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We propose a general way to complete supersymmetric theories with operators below the unitarity
bound, adding gauge-singlet fields which enforce the decoupling of such operators. This makes it
possible to perform all usual computations, and to compactify on a circle. We concentrate on a
duality between an N = 1 SU(2) gauge theory and the N = 2 A3 Argyres-Douglas [1, 2], mapping
the moduli space and chiral ring of the completed N = 1 theory to those of the A3 model. We
reduce the completed gauge theory to 3d, finding a 3d duality with N = 4 SQED with two flavors.
The naive dimensional reduction is instead N = 2 SQED. Crucial is a concept of chiral ring stability,
which modifies the superpotential and allows for a 3d emergent global symmetry.

In gauge theories with four supercharges, many non-
perturbative properties of the infrared strongly coupled
fixed points are known, for instance the scaling dimen-
sions of 1

2 -BPS operators, i.e. operators in the chiral ring
[3–5]. This provides invaluable insights about generic
properties of renormalization group (RG) flows in quan-
tum field theories. Any new non-perturbative method to
analyze supersymmetric RG flows is of general interest.

Sometimes a BPS operator violates the bound imposed
by conformal invariance and unitarity, which in 4d (3d)
is ∆ > 1 (∆ > 1

2 ). The standard lore is that the operator
decouples and becomes free [6]: the infrared fixed point
is described by some interacting superconformal theory
(SCFT) plus a free chiral field. How to perform compu-
tations in such theories is however an open problem: it is
known how to perform a/Z-extremizations [3–5] or com-
pute supersymmetric indices/partition functions, but it
is not known how to compute, for instance, the chiral
ring or the moduli space of vacua.

In this note we propose a prescription to re-formulate
theories with decoupled operators: introduce a gauge-
singlet chiral multiplet βO for each operator O violating
the bound, and add the superpotential term βOO. Gauge
singlet fields entering the superpotential in this way are
usually said to “flip the operator O”. The F-term of
βO sets O = 0 in the chiral ring, there are no unitarity
violations and all usual computations can be performed.

This ”completion” isolates the interacting sector and
also allows to compactify dualities where at least one side
has decoupled operators. Unitarity bounds change as we
change the dimension of spacetime and what decouples in
higher dimension may not decouple in lower dimension,
so a compactification of dual theories without introduc-
ing the βO fields generically fails to produce a dual pair.

We check the validity of our proposal focusing on a
class of theories in four dimensions recently discovered in
[1, 2, 7]: certain N = 1 gauge theories exhibit unitarity
bound violations, the interacting sector is proposed to be
equivalent to a well-known class of N = 2 SCFT’s called

Argyres-Douglas (AD) theories [8–11], which cannot have
a manifestly N = 2 lagrangian description.

We focus on a simple case, the A3 AD theory, which
admits an N = 1 lagrangian description in terms of an
SU(2) gauge theory with an adjoint and two doublets [2].

First we point out that the superpotential as written
in [2, 7] are inconsistent: a superpotential term must be
discarded, in order to satisfy a chiral ring stability crite-
rion as in [12]. Our consistent superpotential displays the
correct global symmetry and allows to map the moduli
space of vacua and the chiral ring across the duality.

The naive dimensional reduction of the 4d RG flow
described in [2] lands on N = 2 SQED with two flavors.
The dimensional reduction of the version with the βO
fields instead flows to N = 4 SQED with two flavors,
displaying enhanced supersymmetry.

We generalize this example to SU(N) (dual to A2N−1

AD) in [13], where we also discuss the 3d mirrors.

UNITARITY BOUNDS AND FLIPPING FIELDS

[2] started from the 4d theory N = 2 SU(2) SQCD
with 8 doublets, applied a certain procedure that breaks
half of the supersymmetry, and in the IR found an N = 1
lagrangian: a SU(2) gauge theory with an adjoint φ, two
doublets (q, q̃) various singlets and superpotential

W = tr(q̃φ4q) + α0tr(q̃q) + α1tr(q̃φq) + α2tr(q̃φ
2q) (1)

A-maximization for theory (1) shows that the operators
tr(φ2), α1, α2 violate the unitarity bound R>Rbound= 2

3 .
In theories where an operator O violates the bound, it

is customary to compute a, c central central charges sub-
tracting the contribution of a chiral field with R-charge
R[O]. Similarly, partition functions are computed divid-
ing by the contribution of a chiral field with R-charge
R[O]. Using these recipes, the leftover interacting sector
in (1) was argued to be dual to A3 AD theory, with α0

mapping to the Coulomb branch generator [2].
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Let us emphasize that the above recipes do not give a
complete description of the theory. Our proposal to deal
with such cases is:

for each chiral ring operator O with R[O]≤Rbound, add
to the theory a gauge invariant chiral multiplet βO, and
add to the superpotential a ”flipping” term δW = βO ·O.

