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Abstract. In this work, we propose viable and efficient strategies for stabilized parametrized advection dom-
inated problems, with random inputs. In particular, we investigate the combination of the wRB
(weighted reduced basis) method for stochastic parametrized problems with the stabilized RB (re-
duced basis) method, which is the integration of classical stabilization methods (streamline/upwind
Petrov—Galerkin (SUPQG) in our case) in the offline-online structure of the RB method. Moreover,
we introduce a reduction method that selectively enables online stabilization; this leads to a sensible
reduction of computational costs, while keeping a very good accuracy with respect to high-fidelity
solutions. We present numerical test cases to assess the performance of the proposed methods in
steady and unsteady problems related to heat transfer phenomena.
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1. Introduction. Advection—diffusion equations are very important in many engineering
applications because they are used to model, for example, heat transfer phenomena [25] or
diffusion phenomena, such as of pollutants in the atmosphere [13]. We are interested in
studying related advection—diffusion partial differential equations (PDEs) when their Péclet
numbers, representing, roughly, the ratio between the advection and the diffusion field, are
high. Moreover, in such applications, we often need very fast evaluations of the approximated
solution, depending on some input parameters, which may be deterministic or uncertain.
This happens, for example, in the case of real-time simulation or if we need to perform
repeated approximations of solutions for different input parameters. We find such many-
query situations in optimization problems, in which the objective function to be optimized
depends on the parameters through the solution of a PDE or a system of PDEs.

The aim of this work is to study a stabilized reduced basis (RB) method suitable for
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the approximation of parametrized advection—diffusion PDEs in advection dominated cases,
including a stochastic context, by considering random inputs. Indeed, the RB method [20]
has been devised to reduce the computational effort required by the repeated solution of
parametrized problems. It provides rapid approximation of solution of PDEs and is able to
guarantee the reliability of the solution with a sharp and accurate a posteriori error bound.
In the literature we can find many works on the application of the RB method to advection—
diffusion problems, in particular, problems with low Péclet numbers [16, 40, 44].

In contrast, problems characterized by high Péclet numbers are far more complex and
may exhibit instabilities even with classical high-fidelity numerical approximations, such as
the finite element or the finite difference method. To deal with this issue we have to resort to
some stabilization techniques [7, 42], such as streamlined/upwind Petrov—Galerkin (SUPG)
stabilization. A similar stabilization needs to be accounted for also at the reduced order level,
resulting in a stabilized version of the RB algorithm [37, 38, 39]. In particular, in [37, 38, 39] it
was shown that a double stabilization in the offline stage and the online stage was necessary
to obtain an accurate approximation. Nevertheless, stabilizations in the online phase can be
a bothersome computational cost that may damage the efficiency of the method (for example,
in the many-query context), while in some other situation an offline-only stabilized method
is preferred. Stabilization of problems characterized by strong convection effects is an active
topic of research in the model order reduction community; see, e.g., [1, 2, 3, 8, 17, 23, 24, 31,
32, 37, 38, 47] for several different proposed methods with applications in heat transfer and
computational fluid dynamics.

When dealing with stochastic equations, i.e., with random input parameters, we can mod-
ify the RB method according to probability laws that rule our parameters. In this direction,
the wRB (weighted reduced basis) method [10] wants to exploit all the information that ran-
dom variables give us (a review is provided in [12]). The main novelties of these papers are (i)
the synergy of wRB with a stabilized formulation, suitable for stochastic advection dominated
problems; and (ii) the resulting capability to enable adaptive toggling of the stabilization de-
pending on the stochastic Péclet number. In particular, we will apply the weighted method
to stabilized RB strategies and prove the accuracy of the combined method. Throughout this
work we will test these methods on some steady and time-dependent problems.

The outline of the paper is as follows. In section 2 we will briefly introduce elliptic coercive
parametrized PDEs, their associate RB method, and some classical stabilization methods for
FE (finite element) approximation of advection dominated problems; then we will study two
RB stabilization methods by testing them on some examples. We will consider next stochastic
PDEs; in section 3 we present the wRB method and combine it with proper stabilization tech-
niques. Moreover, we will provide a method that selectively enables stabilization to optimize
computational costs. In section 4 we will extend these ideas to parabolic problems by intro-
ducing the general wRB method for these problems, combining it with a suitable stabilization
technique (based on stabilization for the FE approximation of advection dominated parabolic
problems) and testing it on a few examples. Finally, section 5 will provide some conclusions
and future perspectives.
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2. Stabilized reduced basis method for deterministic elliptic equations.

2.1. A brief introduction to the reduced basis method. The RB method is a reduced
order modeling (ROM) technique which provides rapid and reliable solutions for parametrized
PDEs (PPDEs) [20], in which the parameters can be either physical or geometrical, or either
deterministic or stochastic.

The need to solve this kind of problem arises in many engineering applications, in which
the evaluation of some output quantities is required. These outputs are often functionals of
the solution of a PDE, which can in turn depend on some input parameters. The aim of the
RB method is to provide a very fast computation of this input-output evaluation, and so it
turns out to be very useful—especially in the real-time or many-query context.

Roughly speaking, given a value of the parameter, the (Lagrange) RB method consists of
a Galerkin projection of the continuous solution on a particular subspace of a high-fidelity ap-
proximation space, e.g., an FE space with a large number of degrees of freedom. This subspace
is spanned by some precomputed high-fidelity global solutions (snapshots) of the continuous
parametrized problem, corresponding to some properly chosen values of the parameter.

For a complete presentation of the RB method we refer the reader to [20]; here we just
recall its main features in order to introduce some notation.

2.1.1. The continuous problem. Let p belong to the parameter domain D C RP, p € N.
Let © be a regular bounded open subset of R?, d = 1,2,3, and let X be a suitable Hilbert
space. For any p € D, let a(-, ;) : X x X — R be a bilinear form, and let F(;;pu) : X - R
be a linear functional. As we will focus on advection—diffusion equations that are second order
elliptic PDEs, the space X will be such that H}(Q2) ¢ X ¢ HY(Q). Formally, our problem
can be written as follows:

For any p € D, find u(p) € X :

M a(u(p), v ) = F(v; ) Vo € X.

We require a to be coercive and continuous, i.e., respectively,

e,

(2) 3 ap such that o < a(p) = inf ——— VpueD
vex |oll%

and

(3) +00 > () = sup sup lafv, w; w) Vu e D.

veX wex [[vllxl[w]lx

For the sake of online efficiency, we assume an affine dependence of a on the parameter w;
i.e., we assume that

Qa
(4) a(v,w;p) =Y O4(pwa’(v,w) Yp€D.
q=1

Here, ©d(pn) : D = R, ¢ = 1,...,Q,, are smooth functions, while a? : X x X — R, ¢ =
1,...,Q,, are pu-independent continuous bilinear forms.
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In a similar way, we assume that also the functional F' is continuous and depends “affinely”
on parameters:

Qr
(5) Flosu) = Y 04 F(v) VpeD,

qg=1
where, also in this case, ©%(p) : D - R, ¢ = 1,...,Qp, are smooth functions, while F? :
X >R, g=1,...,QF, are p-independent continuous linear functionals.

