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It is difficult to extract the information carried by neuronal responses
about a set of stimuli because limited data samples result in biased es-
timates. Recently two improved procedures have been developed to cal-
culate information from experimental results: a binning-and-correcting
procedure and a neural network procedure. We have used data produced
from a model of the spatiotemporal receptive fields of parvocellular and
magnocellular lateral geniculate neurons to study the performance of
these methods as a function of the number of trials used. Both proce-
dures yield accurate results for one-dimensional neuronal codes. They
can also be used to produce a reasonable estimate of the extra informa-
tion in a three-dimensional code, in this instance, within 0.05–0.1 bit of
the asymptotically calculated value—about 10% of the total transmitted
information. We believe that this performance is much more accurate than
previous procedures.

1 Introduction

Quantifying the relation between neuronal responses and the events that
have elicited them is important for understanding the brain. One way to
do this in sensory systems is to treat a neuron as a communication channel
(Cover & Thomas 1991) and to measure the information conveyed by the
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neuronal response about a set of stimuli presented to the animal. In such
experiments (e.g., Gawne & Richmond 1993; McClurkin et al. 1991; Tovée
et al. 1993) a set of S sensory (e.g., visual) stimuli is presented to the animal,
each stimulus being presented for NS trials. After the neuronal response is
quantified in one of several ways (e.g., the number of spikes in a certain time
interval or a descriptor of the temporal course of the spike train), the trans-
mitted information (mutual information between stimuli and responses) is
estimated. This approach is useful for investigating issues such as the res-
olution of spike timing (Heller et al. 1995), the effectiveness of encoding
for stimulus sets (Optican & Richmond 1987; McClurkin et al. 1991; Rolls
et al. 1996a, 1996b), and the relations between responses of different neurons
(Gawne & Richmond 1993).

The equation for transmitted information can be written in several ways,
including:

I(S;R) =
∫

dr
∑

s
P(s, r) log2

[
P(s, r)

P(s)P(r)

]

=
〈∑

s
P(s |r) log2

[
P(s |r)
P(s)

]〉
r

. (1.1)

Here P(s, r) is the joint probability of stimulus s and response r, P(s | r)
is the conditional probability of stimulus s given response r, and P(s) and
P(r) are the unconditional stimulus and response probabilities, respectively.
The stimulus index s is discrete, as there is a finite number of stimuli. The
response measure r can be either discrete or continuous, depending on the
way the response is quantified.

The notation 〈· · ·〉r in the second form indicates an average over the (un-
conditional) response distribution. Computing I(S;R) requires estimates of
these joint or conditional probabilities and carrying out the appropriate in-
tegration over response space or the average over the response distribution.

A large number of trials is needed for accurate information calculations.
When the number of data samples is small, there are systematic errors in
estimating the transmitted information by direct application of the formal
definition, that is, by binning responses and estimating the relevant proba-
bilities as the empirical bin frequencies (Miller 1955; Carlton 1969; Optican
et al. 1991; Treves & Panzeri 1995; Abbott et al. 1996; Panzeri & Treves 1996).
With a small number of data samples, the information is overestimated; the
information is biased upward. Intuitively, this can be understood by noting
that the number of bins can exceed the number of data samples, especially
as the dimensionality of the response increases. The data samples must be
evenly distributed across the bins to yield zero information, a circumstance
that cannot occur when the number of bins exceeds the number of data sam-
ples. On the other hand, if the number of bins is too small, responses that
should be reliably distinguishable will not be, leading to information values
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that underestimate the true values. These effects are magnified when the di-
mensionality of response increases, and thus even more samples are needed
to make accurate information estimates when the response dimensionality
is larger than one.

