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Fundamental y Matemáticas, Universidad de Salamanca,

Plaza de la Merced 1-4, 37008 Salamanca, España

E-mail: beagra@usal.es

Abstract. After reviewing some “fundamental group schemes” that can be attached to

a variety by means of Tannaka duality, we consider the example of the Higgs fundamental

group scheme, surveying its main properties and relations with the other fundamental

groups, and giving some examples.

1. Introduction

As the usual fundamental group is not well suited to study schemes equipped with the

Zariski topology, Grothendieck introduced in [11] the so-called étale fundamental group.

The usual fundamental group of a space X may be regarded as the group of deck transfor-

mations of the universal covering of X. Heuristically, one replaces covering spaces by finite

étale covers; however, in this case there is no universal object, so that one needs to take

an inverse limit. More technically, given a scheme X, which one assumes to be connected

and locally noetherian, and after fixing a geometric point x of X, one considers the set of
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pairs (p, y), where p : Y → X is a finite étale cover, and y ∈ Y is a geometric point such

that p(y) = x. The set I of such pairs is partially ordered by the relation (p, y) ≥ (p′, y′)

if there is a commutative diagram

Y
f
//

p   

Y ′

p′

��
X

with y′ = f(y). Then one defines

πét
1 (X, x) = lim←−

i∈I
AutX(pi, yi).

If X is a scheme of finite type over C, the étale fundamental group πét
1 (X, x) is the profinite

completion of the topological fundamental group π1(X, x).

In spite of the naturalness of its definition, the étale fundamental group, for a field of

positive characteristic, fails to enjoy some quite reasonable properties; for instance, it is

not a birational invariant, and is not necessarily zero for rational varieties. To circumvent

these undesirable features, M.V. Nori introduced another kind of “fundamental group”

(which coincides with the étale fundamental group for fields of characteristic zero) [23].

One of the properties that make this fundamental group particularly interesting is that it

is introduced in terms of the so-called Tannaka duality. Nori considered, on a scheme X

over a field k, vector bundles E having the following property: there exists a Γ-torsor P

on X, where Γ is a finite group, such that the pullback of E to P is trivial. Such vector

bundles are said to be essentially finite. The category of essentialy finite vector bundles on

X, with the functor to the category Vectk of finite-dimensional vector spaces over k given

by E 7→ Ex, where Ex is the fibre over a fixed geometric point x of X, is an example of

a neutral Tannakian category over k. Any such category is equivalent to the category of

representations of a group scheme over k ([9], and see Section 2.2). This group scheme is

by definition Nori’s fundamental group scheme πN1 (X, x).

Two more “fundamental groups” have been associated with a variety in terms of Tan-

naka duality. Langer [13, 14] considered the category of numerically flat vector bundles

(i.e., vector bundles that are numerically effective together with their duals). The asso-

ciated fundamental group scheme was denoted by πS1 (X, x) (this group was introduced

in the case of curves also in [3]). For varieties over the complex numbers, Simpson con-

sidered the category of semi-harmonic bundles, i.e., semistable Higgs vector bundles with
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vanishing rational Chern classes [24, 25]. The associated fundamental group scheme was

denoted πalg
1 (X, x); quite interestingly, it is the proalgebraic completion of the topological

fundamental group. All these fundamental groups are related by morphisms according to

the scheme

πalg
1 (X, x) � πS1 (X, x) � πN1 (X, x) � πét

1 (X, x)

where each arrow is a faithfully flat morphism.

In [4, 5] we introduced notions of numerical effectiveness and numerical flatness for Higgs

bundles. The definition of these notions stems from the remark that the universal quo-

tient bundles over the Grassmann bundles Grs(E) of a numerically effective vector bundle

are numerically effective (recall that the sections of the Grassmann bundle Grs(E) → X

of a vector bundle E on X are in a one-to-one correspondence with rank s locally free

quotients of E). Given a Higgs vector bundle E = (E, φ), we consider closed subschemes

Grs(E) ⊂ Grs(E) that analogously parameterize locally free Higgs quotients of E. Then

E is said to be H-numerically effective if the universal Higgs quotients on Grs(E) are H-

numerically effective, according to a definition which is recursive on the rank. Finally,

a Higgs bundle is said to be H-numerically flat if E and its dual Higgs bundle E∗ are H-

numerically effective. H-numerically flat Higgs bundles make up again a neutral Tannakian

category; the corresponding group scheme is denoted by πH1 (X, x) [2].

