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1 Introduction and summary

D-branes at Calabi-Yau (CY) singularities represent a powerful tool to engineer interesting

and rich gauge theory dynamics in string theory. This has applications in many different

contexts, ranging from gauge/gravity duality, including models of supersymmetric con-

fining dynamics and dynamical supersymmetry breaking, to string model building, string

compactifications and string cosmology.

For a generic CY singularity, it is not simple to know what the D-brane low energy

dynamics is. However, there exists a large class of CYs, the so-called toric CYs, for which

powerful tools have been developed along the years.1 The corresponding effective gauge

theories can be described in terms of quiver diagrams or more generally dimers, which

encode all the information on the dual gauge theory (number of gauge groups, matter

content and superpotential).

In [1] these tools were generalized to investigate gauge theories arising from D-branes

at orientifolds of toric CYs. D-branes at orientifold singularities allow for a variety of new

effects (novel kinds of gauge groups and matter representations, exotic instantons, new

1Any CY singularity can be described as a real cone over a five-dimensional Sasaki-Einstein manifold.

A toric CY is a CY for which the Sasaki-Einstein basis admits at least a U(1)3 isometry group. Toric CYs

can be obtained by partial resolutions of C3/Zn × Zm, for large enough m and n, on which string theory

can be consistently quantized, and so are open strings describing D-brane dynamics.
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superpotential interactions, etc...), which can have diverse applications (see, e.g., [2] for

a review). In this paper, we would like to highlight a few properties of orientifold field

theories which we believe have not been sufficiently emphasized so far, and which could

have interesting implications.

Generically, there exist two classes of D-branes supported at a CY singularity. Regular

branes, which can freely move in the full transverse space, and fractional branes, which

can explore only a subspace of the transverse space. Fractional branes can be thought

of as higher dimensional branes wrapping non-trivial (vanishing) cycles at the singularity

and, as such, are (partially) stuck at the singularity (see [3] for a pedagogical review).

Regular branes are known to support superconformal field theories while fractional branes

lack some moduli and break conformal invariance.

Orientifolds carry (negative) tension and RR charge and, when of high enough dimen-

sionality, effective fractional brane charges as well. In the latter case, they break conformal

invariance and contribute non-trivially to the effective dynamics of D-branes. This is the

reason why gauge theories obtained by placing regular branes at orientifold singularities

cannot be conformal by themselves (and, as we are going to see, this is also the reason why

they end up being so interesting). Moreover, when adding fractional branes, orientifolds

happen to interfere with them and, as we will discuss in detail, change the expected UV

and IR behaviors of the corresponding RG-flows.

The breaking of conformal invariance due to the orientifold is a 1/N effect on the

dynamics of N regular branes. These are small effects at large N , but enough to make

some gauge group factors become UV-free, together with others having instead vanishing

β-function. This implies that the theory runs, irrespectively of the presence of explicit

fractional brane sources. Moreover, while being 1/N suppressed, orientifold contributions

get enhanced by the RG, and can have dramatic effects on the dual gauge theory, enlarging

the landscape of possible IR and UV behaviors one can describe placing D-branes at CY

singularities. The main purpose of this paper is to discuss such effects. They can be

summarized as follows:

1. One can consider bound states of regular and fractional branes at orientifold sin-

gularities and study the corresponding duality cascade. Unlike for unorientifolded

singularities, the number of fractional branes is not preserved along the RG-flow.

The most interesting consequence is that duality cascades are finite. Running the

RG-flow up in energy, the theory reaches a free or nearly conformal phase after a finite

RG-time. This implies that, unlike ordinary duality cascades which run indefinitely,

orientifold cascades have UV-completions which do not require an infinite number of

degrees of freedom.

2. There exist quiver gauge theories which display runaway behavior in presence of

fractional branes, as originally discussed in [4–7]. Orientifolds typically cure this

effect, stabilizing to supersymmetric vacua the runaway directions.

3. Flavor branes can be added to orientifolds and, if properly chosen, they can compen-

sate the orientifold tension and charge, recovering conformal invariance. The duality
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cascades in presence of such “conformal” flavors become similar to ordinary ones.

When adding a large number of flavor branes, one recovers the known pathology of

a UV duality wall [8].

We will illustrate the above properties by discussing two specific models. However,

the way these properties emerge suggests that they have a wider validity and hold for

orientifold singularities in general.

The rest of the paper is organized as follows. In section 2 we discuss our first exam-

ple, an orientifold of F0, the chiral Z2 orbifold of the conifold. This exhibits most of the

properties summarized above, i.e., the non-conservation of fractional brane charges and the

finiteness of duality cascades. In section 3 we consider the addition of flavor and show that,

if properly chosen, they can restore conformal invariance. Perturbing such fixed points with

fractional branes, one ends up with dynamics similar to ordinary cascades, including the

possibility of having constant cascade steps, and, if the number of flavor is large enough, du-

ality walls in the UV. In section 4 we consider a different example, the orientifold of the non-

chiral Z2 orbifold of the conifold. D-brane dynamics on this orientifold shares with the chi-

ral one most of its properties. One interesting aspect here is that the parent orbifold theory

allows for fractional brane configurations that lead to runaway. We show that the latter is

cured by the orientifold via an effect which can be interpreted as a contribution of a stringy

instanton at the bottom of the cascade or, following [9], as an effect generated one step up in

the cascade and which propagates to low energy. Finally, section 5 contains a discussion on

a few issues on which the peculiar properties of orientifold field theories might be relevant.

2 The F0 orientifold theory

Let us focus on an orientifold line of the F0 theory, a chiral Z2 orbifold of the conifold. We

refer to [10], whose conventions we adopt, for details.

The F0 orientifold theory that we will consider is a N = 1 supersymmetric gauge

theory with three gauge groups, one unitary and two symplectic, chiral matter, a SU(2)

flavor symmetry and superpotential

W = X1
12X

1
23X

2 T
23 X2 T

12 −X1
12X

2
23X

2 T
23 X1 T

12 −X2
12X

1
23X

1 T
23 X2 T

12 , (2.1)

with obvious index notation. Quivers of the parent, non-orientifolded F0 theory and that

of the orientifold F0/Ω are depicted in figure 1.

Regular D3-branes at the singularity are described by quiver diagrams with N = Ni at

all nodes. The symmetries of the parent theory, the structure of the superpotential (2.1)

and the relation between superconformal R-symmetry and operator dimensions, ∆ = 3
2R,

fix the R-charges and scaling dimensions of all matter chiral superfields to be, respectively,

R = 1/2 and ∆ = 3/4 (meaning that the anomalous dimension is γ = −1/2 for all matter

fields). Given these quantum numbers, it is easy to check that for N = Ni the parent

theory has vanishing β-functions. On the contrary, the orientifold theory β-functions get
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SU(N2)

USp(N3)

USp(N1)

>>

>>

2

1

3

Orientifold action

>

Figure 1. Quiver diagram of F0 on the left and of F0/Ω on the right. The light blue line represents

the fixed locus under the orientifold action and corresponds to a O7-plane. In our conventions

USp(N) = Sp(N/2), with N even. In this way, at each node, be it SU or USp, N is the number of D-

branes in the parent theory. Note that N1 = N3 and N2 = N4, in order to cancel gauge anomalies.

1/N corrections due to the orientifold and read2

βUSp = 6 > 0 , βSU = 0 , (2.2)

where here and in the following we denote by βUSp the β-function for the sum of the two

inverse square couplings of the USp groups, taken to have coincident values. Eq. (2.2)

means that only the SU group enjoys a conformal phase while the two USp groups are UV-

free. Hence, differently from F0, and more generally any non-orientifolded quiver gauge

theory, the orientifold theory does not enjoy a stable conformal phase, once 1/N corrections

are taken into account. This is due to the tension and RR charge carried by the O7-planes.