In practice, the size of data sets is limited by experimental constraints.
Thus it is important to try to correct for these systematic errors and to de-
sign experiments so that a sufficient number of data samples are obtained
to answer reliably the questions posed. Only then can we make effective use
of mutual information measurements. Here, we test procedures designed
to overcome the systematic errors that arise with limited data sets by com-
paring mutual information calculations from large data sets with those cal-
culated from smaller ones. Currently the only way to get such large data
sets is through simulations. Artificial spike trains are created using a model
of the response of lateral geniculate nucleus (LGN) neurons (Golomb et al.
1994). The model is based on experimentally measured spatiotemporal re-
ceptive fields of LGN neurons (Reid & Shapley 1992). Two procedures are
tested here. The first is a binning-and-correcting procedure; the informa-
tion is calculated by direct application of the first definition in equation 1.1,
and a correction value is estimated and subtracted (this method attacks the
bias problem) (Panzeri & Treves 1996; Treves & Panzeri 1995). The second
method uses a neural network to estimate the conditional probabilities in
the second definition in equation 1.1 directly (Heller et al. 1995; Hertz et al.
1992; Kjaer et al. 1994). We find that both methods yield accurate results
for one-dimensional codes, even for a relatively small number of samples.
Moreover, estimates of the extra information carried in three-dimensional
codes are also reasonable, within 0.05–0.1 bits (about 10%) of the correct
values.

2 Methods

2.1 Producing Simulated Data. The spike trains are created using a
model of the response of parvocellular and magnocellular LGN cells, as
described in Golomb et al. (1994). In brief, the spatiotemporal receptive
fields R(Er, t) of the two cells types in response to an impulse in space and
and time were measured (Reid & Shapley 1992; data presented in Figure 1
of Golomb et al. 1994). The set of stimuli {σs} , s = 1 · · ·S(=32) includes 4× 4
flashed Walsh figures in space and their contrast reverse,

σs(Er, t) = us(Er)2(t), (2.1)

where us(Er) are the spatial Walsh figures and2(t) is the Heavyside function
(2(t) = 1 if t > 0 and is 0 otherwise). The ensemble-average response to the
sth figures Zs(t) is calculated by centering it on the receptive field center,
convolving it with the spatiotemporal receptive field, adding the constant
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baseline Z0 corresponding to the spontaneous firing, and rectifying at zero
response:

Zs(t) = 2
[

Z0 +
∫

dEr
∫ t

−∞
dt′ R

(Er, t− t′
)
σ
(Er, t′

)]
. (2.2)

The response Zs(t) for Walsh figures is shown in Figure 5 of Golomb et al.
(1994).

Realizations of spike trains are created at random with inhomogeneous
Poisson statistics, using the average response as the instantaneous rate. The
probability density of obtaining a spike train 3s(t), with k spikes at times
t1 . . . tk during a measurement time T, is

P (3s (t) |σs) = P
(
t1 . . . tk |σs(Er, t)

)
= 1

k!

[
k∏

i=1

Zs (ti)

]
exp

(
−
∫ T

0
Z
(
t′
)

dt′
)
. (2.3)

A set of 1024 simulated responses for each of the 32 stimuli is used for
testing the information calculation procedures. The asymptotic estimate of
transmitted information is calculated using 106 trials per stimulus.

2.2 Response Representation. The neuronal response to a stimulus as
represented by the spike train is quantified by several variables. One is
the number of spikes (NOS) in the response time interval, taken here to be
250 ms. The others are the projection of the spike train into the n principal
components (PCs) (Richmond & Optican 1987; Golomb et al. 1994). We
concentrate here on the first principal component (PC1) and the first three
principal components (PC123). The four-dimensional code composed of the
first three principal components and the number of spikes (PC123s) is also
considered.

2.3 Information Estimation. We describe here briefly some of the meth-
ods that can be used for estimating information from neuronal responses.
We simulate an experiment in which a set of S stimuli is presented at ran-
dom. Each stimulus is shown Ns times; here Ns is the same for all the stimuli.
The total number of visual stimuli presented is N = SNs.

2.3.1 Summation over the Poisson Distribution. For each stimulus here,
the number of spikes NOS is Poisson distributed with an average NOS =∫ T

0 Zs(t)dt. The asymptotic value of the transmitted information carried
by the NOS can be calculated directly by summing over the distribution.
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Equation 1.1 becomes

I (S;NOS) = −
∑
NOS

P (NOS) log2 P (NOS) (2.4)

+ 1
Ns

∑
s

∑
NOS

P (NOS |s) log2 P (NOS |s) .

