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Introduction

The brain encodes information into complex spatiotemporal signals evoked in its
building cells. To unveil the details of this process, one has to devise robust methods
to both register and alter brain cell signals without compromising either the cellular
functions or the original brain network topology. Optogenetic techniques are by
far the most promising toward this goal. They combine genetic intervention with
two-photon stimulation and two-photon microscopy, mostly complemented by mini-
mally to non-invasive procedures. In particular, target brain cell populations can be
genetically modified so that they express a specific species of fluorescent molecules.
These are classified into sensors and actuators, depending on their behavior. The
intensity of light emission in sensors is ruled by the concentration of the chemical
species they are sensitive to (e. g. genetically encoded calcium indicators with re-
spect to Ca2+). Conversely, actuators act as neuromodulators if stimulated with
controlled light, as they are able to modify the cellular permeability (e. g. Opsins)
[1]. Recent studies have demonstrated that it is possible to activate actuators with
a light beam which negligibly interferes with the imaging one [2, 3], thus allowing
an efficient, combined employment of the two procedures. These new all-optical
approaches enable the formulation of a novel class of groundbreaking experiments
which would eventually test causal hypotheses about the neural code, as it is possi-
ble to test the consequences of writing or erasing pieces of information in brain cell
activities. [4, 2, 3].

For the systematic storage and analysis of the many collected images recording
the brain cell activity, experimenters have to face many non-trivial computational
challenges which cannot be tackled by employing conventional methods. Neural
imaging has eventually entered the big data era, as it has already happened for
many other fields of study. Disentangling the relevant information contained in the
collected data from noise and background can be unaffordable without employing
high-performance computing algorithms.

As the final project for this Master’s thesis, I have developed a parallel 3D
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2 Introduction

clustering algorithm to perform the spatiotemporal segmentation of the active brain
cell regions in a series of black and white images recording a signal of interest. Its
Python implementation—also boosted by a library written in C—has proven to be
reasonably fast and to scale well according to both the strong and the weak scaling
paradigms. I realized the present work while working as a postdoctoral researcher
in the Center for Neuroscience and Cognitive Systems of the Italian Institute of
Technology (IIT), Rovereto (Italy) lead by Dr. Stefano Panzeri. The raw data
has been collected at the Optical Approaches to Brain Function Lab lead by Dr.
Tommaso Fellin at the IIT headquarters, Genoa (Italy). In compliance to a non-
disclosure agreement between these two labs and the Scientific Board of the SISSA-
ICTP Master in High-Performance Computing, no details about either the raw data
or their processing methods will be unveiled in this thesis, with the exception of a
series of computational benchmarks of the developed clustering algorithm and a
general overview about its implementation, collected in Chapter 1. This policy has
been adopted in order to preserve the confidential status of the ongoing project this
work is part of.
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Chapter 1

Implementation and benchmarks

The modern optical microscopy allows the fast-pace imaging of brain cells’ ac-
tivity with single-cell resolution. A single experiment typically produces thousands
of images, which translates into tens of gigabytes of raw data. If from one side
their acquisition from the microscope, storage, access and visualization can be still
accomplished resorting to customary software, several customary image processing
routines cannot be employed anymore, due to their inefficient management of the
available computational resources when dealing with big data.

As an example, let us estimate the memory resources required to segment the
regions of interest (ROIs) in a series of images by resorting to a SAHN (sequential,
agglomerative, hierarchic, non-overlapping) clustering method [5]. This is typically
the first step towards localizing the individual cell’s functional units and extracting
a signal of interests from them. Let therefore E be an experiment in which a series
of N subsequent, black and white frames featuring nx × ny pixels each have been
collected. If both nx, ny are O(102.5) and N is O(103) and we indicate the set of
all pixels in the image series with P , it holds that |P | = O(108). In order to store
the full series of images in memory, approximately O(109.2) bytes are required if the
uint16 encoding is used to encode the pixel luminosity l : P → {0, . . . , 216 − 1}.

To our knowledge, the most efficient Python library at date implementing the
seven most widely used SAHN algorithms is D. Müeller’s fastcluster [6, 7]. Each
of these algorithms clusters together groups of pixels using a dissimilarity index

as a discriminant, that is a reflexive, symmetric mapping d : P̃ × P̃ → [0,+∞)
meeting the constraints d(p, p) = 0 and d(p, q) = d(q, p) ∀p, q ∈ P̃ , where P̃ denotes
the set of all pixels in the N images such that l(p) > 0. Defining the policy to
adopt in order to compute d is a crucial step in implementing these algorithms, as
the programmer has to face a time-memory trade-off. A memory-saving approach
[7] would avoid storing in memory the full dissimilarity matrix D

.
= (dp,q), which
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4 Chapter 1. Implementation and benchmarks

is instead computed on demand for any chosen pair of pixels (p, q) ∈ P̃ . To this
purpose, an extra array of k·|P̃ | float64 elements is needed at runtime by the library
to hold the coordinates of the elements in P̃ with respect to some k−dimensional
coordinate systems. Although this policy helps prevent from memory overflows, the
several consecutive calls to the routine evaluating d surely decrease the overall time
performance.

