
Scuola Internazionale Superiore di Studi Avanzati - Trieste

SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY

Doctoral Thesis

T T̄ Deformations of Quantum

Field Theory

Candidate : Mengqi Zhu

Supervisors : Prof. Giulio Bonelli

Academic Year 2017 – 2018





Abstract

Recent work by Zamolodchikov and others has uncovered a kind of “solvable” irrele-

vant deformation of two dimensional QFT generated by the composite operator T T̄ . The

irrelevant composite operator T T̄ is built with the components of the energy-momentum

tensor. The T T̄ deformation can be regarded as a peculiar kind of integrable perturbation

of integrable quantum field theories (IQFT). In the holographic dual, this deformation rep-

resents a geometric cutoff of the asymptotic region of AdS. The QFT is placed on a Dirichlet

boundary at finite radial distance in the bulk. In this thesis we consider the problem of

exact integration of the T T̄ deformation of two dimensional quantum field theories, as well

as some higher dimensional extensions in the form of T T̄ deformations. When the action

can be shown to only depend algebraically on the background metric the solution of the

deformation equation on the Lagrangian can be given in closed form in terms of solutions of

the (extended) Burgers’ equation. We present such examples in two and higher dimensions.
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Chapter 1

Introduction

Exact quantification of how Quantum Field Theories react as we vary the coupling constants

or dynamical scales is a crucial issue in modern theoretical physics [1, 2]. Cases where such

deformations can be integrated exactly and in closed form are extremely rare and often enjoy

supersymmetry. In two dimensions there exist examples of non-supersymmetric interacting

QFT theories which are integrable and whose renormalisation group flow can be determined

explicitly [3].

A generic QFT admits deformations by operators which instigate a flow as we probe

the dynamics at different scales. Deformations which drive the flow at lower energies are

considered relevant whilst deformations that dominate the flow as we probe the dynamics

at higher energy scales are considered irrelevant. The latter flow is much harder to study

as it generally involves reintroducing the high energy degrees of freedom that have been

integrated out. Nonetheless there are examples for which the flow can be determined,

notably the deformation of any local relativistic QFT in two spacetime dimensions by the

irrelevant T T̄ operator.

The composite operator T T̄ was first studied by Zamolodchikov in [4]. It is constructed

from the energy-momentum tensor for a general D = 2 QFT. It became a frequent actor

in subsequent studies focused on integrable quantum field theory (IQFT) [5–8]. The T T̄

deformation is a special case of a more general class of irrelevant integrable deformations of

IQFT introducted by Smirnov and Zamolodchikov in [9]. The T T̄ deformation is special in

that the deformed theories are solvable in a certain sense, even when the original theory is

not integrable. Various generalisations of the T T̄ deformations of quantum field theories,

mostly studied from the viewpoint of the partition functions, were proposed in [10–16].

Applications to holography were studied in [17–20, 22, 23, 26]. The entanglement entropy

in T T̄ deformed CFT in studied in [25]. Some implications of this irrelevant deformation

for the UV theory were considered in [27–29], and in [30] a hydrodynamical approach was
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2 CHAPTER 1. INTRODUCTION

considered. A similar Lorentz-breaking deformation of CFT generated by the operator JT̄

was proposed in [31] and further studied in [24, 32, 33], where J is a conserved U(1) current.

In this thesis we begin with a review of the background of T T̄ deformation and the appli-

cations to holography. Then we focus on studying the flow equation for the T T̄ deformed

QFTs and its extensions to higher dimensions, both for conformal and massive theories.

In Chapter 2, we review the background of T T̄ deformation following the work of Smirnov

and Zamolodchikov [4, 9] and the paper by Kraus, Liu and Marolf [35]. We first review the

construction of the composite T T̄ operator in two dimensional spacetime. Let us denote

the components of the energy-momentum tensor as T = − (2π)Tzz, T̄ = − (2π)Tz̄z̄ and

Θ = (2π)Tzz̄. In the limit z → z′, the operators T (z) T̄ (z′) and Θ (z) Θ (z′) are both

divergent but their non-derivative divergent parts cancel each other. Thus the combination

T T̄ := T (z) T̄ (z′) − Θ (z) Θ (z′) is well defined in the limit z → z′ up to total derivative

terms. If the theory is put on a cylinder, the expectation value of the T T̄ operator can be

computed. The key relation here is the decomposition relation〈
n
∣∣T T̄ ∣∣n〉 = 〈n |T (z)|n〉

〈
n
∣∣T̄ (z)

∣∣n〉− 〈n |Θ (z)|n〉 〈n |Θ (z′)|n〉 . (1.1)

The expectation values on the right hand side can all be computed by the definition

of the energy-momentum tensor. The T T̄ operator turns out to be a special case of a

general class of local operators Xs, which are constructed from local conserved currents