This formulation of the theory is complete, the F-
terms of βO imply that O is zero in the chiral rings, so
there are no unitarity violations, moreover all standard
computations can be performed.

As far as the computations which are possible just stat-
ing that O is decoupled, our procedure is equivalent, as
we now show.

The 4d a and c central charges are certain linear combi-
nations of the cubic ’t Hooft anomalies tr(R) and tr(R3)
[14] (traces are over all elementary fermions). Since

R[βO] = 2−R[O] , (2)

adding to tr(R3) (or to tr(R)) a contribution of βO
is equivalent to subtracting the contribution of O. So
tr(R3), tr(R), c and a are the same. This is also true
at the level of trial central charge, when performing a-
maximization, so the prescription proposed in [6] to im-
plement the decoupling gives the same result.

Similarly, the 4d superconformal index obtained with
our prescription is the same: denoting by Γell(r) the
contribution of a chiral field with R-charge r, we have
Γell(r)Γell(2 − r) = 1. So adding the contribution of
βO, i.e. multiplying the index by Γell(R[βO]), is equiva-
lent to removing the contribution of O, i.e. dividing by
Γell(R[O]). Analogous arguments hold for 3d supercon-
formal indices or S3 partition functions.

Example As a simple check of our proposal, let us
consider in 4d N = 2 SU(Nc) Super Yang-Mills: it is
well known that in the IR it is described by Nc − 1 free
N = 2 vector multiplets. In N = 1 terms, the theory is
SU(Nc) with an adjoint field φ and W = 0. The NSVZ
beta function is proportional to Ncrφ, where rφ is the R-
charge of the adjoint field. So an IR fixed point requires
rφ = 0: the Nc − 1 operators tr(φj), j = 2, 3, . . . , N
violate the unitarity bound and become free N = 1 chiral
multiplets. Adding the corresponding flipping fields βj

W =

N∑
j=2

βjtr(φ
j)

we isolate the remaining sector. Since gauginos have R-
charge 1, the contribution to tr(R3) and tr(R) of a chiral
field of R-charge 2 is the same of the contribution of
an N = 1 vector multiplet. Since rφ = 0, in the a, c
central charges, the contribution of the gauginos cancel
the contribution of the adjoint field φ, the left-over is the
βj ’s, which, having R-charge 2, are equivalent to Nc − 1
freeN = 1 vector multiplets. So our prescription predicts
the correct amount of free fields.

CHIRAL RING STABILITY

Applying the above prescription to (1), we need to add
one flipping field, that we call β2, for tr(φ2) (α1, α2 triv-
ially decouple), so we get

W = tr(q̃φ4q) + α0tr(q̃q) + β2tr(φ
2) (3)

We claim that this superpotential is inconsistent, since it
does not satisfy a criterion of chiral ring stability.

The data that define a gauge theory are the matter
content and the full Lagrangian. With four supercharges,
usually the data are only the matter content and the su-
perpotential, which is used to compute protected quan-
tities like R-charges, chiral rings etc. If a superpotential
does not satisfy chiral ring stability, problematic terms
must be dropped (which means that they belong to the
Kahler, unprotected, part of the Lagrangian), keeping
such terms when computing protected quantities gener-
ally leads to wrong results, so superpotentials violating
the chiral ring stability criterion are inconsistent.

First, let us state the criterion. Starting from a theory
T with superpotential WT =

∑
iWi (where each term

Wi is gauge invariant), one needs, for each i, to:

• consider the modified theory Ti, where the termWi

is removed from W

• check if the operator Wi is in the chiral ring of Ti

If one of the terms Wi is not in the chiral ring of Ti, it
must be discarded from the full superpotential WT .

Notice that we are not requiring that Wi is a relevant
deformation of Ti, only that it is in the chiral ring of Ti.

A similar criterion of chiral ring stability was formu-
lated in [12], where it was also linked to the algebro-
geometric criterion of K-stability. The difference w.r.t.
[12] is that we are not considering the central charges of
the ”test chiral rings”. It would be interesting to study in
more detail this procedure, and if our slightly simplified
approach is equivalent to the one of [12].

