APPENDIX A
 THE DISPLACEMENT IN THE SMALL-DEFORMATION REGIME

Since

$$
\begin{equation*}
\dot{x}_{0}=\sum_{n=1}^{N} v_{n}(\boldsymbol{\epsilon}) \dot{\epsilon}_{n} \quad \text { where } \quad v_{n}(\boldsymbol{\epsilon}):=-\frac{L}{2} \frac{\left(1+\epsilon_{n}\right)^{1-p}+2 \sum_{j=n+1}^{N}\left(1+\epsilon_{j}\right)^{1-p}}{\sum_{j=1}^{N}\left(1+\epsilon_{j}\right)^{1-p}}, \tag{1}
\end{equation*}
$$

we have

$$
\left\{v_{\boldsymbol{\epsilon}}(\boldsymbol{\epsilon})\right\}_{i j}:=\frac{\partial v_{i}}{\partial \epsilon_{j}}= \begin{cases}-\frac{L}{2}(1-p) \frac{2 \sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p}-\left(\left(1+\epsilon_{i}\right)^{1-p}+2 \sum_{n=i+1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right)}{\left(1+\epsilon_{j}\right)^{p}\left(\sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right)^{2}} & \text { if } i<j \\ -\frac{L}{2}(1-p) \frac{\sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p}-\left(\left(1+\epsilon_{i}\right)^{1-p}+2 \sum_{n=i+1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right)}{\left(1+\epsilon_{j}\right)^{p}\left(\sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right)^{2}} & \text { if } i=j \\ \frac{L}{2}(1-p) \frac{\left(1+\epsilon_{i}\right)^{1-p}+2 \sum_{n=i+1}^{N}\left(1+\epsilon_{n}\right)^{1-p}}{\left(1+\epsilon_{j}\right)^{p}\left(\sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right)^{2}} & \text { if } i>j\end{cases}
$$

whence

$$
\left\{v_{\boldsymbol{\epsilon}}(\mathbf{0})\right\}_{i j}= \begin{cases}L(p-1) \frac{2 i-1}{2 N^{2}} & \text { if } i<j \\ L(p-1) \frac{2 i-N-1}{2 N^{2}} & \text { if } i=j \\ L(p-1) \frac{2 i-2 N-1}{2 N^{2}} & \text { if } i>j\end{cases}
$$

Since \mathbb{V} is the skew-symmetric part of $v_{\boldsymbol{\epsilon}}(\mathbf{0})$, we have

$$
\{\mathbb{V}\}_{i j}= \begin{cases}L(p-1) \frac{i-j+N}{2 N^{2}} & \text { if } i<j \tag{2}\\ 0 & \text { if } i=j \\ -L(p-1) \frac{j-i+N}{2 N^{2}} & \text { if } i>j\end{cases}
$$

which is a Toeplitz matrix, indeed

$$
\{\mathbb{V}\}_{(i+1)(j+1)}=\{\mathbb{V}\}_{i j} \quad \forall i, j \in\{1, \ldots, N-1\}
$$

i.e., each descending diagonal from left to right is constant. Therefore, the matrix \mathbb{V} turns out to be "skew-centrosymmetric", i.e., skew-symmetric about its center or, equivalently,

$$
\{\mathbb{V}\}_{i j}=-\{\mathbb{V}\}_{(N+1-i)(N+1-j)} \quad \forall i, j=1, \ldots, N
$$

APPENDIX B

EULER-LAGRANGE EQUATIONS

The Euler-Lagrange equations associated with the isoperimetric optimization problem (20) in the main text, i.e.,

$$
\begin{gather*}
\max _{\boldsymbol{\epsilon} \in \mathcal{S}} V[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]:=\int_{0}^{T} \dot{\boldsymbol{\epsilon}} \cdot \mathbb{V} \boldsymbol{\epsilon} d t \\
\mathcal{S}=\left\{\boldsymbol{\epsilon} \in C^{2}\left(\mathbb{R}, \mathbb{R}^{N}\right) \mid \boldsymbol{\epsilon}(0)=\boldsymbol{\epsilon}(T) \wedge \int_{0}^{T}(\mathbb{A} \boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}+\mathbb{B} \dot{\boldsymbol{\epsilon}} \cdot \dot{\boldsymbol{\epsilon}}) d t \equiv c\right\}, \tag{3}
\end{gather*}
$$

led to the system of second order linear ODEs

$$
\begin{equation*}
\mathbb{V} \dot{\boldsymbol{\epsilon}}=\lambda(\mathbb{B} \ddot{\boldsymbol{\epsilon}}-\mathbb{A} \boldsymbol{\epsilon}) \tag{4}
\end{equation*}
$$

where \mathbb{V} is Toeplitz and skew-symmetric while \mathbb{A} and \mathbb{B} are supposed to be symmetric and positive definite.
In the following subsections we address problem (3) for two particular cases.

B1. Solutions for $\mathbb{A} \equiv 0$

For $\mathbb{A} \equiv 0$, equation (4) becomes

$$
\begin{equation*}
\mathbb{V} \dot{\boldsymbol{\epsilon}}=\lambda \mathbb{B} \ddot{\boldsymbol{\epsilon}} \tag{5}
\end{equation*}
$$

The strategy is to decompose (5) along the eigen-elements of

$$
\mathbb{M}:=\mathbb{B}^{-\frac{1}{2}} \mathbb{V} \mathbb{B}^{-\frac{1}{2}}
$$

which is supposed to have N distinct eigenvalues for simplicity, in fact it would be sufficient to assume that the eigenspaces associated with the maximum-modulus eigenvalues have dimension 1. In particular, \mathbb{M} is a skew-symmetric matrix and, as such, its eigenvalues are purely imaginary and, a part from 0 , they go by pairs since to every purely imaginary eigenvalue there corresponds its conjugate (with the same multiplicity). This implies that 0 is an eigenvalue of \mathbb{M} if and only if N is odd.
For the sake of clarity, let us assume that N is odd (if N is even the same argument can be applied by neglecting the eigenvector associated with 0). Thus, consider

$$
\mathbf{v}_{j}^{ \pm} \quad \text { for } j=1, \ldots,\left\lfloor\frac{N}{2}\right\rfloor=: N^{\star}
$$

(complex and orthonormal) eigenvectors associated with the purely imaginary eigenvalue

$$
\pm i \mu_{j} \quad \text { with } \mu_{j}>0
$$

and \mathbf{v}_{0}, eigenvector associated with $\mu_{0}=0$, so that

$$
\begin{gathered}
\mathbb{M} \mathbf{v}_{0}=\mathbf{0} \\
\mathbb{M} \mathbf{v}_{j}^{ \pm}= \pm i \mu_{j} \mathbf{v}_{j}^{ \pm} \quad \text { for } j=1, \ldots, N^{\star}
\end{gathered}
$$

Therefore

$$
\mathbb{B}^{\frac{1}{2}} \boldsymbol{\epsilon}(t)=\sum_{j=1}^{N^{\star}}\left(\psi_{j}^{+}(t) \mathbf{v}_{j}^{+}+\psi_{j}^{-}(t) \mathbf{v}_{j}^{-}\right)+\psi_{0}(t) \mathbf{v}_{0}
$$

and from (5) we get

$$
\left\{\begin{array}{l}
\lambda \ddot{\psi}_{j}^{ \pm}= \pm i \mu_{j} \dot{\psi}_{j}^{ \pm} \quad \text { for } j=1, \ldots, N^{\star} \\
\lambda \ddot{\psi}_{0}=0
\end{array}\right.
$$

whence

$$
\left\{\begin{array}{l}
\psi_{j}^{ \pm}(t)=\frac{\lambda \alpha_{j}^{ \pm}}{ \pm i \mu_{j}} e^{ \pm i \frac{\mu_{j}}{\lambda} t}+\gamma_{j}^{ \pm} \quad \text { for } j=1, \ldots, N^{\star} \\
\psi_{0}(t)=\alpha_{0} t+\gamma_{0}
\end{array}\right.
$$

where $\alpha_{j}^{ \pm}, \gamma_{j}^{ \pm}, \alpha_{0}$ and γ_{0} are complex constants; in particular, the constants $\gamma_{j}^{ \pm}$and γ_{0} determine the initial condition $\boldsymbol{\epsilon}(0)$ and hence, for simplicity, we can assume that $\gamma_{0}=0$ and $\gamma_{j}^{ \pm}=0$ for $j=1, \ldots, N^{\star}$. Therefore, up to a constant, a solution to (5) can be written as

$$
\boldsymbol{\epsilon}(t)=\sum_{j=1}^{N^{\star}}\left(\frac{\lambda \alpha_{j}^{+}}{i \mu_{j}} e^{i \frac{\mu_{j}}{\lambda} t} \mathbb{B}^{-\frac{1}{2}} \boldsymbol{v}_{j}^{+}-\frac{\lambda \alpha_{j}^{-}}{i \mu_{j}} e^{-i \frac{\mu_{j}}{\lambda} t} \mathbb{B}^{-\frac{1}{2}} \boldsymbol{v}_{j}^{-}\right)+\alpha_{0} t \mathbb{B}^{-\frac{1}{2}} \boldsymbol{v}_{0} \quad \text { for } t \in[0, T] .
$$