(Ts+1 (z) ,Θs−1 (z)) by Ts+1 (z) T̄s+1 (z′) − Θs−1 (z) Θ̄s−1 (z′). The local currents satisfy the

continuity equations ∂z̄Ts+1 (z) = ∂zΘs−1 (z) and local integral of motions (IM) are con-

structed from the currents

Ps =
1

2π

∫
C

Ts+1 (z) dz + Θs−1 (z) dz̄ (1.2)

P̄s =
1

2π

∫
C

T̄s+1 (z) dz + Θ̄s−1 (z) dz̄. (1.3)

Integrable quantum field theories (IQFT) are characterized by an infinite number of con-

served currents and local IM’s. Each Xs generates a deformation of the IQFT by

SQFT → SQFT +
∑
s

ts

∫
d2xXs. (1.4)

Smirnov and Zamolodchikov[9] proved the above deformation preserves integrability. The

idea is that if under the deformation generated by Xs the currents are also deformed as

Tσ+1 → Tσ+1 + δgsT̂σ+1,s (1.5)

Θσ−1 → Θσ−1 + δgsΘ̂σ−1,s, (1.6)
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where T̂σ+1,s and Θ̂σ−1,s are some local fields with spins σ + 1 and σ − 1, then the local

IM Pσ are still conserved and commute with each other. Thus the deformed theory is still

integrable. The X1 = T T̄ operator is special in that even if the original theory is not

integrable, the deformation generated is in some sense solvable. Since the operator Xs is

irrelevant, the deformed theory is not necessarily UV complete. So it should be understood

in the effective field theory sense. The UV behaviour of the deformed theories has been

studied by Dubovsky et al.[7, 29, 34]. The deformation generated by T T̄ can also be defined

by the following differential equation

∂tL (z, z̄, t) =
1

π2
T T̄ (z, z̄, t) . (1.7)

Put the theory on a cylinder with circumference R. Following the definition of the defor-

mation one finds that the energy levels En = En (R, t) of stationary state |n〉 satisfy the

equation
∂En
∂t

=
R

π2

〈
n
∣∣T T̄ ∣∣n〉 . (1.8)

Finite-size energy levels are computed based on equation (1.8). Specially if the original

theory is a CFT, we have

Et (R) = FtR +
R

2t̃

(
1−

√
1 +

4t̃Cn
R2

)
, (1.9)

where t̃ = t (1 + tF0), F0 is the bulk vacuum energy density. Deformations of IQFT that

preserve integrability must also generate integrable deformations of the S-matrix. The space

of infinitesimal deformations of the S-matrix contains a finite-dimensional part related to

the deformations of solutions of the Yang-Baxter equation and an infinite-dimensional part

of deformations of the CDD factor. The two particle S-matrix of the T T̄ -deformed CFT

takes the form

S = exp

(
−i t

4
p+

1 p
−
2

)
. (1.10)

The T T̄ -deformed CFT with t > 0 has a nice holographic dual description which is AdS3

with a finite radial cutoff. On the bulk side the boundary lies not at asymptotic infinity

but instead at a finite radius. The ability to move the boundary inward is interesting. This

could shed some light on the important question of the emergence of bulk locality. The T T̄

deformed CFT action is defined by the equation dS(t)
dt

=
∫
d2x
√
gT T̄ (x). Assuming that the

undeformed theory is a CFT, we can equivalently say that the trace of the deformed stress

tensor obeys (up to derivatives of local operators)

T ii = −4πtT T̄ . (1.11)
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For general Pn the finite-size energy is

En = − R

2π2t

√1− 4π2t

R
En,0 +

(
2π2t

R
Pn

)2

− 1

 . (1.12)

The energy level can be reproduced in pure AdS3 gravity by considering the quasilocal energy

[36, 37] defined on a surface at finite radial location r. The expression appearing under the

square root above indeed exhibits similarities to the function appearing in the standard form

of the BTZ solution. The quasilocal energy is given as E = 1
2π

∫
dφ
√
gφφu

iujTij, where ui

is the timelike unit normal to the integration surface, and Tij is the usual boundary stress

tensor [36, 38]

Tij =
1

4G

(
Kij −Kgij +

1

l
gij

)
(1.13)

where gij is the boundary metric, Kij is the extrinsic curvature, and l is the AdS scale.

Evaluated in BTZ on a surface of fixed r, the quasilocal energy turns out to match the

CFT result under the identification t = 4Gl
π

, R = 2πr. As for propagation speeds, if one

considers a QFT state in the deformed theory with constant 〈T++〉 and 〈T−−〉, then small

perturbations of the stress tensor can be shown to propagate at speeds

v+ = 1 + 2πt 〈T++〉+O
(
t2
)

(1.14)

v− = 1 + 2πt 〈T−−〉+O
(
t2
)
. (1.15)

The same propagation speeds arise in pure AdS3 gravity by considering perturbations that

preserve Dirichlet boundary conditions on the cutoff surface. If we use coordinates such

that ds2 = dρ2 + gij (x, ρ) dxidxj with a cutoff surface at fixed ρ, then the ρρ component of

the Einstein equations is

− 1

2
R(2) +

1

2

[
K2 −KijKij

]
− 1 = 0. (1.16)

Applying this equation to the stress tensor we get the trace relation (1.11) under the iden-

tification t = 4G
π

.

