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Abstract

An autoassociative network of Potts units, coupled via tensor connections,
has been proposed and analysed as an effective model of an extensive cortical
network with distinct short- and long-range synaptic connections, but it has not
been clarified in what sense it can be regarded as an effective model. We draw
here the correspondence between the two, which indicates the need to introduce
a local feedback term in the reduced model, i.e., in the Potts network. An
effective model allows the study of phase transitions. As an example, we study
the storage capacity of the Potts network with this additional term, the local
feedback w, which contributes to drive the activity of the network towards one
of the stored patterns. The storage capacity calculation, performed using replica
tools, is limited to fully connected networks, for which a Hamiltonian can be
defined. To extend the results to the case of intermediate partial connectivity,
we also derive the self-consistent signal-to-noise analysis for the Potts network;
and finally we discuss implications for semantic memory in humans.

Keywords: neural network, multi-modular network, Potts model, storage capacity
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1 Introduction

Considerable research efforts in recent years have been driven by the ambition to
reconstruct and simulate in microscopic detail the structure of the human brain, pos-
sibly at the 1:1 scale, with outcomes that have been questioned [1]. A complementary
perspective is that put forward by the late neuroanatomist Valentino von Braitenberg,
who in many publications argued for the need to understand overarching principles of
mammalian brain organisation, even by recourse to dramatic simplification [2]. In this
spirit, over 40 years ago Braitenberg proposed the notion of the skeleton cortex, that
is comprised solely of its N pyramidal cells [3]. On their apical dendrites they receive
predominantly synapses from axons that originate in the pyramidal cells of other
cortical areas and travel through the white matter, while on their basal dendrites they
receive mainly synapses from local axon collaterals, and the two systems, A(pical)
and B(asal), can be estimated to include similar numbers of synapses CA and CB
per receiving cell. Braitenberg then detailed what could have later been called a
small world scheme [4]. In such a scheme, the N pyramidal cells are allocated to
N =

√
N modules, each including N cells, fully connected with each other – so that

CB = N − 1. Each cell would further receive, on the A system, N − 1 connections
from one cell drawn at random in each of the other modules, so that also CA = N − 1.
Therefore each cell gets 2(N − 1) connections from other pyramidal cells, the A and
B systems are perfectly balanced, and the average minimal path length between any
cell pair is just below 2. Of course, the modules are largely a fictional construct, apart
from special cases, or at least their generality and character are quite controversial
[5], [6], [7], but the distinction between long-range and local connections is real, and
the simple model recapitulates a rough square-root scaling of both systems, with
N ∼ 103 ÷ 105, in skeleton cortices which in mammals range from ca. N ∼ 106 to ca.
N ∼ 1010.

The functional counterpart to the neuroanatomical scheme is the notion of Hebbian
associative plasticity [8], considered as the key mechanism that modulates both long-
and short-range connections between pyramidal cells. In such a view, autoassociative
memory storage and retrieval are universal processes through which both local and
global networks operate [2]. Cortical areas across species would then share these
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universal processes, whereas the information they express would be specific to the
constellation of inputs each area receives, which the simplified skeleton model does
not attempt to describe. Underlying the diversity of higher-order processes of which
cortical cognition is comprised, there would be the common associative operation of
multi-modular autoassociative memory.

At a more abstract mathematical level, the Hopfield model of a simple autoas-
sociative memory network [9] has opened the path to a quantitative statistical
understanding of how memory can be implemented in a network of model neurons,
through thorough analyses of attractor neural networks. Crucially, it has allowed
to sketch a phase diagram, and to approach the nature of the phase transitions an
associative memory network may demonstrate, what is beyond the reach of non
quantitative models. The initial analyses, with networks of binary units, then shifted
towards networks with more of the properties seen in the cortex [10], [11].

As for modelling cortical connectivity, attempts to reproduce quantitative ob-
servations [12], given the apparent lack of specificity at the single cell level [13], in
some cases have led to models in which, even without modules, the probability of
pyramidal-to-pyramidal connections depends on the distance between neurons, rapidly
decreasing beyond a distance that conceptually corresponds to the radius of a module
[14]. In other models, the basis is a strict parcellation into modules, but either with
the specific assumptions of binary synapses [15] or with the network interactions across
modules different in nature from those within a module (which itself can be structured
in sub-modules, or mini-columns, with winner-take-all competition among them, and
synergy among fully equivalent "clone" units within them [16, 17]), thereby departing
from the Braitenberg assumption that associative Hebbian plasticity governs both
intra- and inter-module interactions.

But has Braitenberg’s suggested simplification, the skeleton of units with their A
and B system, both associative, enabled the use of the powerful statistical-physics-
derived analyses that had been successfully applied to the Hopfield model? Has
it allowed an understanding of phase transitions? Only up to a point. Studies of
multi-modular network models including full connectivity within individual modules
and sparse connectivity with other modules could only be approached in their most
basic formulation, in which all modules participate in every memory, and their sparse
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connectivity is random [18], [19]; and attempts to articulate them further have led to
analytical complexity [20] [21], [22], [23] or to the recourse to very sparse, effectively
local coding schemes [15], without yielding a plausible quantification of storage
capacity. The Potts associativ e network, in contrast, has been, from the early study
by Ido Kanter [24] fully analysed in its original and sparsely coded versions [25],
[26], [27], [28], [29] and it has been argued to offer an ever further simplification of a
cortical network than Braitenberg’s [30], amenable to study also its latching dynamics
[31]. The correspondence between Braitenberg’s notion and the Potts model has
not, however, been discussed. We do it here, with the aim of establishing a clearer
rationale for using the Potts model to study cortical processes.
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macaquecat

chimpanzee
human

Potts units ~ modules 

Figure 1: The Braitenberg model regards a skeleton cortex of N pyramidal cells as
comprised of

√
N modules of

√
N cells each. The Potts model then reduces each module to

a multi-state unit, where a state corresponds to a dynamical attractor of the local cortical
module. How should the number of states per module, S, be thought to scale with N ?

2 The Potts network

The Potts neural network, studied by [24] [25], [26] and [27], is a network of units
which can be in more than two states, generalizing Hopfield’s binary network, [9],
in which units are either active or quiescent. A Potts unit, introduced in statistical
physics in 1952 [32] can be regarded in our neuroscience context as representing a
local subnetwork or cortical patch of real neurons, endowed with its set of dynamical
attractors, which span different directions in activity space, and are therefore converted
to the states of the Potts unit (which is defined precisely as having states pointing
each along a different dimension of a simplex), as schematically illustrated in Fig. 1.
Whatever the interpretation, however, one can define the model as an autoassociative
network of Nm Potts units interacting through tensor connections. The memories are
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stored in the weight matrix of the network and they are fixed, reflecting an earlier
learning phase [9]: each memory µ is a vector or list of the states taken in the overall
activity configuration by each unit i: ξµi . We take each Potts unit to have S possible
active states, labelled e.g. by the index k, as well as one quiescent state, k = 0, when
the unit does not participate in the activity configuration of the memory. Therefore
k = 0, ..., S, and each ξµi can take values in the same categorical set. The tensor
weights read [24]

cijJ
kl
ij = cij

cma(1− a
S

)

p∑
µ=1

(
δξµi k −

a

S

)(
δξµj l −

a

S

)
(1− δk0)(1− δl0) , (1)

where i, j denote units, k, l denote states, a is the fraction of units active in each
memory, cij = 1 or 0 if unit j gives input or not to unit i, cm is the number of input
connections per unit, and the δ’s are Kronecker symbols. The subtraction of the
mean activity per state a/S ensures a higher storage capacity [24]. The units of the
network are updated in the following way:

σki = exp (βrki )∑S
l=1 exp (βrli) + exp [β(θ0

i + Ui)]
(2)

and
σ0
i = exp [β(θ0

i + Ui)]∑S
l=1 exp (βrli) + exp [β(θ0

i + Ui)]
, (3)

where rki is the variable representing the input to unit i in state k within a time scale
τ1 and Ui is effectively a threshold. From Eqs. (2) and (3), we see that ∑S

k=0 σ
k
i ≡ 1,

and note also that σki takes continuous values in the (0,1) range for each k, whereas
the memories, for simplicity, are assumed discrete, implying that perfect retrieval is
approached when σki ' 1 for k = ξµi and ' 0 otherwise.

2.1 Potts model dynamics

When the Potts model is studied as a model of cortical dynamics, Ui is often written
as U + θ0

i , where U is a common threshold acting on all units, and θ0
i is the threshold

component specific to unit i, but acting on all its active states, and varying in
time with time constant τ3. This threshold is intended to describe local inhibitory
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effects, which in the cortex are relayed by GABAA and GABAB receptors, with widely
different time courses, from very short to very long. As discussed elsewhere [33], also
the dynamical behaviour of the Potts model is much more interesting if both fast
and slow inhibition is included. Here, however, we do not treat dynamics beyond this
sketch, and stay with a single τ3 time constant for the sake of simplicity.