Moreover, since a solution to (3) must be periodic, i.e., $\boldsymbol{\epsilon}(0)=\boldsymbol{\epsilon}(T)$, it turns out that

$$
\left\{\begin{array}{l}
\alpha_{0}=0 \\
\lambda=\frac{\mu_{j} T}{2 \pi k_{j}} \quad \text { where } k_{j} \in \mathbb{N} \quad \text { for } j=1, \ldots, N^{\star}
\end{array}\right.
$$

On the other hand,

$$
V[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]=-\int_{0}^{T} \mathbb{V} \dot{\boldsymbol{\epsilon}} \cdot \boldsymbol{\epsilon} d t=-\int_{0}^{T} \lambda \mathbb{B} \ddot{\boldsymbol{\epsilon}} \cdot \boldsymbol{\epsilon} d t=\lambda \int_{0}^{T} \mathbb{B} \dot{\boldsymbol{\epsilon}} \cdot \dot{\boldsymbol{\epsilon}} d t=\lambda E[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]
$$

where $E[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]=c$ is constrained by the optimization problem. Then maximizing the approximated displacement leads to take λ as big as possible i.e.,

$$
\lambda=\frac{\mu_{M} T}{2 \pi} \quad \text { where } \mu_{M}:=\max _{j=1, \ldots, N^{\star}} \mu_{j}
$$

and, in order to preserve the periodicity,

$$
\alpha_{j}^{ \pm}=0 \quad \text { for } j \neq M
$$

yielding to

$$
\boldsymbol{\epsilon}(t)=\frac{\alpha_{M}^{+} e^{\frac{2 i \pi t}{T}}}{\frac{2 i \pi}{T}} \mathbb{B}^{-\frac{1}{2}} \mathbf{v}_{M}^{+}-\frac{\alpha_{M}^{-} e^{-\frac{2 i \pi t}{T}}}{\frac{2 i \pi}{T}} \mathbb{B}^{-\frac{1}{2}} \mathbf{v}_{M}^{-}
$$

where \mathbf{v}_{M}^{-}is the conjugate of \mathbf{v}_{M}^{+}and, since $\boldsymbol{\epsilon}(t)$ must be in $\mathbb{R}^{N}, \alpha_{M}^{+}$is the conjugate of α_{M}^{-}and needs to fulfill

$$
\begin{equation*}
\left\|\alpha_{M}^{+}\right\|=\sqrt{\frac{c}{2 T}} \tag{6}
\end{equation*}
$$

indeed

$$
E[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]=T \sum_{j=1}^{N^{\star}}\left(\left\|\alpha_{j}^{+}\right\|^{2}+\left\|\alpha_{j}^{-}\right\|^{2}\right)=2 T\left\|\alpha_{M}^{+}\right\|^{2}
$$

Therefore we can finally conclude that a solution to (5) has the form

$$
\boldsymbol{\epsilon}(t)=\frac{\alpha e^{\frac{2 i \pi t}{T}}}{\frac{2 i \pi}{T}} \mathbb{B}^{-\frac{1}{2}} \mathbf{v}-\frac{\bar{\alpha} e^{-\frac{2 i \pi t}{T}}}{\frac{2 i \pi}{T}} \mathbb{B}^{-\frac{1}{2}} \overline{\mathbf{v}}
$$

where the bar denotes complex conjugation. Finally, this expression can be rewritten as

$$
\begin{equation*}
\boldsymbol{\epsilon}(t)=-\frac{T}{\pi} \Re\left(\alpha i e^{\frac{2 i \pi t}{T}} \mathbf{e}\right) \quad \text { where } \quad \mathbf{e}:=\mathbb{B}^{-\frac{1}{2}} \mathbf{v} \quad \text { and } \quad\|\alpha\|=\sqrt{\frac{c}{2 T}} \tag{7}
\end{equation*}
$$

Notice that for maximizing the displacement in the opposite direction we should consider

$$
\lambda=-\frac{\mu_{M} T}{2 \pi} \quad \text { where } \mu_{M}:=\max _{j=1, \ldots, N^{\star}} \mu_{M}
$$

so that (7) becomes

$$
\boldsymbol{\epsilon}(t)=\frac{T}{\pi} \Re\left(\alpha i e^{-\frac{2 i \pi t}{T}} \mathbf{e}\right)
$$

B2. Solutions for $\mathbb{B} \equiv 0$

For $\mathbb{B} \equiv 0$, equation (4) becomes

$$
\begin{equation*}
\mathbb{V} \dot{\boldsymbol{\epsilon}}=-\lambda \mathbb{A} \boldsymbol{\epsilon} \tag{8}
\end{equation*}
$$

The strategy is, as before, to decompose (8) along the eigen-elements of

$$
\mathbb{M}:=\mathbb{A}^{-\frac{1}{2}} \mathbb{V} \mathbb{A}^{-\frac{1}{2}}
$$

which is supposed to have N distinct eigenvalues for simplicity, in fact it would be sufficient to assume that the eigenspaces associated with the maximum-modulus eigenvalues have dimension 1. In particular, \mathbb{M} is a skew-symmetric matrix and, as such, its eigenvalues are purely imaginary and, a part from 0 , they go by pairs since to every purely imaginary eigenvalue there corresponds its conjugate (with the same multiplicity). This implies that 0 is an eigenvalue of \mathbb{M} if and only if N is odd.
For the sake of clarity, let us assume that N is odd (if N is even the same argument can be applied by neglecting the eigenvector associated with 0). Thus, consider

$$
\mathbf{v}_{j}^{ \pm} \quad \text { for } j=1, \ldots,\left\lfloor\frac{N}{2}\right\rfloor=: N^{\star}
$$

(complex and orthonormal) eigenvectors associated with the purely imaginary eigenvalue

$$
\pm i \mu_{j} \quad \text { with } \mu_{j}>0
$$

and \mathbf{v}_{0}, eigenvector associated with $\mu_{0}:=0$, so that

$$
\begin{gathered}
\mathbb{M} \mathbf{v}_{0}=\mathbf{0} \\
\mathbb{M} \mathbf{v}_{j}^{ \pm}= \pm i \mu_{j} \mathbf{v}_{j}^{ \pm} \quad \text { for } j=1, \ldots, N^{\star} .
\end{gathered}
$$

Therefore

$$
\mathbb{A}^{\frac{1}{2}} \boldsymbol{\epsilon}(t)=\sum_{j=1}^{N^{\star}}\left(\psi_{j}^{+}(t) \mathbf{v}_{j}^{+}+\psi_{j}^{-}(t) \mathbf{v}_{j}^{-}\right)+\psi_{0}(t) \mathbf{v}_{0}
$$

and from (8) we get

$$
\left\{\begin{array}{l}
\pm i \mu_{j} \dot{\psi}_{j}^{ \pm}=-\lambda \psi_{j}^{ \pm} \quad \text { for } j=1, \ldots, N^{\star} \\
\lambda \psi_{0}=0
\end{array}\right.
$$

whence

$$
\left\{\begin{array}{l}
\psi_{j}^{ \pm}(t)=\alpha_{j}^{ \pm} e^{\frac{ \pm i \lambda}{\mu_{j}} t} \quad \text { for } j=1, \ldots, N^{\star} \\
\psi_{0}(t) \equiv 0
\end{array}\right.
$$

where $\alpha_{j}^{ \pm}$are complex constants. Therefore a solution to (8) can be written as

$$
\boldsymbol{\epsilon}(t)=\sum_{j=1}^{N^{\star}}\left(\alpha_{j}^{+} e^{\frac{i \lambda}{\mu_{j}} t} \mathbb{A}^{-\frac{1}{2}} \boldsymbol{v}_{j}^{+}-\alpha_{j}^{-} e^{-\frac{i \lambda}{\mu_{j}} t} \mathbb{A}^{-\frac{1}{2}} \boldsymbol{v}_{j}^{-}\right) \quad \text { for } t \in[0, T]
$$

Moreover, since a solution to (3) must be periodic, i.e., $\boldsymbol{\epsilon}(0)=\boldsymbol{\epsilon}(T)$, it turns out that

$$
\lambda=\frac{2 \pi k_{j} \mu_{j}}{T} \quad \text { where } k_{j} \in \mathbb{N} \text { for } j=1, \ldots, N^{\star}
$$

