P, (S, /) is |£]| and C = D.

Here we will compute explicitly the class v (0O;) restricted to Py(S,8) —
P, (X,i.3)C¢. Note that G acts trivially on S and on P, (S, 3). Let C c P,(S,3) x X
be the support of the universal sheaf. Note that C is supported on P, (.S, 3) x S where
S is the zero section of the bundle X — S. Thus mo¢:C - 75X(S,ﬁ) x S is a closed
embedding. By equation (3.11), v(Os) = p. ([Oc] ® ¢% [Os]) . Notice that G acts on
O, and O¢ trivially.

Proposition 4.2.1. Let s € S be a point with structure sheaf Og. Let [O;] be its class
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in K(S). Then
P+ ([0c] .45 [Os]) = 1 - [div" O(-1)].

where O(-1) is the tautological line bundle on |L].

Proof. First consider the following diagram

lﬁlﬁ
L]

We will show that p. (¢5[0.].[Op]) = 1 -[O(-1)]. Since gg is a flat morphism
q:[0.] = [¢50.] = k. [O\gjx(23 ] where k is the inclusion k : [£] x {z} > |£] x S. C is the
universal divisor with £* ® O(-1) as the defining ideal. By the projection formula

q5[O;].[Op] is equal to
ke [Ogieisy] - (1= [£*RO(-1)]) = ko ([k7Opgies] - [K*q5L @ k*prO(-1)]).

k*qiL* = @i L*]s = Oigixgsy where g = qgligxgsy and k*p*O(-1) = O(-1) since pok is

the identity morphism. Thus we conclude that

P« (45[01.[0D)) = ks ([Olgpugsy] - [O(-1)]) = 1 - [O(-1)]

Now we are working on P, (.5, 3). Consider the following Cartesian diagram

T
Py (8, 8) x S - || x S

PPx(5.8) l P

Py (S, 8) — 2 —|L].

div’'D

div D is the family of effective Cartier divisor corresponding to the morphism div :

P, (S, 8) > |L|, For each point p € P, (S, ), div_'D], is the corresponding curve Cr,
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supporting the sheaf F,. We conclude that C and div'!C are the same families of

divisors on S so that we have a short exact sequence

00— div* (£* 8 O(~1)) —= Op,(5.9x5 —= Oc —=0

and [O¢] = div*'[Op]. Thus we have

PP (0645 [0,]) = 2P (div* [0p] .divigs [05])

= div*p, 5l ([Oc] .45 10;])
=div' (1-[0(-1)])

We also have similar result for P, (X,i.5) if we replace O¢ with Ogiyr, 7.

Proposition 4.2.2. Let Oy be the structure sheaf of the points s € S. Then
P([Oaivr, 71.05[Os]) = 1 = div’ (O(-1)) where O(-1) is the tautological bundle of |L]

and p , qs are morphism from diagram 3.8.

Proof. From the definition of the morphism div, div 7, F is exactly div"'D. Thus we

can use exactly the same proof as the previous Proposition. O

Later we will drop div*from div*O(-1) for simplicity.

4.3 Refinement of Kool-Thomas invariants

Assume that b;(.S) = 0. From Proposition 4.2.1 and Proposition 4.2.2 , the contribu-
tion of P,(S,8) to Px.s(51,--.,5m) and to Pxs, (s1,...,5m) are equal. Consider

the contribution of P, (S, 3) to Px . (51,-..,5m) invariants, i.e.

= O @ Kiir 15 3(0,,)
= = RF Px(SJ/B)7 /\ (N’Ul’r‘)v H t 1/2 t1/2
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On Hilbg(S) x S we have the following exact sequence

0—0—50(C)— 0c(C) —=0 (4.2)
which induces the exact sequence

HY(0c(C)) ~“— HX(O5) — HX(£).

If H2(L) = 0 then ¢ is surjective. Observe that Rm,O¢(C) is the complex &* from
Subsection 2.2.1 when x = 2 — h or equivalently when n = 1. For n > 1, it was shown

in Appendix A of [19] that £ sits in the exact triangle
Rﬂ'H*Oc(C) —f*——=F°.

Thus if h2(Og) > 0 then £* contain a trivial bundle so that [P, (S, 3)]"" vanish. In
particular, by virtual Riemann-Roch the contribution of P, (S, ) is zero.