The time evolution of the network is governed by the equations

τ1
drki (t)
dt

= hki (t)− θki (t)− rki (t)

τ2
dθki (t)
dt

= σki (t)− θki (t) (4)

τ3
dθ0

i (t)
dt

=
S∑
k=1

σki (t)− θ0
i (t)

where the variable θki is a specific threshold for unit i in state k, varying with time
constant τ2, and intended to model adaptation, i.e. synaptic or neural fatigue specific
to the neurons active in state k; and the field that the unit i in state k experiences
reads

hki =
Nm∑
j 6=i

S∑
l=1

Jklij σ
l
j + w

(
σki −

1
S

S∑
l=1

σli

)
. (5)

Note that w is another parameter, the “local feedback term”, first introduced in
[31], aimed at modelling the stability of local attractors in the full model. It helps
the network converge towards an attractor, by giving more weight to the most active
states, and thus it effectively deepens the attractors.
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3 From a multi-modular Hopfield network to a
Potts network

We do not review here the Hopfield network [9] not its implementation with threshold-
linear units [10] but briefly recapitulate, in order to draw the correspondence with the
Potts network, the multi-modular version of the threshold-linear Hopfield network, as
considered earlier without [18] and with globally sparse coding [21].

Let us consider an underlying network of Nm modules ([18], [19], [21], [23]), each
comprised of Nu neurons, each of which is connected to all Nu − 1 other neurons
within the same module, and to CA other neurons distributed randomly throughout
all the other modules (in earlier papers the notation L ≡ CA has been used). We
make the critical “Hopfield” assumption [9] that both short- and long-range synaptic
connections are symmetric. The activity Vi of each neuron is a threshold-linear
function of its summed input, as in [10]. The modularity finds expression in the
articulation of the global activity patterns that comprise the attractor states of the
network. Each module can retrieve one of S local activity patterns, or features,
that are learned with the corresponding short range connections. We index it with
ξ = 1, . . . , S. Furthermore, p global activity patterns, each consisting of combinations
of aNm features, are stored on the dilute long-range connections, as illustrated in
Fig. 2. The total number of connections to a neuron is given by C = CA + Nu − 1
and we define the fraction of long range connections as γ = CA/C. The model
therefore partially incorporates Braitenberg’s assumptions, by setting CB = Nu − 1;
the implementation would be complete if also Nm = Nu, CA = Nm − 1 and therefore
γ = 1/2, but this is not necessary for the analytical treatment.

We make here the simplifying assumption that the firing rates, η, that represent a
local pattern ξ within a modulem, are identically and independently distributed across
units, given by the distribution Pη

(
ηξim

)
. A global pattern, µ = 1, . . . , p, is a random

combination {ξµ1 , . . . , ξµm, . . . , ξ
µ
Nm}, with the constraint that only aNm of the k’s are

non-zero. We denote as ζ ≡ pa/S the average number of global patterns represented
by a specific local pattern, given global sparsity a, and assume it for simplicity to be
an integer number. We also impose, as in [34], that Pη satisfies 〈η〉 = 〈η2〉 = au, such
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that local representations are also sparse, with sparsity parameter au distinct from
the global one a, both measures parametrizing, at different scales, sparse coding.

Figure 2: In a cortex comprised of modules, with pyramidal cells receiving their sparse
inputs from other modules on the apical dendrites (in color; top panel), memory patterns
can be thought of as comprised of features, whose values are coded in the local attractors
of each module (middle panel, which reproduces the layout of the modules in the top
panel). Features have to be bound together by the tensor connections, in the Potts
model. Sparse coding means that not all features pertain to every memory; the rest of
the Potts units are in their quiescent state, as in the toy example at the bottom, where
Nm = 5, p = 6, S = 3, a = 0.6.

Using Hebbian covariance rules [35] in the multi-modular network, we have

J short
im,jm = ρs

1
C

p∑
µ=1

ηξµmim
au
− 1

ηξµmjm
au
− 1

 (6)

J long
im,jn = ρl

cim,jn
C

p∑
µ=1

(
ηµim
au
− 1

)(
ηµjn
au
− 1

)
(7)
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where ρs and ρl are parameters that adjust the dimensions of short- and long-range
connections, and can regulate their relative strength. Note that we adopt the more
complex index ξµm in Eq. (6) to emphasize that the summation over µ implies repeatedly
using the same local pattern k, for all global patterns that have ξµm = k. The variable
cim,jn is a binary variable

cim,jn =

 1 with probability ε

0 with probability (1− ε)
(8)

where ε = CA/Nu(Nm − 1).
In those cases in which an energy function can be defined, i.e., essentially, if

cim,jn = cjn,im the attractor states of the system, [36], correspond to the minima of a
“free energy”. The “Hamiltonian” of the multi-modular network, which is proportional
to Nu ×Nm, is in those cases given by

H = −1
2
∑
m

∑
im,jm 6=im

J short
im,jmVimVjm −

1
2

∑
m,n 6=m

∑
im,jn

J long
im,jnVimVjn (9)

= Hs +Hl.

3.1 Thermodynamic correspondence

Estimating cim,jn with its mean ε, we can rewrite the second term above as

Hl = −
∑

m,n>m

∑
im,jn

J long
im,jmVimVjn

= −ρl
∑

m,n>m

∑
im,jn

cim,jn
C

p∑
µ=1

(
ηµim
au
− 1

)(
ηµjn
au
− 1

)
VimVjn

' −ρl
ε

C

∑
m,n>m

∑
µ

∑
im,jn

(
ηµim
au
− 1

)(
ηµjn
au
− 1

)
VimVjn .

We note that for a given pattern µ the only contribution to ηµim is ηξ
µ
m
im . We now define

the local correlation of the state of the network with each local memory pattern as

σξ
µ
m
m = 1

Nu

∑
im

(
ηξ

µ
m
im

au
− 1

)
Vim (10)
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where to avoid introducing additional dimensional parameters, we assume that the
activity Vi of each model neuron is measured in such units, and suitably regulated
by inhibition, that the local correlations are automatically normalized to reach a
maximum value of 1. We then obtain

Hl = −ρl
εN2

u

C

∑
m,n>m

∑
µ

σξ
µ
m
m σξ

µ
n
n

= −ρl
εN2

u

C

∑
m,n>m

∑
µ

∑
k

∑
l

δξµmkδξµnlσ
k
mσ

l
n

= −Nu

∑
m,n>m

∑
k,l

Jklmnσ
k
mσ

l
n , (11)

where we have introduced

Jklmn = ρl
εNu

C

∑
µ

δξµmkδξµnl = ρl
γ

Nm − 1
∑
µ

δξµmkδξµnl. (12)

On the other hand, using Eq. (10), the first term can be rewritten as

Hs = −
∑
m

∑
im,jm>im

JSim,jmVimVjm

' −ρs
ζ

C

∑
m

∑
im,jm>im

S∑
ξ=1

(
ηξim
au
− 1

)ηξjm
au
− 1

VimVjm
= −ρs

ζ

C

∑
m

S∑
ξ=1

 ∑
im,jm

(
ηξim
au
− 1

)ηξjm
au
− 1

VimVjm −∑
im

[(
ηξim
au
− 1

)
Vim

]2
' −ρs

ζ

C

∑
m

N2
u

∑
k

(
σkm
)2
− S(1− au)

au

∑
im

[Vim ]2
 . (13)

where we have noted the absence of self-interactions, and estimated with its mean
ζ ≡ pa/S the number of contributions to the encoding of each local attractor state.
Putting together Eqs. (11) and (13), where we neglect the last term in the Nu →∞
limit, and noting that Nu/C ' CB/C = 1− γ, we have

H ' −Nu

∑
m,n>m

∑
k,l

Jklmnσ
k
mσ

l
n −Nuρsζ(1− γ)

∑
m

∑
k

(
σkm
)2
. (14)

We have therefore expressed the Hamiltonian of a multi-modular Hopfield network
in terms of mesoscopic parameters, the σkm’s, characterizing the state of each module
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in terms of its correlation with locally stored patterns. This could be regarded as
(proportional to) the effective Hamiltonian of a reduced Potts model, if due attention
is paid to entropy and temperature.

First, let us consider the temperature. Since the σkm’s are infinite (in the Nm →∞
limit) but infinitely fewer than the Vi’s (in the Nu → ∞ limit), the correct Potts
Hamiltonian is akin to a free-energy for the full multimodular model, it should scale
with Nm and not with Nm×Nu, and it should include the proper entropy terms. One
can write

exp−βPottsHPotts({σkm}) =
∑
{Vi}

exp−βH({Vi}|{σkm}). (15)

The correct scaling of the Potts Hamiltonian implies that an extra Nu factor present
in the original Hamiltonian has to be reabsorbed in the effective inverse Potts
temperature βPotts, which then diverges in the thermodynamic limit. This means
that the Potts network can be taken to operate at zero temperature, in relation to its
interactions between modules. Within modules, however, the effects of a non-zero
noise level in the underlying multi-modular network persist in the entropy terms.