Dropping the superpotential term Let us study the
superpotential (3). As any traceless 2 × 2 matrix,
the adjoint field φ satisfies the algebraic relation φ2 =
−det(φ)I2×2, which implies tr(q̃φ4q) = 1

4 tr(φ
2)tr(q̃q).

Let us now consider the modified theory obtained by
removing the term tr(q̃φ4q) from (3). In the modified
theory, tr(q̃φ4q) vanishes in the chiral ring, either for
the F-terms of α0 (tr(q̃q) = 0), or for the F-terms of
β2 (tr(φ2) = 0). So tr(q̃φ4q) does not pass the test of
chiral ring stability and must be discarded. The correct
superpotential is

Wstable = α0tr(q̃q) + β2tr(φ
2) (4)

It turns out that the relation imposed on the R-charges
by tr(q̃φ4q) is equal to the relation from the NSVZ β-
function, so a-maximization for theories (4) and (3) gives
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the same answer. tr(q̃φ4q) would however break an
SU(2)F global symmetry necessary for the mapping to
the A3 AD model, moreover there is a crucial difference
between (4) and (3) when compactifying to 3d. Our two
modifications of the Lagrangians of [1, 2] make all the
properties of the IR fixed point evident, in 4d and in 3d.

Double dualities We can provide a check of the valid-
ity of the chiral ring stability procedure using a ”double
duality”: dualize a theory T and get T̃ , then dualize T̃
again, getting ˜̃T . Usually ˜̃T = T , but it might happen
that some fields in the dual theory T̃ can be integrated

out, and as a consequence ˜̃T , compared to T , lacks some
superpotential terms. The terms that disappeared in the
double duality should be those which violate chiral ring
stability. Let us show an example of this phenomenon in
3d: start from U(1) N = 2 with 2 flavors p1, p2 and

W = φ1p1p̃1 + φ2p2p̃2 + φ 2
2 p1p̃1 . (5)

The last term does not satisfy the stability condition: if
we remove φ 2

2 p1p̃1, in the modified theory the F-terms
of φ1 imply that φ 2

2 p1p̃1 = 0 in the chiral ring.
Let us now ”double dualize” (5) as it is. The 3d mirror

dual [15] of U(1) with two flavors and W = 0 is U(1)
with two flavors Q1, Q2 and W = Φ1Q1Q̃1 + Φ2Q2Q̃2.
pip̃i map to the singlets Φi, so the 3d mirror dual of (5)
is U(1) with two flavors and

W̃ = Φ1Q1Q̃1 + Φ2Q2Q̃2 + φ1Φ1 + φ2Φ2 + φ 2
2 Φ1 . (6)

Integrating out the massive fields leaves W̃ = 0. Taking
the mirror again, we go back to U(1) with 2 flavors and

W = φ1p1p̃1 + φ2p2p̃2 :

the inconsistent term φ 2
2 p1p̃1 in (5) indeed disappears.

COMPLETE 4d CHIRAL RING

Let us go back to our SU(2) gauge theory example

Wstable = α0tr(q̃q) + β2tr(φ
2) (7)

Since we removed tr(q̃φ4q), there is a non abelian
global symmetry SU(2)F under which {q, q̃} is a
doublet. The gauge invariant tr(q̃q) is a SU(2)F -
singlet, while {εabqa (φrq)b, tr(q̃φrq), εab(q̃φr)a q̃b} form
a SU(2)F -triplet. There is also an abelian symmetry
U(1)T that mixes with U(1)R. A-maximization gives

U(1)4d
R U(1)T SU(2)F

φ 2
9

2
9 1

q, q̃ 5
9 − 4

9 2
β2

14
9 − 4

9 1
α0

8
9

8
9 1

(8)

where we normalized the U(1)T so that R[φ] = T [φ].

Let us try to give a vev to β2: φ becomes massive,
and the IR theory is SU(2) with two doublets and super-
potential W = α0tr(q̃q). This theory quantum mechan-
ically generates a ADS superpotential, and has no vac-
uum. We conclude that β2 cannot take a vev for quantum
reasons.

Since φ2 = 0 in the chiral ring, as a 2 × 2 ma-
trix, the dressed mesons tr(q̃φr1q) and dressed baryons
εab (φr2q)a (φr3q)b vanish in the chiral ring if any ri > 1.