Let XV C X be a conforming FE space with N degrees of freedom. We can now set the
truth approximation of the problem (1):

For any p € D, find uN(u) e xV sit.

0 a(uN(p), oVsp) = FVsp) vV e XV

As we are considering the conforming FE case, conditions similar to (2) and (3) are fulfilled
by restriction. More precisely, as regards the coercivity of the restriction of a to XN % XV,
we define

N N
. CL(U , U 7[”’)
7 N(p) := inf Y e D,

and, as we are considering a restriction, it easily follows that a(u) < oV (p) Vu € D. Similarly,
for the continuity, we can define

N N )‘

(8) +00 > 'YN(H) — sup  sup la(v™Y, w5 p

e Bl e .
Nexn pNexn [V x| [wN]|x

As we have already mentioned, the domain of the equation also can depend on the pa-
rameter. In this case we need to map the parametric domain §2,(p) onto a reference domain,
denoted with €2, via a suitable parameter-dependent transformation 7'(:;p) : Q@ — Q,(p);
see [4, 20, 29, 33]. This allows us to track back on the reference domain € all the involved
bilinear and linear forms, so that (4) and (5) are defined on a common reference domain €.
In this work we use only affine mappings [20, 33] that allow us to easily recover the affinity
assumptions (4) and (5). In [33, 43] it is possible to find, in particular, a detailed treatment
of the advection—diffusion operators.

2.1.2. The reduced basis method: Main features. Let us suppose that we are given
a problem in the form (1) and its truth approximation (6). We recall that the dimension
of the FE space XN is N. Given an integer N < N, suppose that we are given a set of
N suitable parameter values, Sy = {u!,..., u™V}: this allows us to define the RB space as
XJJ\\,[ = span{uN (u") : 1 <n < N}. To be more precise, a Gram—Schmidt orthonormalization
process on {u (u™) : 1 < n < N} is usually carried out for the sake of numerical stability,
and the resulting orthonormal functions are considered as bases of the reduced space [20, 43].

Given a value p € D, we define the RB solution w4 () such that

9) a(ujz\vf(u),vN; p) = F(oy;pu) Yoy € XJJ\Y.
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Recalling that N < N, we emphasize the fact that to find the RB solution we need only
solve an N x N linear system, instead of the A/ x A system of the FE method. Moreover,
we can also guarantee that the error for a parameter g € D is bounded by an error estimator

An(p):
(10) [ (1) = u ()] < An(p) Vp €D,

where [||-]|| 4 is the norm induced by the symmetric part ag(-, -; ) of the bilinear form a(-, -; ).

The error estimator is defined as Ayn(p) := Arllx
v arp(m)

functional (v, p) = FV;p) — a(ud (u),vV;u), || - ||x is the norm associated to the
scalar product in X, and arp(p) is a lower bound for the coercivity constant a(u), possibly
dependent on pu € D.

The set Sy is built in the offline stage using a greedy algorithm on a training set Z¢qin
that spans D [20, 43]. It is an iterative method that, at each step, chooses the parameter
value which maximizes the a posteriori error estimator pu — Apn(p) in the training set. The
algorithm stops when a prescribed tolerance €}, is reached, that is, when Ay (p) < €f, for
each parameter value p in the training set =4, C D. We assume in this section that Zgqip
is a collection of randomly selected parameter values according to a uniform distribution. The
error estimator Ay is sharp in order to avoid an unnecessarily high dimension N for the RB
space. Moreover, it must be computationally inexpensive in order to speed up the greedy
algorithm (within which it is computed many times) and to allow the certification of the RB
solution during the online stage.

We want to point out that all the expensive computations (i.e., those with costs depending
on the FE space dimension N') are performed during the offline stage. Indeed, the affinity
assumptions (4) and (5) are crucial for the offline-online decoupling, as extensively shown in
[20, 43]. The affinity assumptions allow the storage, during the offline stage, of the matri-
ces corresponding to the parameter-independent forms aq,q = 1,...,Qq, restricted to Xﬁ .
Thanks to this fact, during the online stage the assembly of the RB system only consists of a
linear combination of these precomputed matrices. A similar strategy can also be applied to
the computation of the error estimator [20, 43]. Indeed, thanks to the affine decomposition of
F (5) and a (4), 7 can be computed in an online phase, with a complexity that depends only on
N but not on N [20]. Also, the o () can be efficiently computed in an online phase thanks
to suitable algorithms, such as the successive constraint method [20, 22]. Therefore, at each
step of the greedy algorithm, the error estimator Ay (u) can be efficiently evaluated (with
computational complexity independent from N') for any element in the training set, rather
than relying on the computation of the error |||u (@) — wN (@)|||, (Which would require an
expensive truth solve for all parameters in the training set, such as in a proper orthogonal
decomposition basis generation). If affinity assumptions are not fulfilled, it turns out to be
necessary to use an interpolation strategy (e.g., empirical interpolation method (EIM) [6, 15])
in order to recover them. A weighted version of the EIM is provided in [11].

, where 7 is the Riesz representer for the

2.2. Stabilized reduced basis methods. The main goal of this section is to design an effi-
cient stabilization procedure for the RB method. More specifically, we will make a comparison
between an offline-online stabilized method and an offline-only stabilized method as done in
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[37]. We want to approximate the solution of a parametric advection—diffusion problem,
(11) —eAu+pB-Vu=f inQcR?

given a parameter value u € D and suitable Dirichlet, Neumann, or mixed boundary condi-
tions. Here ¢ = e(p) : @ — [0,400) is a parametrized diffusion coefficient, while 8 = B(p) :
Q) — R? is a parametrized advection field such that div(3) = 0.

Let Tp, be a triangulation of €2, and let K be an element of 7;,. We say that a problem is
advection dominated in K if the following condition holds:

18(x)|h

(12) Peg(z) := ()

>1 Vrek,

where h is the diameter of K. It is very well known from the literature (e.g., [42]) that the FE
approximation of advection dominated problems can show significant instability phenomena,
e.g., spurious oscillations near the boundary layers. Several recipes have been proposed to fix
these issues. We choose to resort to the strongly consistent stabilization method of SUPG
[7, 21, 27, 28]. The main idea of stabilization techniques is to add artificial diffusion to
equation (11). To increase the accuracy of the resulting solution, SUPG adds diffusion only in
the streamline direction—mnot everywhere as in a purely artificial diffusion scheme. Moreover,
the resulting method is strongly consistent with the continuous PDE and, provided that
the stabilization coefficients are properly chosen, retains the same order of accuracy as the
underlying discretization scheme. For a detailed presentation of the stabilization method for
the FE approximation of advection dominated problems, we refer the reader to [21, 42].