On the other hand,

$$
V[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]=-\int_{0}^{T} \mathbb{V} \dot{\boldsymbol{\epsilon}} \cdot \boldsymbol{\epsilon} d t=\lambda \int_{0}^{T} \mathbb{A} \boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon} d t=\lambda E[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]
$$

where $E[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]=c$ is constrained by the optimization problem. Then maximizing the approximated displacement leads to take λ as big as possible but, since in principle k_{j} could tend to infinity, in order to have a meaningful problem, we restrict our attention to shape changes with unitary time frequency (one wave per period), that is $k_{j}=1$ and hence

$$
\lambda=\frac{2 \pi \mu_{M}}{T} \quad \text { where } \mu_{M}:=\max _{j=1, \ldots, N^{\star}} \mu_{M}
$$

In order to preserve the periodicity,

$$
\alpha_{j}^{ \pm}=0 \quad \text { for } j \neq M
$$

yielding to

$$
\boldsymbol{\epsilon}(t)=\alpha_{M}^{+} e^{\frac{2 i \pi t}{T}} \mathbb{B}^{-\frac{1}{2}} \mathbf{v}_{M}^{+}-\alpha_{M}^{-} e^{-\frac{2 i \pi t}{T}} \mathbb{B}^{-\frac{1}{2}} \mathbf{v}_{M}^{-}
$$

where \mathbf{v}_{M}^{-}is the conjugate of \mathbf{v}_{M}^{+}and, since $\boldsymbol{\epsilon}(t)$ must be in $\mathbb{R}^{N}, \alpha_{M}^{+}$is the conjugate of α_{M}^{-}and needs to fulfill

$$
\begin{equation*}
\left\|\alpha_{M}^{+}\right\|=\sqrt{\frac{c}{2 T}} \tag{9}
\end{equation*}
$$

indeed

$$
E[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]=T \sum_{j=1}^{N^{\star}}\left(\left\|\alpha_{j}^{+}\right\|^{2}+\left\|\alpha_{j}^{-}\right\|^{2}\right)=2 T\left\|\alpha_{M}^{+}\right\|^{2} .
$$

We conclude that a solution to (8) has the form

$$
\boldsymbol{\epsilon}(t)=\alpha e^{\frac{2 i \pi t}{T}} \mathbb{B}^{-\frac{1}{2}} \mathbf{v}-\bar{\alpha} e^{-\frac{2 i \pi t}{T}} \mathbb{B}^{-\frac{1}{2}} \overline{\mathbf{v}}
$$

where the bar denotes complex conjugation. This expression can be rewritten as

$$
\begin{equation*}
\boldsymbol{\epsilon}(t)=2 \Re\left(\alpha e^{\frac{2 i \pi t}{T}} \mathbf{e}\right) \quad \text { where } \quad \mathbf{e}:=\mathbb{B}^{-\frac{1}{2}} \mathbf{v} \quad \text { and } \quad\|\alpha\|=\sqrt{\frac{c}{2 T}} . \tag{10}
\end{equation*}
$$

Notice that for maximizing the displacement in the opposite direction we should consider

$$
\lambda=-\frac{2 \pi \mu_{M}}{T} \quad \text { where } \mu_{M}:=\max _{j=1, \ldots, N^{\star}} \mu_{M}
$$

so that the solution has the form

$$
\boldsymbol{\epsilon}(t)=2 \Re\left(\alpha e^{-\frac{2 i \pi t}{T}} \mathbf{e}\right) .
$$

B3. Symmetry properties

Consider

$$
E[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]:=\int_{0}^{T}(\mathbb{A} \boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon}+\mathbb{B} \dot{\boldsymbol{\epsilon}} \cdot \dot{\boldsymbol{\epsilon}}) d t
$$

where $\mathbb{A} \equiv 0$ and B is centrosymmetric (resp. A is centrosymmetric and $\mathbb{B} \equiv 0$).
As a well-known result about centrosymmetric and skew-centrosymmetric matrices (e.g., Collar, 1962),

$$
\mathbb{K}^{T} \mathbb{B} \mathbb{K}=\mathbb{B} \quad\left(\text { resp. } \mathbb{K}^{T} \mathbb{A} \mathbb{K}=\mathbb{A}\right)
$$

and

$$
\mathbb{K}^{T} \mathbb{V} \mathbb{K}=-\mathbb{V}
$$

where

$$
\mathbb{K}:=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] \in \mathbb{R}^{N \times N}
$$

From the previous subsections, a solution to (3) has the form

$$
\boldsymbol{\epsilon}^{\star}(t)=-\frac{T}{\pi} \Re\left(\alpha i e^{\frac{2 i \pi t}{T}} \mathbf{e}\right) \quad\left(\text { resp. } \quad \epsilon^{\star}(t)=2 \Re\left(\alpha e^{\frac{2 i \pi t}{T}} \mathbf{e}\right)\right) \quad \text { where } \quad\|\alpha\|=\sqrt{\frac{c}{2 T}} .
$$

Notice that

$$
\boldsymbol{\eta}^{\star}(t):=\mathbb{K} \boldsymbol{\epsilon}^{\star}(t)=-\frac{T}{\pi} \Re\left(\alpha i e^{\frac{2 i \pi t}{T}} \mathbb{K} \mathbf{e}\right) \quad\left(\text { resp. } \quad \boldsymbol{\eta}^{\star}(t):=\mathbb{K} \boldsymbol{\epsilon}^{\star}(t)=2 \Re\left(\alpha e^{\frac{2 i \pi t}{T}} \mathbb{K} \mathbf{e}\right)\right)
$$

is a solution to

$$
\begin{equation*}
\min _{\epsilon \in \mathcal{S}}-V[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]:=-\int_{0}^{T} \dot{\boldsymbol{\epsilon}} \cdot \mathbb{V} \boldsymbol{\epsilon} d t \tag{11}
\end{equation*}
$$

Indeed

$$
E\left[\boldsymbol{\eta}^{\star}, \boldsymbol{\eta}^{\star}\right]=E\left[\boldsymbol{\epsilon}^{\star}, \dot{\boldsymbol{\epsilon}^{\star}}\right]=c
$$

and

$$
V\left[\boldsymbol{\eta}^{\star}, \boldsymbol{\eta}^{\star}\right]=\int_{0}^{T} \mathbb{K} \dot{\boldsymbol{\epsilon}}^{\star} \cdot \mathbb{V} \mathbb{K} \boldsymbol{\epsilon}^{\star} d t=-\int_{0}^{T} \dot{\boldsymbol{\epsilon}}^{\star} \cdot \mathbb{V} \boldsymbol{\epsilon}^{\star} d t=-V\left[\boldsymbol{\epsilon}^{\star}, \dot{\boldsymbol{\epsilon}}^{\star}\right]=-\max _{\boldsymbol{\epsilon} \in \mathcal{S}} V[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]=\min _{\boldsymbol{\epsilon} \in \mathcal{S}}(-V[\boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}]) .
$$

Since $\boldsymbol{\eta}^{\star}(t)$ is a solution to 11, it must be of the form

$$
\boldsymbol{\eta}^{\star}(t)=\frac{T}{\pi} \Re\left(\beta i e^{-\frac{2 i \pi t}{T}} \mathbf{e}\right) \quad\left(\text { resp. } \quad \boldsymbol{\eta}^{\star}(t)=2 \Re\left(\beta e^{-\frac{2 i \pi t}{T}} \mathbf{e}\right)\right) \quad \text { where } \quad\|\beta\|=\sqrt{\frac{c}{2 T}} .
$$

Therefore

$$
-\Re\left(\alpha i e^{\frac{2 i \pi t}{T}} \mathbb{K} \mathbf{e}\right)=\Re\left(\beta i e^{-\frac{2 i \pi t}{T}} \mathbf{e}\right) \quad\left(\operatorname{resp} . \Re\left(\alpha e^{\frac{2 i \pi t}{T}} \mathbb{K} \mathbf{e}\right)=\Re\left(\beta e^{-\frac{2 i \pi t}{T}} \mathbf{e}\right)\right) \quad \forall t \in[0, T]
$$

namely, for $n=1, \ldots, N$, the real parts of $i \beta e_{n}$ and $-i \alpha(\mathbb{K} \mathbf{e})_{n}\left(\right.$ resp. βe_{n} and $\left.\alpha(\mathbb{K} \mathbf{e})_{n}\right)$ coincide for any simultaneous opposite rotation (i.e., multiplication by $e^{-\frac{2 i \pi t}{T}}$ and $e^{\frac{2 i \pi t}{T}} \forall t \in[0, T]$), whence

$$
\mathbb{K} \mathbf{e}=e^{i \vartheta} \overline{\mathbf{e}}
$$

for some suitable $\vartheta \in[0,2 \pi)$. In particular,

$$
e_{N+1-n}=e^{i \vartheta} \bar{e}_{n} \quad \forall n=1, \ldots, N
$$

and hence

- moduli are symmetric about the center, i.e.,

$$
\left\|e_{N+1-n}\right\|=\left\|e_{n}\right\| \quad \forall n=1, \ldots, N ;
$$