Let us now turn, then, to the entropy. Here, delineating the correspondence
requires suitable assumptions on the distribution of microscopic configurations that
dominate the thermodynamic (mesoscopic) state of each module, which are expressed
as entropy terms of the effective Potts model. One such assumption is that a module
is mostly in states fragmented into competing domains of n0, n1, . . . , nk, . . . , nS units,
fully correlated with the corresponding local patterns, except for the first n0, which
are at a spontaneous activity level. This would imply that, dropping the module
index m, σk = nk/Nu, and the constraint ∑S

k=0 σ
k = 1 is automatically satisfied. The

number of microscopic states characterized by the same S+1-plet n0, . . . , nk, . . . , nS is
Nu!/∏S

k=0 nk!. The log of this number, which can be estimated as −Nu
∑S
k=0 σ

k ln σk,
has to be divided by β and then subtracted for each module from the original
Hamiltonian, as the entropy term that comes from the microscopic free-energy. This
becomes the effective Hamiltonian of the Potts network by further dividing by Nu,
because a factor Nu has to be reabsorbed into β. Therefore one finds the additional
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entropy term in the reduced Hamiltonian

βHentropy
Potts ({σkm}) =

∑
m

S∑
k=0

σkm ln σkm. (16)

The above shows that the original inverse temperature β retains its significance
as a local parameter, that modulates the stiffness of each module or Potts units,
even though the effective noise level in the long-range interactions between modules
vanishes. The precise entropy formula depends also on the assumptions that all
microscopic states be dynamically accessible from each other, which would have to
be validated depending on the dynamics assumed to hold within each module. An
alternative assumption is that individual units can in practice only be exchanged
between a fragment correlated with local pattern k and the pool n0 of uncorrelated
units. Under that assumption the entropy can be estimated from the log of the
number ∏S

k=1(Nu!/n0!nk!), which yields

βH′entropy
Potts ({σkm}) =

∑
m

S∑
k=1

{
σkm ln σkm

σkm + σ0
m

+ σ0
m ln σ0

m

σkm + σ0
m

}
(17)

as in [31], Eq. (11).
Note that, in Eq. (14), the sparse connectivity between modules of the multi-

modular network does not translate into a diluted Potts connectivity: each module,
or Potts unit, receives inputs from each of the other Nm − 1 modules, or Potts units.
One can consider cases in which, instead, there are only cm connections per Potts
unit, e.g. the highly diluted and intermediate connectivity considered in the storage
capacity analysis below.

3.2 Where it gets vague: inhibition and dynamics

These arguments indicate how the local attractors of each module can be reinterpreted
as dynamical variables of a system of interacting Potts units. The correspondence
cannot be worked out completely, however (and Eq. (14) is not fully equivalent to
the Hamiltonian defined in [31]), if anything because the effects of inhibition cannot
be included, given the inherent asymmetry of the interactions, in a Hamiltonian
formulation. In the body of work on neural networks stimulated by the Hopfield
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model, some of the effects ascribed to inhibition have been regarded as incapsulated
in the peculiar Hebbian learning rule that determines the contribution of each stored
pattern to the synaptic matrix, with its subtractive terms. Similar subtractive terms
can be argued on the same basis to take into account inhibitory effects at the module
level, and they lead to replace the interaction

Jklmn = ρl
γ

Nm − 1
∑
µ

δξµmkδξµnl (18)

with
J ′klmn = ρl

γ

Nm − 1
∑
µ

(δξµmk − a/S)(δξµnl − a/S), (19)

the form which appears in [31]. The local feedback term there, parametrized by w,
can be made to roughly correspond to the second term in Eq. (14) by imposing that
ρsζ(1− γ)/ρlγ = w/2.

To extend further the approximate correspondence, beyond thermodynamics and
into dynamics, we may assume that underlying the Potts network there is in fact
a network of Nm × Nu integrate-and-fire model neurons, emulating the dynamical
behaviour of pyramidal cells in the cortex, as considered by [37] and [38]. The simple
assumptions concerning the connectivity and the synaptic efficacies are reflected in
the fact that the inputs to any model neuron in the extended network are determined
by globally defined quantities, namely the mean fields, which are weighted averages
of quantities that measure, as a function of time, the effective fraction of synaptic
conductances (g, in suitable units normalized to ∆g) open on the membrane of any
cell of a given class, or cluster (G) by the action of all presynaptic cells of another
given class, or cluster (F)

zFG (t) = 1
Nlocal,F

∑
α∈F

gα (t)
∆gFG

, (20)

where gα is the conductance of a specific synaptic input. The point is that among
the clusters that have to be defined in the framework of Ref.[37], many cluster pairs
(F,G), those that comprise pyramidal cells, share the same or a similar biophysical
time constant, describing their conductance dynamics [37], i.e.

dzFG (t)
dt

= − 1
τFG
zFG (t) + νF (t−∆t) , (21)
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where νF (t) is the firing rate. If τFG is the same across distinct values for F and G,
one can compare the equation for any such cluster pair to the first equation of Eq. (4),
namely

τ1
drki (t)
dt

= hki (t)− θki (t)− rki (t) .

Since rki is the temporally integrated variable representing the activity of unit i in state
k varying with the time scale of τ1, it can be taken to correspond to the (integrated)
activation of pyramidal cells in a module. One can conclude that τ1 summarizes the
time course of the conductances opened on pyramidal cells by the inputs from other
pyramidal cells. It represents the inactivation of synaptic conductance and, like the
firing rates are a function of the z, our overlap is a function of the r. Neglecting
adaptation (θki ), we can think of the correspondence as

hki ∼
∑
α∈F

να → rki ∼
∑
α∈F

zα (22)

therefore rki represents the state of the inputs to the integrate-and-fire neurons within
a module, i.e., a Potts unit, and we can identify the constant τ1 with the inactivation
time constant for the synapses between pyramidal cells, τEE , whereas inhibitory and
adaptation effects will be represented by τ2 and τ3 in the Potts model.

The considerations in this subsection appear to be particularly ad hoc, as they
are bound to be, since we are drawing a possible correspondence which is not a
one to one mapping, but rather a reduction to a system with a very large number
of variables from another system with a yet much larger number, which itself is
intended to represent in simplified form the extreme complexity of the cortex. Still,
the correspondence, even though approximate, helps in interpreting the result of the
mathematical analysis of the "thermodynamics" of the reduced model, to which we
turn next.
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4 Storage capacity of the Potts network

In the previous section, we have expressed the approximate equivalence between the
Hamiltonian of a multi-modular Hopfield network and that of the Potts network.
This means that we can study the retrieval properties of the Potts network, as an
effective model of the full multi-modular network.

4.1 Fully connected network

In this subsection, we study the storage capacity of the Potts network with full
connectivity using the classic replica method. We quantify the storage load with
α ≡ p/cm or, in the case of full connectivity, α ≡ p/N . Taking inspiration from [29]
and [31], let us consider the Hamiltonian which is defined as:

H = −1
2

N∑
i,j 6=i

S∑
k,l=0

Jklij δσikδσj l + U
N∑
i

(1− δσi0)− w

2

N∑
i

 ∑
k>0

δ2
σik
− 1
S

(1− δσi0)2

 .
(23)

The coupling between the state k in unit i and the state l in unit j is a Hebbian
rule ([29], [9], [27], [31], [39])

Jklij = 1
Na(1−ã)

∑p
µ=1 vξµi kvξ

ν
j l

vξµi k =
(
δξµi k − ã

)
(1− δk0)

(24)

where N is the total number of units in our Potts network (for clarity we drop
henceforth the subscript Nm, except when discussing parameters in Sect.6.1), p is
the number of stored random patterns, a is their sparsity, i.e., the fraction of active
Potts units in each, and ã = a/S. As mentioned above, U is the time-independent
threshold acting on all units in the network, as in [29]. The main difference with the
analysis in [29] is that here we have included the term proportional to w in Eq. (23).
This self-reinforcement term pushes each unit into the more active of its states, thus
providing positive feedback.

The patterns to be learned are drawn from the following probability distribution
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([29], [31], [39])  P (ξµi = 0) = 1− a
Pk ≡ P (ξµi = k) = ã ≡ a/S .

(25)

Using the trivial property that δ2
i,j = δi,j we can rewrite the Hamiltonian as

H = − 1
2Na (1− ã)

p∑
µ=1

(
N∑
i

vξµi σi

)2

+ 1
2Na (1− ã)

N∑
i

p∑
µ=1

v2
ξµi σi

+

+
(
U − w (S − 1)

2S

)
N∑
i

vξµi σi
δξµi σi − ã

.