Note that at a Calabi-Yau singularity, O7-planes, very much like D7-branes, do not only

couple to the dilaton and the RR 8-form potential, but also to lower dimensional RR forms,

and, hence, carry non-trivial fractional D3-brane charge [11].

2.1 The cascade

In what follows, we would like to analyze the orientifold theory once fractional D3-branes

are added to the system.3 The number of inequivalent fractional branes at a non-compact

Calabi-Yau singularity equals the number of exceptional 2-cycles dual to non-compact 4-

cycles. The F0 singularity has one such 2-cycle and therefore admits one class of fractional

branes, very much like the parent conifold theory. These branes are of the deformation type,

i.e. they are associated to a complex structure deformation and can lead to confinement

and gaugino condensation into isolated, supersymmetry preserving vacua.

2The exact β-functions for unitarity and symplectic gauge groups are, respectively, β(8π2/g2SU) = 3Nc−
Nf (1− γf ) and β(8π2/g2USp) = 3

2
(Nc + 2)− Nf

2
(1− γf ), with γf the anomalous dimensions of matter fields.

We take the latter to be γ = −1/2 also in the orientifold theory, even though there could be 1/N corrections

to this value, too. It is easy to convince oneself that such corrections would not change qualitatively the

physics. In particular, it would still be impossible to set all β-functions to zero.
3Duality cascades in presence of orientifolds have been discussed, among others, in [12–15].
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The theory after 
one 
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>
SU(N’)

1
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4

>>

>>
N’=N-2M-8
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Figure 2. F0/Ω theory with fractional branes. On the left, the parent theory. On the extreme

right, the orientifold theory after one cascade step.

The addition of M fractional branes on top of N regular ones gives the extreme left

quiver in figure 2. From the rank assignment point of view, F0 can admit two types of frac-

tional D3-branes: one affecting the rank of nodes 1 and 3, as shown in the figure, the other

affecting the ranks of nodes 2 and 4. In fact, once taken together, they give rise to a regular

brane. Since fractional branes are defined modulo regular branes, we choose, arbitrarily,

a basis where fractional branes are those of the first type. As it will become clear in the

next section, when discussing the addition of flavors, the O7-planes of the F0 singularity,

which carry fractional D-brane charge, are associated to fractional branes of the first type.

Fractional branes induce a RG flow which can be interpreted as a cascade of Seiberg

dualities. At each cascade step the theory returns to itself, with just a shift of the gauge

group ranks. A cascade step corresponds to performing subsequent Seiberg dualities on

nodes 1, 3, 2 and 4. This is inherited by the F0/Ω theory, with the only caveat that nodes

2 and 4 are identified by the orientifold projection. As we discuss below, there are in fact

further differences with respect to the parent F0 singularity, which are subleading at large

N and M , but have relevant impact both on the UV and IR behaviors of the theory.

Let us analyze the duality cascades for F0 and F0/Ω, starting from a configuration

with N regular and M fractional branes.

In the parent non-orientifolded theory, after one period the theory returns to itself,

meaning that it is still described by the quiver on the left hand side of figure 2, just with

a shift in the number of regular branes N → N ′ = N − 2M .

The orientifold cascade is also self-similar, but M also shifts. From the quiver in the

center of figure 2, one sees that the sympletic groups are those going to strong coupling

first. Upon Seiberg duality, they change to USp(N −M − 4).4 One then dualizes the SU

group, getting SU(N − 2M − 8). The cascade is thus self-similar with N ′ = N − 2M − 8

and M ′ = M +4. It can also be checked, as in [10], that the superpotential (2.1) returns to

itself after this sequence of Seiberg dualities. Hence, flowing towards the IR, the effective

4Seiberg duality acts differently on gauge group ranks for unitary and symplectic groups, that is

SU(Nc) , Nf −→ SU(Nf−Nc) , Nf [16] while USp(Nc) , Nf −→ USp(Nf−Nc−4) , Nf [17]. For conciseness,

in the following we will loosely call ‘rank’ the dimension of the fundamental representation of the group.
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number of regular branes diminishes, while that of fractional branes increases. None of the

two is invariant along the cascade, unlike in the parent theory, where M stays constant

along the flow. The non-conservation of M along the RG flow is something familiar for

ordinary quiver theories with flavors [8]. Quite opposite to those situations, though, in the

present case the effective number of fractional branes becomes larger towards the IR. We

will see that this fact has important implications.

Starting from a situation with, say, N = N0 and M = M0, after k cascade steps the

quiver returns the same with N and M given by

Nk = N0 − 2k(M0 + 2k + 2) , Mk = M0 + 4k . (2.3)

The gauge group β-functions are easily computed, assuming that the anomalous di-

mensions of all bifundamental fields, fixed in the parent theory to be γ = −1/2, remain

so all along the flow. Strictly speaking, this is true in the extreme UV, only, and becomes

less and less so towards the IR, where M and N are of the same order and one should

in principle take M/N corrections into account. This is something shared by the parent

conifold cascade and by duality cascades in general, where such corrections are known not

to change, at least qualitatively, the RG-flow [18].5 Finally, as we will discuss below, the IR

dynamics, which is where such corrections would be most relevant, depends on arguments

that do not rely on anomalous dimensions.

At step k the β-functions for the USp and SU nodes are, respectively,

βUSp
k = 3(Nk +Mk + 2)− 3Nk = 3Mk + 6 , (2.4)

βSU
k = 3Nk − 3(Nk +Mk) = −3Mk . (2.5)

Relevant for our subsequent analysis are also the values of the β-functions at intermediate

steps, namely after Seiberg duality on the USp nodes has been performed, and that on the

SU node is yet to be done. They read

βUSp
k = 3(Nk −Mk − 2)− 3Nk = −3Mk − 6 , (2.6)

βSU
k = 3Nk − 3(Nk −Mk − 4) = 3Mk + 12 . (2.7)

We would like now to consider the IR endpoint of the RG flow. In the parent F0 theory

if we start with N = (2l + 1)M , after l cascade steps, nodes 1 and 3 have Nf = Nc, and

enjoy a deformed moduli space, with mesonic and baryonic branches. As in the original

conifold theory [19], due to the quartic superpotential, the two branches are separated. On

the baryonic branch, the two SU(2M) nodes confine and one is left with two decoupled

pure SYM SU(M) nodes, 2 and 4, which undergo gaugino condensation.

In the orientifolded cascade things look similar, at first sight, since also in this case

the theory can confine. However, some details are different and, as we will argue below,

this has important consequences.

5More precisely, one can argue that the particular RG flow trajectory which never gets close to the points

in coupling space where one of the gauge groups is weakly coupled, is the one for which the anomalous

dimensions stay very close to their conformal values. Interestingly, this is the flow best described by a

smooth gravity dual, when it exists.
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Let us first recall that, together with the number of regular branes, also that of frac-

tional branes changes along the flow, now. In fact, their absolute value, cf. eq. (2.3), is not

really physical. What really matters is the value of fractional branes modulo four. For the

time being, let us assume, for simplicity, that M0 = 0. In this case, after k cascade steps

the effective number of regular and fractional branes is

Nk = N0 − 4k(k + 1) , Mk = 4k . (2.8)

In complete analogy with the non-orientifolded case, we aim at ending the cascade with the

SU node confining on the baryonic branch, followed by the USp nodes becoming two decou-

pled pure SYM theories. For this to happen, we need the SU node to have Nf = Nc at the

half-step. Supposing that this happens after l steps (and a half), this fixes N0 in terms of l as

Nc = Nl = N0 − 4l2 − 4l

Nf = 2Nl − 2Ml − 8 = 2(N0 − 4l2 − 8l − 4)

}
⇒ N0 = 4l2 + 12l + 8 . (2.9)

After the SU group confines on the baryonic branch, we are left with two pure SYM

USp(Nl −Ml − 4 = 4l+ 4) nodes, which undergo gaugino condensation and confine. If, in

analogy with the conifold cascade, we call M the rank of the pure SYM groups at the bottom

of the cascade, we see that the number of steps in the cascade is a function of such rank

l =
M − 4

4
, (2.10)

as are the ranks of the quiver in the UV, when the cascade stops, see eq. (2.2). They read

NUV ≡ N0 =
1

4
M2 +M . (2.11)

Note that for M � 1 we have that l ' M/4 and N0 ' M2/4, i.e., the number of steps is

of the order of M , while the UV ranks are of order M2.