This sum is discrete and is calculated using the Poisson probability distribu-
tion P (NOS |s). The sum over NOS from 1 to∞ is replaced by a sum from 1
to NOSmax = 36; taking a higher NOSmax has only a negligible effect on the
result. Using this method, the mutual information can be calculated exactly,
but only when the firing rate distribution is known. In real experiments, the
firing rate distribution is unknown, and therefore the methods described
below should be used.

2.3.2 Straightforward Binning (Golomb et al. 1994). The principal com-
ponents used here were calculated from the covariance matrix C(t, t′) formed
over all responses in the set under study

C
(
t, t′

) = 1
SNs

S∑
s=1

Ns∑
µ=1

[
3s,µ(t)− 3̄(t)

] [
3s,µ(t′)− 3̄(t′)

]
, (2.5)

where 3s,µ(t) is the µth realization of the response to the sth stimulus and
3̄(t) is the average response over all the stimuli and realizations

3̄(t) = 1
SNs

S∑
s=1

Ns∑
µ=1

3s,µ(t). (2.6)

The eigenvalues of the matrix C are labeled according to a decreasing order;
the corresponding eigenvectors are 81(t),82(t). . . . The expansion coeffi-
cients of the neuronal response 3s,µ(t) are given by

as,µ,m = 1
T

∫ T

0
dt3s,µ8m(t). (2.7)

Each response is then quantified using the coefficients to the first n prin-
cipal components, and these are used as the response representation. The
number n of coefficients used for quantifying the response is referred to here
as the code dimension. The maximal and minimal values for each compo-
nent are found, and the interval between the minimum and the maximum
of the mth component is divided into R(m) bins. The mutual information is
calculated from the discrete distribution obtained. The N-dimensional re-
sponse space is therefore divided into R =∏n

m=1 R(m)N-dimensional bins.
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For PC123, we choose R(1) = 36, R(2) = 20, and R(3) = 20. The mutual
information carried by the first principal component only, PC1, is calcu-
lated in a similar way with R(1) = 36. Note that binning is a simple form
of regularization, and some kind of regularization is always needed when
response measurements span a continuous range (the number of spikes is
discrete). Regularization results in a downward bias of the calculated in-
formation value (see section 1). For PC1 and our simulated data set, using
R(1) = 36 results in underestimating the mutual information by ∼ 0.01 bit
in comparison to R(1) = 300.

2.3.3 Binning with Finite Sampling Correction. The binning method is
improved by doing the following:

1. For each dimension, equipopulated bins are used. For a one-dimen-
sional code (NOS, PC1), the bin size varies across the response di-
mension, with nonequal spacing, so that each bin gets on average the
same number of counts. For a three-dimensional code (PC123), the
equipopulated binning is done for each dimension separately (Panz-
eri & Treves 1996).

2. The systematic error due to limited sampling can be expanded analyt-
ically in powers of 1/N. Treves and Panzeri (1995) have shown that the
first-order correction term C1 carries almost all the error, provided that
N is large enough. Therefore, we correct the information estimation
by subtracting C1 from the result calculated by raw equipopulated
binning. The term C1 is expressed as (Panzeri & Treves, 1996)

C1 = 1
2Nln 2

{∑
s

R̃s − R− (S− 1)

}
, (2.8)

where R̃s is the number of “relevant” response bins for the trials with
stimulus s.

The number of relevant bins R̃s differs from the total number of bins R
allocated because some bins may never be occupied by responses to a par-
ticular stimulus. Thus, if the term C1 is calculated using the total number
of bins R for each stimulus, the systematic error is overestimated when-
ever there are stimuli that fail to elicit responses spanning the full response
set. The number of relevant bins also differs from the number of bins ac-
tually occupied for each stimulus (with few trials), Rs, because more trials
might have occupied additional bins. Again, C1 is underestimated if Rs is
used when only a few trials are available (the underestimation becoming
negligible for R/Ns ¿ 1 because Rs tends to coincide with R̃s for all stimuli).

We estimate R̃s (a number between Rs and R) from the data by assum-
ing that the expectation value of the number of occupied bins should be
precisely Rs given the number of trials available and the estimate R̃s. The
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Table 1: Number of Bins R Used for Codes and Numbers of Trials Ns

Ns 16 32 64 128

R for NOS 16 1 + NOSmax 1 + NOSmax 1 + NOSmax
R for PC1 16 36 63 128

R = R(1)× R(2)× R(3)
for PC123 4× 2× 2 6× 3× 2 7× 3× 3 8× 4× 4

algorithm for achieving this result is explained in Panzeri and Treves (1996).
This method for correcting the information values in the face of a limited
number of data samples yields reasonable results even up to R/Ns ' 1, the
region in which we use the method for the study presented here.