Let us now explain the basic ideas of the two RB stabilization methods mentioned be-
fore. As regards the offline—online stabilized method, the choice of the name reveals that the
Galerkin projections are performed, in both the offline and the online stage, with respect to
the SUPG stabilized bilinear form [7, 42], that is,

(13) astap (w05 ) = a0V ) + s 0N ),
Faa (v 1) = F(oVs ) +r(0V; ),
(149 atw o Vop) = [ eVt Ve (B - T,
Nin) = / o
Q
h
(15) s(wN,vN;u) = Z 6K/ LwNiKLSSUN,
P 177
(16) =9 / f Lssv
KeTy,
where w?, v are chosen in a suitable piecewise polynomial space XV. In (15) L is the

parameter-dependent advection—diffusion operator, that is, LoV = eAvN + 8- VoV, which
can be split into its symmetric part LeuN = —eAu? and its skew-symmetric part Lggu
8- V. Moreover, hx denotes the diameter of the element K, while dx is a positive real
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number which may depend on K through the parameter p (but does not directly depend on
hi).

In contrast, in the offline-only stabilized method we use the stabilized form (13) only
during the offline stage, while during the online stage we project with respect to the stan-
dard advection—diffusion bilinear form (14). An advantage of using the offline-only stabilized
method would be a certain reduction of the online computational effort in the assembly of
the reduced linear system; this reduction could be also significant if the number of affine sta-
bilization terms is very high. Among possible disadvantages, we mention the inconsistency
between the offline and online bilinear forms.

We will start with the study of some test problems, which we will keep as prototypes for
each further extension that will be carried out in the next sections. The first is a Poiseuille—
Graetz (PG) problem [25, 40, 37], while the second is a parametrized internal layer problem
[37]. From here on, we will explicitly write the FE space dimension A only when it will be
strictly necessary.

2.2.1. Numerical test: Poiseuille—Graetz problem. We consider a PG problem where we
have two parameters: one physical (the inverse of diffusivity coefficient p;, which is propor-
tional to the Péclet number) and one geometrical (the length of the domain being equal to
1+ p2). The PG problem deals with steady forced heat convection (advective phenomenon)
combined with heat conduction (diffusive phenomenon) in a duct with walls at different tem-
peratures. Let us define g = (11, pt2) with both g1 and po positive, real numbers. Let ()
be the rectangle (0,1 + p2) x (0,1) in R?. The domain is shown in Figure 1. The problem is
to find a solution u (), representing the temperature distribution, such that

—LAu(p) +4y(1 — y)dpu(p) =0 in Qy(p),

(17) u(p) =0 on I'p 1 (p) UTp2(p) UT,6(p),

u(p) =1 on Ty 3(p) UTy5(m),

% =0 on Fp,4(“’)'

(0 1) PPG (17]‘) Fp’) (,LL2+ ]-7]-)
1
|
1

Pp? Qpl Qp-? : Fp4

]
1
I

(0,0) Tp1 (1,0) ys (12 + 1,0)

Figure 1. Geometry of PG problem. Parametrized domain. Boundary conditions: homogeneous Dirichlet
on the blue sides, u =1 on the red sides, and homogeneous Neumann on the dashed side.
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We set the reference domain as Q = (0,2) x (0, 1) and subdivide it into Q! = (0,1) x (0, 1)
and Q2 = (1,2) x (0,1). The affine transformation that maps the reference domain into the
parametrized one is

(18) T () : Q' = Q1 (1) C R% T (@) : Q% = Qpa(pn) C R?

o (@6 ) ()

We define the continuous one-to-one transformation 7'(u) by gluing together these two trans-
formations.

Let us now define a mesh 7, on the reference domain 2, and let us call 7711 and 7;12 the
restrictions 7;, to €; and o, respectively. We use P! FE discretization during the offline
stage. Hence, the corresponding bilinear forms a(-,-; p) and s(-,-; p) are

1
a(uN,vN; ) ::/ — vV + 4y(1 — y)0y N oV

1
+ / OpuN 90N + &GmuNByUN + 4poy(1 — y)&zquN
Q2 {12 M1
and

(21) s = > hK/ (4y(1—y)0pu™ )™ + ) \ﬁ (4y(1—1) 8™ ) D0V

KeT,;! KeT;!

The choice of the stabilization coefficient 0k, = 0k, (1) = \/% for K, € T? is motivated by
the transformation to the reference domain.

We test the performance of the RB approximation for two choices of the parameter space,
namely D' = [104, 105] % [0.5,4] and D? = [1, 106] x [0.5,4]. The parameter space D! features
very large values of p, so that the solution manifold is characterized by a solution with steep
boundary layers. In contrast, the parameter space D? features both small and large values of
w1, resulting in a richer set of solutions. The range of variation for the geometrical parameter
w2 is the same in both parameter spaces.

The comparison of offline-only and offline—online stabilized algorithms is shown in Figure
2 for D! (a) and D? (b). In each subfigure, the evolution of the greedy parameter selection
is presented, plotting for comparison both the error bound maxe=,, .., An (@), employed by
the RB algorithm, and the energy norm error max,es,,., |||« () — w) (@)||| - For both D
and D?, the greedy algorithm in the online-offline case is clearly converging as the RB space
enriches its dimension. In contrast, the greedy algorithm does not converge in the offline-only
case, being over 1072 for both D' and D?.

We show a representative online solution for both stabilization cases, characterized by large
value of Péclet number, in Figure 3, obtained for N = 20. As we can see, the offline-online
stabilized RB solution is showing marked boundary layers, while the offline-only stabilized
RB solution still has some noise near the boundary layer and some peaks near discontinuities
of the solution at the top and the bottom of the channel.
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Greedy error of Graetz problem, 1, € [1‘ 1[]”}

Greedy error of Graetz problem, ;1 € [101,107]

10° 1wt
— Offline-Online stab Error — Offline-Online stab Error
— Offline-Online stab Delta — Offline-Online stab Delta
ot p Offline stab Error 3 — Offline stab Error
Offline stab Delta wl Offline stab Delta

1021

4 10-1 L

. . . 1073 . . L
5 10 15 2 0 5 10 15 2
Dimension of Reduced Basis Space Dimension of Reduced Basis Space

10-9
0

(a) 1 € (10%,10°). (b) g1 € (1,10°).
Figure 2. Error comparison between offline and online—offline stabilization.

-3.146e-01 0.014 0.34 0.67 1.000e+00
LT

(a) Offline—online stabilized, u = (102, 3.3), (b) Zoom on the boundary
layer.