In Chapter 3 we propose a simple integration technique for the T T̄ flow equation. More

specifically, the flow equation induced by the T T̄ -deformation can be reformulated as a

functional equation. Under certain conditions the functional equation reduces to a simple

PDE and can be solved exactly. For a QFT with the partition function

Z◦[gµν , λ] =

∫
[DΦ] e−S◦ , (1.17)

where the action is

S(t) =

∫
d2x
√
gL(t) , (1.18)
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We assume that the deformed partition function Zt stems from a local action S(t). We can

define the T T̄ flow equation as (
∂

∂t
+ ∆

)
Zt = 0 , (1.19)

where the functional operator ∆ above is defined as

∆ = lim
δ→0

∫
M

d2x
2
√
g
εµνερσ

δ

δgµρ(x+ δ)

δ

δgνσ(x− δ)
. (1.20)

The initial condition is Zt=0 = Z◦. Since the deformation operator ∆ does not gener-

ate terms involving derivatives of the metric unless such terms are already present in the

undeformed Lagrangian, we can then rewrite the flow equation in local form as

∂tL = OT T̄ , (1.21)

where

OT T̄ = L2 − 2Lgµν ∂L
∂gµν

+ 2εµνερσ
∂L
∂gµρ

∂L
∂gνσ

. (1.22)

Notice we can always absorb a constant factor to the definition of the parameter t. We will

provide explicit solutions in closed form for the flow equation in many examples, notably

non-linear σ-models and the massive Thirring model.
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Chapter 2

Basics of the T T̄ deformation

In this Chapter we review the construction of the composite operator T T̄ and the deforma-

tion of QFT generated by T T̄ . We closely follow the analysis in the paper of Smirnov and

Zamolodchikov [9] and the paper of Kraus, Liu and Marolf [35].

2.1 The composite operator T T̄

In two dimensional quantum field theory, the composite operator T T̄ is built from the chiral

components T, T̄ of the energy-momentum tensor Tµν . Point z of the flat 2D space with

Euclidean signature can be labeled by Cartesian coordinates (x, y). It is more convenient

to use complex coordinates (z, z̄) = (x+ iy, x− iy). With the CFT convention[39], chiral

components of the energy-momentum tensor are defined as follows

T = − (2π)Tzz, T̄ = − (2π)Tz̄z̄, Θ = (2π)Tzz̄. (2.1)

The expectation value of composite operator T T̄ satisfies an important relation〈
T T̄
〉

= 〈T 〉
〈
T̄
〉
− 〈Θ〉2 . (2.2)

This property was first proved by Zamolodchikov [4] and holds for any generic two dimen-

sional quantum field theory with translational symmetry. The proof relies on the conserva-

tion equation

∂z̄T (z) = ∂zΘ (z) (2.3)

∂zT̄ (z) = ∂z̄Θ (z) . (2.4)

Now we consider the difference of two-point functions

Ξ (z, z′) ≡
〈
T (z) T̄ (z′)

〉
− 〈Θ (z) Θ (z′)〉 . (2.5)

7
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In the limit z → z′ this function Ξ (z, z′) formally reduces to the expectation value of the

composite operator T T̄ . One expects that the composite operator T T̄ can be obtained from

the product T (z) T̄ (z′) by bringing the points z and z′ together. But the operator product

expansion of T (z) T̄ (z′) contains singular terms. As we will see the term Θ (z) Θ (z′) exactly

subtracts the singular terms, such that the limit z → z′ is up to total derivative terms, well

defined. Taking ∂z̄ derivative of Ξ (z, z′) and using the conservation equation we find〈
∂z̄T (z) T̄ (z′)

〉
− 〈∂z̄Θ (z) Θ (z′)〉 = −

〈
Θ (z) ∂z′T̄ (z′)

〉
+ 〈Θ (z) ∂z̄′Θ (z′)〉 = 0 (2.6)

where we have used the fact that two-point correlation functions depend only on the sepa-

rations z−z′. This shows ∂z̄Ξ (z, z′) = 0. In the similar way one derives that ∂zΞ (z, z′) = 0.