We can also consider the case in which one ends up with pure SYM on the SU group.

For this to happen, we need, first, that the two USp groups confine in a vacuum where

all their mesons are massive. It is possible to see that, given the superpotential (2.1),

when the USp nodes have (both) Nf = Nc + 2 flavors, and thus confine on a deformed

mesonic moduli space, the latter cannot be completely removed. This is related to the

fact that there does not exist a baryonic branch for USp groups [17]. Luckily, one can

see that taking the USp groups to have Nf = Nc + 4 flavors, the combination of the tree-

level and dynamically generated superpotentials leads to an isolated confining vacuum for

vanishing (and massive) mesonic operators. Let us recall how this comes about. Assuming

we are left with pure SU(M) SYM at the bottom of the cascade, the USp groups must be

USp(2M − 4). Calling the mesons of the two USp groups (which are in the adjoint and

anti-symmetric representations of SU(M))

Mαβ = Xα
12
TXβ

12 , M̃αβ = Xα
23X

β
23

T
, (2.12)

the effective superpotential reads

W = M̃12M21 − M̃11M22 − M̃22M11 + PfM+ PfM̃ , (2.13)

– 7 –
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where we have set all dimensionful factors to one to avoid clutter and M and M̃ assemble

all meson matrices Mαβ and M̃αβ , respectively. It is straightforward to show that for

M = 0 = M̃ the F-term equations are satisfied, and all mesons are massive.

Let us then suppose that after l cascade steps, we end up in a situation in which the

USp nodes have both Nf = Nc + 4 flavors. This now fixes N0 in terms of l as

Nc = Nl +Ml = N0 − 4l2

Nf = 2Nl = 2(N0 − 4l2 − 4l)

}
⇒ N0 = 4l2 + 8l + 4 . (2.14)

After the USp groups confine, we are left with pure SYM with gauge group SU(Nl = 4l+4).

Hence, we end up again with the same relation (2.10) between l and M while N0 = 1
4M

2.

The large M behavior of l and N0 is thus the same, irrespectively of which groups confine

last. We will not distinguish anymore between these two cases.

One can repeat the above analysis for all other inequivalent values of M0, namely

M0 = 1, 2, 3, getting similar results, as far as the IR end of the cascade is concerned. More

interesting is the UV behavior, where, as we discuss shortly, there is a sharp difference

between M0 being even or odd.

A common feature of the orientifold theory, regardless the value of M0, is that, unlike

the parent F0 theory, even in the absence of fractional branes it does not enjoy a conformal

phase, and a duality cascade occurs. Since the effective number of regular branes diminishes

along the RG-flow, 1/N corrections, which are negligible in the far UV, become more and

more important towards the IR, eventually of order one. So important to let an otherwise

conformal theory confine!

Another important difference with the respect to the F0 theory regards the UV be-

havior.

In the F0 cascade (as in any ordinary non-orientifolded quiver gauge theory, as, e.g.,

the conifold theory), the total rank, i.e., the effective number of regular branes, increases

linearly and with no limits with the cascade steps as one goes to the UV. In this sense, the

UV completion of such cascades needs an infinite number of degrees of freedom.

For F0/Ω, the situation looks very different. Running the cascade up, the effective

number of fractional branes diminishes, since k does, see eq. (2.3). So, in the far UV, it tends

to zero. Depending on the value of M (which, without loss of generality, we can parametrize

as M = 4k + ε with ε = 0, 1, 2, 3), there are four different behaviors. Starting from some

given values of N and M , after k steps up the quiver reduces to that on the right in figure 3.

Depending on the value of ε, the cascade stops or goes a few more steps up and then stops

(this happens whenever there are no more IR free gauge groups). Below, we report the

results for the four possible values of ε, after the very last cascade step has been performed

ε = 0 βUSp = 6 , βSU = 0 , (2.15)

ε = 1, 3 βUSp = 3 , βSU = 3 , (2.16)

ε = 2 βUSp = 0 , βSU = 6 . (2.17)

We see that for ε odd the UV-completions are free theories while for ε even some groups

reach an interacting fixed point. Note that the UV free nodes have a β-function which is

subleading in N (in other words, the β-function for the ’t Hooft coupling is of order 1/N).

– 8 –
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The theory after k 
cascade-steps up

M= 4k+   with
 

✏
✏ = 0, 1, 2, 3

✏

✏

1 1

2 2

3 3

Figure 3. The F0/Ω theory with fractional branes. The inverse cascade. Different values of

ε = 0, 1, 2, 3 define different UV completions. In the right quiver, we have renamed N ′ as N .

A common feature of all four UV-completions, and the main qualitative difference with

respect to ordinary cascades, is that the cascade stops at some large but finite rank. We

are thus in presence of a cascade which consists in a finite number of steps, and as such a

finite number of degrees of freedom.

To summarize: the F0/Ω theory does not have a conformal phase, independently on

the number of regular and fractional branes. It enjoys a finite duality cascade and, in some

circumstances, that is for ε odd, the RG flow can interpolate between a genuine UV-free

theory down to a confining vacuum, like e.g. real-world QCD!

In the coming subsection, we want to analyze the orientifold cascade a bit further.

This will let us emphasize a few more interesting aspects of orientifold cascades which are

not shared by standard ones, and will also prepare the ground for what we do next, namely

the addition of dynamical flavors.

2.2 More details on the RG flow

Let us discuss in more detail the RG evolution of the gauge couplings, in particular the

length of the RG flow from the UV down to the deep IR.

From eqs. (2.15)–(2.17), it is clear that there are just two qualitatively different flows,

with odd or even ε, respectively. They differ only at high energy since, as the energy

diminishes, the effective number of fractional branes becomes large and order-one numbers

would not matter much. In what follows, we will consider the case ε = 0 as prototype for

the generic RG-flow, and then comment on the differences with the other flows.