Numerically flat vector bundles, if equipped with the zero Higgs field, are H-numerically

flat, so that there is a faithfully flat morphism πH1 (X, x) � πS1 (X, x). The relation of

πH1 (X, x) with Simpson’s proalgebraic fundamental group πalg
1 (X, x) is more subtle (see

Section 2.2). Again, since semi-harmonic bundles are H-numerically flat, there is a faith-

fully flat morphism πH1 (X, x) � πalg
1 (X, x). The fact that the groups may be isomorphic is

related with a conjecture about the so-called curve semistable Higgs bundles — i.e., Higgs

bundles that are semistable after pullback to any smooth projective curve [5, 8, 15]. The

main purpose of this note is to gather and briefly discuss what is presently known about

this question.

In the preliminary Section 2 we recall the definitions and main properties of the profinite

and proalgebraic completions of discrete groups, and the definition of Nori’s, Langer’s and

Simpson’s fundamental groups. Section 3 reviews the introduction of the Higgs fundamen-

tal group. The final Section 4 provides some examples.

Acknowledgements. We thank V. Lanza and T. Pantev for very useful discussions on

this topic, and the referee for valuable suggestions which improved the presentation.
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2. Preliminaries

2.1. Profinite and proalgebraic completions. We recall here the construction of profi-

nite and proalgebraic completions of groups. They are inverse limits of systems of finite

and algebraic groups, respectively. They enjoy natural universal properties, and in both

cases there is a natural homomorphism from the group to its completion with dense image.

References for the two constructions are [18] and [1].

Definition 2.1. A profinite group is a topological group which is the inverse limit of an

inverse system of discrete finite groups. The profinite completion Ĝ of a group G is the

inverse limit of the system formed by the quotient groups G/N of G, where N are normal

subgroups of G of finite index, partially ordered by inclusion.

For instance, the profinite completion of Z is

Ẑ =
∏
p

Z(p) ,

where p runs over the prime numbers, and Z(p) is the ring of p-adic integers [18].

Every finite group, equipped with the discrete topology, is profinite, and therefore coin-

cides with its profinite completion.

Definition 2.2. A proalgebraic group over k is the inverse limit of a system of algebraic

groups over k. A proalgebraic completion of a discrete group Γ consists of a proalgebraic

group A(Γ) over k with a homomorphism ρ : Γ → A(Γ) satisfying the following universal

property: for any proalgebraic group H and any homomorphism ρH : Γ→ H there exists a

unique morphism f : A(Γ)→ H such that ρH = f ◦ ρ.

The universal property in Definition 2.2 ensures that a proalgebraic completion for Γ is

unique up to unique isomorphism. The image of ρ is Zariski dense in A(Γ).

One way of constructing the proalgebraic completion A(Γ) is to take the closure of

the diagonal image of Γ into the product of all the images of all finite dimensional k-

representations of Γ. Another construction is obtained via Tannaka duality (see Section

2.2), as the tensor product preserving automorphisms of the forgetful functor from the

category of finite dimensional Γ-modules to the category of finite dimensional k-vector

spaces.
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When Γ is abelian, its proalgebraic completion A(Γ) is quite easily described as a direct

product [1, Example 2]

(1) A(Γ) = U(Γ)× T × Γ̂

where U(Γ) = Hom(Γ,k)∨, while T is a protorus (i.e., the inverse limit of a system of tori)

whose group of characters is the torsion-free quotient of Hom(Γ,k∗), and Γ̂ is the profinite

completion of Γ. In particular, when Γ = Z, then U(Z) = Ga(k) and the character group

of T is Gm(k):

(2) A(Z) = Ga(k)× T × Ẑ.

2.2. Fundamental groups. Nori’s notion of fundamental group scheme may be seen

as a powerful generalization of the well-known fact that flat vector bundles on (say) a

differentiable manifold X correspond to representations of the topological fundamental

group of X. The generalization is made in terms of Tannaka duality, i.e., the fact that

the categories of representations of an affine group scheme can be characterized as abelian

tensor categories satisfying some suitable conditions [9].

We recall that an abelian k-linear tensor category C is rigid [9, Def. 1.7] if

• Hom and ⊗ satisfy a distributive property over finite families, i.e., for any pair of

finite families {Ai}i∈I and {Bi}i∈I of objects in C the morphisms

⊗i∈I Hom(Ai, Bi)→ Hom(⊗i∈IAi,⊗i∈IBi)

are isomorphisms;

• all objects are reflexive, i.e., the natural map to their double dual is an isomor-

phism.