Hence the function Ξ (z, z′) is a constant. Now we consider the limit where z and z′ are

infinitely separated. In this limit Ξ (z, z′) becomes 〈T 〉
〈
T̄
〉
− 〈Θ〉2. This proves equation

(2.2). To get more insight we continue to study the combination of the operator products

T (z) T̄ (z′)−Θ (z) Θ (z′) itself instead of two-point functions. It is assumed that the short-

distance behaviour of the field theory is governed by a conformal field theory that certain

no-resonance condition is satisfied[4]. We assume the operator product expansions (OPE)

as follows

Θ (z) T̄ (z′) =
∑
i

Bi (z − z′)Oi (z′) (2.7)

T (z) Θ (z′) =
∑
i

Ai (z − z′)Oi (z′) (2.8)

and

T (z) T̄ (z′) =
∑
i

Di (z − z′)Oi (z′) (2.9)

Θ (z) Θ (z′) =
∑
i

Ci (z − z′)Oi (z′) . (2.10)

Using the conservation equation

∂z̄
(
T (z) T̄ (z′)−Θ (z) Θ (z′)

)
= (∂z + ∂z′) Θ (z) T̄ (z′)− (∂z̄ + ∂z̄′) Θ (z) Θ (z′) , (2.11)

when (∂z + ∂z′) acts on a function of z−z′ it gives 0. Using the operator product expansions,

the above equation reads∑
i

∂z̄Fi (z − z′)Oi (z′) =
∑
i

(Bi (z − z′) ∂z′Oi (z′)− Ci (z − z′) ∂z̄′Oi (z′)) (2.12)

where

Fi (z − z′) = Di (z − z′)− Ci (z − z′) . (2.13)
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Similarly we obtain

∂z
(
T (z) T̄ (z′)−Θ (z) Θ (z′)

)
= (∂z + ∂z′)T (z) T̄ (z′)− (∂z̄ + ∂z̄′)T (z) Θ (z′) (2.14)

with the operator product expansions, it reads∑
i

∂zFi (z − z′)Oi (z′) =
∑
i

(Di (z − z′) ∂z′Oi (z′)− Ai (z − z′) ∂z̄′Oi (z′)) . (2.15)

The right-hand sides of equations (2.12) and (2.15) involve only derivatives of local fields.

This implies that in the expansion

T (z) T̄ (z′)−Θ (z) Θ (z′) =
∑
i

Fi (z − z′)Oi (z′) (2.16)

if Oi (z′) is not a coordinate derivative of another local operator, Fi will be a constant

(coordinate-independent). In other words

T (z) T̄ (z′)−Θ (z) Θ (z′) = OT T̄ (z′) + derivative terms (2.17)

where OT T̄ (z′) is some local operator. This can be viewed as a formal definition of the

composite operator T T̄

T T̄ (z) := OT T̄ (z) . (2.18)

One defines OT T̄ (z′) modulo derivative terms. Derivative terms do not contribute to the

left-hand side of equation (2.2).

2.2 Expectation value

Consider a QFT on a cylinder with Euclidean coordinates (x, y) ∼ (x+R, y). The coor-

dinate y along the cylinder is taken as the Euclidean time. Field theory states are defined

on the circle of circumference R and are evolving by the Hamiltonian H. Let P denote the

momentum operator and consider a non-degenerate eigenstate |n〉 of the Hamiltonian and

momentum operators,

H |n〉 = En |n〉 , P |n〉 = Pn |n〉 . (2.19)

We assume the normalization 〈n| n〉 = 1. It is not difficult to show that the relation (2.2)

is still valid if we replace 〈...〉 by 〈n |...|n〉.

Ξn (z, z′) ≡
〈
n
∣∣T (z) T̄ (z′)

∣∣n〉− 〈n |Θ (z) Θ (z′)|n〉 . (2.20)



10 CHAPTER 2. BASICS OF THE T T̄ DEFORMATION

Similar to previous discussion one can show

∂zΞn (z, z′) = 0 (2.21)

∂z̄Ξn (z, z′) = 0 (2.22)

i.e. Ξn (z, z′) is independent of z and z′ hence it is a constant. But the asymptotic factor-

ization no longer holds. We write down the spectral decompositions of two point functions〈
n
∣∣T (z) T̄ (z′)

∣∣n〉 =
∑
n′

〈n |T (z)|n′〉
〈
n′
∣∣T̄ (z)

∣∣n〉×
e(En−En′ )|y−y′|+i(Pn−Pn′ )|x−x′|. (2.23)

Here (x, y) and (x′, y′) are Cartesian coordinates of the points z and z′. The exponential

term appears because we translate the T̄ operator from the point z′ to z. Here only inter-

mediate states |n′〉 with En′ < En would contribute. Since 〈n |T (z)|n〉 and
〈
n
∣∣T̄ (z)

∣∣n〉 are

constants the coordinate dependence is in the exponential term. 〈n |Θ (z) Θ (z′)|n〉 would

decomposite in the same way

〈n |Θ (z) Θ (z′)|n〉 =
∑
n′

〈n |Θ (z)|n′〉 〈n′ |Θ (z)|n〉 ×

e(En−En′ )|y−y′|+i(Pn−Pn′ )|x−x′|. (2.24)