If H2(Og) =0, &, and £* are quasi isomorphic. Let P be the moduli space
P, (S, B). By the virtual Riemann-Roch theorem and by Lemma 4.2.2 we then have

- _1\vd . LO(-1)\" re
chG(:):<—t ) f[P]deh(/\-tgred(i\—Jz—_(tl/g) ).td(TPd)

where T%¢ is the derived dual of £, and (—t‘%)vd should be understood as (—e‘%t)vd
where ¢ is the equivariant first Chern class of t. Observe that ch® (Z) can be computed
whenever H?(L) = 0 without assuming h?(Og) = 0. Thus for S with b;(S) =0 and a
line bundle £ with H2(L) =0, we define Ps ., = ch®(Z).

The K-theory class of £, is given by equation (4.1). Since O(C) = L= O(1), by

the projection formula we have F' = HO(L(A)|4a) ® O(1). From the exact sequence

0 O(C) O(C+A) —= 0 14(C+ 7' A) —=0
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on P, and since H>Y(L(A)|4) =0, we conclude that
F = O(1)@x(£A))~x(£) (4.3)

And again by projection formula we have O(C)l") = LI g O(1) . By Theorem A.7 of

[19] we then can compute Pz, as

(—t’% )v [ HXE@)XD) e (O(D-A)")ch ( At (;ffl152/\:1t1(//)2()_’”1)) ) td (T};ed)

StmIIL(A)]
(4.4)
where H = ¢;(O(1) and n=x+h-1.
v () ea (1517w (O(1))
Theorem 4.3.1. Psr lic1 = (1) [guy,p- co (LM @ O(1)) ~(C=om) where

e=x(L)-1-m. Thus we can relate Kool-Thomas invariants with our invariants as

follows:
P (S, [pt]") = (1) Po il

Proof. Let X_(Tp¢4) := ch (A_&n,) td (Tpe?) and let d:=rkE?, =n+x(L) -1 be the

r

virtual dimension of P so that we can rewrite (4.4) as

1

)" (—t—g)d-m [SWPX(Q_I 0 (£ 8 O(1)) ., (T3) ch ( A (O(-1))

1-t

)m (4.5)

By Proposition 5.3 of [6] we can write
e d-1
2T = 3 (-
i=0
where X! = ¢;(Tr4) + bywhere b, € A>'(P). Then we can write Psz ., as

d-m d
(-1 (-t%) fs[n]xpm (LT @ O(1) (1 - " Ak (A (D)™
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Note that ch (A_; (O(-1)))" = H™ + O (H™*') so that

[q[n]xpx<ﬁ>-1 en (LM O(1)) Xlch (A (O(=1)))"™ =0

for [ > d—m. Thus the summation ranges from [ =0 to [ = d —m. In this range the
power of (1-t) is positive except when | = d—m in which the power of (1-t) is zero.

Thus we can conclude that Ps . |we1equals to

1

7 () [y 0 (E£72OW) X (A OC-1)"

Since by, € A (P) and cq_p, (T5%) € A9 (P) we have

o ontons & (£ 8O b (A1 (O(-1)))" =0

and

(n] red k _

for £ >m and we can conclude that

PS7£7m7x|t=1 = (—1)§d ./s[n] Cn (‘C[n] 0(1)) -Hm-Cd—m(nged)

><]P’X(£)*1

From (4.1) and (4.3) we have
Tred =T (S[n]) + (9(1)X(L(A)) —O -l O(1) - (9(1)x(£(A))—x(£)

and

[n] x(£)
Cd—m(Tjged) = Coefftdfm lct (TS )Ct (0(1)) :| .

e (L= O(1))

Finally we conclude that

—(-1) 2% [n] ca (T'St) e (O(1))x(4)
Pscamodir = (=1) fs[nhpécn(ﬁ ®01)) ce (LM mO(1))
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Let X_,(x) € Q[[z,y]] defined by

T (y_% - y%e—f(yf%—y%))
Xoy(z) = 1 1
R
For a vector bundle £ on a scheme Yof rank r with Chern roots zy,...,z, we will

use X_,(E) to denote

r X (y_% — y%@*%‘(y_%*y%))

A (v 2-y?