Equation 2.8 depends on the probability distributions much more weakly
than does the mutual information itself because the dependence is only
through the parameters R̃s. Therefore, although the parameters R̃s have to
be estimated from the data, this procedure leads to better accuracy.

The choice of the number of bins R(m) in each dimension for an experi-
ment with S stimuli and Ns trials per stimuli remains somewhat arbitrary.
Here we choose R ∼ Ns, to be at the limit of the region where the correction
procedure is expected to work, and thus still be able to control finite sam-
pling, while minimizing the downward bias produced by binning into too
few bins. For NOS, however, each response is just an integer ranging from
0 to the maximal number of spikes (NOSmax—25 for the parvocellular cell
and 34 for the magnocellular cell), so even if we allocate more bins than this
maximum, the extra ones will stay empty. For a multidimensional code (e.g.,
PC123), we allocate a number of bins R(m) in the mth direction in relation
to the amount of mutual information carried by this principal component
alone, as shown in Table 1. When differences between different codes are
calculated, we use the same number of bins in the relevant dimension. When
PC1 and NOS are compared, we use the same number, R, as for PC1; in this
case, many bins for NOS stay empty. For comparing PC123 and NOS, we
use the same number of bins for NOS as for the first principal component,
which is the richest in information among the three (e.g., 8 for Ns = 128). In
this way we compare quantities calculated in a homogeneous way.

2.3.4 Neural Network. A two-layer network is trained by backpropaga-
tion to classify the neuron’s responses according to the stimuli that elicited
them (Hertz et al. 1992; Kjaer et al. 1994). The network uses sigmoidal ac-
tivation for the nodes in the hidden layer and exponential activations for
the nodes in the output layer, with the sum of the outputs normalized to
one after each step. The input to the network is the quantified output of
the biological neuron: the spike count, the first n principal components,
or both. There is one output unit for each stimulus, and, after training,
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the value of output unit number s is an estimate P̂(s|r) of the conditional
probability P(s | r). The mutual information is then calculated from these
estimates using the second form of equation 1.1. The average over the re-
sponse distribution is estimated by sampling over randomly chosen data
points.

All other parameters of the algorithm—notably the number of training
iterations and the input representation, are controlled by cross-validation.
The data are divided into training and test sets, and for each representation,
the training is stopped when the test error, defined as

E = −
∑
µ

log2 P̂(sµ|rµ) (2.9)

(the negative log-likelihood or crossed-entropy), reaches a minimum. In
equation 2.9, the index µ labels the trials in the test set, and sµ is the stimu-
lus that actually evoked the response rµ observed in that trial. After carry-
ing out this procedure for four train-test data splits, the optimal response
representation is chosen as the one with the lowest average test error. In
the present calculations, as in previous work using the neuronal responses
from neurons in the monkey visual system (Heller et al. 1995), the optimal
representation consists of the spike count plus the first three principal com-
ponents. Including the spike count leads to smaller crossed-entropy values
than those obtained from the three PCs alone.

3 Results

We calculated the information carried about a set of 32 Walsh patterns by the
simulated neuronal response quantified by the number of spikes I (S;NOS),
the first principal component I (S;PC1), and the first three principal compo-
nents I (S;PC123) (see Figure 1). For the network technique, we calculated
also the information carried by the first three principal components and the
spike count together I (S;PC123s) (see Figure 2). The arrows at the right side
of the panels in Figure 1 represent the asymptotic values calculated from
simple binning using 106 trials per stimulus. These figures show the esti-
mated transmitted information for Ns = 16, 32, 64, 128, and for two sample
cells: magnocellular and parvocellular. The parvocellular cell has sustained
activity over an interval of 250 ms, whereas the magnocellular cell is active
mostly over the first 100 ms. The magnocellular cell has more phasic re-
sponses (Golomb et al. 1994). Thus, we expect the multidimensional codes
to capture a larger proportion of the information in its responses. A simple
rate code is more likely to be an acceptable zeroth-order description of the
parvocellular cell. The results we obtain (compare panels A and C, D and
F, respectively, in Figure 1) bear this expectation out.