In the following let us define

Ũ = U − w (S − 1)
2S . (26)

We now apply the replica technique ([40, 41, 42]) to compute from H a free energy
expressed in terms of overlap order parameters mµ, following refs. [11, 24, 36, 43, 44].
The m’s measure the correlation between the thermodynamic state of the network
and each of the stored memory patterns, and we are interested here in the case where
only one such order parameter (pertaining to the so-called condensed pattern) differs
from zero. The free energy of N Potts units in replica theory reads

f = − 1
β

lim
n→0

lim
N→∞

〈
Zn

〉
− 1

Nn
, (27)

where 〈·〉 is an average over the quenched disorder (in this case represented by all
the other, uncondensed patterns in our network), as in [36]. The quenched average
requires introducing additional conjugate order parameters q, r, again as in [36], and
their diagonal values q̃, r̃. In Appendix A we compute the replica symmetric free
energy to be

f = a (1− ã)
2 m2 + α

2β

[
ln (a (1− ã)) + ln (1− ãC)− βãq

(1− ãC)

]
+

+ αβã2

2 (r̃q̃ − rq) + ãq̃
[
α

2 + SŨ
]

+

− 1
β

〈∫
Dz ln

1 +
∑
ł6=0

exp
[
βHξ

l

]〉 (28)
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where ∫
Dz =

∫
dz

exp (−z2/2)√
2π

, (29)

C = β (q̃ − q) (note that for consistency with the notation in earlier studies we use
the same symbol C to denote the –unrelated– total number of connections per unit
in the underlying multi-modular model) and

Hξ
l = mvξl −

αaβ (r − r̃)
2S2 (1− δl0) +

S∑
k=1

√
αrPk

S (1− ã)zkvkl . (30)

C and Hξ
l are both quantities that are typical of a replica analysis. Hξ

l is the mean
field with which the network affects state l in a given unit if it is in the same state as
condensed pattern ξ (note that Hξ

0 = 0). No such interpretation can be given to C:
it measures the difference between q̃, the mean square activity in a given replica, and
q, the coactivation between two different replicas. Note that in the zero temperature
limit (β →∞), this difference goes to 0, such that C is always of order 1. It will be
clarified in section 4.3, through a separate analysis, that C is related to the derivative
of the output of an average neuron with respect to variations in its mean field.

The self-consistent mean field equations in the limit of β →∞ are obtained by
taking the derivatives of f with respect to the three replica symmetric variational
parameters, m, q, r

m = 1
a (1− ã)

〈∫
Dz

∑
l 6=0

vξl

 1
1 + ∑

n6=l
exp

[
β
(
Hξ
l −H

ξ
n

)]

〉

→ 1
a (1− ã)

∑
l 6=0

〈∫
Dz vξl

∏
n6=l

Θ
[
Hξ
l −Hξ

n

] 〉
(31)

q → q̃ = 1
a

∑
l 6=0

〈∫
Dz

∏
n6=l

Θ
[
Hξ
l −Hξ

n

] 〉
(32)

C = 1
ã2√αr

∑
l 6=0

∑
k

〈∫
Dz

√
Pk

S (1− ã)vklzk
∏
n6=l

Θ
[
Hξ
l −Hξ

n

] 〉
(33)

r̃ → r = q

(1− ãC)2 (34)
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β (r − r̃) = 2
(
Ũ
S2

aα
− C

1− ãC

)
. (35)

The Θ function gives non-vanishing contribution only for Hξ
l −Hξ

n > 0, i.e.

∑
k>0

(vkl − vkn) zk > −m
√
S2 (1− ã)

αar
(vξl − vξn)−αaβ (r − r̃)

2S2

√
S2 (1− ã)

αar
(δn0 − δl0) .

Moreover, it is convenient to introduce two combinations of order parameters,

x = αaβ (r − r̃)
2S2

√
S2 (1− ã)

αar
,

y = m

√
S2 (1− ã)

αar
.

At the saddle point, they become

x = 1
√
q + ãC

√
r

√
1− ã
α̃

[
Ũ − α̃C2

√
r

q

]
,

y =
√

1− ã
α̃

(
m

√
q + ãC

√
r

)
, (36)

where α̃ = αa/S2. By computing the averages in Eqs. (31) and (35), we get three
equations that close the self consistent loop with Eq. (36),

q = 1− a
ã

∫
Dp

∫ ∞
yã+x−i

√
ãp
Dzφ (z)S−1

+
∫
Dp

∫ ∞
−y(1−ã)+x−i

√
ãp
Dzφ (z + y)S−1 (37)

+ (S − 1)
∫
Dp

∫ ∞
yã+x−i

√
ãp
Dzφ (z − y)φ (z)S−2 ,

m = 1
1− ã

∫
Dp

∫ ∞
−y(1−ã)+x−i

√
ãp
Dzφ (z + y)S−1 − q ã

1− ã , (38)
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C
√
r = 1√

α̃ (1− ã)

1− a
ã

∫
Dp

∫ ∞
yã+x−i

√
ãp
Dz

(
z + i

√
ãp
)
φ (z)S−1

+
∫
Dp

∫ ∞
−y(1−ã)+x−i

√
ãp
Dz

(
z + i

√
ãp
)
φ (z + y)S−1 (39)

+ (S − 1)
∫
Dp

∫ ∞
yã+x−i

√
ãp
Dz

(
z + i

√
ãp
)
φ (z − y)φ (z)S−2

 ,
where φ(z) =

(
1 + erf(z/

√
2)
)
/2. Eqs. (36)-(39) are complicated in their current

form, such that it is useful to see their behavior in some limit cases. One such limit
case is ã� 1. Using the equalities∫

Dw =
∫ dw√

2π
exp (−w2/2) = 1

dφ = Dz

1− φ(x) = φ(−x)

and considering that φ(x) ∼ Θ(x) (the Heaviside function) away from x ∼ 0, we get
to the following self-consistent equations

x = 1√
α̃q

(
Ũ − α̃C

2

√
r

2

)
(40)

y = m√
α̃q

(41)

m = φ(y − x) (42)

q = 1− a
ã

φ(−x) + φ(y − x) (43)

C
√
r = 1

2πã

{1− a
ã

exp (−x2/2) + exp (−(y − x)2/2)
}
. (44)

4.2 Diluted networks and the highly diluted limit

A more biologically plausible case is that of diluted networks, where the number
of connections per unit cm is less than N . Specifically, we consider connections
of the form cijJij, where Jij is the usual symmetric matrix derived from Hebbian
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learning. cij equals 0 or 1 according to a given probability distribution and we note
λ = 〈cij〉/N = cm/N the dilution parameter. In general, cij is different from cji,
leading to asymmetry in the connections between units.

When the connectivity is not full, the type of probability distribution assumed for
the cij matters. We then consider three different distributions. The first is referred
to as random dilution (RD), which is

P (cij, cji) = P (cij)P (cji) (45)

with
P (cij) = λδ(cij − 1) + (1− λ)δ(cij) . (46)

The second is the symmetric dilution (SD), defined by

P (cij, cji) = λδ(cij − 1)δ(cji − 1) + (1− λ)δ(cij)δ(cji) . (47)

The third is what we call state dependent random dilution (SDRD) –specific to the
Potts network– in which

P (cklij ) = λδ(cklij − 1) + (1− λ)δ(cklij ) ; (48)

note that in this case the connectivity coefficients are state-dependent.
We have performed simulations with all three types of connectivity, but will focus

the analysis onto the RD type, which is the simplest to treat analytically. The storage
capacity curve for all three models, estimated from simulations, will be shown later
in Fig. 6. RD and SD are known in the literature as Erdos-Renyi graphs. Many
properties are known about such random graph models [45], [46]. It is known that
for λ below a critical value, essentially all connected components of the graph are
trees, while for λ above this critical value, loops are present. In particular, a graph
with cm < log(N) will almost surely contain isolated vertices and be disconnected,
while with cm > log(N) it will almost surely be connected. log(N) is a threshold for
the connectedness of the graph, distinguishing the highly diluted limit, for which a
simplified analysis of the storage capacity is possible, as in [47], from the intermediate
case of the next section, for which a complete analysis is necessary, following the
approach by Shiino and Fukai [48].
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With Random Dilution, the capacity cannot be analysed through the replica
method, as the symmetry of the interactions is a necessary condition for the existence
of an energy function, and hence for the application of the thermodynamic formalism.
We therefore apply the signal to noise analysis. The local field of unit i in state k
writes

hki =
∑
j

∑
l

cijJ
kl
ij σ

l
j − Ũ (1− δk,0) (49)

where the coupling strength between two states of two different units is defined as

Jklij = 1
cma(1− ã)

∑
µ

vξµi kvξ
µ
j l
. (50)

In the highly diluted limit cm ∼ log(N) at most, the assumption is that the field can
be written simply as the sum of two terms, signal and noise. While the signal is what
pushes the activity of the unit such that the network configuration converges to an
attractor, the noise, or the crosstalk from all of the other patterns, is what deflects
the network away from the cued memory pattern. The noise term writes

nki ∝
p∑

µ>1

N∑
j( 6=i)

∑
l

vξµi kvξ
µ
j l
σlj ,

that is, the contribution to the weights Jklij by all non-condensed patterns. By virtue of
the subtraction of the mean activity in each state ã, the noise has vanishing average:

〈nki 〉P (ξ) ∝
p∑

µ>1

N∑
j( 6=i)

∑
l

〈vξµi ,k〉〈vξµj ,lσ
l
j〉 = 0 .