Putting ε = 0 into eqs.(2.4)–(2.7) we have

βUSp
k = 12k + 6 , βSU

k = −12k , (2.18)

at any integral step, and

βUSp
k = −12k − 6 , βSU

k = 12k + 12 , (2.19)

at any half-step of the duality cascade. We observe an increasing (absolute) value of the

β-function as we go towards the IR, while their sum remains constant and equals six. Let

– 9 –
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us see how this translates in an estimate of the length of the RG flow. Recall that the RG

equations are given by6

d

dt

1

g2
USp

= βUSp ,
d

dt

1

g2
SU

= βSU , (2.20)

where t = 1
8π2 log µ and µ is the RG scale. At the integral step k we can assume that

1

g2
SU(tk)

= 0 , (2.21)

and define
1

g2
USp(tk)

=
1

g2
k

. (2.22)

The RG evolution of the couplings is then

1

g2
USp(t)

= (12k + 6)(t− tk) +
1

g2
k

,
1

g2
SU(t)

= −12k(t− tk) . (2.23)

We need to perform a Seiberg duality on the USp nodes when their couplings diverge. This

occurs at the RG time t′k such that

1

g2
USp(t′k)

= 0 ⇔ t′k − tk = − 1

(12k + 6)g2
k

. (2.24)

At t = t′k the SU coupling is instead

1

g′k
2 =

1

g2
SU(t′k)

= −12k(t′k − tk) =
12k

(12k + 6)g2
k

. (2.25)

We now continue the RG evolution with the half-step β-functions. At the RG time tk+1

the SU node becomes, again, infinitely strongly coupled. This is determined to be

tk+1 = t′k −
1

(12k + 12)g′k
2 = tk −

1

6(k + 1)g2
k

, (2.26)

while the coupling of the USp nodes is

1

g2
k+1

= −(12k + 6)(tk+1 − t′k) =
k

(k + 1)g2
k

=
1

(k + 1)g2
1

, (2.27)

where in the last equality we have used the expression recursively. We see that for a long

enough flow, i.e., for k sufficiently large, we have that

1

g2
k

=
1

kg2
1

, tk+1 − tk ' −
1

6k2g2
1

. (2.28)

This implies that the cascade steps become more and more dense towards the IR, while the

sum of the inverse squared couplings is controlled by the sum of the β-functions, which is

βUSp
k + βSU

k = 6 (2.29)

6We call here 1/g2USp the sum of the two inverse squared couplings of the USp groups.
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all along the flow, independently of k. Note that this is an order 1/N effect. It implies

that the envelope within which the 1/g2
k are evolving is tilted downwards towards the IR,

in agreement with the fact that we have (at least) an asymptotically free gauge group in

the UV.

It is easy to see that the cascade stops before the envelope crosses the horizontal axis,

where a (IR) duality wall would occur. From eqs. (2.23) one sees that the crossing happens

at twall = −1/6g2
1, if we set t1 = 0. Assuming l large, the length of the flow stopping at tl

reads7

tl =
l−1∑
k=1

(tk+1 − tk) = − 1

6g2
1

l−1∑
k=1

1

k(k + 1)
= − 1

6g2
1

(
1− 1

l

)
& twall . (2.30)

Hence, we see that confinement happens very close in energy to the accumulation point

(or duality wall), but yet an infinite number of dualities away. The IR scale Λl ' Λwall is

related to the UV scale Λ0 as

F0/Ω: Λl = Λ0e
− 1

6g21 . (2.31)

This is to be confronted with, e.g., the conifold cascade, where we have

Conifold: Λl = Λ0e
− 2

3Mg2
l
, (2.32)

with M the rank of the SYM gauge group at the bottom of the cascade. In both theories

N0 ' lM , and in F0/Ω we have also that N0 'M2/4, so we can rewrite the two hierarchies

in the following suggestive way

Conifold: Λl = Λ0e
− 2N0

3M2g2 , F0/Ω: Λl = Λ0e
− 2N0

3M2g2 . (2.33)

We are thus in presence of a similar hierarchy in the orientifold theory, with the notable

difference that here one can follow the whole RG flow, from the UV to the IR (and not from

an arbitrary scale, as in the conifold). This is due to the UV-completion of the orientifold

cascade which, as already emphasized, does not require an infinite number of degrees of

freedom.

One can repeat the above analysis for any other allowed values of ε. As far as the IR end

of the cascade, one would get qualitative similar answers. As far as the UV, instead, even

and odd ε behave differently. Starting from the IR and running the cascade upwards, at each

duality step the USp and SU β-functions have opposite signs, up to k = 0, where M = ε.

At that point, one should perform one more step up and ends up with eqs.(2.15)–(2.17).

The main difference is that for ε = 0, 2 some gauge couplings become free, and some other

reach a fixed point and stop running. For ε odd, instead, all gauge couplings become free,

and so one reaches a UV-free trivial fixed point. These differences are depicted in figure 4.

In all the analysis above, we have neglected M/N corrections to matter field anomalous

dimensions, which are expected to become more and more important towards the IR. These

effects deform the cascade [18] and might then modify, e.g., the distance between subsequent

7We have used the fact that σn =
∑n

k=1
1

k(k+1)
= n

n+1
, which can be verified noticing that σn − σn−1 =

n
n+1
− n−1

n
= 1

n(n+1)
.
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✏ = 1

twall t0t00tl

twall t00t1tl t01

✏ = 0

t

t

1/g2USp

1/g2USp

1/g2SU

1/g2SU

1

g2SU
,

1

g2USp

1

g2SU
,

1

g2USp

. . .

t1. . .

Figure 4. The different behaviors of the gauge coupling running for ε even and odd, respectively

(as prototypes, only ε = 0, 1 are drawn). After the very last step up has been performed, for ε odd

all couplings run the same and are UV-free. For ε even, one of the couplings stops running, instead

(the SU coupling for ε = 0 and the USp coupling for ε = 2). The IR behaviors are instead similar.

In particular, confinement occurs at t = tl and is always reached before hitting the (would-be)

duality wall.

cascade steps ∆tk = |tk − tk−1| for k large and close to l. We do not expect this to change

the basic property of cascade steps becoming the more and more dense the larger k, i.e.

∆tk < ∆tk−1, which is at the basis of the confinement before the wall behavior we have

found. A concrete way to check this prediction would be to find the gravity dual description

of these flows, which, as already noted, corresponds to a trajectory in coupling space where

such effects are more under control. Work in this direction is under way [20].

An important comment is worth at this point. Until now, we have only considered the

case of an orientifold projection leading to USp groups. One could ask what would have

changed had we considered the opposite projection, leading to SO groups instead. Techni-

cally, the main difference is that, due to the flipping of some signs, the number of fractional

branes would increase towards the UV, now. This has quite dramatic consequences. Basi-

cally, the RG flow would be the mirror image of the one in figure 4: the envelope would be

tilted upwards towards the IR now, and a duality wall would show-up in the UV. This is a

behavior already observed in [8] in the flavored conifold theory (and, as we will discuss in

section 3, emerging also in our set-up, if a large enough number of flavors is added). We

thus conclude that O7-planes leading to USp groups are singled out in leading to the very

peculiar behavior of finite cascades.
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Metastable supersymmetry breaking vacua. In the conifold theory, if the number

of regular branes, N , is not taken to be proportional to that of fractional branes, M , the

baryonic branch at the bottom of the cascade is lifted [21]. In [22] it was argued that on

the would-be baryonic branch there exist local minima of the potential (which, as such,

are metastable), described by antiD3-branes at the tip of the deformed conifold, which

embiggen into an NS5 shell. These vacua have the same quantum numbers of the (still

existing) mesonic branch, to which they decay in finite (but, under certain conditions,

parametrically large) time.

The situation for the F0/Ω theory looks quite similar. Here, too, the baryonic branch

of, say, the SU node is lifted as soon as one does not choose the number of regular branes

to satisfy eq. (2.9) (or its siblings for ε = 1, 2, 3). The orbifolding procedure leading to

F0 and the subsequent orientifolding leading to F0/Ω do not appear to change the basic

dynamics leading to local minima of the potential. Hence, one can expect that also in the

present case metastable supersymmetry breaking vacua might exist.8 A notable difference

is that here the cascade is finite and the UV is essentially conformal (at leading order, and

asymptotically free at subleading order). Hence, these metastable states created by anti-

branes on orientifolded deformed singularities should be under better control with respect

to non-orientifolded ones.

3 The flavored F0 orientifold

The dynamics described in the previous section can sensibly change when adding flavors.