In order for Ξn (z, z′) to be a constant, coordinate dependent terms in the decomposition of〈
n
∣∣T (z) T̄ (z′)

∣∣n〉 and 〈n |Θ (z) Θ (z′)|n〉 must cancel out. This means that only the term

n′ = n will remain

Ξn = 〈n |T (z)|n〉
〈
n
∣∣T̄ (z)

∣∣n〉− 〈n |Θ (z)|n〉 〈n |Θ (z′)|n〉 . (2.25)

In the limit z′ → z, T (z) T̄ (z′)−Θ (z) Θ (z′) becomes T T̄ up to derivative terms, so

Ξn =
〈
n
∣∣T T̄ ∣∣n〉 , (2.26)

and we arrive at the desired relation〈
n
∣∣T T̄ ∣∣n〉 = 〈n |T (z)|n〉

〈
n
∣∣T̄ (z)

∣∣n〉− 〈n |Θ (z)|n〉 〈n |Θ (z′)|n〉 . (2.27)

The energy-momentum tensor components in Euclidean and complex coordinates have the

following relations

Txx = − 1

2π

(
T̄ + T − 2Θ

)
(2.28)

Tyy =
1

2π

(
T̄ + T + 2Θ

)
(2.29)

Txy =
i

2π

(
T̄ − T

)
. (2.30)
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We can invert these relations and rewrite equation (2.27) as〈
n
∣∣T T̄ ∣∣n〉 = −π2 (〈n |Tyy|n〉 〈n |Txx|n〉 − 〈n |Txy|n〉 〈n |Txy|n〉) . (2.31)

Since the y axis is the direction of time, by definition Tyy is the energy density and Txy the

momentum density

〈n |Tyy|n〉 = − 1

R
En (R) (2.32)

〈n |Txy|n〉 = − i

R
Pn (R) (2.33)

where

Pn (R) =
2πln
R

(2.34)

is the corresponding spatial momenta of the states. By momentum quantization condition

ln is an integer. Now let us consider 〈n |Txx|n〉. This can be computed via

〈n |Txx|n〉 =
δ

δgxx
Z (2.35)

with correct boundary conditions. Here Z is the partition function

Z =
∑
m

e−βEm(R)+µq(m) (2.36)

where µ = µ (m) is the chemical potential. Varying gxx has the same effect as varying R,

thus using
d

dR
Z = −β

∑
m

dEm (R)

dR
e−βEm(R)+µq(m). (2.37)

We have

〈n |Txx|n〉 = − d

dR
En (R) . (2.38)

With these relations the expectation value (2.31) can be expressed in terms of En (R) , Pn (R)

〈
n
∣∣T T̄ ∣∣n〉 = −π

2

R

(
En (R)

d

dR
En (R) +

1

R
P 2
n (R)

)
. (2.39)

2.3 Local fields Xs and local IM

The previous results can be generalized in Integrable Quantum Field Theories (IQFT). In

IQFT there is an infinite set of commutative local Integrals of Motion (IM). Local IM are

generated by local currents which are pairs of local fields (Ts+1 (z) ,Θs−1 (z)) satisfying the

conservation equations

∂z̄Ts+1 (z) = ∂zΘs−1 (z) (2.40)
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where the subscripts s + 1 and s − 1 represent the spins of the corresponding fields. Both

Ts+1 (z) and Θs−1 (z) have scaling dimension s+1. Here s takes values in some set {s} ⊂ Z.

These sets {s} are different for different theories and can not be empty because at least

s = ±1 exist. They correspond to the components of the energy-momentum tensor Tµν .

We assume that the theory is P parity invariant. Then the set {s} is symmetric under the

P -reflection s ↔ −s. We can use separate notation for negative s. For s > 0 we denote

Θ−s−1 as T̄s+1 and T−s+1 as Θ̄s−1. Now the conservation equations can be written as

∂z̄Ts+1 (z) = ∂zΘs−1 (z) (2.41)

∂zT̄s+1 (z) = ∂z̄Θ̄s−1 (z) (2.42)

where s is a positive integer. Given the currents
(
Ts+1 (z) , T̄s+1 (z)

)
and

(
Θs−1 (z) , Θ̄s−1 (z)

)
,

we may attempt to construct composite fields by taking the limit z → z′ in the opera-

tor products Ts+1 (z) T̄s+1 (z′) and Θs−1 (z) Θ̄s−1 (z′). Similar to the previous discussion,

Ts+1 (z) T̄s+1 (z′) and Θs−1 (z) Θs−1 (z′) will be singular in the limit z → z′. However the

non-derivative divergent terms in the OPE of T (z) T̄ (z′) cancel with those in the OPE of

Θ (z) Θ (z′). Thus for the combination of the operator products

Ts+1 (z) T̄s+1 (z′)−Θs−1 (z) Θ̄s−1 (z′) (2.43)

the limit z → z′ can be taken. It defines the local fields Xs up to derivative terms

lim
z→z′

(
Ts+1 (z) T̄s+1 (z′)−Θs−1 (z) Θ̄s−1 (z′)

)
= Xs (z′) + derivative terms. (2.44)

The derivative terms may involve divergent coefficients but they can nonetheless be ignored.