Now let us examine the variance of the noise. This can be written in the following
way:

〈(nki )2〉 ∝
p∑

µ>1

N∑
j(6=i)=1

∑
l

p∑
µ′>1

N∑
j′(6=i)=1

∑
l′
〈vξµi ,k vξµ′

i ,k
〉〈vξµj ,l vξµ′

j′ ,l
′ σ

l
jσ

l′

j′〉 ,

where statistical independence between units has been used. For randomly correlated
patterns, all terms but µ = µ′ vanish. Having identified the non-zero term, we
can proceed with the capacity analysis. We can express the field using the overlap
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parameter, and single out, without loss of generality, the first pattern as the one to
be retrieved

hki = vξ1
i k
m1
i +

∑
µ>1

vξµi km
µ
i − Ũ(1− δk0). (51)

where we define the local overlap mi as

mi = 1
cma(1− ã)

∑
j

∑
l

cijvξ1
j l
σj . (52)

We now write ∑
µ>1

vξµi ,km
µ
i ≡

S∑
n=1

vn,k ρ
n zni (53)

where ρ is a positive constant and zni is a standard Gaussian variable. Indeed in
highly diluted networks the l.h.s., i.e. the contribution to the field from all of the
non-condensed patterns µ > 1, is approximately a normally distributed random
variable, as it is the sum of a large number of uncorrelated quantities. ρ can be
computed to find

ρn =
√

αPn
(1− ã)S q (54)

where we have defined

q =
〈

1
Na

∑
j

∑
l

(σlj)2
〉
. (55)

The mean field then writes

hki = vξ1
i k
m+

S∑
n=1

vn,k

√
αPn

(1− ã)S qzn − Ũ(1− δk0) . (56)

Averaging mi and q over the connectivity and the distribution of the Gaussian
noise z, and taking the β →∞ we get to the mean field equations that characterize
the fixed points of the dynamics, Eqs. (31) and (32). In the highly diluted limit
however, we do not obtain the last equation of the fully connected replica analysis,
Eq. (34).

The difference between fully connected and diluted cases must vanish in the ã� 1
limit, as shown in ([29], [47]). In this limit we have x = Ũ/

√
α̃q, y = m/

√
α̃q while

Eqs. 38 and (37) remain identical.
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4.3 Network with partial connectivity

We now consider the more complex case of partial connectivity, i.e. log(N) < cm < N ,
which can be approached with the self-consistent signal to noise analysis (SCSNA)
[48]. As in the previous section, we can express the field using the overlap parameter,
and single out the contribution from the pattern to be retrieved, that we label as
µ = 1, as in Eq. (49). With high enough connectivity, however, one must revise
Eq. (53): the mean field has to be computed in a more refined way, through the
SCSNA method that we recapitulate here (see also [14], [49]).

The noise term is assumed to be a sum of two terms
∑
µ>1

vξµi ,km
µ
i = γki σ

k
i +

S∑
n=1

vn,k ρ
n
i z

n
i (57)

where zni are standard Gaussian variables, and γki and ρni are positive constants to be
determined self-consistently. The first term, proportional to σki , represents the noise
resulting from the activity of unit i on itself, after having reverberated in the loops
of the network; the second term contains the noise which propagates from units other
than i. The activation function writes

σki = eβh
k
i∑

l
eβh

l
i

≡ F k
({
yli + γliσ

l
i

}
l

)
. (58)

where yli = vξ1
i ,l
m1
i +∑

n vn,lρ
n
i z

n
i − U(1− δl,0). One would need to find σki as

σki = Gk
({
yli
}
l

)
, (59)

where Gk are functions solving Eq. (58) for σki . However, Eq. (58) cannot be solved
explicitly. Instead we make the assumption that {σli} enters the fields {hli} only
through their mean value 〈σli〉, so that we write

Gk
({
yli
}
l

)
' F k

({
yli + γli〈σli〉

}
l

)
. (60)

We report to Appendix B the details of the calculation that yield γki = γ and ρki = ρk.

γ = α

S
λ

Ω/S
1− Ω/S (61)
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where α = p/cm, 〈·〉 indicates the average over all patterns and where we have defined

Ω =
〈

1
N

∑
j1

∑
l1

∂Gl1
j1

∂yl1

〉
. (62)

From the variance of the noise term one reads

(ρn)2 = αPn
S(1− ã)q

{
1 + 2λΨ + λΨ2

}
, (63)

where we have defined
q =

〈
1
Na

∑
j,l

(Gl
j)2
〉

(64)

and
Ψ = Ω/S

1− Ω/S . (65)

The mean field received by a unit is then

Hξ
k = vξ,km+ α

S
λΨ(1− δk,0) +

S∑
n=1

vn,kz
n

√
αPn

S(1− ã)q
{

1 + 2λΨ + λΨ2
}
− Ũ(1− δk,0) .

(66)
Taking the average over the non-condensed patterns (the average over the Gaussian

noise z), followed by the average over the condensed pattern µ = 1 (denoted by
〈·〉ξ), in the limit β →∞, we get the self-consistent equations satisfied by the order
parameters

m = 1
a(1− ã)

〈∫
DSz

∑
l( 6=0)

vξ,l
∏
n(6=l)

Θ(Hξ
l −Hξ

n)
〉
ξ

, (67)

q = 1
a

〈∫
DSz

∑
l(6=0)

∏
n(6=l)

Θ(Hξ
l −Hξ

n)
〉
ξ

, (68)

Ω =
〈∫

DSz
∑
l( 6=0)

∑
k

zk
∂zk

∂yl
∏
n(6=l)

Θ(Hξ
l −Hξ

n)
〉
ξ

. (69)

where in the last equation for Ω, integration by parts has been used. Note the
similarities to Eqs. (31)-(33), obtained through the replica method for the fully
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connected case. The equations just found constitute their generalization to λ < 1. In
particular, in the highly diluted limit λ→ 0, we get γ → 0 and (ρn)2 → αPnq/(1−ã)S,
which are the results obtained in the previous section; in the fully connected case,
λ = 1, the correspondence between the m and q variables is obvious, while for Ω it
can be shown with some algebraic manipulation. Indeed, from the following identity,

ρ2 = αPn
S(1− ã)q(1 + Ψ)2 , (70)

by using the replica variable r = q/(1− ãC)2 we get

ρ2 = αPn
S(1− ã)r(1− ãC)2(1 + Ψ)2 . (71)

By comparing this with Eq. (30), the mean field, we get an equivalent expression for
Ψ,

Ψ = ãC

1− ãC . (72)

From the original definition of Ψ in Eq. (65), it follows that the order parameter
C, obtained through the replica method, is equivalent to Ω, up to a multiplicative
constant:

C = Ω/a . (73)

We can show that Eq. (69) coincides with Eq. (33). Moreover, by comparing the
SCSNA result for γ to the replica one, we must have

α

S
Ψ− Ũ = −αaβ(r − r̃)

2S2 (74)

from which
β(r − r̃) = 2

(
Ũ
S2

αa
− C

1− ãC

)
, (75)

identical to Eq. (35).

28



5 Simulation results

Do computer simulations confirm the analyses above? Starting with the effect of
setting the overall threshold, we show, in Fig. 3(a), retrieval performance as a function
of the threshold for w = 0.0, both through simulations and by solving Eqs. (36).
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Figure 3: (a) How often a fully connected Potts network retrieves memories, as a function
of the threshold U and the number of stored memories p, with N = 1000, S = 7, a = 0.25,
β = 200 and w = 0.0. Color represents the fraction of simulations in which the overlap
between the activity state of network and a stored pattern is ≥ 0.9. The solid line is obtained
by numerical solution of Eqs.(36)-(39). (b) The dependence of αc on U for different values
of w. If the threshold U is already set to its optimal value, subtracting a non-zero w is
detrimental to the capacity, but if it can be adjusted after considering w, it can lead to an
optimal effective threshold Ũ , maximizing capacity.