Two peculiar properties of the unflavored orientifold is that there do not exist conformal

phases and that cascade steps are not constant, in the sense that the effective number of

fractional branes changes along the cascade (together with that of regular branes). These

properties are both due, eventually, to the presence of the O7-planes. One could ask if

adding flavor D7-branes, which can possibly compensate the O-plane tension and charge,

this state of affairs can change and, also, if the corresponding cascades, when fractional

branes are added, can enjoy different dynamics. As we are going to show below, the answers

to both such questions is positive.

We will start addressing the question on whether there exist D-brane configurations on

F0/Ω describing (interacting) SCFTs.9 Later, we will consider arbitrary numbers of flavors,

as well as the addition of fractional branes, and we will discuss the corresponding RG flows.

3.1 Flavors and superconformal phases

There are two alternative ways to add flavors to the conifold field theory, related to two dif-

ferent supersymmetric embeddings of D7-branes, the so-called Kuperstein embedding [26]

and Ouyang embedding [27]. These two different possibilities are inherited by the F0/Ω

geometry. If we aim at recovering conformal invariance we need to add D7-branes so to

cancel exactly the O7 tension and charges. As we are going to show below, this is obtained

8It is worth mentioning that in the non-chiral Z2 orbifold of the conifold, and the corresponding orien-

tifold, which we will discuss in section 4, this has been shown to be the case [23, 24].
9A similar question, albeit for non-cascading orientifold field theories, was addressed in, e.g., [25].
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>
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>

>
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Orbifold and 

Orientifold action 

Kuperstein embedding 

Figure 5. The conifold and the F0/Ω theories with (Kuperstein-like) flavors.

following the Kuperstein embedding for the flavor branes (which shows that the O-planes

enjoy that same embedding).

In figure 5, we report the quivers of the flavored theories. The left quiver represents

the flavored conifold theory while the right quiver the flavored orientifold theory.

As we see from the figure, the flavored F0/Ω quiver is given by the addition of the

following fields in the (anti)fundamental representation: F1 fundamentals Q1 for the USp1

gauge group, the same number F1 of fundamentals Q3 for the USp3 gauge group, and F2

pairs of fundamentals Q2 and anti-fundamentals Q̃2 for the SU group. The fact that the

number of flavors for the two USp groups is the same is inherited from the parent conifold

and F0 theories, by requiring the absence of gauge anomalies.

The full superpotential reads

W = X1
12X

1
23X

2 T
23 X2 T

12 −X1
12X

2
23X

2 T
23 X1 T

12 −X2
12X

1
23X

1 T
23 X2 T

12

+Q1X
1
12X

1
23Q3 +Q1X

2
12X

2
23Q3 +Q2X

1
23X

1
23
T
QT2

+Q2X
2
23X

2
23
T
QT2 + Q̃T2 X

1
12
T
X1

12Q̃2 + Q̃T2 X
2
12
T
X2

12Q̃2

+
1

2
Q1Q

T
1 Q3Q

T
3 −Q2Q̃2Q2Q̃2 . (3.1)

All terms in the above superpotential are quartic and, based on symmetry arguments, one

can see that all matter fields, including the Q’s, have R-charge 1/2 and γ = −1/2. The

β-functions read

βUSp = 3(N1 + 2)− 3N2 −
3

2
F1 , (3.2)

βSU = 3N2 − 3N1 −
3

2
F2 , (3.3)

and vanish simultaneously if

F1 + F2 = 4 , N2 −N1 =
1

2
F2 . (3.4)
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We have thus 3 possible superconformal field theories

F1 = 4 , F2 = 0 , N2 = N1 , (3.5)

F1 = 2 , F2 = 2 , N2 = N1 + 1 , (3.6)

F1 = 0 , F2 = 4 , N2 = N1 + 2 . (3.7)

It is obvious that the first case, with only 4 F1-type flavors, is the one corresponding to

the D7-branes lying exactly on the O7. In the two other cases, some or all of the D7s are

still parallel to the O7, but, in the language of the parent theory, with fractional D-brane

charge of the second type, hence leading to the small mismatch in the ranks of the USp

and SU gauge groups.10

Consistently with conformal invariance, one can easily check that if relations (3.4) are

satisfied, not only the β-functions vanish, but the quiver is also self-dual under Seiberg

duality.

As already mentioned, one could consider a different kind of flavors, related to the

so-called Ouyang embedding. This would give rise to flavors which intervene in cubic

couplings in the superpotential. It is easy to see that in this case it is impossible to achieve

a configuration of gauge and flavor ranks such that the theory is both conformal and self-

similar under Seiberg dualities, meaning that such flavors cannot fully cancel the orientifold

charges, as anticipated. We will not consider this case further.

Besides leaving the gauge group ranks unchanged, one should also show that under a

sequence of Seiberg dualities the superpotential (3.1) is self-similar. That this is the case

will be shown below in full generality, namely regardless the values of N1, N2, F1 and F2.

Self-similarity of the (flavored) superpotential. Let us consider the flavored orien-

tifold quiver in figure 5, with arbitrary values of N1, N2, F1 and F2.

Dualizing the USp nodes, we introduce the following mesons

Mαβ
22 = Xα

12
TXβ

12 , Nα
2 = Q1X

α
12 , P = Q1Q

T
1 , (3.8)

M̃αβ
22 = Xα

23X
β
23

T
, Ñα

2 = Xα
23Q3 , P̃ = Q3Q

T
3 , (3.9)

and the dual fields

Y α
21 , Y α

32 , q1 , q3 . (3.10)

10This interpretation can also be checked looking at the embeddings of the F1 and F2 flavor branes in

the original conifold geometry. The conifold can be described as an hypersurface in C4, xy − wz = 0. The

D7-brane embedding [26] is described by the equation w + z = 0, which is invariant under the Z2 orbifold

action x → −x, y → −y, w → −w, z → −z, and defines the O7-planes, too. The F1 flavors correspond to

D7s with no gauge flux on their worldvolume, while F2 flavors corresponds to D7s with worlvolume flux [8].
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The superpotential becomes

W =M21
22M̃12

22 −M11
22M̃22

22 −M22
22M̃11

22 +N 1
2 Ñ 1

2 +N 2
2 Ñ 2

2 +
1

2
PP̃

+Q2M̃11
22Q

T
2 +Q2M̃22

22Q
T
2 + Q̃T2M11

22Q̃2 + Q̃T2M22
22Q̃2 −Q2Q̃2Q2Q̃2

+M21
22Y

1
21Y

2
21
T

+M11
22Y

2
21Y

2
21
T

+M22
22Y

1
21Y

1
21
T

+
1

2
Pq1q

T
1

+ M̃12
22Y

2
32
T
Y 1

32 + M̃11
22Y

2
32
T
Y 2

32 + M̃22
22Y

1
32
T
Y 1

32 +
1

2
P̃q3q

T
3

+N 1
2 Y

1
21q1 +N 2

2 Y
2

21q1 + q3Y
1

32Ñ 1
2 + q3Y

2
32Ñ 2

2 . (3.11)

Because of the first line, all mesons are massive and can be integrated out, yielding

W = −Y 1
32Y

1
21Y

2
21
T
Y 2

32
T

+ Y 1
32Y

2
21Y

2
21
T
Y 1

32
T

+ Y 2
32Y

1
21Y

1
21
T
Y 2

32
T

+Q2Y
1

21Y
1

21
T
QT2 +Q2Y

2
21Y

2
21
T
QT2 + Q̃T2 Y

1
32
T
Y 1

32Q̃2 + Q̃T2 Y
2

32
T
Y 2

32Q̃2

− q3Y
1

32Y
1

21q1 − q3Y
2

32Y
2

21q1 +Q2Q̃2Q2Q̃2 −
1

2
q1q

T
1 q3q

T
3 . (3.12)