£ S O W)
Observe that X_, is additive on an exact sequence of vector bundle. Thus we can
extend X, to K(Y). For a class 8 € K(Y') we can write 8 = ¥;[Ef] - X,[E}] for

vector bundles £, E and we can define X_,(3) = Pﬂi&—?i%;

For a proper nonsingular

scheme Y with tangent bundle Ty

fyX_y (Ty) = G)%d;(_l)mquhp’q(l/)

where h?4(Y") are the Hodge number of Y ie. [, X_,(Ty) is the normalized x_,

genus.

Theorem 4.3.2.

P, S,.Lom,x =

12 - t1/26—H(rl/2_t1/2)

X_t(TS[n]) +1 " m
X (01 ( et ) ™ (4.6)

-1 vd
o [P]7ed X (LM mO(1))

where [P]¢4 is ¢, (LM = O(1)) n [SM] x Px(£)-1],

Proof. Ps ;. m, equals to (4.5), and we can rewrite it as

H?:;X(E)_l (1)—{(1(/241') ( 1_eH )m

_(_ vd
PS,c,m,x = ( 1) [P]ed " d-1(Bs) 12 — ¢1/2

=1 ¢1/2

where ¢_(x) = 28227 and «; are the Chern roots of T(SI"] x Px(9)-1) and f; are

l-e®
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the Chern roots of LI"l g O(1). Let’s define

B . “1/2 _ (1)2,-a o
e X

>0

Note that this power series starts with t-1/2 — t}/2. By substituting  with
z (12 = t1/2) and dividing it by (t"'/2 - t!/2) we have the power series

X (t_l/2 — tl/267m(t—1/2,t1/2))
e—x(t*1/2_t1/2) = Z fixl

120

X ((x) = -

such that & =1 and & = ¢; (£/2 = £1/2)""", Thus by substituting z in

/2 _ ¢1/2

=1 £1/2

H?:;x(ﬁ)—l ¢—tyl%¥¢) 1—eH \™

with x (t71/2 — t/2) whenever z = oy, 8;, H and dividing it by

(t_1/2 _ t1/2)”+X(5)—1

so that the coefficients of ¢"*X(£)-1 in

H?:;—X(ﬁ)_l X,t(O[Zq) 1 _ e*Hq({_1/2,t1/2) m
T4 X-«(Biq) 12 (12

and

597 6 (aiq) ((1-eHa \"
T, ¢-«(Biq) 12 — 172

are the same. Since [TPX(£)-1] = [692(:(15)(9(1)] — [Opxey1], Ps.zomy equals

X (TSIM) X (O (1= e HP-)\ "
red X (LM = O(1)) ( £1/2 — ¢1/2 ) -

X_(TSI) X_ (0(1))"* (t—1/2 _ g1/2p-H(E2-012) )m -
red X (LM = O(1)) 12 — ¢1/2

1 vd
(-1) "

-1 vd
(-1) "

O
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In the following Corollary we want to complete the computation of

PX,B,X(Sla ceey Sm).

Corollary 4.3.3. Given a positive integer §, let S be a smooth projective surface with
b1(S) =0. Let L be a 26+ 1-very ample line bundle on S with ¢1(L) = 5 and H(L) =0
fori>0. Let X = Kg be the canonical line bundle over S. Then for m=x(L)-1-§

PoOInts s, ..., S, which is not necessarily different

5 v X_((TSI) X_((O(1)) (412 — 1/2e-H(C 20\
PXﬁ,X(slv"wSm):(_l)d/ t( ) t( ( )) —1/2 _ 41/2 qr
Pt X (LM rO(1)) 12 — ¢/
where [P]7¢? = ¢, (LM & O(1)) 0[S x PX(E)-1] for m > HO(L) -1 -6.
If additionally Oc, is flat over Py (X,i.3) and s1,..., sy, are closed points of S in

general position such that all curves on S that pass through all m points are reduced

and irredcible then Px . (S1,-..,5m) is given by the same formula.
Proof. By Proposition 3.2.9 Pxg,(51,---,8m) = Psrumx- Similarly for
Px (81, 5m). O

In [12, 13], for every smooth projective surface S and line bundle £ on S, Gottsche

and Shende defined the following power series

[n] T
S,.L o n ]\ G (LM @ e”)
D>*(x,y,w) : Z w /s[n] Xy (TS ) X, (e € Qz,y,w]

n>0

where e denotes a trivial line bundle with nontrivial C* action with equivariant first