- phase differences between adjacent segments are symmetric about the center, i.e.,

$$
e_{n+1} e_{N+1-n}=e_{N-n} e_{n} \quad \forall n=1, \ldots, N .
$$

APPENDIX C

DISSIPATION

C1. The first term of the dissipation rate: the power

By definition,

$$
d_{1}(t, \boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}):=\int_{0}^{N L}-\frac{1}{\mu} f\left(x_{0}(t)+s(X, t), t\right) s^{\prime}(X, t) \dot{\chi}(X, t) d X
$$

where, for $X \in\left[X_{n-1}:=(n-1) L, X_{n}:=n L\right]$ (i.e., n-th segment),

$$
\begin{gathered}
\dot{\chi}(X, t)=\dot{x_{0}}(t)+\dot{s}(X, t)=\dot{x_{0}}(t)+[X-(n-1) L] \dot{\epsilon}_{n}(t)+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}(t) \\
f\left(x_{0}(t)+s(X, t), t\right)=(1+\epsilon(X, t))^{-p} \dot{\chi}(X, t) \\
s^{\prime}(X, t)=1+\epsilon(X, t) .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
d_{1}(t, \boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}}) & =\int_{0}^{N L}(1+\epsilon(X, t))^{1-p} \dot{\chi}^{2}(X, t) d X \\
& =\int_{0}^{N L}(1+\epsilon(X, t))^{1-p}\left[\dot{x}_{0}(t)+(X-(n-1) L) \dot{\epsilon}_{n}(t)+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}(t)\right]^{2} d X=\sum_{n=1}^{N} D_{n}
\end{aligned}
$$

where, for all $n=1, \ldots, N$,

$$
\begin{aligned}
D_{n}:= & \int_{(n-1) L}^{n L}\left(1+\epsilon_{n}\right)^{1-p}\left[\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}+(X-(n-1) L) \dot{\epsilon}_{n}\right]^{2} d X \\
= & \left(1+\epsilon_{n}\right)^{1-p} \int_{(n-1) L}^{n L}\left\{\left[\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}\right]^{2}+2\left[\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}\right](X-(n-1) L) \dot{\epsilon}_{n}\right. \\
& \left.+{\dot{\epsilon_{n}}}^{2}(X-(n-1) L)^{2}\right\} d X \\
= & \left(1+\epsilon_{n}\right)^{1-p}\left\{\left[\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}\right]^{2} L+\left.\left[\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}\right] \dot{\epsilon}_{n}(X-(n-1) L)^{2}\right|_{(n-1) L} ^{n L}\right. \\
& \left.+\left.\dot{\epsilon}_{n}{ }^{2} \frac{(X-(n-1) L)^{3}}{3}\right|_{(n-1) L} ^{n L}\right\} \\
= & \frac{L}{3}\left(1+\epsilon_{n}\right)^{1-p}\left\{3\left[\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}\right]^{2}+3 L\left[\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}\right] \dot{\epsilon}_{n}+\dot{\epsilon}_{n}{ }^{2} L^{2}\right\} .
\end{aligned}
$$

In view of (1),

$$
\dot{x_{0}}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}=\sum_{n=1}^{N} v_{n} \dot{\epsilon}_{n}+L \sum_{i=1}^{n-1} \dot{\epsilon}_{i}=\sum_{i=1}^{n-1}\left(L+v_{i}\right) \dot{\epsilon}_{i}+\sum_{i=n}^{N} v_{i} \dot{\epsilon}_{i} \quad \forall n=1, \ldots, N
$$

whence

$$
\begin{aligned}
D_{n}= & \frac{L}{3}\left(1+\epsilon_{n}\right)^{1-p}\left\{3\left[\sum_{j=1}^{n-1}\left(L+v_{j}\right) \dot{\epsilon}_{j}+\sum_{i=n}^{N} v_{j} \dot{\epsilon}_{j}\right]^{2}+3 L\left[\sum_{j=1}^{n-1}\left(L+v_{j}\right) \dot{\epsilon}_{j}+\sum_{j=n}^{N} v_{j} \dot{\epsilon}_{j}\right] \dot{\epsilon}_{n}+\dot{\epsilon}_{n}^{2} L^{2}\right\} \\
= & \frac{L}{3}\left(1+\epsilon_{n}\right)^{1-p}\left\{3 \left[\sum_{j=1}^{n-1}\left(L+v_{j}\right)^{2} \dot{\epsilon}_{j}^{2}+2 \sum_{\substack{i, j=1 \\
i<j}}^{n-1}\left(L+v_{j}\right)\left(L+v_{i}\right) \dot{\epsilon}_{i} \dot{\epsilon}_{j}+\sum_{j=n}^{N} v_{j}^{2} \dot{\epsilon}_{j}^{2}+2 \sum_{i, j=n}^{N} v_{i} v_{j} \dot{\epsilon}_{i} \dot{\epsilon}_{j}\right.\right. \\
& \left.\left.+2 \sum_{i=1}^{n-1} \sum_{j=n}^{N}\left(L+v_{i}\right) v_{j} \dot{\epsilon}_{i} \dot{\epsilon}_{j}\right]+3 L\left[\sum_{j=1}^{n-1}\left(L+v_{j}\right) \dot{\epsilon}_{j}+\sum_{j=n}^{N} v_{j} \dot{\epsilon}_{j}\right] \dot{\epsilon}_{n}+\dot{\epsilon}_{n}^{2} L^{2}\right\} \\
= & \frac{L}{3}\left(1+\epsilon_{n}\right)^{1-p}\left\{L^{2} \dot{\epsilon}_{n}^{2}+3 \sum_{j=1}^{n-1}\left(L+v_{j}\right)^{2} \dot{\epsilon}_{j}^{2}+3 \sum_{j=n}^{N} v_{j}^{2} \dot{\epsilon}_{j}^{2}+3 L \sum_{j=1}^{n-1}\left(L+v_{j}\right) \dot{\epsilon}_{j} \dot{\epsilon}_{n}+3 L \sum_{j=n}^{N} v_{j} \dot{\epsilon}_{j} \dot{\epsilon}_{n}\right. \\
& \left.+2 \sum_{i, j=1}^{n-1} 3\left(L+v_{j}\right)\left(L+v_{i}\right) \dot{\epsilon}_{i} \dot{\epsilon}_{j}+2 \sum_{i<j}^{N} 3 v_{i} v_{j} \dot{\epsilon}_{i} \dot{\epsilon}_{j}+2 \sum_{j=n}^{N} \sum_{i=1}^{n-1} 3\left(L+v_{i}\right) v_{j} \dot{\epsilon}_{i} \dot{\epsilon}_{j}\right\} \\
= & \frac{L}{3}\left(1+\epsilon_{n}\right)^{1-p}\left\{\sum_{j=1}^{N} a_{j}^{(n)}(\boldsymbol{\epsilon}) \dot{\epsilon}_{j}^{2}+\dot{\epsilon}_{j}^{2}+2 \sum_{\substack{j=1 \\
j \neq n}}^{N} b_{j}^{(n)}(\boldsymbol{\epsilon}) \dot{\epsilon}_{j} \dot{\epsilon}_{n}+2 \sum_{i, j=1}^{n-1} c_{i j}(\boldsymbol{\epsilon}) \dot{\epsilon}_{i} \dot{\epsilon}_{j}+2 \sum_{i, j=n+1}^{N} d_{i j}(\boldsymbol{\epsilon}) \dot{\epsilon}_{i} \dot{\epsilon}_{j}\right. \\
& \left.+2 \sum_{i=1}^{n-j} \sum_{j=n+1}^{N} e_{i j}(\boldsymbol{\epsilon}) \dot{\epsilon}_{i} \dot{\epsilon}_{j}\right\}
\end{aligned}
$$

where

$$
\begin{gathered}
a_{j}^{(n)}(\boldsymbol{\epsilon}):=\left\{\begin{array}{ll}
3\left(L+v_{j}\right)^{2} & \text { if } j \leq n-1 \\
L^{2}+3 L v_{n}+3 v_{n}^{2} & \text { if } j=n \\
3 v_{j}^{2} & \text { if } j \geq n+1
\end{array}, \quad b_{j}^{(n)}(\boldsymbol{\epsilon}):=\left\{\begin{array}{ll}
3\left(L+v_{j}\right)\left(\frac{L}{2}+v_{n}\right) & \text { if } j \leq n-1 \\
3 v_{j}\left(\frac{L}{2}+v_{n}\right) & \text { if } j \geq n+1
\end{array},\right.\right. \\
c_{i j}(\boldsymbol{\epsilon}):=3\left(L+v_{i}\right)\left(L+v_{j}\right), \quad d_{i j}(\boldsymbol{\epsilon}):=3 L+v_{i} v_{j}, \quad \text { and } \quad e_{i j}(\boldsymbol{\epsilon}):=3\left(L+v_{i}\right) v_{j} .
\end{gathered}
$$