-3.146e-01 0.014 0.34 0.67  1.000e+00
LT

(c) Offline stabilized, p = (10*%,3.3). (d) Zoom on the boundary
layer.

Figure 3. RB solution, stabilized offline—online and offline, p = (10*%,3.3).

Moreover, if we compare the time used to perform one truth solution (N = 4369) and
an RB solution (N = 20), we can see that on average, on a test set the former lasts 0.0411
seconds, while the stabilized online RB solution lasts 0.000512 seconds. The nonstabilized
solution in the online phase lasts even less time, namely 0.000151 seconds, even though it is
less accurate (see Figure 3). The further speedup of the nonstabilized version is due to the
lower number of affine terms to be assembled online. Even bigger gains can be observed in the
parabolic case in section 4, or for problems characterized by a large number of affine terms

Qa and QF
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(0,1) Iy (1,1)
©D1r,
00 (L0

Figure 4. Geometry PFS problem.

2.2.2. Numerical test: Propagating front in a square (PFS). In this section we will test
the reduced order stabilization method for a second test case where the parameter controls
the angle of an internal layer. The problem we want to study is set over a unit square  C R2,
as sketched in Figure 4, has two parameters u1, us € R, and is as follows:

—iAu(u) + (cos pa,sin pg) - Vu(pu) =0 in Q,
(22) u(/,L) =1 onI'y UTs,
u(p) =0 on'sUT'y UT5.

Let us note that p; is proportional to the Péclet number of the advection—diffusion prob-
lem, while ps is the angle between the x axis and the direction of the constant advection field.
The bilinear form associated to the problem is

1
(23) a(u,v; ) = [ —Vu- Vo + (cos pg Opu + sin pig Oyu)v.
Q H1
We introduce again a triangulation 7;, on the domain , and we consider a P! discretization.
The corresponding stabilization term is

(24) s, oV p) = Z 5K/ (cos pig, sin p2) - V¥ (cos pg, sin pg) - Vo'V,
KeTN K

where df is manually tuned according to us. A few representative FE solutions are shown in
Figure 5. The figure clearly shows that the direction of the advection fields largely affects the
solution, which exhibits strong variations in energy norm [36]. For this reason, we test the RB
method for two different choices of the parameter space, namely D! = [104, 105] x [0.5,1] and
D? = [104, 105] x [0, 1.57]. Both choices are characterized by dominant advection; moreover, a
wider range of angles is considered in D? than in D!, resulting in a richer manifold of solutions.

The performance of the RB algorithm is shown in Figure 6 for D! (a) and D? (b). Only
the offline-online stabilization case is reported, since the offline-only case gave poor results
as in the previous test case. In both cases the stabilized reduced order method converges,
reaching an error of around 10~% for D! and around 10~ for D?. Computational times are
0.461346 seconds on average for a truth solution (N = 15626), 0.034271 seconds for an RB
solution (N = 20) with online stabilization, and 0.001862 seconds for an RB solution (N = 20)
without online stabilization.
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ro3a

1.300e+00

o
o
&

o
o

0.25

-1.000e-01

(a) u2 =0,0x = 2.1. (b) p2 =0.8,0x = 1.4. (c) p2 =1.2,0x =0.7.

Figure 5. FE solution comparison, varying dx and jiz.

Greedy error of Square problem, y» range = (0.5, 1.0)

— Error — Error
—— Ay Upper Bound — Ay Upper Bound

10°

TR

n n L n L L L n
5 10 15 20 25 30 0 5 10 15 20 25 30
Dimension of Reduced Basis Space Dimension of Reduced Basis Space

Greedy error of Square problem, y, range = (0.0, 1.57)

Error
= = 3 3 3 —
& L & 5 L 2
o /
Error
3 3 5

(a) p2 € (0.5,1). (b) p2 € (0,1.57).

Figure 6. RB error and Ay error bound, varying pa range.

3. Stabilized weighted reduced basis algorithm for problems with uncertain parame-
ters. The RB method formulated in section 2 assumed deterministic parameters; in contrast,
for random parameters, a weighted reduced basis (wWRB) has been proposed [9, 10] as an ex-
tension of the standard RB approach. The main idea of this method is to suitably assign a
larger weight to those samples that are more “important.” In this section, we will deal with
problems with random distributed parameters, and we will compare the weighted method to
the standard RB method for advection—diffusion problems with high Péclet numbers. More-
over, we will also provide an offline—online stabilization approach that can be useful in the
case when stabilization involves large computations.

3.1. A brief introduction to the weighted reduced basis method. To discuss the wRB
method [10], we introduce stochastic PDEs. Let © be an open set of R? with Lipschitz
boundary 99, and let H}(Q) C X C H'(Q) be a functional space. Let (A, F, P) denote a
complete probability space, where A is a set of outcomes w € A, F is a o-algebra of events,
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and P : F — [0, 1] with P(A) = 1 is a probability measure [14]. A real-valued random variable
is defined as a measurable function Y : (4, F) — (R, B), where B is the Borel o-algebra on R.
Let dFy (y) denote the distribution measure; i.e., V B C D, P(F € B) = [ dFy(y). Provided
that dFy (y) is absolutely continuous with respect to the Lebesgue measure dy, which we
assume hereafter to be the case, there exists a probability density function p : D — R such
that p(y)dy = dFy(y). Note that the new measure space (D, B(D), p(y)dy) is isometric to
(A, F, P) under the random variable Y.

We define the probability Hilbert space L*(4) :={v: A = R : [, v*(w)dP(w) < oo} and
LIQ)(D) :={u:D — R| [,u*(y)p(y)dy < oo}, equipped with the equivalent norms (by noting
that v(w) = u(y(w)))

@) ol = ( / v2<w>dP<w>>1/2 - ( /| u2<y>p<y>dy> L iz

Let v: Q2 x A — R be a real-valued random field, which is a real-valued random variable
defined on A for each z € . We define the Hilbert space S(2) := L*(A4) ® H'(Q), equipped
with the inner product

(26) (u,v) = /A/Q(uv +Vu-Vv) de dP(w) Yu,v € S(£),

where V is the spatial gradient in (2. The associated norm is defined as |[v]|s(q) = V/(v,v).
Now we can introduce stochastic PDFEs. Given a random vector field p : A — RP our
stochastic advection—diffusion problem will be to find a random field u(z; p(w)) such that

(27) —e(p(w)Au(p(w)) + B(p(w)) - Vu(p(w)) = f(rw))  in Q(p(w)),

accompanied by suitable boundary conditions.