All of the calculations show that the first principal component is more
informative about the stimulus than the spike count. As expected, this effect
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Figure 1: The information about a stimuli set of 32 Walsh figures conveyed by
the neuronal response of model parvocellular (A–C) and magnocellular (D–F)
cells, as estimated by various methods. The response is quantified by the number
of spikes (A,D), the first principal components (B,E), and the first three princi-
pal components (C,F). The mutual information is estimated by straightforward
equipopulated binning (dotted lines), equipopulated binning with finite sam-
pling correction (dashed lines), and a neural network (solid line). The numbers
of bins for each code and Ns are shown in Table 1. The neural network has six
hidden units and a learning rate of 0.003. The arrows at the right indicate an
asymptotic value (very good approximation for the “true” value) obtained with
equispaced binning with 36× 20× 20 bins and 106 trials per stimulus.
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Figure 2: The information about a stimuli set of 32 Walsh figures conveyed by
the neuronal response of model parvocellular (A) and magnocellular (B) cells.
The response is quantified by the first three principal components with (solid
line) and without (dotted line) the number of spikes. The mutual information
is estimated by a neural network with six hidden units and a learning rate of
0.003. I (S;PC123) is shown also in Figures 1C and 1F.

is especially strong for the magnocellular cell, as the first PC weighting
function suppresses contributions from the spikes after the first 100 ms,
which are mainly noise.

Figure 1 shows that the raw binning is strongly biased upward. The
difference between the estimates made with raw and corrected binning
almost does not vary with Ns, for PC1 and PC123. This is because the first-
order correction term (see equation 2.8) is approximately proportional to
R/Ns, which we choose to keep roughly constant in our calculation. For
NOS there is no point choosing R above 1+NOSmax; hence the correction
term, and with it the raw estimate, decreases as Ns is increased.

Both the corrected binning method and the network method tend to
underestimate the information in PC1 and PC123 (the only counterexample
is shown in Figure 1E, where the binning method overestimated it). This
is because both methods involve a regularization of the responses (explicit
in the binning, and done implicitly by the network), and regularization
always decreases the amount of information present in the raw response.
For example, the corrected binning method underestimates the information
whenever the number of bins is too small to capture important features of
the probability distribution of the responses. Therefore, the effect is strong
for PC123 when the number of bins in the direction of the first PC is not large
enough, and the bias downward decreases with increasing Ns because the
number of bins increases too. The underestimation does not occur with NOS
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because the maximal number of spikes in our examples is around 30, and
there is no meaning to using finer binning. In general, the underestimation
due to regularization is more prominent for the higher-dimensional code
(PC123) because the effect of adding more bins in each dimension is stronger
when the number of bins is small.

The neural network tends to find a larger amount of information carried
by the first three principal components together with the spike count than
by the first three principal components alone (Heller et al. 1995). For the
parvocellular cell, I (S;PC123s) exceeds I (S;PC123) by 0.025 bit (2.6%) for
Ns = 64 and by 0.008 bit (0.8%) for Ns = 128; for the magnocellular cell, the
extra information is 0.03 (7%) for Ns = 64 and 0.04 bit (9%) for Ns = 128;
compare the solid lines in Figures 1 and 2. This increase occurs despite the
high correlation between the first principal component and the number of
spikes, especially for the parvocellular cell.

In Figure 3 we present the differences I (S;PC1) − I (S;NOS) between
the information carried by PC1 and NOS, and I (S;PC123) − I (S;NOS),
between PC123 and NOS. For all the cases considered here, the network
yields a value for the extra information that is biased downward. This shows
that the network automatically regularizes responses, and apparently the
regularization is stronger for the higher-dimensional code. The corrected
binning technique, on the other hand, gives both downward- and upward-
biased values for the extra information—in this instance, downward for the
parvocellular cell.