It is clear that the simulations agree very well with numerical results. The
maximum storage capacity αc (where α ≡ p/cm, or α ≡ p/N for a fully connected
Potts network) is found at approximately U = 0.5, as can also be shown through a
simple signal to noise analysis. It is possible to compute approximately the standard
deviation γki of the field, Eq. (49) with respect to the distribution of all the patterns,
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as well as the connectivity cij, by making the assumption that all units are aligned
with a specific pattern to be retrieved σlj = ξ1

j . We further discriminate units that
are in active states ξ1

i 6= 0 from those that are in the quiescent states ξ1
i = 0 in the

retrieved pattern µ = 1.

γki ≡
√
〈(hki )2〉 − 〈hki 〉2 =

√√√√√(p− 1)a
cmS2 + (δξ1

i ,k
− ã)2

 1
cma
− 1
N

. (76)

The optimal threshold U0 is one that separates the two distributions, optimally, such
that a minimum number of units in either distribution reach the threshold to go in
the wrong state

U0 − 〈hki |ξ1
i =0〉

γki |ξ1
i =0

= −
U0 − 〈hki |ξ1

i 6=0〉
γki |ξ1

i 6=0

U0 =
γki |ξ1

i =0

γki |ξ1
i =0 + γki |ξ1

i 6=0
− a

S
. (77)

We can see that U0 −→ 1/2 − ã for γki |ξ1
i =0 ∼ γki |ξ1

i 6=0, roughly consistent with the
replica analysis and simulations in Fig. 3(a) (in fact the variance γki |ξ1

i =0 is larger
than γki |ξ1

i 6=0, especially for low a, hence U0 is slightly larger and has a more complex
dependence on the sparsity). Given such an optimal value for U , Fig. 3(b) shows that
the effect of the feedback term w on the storage capacity, purely subtractive, is just
to shift to the right the optimal value.

5.1 The effect of network parameters

Fig. 4 illustrates the same effect of the feedback term, by setting U = 0.5 and
charting the storage capacity as a function of the sparsity a for different values of
w, for both fully connected (a) and highly diluted networks (b). In both cases, αc
decreases monotonically with increasing w, for low a, when U = 0.5 is close to optimal.
Increasing a, one reaches a region where U = 0.5 is set too high, and therefore αc
benefits from a non-zero w, even though its exact value is not critical. For very high
sparsity parameter (non-sparse coding) all curves except w = 0 seem to coalesce.
The envelope of the different curves represents optimal threshold setting that takes
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Figure 4: Storage capacity αc as a function of sparsity a for different values of w for both
fully connected (a) and highly (RD) diluted networks (b) as obtained by numerical solution
of Eqs. (36)-(39). (a) also includes points from simulations. The parameters are S = 5,
U = 0.5, β = 200.

feedback into account, and as a function of a it shows, both for fully connected and
diluted networks the decreasing trend familiar from the analysis of simpler memory
networks [50].

The two connectivity limit cases are illustrated in Fig. 5, which shows, in (a), the
dependence of the storage capacity α on the sparsity a in the fully connected and
diluted networks with U = 0.5, w = 0 and S = 5. In Fig. 5 (b) instead, S is varied
and in Fig. 5 (c) S = 50, corresponding to the highly sparse limit ã� 1. While for
S = 5 the two curves are distinct, for the highly sparse network with S = 50 the
two curves coalesce. The curves are obtained by numerically solving Eqs. (36)-(39).
Moreover, the storage capacity curve for the fully connected case in (a) matches very
well with Fig. 2 of [29]. Diluted curves are always above the fully connected ones in
both (a) and (b), as found in [29].
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Figure 5: (a) Storage capacity αc as a function of the sparsity a. Dots correspond to
simulations of a network with N = 2000, cm/N = 0.1, S = 5, and β = 200 while curves are
obtained by numerical solution of Eqs. (36)-(39). (b) Storage capacity as a function of S
with the same parameters as in (a) and with a = 0.1. (c) S = 50, illustrating the ã � 1
limit case.

5.2 The effect of the different connectivity models

In Fig. 6 we show simulation results for the storage capacity of all three connectivity
models introduced earlier. The RD and SDRD networks seem to have almost identical
capacity. All models have the same capacity in the fully connected case, as they should.
Note in particular the very limited decrease of αc = p/cm with cm/N increasing up
to almost full connectivity, with all three models. In particular with the RD model,
as already shown analytically, the degree of dilution has almost no effect, because
already for moderate values of S the network is effectively in the sparse coding regime,
a/S � 1, where cm/N becomes irrelevant. The apparent decrease in capacity for
very low cm/N values is likely an artefact of cm being very small.

Our results can be contrasted to the storage capacity with the same connectivity
models (RD and SD; SDRD is not relevant) of the Hopfield model. For the Hopfield
model, the effects of SD were investigated and it was found that the capacity decreases
monotonically from the value ' 0.4 for highly diluted to the well-known value of
αc ' 0.14 for the fully connected network [51]. In [47], instead, the highly diluted limit
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Figure 6: Storage capacity curves, obtained through simulations, as a function of the mean
connectivity per unit cm/N , for three different types of connectivity, namely the random
dilution (RD), symmetric dilution (SD) and state-dependent random dilution (SDRD). We
find that SD has higher capacity than RD. The capacity for all three models coalesces at
the fully connected limit, as the models become equivalent. Simulations carried out for two
sets of parameters: (N = 5000, S = 2, a = 0.2) and (N = 2000, S = 5, a = 0.5). U = 0.5
and β = 200.

of RD was studied and a value of αc = 2/π ' 0.64 was found. If we plausibly assume
that the intermediate RD values interpolate those of the highly diluted αc ' 0.64
and fully connected αc ' 0.14 limit cases, the Hopfield network seems to have higher
capacity for RD than for SD.

However, it is important to note that the overlap with which the network retrieves
at αc, mc, is not the same in the two models (RD and SD). In the highly diluted
RD model [47], the authors find that at zero temperature (which is the only case we
consider), mc undergoes a second order phase transition with control parameter α,
such that mc '

√
3(αc − α): close to αc, mc is small, and smaller than the values of

mc for the highly diluted SD model [51] that we report in the left y-axis of Fig. 7: at
cm/N ' 0.0024, mc ' 0.64. If we require the same precision of retrieval from the RD
model, the above equation yielding the mc gives us a value α ' 0.5, still higher than
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the analytic SD value of 0.4. However, through the simulations shown in Fig. 7 we
have found that the SD network has a higher capacity (> 0.6) than the one predicted
analytically (0.4).

When taking into consideration, for the Hopfield model, the increased capacity of
the SD model with respect to what is predicted analytically, as well as the precision
of retrieval, we find that the two models behave similarly. We clarify this in the next
section by making the Potts-Hopfield correspondence exact, in a different sense than
when considering the multi-modular Hopfield model.

5.3 The Hopfield model as a special case of the Potts model,
for S = 1

We can rewrite the Potts Hamiltonian, Eq. (23) with S = 1, a = 0.5, U = w = 0.0
such that:

H = −1
2

N∑
i,j 6=i

Jijσiσj , (78)

Jij = 4
cm

p∑
µ=1

(
ξµi −

1
2

)(
ξµj −

1
2

)
. (79)

where σ and ξ take the values {0, 1}. We can rewrite the latter quantities using the
spin formulation {−1,+1} using the transformation 2σi = si + 1

H̃ = −1
8

N∑
i,j 6=i

cijJ̃ijsisj −
1
8

N∑
i,j 6=i

cijJ̃ij(si + sj)−
1
8

N∑
i,j 6=i

cijJ̃ij , (80)

J̃ij = 1
cm

p∑
µ=1

ηµi η
µ
j . (81)

We note now that the first term in Eq. (80) is the Hopfield Hamiltonian for storing
unbiased patterns, modulo a multiplicative term 1/4 [43]; at zero-temperature, how-
ever, an overall rescaling of the energies leaves the statistics of the system unchanged,
so that we can consider the first term in Eq. (80) as exactly the Hopfield Hamiltonian.
The last term is an additive constant that can be neglected, while the second term
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Figure 7: Setting S = 1, a = 0.5 and the threshold to be unit dependent (U = Ui) the
Hamiltonians of the two models become equivalent. Dots correspond to simulations of
the Potts network with the latter parameters, while the uninterrupted line corresponds
to analytical results obtained by Sompolinsky. The dashed line, to be read with the right
y-axis, corresponds to the overlap at the critical capacity. For intermediate values of the
connectivity, up to cm/N = 0.1, our simulation results fit the analytical curve well, and
we find, in particular, the well-known value of ' 0.14 for the fully connected network. For
higher levels of dilution, we find a greater capacity than predicted analytically. Simulations
performed with a network of N = 2000 units.

can be made to vanish by the addition of a unit dependent threshold term to Eq. (80)

Ũi = 1
8

N∑
j(6=i)

(cij + cji)J̃ij (82)

or equivalently, to Eq. (78) using the binary formulation

H = −1
2

N∑
i,j 6=i

Jijσiσj +
N∑
i

1
4

N∑
j(6=i)

(cij + cji)Jij

σi (83)

Considering cij to be of the SD type such that cij = cji, this is the Hamiltonian
considered by Sompolinsky [51]. The system with Hamiltonian given by Eq. (83) can
be simulated by setting the parameters of the Potts network to S = 1, a = 0.5 and
U = Ui and the results compared to the analytical results derived in the latter study.