Then

$$
D_{n}=\frac{L}{3}\left(1+\epsilon_{n}\right)^{1-p}\left[\dot{\boldsymbol{\epsilon}} \cdot \mathbb{D}_{n}(\boldsymbol{\epsilon}) \dot{\boldsymbol{\epsilon}}\right]
$$

where, for $n=1, \ldots, N$,

$$
\mathbb{D}_{n}(\boldsymbol{\epsilon}):=\left[\begin{array}{ccccccccc}
a_{1}^{(n)} & c_{12} & \cdots & c_{1, n-1} & b_{1}^{(n)} & e_{1, n+1} & \cdots & \cdots & e_{1, N} \\
c_{12} & \ddots & \ddots & \vdots & \vdots & \vdots & & & \vdots \\
\vdots & \ddots & \ddots & c_{n-2, n-1} & \vdots & \vdots & & & \vdots \\
c_{1, n-1} & \cdots & c_{n-2, n-1} & a_{n-1}^{(n)} & b_{n-1}^{(n)} & e_{n-1, n+1} & \cdots & \cdots & e_{n-1, N} \\
b_{1}^{(n)} & \cdots & \cdots & b_{n-1}^{(n)} & a_{n}^{(n)} & b_{n+1}^{(n)} & \cdots & \cdots & b_{N}^{(n)} \\
e_{1, n+1} & \cdots & \cdots & e_{n-1, n+1} & b_{n+1}^{(n)} & a_{n+1}^{(n)} & d_{n+1, n+2} & \cdots & d_{n+1, N} \\
\vdots & & & \vdots & \vdots & d_{n+1, n+2} & \ddots & \ddots & \vdots \\
\vdots & & & \vdots & \vdots & \vdots & \ddots & \ddots & d_{N-1, N} \\
e_{1, N} & \cdots & \cdots & e_{n-1, N} & b_{N}^{(n)} & d_{n+1, N} & \cdots & d_{N-1, N} & a_{N}^{(n)}
\end{array}\right]
$$

Thus

$$
d_{1}(t, \boldsymbol{\epsilon}, \dot{\boldsymbol{\epsilon}})=\sum_{n=1}^{N} D_{n}=\sum_{n=1}^{N} \frac{L}{3}\left(1+\epsilon_{n}\right)^{1-p}\left[\dot{\boldsymbol{\epsilon}} \cdot \mathbb{D}_{n}(\boldsymbol{\epsilon}) \dot{\boldsymbol{\epsilon}}\right]=\dot{\boldsymbol{\epsilon}} \cdot \mathbb{D}(\boldsymbol{\epsilon}) \dot{\boldsymbol{\epsilon}}
$$

where

$$
\begin{equation*}
\mathbb{D}(\boldsymbol{\epsilon}):=\frac{L}{3} \sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p} \mathbb{D}_{n}(\boldsymbol{\epsilon}) \tag{12}
\end{equation*}
$$

C2. Operator \mathbb{G}

We recall that, by definition,

$$
\mathbb{G}:=\mathbb{D}(\mathbf{0})+w \mathbb{I}_{N}=\frac{L}{3} \sum_{n=1}^{N} \mathbb{D}_{n}(\mathbf{0})+w \mathbb{I}_{N} .
$$

From (1)

$$
v_{n}(\mathbf{0})=-\frac{L}{2} \frac{2(N-n)+1}{N} \quad \text { for } n=1, \ldots, N
$$

and hence

$$
\begin{gathered}
a_{j}^{(n)}(\mathbf{0})= \begin{cases}\frac{3 L^{2}}{4 N^{2}}(2 j-1)^{2} & \text { if } j<n \\
\frac{3 L^{2}}{4 N^{2}}\left[\frac{4}{3} N^{2}+2 N(1-2 n)+4 n(n-1)+1\right] & \text { if } j=n \\
\frac{3 L^{2}}{4 N^{2}}[2(N-j)+1]^{2} & \text { if } j>n\end{cases} \\
b_{j}^{(n)}(\mathbf{0})= \begin{cases}\frac{3 L^{2}}{4 N^{2}}(2 j-1)(2 n-N-1) & \text { if } j<n \\
\frac{3 L^{2}}{4 N^{2}}(2 N-2 j+1)(N-2 n+1) & \text { if } j>n\end{cases} \\
c_{i j}(\mathbf{0})=\frac{3 L^{2}}{4 N^{2}}(2 j-1)(2 i-1), \\
d_{i j}(\mathbf{0})=\frac{3 L^{2}}{4 N^{2}}[2(N-i)+1][2(N-j)+1], \\
e_{i j}(\mathbf{0})=\frac{3 L^{2}}{4 N^{2}}(2 i-1)[2(j-N)-1] .
\end{gathered}
$$

Since

$$
\mathbb{D}(\mathbf{0}):=\frac{L}{3} \sum_{n=1}^{N} \mathbb{D}_{n}(\mathbf{0})=\frac{L^{3}}{4 N^{2}} \sum_{n=1}^{N} \frac{4 N^{2}}{3 L^{2}} \mathbb{D}_{n}(\mathbf{0})
$$

we get

- for $i<j$,

$$
\begin{aligned}
\{\mathbb{D}(\mathbf{0})\}_{i j}= & \frac{L^{3}}{4 N^{2}}\left[\sum_{n=1}^{i-1}(2 N-2 i+1)(2 N-2 j+1)+(2 j-2 N-1)(2 i-N-1)\right. \\
& \left.+\sum_{n=i+1}^{j-1}(2 i-1)(2 j-2 N-1)+(2 i-1)(2 j-N-1)+\sum_{n=j+1}^{N}(2 i-1)(2 j-1)\right] \\
= & \frac{L^{3}}{4 N}(2 i-1)[2(N-j)+1]
\end{aligned}
$$

- for $i=j$,

$$
\begin{aligned}
\{\mathbb{D}(\mathbf{0})\}_{i i} & =\frac{L^{3}}{4 N^{2}}\left[\sum_{n=1}^{i-1}(2 N-2 i+1)^{2}+\left(\frac{4}{3} N^{2}+2 N(1-2 i)+4 i(i-1)+1\right)+\sum_{n=i+1}^{N}(2 i-1)^{2}\right] \\
& =\frac{L^{3}}{12 N}\left[4 N(3 i-2)-3(2 i-1)^{2}\right]
\end{aligned}
$$

- for $i>j$, by symmetry,

$$
\{\mathbb{D}(\mathbf{0})\}_{i j}=\{\mathbb{D}(\mathbf{0})\}_{j i}=\frac{L^{3}}{4 N}(2 j-1)[2(N-i)+1] .
$$

Therefore,

$$
\{\mathbb{G}\}_{i j}= \begin{cases}\frac{L^{3}}{4 N}(2 i-1)(2(N-j)+1) & \text { if } i<j \tag{13}\\ \frac{L^{3}}{12 N}\left[4 N(3 i-2)-3(2 i-1)^{2}\right]+w & \text { if } i=j \\ \frac{L^{3}}{4 N}(2 j-1)(2(N-i)+1) & \text { if } i>j\end{cases}
$$

Notice that \mathbb{G} is symmetric both about the main diagonal (by construction) and about the secondary diagonal indeed

- for $i<j$,

$$
\begin{aligned}
\{\mathbb{G}\}_{i j} & =\frac{L^{3}}{4 N}(2 i-1)(2(N-j)+1)=\frac{L^{3}}{4 N}(2(N+1-j)-1)(2(N-(N+1-i))+1) \\
& =\{\mathbb{G}\}_{(N+1-j)(N+1-i)}
\end{aligned}
$$

- for $i=j$,

$$
\begin{aligned}
\{\mathbb{G}\}_{i i} & =\frac{L^{3}}{12 N}\left[4 N(3 i-2)-3(2 i-1)^{2}\right]+w \\
& =\frac{L^{3}}{12 N}\left[4 N(3(N+1-i)-2)-3(2(N+1-i)-1)^{2}\right]+w \\
& =\{\mathbb{G}\}_{(N+1-i)(N+1-i)}
\end{aligned}
$$

- for $i>j$, by symmetry,

$$
\{\mathbb{G}\}_{i j}=\{\mathbb{G}\}_{j i}=\{\mathbb{G}\}_{(N+1-i)(N+1-j)}=\{\mathbb{G}\}_{(N+1-j)(N+1-i)} .
$$

Such a property is usually referred to as "bisymmetry" and it implies "centrosymmetry", i.e.,, symmetry about the center or, in other terms,

$$
\{\mathbb{G}\}_{i j}=\{\mathbb{G}\}_{(N+1-i)(N+1-j)} \quad \forall i, j=1, \ldots, N
$$