This drawback can be overcome if one opts for a time-saving approach [7]. In
this case, all the O(|P̃ |2) elements in the upper triangle of the dissimilarity matrix
D

.
= (dp,q) are evaluated before the actual clustering procedure begins and must be

allocated in memory. Being quadratic in space, such a memory request typically
exceeds the available memory resources when dealing with big data. If e. g. |P̃ | ≈
|P |/100, it turns out that O(1013) bytes are needed to fully store D in memory and
this is a serious no-go for embracing this strategy as is.

Following up to this analysis, a savvy programmer facing a clustering problem
on big data would opt immediately for the memory saving option if she had no
experience in high-performance computing. Nevertheless, she would also agree that
a memory-controlled version of the time-saving policy could be a more efficient
solution, if feasible. In the next Section, we will discuss how this goal can be
successfully accomplished.

1.1 Algorithm implementation

To pave the way towards an efficient version of the time-saving approach, we
devised a parallel algorithm developed in a distributed memory framework, where
the processes communicate via the Message Passing Interface (MPI) protocol. Due
to the non-disclosure agreement we have mentioned in the Introduction, in the
following we will only outline the general implementation of the clustering algorithm
and present some relevant benchmarks run on a collection of mock data.

Our clustering algorithm has been developed in Python 3.5.2 [8], it is compliant
with the advanced programming interface (API) design adopted in scikit-learn

[9] and leverages the mpi4py package [10] for binding Python to an MPI library. Its
implementation can be divided in two stages:

A. In Stage A we concurrently exploit the fastcluster library to find a pool
of clusters in some disjoint, non-overlapping subsets of P̃ , in such a way that
memory overflow is avoided. We will refer to these clusters as partial clusters,

since we have only performed the clustering in some disjoint regions of P .

B. Stage B is instead devoted to assessing whether there are partial clusters to
be merged together and to get eventually the pool of global clusters resulting
from the merging operation. These global clusters are the final output of our
algorithm.
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1.2. Benchmarks 5

As the first step of Stage A, each process loads a slice of the input data P .
In particular, P̃ is split into a finite number of subsets {P̃i}

S−1

i=0
, where S denotes

the number of spawned MPI processors and each subset Pi meets the following
constraints:







P̃ = ∪iPi,
Pi ∩ Pj = ∅ ∀i 6= j,
|Pi| ≈ |Pj | ∀i 6= j.

(1.1)

Within each processor, each of the subsets {Pi} is again split in a finite number of
subsets {Qi,j}

Mi−1

j=0
, such that







Pi = ∪jQi,j ,
Qi,j ∩Qi,k = ∅ ∀j 6= k,
|Qi,j | ≈ |Qi,k| ∀j 6= k

(1.2)

for all i ∈ {0, . . . , S−1}. The values Mi are determined at runtime by the program,
taking into account the amount of available memory in the machine. Once a subset
Qi,j has been created, the i-th MPI processor calls a C-shared library we have
developed to initialize the upper triangle of the dissimilarity matrix D for the pixels
q ∈ Qi,j . D is then fed to the linkage method of the fastcluster module, which
yields the hierarchical clustering dendrogram for the events in Qi,j .

The global clusters are then obtained in the second step by merging the partial
clusters in the subsets Qi,j , resorting to a dedicated Python routine.

1.2 Benchmarks

In this section we present the weak and strong scalability benchmarks for our
algorithm on a collection of synthetic data, according to the following definitions:

Definition 1.2.1. A parallel program scales in a strong sense if its speedup1 S is

equal to the number of working processors W for a fixed total problem size.

Definition 1.2.2. A parallel program scales in a weak sense if its speedup1 S is

equal to one for a fixed problem size per working processor.