This superpotential is already self-similar to (3.1), up to some signs and charge conjuga-

tions. We now perform Seiberg duality on the SU node. The mesons are

Mαβ
31 = Y α

32Y
β

21 , Nα
1 = Q2Y

α
21 , Nα

3 = Y α
32Q̃2 , R = Q2Q̃2 , (3.13)

and the dual fields

Zα12 , Zα23 , q2 , q̃2 . (3.14)

The superpotential reads

W = −M11
31M22

31
T

+M12
31M12

31
T

+M21
31M21

31
T

+N 1
1N 1

1
T

+N 2
1N 2

1
T

+N 1
3
TN 1

3 +N 2
3
TN 2

3 +R2 − q3M11
31q1 − q3M22

31q1 −
1

2
q1q

T
1 q3q

T
3

+M11
31Z

2
12Z

2
23 +M22

31Z
1
12Z

1
23 + 2M12

31Z
2
12Z

1
23 + 2M21

31Z
1
12Z

2
23

+ 2q2Z
1
23N 1

3 + 2q2Z
2
23N 2

3 + 2N 1
1Z

1
12q̃2 + 2N 2

1Z
2
12q̃2 + 2Rq2q̃2 , (3.15)

where the numerical factors in the last two lines have been put for convenience. Again, all

mesons are massive and can be integrated out, yielding

W = Z1
12Z

1
23Z

2 T
23 Z2 T

12 − Z1
12Z

2
23Z

2 T
23 Z1 T

12 − Z2
12Z

1
23Z

1 T
23 Z2 T

12

− qT1 Z1
12Z

1
23q

T
3 − qT1 Z2

12Z
2
23q

T
3 − q2Z

1
23Z

1
23
T
qT2

− q2Z
2
23Z

2
23
T
qT2 − q̃T2 Z1

12
T
Z1

12q̃2 − q̃T2 Z2
12
T
Z2

12q̃2

+
1

2
q1q

T
1 q3q

T
3 − q2q̃2q2q̃2 . (3.16)

This is exactly the same as (3.1), up to a trivial relabeling of the fields Zαij → Xα
ij , q

T
1,3 →

iQ1,3 and q2, q̃2 → iQ2, iQ̃2. This shows that the superpotential (3.1) is indeed self-similar

under a cascade step, for generic values of N1, N2, F1 and F2.
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Figure 6. The effect of a cascade step on the F0/Ω theory with flavors.

3.2 Back to normal: cascading with flavors

Having checked that the superpotential is self-similar under a cycle of Seiberg dualities, we

can now consider the most general rank assignment, and study the corresponding RG flow.

To be concrete, let us consider USp(N1 = N + M) and SU(N2 = N) gauge groups,

with F1 and F2 flavors. Seiberg duality on the USp groups brings their ranks to USp(N −
M + F1 − 4). A further duality on the SU group brings it to SU(N − 2M + 2F1 + F2 − 8).

Hence the quiver is self-similar with new values for N and M as

N ′ = N − 2M + 2F1 + F2 − 8 , M ′ = M + 4− F1 − F2 , (3.17)

as shown in figure 6.

Eq. (3.17) is in agreement with previous results. For F1 = F2 = 0 we recover the case

discussed in the previous section, the unflavored cascade, where M increases towards the

IR. Choosing instead F1+F2 = 4 the cascade enjoys constant steps and the two β-functions

are just opposite one another, that is they sum to 0, as for the unflavored conifold and

F0 cascades. Consistently, for M = 0 we recover the SCFT discussed in section 3.1. For

F1 + F2 > 4, instead, things change. In particular, the number of fractional branes now

reduces as we flow to the IR. The latter is the standard behavior for non-orientifolded

duality cascades with flavors, as discussed for instance in [8].

Starting at some UV scale t0 from a configuration with USp(N0 + M0) and SU(N0)

groups, after k cascade steps one gets the ranks

Nk = N0 − 2kM0 − k(k + 1)(4− F1 − F2)− kF2 , Mk = M0 + 4− F1 − F2 . (3.18)

The β-functions at integral steps are

βUSp
k = 3Mk +

3

2
(4− F1) , βSU

k = −3Mk −
3

2
F2 , (3.19)

while at half steps

βUSp
k = −3Mk −

3

2
(4− F1) , βSU

k = 3Mk −
3

2
(2F1 + F2 − 8) . (3.20)
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Note that the sum of β-functions is always constant

βUSp
k + βSU

k =
3

2
(4− F1 − F2) . (3.21)

Let us first consider the case F1 +F2 = 4. In this case the value of M is constant along

the flow, Mk = M0 ≡ M , and the sum of the β-functions vanishes. The inverse couplings

thus evolve, alternating at strong coupling, but always below a constant value.

Specializing to the case F1 = 4, the cascade is not just qualitatively but even quanti-

tatively the same as the conifold and F0 cascade,s as far as the ranks of the gauge groups

are concerned, that is N ′ = N − 2M and M ′ = M .

It is interesting to see what happens in the IR. If we assume that after l steps, the USp

groups confine at the origin of the mesonic moduli space, we need to have Nf = Nc + 4,

which translates to Nl = M , that is N0 = (2l+ 1)M . We are then left with a pure SU(M)

SYM, which in turn confines, as in the parent conifold and F0 theories. This is a behavior

usually associated to deformation branes.

We can assume on the other hand that after l (and a half) steps, it is the SU group

which finds itself on the baryonic branch. This happens when Nl = 2M and thus N0 =

(2l+2)M . We are now left with two USp(M) gauge groups with 4 flavors each. Supposing

M ≥ 4, a runaway superpotential is generated [17]. However, the runaway behavior is

stopped by the surviving quartic superpotential. Indeed, we have

Weff = PP̃ +

Λ
3
2
M−2

1

PfP

 2
M−4

+

Λ
3
2
M−2

3

PfP̃

 2
M−4

, (3.22)

where the mesons P and P̃ are defined in eqs. (3.8) and (3.9). The mesons are massive,

and it is straightforward to see that there are solutions to the F-term equations, all with

PfP,PfP̃ 6= 0.

Conversely, one can consider the case with F2 = 4. It is easy to see that, with respect

to the previous case, the role of the symplectic and unitarity groups gets interchanged,

as far as the IR end of the cascade is concerned. For later convenience, let us label the

starting point as USp(N0 +M − 2) and SU(N0). After l steps we have Nl = N0 − 2lM . If

the USp groups confine first, we have to set Nl = M+2 and so N0 = (2l+1)M+2. We are

thus left with a SU(M + 2) with 4 flavors. As soon as M > 2, an ADS superpotential [28]

is dynamically generated, but the runaway is again stopped by the quartic tree-level term

Weff = R2 +

(
Λ3M+2

2

detR

) 1
M−2

. (3.23)

If after l (and a half) steps we confine SU on the baryonic branch, we need Nl = 2M and

N0 = (2l + 2)M . We end up with two decoupled pure USp(M − 2) SYM theories, which

confine into supersymmetric vacua.

It is now quite obvious that in the configuration F1 = F2 = 2, the only possible

situation at the bottom of the cascade is confinement with a stabilized ADS superpotential.
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We can also contemplate the UV behavior of these cascades. It actually goes on

indefinitely, as in the conifold and F0 parents, with a constant value for the sum of the

two inverse squared gauge couplings, and a regular increase in the overall ranks. The UV

completion in this case is with an infinite number of degrees of freedom. This case is

therefore the closest we get to the canonical conifold cascade, in other words the effect of

the orientifold is fully compensated by the 4 flavor D7-branes.