Since the choice of number of bins along each dimension is somewhat ar-
bitrary for a multidimensional code, we checked the effect of using different
binning schemes for Ns = 128. The results are summarized in Table 2A. The
information differences for the parvocellular cells are in a 30% range; the in-
formation differences for the magnocellular cells are all nearly the same, no
matter which method is used. Thus, even in the least favorable case, infor-
mation differences using different binning schemes remain in the range of
the remaining (downward) systematic error—about 30%. In a similar way,
we varied the parameters of the network: the number of hidden units and
the learning rate (see Table 2B). The difference in information varies within
10% for both cells, indicating that changes in these parameters are less im-
portant than the downward bias due to the regularization. The test error
for the various network parameters is quite similar, with differences within
0.4% for both cell types. Thus, it is difficult to determine the best result of
the network from just this number.

4 Discussion

The main result of this work is that information carried in the firing of
a single neuron during a certain time interval about a set of stimuli, and
quantified by a certain code, can be estimated with a reasonable accuracy
(within 0.05–0.1 bit, or 10%) using either of the two procedures described
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Figure 3: Differences between measures used for quantifying the response of a
parvocellular cell (A,B) and a magnocellular cell (C,D). We show in A and C the
difference between the information carried by the first PC and that carried by
the number of spikes, and in B and D the difference between the information
in the first three PCs and that in the number of spikes. Dashed lines indicate
results obtained from normalized equipopulated binning; solid lines indicate
those from the neural network.

In A and C, the number of bins is 16 for N = 16 and 36 for N ≥ 32. In B
and D the number of bins in the first three principal components is as given in
Table 1, and the number of bins for NOS is equal to R(1) in that table, that is, to
the number of bins for the first PC (4, 6, 7, and 8, respectively). The arrows at
the right indicate an asymptotic value obtained with equispaced binning with
36× 20× 20 bins and 106 trials per stimulus.

above. This result is achieved with the temporal response quantified by
a three-dimensional code (PC123). With a one-dimensional code (NOS or
PC1) the accuracy is even better. The relatively good accuracy obtained with
our methods enables one to compare various codes and determine which
one carries the most information (e.g., Heller et al. 1995).

To understand the results in more detail, it is important to remember
that information measures are specific to the stimulus set considered, but
also specific to the quantities chosen to quantify neuronal responses; also,
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Table 2: Difference in Mutual Information I (S;PC123) − I (S;NOS) (Bits) for
Ns = 128

A. Several Binning Schemes

R = R(1)× R(2)× R(3) 7× 6× 3 8× 4× 4 10× 4× 3 15× 3× 3

Parvocellular cell 0.145 0.135 0.125 0.114
Magnocellular cell 0.289 0.289 0.291 0.289

B. Several Network Schemes

Hidden units, learning rate 6, 0.0003 6, 0.001 10, 0.001 6 , 0.003

Parvocellular cell 0.121 0.127 0.123 0.118
Magnocellular cell 0.219 0.201 0.219 0.206

Note: The standard deviations of the difference are about 0.01.

information measures are affected by limited sampling, which results typi-
cally in an upward bias, but also, since it is always necessary to regularize
continuous responses, they may be affected by the regularization, which
results in a bias downward.

When a simple binning of the responses was used, raw information mea-
sures were strongly biased upward, and thus it was important to apply a
correction for limited sampling. If one follows this procedure, the only pa-
rameter that has to be set is R, the number of response bins. If R is chosen too
large, subtracting the term C1, equation 2.8, will not be enough to correct for
limited sampling (see also Treves & Panzeri 1995); if it is chosen too small,
a strong regularization will be imposed, and information will be underesti-
mated. The results indicate that it is sensible to set the number of response
bins at roughly the number of trials per stimulus available, R ' Ns. C1 is
inversely proportional to the number of trials available and roughly directly
proportional to the number of response bins, and this choice approximately
balances the upward bias due to finite sampling with the downward one
due to the regularization. Choosing the number of bins for each of the first
three principal components in PC123 was more delicate that for NOS or PC1
and tended to yield a stronger downward bias in information values. This
suggests that the use of the binning procedure alone becomes insufficient
for higher-dimensional codes, as when the spike trains of several cells are
considered together.1