A neutral Tannakian category over a field k is a rigid abelian k-linear tensor category

C together with a faithful exact k-linear tensor functor ω : C −→ Vectk, where Vectk is

the category of k-vector spaces, and ω is called the fibre functor. Then, there exists an

affine group scheme G over k such that C is equivalent to the category Repk(G) of k-linear

representations of G.

Given a scheme over a field k, Nori introduced his fundamental group scheme πN1 (X, x)

as the affine group scheme representing the Tannakian category of essentially finite vector

bundles: a vector bundle E on X is said to be essentially finite if there is a Γ-torsor P over

X (where Γ is a finite group) such that the pullback of E to P is trivial [23, 22]. When k
has characteristic 0, πN1 (X, x) coincides with Grothendieck’s étale fundamental group [11],
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which is isomorphic to the profinite completion of the topological fundamental group. In

positive characteristic Nori’s group gives an improvement with respect to the étale group,

as the latter does not take into account inseparable covers.

Another kind of fundamental group scheme was introduced by Langer [13, 14]. Given a

smooth variety X over an algebraically closed field k, one considers numerically effective

vector bundles, i.e., vector bundles E on X such that the hyperplane bundle of the pro-

jectivization PE of E is numerically effective. Moreover, a vector bundle E is numerically

flat if both E and its dual bundle E∗ are numerically effective. The category NF(X) of

numerically flat vector bundles on X is a neutral Tannakian category, with a fibre functor

which takes a numerically flat vector bundle E to its fibre Ex at x. Then πS1 (X, x) is the

affine group scheme representing the Tannakian category NF(X).

These various fundamental groups are related by morphisms according to the scheme

πS1 (X, x) � πN1 (X, x) � πét
1 (X, x).

These morphisms are actually faithfully flat. Moreover, they are isomorphisms when k has

characteristic zero.

In the case k = C Simpson also introduced the algebraic fundamental group πalg
1 (X, x),

which is the proalgebraic completion of the topological fundamental group. It is Tannaka

dual to the category of semistable Higgs bundles on X with vanishing Chern classes (see

next Section). Since numerically flat vector bundles are semistable and have vanishing

Chern classes [10], there is a natural morphism πalg
1 (X, x) � πS1 (X, x), which is again a

faithfully flat morphism.

2.3. Higgs bundles and the algebraic fundamental group. Let X be a smooth pro-

jective variety of dimension n over an algebraic closed field k of characteristic zero, and

denote by Ω1
X the cotangent bundle of X. Let L be a very ample line bundle on X, and

denote by H its numerical class. The degree of a coherent OX–module F is defined as

degF = c1(F ) ·Hn−1,

and if rkF 6= 0, one defines the slope of F to be

µ(F ) =
degF

rkF
.

Definition 2.3. A Higgs sheaf E on X is a pair (E, φ), where E is a torsion-free coherent

sheaf on X and

φ : E −→ E ⊗ Ω1
X
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is a homomorphism of OX-modules such that φ∧ φ = 0. A Higgs subsheaf of a Higgs sheaf

E = (E, φ) is a pair (F, φ′), where F is a subsheaf of E such that φ(F ) ⊂ F ⊗ Ω1
X , and

φ′ = φ|F . A Higgs bundle is a Higgs sheaf E such that E is a locally free OX-module. If

E = (E, φ) and F = (F, ψ) are Higgs sheaves, a morphism f : E −→ F is a homomorphism

of OX-modules f : E −→ F such that the diagram

E
f

//

φ
��

F

ψ
��

E ⊗ Ω1
X

f⊗id
// F ⊗ Ω1

X

commutes.

Definition 2.4. A Higgs sheaf E = (E, φ) is semistable (respectively, stable) if µ(F ) ≤
µ(E) (respectively, µ(F ) < µ(E)) for every Higgs subsheaf (F, φ′) of E with 0 < rkF <

rkE.

As mentioned earlier, the category which has semistable Higgs bundles with vanishing

Chern classes on X as objects, and morphisms of Higgs sheaves as morphisms, is a neutral

Tannakian category SH(X) (the fibre functor is the usual one).1 The algebraic fundamental

group πalg
1 (X, x) is the group scheme representing this category. In [24] Simpson proves

that πalg
1 (X, x) is actually the proalgebraic completion of the fundamental group π1(X, x)

of X.