The moduli space of vacua is described in terms of
only four gauge invariant operators: α0 (with ∆ = 4

3 and

R = T ) and the SU(2)F -triplet {B = εab q
a(φq)b, B̃ =

εab (q̃φ)aq̃b,M = tr(q̃φq)} (with ∆ = 2 and R = −2T ).
The SU(2)F -triplet satisfies the relation

BB̃ = εab q
a(φq)bεcd (q̃φ)cq̃d =M2 (9)

(we used that tr(q̃q) = 0 in the chiral ring), which is
the defining equation of C2/Z2, known to be the Higgs
branch of A3 AD. α0 maps to the Coulomb branch gener-
ator of A3 AD [2]. The product between α0 and anyone
among B, B̃,M vanishes, due the F-terms of q and q̃. We
conclude that (4) and A3 AD CFT have the same mod-
uli space of vacua: a one-complex dimensional Coulomb
branch and a two-complex dimensional Higgs branch in-
tersecting at the origin.

We also propose that the holomorphic operator β2,
which we saw cannot take a vev, is the superpartner of
the operator α0 under the emergent N = 2 supersym-
metry. 1

2 -BPS N = 2 multiplets for Coulomb branch
operators indeed contain two complex scalars, with di-
mension ∆ and ∆ + 1, respectively. (For instance, in the
N = 2 SCFT SU(2) with 4 flavors, they are tr(Φ2) with
∆ = 2 and tr(W 2

α) with ∆ = 3, the latter cannot take a
vev.) From (8) we indeed see R[β2] = R[α0] + 2

3 . This
fact also implies that β2 vanishes in the chiral ring.

DOWN TO 3d: ABELIANIZATION

Let us compactify the 4d story to 3d. The 3d mirror
[16] of A3 AD reduced to 3d has been proposed [17, 18] to
be the N = 4 supersymmetric U(1) with 2 flavors P1, P2,

WU(1)−[2]N=4
= Φ(P1P̃1 + P2P̃2) (10)

This theory, that we denote U(1)− [2]N=4, happens to
be self-mirror, so we expect to find U(1)− [2]N=4 also
analyzing the compactification on a circle of our theory
(4), which is 3d SU(2) with two doublets and one adjoint

W3d,stable = α0tr(q̃q) + β2tr(φ
2) (11)

Also in 3d β2 is not in the chiral ring: if we give a vev
to β2, φ becomes massive, and the theory is SU(2) with
1 flavor. SU(2) with 1 flavor in 3d is described by a
quantum modified moduli space [15] MSU(2) tr(q̃q) = 1
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(where MSU(2) is the basic monopole with GNO charges
{+1,−1}), which is inconsistent with the F-terms of α0.

No monopole superpotential is generated compactify-
ing on S1, since the only superpotential term that can
soak up the zero modes of the adjoint field φ is β2tr(φ

2),
generating β2MSU(2) [19]. But a term β2MSU(2) does
not satisfy the chiral ring stability criterion.

The absence of the terms tr(q̃φ4q) and β2MSU(2) is
crucial: there is a 3d accidental U(1) global symmetry

U(1)R U(1)q U(1)T ′ SU(2)F
φ rφ 0 1 1
q, q̃ rq

1
2 − 1

2 2
β2 2− 2rφ 0 −2 1
α0 2− 2rq −1 1 1

(12)

T ′ is chosen so that the SU(2)F -triplet is neutral.
Let us study the S3 partition function [4, 5]. The con-

tribution of a chiral multiplet with r-charge r is el(1−r),
where ∂zl(z) = −πzcot(πz). The S3 partition function
for SU(2) with an adjoint of r-charge rφ and a pair of
doublets q, q̃ of r-charge rq is

ZSU(2)[rφ, rq, b] =
el(−1+2rq)el(−1+2rφ)

2!
· (13)

·
∫ +∞

−∞
el(1−rφ±2iz)el(1−rφ)(2sinh(2πz))2el(1−rq±b±iz)dz

el(−1+2rq)el(−1+2rφ) is the contribution of the two singlets
α0 and β2, and b is the SU(2)F fugacity.