35



We have carried out the simulations to reproduce these results, that we report in
Fig. 7. Instead, considering cij to be of the RD type yields the model studied by [47]
at the highly diluted limit.

The unit-dependent threshold that correlates with the learned patterns (and in
our case with the diluted connectivity), for the equivalence of the two formulations
of the Hamiltonians with spin and binary variables, was first found to be significant
when the storage of biased patterns was considered [35].
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6 Discussion

In this paper we elaborate on the correspondence between a multi-modular neural
network and a coarse grained Potts network, by grounding the Hamiltonian of the
Potts model in the multi-modular one. Units are taken to be threshold-linear, in the
multi-modular model, and they are fully connected within a module, with Hebbian
synaptic weights. Sparse connectivity links units that belong to different modules,
via synapses that in the cortex impinge primarily on the apical dendrites, after their
axons have travelled through the white matter.

We relate Potts states to the overlap or correlation between the activity state
in a module and the local memory patterns, i.e., to weighted combinations of the
activity of its threshold-linear units. The long range interactions between the modules
then roughly correspond, after suitable assumptions about inhibition, to the tensorial
couplings between Potts units in the Potts Hamiltonian. It becomes apparent how
the w-term, which was initially introduced by [31] to model positive state-specific
feedback on Potts units, arises from the short range interactions of the multi-modular
Hamiltonian.

Keeping the w-term in the Potts Hamiltonian, we apply the replica method
to derive analytically the storage capacity for the fully connected Potts model. A
simplified derivation is applied also to the highly diluted connectivity network, while
the case with intermediate connectivity is studied by a self-consistent signal-to-noise
analysis. The intermediate results smoothly interpolate the limit cases of fully and
high diluted networks, but the two limit cases themselves are in fact very similar in
capacity, if measured by α ≡ p/cm, in the sparse coding limit a→ 0, a limit which
is approached very rapidly in the Potts model, because the relevant parameter is
in fact ã ≡ a/S. The effect of w term is effectively, in the vicinity of the memory
states, reduced to altering the threshold, which leads to the storage capacity being
suppressed by this term, if the threshold was originally close to its optimal value.
If one assumes that the threshold is set close to its optimal value after taking the
feedback term into account, the value w becomes irrelevant for the storage capacity,
while it still affects network dynamics [33].
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6.1 The storage capacity parameters

In the end, the storage capacity of the Potts network is primarily a function of a few
parameters, cm, S and a, that suffice to broadly characterize the model, with minor
adjustments due to other factors. How can these parameters be considered to reflect
cortically relevant quantities? This a critical issue, if we are to make cortical sense of
the distinct thermodynamic phases that can be analysed with the Potts model, and
to develop informed conjectures about cortical phase transitions [30].

The Potts network, if there are Nm Potts variables, requires, in the fully connected
case, Nm ·(Nm−1)·S2/2 connection variables (since weights are taken to be symmetric
we have to divide by 2). In the diluted case, we would have Nm · cm · S2 variables
(the factor 2 is no longer relevant, at least for cm → 0). The multi-modular Hopfield
network, as shown in Sect.3, has only Nm ·Nu ·CA long-range synaptic weights. This
diluted connectivity between modules is summarily represented in the Potts network
by the tensorial weights. Therefore, the number of Potts weights cannot be larger
than the total number of underlying synaptic weights it represents. Then cm · S2

cannot be larger than CA ·Nu.
In the simple Braitenberg model of mammalian cortical connectivity [4], which

motivated the multi-modular network model [18], Nu ' Nm ∼ 103 − 105, as the
total number of pyramidal cells ranges from ∼ 106 in a small mammalian brain to
∼ 1010 in a large one. In a large, e.g. human cortex, a module may be taken to
correspond to roughly 1mm2 of cortical surface, also estimated to include Nu ∼ 105

pyramidal cells [52]. A module, however, cannot be plausibly considered to be fully
connected; the available measures suggest that, even at the shortest distance, the
connection probability between pyramidal cells is at most of order 1/10. Therefore
we can write, departing from the assumption CB = Nu − 1 in the simplest version
of Braitenberg’s model, that CB ' 0.1Nu. If we were to keep the approximate
equivalence CA ' CB, that would imply also CA ' 0.1Nu. Inserting this into the
inequality above, cm · S2 < CA ·Nu, yields the constraint S < Nu

√
0.1/cm.

One can argue, however, for another constraint that limits the value S, given the
Potts connectivity cm. The number S of local patterns on Nu neurons receiving CB
connections from each other can at most be, given associative storage of patterns
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with sparsity au, of order CB/au. If we assume that local storage tends to saturate
this capacity bound, and we take CA ' CB, we have S · au ' CB ' CA, but again we
have, above, cm · S2 < CA ·Nu, hence

S < Nu · au/cm.

This more stringent upper bound is compatible with S small and cm scaling linearly
with Nu, as well as with cm small and S scaling with Nu, and all intermediate regimes.
If we take S and cm to be both proportional to

√
Nu, and au ∼ 0.1, it would lead to

cm and S to be at most of order 101 − 102 over mammalian cortices of different scale,
essentially scaling like the fourth root of the total number of pyramidal cells, which
appears like a plausible, if rough, modelling assumption.

We could take these range of values, together with the approximate formula (see
[29] and Fig. 5b)

pc ∼ 0.15 cmS
2

a ln(S/a) (84)

to yield estimates of the actual capacity the cortex of a given species. The major
factor that such estimates do not take into account, however, is the correlation among
the memory patterns. All the analyses reported here apply to randomly assigned
memory patterns. The case of correlations will be treated elsewhere (Boboeva, PhD
Thesis, SISSA, 2018; and Boboeva et al., in preparation).

The above considerations may sound rather vague. They neglect, inter alia, the
large variability in the number of spines, hence probably in synapses, among cortical
areas within the same species [55]. They capture, however, the quantitative change
of perspective afforded by the coarse graining inherent in the Potts model. We
can simplify the argument by neglecting sparse coding as well as the exact value
of the numerical pre-factor k (which is around 0.15 in Eq. (84). The Potts model
uses NmcmS

2 weights to store up to kcmS2/ lnS memory patterns, each containing
of order Nm lnS bits of information, therefore storing up to k bits per weight. In
this respect, and in keeping with the Frolov conjecture [53], it is not different from
any other associative memory network based on Hebb-like plasticity, including the
multi-modular model which it effectively represents. In the multi-modular model,
however, (in its simplest version) the 2kN2

uNm bits available are allocated to memory
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patterns that are specified in single-neuron detail, and hence contain of order NuNm

bits of information each. The network can store and retrieve up to a number pc of
them, which has been argued in [19] to be limited by the memory glass problem to
be of the same order of magnitude as the number S of local attractors, itself limited
to be (at most) of order Nu or perhaps, as argued above,

√
Nu. By glossing over the

single-neuron resolution, the Potts model forfeits the locally extensive character of
the information contained in each pattern, losing a factor Nu/ lnS, but it gains the
factor cmS2/(2Nu lnS) in the number of patterns. Whether S scales with Nu or with√
Nu or in between, the upshot is more, but less informative, memories. Therefore,

by focusing on long range interactions the Potts model misses out in information,
but effectively circumvents the memory glass issue, which had plagued the earlier
incarnation of the Braitenberg idea [52], and stores more patterns. How is that
possible, if the Potts model is a reduced description of the underlying multi-modular
model? The trick is likely in the Hebbian form of the tensor interactions, Eq. (19),
which is not a straightforward reduction – it implies a fine inhibitory regulation
that the multi-modular model had not attempted to achieve. This argument can be
expanded and made more precise by considering, again, a more plausible scenario
with correlated memories.