Now, we want to develop an algorithm that gives more importance to parameters with
a higher probability of being chosen. The basic idea is to assign different weights to every
value of parameter pu € D C RP according to a prescribed weight function w(p) > 0, and to
use them during the construction of the RB space. The motivation is that when the param-
eter p has nonconstant weight function w(u), e.g., stochastic problems with random inputs
obeying probability distribution far from uniform type, the weighted approach can consider-
ably attenuate the computational effort for large-scale computational problems. The wRB
method consists of the same elements, namely greedy algorithm, a posteriori error estimate,
and offline—online decomposition, as presented in section 2.1. In this section, we only highlight
the new weighted steps.

Let XV be a high-fidelity approximation space of X, equipped with the norm 11|
defined in section 2.1.2. Moreover, let us define an equivalent weighted norm,

(28) [[u(p)llw = w(p)lfu(p)llp Vue XN, VpeD,

where w : D — R™ is a weighted function taking positive real values, which we assume to be
continuous and bounded. We will denote by X,, the space X endowed with || - ||..
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The greedy algorithm is thus modified to take the weighting into account, that is, to solve
an optimization problem in L*°(D; X,,): at each step we are seeking a new parameter uN eD
such that
(29) p —arg sup [ () — un (),

y'e:'*t'rain

where again uy is the RB approximation of the truth solution V. Here, Ziqin is the dis-

cretized version of the parameter space D. Instead of performing the true error, we use a
weighted a posteriori error estimator A%, such that

(30) [l (1) = un ()l < AR (k).

The choice of the weight function w(p) is made based on the desire to minimize the squared
norm error of the RB approximation in the space L*>°(D; X,,), i.e.,

Eflju — uy][?] = /A /Q 6 (1(w)) — un ()| 2de dP(w)

(31)
— / / 1 (11) — (1) (1) iz dips,
D JQ

that we can bound with
(32) E |l — unl?] < /D An (1) 2p(p)dp,

where Ay is the RB error estimator introduced in section 2.1. This motivates us in the choice
w(p) = /p(p). Finally, we set AR (p) := An(p)+/p(p) [10].

Another important aspect in the RB algorithm is the choice of the training set Zirqin.
While in the deterministic case we used uniform Monte Carlo sampling methods to choose
elements from D, in the stochastic context we can use a Monte Carlo sampling according
to the distribution p(p). We will see in the numerical test that this choice is important to
improve the convergence of the error.

We refer the reader to [9, 10, 12] for further details on weighted reduced basis methods.

3.2. Stabilized weighted reduced basis methods. In this section we study a variant of
the wRB method well suited for stochastic advection—diffusion equations with high Péclet
numbers. In order to do so, we combine the stabilization of advective terms, introduced in
section 2, with the weighting procedure of section 3.1.

As in section 2, for the moment we need to add SUPG stabilization terms to the weak
form of the problem. This results in the following formulation:

Find vV (p(w)) € XV s.t.
astap (W (1)), vV (W) = Faap(0V; p(w)) vV e XV vw e 4,

where agiqp and Fgqp are defined in section 2. The most relevant difference with respect to the
previous section is that p : A — D is a random vector instead of a deterministic parameter.

We test the proposed method with stochastic versions of the previous test cases (PG
problem in section 2.2.1 and the PFS problem in section 2.2.2). In order to do so, we need to
prescribe the distribution of w; this will be done for each test case in the following sections.
For the sake of exposition, results are presented only for the offline—online stabilization.

(33)



1488 D. TORLO, F. BALLARIN, AND G. ROZZA

3.2.1. Numerical test: Poiseuille—Graetz problem. For the PG problem, we consider the
range D = [1017 106] x [0.5,4] for the parameter p. To give more importance to parameters
with 1 ~ 105, we use X7 ~ Beta(4,2) and p; ~ 10'+5%1 while Xy ~ Beta(3,4) and
o ~ 0.5+ 3.5X5. We choose the Beta distribution because it takes values in a compact set, '
resulting in (p1, u2) € D.

Next, we compare the performance of the reduction method for the different choices dis-
cussed in section 3, namely related to using a weighted or standard greedy algorithm, and
to the sampling of the training set Zipqin. We present in Figure 7 numerical results for the
following four cases:

1. Classical greedy with uniform Monte Carlo sampling (black line);

2. Classical greedy with Beta Monte Carlo sampling (purple line);
3. Weighted greedy with uniform Monte Carlo sampling (green line);
4. Weighted greedy with Beta Monte Carlo sampling (red line).
107 Errors of Graetz problem: different Greedy algorithms 10° Ay of Graetz problem: different Greedy algorithms
— Greedy, Uniform MC — Greedy, Uniform MC
— Greedy, Beta MC — Greedy, Beta MC
— W Greedy, Uniform MC — W Greedy, Uniform MC
102} — W Greedy, Beta MC — W Greedy, Beta MC
g 10°

L L L L L L
0 5 10 15 20 0 5 10 15 20

Dimension of Reduced Basis Space Dimension of Reduced Basis Space
(a) Error comparison. (b) Anx comparison.

Figure 7. Greedy algorithms comparison for the Graetz problem.

We used 200 samples for =4, in each algorithm during the offline stage. We can see in
Figure 7 the comparison between the average errors and the average Ay for these algorithms
for a test set of size 100, with the same distribution as the training set. The results show that
both weighting and a correct sampling are essential to obtain the best convergence results
[48, 49]. Indeed, putting together these two aspects we get the best results, reaching an error
that is one-tenth of the error of the classical greedy algorithm on uniform distribution.

In a similar way, instead of computing the average of the errors on the test set, we can

!The weighted approach would work as well for an unbounded (e.g., Gaussian) distribution. We use a
Beta distribution in order to be able to present the comparison between a weighted and the classical approach.
The latter would not be possible for Gaussian random variables unless the parameter domain were cut. Such
a cut would be somehow arbitrary, since the classical approach does not exploit the underlying probability
distribution.
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also compute the mean of the error in a probability sense, i.e.,

(34) Bl () v ] = [ e () = o ) ey 0P
(35) = [ 10 ) = (i)

that we can approximate using some quadrature method. In particular, we will use the Monte
Carlo method; i.e., we approximate (34) with

(36) E(lllu" (1) — un()lllu] ~ ZIHU (r2) = un (i) |l s

where u;, ¢ = 1,..., M, are random parameters in the test drawn from a Beta distribution,
while we approximate (35) with

M
1
(37) E[lle (1) — un ()llu] & 57 D M (1) = v (i), (025),
j=1
where pj, i = 1,..., M, are drawn from a uniform distribution (on the same support) instead.

Results are nevertheless similar to those presented in Figure 7, and the same conclusions
can be drawn. For instance, the probabilistic mean of the errors in the classical greedy method
with uniform sampling and the weighted reduced mean with Beta sampling are 4.5485 - 10~4
and 1.2807 - 10™4, respectively.