C3. Optimal control problem for the periodic version

Consider the optimal control problem

$$
\begin{gather*}
\max _{\epsilon \in \mathcal{S}_{u}^{\star}} V[\mathbf{u}, \dot{\mathbf{u}}]:=\int_{0}^{T} \dot{\mathbf{u}} \cdot \mathbb{V}_{u}^{\star} \mathbf{u} d t \\
\mathcal{S}_{u}^{\star}:=\left\{\mathbf{u} \in C^{3}\left(\mathbb{R}, \mathbb{R}^{N}\right) \mid \mathbf{u}(0)=\mathbf{u}(T) \quad \wedge E[\mathbf{u}, \dot{\mathbf{u}}]:=\int_{0}^{T} \dot{\mathbf{u}} \cdot \mathbb{G}_{u}^{\star} \dot{\mathbf{u}} d t=c\right\} \tag{14}
\end{gather*}
$$

where

$$
\mathbb{V}_{u}^{\star}:=J_{\text {per }}^{T} \mathbb{V} J_{\text {per }}, \quad \mathbb{G}_{u}^{\star}:=J_{\text {per }}^{T} \mathbb{G} J_{\text {per }}, \quad \boldsymbol{\epsilon}=\mathbb{J}_{\text {per }} \boldsymbol{u}
$$

and

$$
\mathbb{J}_{\text {per }}:=\frac{1}{L}\left[\begin{array}{cccc}
1 & & & -1 \\
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1
\end{array}\right]
$$

In view of (22) and (13), some calculations lead to

$$
\left\{\mathbb{V}_{u}^{\star}\right\}_{i j}= \begin{cases}\frac{p-1}{2 N L} & \text { if } i=j-1 \text { or }(i, j)=(N, 1) \tag{15}\\ -\frac{p-1}{2 N L} & \text { if } i=j+1 \text { or }(i, j)=(1, N) \\ 0 & \text { else }\end{cases}
$$

and

$$
\left\{\mathbb{G}_{u}^{\star}\right\}_{i j}= \begin{cases}\frac{2 N-3}{3 N} L+\frac{2 w}{L^{2}} & \text { if } i=j-1 \text { or }(i, j)=(N, 1) \tag{16}\\ \frac{N-6}{6 N} L-\frac{w}{L^{2}} & \text { if } i=j+1 \text { or }(i, j)=(1, N) . \\ -\frac{L}{N} & \text { else }\end{cases}
$$

Hence, Euler-Lagrange equations associated with (14), are given by

$$
\begin{equation*}
\mathbb{V}_{u}^{\star} \dot{\boldsymbol{u}}=\lambda \mathbb{G}_{u}^{\star} \ddot{\boldsymbol{u}} \tag{17}
\end{equation*}
$$

where \mathbb{V}_{u}^{\star} and \mathbb{G}_{u}^{\star} are circulant and, for this reason, diagonalizable on a common orthonormal basis, which is called Fourier basis. Indeed,

$$
\begin{aligned}
\mathbb{V}_{u}^{\star} & =\left\{\mathbb{V}_{u}^{\star}\right\}_{1,1} \mathbb{I}_{N}+\left\{\mathbb{V}_{u}^{\star}\right\}_{1,2} \mathbb{E}+\cdots+\left\{\mathbb{V}_{u}^{\star}\right\}_{1, N} \mathbb{E}^{N-1} \\
\mathbb{G}_{u}^{\star} & =\left\{\mathbb{G}_{u}^{\star}\right\}_{1,1} \mathbb{I}_{N}+\left\{\mathbb{G}_{u}^{\star}\right\}_{1,2} \mathbb{E}+\cdots+\left\{\mathbb{G}_{u}^{\star}\right\}_{1, N} \mathbb{E}^{N-1}
\end{aligned}
$$

where

$$
\mathbb{E}:=\left[\begin{array}{lllll}
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1 \\
1 & & & &
\end{array}\right] \quad\left(\mathbb{E}^{N}=\mathbb{I}_{N}\right)
$$

whose eigenvectors are

$$
\mathbf{e}_{j}=\frac{1}{N}\left[\begin{array}{c}
1 \\
e^{i \frac{2 \pi}{N}(j-1)} \\
\vdots \\
e^{i \frac{2 \pi}{N}(j-1)(N-1)}
\end{array}\right] \quad\left(\text { corresponding to the eigenvalue } \mu_{j}=e^{i \frac{2 \pi}{N}(j-1)}\right) \text { for } j=1, \ldots, N .
$$

Therefore

$$
\begin{equation*}
\mathbb{G}_{u}^{\star} \mathbf{e}_{j}=g_{j} \mathbf{e}_{j} \quad \text { where } \quad g_{j}:=\left(\sum_{k=1}^{N}\left\{\mathbb{G}_{u}^{\star}\right\}_{1, k} \mu_{j}^{k-1}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{V}_{u}^{\star} \mathbf{e}_{j}=v_{j} \mathbf{e}_{j} \quad \text { where } \quad v_{j}:=\left(\sum_{k=1}^{N}\left\{\mathbb{V}_{u}^{\star}\right\}_{1, k} \mu_{j}^{k-1}\right) . \tag{19}
\end{equation*}
$$

Writing

$$
\mathbf{u}(t)=\sum_{j=1}^{N} u_{j}(t) \mathbf{e}_{j}
$$

we can project equation (17) along the eigenvectors, i.e.,

$$
\lambda g_{j} \ddot{u}_{j}(t)=v_{j} \dot{u}_{j}(t) \quad \forall j .
$$

Thus, up to a constant,

$$
u_{j}(t)= \begin{cases}\frac{\alpha_{j} \lambda \sqrt{g_{j}}}{v_{j}} e^{\frac{v_{j}}{\lambda g_{j}} t} & \text { for } j=1, \ldots, N \text { s.t. } g_{j}, v_{j} \neq 0 \\ \alpha_{j} t & \text { else }\end{cases}
$$

where α_{j} are complex constants; furthermore, periodicity yields

$$
\begin{cases}\lambda=\frac{T}{2 \pi k_{j}} \frac{v_{j}}{g_{j}} & \text { for } j=1, \ldots, N \text { s.t. } g_{j}, v_{j} \neq 0 \\ \alpha_{j}=0 & \text { else }\end{cases}
$$

where $k_{j} \in \mathbb{N} \forall j$.
On the other hand,

$$
V[\boldsymbol{u}, \dot{\boldsymbol{u}}]=-\int_{0}^{T} \mathbb{V}_{u}^{\star} \dot{\boldsymbol{u}} \cdot \boldsymbol{u} d t=-\int_{0}^{T} \lambda \mathbb{G}_{u}^{\star} \ddot{\boldsymbol{u}} \cdot \boldsymbol{u} d t=\lambda \int_{0}^{T} \mathbb{G}_{u}^{\star} \dot{\boldsymbol{u}} \cdot \dot{\boldsymbol{u}} d t=\lambda E[\boldsymbol{u}, \dot{\boldsymbol{u}}]
$$

where $E[\boldsymbol{u}, \dot{\boldsymbol{u}}]=c$ is constrained by the optimization problem. Then maximizing the approximated displacement leads to take λ as big as possible i.e.,

$$
\lambda=\frac{T}{2 \pi} \frac{v_{M}}{i g_{M}} \quad \text { where } \frac{v_{M}}{i g_{M}}=\max _{\substack{j=1, \ldots, N \\ g_{j}, v_{j} \neq 0}} \frac{v_{j}}{i g_{j}}
$$

and, in order to preserve the periodicity,

$$
\alpha_{j}=0 \quad \text { for } j \notin\left\{k \in\{1, \ldots, N\}: \frac{v_{k}}{i g_{k}}=\max _{\substack{j=1, \ldots, N \\ g_{j}, v_{j} \neq 0}}\left|\frac{v_{j}}{i g_{j}}\right|\right\} .
$$

In particular, in view of 18 and 19 , we have

$$
v_{j}=\sum_{k=1}^{N}\left\{\mathbb{V}_{u}^{\star}\right\}_{1, k} e^{i \frac{2 \pi}{N}(k-1)(j-1)}=\frac{(p-1)}{2 N L}\left[e^{i \frac{2 \pi}{N}(j-1)}-e^{-i \frac{2 \pi}{N}(j-1)}\right]=i \frac{(p-1)}{N L} \sin \left(\frac{2 \pi(j-1)}{N}\right)
$$

and

$$
\begin{aligned}
g_{j} & =\sum_{k=1}^{N}\left\{\mathbb{G}_{u}^{\star}\right\}_{1, k} e^{i \frac{2 \pi}{N}(k-1)(j-1)} \\
& =\left\{\mathbb{G}_{u}^{\star}\right\}_{1,1}+\left\{\mathbb{G}_{u}^{\star}\right\}_{1,2}\left[e^{i \frac{2 \pi}{N}(j-1)}-e^{i \frac{2 \pi}{N}(j-1)(N-1)}\right]+\left\{\mathbb{G}_{u}^{\star}\right\}_{1,3} \sum_{k=3}^{N-1} e^{i \frac{2 \pi}{N}(j-1)(k-1)} \\
& = \begin{cases}2\left[\frac{L}{3}+\frac{w}{L^{2}}+\left(\frac{L}{6}-\frac{w}{L^{2}}\right) \cos \left(\frac{2 \pi(j-1)}{N}\right)\right] & \text { for } j \neq 1 \\
0 & \text { for } j=1\end{cases}
\end{aligned}
$$