1 One useful procedure for the computation of information from multiple neurons is
to use decoding to extract the relative probabilities of the stimuli from the responses and
thus to reduce the original set of responses to the size of the stimulus set (Gochin et al.
1994; Rolls et al. 1996a, 1996b).
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For all the cases considered, the network underestimated both the mutual
information and the extra information in the temporal response in compar-
ison to the number of spikes. This indicates that the regularization induced
by the network is enough to dispose of the finite sampling bias, at the price
of underestimating information values, especially for higher-dimensional
codes, which are more strongly regularized.2 Information values generally
increase weakly with N, which indicates that the regularization induced has
decreasing effects as N becomes large. Since the underestimation is stronger
for I(S;PC123) than in the case of unidimensional codes, estimates of the ex-
tra information in the second and third principal components (see Figure 3)
are also biased downward. Several parameters need to be set when the
network is used. Some (e.g., the number of iterations) can be set by cross-
validation. Others (e.g., the learning rate) have little effect on the results
across a broad range of values, as indicated in Table 2. Another virtue of
the network procedure is that it effectively incorporates a decoding step
and as such can be immediately applied to high-dimensional (e.g., multiple
single-unit) data.

Although our results were obtained with simulated data, we believe that
the conclusions apply to real data as well. In particular, our network results
are consistent with those of Kjaer et al. (1994, Figure 10), obtained from
complex V1 cells. They also found that the estimated mutual information
increases with Ns and almost reaches a plateau for Ns ≈ 15 for the first
principal component but not for the first three principal components.

In this work, principal components are used for quantifying the data
with a low-dimensional code, because the first principal components carry
most of the difference among the responses to different stimuli. However,
principal component analysis is not essential to our procedures for handling
finite sampling problems; any kind of N-dimensional response extracted
from the neuronal firing patterns can be used (e.g., PC123s, the NOS of
several neurons, or neuronal spiking times; Heller et al. 1995). Estimating
the accuracy of the methods can be done only for n ≤ 3, because for higher
n, calculating the asymptotic value of the transmitted information using
straightforward binning is too consuming of computer time. Our procedures
of finite sampling corrections were demonstrated here on stimuli with a
sharp onset in time. They are also applicable, however, to continuously
changing stimuli (after a suitable discretization), as long as the response to
each stimulus is measured during a fixed time interval T, and stimuli are
either discrete or have been discretized.

Important results have been obtained by Bialek and collaborators by ex-
tracting information measures from neuronal responses (Bialek 1991; Bialek
et al. 1991; de Ruyter van Steveninck & Laughlin 1996; Rieke et al. 1993).
These results are based on invertebrate (insect) data, which are usually easy

2 One could even compute the corresponding C1 term (Panzeri & Treves 1996).
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to collect in large quantities, and thus the limited sampling artifacts are
less severe. Our analysis is particularly relevant to primate data, which are
typically much less abundant. Note, however, that a recent paper (Strong
et al. 1996) analyzes finite sampling effects following the method of binning
with finite size correction (Treves & Panzeri 1995). A second, less crucial
difference between the type of experimental data considered here and that
used by those investigators is that the stimulus in their case is a continu-
ous quantity, which opens up the possibility of using notions such as the
linearized limit and the gaussian approximation that do not apply to our
situation with a discrete nonmetric set of stimuli and that when applicable
can alleviate finite sampling effects further.

The network procedure needs a long computational time. A typical cal-
culation for Ns = 128 and 32 stimuli runs for about 7 CPU hours on an
SGI-ONYX computer. The binning-and-correcting technique is much faster,
and most of the CPU time is taken up by sorting responses in order to
construct equipopulated bins. For I(S;NOS), which involves no sorting, a
calculation with Ns = 128 runs for less than 1.8 seconds on an HP-Apollo
computer.

What is the minimum number of trials to plan for in an experiment? In our
instance, results seemed reasonable when Ns = 32. However, this number
depends on the stimuli, response representation, and neurons used. The ar-
gument sketched above indicates how to estimate the minimum number of
trials in other experiments. The binning-and-correcting procedure functions
reasonably up to Ns ' R, and the minimum R that may, if the appropriate
type of response is chosen, not throw away much information,3 is R = S.
Therefore a minimum of Ns = S trials per stimulus is a fair demand to be
made on the design of experiments from which information estimates are
going to be derived.
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