3.2.2. Numerical test: Propagating front in a square. We can proceed in the same way
for the PFS problem of section 2.2.2. In this section, the parameter range D is [104, 105] X
[0,1.5]. Also, in this case u; and ps depend on randomly distributed Beta variables, i.e.,
p1~10* +9-10%- X7 and ps ~ 1.5 - Xo, where X1 ~ Beta(3,4), while X5 ~ Beta(4, 2).

As for the previous test case, we compare the classical greedy method with uniform Monte
Carlo to the wRB method with Beta Monte Carlo distribution. The comparison, shown in
Figure 8, provides results which are very similar to the PG problem. Indeed, the wRB method
with Beta distribution is converging faster than the classical method. Also, the mean errors in
the probabilistic sense of (36) show a similar behavior: for an RB space of dimension N = 20,
the stabilized weighted method with Beta distribution produces a mean error of 1.7803 - 1073,
while the classical approach gives a mean error of 7.9362 - 1073,

3.3. Selective online stabilization of the weighted reduced basis approach. In this
section we want to optimize computational costs in the online phase of the RB method.
Indeed, the stabilization procedure can lead to an increase in the number @, and/or Qf
of affine terms, which in turn may lead to larger online times required for the assembly of
the linear system or for the evaluation of the error estimator. In this section we propose a
procedure to selectively enable online stabilization only when required. In the entire section
we keep the RB produced in the previous section for N = 20.
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Error of Square problem, different Greedy algorithms
— error wRB, Beta MC
— Ay WRB, Beta MC
— error RB, Random MC
— Ay RB, Random MC
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Figure 8. Greedy algorithms comparison for the PFS problem.
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Figure 9. Error and density of uniform Monte Carlo test set.

3.3.1. Numerical test: Poiseuille—Graetz problem. Let us consider first the PG example,
with Beta distribution over parameter p, similarly to section 3.2.1. In what follows, we assume
that py € [10,105], g ~ 101Xt where X; ~ Beta(5,3). To simplify the discussion of the
results we further assume that ps = 1.

While carrying out the online stage of the proposed stabilized wRB method, we can choose
whether to apply online stabilization or not. Figure 9(b) shows the resulting error on a test
set (that we have taken with a uniform Monte Carlo sampling), sorted by increasing values of
1, considering both options. We can observe that for low Péclet number (11 < 10?), offline—
online stabilization and offline-only stabilization produce very similar results. Thus, we would
prefer the less expensive offline-only stabilization procedure. There, the error is high because
the samples selected from the weighted greedy in the offline phase are all concentrated where
the density of probability is higher (high Péclet). For this reason the low Péclet number zone
is poorly represented. Moreover, in the regions where the density of p is very small, even a
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large error would be less relevant in terms of the probabilistic mean error (34). So, we should
consider the idea of enabling the more expensive online stabilization only for parameters with
high density (which would have more of an effect on the mean error) or parameters with
large Péclet numbers (where the more expensive assembly is fully justified by the convection
dominated regime).

Let us start by considering the case where we want to stabilize online solutions depending
on Péclet numbers. First, we establish a threshold at a certain Péclet number py. For
parameters pup > i1 we will use both online and offline stabilization, while for parameter
u1 < 1 we will use only offline stabilization. See Figure 10 for a graphical representation for
fi1 = 103.

Parameters Online stabilized and not stabilized

+ + Online stabilized
+ + Online non-stabilized e

2.0 K4

.

0.5 7

0.0 anm®

Figure 10. Péclet discriminant; black line is the Péclet threshold.

For different thresholds fi; we can compute the error in the sense of (34), as we can see
in the following table:

Threshold iy Error Percentage nonstabilized
10* 7.9673-107% 0%
1010 8.0704 - 10~* 10%
102 10.0060 - 104 20%
1020 18.2806 - 1074 33%
103 33.4593 - 1074 45%
106 0.021128 100%

Considering that the best attainable error was of 7.967 - 10™%, we can say that until ji; = 102,
we are not worsening considerably the error (less than an order of magnitude). At the same
time, we can save online time on the assembly of terms related to the stabilization coefficient
for 20% of our test set (that was uniformly distributed).

The other natural gauge to decide whether or not to stabilize online is the density p(p). Let
v be a prescribed tolerance; we will not stabilize parameters p on the tail I of the distribution
such that

(38) / p(p)dp =7,

I
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where I is a set {p : p(p) < p} for some suitable p which can be easily found numerically as
a function of 7. In Figure 11 we can see an example for 7 = 10%.

Parameters Online stabilized and not stabilized

+ + Online stabilized
. e -~
+ « Online non-stabilized 4 S

20

.

05 /

0.0

Figure 11. Density discriminant; the black line is the density threshold.

In the following table, we summarize some results for different thresholds v (and, corre-
spondingly, p):

Threshold v | Threshold p Error Percentage nonstabilized
0 0 7.9673-107% 0%

0.001 0.02233 9.3222-1074 15%
0.002 0.04423 9.6456 - 10~ 17%
0.005 0.09094 | 14.7861-10~* 21%
0.01 0.13877 | 15.9482.10~* 25%
0.02 0.21433 | 25.6017-10~* 30%
0.05 0.38244 | 49.1931-10~* 38%

0.1 0.89068 | 66.7488 - 10~* 45%

1 00 0.021128 100%

We have that errors computed using the density discriminant are less accurate than ones
computed with the Péclet discriminant. Indeed, for the same percentage of nonstabilized
solutions (for example, 45%) we have bigger errors in the density discriminant approach (66 -
10~* instead of 33-10~%). This is due to the enormous difference between online stabilized and
online nonstabilized solutions for high Péclet numbers (Figure 9(b)), with the latter resulting
in considerably larger errors.

3.3.2. Numerical test: Propagating front in a square. Let us now consider the PFS
problem with fixed 1 = 10°, while s ~ 0.5+ 3.5X2 € [0,1.5] where X2 ~ Beta(4,2). We
have decided to fix the Péclet number since results in section 2.2.2 show that the solution is
most sensible for the parameter uo, which represents the angle of the propagating front.
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Figure 12. (a) Errors with stabilization offline and offline—online. (b) Angle discriminant; the black line
is the angle threshold. (c) Density discriminant; the black line is the density threshold.

Errors for online stabilized and online nonstabilized solutions over a uniform Monte Carlo
test set of 200 elements are provided in Figure 12(a) for increasing values of pz. We can notice
that offline—online stabilized errors of solutions with small angles (Figure 12(a), puo < 0.2) are
bigger than offline-only stabilized errors. This is due to the fact that the density of that region
of the parameter range is very small, and thus the weighted Greedy algorithm picks very few
parameters in that region. In a similar way, we also notice that solutions for s = 1.5 are not
well approximated. Indeed, in the offline-only stabilized case the lack of stabilization has a
poor effect on the reduced order solution for any uo = 0.2, while in the offline—online stabilized
case the low density of uo = 1.4 leads the wRB selection to choose few parameters ps ~ 1.5
during the offline stage.