Notice that

$$
\frac{v_{j}}{g_{j}}=-\frac{v_{N-j+2}}{g_{N-j+2}} \quad \text { for } j=2, \ldots, N
$$

and hence, a (real) solution has the form (up to a constant)

$$
\mathbf{u}(t)=\frac{\alpha T}{2 \pi i \sqrt{g_{M}}} e^{\frac{2 \pi i}{T} t} \mathbf{e}_{M}-\frac{\bar{\alpha} T}{2 \pi i \sqrt{g_{M}}} e^{-\frac{2 \pi i}{T} t} \overline{\mathbf{e}}_{M}=-\frac{T}{\pi \sqrt{g_{M}}} \Re\left(\alpha i e^{\frac{2 \pi i}{T} t} \mathbf{e}_{M}\right)
$$

where $\alpha \in \mathbb{C} \backslash\{0\}$ fulfills the constraint

$$
\|\alpha\|=\sqrt{\frac{c}{2 T}} \quad\left(\text { since } \int_{0}^{T} \mathbb{G}_{u}^{\star} \dot{\boldsymbol{u}} \cdot \dot{\boldsymbol{u}} d t=2 T\|\alpha\|^{2}\right)
$$

and

$$
\mathbf{e}_{M}:=\frac{1}{N}\left[\begin{array}{c}
1 \\
e^{i \frac{2 \pi}{N}(M-1)} \\
\vdots \\
e^{i \frac{2 \pi}{N}(M-1)(N-1)}
\end{array}\right]
$$

In terms of strains,

$$
\left\{\begin{array}{l}
\epsilon_{1}=\frac{u_{1}-u_{N}}{L}=-\frac{T}{\pi N L \sqrt{g_{M}}} \Re\left(\alpha i e^{\frac{2 \pi i}{T} t}\left[1-e^{-i \frac{2 \pi}{N}(M-1)}\right]\right) \\
\epsilon_{j}=\frac{u_{j}-u_{j-1}}{L}=-\frac{T}{\pi N L \sqrt{g_{M}}} \Re\left(\alpha i e^{\frac{2 \pi i}{T} t}\left[1-e^{-i \frac{2 \pi}{N}(M-1)}\right] e^{i \frac{2 \pi}{N}(M-1)(j-1)}\right) \quad \text { for } j=2, \ldots, N
\end{array}\right.
$$

whence the exact peristalsis

$$
\boldsymbol{\epsilon}(t)=-\frac{T}{\pi \sqrt{g_{M}}} \Re\left(\alpha i e^{\frac{2 \pi i}{T} t} \mathbf{e}\right) \quad \text { where } \mathbf{e}:=\left[\begin{array}{c}
e_{1} \\
e^{i \frac{2 \pi(M-1)}{N}} e_{1} \\
\vdots \\
e^{i \frac{2 \pi(M-1)}{N}(n-1)} e_{1} \\
\vdots \\
e^{i \frac{2 \pi(M-1)}{N}(N-1)} e_{1}
\end{array}\right], e_{1}:=\frac{1}{N L}\left[1-e^{-i \frac{2 \pi}{N}(M-1)}\right]
$$

Finally, observe that the wavenumber (i.e., the frequency in space) of the peristalsis is $k=M-1$ and it is the result of

$$
\max _{k=1, \ldots N-1} \frac{v_{k+1}}{i g_{k+1}}=\max _{k=1, \ldots N-1} \frac{\frac{(p-1)}{N L} \sin \left(\frac{2 \pi k}{N}\right)}{\left[\frac{L}{3}+\frac{w}{L^{2}}+\left(\frac{L}{6}-\frac{w}{L^{2}}\right) \cos \left(\frac{2 \pi k}{N}\right)\right]}
$$

i.e.,

$$
k \sim \frac{N}{2 \pi} \arccos \left(\frac{1}{2} \frac{6 w-L^{3}}{3 w+L^{3}}\right) .
$$

Notice that

- for $w \rightarrow+\infty$, the wavenumber k tends to 1 ;
- for $w=0$, the wavenumber k gets close to $\frac{N}{3}$.

APPENDIX D

PROOF OF REFLECTIONAL SYMMETRY

Consider the optimization problem

$$
\begin{equation*}
\max _{\boldsymbol{\eta} \in[0,2 \pi)^{N}} u_{s}(\boldsymbol{\eta}):=\frac{1}{T} \int_{0}^{T} \mathbf{v}(\boldsymbol{\epsilon}) \cdot \dot{\boldsymbol{\epsilon}} d t \tag{20}
\end{equation*}
$$

where, for $n=1, \ldots, N$,

$$
\epsilon_{n}(t):=a \sin \left(\frac{2 \pi}{T} t+\eta_{n}\right) \quad \text { and } \quad v_{n}(t):=-\frac{L}{2} \frac{\left(1+\epsilon_{n}\right)^{1-p}+2 \sum_{i=n+1}^{N}\left(1+\epsilon_{i}\right)^{1-p}}{\sum_{j=1}^{N}\left(1+\epsilon_{j}\right)^{1-p}} .
$$

Assume that 20 has a unique solution and denote it by

$$
\boldsymbol{\epsilon}(\boldsymbol{\eta})(t)=\left\{\epsilon_{n}(t)=a \sin \left(\frac{2 \pi}{T} t+\eta_{n}\right)\right\}_{n=1, \ldots, N} .
$$

Consider

$$
\tilde{\boldsymbol{\epsilon}}(t):=\tilde{\boldsymbol{\epsilon}}(\tilde{\boldsymbol{\eta}})(t) \quad \text { where } \quad \tilde{\boldsymbol{\eta}}=-\mathbb{K} \boldsymbol{\eta}+2 \pi, \quad \mathbb{K}:=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & . & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] \in \mathbb{R}^{N \times N} .
$$

Notice that for $n=1, \ldots, N$,

$$
\tilde{\epsilon}_{n}(t)=a \sin \left(\frac{2 \pi}{T} t-(\mathbb{K} \eta)_{n}\right)=\{-\mathbb{K} \epsilon(-t)\}_{n}=-\epsilon_{N+1-n}(-t)
$$

and, consequently,

$$
\dot{\tilde{\epsilon}}_{n}(t)=\dot{\epsilon}_{N+1-n}(-t) .
$$

Since both $\boldsymbol{\epsilon}(t)$ and $\dot{\boldsymbol{\epsilon}}(t)$ are periodic functions of period T, we have

$$
\begin{aligned}
-\frac{2}{L} \int_{0}^{T} \mathbf{v}(\tilde{\boldsymbol{\epsilon}}) \cdot \dot{\boldsymbol{\epsilon}} d t= & \int_{0}^{T} \sum_{n=1}^{N} \dot{\tilde{\epsilon}}_{n}\left[\left(\sum_{j=1}^{N}\left(1+\tilde{\epsilon}_{j}\right)^{1-p}\right)^{-1}\left(\left(1+\tilde{\epsilon}_{n}\right)^{1-p}+2 \sum_{i=n+1}^{N}\left(1+\tilde{\epsilon}_{i}\right)^{1-p}\right)\right] d t \\
= & \int_{0}^{T} \sum_{n=1}^{N} \dot{\epsilon}_{N+1-n}(-t)\left[(\sum _ { j = 1 } ^ { N } (1 - \epsilon _ { N + 1 - j } (- t)) ^ { 1 - p }) ^ { - 1 } \left(\left(1-\epsilon_{N+1-n}(-t)\right)^{1-p}\right.\right. \\
& \left.\left.+2 \sum_{i=n+1}^{N}\left(1-\epsilon_{N+1-i}(-t)\right)^{1-p}\right)\right] d t
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{0}^{T} \sum_{n=1}^{N} \dot{\epsilon}_{N+1-n}(t)\left[(\sum _ { j = 1 } ^ { N } (1 - \epsilon _ { N + 1 - j } (t)) ^ { 1 - p }) ^ { - 1 } \left(\left(1-\epsilon_{N+1-n}(t)\right)^{1-p}\right.\right. \\
& \left.\left.+2 \sum_{i=n+1}^{N}\left(1-\epsilon_{N+1-i}(t)\right)^{1-p}\right)\right] d t \\
= & \int_{0}^{T} \sum_{n=1}^{N} \dot{\epsilon}_{n}\left[\left(\sum_{j=1}^{N}\left(1-\epsilon_{j}\right)^{1-p}\right)^{-1}\left(\left(1-\epsilon_{n}\right)^{1-p}+2 \sum_{i=1}^{n-1}\left(1-\epsilon_{i}\right)^{1-p}\right)\right] d t \\
= & -\frac{2}{L} \int_{0}^{T} \mathbf{v}^{\star}(\boldsymbol{\epsilon}) \cdot \dot{\boldsymbol{\epsilon}} d t
\end{aligned}
$$

where

$$
v_{n}^{\star}:=-\frac{L}{2} \frac{\left(1-\epsilon_{n}\right)^{1-p}+2 \sum_{i=1}^{n-1}\left(1-\epsilon_{i}\right)^{1-p}}{\sum_{j=1}^{N}\left(1-\epsilon_{j}\right)^{1-p}} .
$$