3. Higgs fundamental groups

3.1. Numerically flat Higgs bundles. We want to introduce one more “fundamental

group” defined in terms of Higgs bundles. We shall introduce another Tannakian category

and the fundamental group scheme representing it. This category has as objects a certain

class of Higgs bundles satisfying a property that we call H-numerical effectiveness.

Let us start by recalling the definition of numerical effective ordinary vector bundles on

a projective variety X.

1The notation for this category comes from the fact that Simpson called these Higgs bundles semi-

harmonic [25].



8

Definition 3.1. (i) A line bundle L on X is said to be numerically effective (nef for

short) if, for every pair (C, f), where C is a smooth projective irreducible curve

and f : C −→ X is a morphism, the line bundle f ∗L on C has nonnegative degree.

(ii) A vector bundle E is numerically effective if the hyperplane line bundle OP(E)(1)

on the projectivization P(E) of E is numerically effective.

The main properties of numerically effective vector bundles are described in [12, 16, 17].

In order to give the definition of Higgs numerical flatness it is necessary to introduce

the notion of Higgs Grassmann bundle. Let E be a vector bundle of rank r on X, and let

s < r be a positive integer. The Grassmann bundle Grs(E) on X parameterizes quotients

of fibres of E of dimension s. Let ps : Grs(E) −→ X be the natural projection, then there

exists a universal short exact sequence

(3) 0 −→ Sr−s,E
ψ−→ p∗sE

η−→ Qs,E −→ 0

of vector bundles on Grs(E), with Sr−s,E the rank r− s universal subbundle and Qs,E the

rank s universal quotient. Given now a Higgs bundle E = (E, φ), we have the closed sub-

schemes Grs(E) ⊂ Grs(E) parameterizing rank s locally free Higgs quotients, i.e., locally

free quotients of E whose corresponding kernels are φ-invariant. In other words, Grs(E)

(the Grassmannian of locally free rank s Higgs quotients of E) is the closed subscheme of

Grs(E) defined by the vanishing of the composed morphism

(η ⊗ Id) ◦ p∗s(φ) ◦ ψ : Sr−s,E −→ Qs,E ⊗ p∗sΩ1
X .

Let ρs := ps|Grs(E) : Grs(E) −→ X be the induced projection. The restriction of (3) to

Grs(E) provides the universal exact sequence

(4) 0 −→ Sr−s,E
ψ−→ ρ∗sE

η−→ Qs,E −→ 0,

where Qs,E := Qs|Grs(E) is equipped with the quotient Higgs field induced by the Higgs field

ρ∗sφ. The universal property satisfied by Grs(E) is that given any morphism of k-varieties

f : T → X, f factors through Grs(E) if and only if the pullback f ∗(E) admits a rank s

Higgs quotient. In that case the pullback of the above universal sequence on Grs(E) gives

the desired quotient of f ∗(E).

Definition 3.2. A rank one Higgs bundle E is said to be Higgs-numerically effective (H-nef

for short) if it is numerically effective in the usual sense. If rkE ≥ 2, we inductively define

H-nefness by requiring that
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(i) all Higgs bundles Qs,E are Higgs-nef (see (4)), and

(ii) the determinant line bundle det(E) is nef.

If both E and E∗ are Higgs-numerically effective, E is said to be Higgs-numerically flat

(H-nflat).

Definition 3.2 immediately implies that the first Chern class of an H-numerically flat

Higgs bundle is numerically equivalent to zero.

3.2. The Higgs fundamental group. Given a smooth projective variety X over a field k
of characteristic zero, we consider the category HNF(X) whose objects are H-numerically

flat Higgs bundles on X, and morphisms are morphisms of Higgs sheaves. By Proposition

3.7 in [2] kernels and cokernels in these categories are locally free, which implies that

HNF(X) is an abelian category. Another important property is the fact that the tensor

product of H-nef Higgs bundles is H-nef [2]. The proof of this is based on the existence of

the Harder-Narasimhan filtration for semistable Higgs bundles, the fact that the pullback

by a surjective morphism of a Higgs bundle is H-nef if and only if the Higgs bundle is

H-nef, and that every Higgs quotient of an H-nef Higgs bundle is H-nef. So we have

Theorem 3.3. The category HNF(X), with the usual fibre functor, is a neutral Tannakian

category.

Definition 3.4. [2, Def. 4.2] Let x ∈ X. The Higgs fundamental group scheme πH1 (X, x)

is the affine group scheme representing the category HNF(X).