Now we show that the limit z → z′ can indeed be properly taken. The proof is similar to

the discussion in the previous section for s = 1. Assume the OPEs

Θs−1 (z) T̄s+1 (z′) =
∑
i

Bi (z − z′)Oi (z′) (2.45)

Θs−1 (z) Θ̄s−1 (z′) =
∑
i

Ci (z − z′)Oi (z′) (2.46)

where the sum is over the complete set of independent fields Oi (z′) of the theory. Now we

consider the z̄ derivative of the combination (2.43). Using the continuity equations (2.41)

we can easily verify

∂z̄
(
Ts+1 (z) T̄s+1 (z′)−Θs−1 (z) Θ̄s−1 (z′)

)
= (2.47)

(∂z + ∂z′) Θs−1 (z) T̄s+1 (z′)− (∂z̄ + ∂z̄′) Θs−1 (z) Θ̄s−1 (z′) .

Plugging in the OPEs (2.45), we find

∂z̄
(
Ts+1 (z) T̄s+1 (z′)−Θs−1 (z) Θ̄s−1 (z′)

)
= (2.48)∑

i

Bi (z − z′) ∂z′Oi (z′)−
∑
i

Ci (z − z′) ∂z̄′Oi (z′) .
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Since the coefficients Bi (z − z′) and Ci (z − z′) are annihilated by the derivatives (∂z + ∂z′)

and (∂z̄ + ∂z̄′), we conclude that the OPE of the l.h.s in equation (2.48) consists of only

derivative terms. Similar calculations show that the ∂z derivative of (2.43) also consists

of only derivative terms. So the OPE of both ∂z and ∂z̄ derivatives of the (2.43) consist

only derivative terms. This means that the OPE of equation (2.43) consists mostly of the

derivative terms, except for a single term which comes with a constant coefficient. This

constant coefficient can be reabsorbed into the definition of the composite operator Xs

below. Thus we can write

Ts+1 (z) T̄s+1 (z′)−Θs−1 (z) Θ̄s−1 (z′) = Xs (z′) + derivative terms. (2.49)

Thus we see that the limit in equation (2.44) can be taken properly. We can also compute

the expectation value 〈n |Xs|n〉 in a similar way as we discussed for X1 = T T̄ . Put the

theory on an infinite cylinder with circumference R. The energy spectrum is discrete and

we assume that the states |n〉 are generally non-degenerate

〈n |Xs|n〉 =
〈
n
∣∣Ts+1 (z) T̄s+1 (z′)

∣∣n〉− 〈n ∣∣Θs−1 (z) Θ̄s−1 (z′)
∣∣n〉 . (2.50)

Then write down the spectral decomposition〈
n
∣∣Ts+1 (z) T̄s+1 (z′)

∣∣n〉 =
∑
n′

〈n |Ts+1 (z)|n′〉
〈
n′
∣∣T̄s+1 (z′)

∣∣n〉× (2.51)

e(En−En′ )|y−y′|+i(Pn−Pn′ )|x−x′|.

As in the T T̄ case, the terms with n′ 6= n will cancel those in the decomposition of〈
n
∣∣Θs−1 (z) Θ̄s−1 (z′)

∣∣n〉. Only the term n′ = n remain

〈n |Xs|n〉 = 〈n |Ts+1 (z)|n〉
〈
n
∣∣T̄s+1 (z)

∣∣n〉− 〈n |Θs−1 (z)|n〉
〈
n
∣∣Θ̄s−1 (z′)

∣∣n〉 . (2.52)

In the limit R→∞ the expectation value 〈Xs〉 vanishes for s > 1 since rotational symmetry

forces the r.h.s of (2.52) to vanish.

The local Integrals of Motion (IM) are generated by the currents
(
Ts+1 (z) , T̄s+1 (z)

)
and(

Θs−1 (z) , Θ̄s−1 (z)
)

Ps =
1

2π

∫
C

Ts+1 (z) dz + Θs−1 (z) dz̄ (2.53)

P̄s =
1

2π

∫
C

T̄s+1 (z) dz + Θ̄s−1 (z) dz̄. (2.54)

Because of the conservation equation (2.41) the integral Ps and P̄s do not change under triv-

ial deformations of the integration path C. For integrable theories, {Ps} form a commutative

set

[Ps, Ps′ ] = 0 (2.55)
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for any s, s′ ∈ {s}. This implies