Observe that the last integral can be rewritten as

$$
\int_{0}^{T} \mathbf{v}^{\star}(\boldsymbol{\epsilon}) \cdot \dot{\boldsymbol{\epsilon}} d t=\oint_{\partial \Omega} \omega^{\star}
$$

where $\partial \Omega$ is the closed curve described by $\boldsymbol{\epsilon}(t)$ and ω^{\star} is the 1-form given by

$$
\begin{equation*}
\omega^{\star}:=\sum_{n=1}^{N} v_{n}^{\star} \mathrm{d} \epsilon_{n} . \tag{21}
\end{equation*}
$$

The exterior derivative of (21) is the following 2 -form

$$
\mathrm{d} \omega^{\star}=\sum_{\substack{i, j=1 \\ i \neq j}}^{N} \frac{\partial v_{i}^{\star}}{\partial \epsilon_{j}} \mathrm{~d} \epsilon_{j} \wedge \mathrm{~d} \epsilon_{i}=\sum_{\substack{i, j=1 \\ i<j}}^{N} A_{i j}^{\star}(\boldsymbol{\epsilon}) \mathrm{d} \epsilon_{i} \wedge \mathrm{~d} \epsilon_{j} \quad \text { where } \quad A_{i j}^{\star}(\boldsymbol{\epsilon}):=\left(\frac{\partial v_{j}^{\star}}{\partial \epsilon_{i}}-\frac{\partial v_{i}^{\star}}{\partial \epsilon_{j}}\right) .
$$

In particular, since

$$
\frac{\partial v_{i}^{\star}}{\partial \epsilon_{j}}= \begin{cases}-\left[\sum_{n=1}^{N}\left(1-\epsilon_{n}\right)^{1-p}\right]^{-2}(1-p)\left(1-\epsilon_{j}\right)^{-p}\left[\left(1-\epsilon_{i}\right)^{1-p}+2 \sum_{n=i+1}^{N}\left(1-\epsilon_{n}\right)^{1-p}\right] & j<i \\ {\left[\sum_{n=1}^{N}\left(1-\epsilon_{n}\right)^{1-p}\right]^{-2}(1-p)\left(1-\epsilon_{j}\right)^{-p}\left[\left(1-\epsilon_{i}\right)^{1-p}+2 \sum_{n=1}^{i-1}\left(1-\epsilon_{n}\right)^{1-p}\right]} & j>i\end{cases}
$$

we get

$$
\begin{aligned}
A_{i j}^{\star}(\boldsymbol{\epsilon})= & -\left[\sum_{n=1}^{N}\left(1-\epsilon_{n}\right)^{1-p}\right]^{-2}(1-p)\left[\left(1-\epsilon_{i}\right)^{-p}\left(\left(1-\epsilon_{j}\right)^{1-p}+2 \sum_{n=j+1}^{N}\left(1-\epsilon_{n}\right)^{1-p}\right)\right. \\
& \left.+\left(1-\epsilon_{j}\right)^{-p}\left(\left(1-\epsilon_{i}\right)^{1-p}+2 \sum_{n=1}^{i-1}\left(1-\epsilon_{n}\right)^{1-p}\right)\right] .
\end{aligned}
$$

Therefore, by Stokes' theorem (see any differential geometry textbook, e.g., McInerney (2013)),

$$
\int_{0}^{T} \mathbf{v}^{\star}(\boldsymbol{\epsilon}) \cdot \dot{\boldsymbol{\epsilon}} d t=\oint_{\partial \Omega} \omega^{\star}=\int_{\Omega} \mathrm{d} \omega^{\star}=\int_{\Omega} \sum_{i<j} A_{i j}^{\star} \mathrm{d} \epsilon_{i} \wedge \mathrm{~d} \epsilon_{j}
$$

and, since the domain Ω is invariant with respect to the reflection about the origin,

$$
\int_{\Omega} \sum_{i<j} A_{i j}^{\star} \mathrm{d} \epsilon_{i} \wedge \mathrm{~d} \epsilon_{j}=\int_{\Omega} \sum_{i<j} A_{i j}^{\star}(-\boldsymbol{\epsilon}) \mathrm{d} \epsilon_{i} \wedge \mathrm{~d} \epsilon_{j}
$$

Similarly, the exterior derivative of

$$
\omega:=\sum_{n=1}^{N} v_{n} \mathrm{~d} \epsilon_{n}
$$

is given by

$$
\mathrm{d} \omega=\sum_{\substack{i, j=1 \\ i<j}}^{N} A_{i j}(\boldsymbol{\epsilon}) \mathrm{d} \epsilon_{i} \wedge \mathrm{~d} \epsilon_{j} \quad \text { where } \quad A_{i j}(\boldsymbol{\epsilon}):=\left(\frac{\partial v_{j}}{\partial \epsilon_{i}}-\frac{\partial v_{i}}{\partial \epsilon_{j}}\right) .
$$

Since

$$
\frac{\partial v_{i}}{\partial \epsilon_{j}}= \begin{cases}-\left[\sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right]^{-2}(1-p)\left(1+\epsilon_{j}\right)^{-p}\left[\left(1+\epsilon_{i}\right)^{1-p}+2 \sum_{n=i+1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right] & j<i \\ {\left[\sum_{n=1}^{N}\left(1+\epsilon_{n}\right)^{1-p}\right]^{-2}(1-p)\left(1+\epsilon_{j}\right)^{-p}\left[\left(1+\epsilon_{i}\right)^{1-p}+2 \sum_{n=1}^{i-1}\left(1+\epsilon_{n}\right)^{1-p}\right]} & j>i\end{cases}
$$

we notice that

$$
\begin{aligned}
A_{i j}(\boldsymbol{\epsilon})= & -\left[\sum_{n=1}^{N}\left(1-\epsilon_{n}\right)^{1-p}\right]^{-2}(1-p)\left[\left(1-\epsilon_{i}\right)^{-p}\left(\left(1-\epsilon_{j}\right)^{1-p}+2 \sum_{n=j+1}^{N}\left(1-\epsilon_{n}\right)^{1-p}\right)\right. \\
& \left.+\left(1-\epsilon_{j}\right)^{-p}\left(\left(1-\epsilon_{i}\right)^{1-p}+2 \sum_{n=1}^{i-1}\left(1-\epsilon_{n}\right)^{1-p}\right)\right] \\
= & A_{i j}^{\star}(-\boldsymbol{\epsilon}) .
\end{aligned}
$$

Therefore,

$$
\int_{0}^{T} \mathbf{v}^{\star}(\boldsymbol{\epsilon}) \cdot \dot{\boldsymbol{\epsilon}} d t=\oint_{\partial \Omega} \omega^{\star}=\int_{\Omega} \mathrm{d} \omega^{\star}=\int_{\Omega} \mathrm{d} \omega=\oint_{\partial \Omega} \omega=\int_{0}^{T} \mathbf{v}(\boldsymbol{\epsilon}) \cdot \dot{\boldsymbol{\epsilon}} d t
$$

whence we conclude

$$
\frac{1}{T} \int_{0}^{T} \mathbf{v}(\tilde{\boldsymbol{\epsilon}}) \cdot \dot{\tilde{\boldsymbol{\epsilon}}} d t=\frac{1}{T} \int_{0}^{T} \mathbf{v}(\boldsymbol{\epsilon}) \cdot \dot{\boldsymbol{\epsilon}} d t
$$

In other terms, $\tilde{\epsilon}$ is a solution to 20 and, by uniqueness of the solution,

$$
\epsilon_{n}(t)=-\epsilon_{N+1-n}(-t)
$$

Then

$$
\boldsymbol{\eta}=-\mathbb{K} \boldsymbol{\eta}+2 \pi
$$

which leads to the "reflectional symmetry about the center", namely,

$$
\eta_{n+1}-\eta_{n}=\eta_{N+1-n}-\eta_{N-n} \quad \forall n
$$