Let us now consider the case with F1+F2 > 4 flavors. The sum of the β-functions (3.21)

is negative. Thus the inverse couplings run alternatingly under an envelope which is tilted

downwards in the UV. At the same time, the effective number of fractional branes Mk

decreases in the IR while it increases in the UV. This is a situation very similar to the

flavored conifold [8]. In the IR, the theory either confines in one of the usual ways, if there

is still a sizeable value of M , or it goes to a phase in which at least one of the groups is

IR free, while the other(s) could be at a conformal fixed point, if the effective M goes to

zero before. In the UV, one runs into a duality wall. Indeed, the envelope for the sum

of the inverse couplings crosses the horizontal axis of infinite coupling at some UV scale,

before which there is an infinite sequence of Seiberg dualities which make the overall ranks

infinite in a finite RG time. This pathological behavior has already been described in [8].

4 A different orientifold quiver

In this section we take one step towards the generalization of the previous discussion, by

taking the orientifold of a different quiver. We will start with a different Z2 orbifold of

the conifold, namely a non-chiral one, which was extensively studied in [9, 23, 24, 29]. For

our purposes, it will suffice to focus on the cascade without flavors, highlighting its main

features, in view of a comparison with the previous chiral model.

The non-chiral Z2 orbifold of the conifold is part of a family of quiver gauge theories,

corresponding to Zn orbifolds of the conifold, which are composed of a necklace of 2n

SU(Ni) gauge groups, and non-chiral sets of bifundamentals between each adjacent nodes.

For n = 2, which is what we are going to focus on, the theory has just four gauge factors.

The matter fields being non-chiral means that there are no gauge anomalies that restrict

the ranks of the gauge groups. Accordingly, there are three different kinds of fractional

D3-branes, modulo regular ones. The interplay of such different kinds of fractional branes

was studied in [29].

Upon orientifolding the necklace opens up, with the two end-nodes being USp while

the 2n − 2 middle ones are identified pairwise and remain SU. Hence, in our Z2 case we

have three nodes, with the first and third being symplectic and the second one unitary.

The quiver, which is reported in figure 7 together with the parent orbifold theory, looks

the same as the previous F0/Ω quiver, with the notable difference that the double bi-

fundamental lines have now opposite arrows instead of pointing in the same direction.

As a consequence, differently from F0/Ω, the ranks of the two USp nodes are free to be

different. In other words, two fractional branes survive the orientifold projection. The

superpotential is quartic and reads

W = X12X23X32X21 −X12
TX12X21X21

T −X32
TX32X23X23

T . (4.1)
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>

>
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Figure 7. The non-chiral Z2 orbifold of the conifold and its orientifold.

Such quiver and superpotential have been shown to be self-similar under a cascade of

Seiberg dualities (acting first on the USp nodes, then on the SU one) in [9]. Choosing the

three ranks to be the same, Ni = N , we get a very similar picture as for the chiral case.

In particular, using the same conventions as in that case, we have

βUSp = 6 > 0 , βSU = 0 , (4.2)

which are the same as eqs. (2.2) of the chiral orientifold, and so is the UV dynamics. In

what follows, we want to discuss the RG-flows which are generated adding one, respectively

two kinds of fractional branes, on top of N regular branes.

4.1 Cascade with one type of fractional branes

Let us first consider the case where the USp nodes have equal ranks, N1, but different from

that of the SU node, N2. The β-functions can be easily computed to be

βUSp = 3(N1 + 2)− 3N2 , (4.3)

βSU = 3N2 − 3N1 . (4.4)

We see that, as for F0/Ω, the sum of β-functions is always positive, βUSp + βSU = 6, so

there is no conformal phase and, in the average, the couplings become stronger as the

energy decreases.

Let us take, for definiteness, N1 = N + M and N2 = N . Dualities on the USp nodes

take USp(N +M) to USp(N −M −4), and a further Seiberg duality on the SU node takes

SU(N) to SU(N − 2M − 8). We thus see that after a cycle we have the new ranks

N ′ = N − 2M − 8 , M ′ = M + 4 , (4.5)

exactly as for F0/Ω. We can thus transpose to the present case all the discussion about

the RG flow, and the scale at which the groups confine. Indeed one can show, following for

instance [9], that the steps through which one gets to either pure SU(M) SYM, or a pair of

decoupled USp(M)s, are also very similar to our previous example. We thus conclude that,
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also in this geometry, the effect of adding an orientifold is to allow for an RG flow which

starts in the UV with a mix of conformal and/or mildly asymptotically free gauge groups,

and ends in the IR with confinement after a cascade of Seiberg dualities which gets denser

and denser towards a would-be IR duality wall. To summarize, this one-kind fractional

branes case does not differ in any sensible manner from the chiral orientifold considered in

section 2 and shares with it its (interesting) RG-flows, like finite duality cascades leading

to confinement.

4.2 Cascade with two types of fractional branes

We now investigate the effect of having more than one type of fractional branes in business.

Let us then consider a USp(N + M) × SU(N) × USp(N + P ) quiver gauge theory. The

RG-flow is now governed by

βUSp
1 =

3

2
(M + 2) , βSU

2 = −3

2
(M + P ) , βUSp

3 =
3

2
(P + 2) , (4.6)

and after a cycle of Seiberg dualities, the ranks are mapped to N ′ = N −M − P − 8,

M ′ = P + 4 and P ′ = M + 4.

There is also a different possibility, which is to have the ranks ordered in a different

way, with one of the USp nodes having the smallest rank. For USp(N)1 × SU(N +M)2 ×
USp(N + P )3, the β-functions are

βUSp
1 = −3

2
(M − 2) , βSU

2 =
3

2
(2M − P ) , βUSp

3 =
3

2
(P −M + 2) . (4.7)

After a cycle of Seiberg dualities, the ranks are mapped to N ′ = N−2M+P−4, M ′ = M+4

and P ′ = P (upon exchanging the roles of the two USp nodes). The two cases are reported

in figure 8.

The behavior at the bottom of the cascade depends on the relative sizes of the ranks.

In the parent theory one can have either confinement, an effective N = 2 Coulomb branch

or dynamical supersymmetry breaking with runaway behavior, as detailed in [29]. Here,

we would like to see which of these different behaviors survive the orientifold projection.

In particular, we will try to recover the runaway behavior.11

Typically, out of the three gauge groups, one will confine first, in a situation like

Nf = Nc for SU or Nf = Nc + 4 for USp. If SU confines first, we are left with two

decoupled USp nodes, generically of different ranks, but which will confine exactly as in

the equal ranks case. It is more interesting if one of the USp nodes confines first. In this case

we are left with a two-node quiver, with gauge groups USp(M)×SU(P ) and superpotential

W = −X12
TX12X21X21

T + detX21X12 . (4.8)

The second term is what is left over from the other USp node, after it confined at the

origin of moduli space. Alternatively, it can be reconducted to a stringy instanton on that

11We do not expect to recover N = 2 Coulomb branch vacua. Indeed, in the parent four-node quiver,

they are associated to having at the bottom of the cascade only two contiguous nodes with the same type of

gauge groups (and same ranks). After the orientifold projection, this is no longer possible, since contiguous

nodes have necessarily gauge groups of different types, USp or SU.
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Figure 8. The non-chiral orientifold quiver theories with two types of fractional branes and different

rank assignments. Quivers on the right represent the theories after the first cascade steps.

node [9, 24]. Note that this term involves the determinant of a P × P matrix. If M < P ,

the matrix X21X12 is not of maximal rank, and the determinant term hence vanishes. In

such a case, the SU node is in a situation where Nf < Nc, and an Affleck-Dine-Seiberg

superpotential is generated. In terms of the mesons M = X12X21 of the SU group the

effective superpotential becomes

Weff = −MMT +

(
Λ3P−M

2

detM

) 1
P−M

. (4.9)

Such superpotential has SUSY vacua.