Thus, in a similar way to the previous test case, we propose selective online stabilization
criteria depending on either a threshold on the parameter (the angle po in this case, rather
than the Péclet number) or on the probability distribution. Let us start with a discussion of
the former choice, leading to online stabilization for angles greater than a certain threshold
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2 (see, e.g., Figure 12(b)). The error for different thresholds fio is tabulated as follows:

Threshold pio | Error | Percentage nonstabilized

0 0.01416 0%

0.1 0.01400 6%

0.2 0.01506 16%

0.3 0.04056 23%

0.4 0.11810 30%

0.5 0.20365 37%

1.5 0.82998 100%

We can observe that at the beginning the error decreases as the threshold increases, while it
slowly increases after a critical angle between 0.1 and 0.2. Due to this, we consider a threshold
112 = 0.2 to be optimal in order not to increase the error and to save 16% of online stabilization
computations.

As for the PG example, we can also test a criterion based on a density threshold (see, e.g.,
Figure 12(c)). The following table shows different errors for different density thresholds:

Threshold v | Threshold p | Error | Percentage nonstabilized

0 0 0.01416 0%
0.001 0.02271 0.01400 13%
0.002 0.04600 0.01506 16%
0.005 0.10237 0.02269 20%
0.01 0.13598 0.04658 25%
0.02 0.26309 0.11158 30%
0.05 0.51855 0.20613 38%

0.1 0.72557 0.32034 46%

1 00 0.82998 100%

In this case, a negligible increase of the error is obtained for v = 0.002, allowing us to save
more than 15% of stabilized online computations. Further computational savings up to 25%
can be obtained for 7 = 0.01 at the expense of a larger error. We notice that in this case both
criteria give similar results; this is due to the fact that errors are large for both offline-only
and offline—online stabilization methods when us9 is large or when density p is small.

Remark 3.1. Let I be the region of the parameter space where an offline-only stabilized
solution is selected, and let D \ I denote the complement region in which the offline-online
stabilized method is queried. Let u{v (p) denote the corresponding reduced order solution for
p € I, and similarly ujl\),\l(u) for w € D\ I. To ease the notation, we will denote the online
solution by ux (@) when no confusion arises.

The selective procedure for online stabilization can be automatically tuned according to
a prescribed tolerance on the probabilistic mean error E [||\uN () — un(p)|||u]- In order to
estimate the mean error, we recall the standard error estimation (10) for u € D\ I, and the

following error estimation:

d (1) = o ()1l < AN (1) = Panaa (1) C ()18 - Vo (1) L2, (1)

(39) ) .
+ (L e () C (1) 7[1Bl| Lo (@ () )2
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for p € I [37], where C(p) is the constant of the equivalence between H! and ||| - |||, norms,
Rimaz is the maximum mesh size, while £* is the tolerance of the Greedy algorithm [37].
Thus, combining these two error estimators, we get that

(40) E [l () = wnillla] < (1= %) mmase Ax(p) + 7 max AR (1),

which, for a given tolerance € on the mean error, allows us to compute v such that

(1 —7) max Ay (p) + vmax AL () < €.
pneD\I pel

Remark 3.2. We remark that this selective approach for online stabilization is peculiar to
stochastic problems. Indeed, it is the density distribution and the relative importance of each
sample in the computation of the probabilistic mean that drive the selection process. Such a
weighting is lacking in a deterministic setting, where all samples are equally probable during
the online stage.

4. Stabilized weighted reduced basis method for stochastic parabolic equations. In
this section we extend our investigation to stochastic time-dependent advection—diffusion
equations. Stabilization of advection—diffusion parabolic equations with high Péclet num-
bers has been studied in several works with different stabilization methods [7]. We will adapt
SUPG stabilization for FE methods on parabolic equations to the RB method, as suggested in
[36, 37, 38, 39]. The reduction will employ a proper orthogonal decomposition (POD)-greedy
procedure [19, 35, 40] during the offline stage. We refer the reader to [45, 46] for very recent
wRB variants for stochastic heat equations.

As we did for stochastic elliptic equations, we define a parameter domain D as a closed
subset of RP, and we call g a random field with values in D. Again, let €2 be a bounded open
subset of R? (d = 1,2, 3) with regular boundary 99, and let X be a functional space such that
H}(Q) € X c HY(Q). For each outcome w € A, and corresponding realization p(w) € D, we
define the continuous, coercive bilinear form a and the continuous, bilinear, symmetric form
m such that they satisfy the affinity assumption (4), and define a linear form F' which satisfies
the affine assumption (5). Finally, we denote the time domain as I = [0,7], where T is the
final time.

We can now define the weak form of the continuous stochastic problem as follows:

(41)

Find u(t; p(w)) € X Vtel, VYwe A continuous in ¢
.t m(Buu(t; (), 0)+alults p()), v p() =g () F(o; p(w) Yo e X, Viel, Vwe A
given the initial value u(0; u(w)) = ug € L*(Q),

where g : I — R is a control function such that g € L?(I). We choose a right-hand side of the
form g(t)F(v; p), as is usual in the RB framework [18, 40], in order to ease the offline-online
computational decoupling.

4.1. Discretization and reduced basis formulation. To discretize the time-dependent
problem (41), we follow the approach used in [18, 20, 34, 40], that is, we use finite differences
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in time and FE in space discretization [41]. We start by discretizing the spatial part of the
problem (resulting in a mesh denoted by 7;,) and the temporal part (resulting in discrete time
steps {t; = j - At}}]:o)- We thus define the FE truth approximation space XV and denote its

basis with {¢;}¥,. The fully discretized problem reads
for each 1 < j < J, find u?/(u(w)) e xV

s.t. Em(uﬁ”(u(w)) — )y (), s p(w) + alu) (p(w)), s p(w))
(42) =gt )FV;pw) vV exV, vwe A,

given the initial condition u{)\/

s.t. (u{)\[,vN)Lz(Q) = (uo,vN)Lz(Q) voV e XV

The latter problem uses the backward Euler—Galerkin discretization, but we can resort to other
theta-methods (e.g., Crank—Nicolson) or to high order method (e.g., Runge-Kutta) [41].

The RB formulation of the problem (42) is based on hierarchical RB space, as for the
steady case, employing a POD reduction over the time trajectory and a greedy selection
over the parameter space [19, 35]. The algorithm can be seen as a greedy algorithm in the
parameter space with a further compression by POD for the space trajectory.

At each step of the greedy algorithm we search the parameter p* which maximizes, over
the training set Zi.qin, an error estimator for the following quantity:

J
(43) €N (1) lli—dep = | MmN s (1), €N, (10); 1) + Y alen; (1), eN () WAL |
7j=1

where ej]\\,/’j(u) = ué\/(u) = uj]\vfj(u) We remark that, as in section 2.1, an inexpensive a
posteriori error bound for (43) can be derived (see [18]), which in particular does not require
any N-dependent computation (e.g., it does not require the time trajectory to be computed
for every p in the training set). We will continue denoting by Ay the resulting error estimator,
even though its expression is different from the one in section 2.1; we refer the reader to [18]
for more details.