1

2π

∫
C

[Ps, Ts+1 (z)] dz + [Ps,Θs−1 (z)] dz̄ = 0. (2.56)

The local IMs satisfy

[Ps, Ts+1 (z)] = ∂zAσ,s (z) (2.57)

[Ps,Θs−1 (z)] = ∂z̄Aσ,s (z) (2.58)

and [
Ps, T̄s+1 (z)

]
= ∂z̄Bσ,s (z) (2.59)[

Ps, Θ̄s−1 (z)
]

= ∂zBσ,s (z) (2.60)

where Aσ,s and Bσ,s are some local fields. There are similar equations for the commutators

of P̄s and local currents. Here the commutators is defined by integrals

[Ps,O (z0)] =
1

2π

∫
Cz0

[Ts+1 (z) dz + Θs−1 (z) dz̄]O (z0) . (2.61)

These properties will be used in next sections.

2.4 Integrable perturbations of IQFT

Let Σ denote the space of all 2D quantum field theories, then the space of all Integrable

Quantum Field Theories (IQFT) is a subspace ΣInt ⊂ Σ. The infinitesimal deformations of

IQFT that preserve integrability form the tangent space TΣInt|IQFT , which is a subspace

of TΣ|IQFT . The space TΣ|IQFT is given by the span of all local scalar fields (modulo

total derivatives) present in the theory. TΣInt|IQFT consists of all fields such that when

added as perturbations of IQFT they preserves integrability. Note that the deformation

might break the UV completeness of the theory. So such theories should be thought of as

effective field theories. The UV behaviour of the deformed theories has been studied by

Dubovsky et al. under the name of asymptotic fragility[7, 29, 34]. We will discuss it in

more details in Section 2.6. In [9] Smirnov and Zamolodchikov show that every field Xs

generates an integrable deformation of IQFT. The set {Xs} plus a finite number of additional

fields span the whole space of TΣInt|IQFT . Now we briefly present the argument for this.

Denote F = Span {Oa (z)} the space of all local fields, ∂F = Span {∂zOa (z) , ∂z̄Oa (z)}
and F̂ = F/∂F the factor space. A generic Lagrangian QFT is described by some action

S [ϕ] =

∫
d2zL (ϕ (z) , ∂µϕ (z) , ∂µ∂νϕ (z) , ..) . (2.62)
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Denote the set {gi} a full set of coupling constants. Generic variations of the action can be

written as

δS =

∫
d2zδL (z) (2.63)

δL (z) =
∑
i

δgiOi (z) . (2.64)

Under such variations, correlation functions would vary as

δg 〈O1 (z1)O2 (z2) ...On (zn)〉g = −
∑
i

δgi
∫
d2z 〈Oi (z)O1 (z1)O2 (z2) ...On (zn)〉g

+
∑
k

〈Oi1 (z1) ...δgOik (z2) ...Oin (zn)〉g . (2.65)

To show that Xs generates an integrable deformation, we first need to prove that the

commutator of any local IM Pσ with any of the fields Xs is a derivative term

[Pσ, Xs (z)] ∈ ∂F . (2.66)

Here the commutator is defined in equation (2.61). Xs (z) is defined by currents[
Pσ, Ts+1 (z) T̄s+1 (z′)−Θs−1 (z) Θ̄s−1 (z′)

]
. (2.67)

Consider the terms generated by commuting Pσ with Ts+1 (z) and Θs−1 (z). Using the

relations (2.57), (2.58) and the conservation equations (2.42) one finds

∂zAσ,s (z) T̄s+1 (z′)− ∂z̄Aσ,s (z) Θ̄s−1 (z′) (2.68)

= (∂z + ∂z′)Aσ,s (z) T̄s+1 (z′)− (∂z̄ + ∂z̄′)Aσ,s (z) Θ̄s−1 (z′) ∈ ∂F .

Similar to previous discussion, in the second line we replaceAσ,s (z) T̄s+1 (z′) andAσ,s (z) Θ̄s−1 (z′)

by their OPE. The coefficients are functions of (z − z′) hence will be annihilated by the

derivatives (∂z + ∂z′) and (∂z̄ + ∂z̄′). So the r.h.s are derivative terms. In the same way we

can prove that terms generated by commuting Pσ with T̄s+1 (z) and Θ̄s−1 (z) are derivative

terms too

Ts+1(z)∂z̄′Bσ,s(z
′)−Θs−1(z)∂z′Bσ,s(z

′) (2.69)

= (∂z̄ + ∂z̄′)Ts+1(z)Bσ,s(z
′)− (∂z + ∂z′)Θs−1(z)Bσ,s(z

′) ∈ ∂F .

Therefore (2.67) is a combination of derivative terms. Taking the limit z → z′ we get (2.66).