When M ≥ 2P , on the other hand, the USp node is such that Nf ≤ Nc and it generates

its own ADS superpotential.12 In terms of the USp mesons N = X21X12, A = XT
12X12 and

Ã = X21X
T
21, which assemble into

P =

(
A N
−N Ã

)
, (4.10)

12The case P ≤ M < 2P can be mapped to the present case after a further Seiberg duality on the SU

node.
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the effective superpotential reads

Weff = −AÃ+ detN +

Λ
1
2

(3M−2P+6)

1

PfP

 2
M−2P+2

. (4.11)

One can see that all potentially runaway directions are again blocked, either by the mass

term AÃ or by the detN term. Note that the latter term is specific to the orientifold

quiver. We thus conclude that the runaway directions of the parent theory are stabilized in

a supersymmetric way by the orientifold projection. Of all diverse behaviors of the parent

theory, only the confining behavior remains an option. This is in nice agreement with

the findings in [29]. There it was shown that the runaway corresponds to the fractional

branes associated to the N = 2 Coulomb branch (the so-called N = 2 fractional branes)

being pushed all the way to infinity but, as already observed, such degrees of freedom are

projected out by the orientifold.

5 Discussion

As compared to their parent orbifold theories, the orientifolds models we have discussed

have the following two, very peculiar properties.

The first is that duality cascades are finite. This has the beautiful outcome that,

unlike ordinary quiver gauge theories, cascading orientifold theories do not require an

infinite number of degrees of freedom to be UV completed. Moreover, properly choosing

the number of regular and fractional branes at the singularity, these finite RG-flows can

interpolate between confining vacua and asymptotically free UV fixed points.

The second interesting property is that orientifolds typically do not lead to runaway

behavior. And, if runaway directions are present in the parent theory, orientifolds tend to

stabilize them, as we have seen in the second model we discussed.

We have analyzed two models in detail, one chiral and one non-chiral, but the above

properties are more tied to the presence of O-planes themselves rather than to the specific

parent theory one starts with. Hence, we believe these to be generic properties of orientifold

quiver theories.13

There are two aspects related to our discussion to which the properties summarized

above might be of some relevance, and which we would like to comment upon. The first is

the possibility to have a weakly coupled gravity dual for orientifold cascades from the IR all

the way up to the UV. The second aspect regards the possibility, discussed in, e.g., [1, 30],

that orientifold quiver gauge theories might admit stable (in addition to metastable [24])

dynamically generated supersymmetry breaking vacua.

13Of course, it is possible to imagine a more complicated singularity, which gives rise to a quiver with

many nodes, where only a tiny fraction of it is affected by the O-plane. For instance, in orientifolds of

non-chiral Zn orbifolds of the conifold discussed in section 4, for n large, the middle of the chain will

contain nodes associated to fractional branes which are not affected by the presence of the O-plane. We

are interested in the physics of the nodes nearby the O-plane.
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5.1 Comments on the gravity dual

A first obvious question is whether a gravity dual description of orientifold RG flows exists.

Naively, orientifold effects appear to be 1/N suppressed, and it is known that such effects

are usually considered to be captured holographically only outside the classical supergravity

regime. In the present case, there is however one sharp difference: subleading corrections

pile up in such a way that they become leading at the IR end of the cascade, hence making

it possible for orientifold effects to have a visible backreaction also at the supergravity level.

Let us see how this might come about.

As we have seen, an orientifold cascade is specified by the rank in the deep UV, and

1/g2, the sum of the inverse gauge couplings squared, which, along the cascade, has a

subleading in 1/N evolution. For a gravity dual to exist, the minimal requirement is that

both N � 1 and g2N � 1. In the deep UV, both M , the number of fractional branes,

and the β-functions are zero to leading order in N , so that the theory is approximately

conformal. Thus we expect to have a gravity dual which, to a good approximation and

for large enough radius, has an AdS5 factor times a compact 5-manifold, with N units

of F5 flux. Of course, in the deep UV there might be a perturbation due to the 1/N

running of some couplings to asymptotic freedom. However, this would happen after a

parametrically large radial running such that the RG-time t is proportional to N and g2N

becomes of order one. Going to the IR, the effective number of regular branes, N , decreases

while M increases. This means that going towards the interior of the geometry along the

radial direction, the F5 flux decreases while the F3 flux starts increasing. Eventually, the

geometry should cap off, with a vanishing F5 flux and a finite F3 flux. Let us focus, for

definiteness, on the chiral orientifold cascade discussed in section 2. The F3 flux is given

by M ' 2
√
N . If M � 1 and g2M � 1, the gravity dual should still be reliable.14 This

suggests that the gravity dual should be able to grasp the piling up of 1/N effects from the

orientifold to finally produce a backreaction, interpreted as a large M effect. Therefore,

quite interestingly, one could describe the full cascade, even though the UV-completion

is in terms of a finite number of degrees of freedom. This is certainly something worth

exploring more closely. Work is in progress in this direction [20].

A different issue related to 1/N corrections has to do with the (im)possibility to de-

couple the IR physics from the UV completion. For instance, in the prototypical conifold

cascade [19] it is only by taking into account 1/N corrections that one can zoom into the

last cascade step and decouple the infinitely many degrees of freedom becoming relevant

when running the cascade upwards.15 Our model will have the same problem, in that the

cascade steps will be compressed in the supergravity limit, so that it will be impossible to

isolate a pure SYM regime.

14Note that the couplings at the bottom and the top of a cascade consisting in l steps are related by

g2b = lg2t , cfr. (2.28). Hence the ’t Hooft coupling at the bottom of the cascade reads g2bM = g2t lM '
g2tM

2/4 ' g2tN , the same as the one at the top of the cascade.
15Analogously, in models where one engineers gauge theories by wrapping higher dimensional branes on

topologically non-trivial cycles of smooth CYs, as in [31], KK modes decouple at subleading order in 1/N .
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5.2 Comments on stable supersymmetry breaking vacua

Another aspect which makes orientifold field theories engaging has to do with supersym-

metry breaking. It is known that in quiver gauge theories without orientifolds, one can, at

best, find cascades that end up with supersymmetry breaking with runaway behavior [4–7]

or, possibly, metastable vacua [22, 23]. The introduction of orientifolds has already been

proven to be the most promising scenario to provide concrete realizations of metastable su-

persymmetry breaking vacua in string theory [24]. Even more strikingly, orientifolds have

been argued to provide quiver gauge theories which, at the bottom of the cascade, could lead

to stable dynamically generated supersymmetry breaking vacua [1, 30].16 In the latter case,

one engineers a quiver such that, when only few fractional branes are left, a known model of

stable dynamical supersymmetry breaking is reproduced. These usually imply the presence

of either USp or SO groups, or SU groups with matter in the (anti)symmetric representa-

tion. Both instances require orientifolds to be generated through D-brane configurations.

Their interest lies in being an alternative to supersymmetry breaking through anti-branes.

In light of our results, it would be interesting to investigate the UV completion of such

set ups, namely from the point of view of the cascade, as done in [30]. As we have seen,

subtle effects such as left-over higher dimension terms in the superpotential, or the change

in the number of fractional branes along the flow, can affect the physics at low energies.

It could also be interesting to see what happens on mesonic branches higher up in the

cascade. When a cascade ends with confinement, the physics of the mesonic branches is

similarly the one of confinement at each point of the larger moduli space representing the

motion of regular branes away from the singularity [21]. When the endpoint is runaway,

instead, it was shown that also mesonic branches become runaway in their own respect [35].

Hence, one could wonder what happens to mesonic branches if at the bottom of the cascade

there exist stable supersymmetry breaking vacua: supersymmetric moduli spaces, runaway,

or other stable supersymmetry breaking vacua? Any one of these options would be much

relevant to assess the global stability of the vacuum at the end of the cascade.
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