Chern class x. Motivated by this power series we define a generating function

Pscom =, (~w)" Ps.cmmne1-h- (4.7)

n>0

where h is the arithmetic genus of the curve C' in S with O(C) ~ £ so that for the
pair (F,s) e P,(S,8),n=x-1+h.
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By Theorem 4.3.2, after substituting t by y we can rewrite Ps ¢, as

Coeff,s | DS (z,y,w)X_,(z)°*! (

g U2 = y12emaly Py )\
Y12 12

Note that
QS,L,m = Coeﬂmé [DSL(Q:? Y, w)X*y(x)(Hl]

is equation (2.1) of [13] and

g2 g2l g )\
( Y12 gyl )

is a power series starting with 1.
In [13], Gottsche and Shende defined the power series N;i(ﬁ)flfk,[s,c](y) by the

following equation:

€7

1+1-g
i w _
Z Nx(l:)flfk,[S,E](y) ( (1 -y 2w)(1 -y 2w) ) =Qs.om (4.8)

Motivated by this we also define M)i([,)—l—m,[S,ﬁ](y) as

i+1l-g
7 w _
’ZZ: MX(E)—l—m,[S,[:] (y) ((1 _ y—1/2w)(1 _ yl/Qw) ) = PS,E,m (49)
Let’s define 3 = Aoy Py w) gy 4 -1 = y-1/2 — 12 and recall a conjecture

from [12].

Conjecture 4.3.4 (Conjecture 55 of [12]).

w 1-g(£)
(%) D% (x,y,w(Q)) € Qy™%,y'?] [z, 2Q]

Motivated by the conjecture above we define another power series

D% (z,y,Q) :

(%)1—9(0 DSE(z,y,w(Q)).
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Proposition 4.3.5. Assume Conjecture 4.3.4. For x(£) -1 >k >0 we have

L. MX(L‘,) 1-k,[S,£] (y) =0 and Nx(c) - k(y) =0 fori>x(L)-1-k and for i <0.
2. Mx(ﬁ) 1k s.cy(y) and N! v(oy-1-k(y) are Laurent polynomials in Y2,

3. Furthermore M X(£)-1-k

£)-1-k
(L)lkSﬁ() N

x(£)-1-k,[S,£] (y) Moreover

ZM(SSL(y)(S) _DSL('I y7 |:tO ZN Sﬁ(y

>0 6>0

Proof. After substituting w by w(Q) we rewrite equation (4.8) and (4.9)

Z Ng,[s,c] (y)zé_i (xC?)Z = I:DSJ:(ZL Y, Q)X—y($)6+l]zs

€7

> Mg ey ()20 (2Q) =

i€Z

_ /2_,1/2
~ yl—/2 _ yl/Qe x(y 12y )
D> (x,y,Q) X ()" ( Y12 gyl :
20
By Conjecture 4.3.4

> Nigs.o()a®™ CONDY Mj 5, ()2 (2Q)" € Qy ™%, y"?][z,2Q]

i€ i€Z

so that the only possible power of () that could appear is ¢ = 0,...,0. We can
directly conclude that Ng,[& L],Mi[& ¢) are Laurent polynomial in y/2. Set s = 2Q),
so that by Conjecture 4.3.4 we can write stc(x,y, Q) as power series of z and s i.e

DSE(x,y,2) € QLy~Y2,y"?] [z, s]. And since

X ,(x=0)=1

Y12 — gyl

we can conclude that

4 ~ S
Z M(?:[Sv['](y) (S) = DS,L(‘T? Y, E)|x=0

120
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- Z N«?,[s,c] (y)s’
6>0

]

If H(L) =0 for i > 0 and L is d-very ample, then Ng,[s,c](y) is the refinement
defined by Goettsche and Shende in [12] of ns(£) that computes the number of J-
nodal curves in |£]. Theorem 4.3.2 and Theorem 4.3.1 gives geometric argument for
the equality Mg[s ﬁ](y)\y:l = Na(s[s ﬁ](y)|y:1. Without assuming the conjecture above

we would like to know if Proposition 4.3.5 still true.
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