The natural inclusion NF(X) ↪→ HNF(X) induces a faithfully flat homomorphism of

group schemes πH1 (X, x) � πS1 (X, x).

We recall from [2] some properties of the fundamental Higgs scheme.

• If f : X ′ −→ X is a faithfully flat morphism of projective varieties over k, with

f∗OX′ ' OX and f(x′) = x, then the induced morphism πH1 (X ′, x′) −→ πH1 (X, x)

is a faithfully flat morphism.

• If πH1 (X, x) = {e}, the category HNF(X) is equivalent to the category Vectk of

finite-dimensional vector spaces, so that all H-nflat Higgs bundles on X are trivial.

• If the natural morphism πH1 (X, x) → πS1 (X, x) is an isomorphism, the categories

HNF(X) and NF(X) are equivalent, so that all H-nflat Higgs bundles on X have

zero Higgs field.
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• If X, Y are projective varieties over k, and x, y are points in X, Y , respectively,

there is a naturally defined morphism

πH1 (X ×k Y, (x, y)) −→ πH1 (X, x)× πH1 (Y, y).

3.3. Higgs varieties. The Higgs fundamental scheme is related to a conjecture, which

was established in [5] (see [15] for a review), about an extension of a result by [21] which

generalizes to higher dimensions Miyaoka’s semistability criterion for bundles on curves

[19].

Let X be a smooth complex projective variety with a polarization H. If E is a vector

bundle on X we denote by ∆(E) ∈ H4(X,Q) its discriminant, i.e., the characteristic class

∆(E) = c2(E)− r − 1

2r
c1(E)2,

where r = rkE.

Theorem 3.5. [21] The following conditions are equivalent:

(i) E is semistable, and ∆(E) ·Hn−2 = 0;

(ii) for any morphism f : C → X, where C is a smooth projective curve, the vector

bundle f ∗(E) is semistable.

The property in (ii), both for ordinary and Higgs bundles, will be called curve semista-

bility.

Theorem 2 in [24] implies that the condition ∆(E) · Hn−2 = 0 is equivalent, for a

semistable bundle, to ∆(E) = 0. In this form Theorem 3.5 was stated and proved with

different techniques in [6]. It is now quite natural to ask if this theorem holds true also for

Higgs bundles. As it was proved in [6, 5], one has:

Theorem 3.6. A semistable Higgs bundle (E, φ) on (X,H) with ∆(E) = 0 is curve

semistable.

The conjecture is that also the converse implication holds. Now, one easily shows that

a curve semistable Higgs bundle is semistable with respect to any polarization. So the

nontrivial content of the conjecture is the following:

Conjecture 3.7. A curve semistable Higgs bundle has vanishing discriminant.
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We shall say that X is a Higgs variety if the conjecture holds on X.

By Theorem 3.6, a semistable Higgs bundle with vanishing Chern classes is curve

semistable, and moreover has degree zero on any curve. As a result, it is H-numerically

flat. This means that there is a morphism πH1 (X, x) � πalg
1 (X, x). Actually there is a

commutative diagram of faithfully flat morphisms

πalg
1 (X, x) // // πS1 (X, x)

πH1 (X, x)

OOOOffff
.

In general, the groups πS1 (X, x) and πalg
1 (X, x) are different [13]; the previous diagram

therefore shows that also the groups πH1 (X, x) and πS1 (X, x) are in general different.

Conjecture 3.7 can be reformulated in some alternative ways.

Theorem 3.8. The following statements are equivalent.

(i) Conjecture 3.7 holds.

(ii) H-numerically flat Higgs bundles have vanishing Chern classes.

(iii) The natural morphism πH1 (X, x)→ πalg
1 (X, x) is an isomorphism.

Moreover, when the natural morphism πH1 (X, x) → πS1 (X, x) is an isomorphism, X is a

Higgs variety.

Proof. Assume that the Conjecture 3.7 holds, and that E = (E, φ) is an H-numerically flat

Higgs bundle. Then it is semistable; its pullback to any curve is H-numerically flat, hence

semistable, so that E is curve semistable. Then ∆(E) = c2(E) = 0. By Theorem 2 in [24],

all Chern classes of E vanish, so that (ii) is proved.

Assume that (ii) holds, and let E = (E, φ) be a curve semistable Higgs bundle. By

replacing it with its endomorphism bundle, we can assume it has vanishing first Chern

class. Then its pullback to any curve has zero degree, and is semistable, so that it is H-

nflat (see Lemma A.7 in [5] for details). But then E itself is H-nflat, hence has vanishing

Chern classes, which implies ∆(E) = 0. So (i) and (ii) are equivalent.