We performed numerical Z-extremization in the two
variables rφ, rq. ZSU(2)[rφ, rq, b] has a critical point at

rq = 1
2 , rφ = 0. (This result would have been in con-

flict with the superpotential terms tr(q̃φ4q) or β2MSU(2),
which would impose the constraint 2 = 4rφ + 2rq, and
the numerical result would be rφ = rq = 1

3 .)
Using the numerical input that rφ = 0, we can see

analytically that something interesting happens to the
S3 partition function. Since in the limit rφ → 0,
el(1−rφ±2iz)(2sinh(2πz))2 = 1 and el(−1+2rφ)+l(1−rφ)) =
2, the contributions from φ and β2, at rφ → 0 cancel
against the Haar measure and the Weil factor 2!. The in-
tegrand in ZSU(2)[rφ → 0, rq, b] reduces to the integrand
of the partition function of U(1)−[2]N=4,

ZU(1)−[2]N=4
[rP , B, η]=el(−1+2rP )

∫ +∞

−∞
el(1−rP±B±iz)e2πηzdz ,

computed at η = 0. We interpret this reduction at the
level of the integrands of the S3 partition functions as
a strong indication that the full physical theory (11) is
equivalent to the Abelian theory U(1)−[2]N=4.

If rφ > 0, we checked numerically the equality among
the S3 partition functions in 3 variables:

ZSU(2)[rφ, rq, b]=ZU(1)−[2]N=4
[rP =rq +

rφ
2
, B=b, η=rφ]

The precise mapping between the 3 variables can be un-
derstood from the mapping of the chiral rings, that we
now proceed to study.

Compared to 4d, in 3d there are additional chiral ring
generators: the monopole operators, that can also be
’dressed’ by the adjoint field. Dressed monopoles have
been studied for non-Abelian gauge theories in [20], us-
ing Hilbert Series techniques [21]. The analysis was done
for N = 4 gauge theories, but since the result is al-
gebraic in nature, we can adapt it to our case. For
N = 4 SU(2) gauge theories, the monopoles generat-
ing the Coulomb Branch are MSU(2) and MSU(2) dressed
by one factor of φ, that we denote {MSU(2)φ}. In our
N = 2 case, these two monopoles pair up with α0 to form
the SU(2)topological triplet generating the 3d Coulomb
Branch of the Abelian theory:

{α0, {MSU(2)φ},MSU(2)} ↔ {M+
U(1),Φ,M

−
U(1)} (14)

The SU(2)F -triplet instead map to the Higgs Branch:

{B,M, B̃} ↔ {P1P̃2, P1P̃1−P2P̃2, P2P̃1} (15)

Concluding, we showed that all the chiral generators map
according to the Abelianization duality. We are unable to
determine all the chiral ring relations, we notice that the
duality predicts the relation α0 ·MSU(2) = {MSU(2)φ}2.

The UV global symmetries (U(1)R×U(1)q)×U(1)T ′×
SU(2)F of the SU(2) gauge theory enhance in the IR to
SO(4)R × SU(2)topological × SU(2)flavor.

Maruyoshi-Song procedure in 3d: only N = 2 susy

If we repeat the procedure of Maruyoshi and Song in
3d, or if we naively reduce (1) from 4d, we find a theory
with the same superpotential as in (1):

Wtrial = tr(q̃φ4q) + α0tr(q̃q) + α1tr(q̃φq) + α2tr(q̃φ
2q)
(16)

First we need to consider chiral ring stability. Using the
relation φ2 = −det(φ)I and the F-terms of α0 (tr(q̃q) =
0), it is easy to see that both the first and last term in (16)
vanish in the modified chiral rings, so these two terms
must be discarded. Z-extremization in two variables now
gives rφ ' 0.2088, rq ' 0.4698, so now tr(φ2) violates the
unitarity bound r > 1

2 : a singlet field β2 flipping tr (φ2)
must be introduced. For the complete and stable theory

W = α0tr(q̃q) + α1tr(q̃φq) + β2tr(φ
2) , (17)

and Z-extremization gives rφ = 0, rq ' 0.5918.
(17) is dual to N = 2 U(1) with 2 flavors Q1, Q2 and

W = Φ1Q1Q̃1 + Φ2Q2Q̃2 (18)

The chiral ring generators of (17) and (18) map as follows

{B, B̃} ↔ {Q1Q̃2, Q2Q̃1}
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{M, {Mφ}, α0, α1} ↔ {M+
U(1),Φ1,Φ2,M

−
U(1)}

In summary, in order to compactify the 4d duality be-
tween N = 1 gauge theory and the N = 2 AD model, we
first need to introduce the βO flipping fields, then com-
pactify. If we naively compactify the non-Abelian N = 1
theory without the βO fields, there is no enhancement of
supersymmetry, i.e. the 4d dual pair does not descend
to a 3d dual pair. This obstruction to compactification
of dualities is unrelated to the emergence of monopole
superpotentials discussed in detail in [22].
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