Finally, separate studies are needed also to assess the dynamical properties of
Potts network, which also reflect the strength of the w-term, as we have begun to
undertake in an earlier paper elsewhere [33]. It is such an analysis of the dynamics
that may reveal the unique statistical properties of large cortices, as expressed in
latching dynamics [30].
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A Calculation of replica symmetric free energy

The partition function Zn of n replicas can be written as

〈
Zn
〉

=
〈
Tr{σγ} exp

[
−β

n∑
γ

Hγ

]〉
(85)

=
〈
Tr{σγ} exp

 β

2Na (1− ã)
∑
µγ

(
N∑
i

vξµi σ
γ
i

)2

− β

2Na (1− ã)

N∑
i

∑
µγ

v2
ξµi σ

γ
i

−βŨ
∑
iγ

vξµi σ
γ
i

δξµi σ
γ
i
− ã

〉 .
Using the Hubbard-Stratonovich transformation

exp
[
λa2

]
=
∫ dx√

2π
exp

[
−x

2

2 +
√

2λax
]
,

the first term in Eq. (86) can be written as

exp
 β

2Na (1− ã)

(
N∑
i

vξµi σ
γ
i

)2 =
∫ dmγ

µ√
2π

exp

−
(
mγ
µ

)2

2 +
√

β

Na (1− ã)m
γ
µ

N∑
i

vξµi σ
γ
i

 .
The change of variable mγ

µ → mγ
µ

√
βNa (1− ã), and neglecting the sub-leading

terms in the N →∞ limit, gives us

〈
Zn
〉

=
〈
Tr{σγ}

∫ ∏
µγ

dmγ
µ ·

· exp βN
a (1− ã)

2
∑
µγ

(
mγ
µ

)2
+
∑
µγ

mγ
µ

N

N∑
i

vξµi σ
γ
i
− 1

2N2a (1− ã)

N∑
i

∑
µγ

v2
ξµi σ

γ
i

− 1
N
Ũ
∑
iγ

vξµi σ
γ
i

δξµi σ
γ
i −ã

〉 . (86)

Discriminating the condensed patterns (ν) from non condensed ones (µ) in the
limit p→∞ and N →∞ with the fixed ratio α = p/N ,
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〈
Zn
〉

= Tr{σγ}
∫ ∏

µγ

dmγ
µ

∫ ∏
λγ

dqγλdrγλ · exp

− βN

2
∑
µ>s

a (1− ã)
∑
γ

(
mγ
µ

)2

−a (1− ã) βã
∑
γλ

mγ
µm

λ
µqγλ

− αβãN

2
∑
γγ

qγγ − βNaŨ
∑
γγ

qγγ

−Nαβ
2

2
∑
γλ

rγλ

(
ã2qγλ −

1
NS (1− ã)

∑
ik

Pkvkσγi vkσλi

) ·
〈

exp βN
a(1− ã)

2
ν≤s∑
νγ

(
mγ
ν

)2
+

ν≤s∑
νγ

mγ
ν

N

N∑
i

vξνi σ
γ
i
− 1

2N2a(1− ã)

N∑
i

ν≤s∑
νγ

v2
ξνi σ

γ
i

〉 (87)

where we introduced qγλ, the overlap between different replicas, analogous to the
Edwards-Anderson order parameter [54],

qγλ = 1
Naã (1− ã)

∑
ik

Pkvkσγi vkσλi . (88)

The saddle point equations are

∂

∂mγ
ν

= 0 −→ mγ
ν =

〈
1

Na (1− ã)
∑
i

〈
vξνi σ

γ
i

〉〉
, (89)

∂

∂rγλ
= 0 −→ qγλ = 1

Naã (1− ã)

N∑
i

〈∑
k

Pk
〈
vkσγi vkσλi

〉〉
, (90)

∂

∂qγλ
= 0 −→ rγλ = S (1− ã)

α

∑
µ

〈
mγ
µm

λ
ν

〉
−
[2S
α
Ũ + 1

]
δγλ
βã

. (91)

After performing the multidimensional Gaussian integrals over fluctuating (non
condensed) patterns we have〈

Zn
〉

=
∫ ν∈[1,...,s]∏

νγ

dmγ
ν

∫ ∏
λγ

dqγλdrγλ ·

· expN

− βa (1− ã)
2

∑
νγ

(mγ
ν)

2 − α

2Tr ln [a (1− ã) (1− βãq)]− (92)

αβ2ã2

2
∑
γλ

rγλqγλ − βã
[
α

2 + SŨ
]∑
γγ

qγγ +
〈

lnTr{σγ} exp
[
βHξ

σ

] 〉
ξv

 ,
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where
Hξ
σ =

∑
νγ

mγ
νvξνσγ + αβ

2S (1− ã)
∑
γλ

rγλ
∑
k

Pkvkσγvkσλ . (93)

We can now compute the free energy Eq. (27)

f = lim
n→0

fn = lim
n→0

a (1− ã)
2n

∑
νγ

(mγ
ν)

2 +

+ α

2nβTr ln [a (1− ã) (1− βãq)] + αβã2

2n
∑
γλ

rγλqγλ

+ ã

n

[
α

2 + SŨ
]∑
γγ

qγγ −
1
nβ

〈
lnTr{σγ} exp [βHξ]

〉
ξv

 . (94)

Imposing the replica symmetry condition [40],

mν
γ = m

qγλ =

 q for γ 6= λ

q̃ for γ = λ

rγλ =

 r for γ 6= λ

r̃ for γ = λ

we finally obtain the replica symmetric free energy Eq. (28).
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B Self consistent signal to noise analysis

Since the l.h.s. of Eq. (57) includes p − 1 � 1 terms, the ansatz is still valid also
when singling out one of these many contributions, so that we can equivalently write
it as∑

ν>1
vξνi ,km

ν
i = vξµi ,km

µ
i +

∑
ν 6=1,µ

vξνi ,km
ν
i = vξµi ,km

µ
i + γki 〈σki 〉+

∑
n

vn,k ρ
n
i z

n
i , (95)

where γki and ρni are independent of µ. The contribution from the non-condensed
pattern µ 6= 1 is assumed to be small, so that we can expand Gk

i to first order in
vξµi ,km

µ
i :

σlj = Gl

[{
vξ1
j ,k
m1
j +

∑
n

vn,kρ
n
j z

n
j − U(1− δk,0)

}S
k=0

]

+
∑
n

vξµj ,nm
µ
j

∂Gl

∂yn

[{
vξ1
j ,k
m1
i +

∑
n

vn,kρ
n
j z

n
j − U(1− δk,0)

}]
. (96)

Reinserting the expansion into the r.h.s of Eq. (52) we recognize a relation of the
form

mµ
i = Lµi +

∑
j

Kµ
ijm

µ
j (97)

where

Kµ
ij ≡

1
cma(1− ã)

∑
l,n

cijvξµj ,lvξ
µ
j ,n

∂Gl
j

∂yn
,

Lµi ≡
1

cma(1− ã)
∑
j

∑
l

cijvξµj ,lG
l
j .

The overlap mµ
i can be found by iterating Eq. (97),

mµ
i = Lµi +

∑
j1

Lµj1

{
Kµ
ij1 +

∑
j2

Kµ
ij2K

µ
j2j1 +

∑
j2

∑
j3

Kµ
ij2K

µ
j2j3K

µ
j3j1 + ...

}
. (98)

Therefore, the noise term can be written explicitly as
∑
µ>1

vξµi ,km
µ
i =

∑
n

vn,k
∑
µ>1

∑
j

∑
l

1
cma(1− ã) cijδξ

µ
i ,n
vξµj ,lG

l
j +

+
∑
j1

∑
j

∑
l

1
cma(1− ã) cj1jδξ

µ
i ,n
vξµj ,lG

l
j

 ∑
l1,n1

1
cma(1− ã) cij1vξ

µ
j1
,l1vξµj1 ,n1

∂Gl1
j1

∂yn1
+ ...

 .
44



In order to obtain the expression for γki , in Eq. (57) we consider only the terms with
j = i and l = k, and take the average over the connectivity and the patterns:

γki = α

S
λ

〈
1
S

1
N

∑
j1

∑
l1

∂Gl1
j1

∂yl1
+ ...

〉
(99)

= α

S
λ
{

Ω/S + (Ω/S)2 + ...
}

= α

S
λ

Ω/S
1− Ω/S

where we use the fact that cii = 0, α = p/cm, 〈·〉 indicates the average over all
patterns and where we have defined

Ω =
〈

1
N

∑
j1

∑
l1

∂Gl1
j1

∂yl1

〉
. (100)

By virtue of the statistical independence of units, the average over the non-condensed
patterns for the i 6= j terms vanishes. From the variance of the noise term one reads

(ρni )2 = αPn
S(1− ã)q

{
1 + 2λΨ + λΨ2

}
, (101)

where
q =

〈
1
Na

∑
j,l

(Gl
j)2
〉

(102)

and
Ψ = Ω/S

1− Ω/S . (103)

The mean field received by a unit is then

Hξ
k = vξ,km+ α

S
λΨ(1− δk,0) +

∑
n

vn,kz
n

√
αPn

S(1− ã)q
{

1 + 2λΨ + λΨ2
}
− Ũ(1− δk,0) .

(104)
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