On the other hand, (iii) is true if and only if the categories HNF(X) and SH(X)

coincide, which amounts to saying that the Conjecture 3.7 holds.



12

Finally, if πH1 (X, x) ' πS1 (X, x), then the categories HNF(X) and NF(X) coincide

(namely, all H-nflat Higgs bundles have vanishing Higgs field), so that the property (ii)

holds. �

In [8] some classes of Higgs varieties were identified.

(i) Varieties with nef tangent bundle (in dimension 2 and 3 they were classified in

[10]).

(ii) Rationally connected varieties.

(iii) Fibrations over a Higgs variety whose fibres are rationally connected.

(iv) Bases of finite étale covers whose total space is a Higgs variety.

(v) Varieties of dimension ≥ 3 containing an effective ample divisor which is a Higgs

variety.

(vi) The property of being a Higgs variety is a birational invariant.

Moreover, in [7] it was shown that the conjecture holds for algebraic K3 surfaces, i.e.,

K3 surfaces are Higgs varieties. Property (iv) implies that the same is true for Enriques

surfaces over C, which are quotients of a K3 surface by a free action of an order 2 group.

4. Examples

This Section is devoted to describe examples of the fundamental Higgs group of some

varieties. Unfortunately, this group appears to be quite hard to compute, and at the

moment the only way to have a grasp on it is to assume that the variety is Higgs, so that

the Higgs fundamental group coincides with Simpson’s algebraic fundamental group, and

use the fact that the latter is the proalgebraic completion of the topological fundamental

group.

X will always denote a smooth projective variety over the complex numbers.

4.1. Simply connected Higgs varieties. In this case all groups π1(X, x), πS1 (X, x),

πH1 (X, x), πalg
1 (X, x) are trivial (indeed, πalg

1 (X, x) is the proalgebraic completion of the

trivial group, so it is trivial too, together with πS1 (X, x); moreover, πH1 (X, x) ' πalg
1 (X, x)

as X is Higgs). Examples are provided by the rationally connected varieties [8] and K3

surfaces [7]. In this case, the categories NF(X), HNF(X) and SH(X) are all equivalent

to the category Vectk, which means that numerically effective vector bundles and H-nflat
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Higgs bundles (i.e., semi-harmonic bundles) are all trivial, and the latter have zero Higgs

field.

4.2. Higgs varieties with finite fundamental group. Let X be an Enriques surface

over C. As noted at the end of Section 3.3, it is a Higgs variety. Its fundamental group is

Z2. From the definition of profinite completion we have Ẑ2 = Z2, and from Eq. (1) we also

have A(Z2) = Z2. So we have

π1(X, x) ' πS1 (X, x) ' πH1 (X, x) ' πalg
1 (X, x) ' Z2 .

The categories NF(X), HNF(X) and SH(X) are all equivalent to the the category VectZ2
C

of Z2-graded vector spaces over C (for a subtlety about this category see [20]). All H-nflat

Higgs bundles have zero Higgs field. Note that the pullback of an H-nflat bundle on X

to Y (where Y is a K3 surface such that Y/Z2 = X) is H-nflat. The resulting functor

HNF(X) → HNF(Y) is the forgetful functor VectZ2
C → VectC (the same for the other

categories of bundles).

4.3. Higgs varieties with free fundamental group. Our supply of Higgs varieties

essentially comes from varieties with nef tangent bundle (and varieties related to that by

some easy geometric constructions, see again the final remarks in Section 3.3), with the

only exception of K3 surfaces (and related varieties). Corollary 3.15 in [10] states that

the fundamental group of a variety X with nef tangent bundle is an extension of Z2q by a

finite group, where q is the maximal irregularity of the finite étale covers of X. So for the

moment we are only able to consider Higgs varieties with fundamental group having even

rank.

We can in particular consider abelian varieties. In this case π1(X, x) = Z2d, where

d = dimX. So we have (cf. Eq. (2))

πS1 (X, x) ' Ẑ2d, πH1 (X, x) ' C2d × T × Ẑ2d

with char(T ) = (C∗)2d. The morphism πH1 (X, x) � πS1 (X, x) is the projection of C2d ×
T × Ẑ2d onto its last factor. So in this case NF(X) is a proper subcategory of HNF(X).
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Géométrie Algébrique du Bois Marie – 1960-61 (SGA 1) (Documents Mathématiques 3), Société
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