The input data for each benchmark is a 3-axis, uint16 ndarray of shape (256,
256, 750), which will be called P in the rest of this section, in accordance with the
notation introduced in Section 1.1. All benchmarks have been run on a machine
equipped with a couple of Intel R© Xeon R© Processors (Model E5-2643 v3 @ 3.40GHz),

1The speedup of a parallel application, as a function of the number of working processors W
employed in parallel to run it, is defined as S(P )

.
= T1/T (W ), where T1 is the overall execution

time of the program executed by one single processor and T (W ) is the overall execution time of
the same program executed with W processors in parallel.
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featuring 6 physical cores each and a total available Random Access Memory (RAM)
of about 130 GB. Regarding the employed software, the Python distribution we
used to run the benchmarks was CPython 3.5.2 [8], complemented with numpy

1.15.4 [11] linked to the openBLAS 3.0 shared library [12, 13]. The MPI standard
implementation bound to mpi4py was instead MPICH 3.2 [14]. The processors in our
machine are also provided with an AVX2 extension, which also boosts the execution
of the developed C-library routines to compute the dissimilarity matrix, as well
as any numpycall to its linked Basic Linear Algebra Subprograms (BLAS) library.
Indeed, both the library we have developed and openBLAS 3.0 have been compiled
with GNU gcc 5.4.0 and contain instructions which results to be vectorialized,
since the flag -O3 has been specified at compiling time in both cases.

Weak scaling assessment

Twelve experiments W1, . . . ,W12 have been run to assess the weak scalability of
our algorithm, where the subscripts specify the number of MPI processes spawned
to run the benchmark. In each of them P has been initialized such that each MPI
process would feature the same number of events in the loaded partition of P . In
particular, we ensured that the process with rank k in experiment Wi holds in its
memory the following slice of P :

Pi,k[x] =

{

x+ 1 if x = ⌊Xk/2⌋,
0 otherwise

(1.3)

where Xk is the size of the 0-th axis in the partition Pi,k and x denotes the index
value along this axis.

In Figure 1.1 we plot the speedups Si
.
= T1/Ti (i ∈ {1, . . . , 12}), where Ti

indicates the elapsed time for the experiment Wi to complete. The plot reveals that
our algorithm scales well in a weak sense.

Strong scaling assessment

To assess the strong scalability of our algorithm we have run one hundred eight
experiments Si,j , where i ∈ {1, . . . , 12} indicates the number of spawned MPI pro-
cessses and j ∈ {2, . . . , 10} labels how P has been initialized. In particular, P has
been initialized as follows for experiments Si,j :

P [x] =

{

x+ 1 if mod (x, j) = 0,
0 otherwise

(1.4)

where x ∈ {0, . . . , 255} denotes the global index value along the 0-th axis of P .
Figure 1.2 reports the speedups Si,j

.
= T1,j/Ti,j for the three pools of experiments

(i, j) ∈ {1, . . . , 12} × {2} (navy plot), (i, j) ∈ {1, . . . , 12} × {5} (green plot) and
(i, j) ∈ {1, . . . , 12} × {10} (purple plot). Here Ti,j indicates the elapsed time for
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1.2. Benchmarks 7

Figure 1.1: Weak scalability test for the developed clustering algorithm.

the experiment Si,j to complete. If we denote the overall workload of experiments
Si,10 with W10, the overall workloads for experiments Si,5 and Si,2 are 2 ·W10 and
5 ·W10, respectively.

In each of these plots, we notice that the speedup grows almost always if the
number of MPI processes is increased. Moreover, the speedup enhancements for two
problems of different sizes results to be greater for the one with the greater workload
as the number of employed processes grows. This is an expected behavior for our
algorithm—which is not embarrassingly parallel—, in qualitative accordance with
Amdahl’s law [15, Section 2.6.2].

A more detailed analysis of these plots reveals some interesting behaviors that
are worth to be discussed. Firstly, we notice that the speedup for a fixed workload
deviates dramatically from the expected trend for a small group of experiments.
This is the case e. g. of experiments S11,2, S7,9, S11,9 and S7,12—where the speedup
drops away—, and e. g. of experiments S2,4, S4,6, S8,8 and S2,10—where the
speedup rises and meets the theoretical expectation. In some other experiments—
like e. g. in S4,8, and S2,j for j ∈ {2, 3, 6, 8}—the speedup is even slightly higher
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Figure 1.2: Strong scalability tests for the developed clustering algorithm.

than the theoretical expectation. The first effect witnesses a slight unbalance in
both the computation and communication workload among the MPI processes if
compared with the other experiments featuring the same initialization for P . In
the other two cases, the overall workload is instead perfectly balanced among the
processes. We would like to stress that this slight load unbalance is not happening
as a consequence of a bad algorithm design. Instead, it always occurs whenever the
overall computational workload cannot be evenly distributed among the processors,
to preserve the completeness of some portions of data within each process. Indeed,
let e. g. the input data X be a n-dimensional array and let n0 be the size of the first
axis. If we need to distribute X into the local memories of K MPI processors by
splitting X across its 0-th axis and mod (n0,K) 6= 0, then mod (n0,K) process(es)
will store one more column with respect to the others2. In our case, P is a 3-
dimensional array and we split it along its 0-th axis. As a result, some of the
spawned MPI processes may store ny ·N data points more than the others.