Once the parameter is chosen, we project the time evolution of the solution of this pa-
rameter on the orthogonal space of the current RB space X]/\\,/ . This projection ensures
that, at each Greedy iteration, only new information is added to the RB. To set the no-
tation, denote by Py : XN - X]j\\,/ the projection onto the current RBXJ/\\,[. We then define
u]l(u*) =uj(p*) — Pn(uj(p*)) for j=1,...,J.

As a further compression of the resulting time trajectory, we compute a POD on {uj- (1) 3-7:1
and collect the first few POD modes (up to a prescribed tolerance) into a space denoted by
YN The resulting RB space to be used at the (N + 1)th greedy iteration is then defined as
XY, - xN e vy,

The RB formulatlon of the problem can be obtained by substituting the RB space XN by
XN in (42).

4.2. Streamlined/upwind Petrov—Galerkin stabilization method for parabolic problems.
In this section we briefly introduce the SUPG method for time-dependent problems [7, 28].
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The idea is the same as in the steady case: we have to add terms to bilinear forms in order
to improve stability. The stabilization term is almost the same as in the steady case, but now
we have to consider also the time dependency to guarantee the strong consistency. We thus
set

(44) s(w =) 6k <8tw )+ Lw™ (¢),

LSSUN) ,
KeT;, K

hy
1B(p(w))]

where wN (t) € XN for each t € I, vV € XV, and (-, )i is the usual L? scalar product,
restricted to the element K. Here L is the steady advection—diffusion operator and Lgg is its
skew-symmetric part.

Thus, we can define the backward Euler—=SUPG formulation of the problem by substituting
the forms m, a, and F in (42) with

A NNy, hi N

stab( ) ,P’( )) ( Kze;h oK < s ,@(M(W))|LSS >K7
astap(W 0V p(w)) = a(w, oV p 5 ( LwV hic — K rgeV)

@) eV KX; (2 Gt
Fstab(UN; [J((d)) = F( E 0K <f7 ( )>‘LSS'UN>K )

KeTy,

where K are the elements which form the mesh 73 and f can be a source term of the advection—
diffusion equation or a lifting of the Dirichlet boundary data. For the analysis of stability and
convergence of the method we refer the reader to [26].

4.3. Numerical tests for stochastic parabolic problems. We now show some numerical
results of the stabilized RB method for stochastic parabolic PDESs, extending to the time-
dependent case the problems in sections 3.2.1 and 3.2.2. For the sake of exposition we will
show the results only for the offline—online stabilization. A few representative FE solutions
are provided in Figure 13 for the parabolic PG problem and in Figure 14 for the parabolic
front propagation test.

We show in Figures 15 and 16 the average error on a test set for both the parabolic
PG problem (a) and the parabolic PFS test (b), respectively, in the deterministic and the
stochastic case. The error is defined in (43), while the error estimator Ay is as in [18].
We compare in Figure 16 the classical RB algorithm (with uniform Monte Carlo sampling)
and the wRB algorithm (with sampling according to the distribution of ). The comparison
shows that, also for the parabolic problem, proper weighting and suitable sampling allow us
to improve the accuracy of the resulting reduced order model (especially in the case of the
parabolic front problem) and the reliability of the error estimator (in both test cases).

Similar results hold for the probabilistic mean indicator introduced in (34), which we
extend to the unsteady case as

J
(46) E[l[u — ui |1’ :;/DHUJN( — ()P () dp
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Figure 13. Plot of FE solution for a parabolic PG problem at different times at p1 =1 and po = 1-10%.
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Figure 14. Plot of FE solution for parabolic PFS problem at different times, u1 = 2 - 10*, p2 = 0.8.

and approximate with the Monte Carlo quadrature procedure. By doing this we obtain, given
the PG problem with an RB space of dimension 20, an error of 8.3248 - 1072 for the classic
greedy algorithm and obtain 7.6318 - 10~2 for the wRB algorithm, respectively. For the PFS
problem we have that the classic greedy algorithm produces an error of 0.3196, while the
weighted algorithm gives 0.2343.

We must make a short remark on computational times in the parabolic problem. In the PG
problem, for one true parabolic solution we need 132.382 seconds, while for the RB problem
with IV = 20 basis functions we need only 0.356224 seconds. For a PFS true solution we need
17.2846 seconds but only 0.125266 seconds for an RB solution with N = 20 basis functions.
These results justify all the computational costs of the offline phase.



STABILIZED WEIGHTED REDUCED BASIS METHODS 1499
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Figure 15. Greedy algorithms comparison for parabolic problems.
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Figure 16. Greedy algorithms comparison for parabolic problems.

5. Conclusions. In this work we have dealt with stabilization techniques for the approx-
imation of advection dominated problems using an RB approach in a stochastic framework,
both in the steady and unsteady case. To perform a stabilization in the RB algorithm, we have
studied the SUPG [42] stabilization for the FE method and introduced two RB stabilization
algorithms: the online-offline stabilization, which uses SUPG stabilized forms in both stages
(offline and online), and the offline-only stabilization, which uses the original (nonstabilized)
forms for the online stage. The underlying idea was to obtain a stable RB approximation from
the stable FE approximation, with reasonable computational times and, at the same time, a
very good accuracy.
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We then introduced stochastic equations and the wRB method [10]. We formulated a
stabilized wRB method for advection—diffusion problems with random input parameters. Nu-
merical test cases clearly highlight the importance of the weighting procedure, as well as the
necessity of a proper sampling of the parameter space, according to the probability distri-
bution of p. Moreover, we introduced a procedure to selectively enable online stabilization
when required. This allows us to reduce the number of terms to be assembled in the affine
expansion, with a negligible worsening of the error, which remains of the same order as that
for the previous strategies.

Finally, we have generalized these methods to parabolic problems, producing a stabilized
RB approach for unsteady cases [19, 37], starting from SUPG stabilized parabolic FE methods
[7, 28].

Possible further developments of this topic could be the application of these methods to
more complex geometries, e.g., non—affinely parametrized ones, requiring some empirical in-
terpolation preprocessing [6, 29]. Moreover, the method could be tested on higher dimensional
parameter spaces D, using Monte Carlo or quasi—-Monte Carlo strategies, and on other types
of probability distributions.

Acknowledgments. The computations in this work have been performed with the RBniCS
[5] library, developed at SISSA mathLab, which is an implementation in FEniCS [30] of several
reduced order modeling techniques; we acknowledge the developers of and contributors to both
libraries.
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