To conclude, we can state that our algorithm scales well in a strong sense when-

2See e. g. Ref. [16, chapter 8].
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1.2. Benchmarks 9

ever the workload can be perfectly balanced among the spawned MPI processors.

Usage of computing resources

For all the experiments Si,j we have recorded the amount of computing resources
used by our program by running the top command in background. As an example,
Figures 1.3 and 1.4 (1.5 and 1.6) report the average CPU usage and the overall
RAM usage for experiments S12,10 (S12,5), respectively.

The qualitative analysis of the memory exploitation plotted in Figures 1.4 and 1.6
also allows us to grasp a general insight on the implementation of our algorithm. As
stated in Section 1.1, our algorithm starts by seeking for the partial clusters3, after
that it assesses whether there are partial clusters to be merged together and it merges
them eventually. To perform the partial clustering without memory overflows, each
MPI processor had to call the linkage function in the fastcluster library seven
times4 in both of these benchmarks for each 2-dimensional array P [x] ⊂ P such
that P [x] 6= 0. Moreover, the data size in input to the last of these calls is one
order of magnitude less than the one in input to the previous ones4. In experiment
S12,10 (S12,5), two (four) processors were storing in their memory a portion of P
containing three (five) slices of P where P [x] 6= 0, whereas the remaining ten (eight)
were storing only two (four) of them4. Therefore, the total number of calls to the
linkage function were twenty-one (thirty-five) for the first group of processors and
fourteen (twenty-four) for the second one. Let us now compare these numbers with
the number of spikes in Figure 1.4 (1.6). The total number of either red or green
dots in Figure 1.4 (1.5) equals thirty-five (twenty-four), which coincides with the
number of calls to the linkage function made by the processors with a higher
workload. The groups of red dots gather the first six consecutive, parallel calls to
the linkage function to get the partial clusters in each of the slices of P where
P [x] 6= 0. Instead, the green dots following the red ones witness the seventh call to
linkage, whose input data size is one order of magnitude less than the one in input
to the previous ones. In both of the figures we also notice that the height of the
spikes marked in red gradually starts dropping from pools B. At the same time a
smaller spike appears just after them, whose magnitude is equal to the loss of height
of the preceding spike. This behavior is a consequence of the different speed with
which each processor gets the partial clusters during the Stage A of the program.
It is also worth noticing that the difference in height between the red spikes in the
last pool of each figure and the spikes in the other ones reveals the load unbalance
between the processors. Indeed, two (four) processors in experiment S12,10 (S12,5)
have to retrieve the partial clusters in a larger event space, as stated above. The

3Partial clusters have been defined in Section 1.1 as the pool of clusters in some disjoint, non-
overlapping subsets of P̃ .

4The interested reader would excuse us if we do not prove this and some other results in the
following. This would imply unveiling the details of the algorithm, thus breaking the non-disclosure
agreement we have to honor.
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memory usage during the Stage B of the program is instead negligible (≈ 1MB)
and cannot be highlighted by the plots in Figures 1.4 and 1.6.

As far as the mean CPU usage is concerned, we see from Figures 1.3 and 1.5
that our program makes an intensive usage of the CPU cores overall.
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Figure 1.3: Average CPU usage during experiment S12,10.

Figure 1.4: Overall RAM usage during experiment S12,10.
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Figure 1.5: Average CPU usage during experiment S12,5.

Figure 1.6: Overall RAM usage during experiment S12,5.
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Conclusions

The development of optogenetics, combined with two-photon microscopy, has
allowed to both monitor and alter the brain cell’s activity with accurate precision.
In particular, the activity of single brain cells can be recorded with a fast acquisition
rate in a series of high-resolution images even during behavioral experiments in vivo.
To perform efficiently the spatiotemporal segmentation of the active brain cells in
the collected images, one needs to rely on high-performance software, as the size of
the collected data can be huge (O(10) GB).

In this thesis I have presented a parallel, memory-distributed 3D clustering al-
gorithm which I have implemented in Python 3.5.2 and C as the final project for
the SISSA-ICTP Master in High-Performance Computing. This algorithm can be
employed to segment the active brain cell regions in a series of black and white
images recording a signal of interest.

In Chapter 1, we have described the implementation procedure for our algorithm
and we have brought evidences of its good scaling properties. In particular, our
implementation has proven to scale well according to both the weak and to the
strong scaling definitions. Crucial to our achievement have been a savvy usage of
the interfaces contained in the Python modules mpi4py and fastcluster, along
with the development of a C-library to compute the dissimilarity matrix among the
events.

The modular approach we adopted to writing our software makes it adaptable
to be reused for the implementation of other clustering algorithms in a parallel,
memory-distributed framework.

13
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