Now we need to show that after we deform the theory, there are still local IMs. To this end,

there need to be conserved currents. Consider the following correlation function

〈O
∫
C

[Tσ+1 (z) dz + Θσ−1 (z) dz̄]〉 (2.70)
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where O stands for any insertion of operators Oa1 (z1)Oa2 (z2) ...Oan (zn). The conservation

equations for the currents (Tσ+1,Θσ−1) is equivalent to the condition that (2.70) vanish as

long as all the insertion points z1, z2, ...zn lie outside the contour C. Now we deform the

theory by adding the term δgs
∫
d2zXs (z) to the action. (2.70) deforms as

−δgs
∫
d2w〈Xs (w)O

∫
C

[Tσ+1 (z) dz + Θσ−1 (z) dz̄]〉 (2.71)

+〈O
∫
C

[δgsTσ+1 (z) dz + δgsΘσ−1 (z) dz̄]〉.

We need to find a way to choose properly δgsTσ+1 (z) and δgsΘσ−1 (z) so that the variation

(2.71) vanishes. If the variation (2.71) vanishes, it means correlation function (2.70) still

vanishes after deformation. So for the deformed theory there are still conserved currents

and local IM’s. Let us look at the first term in (2.71). The insertion points z1, z2, ...zn lies

outside the contour C. If w also lies outside C, then the expectation value vanishes since

all insertion points lie outside the contour. So
∫
R2 d

2w can be replaced by
∫
D(C)

d2w where

D (C) is the area lies inside the contour C. By the definition equation (2.61)

Xs (w)

∫
C

[Tσ+1 (z) dz + Θσ−1 (z) dz̄] = 2π [Ps, Xs (w)] . (2.72)

We have seen in equation (2.66) that the commutator is a derivative term

4πi [Ps, Xs (w)] = ∂w̄T̂σ+1,s (w) + ∂wΘ̂σ−1,s (w) (2.73)

where T̂σ+1,s and Θ̂σ−1,s are some local fields with spins σ + 1 and σ − 1 respectively. The

remaining integral is

− δgs〈O
∫
D(C)

d2w
(
∂w̄T̂σ+1,s (w) + ∂wΘ̂σ−1,s (w)

)
〉 = (2.74)

− δgs〈O
∮
C

(
T̂σ+1,s (w) dw + Θ̂σ−1,s (w) dw̄

)
〉.

Thus the variation (2.71) becomes

−δgs〈O
∮
C

(
T̂σ+1,s (z) dz + Θ̂σ−1,s (z) dz̄

)
〉 (2.75)

+〈O
∫
C

[δgsTσ+1 (z) dz + δgsΘσ−1 (z) dz̄]〉.

It can be set to zero by choosing

δgsTσ+1 = δgsT̂σ+1,s (2.76)

δgsΘσ−1 = δgsΘ̂σ−1,s. (2.77)
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We find that after the deformation by the operator Xs, the deformed theory still has con-

served currents and local IM provided the currents are deformed as

Tσ+1 → Tσ+1 + δgsT̂σ+1,s (2.78)

Θσ−1 → Θσ−1 + δgsΘ̂σ−1,s. (2.79)

In this way we find the entire set of local IM for the deformed theory. We still need to

prove that the deformed IMs
{
Ps, P̄s

}
commute with each other. Here there is no rigorous

proof yet. One argument is as follows. If two IMs Ps and Ps′ do not commute with each

other, [Ps, Ps′ ] = Qs+s′ 6= 0, then Qs+s′ must be another local IM. This means that in the

deformed theory the local IM form a non-abelian algebra. A non-abelian algebra of local

higher spin IM means very powerful symmetry structure which is unknown so far outside

CFT or free massive QFT. So one can conjecture that in the deformed theory local IM still

commute with each other.

2.5 T T̄ flow energy spectrum

The operator X1 is identical to T T̄ where T T̄ is built from the components of the energy-

momentum tensor. So T T̄ is present in any QFT. T T̄ operator is special because even if

the original theory is not integrable, the deformation generated is in some sense solvable.

Let us denote by L the Lagrangian density of the theory. The deformation generated by

T T̄ can be defined by the following differential equation

∂tL (z, z̄, t) =
1

π2
T T̄ (z, z̄, t) . (2.80)

Consider the theory on a cylinder with circumference R. Following the definition of the

deformation one finds that the energy levels En = En (R, t) of stationary state |n〉 satisfy

the equation
∂En
∂t

=
R

π2

〈
n
∣∣T T̄ ∣∣n〉 . (2.81)

Let us show briefly the derivation in the following. Suppose we also compactify the time

direction. So our theory is on a torus with characteristic lengths (L,R). For both sides of

equation (2.80) we integrate over the torus and then take the vacuum expectation value

〈∂tS [φ]〉 =
1

π2
〈
∫ R

0

dx

∫ L

0

dyT T̄ 〉 (2.82)

where S [φ] is the action of the theory and φ denotes the collection of fields in the theory.

The partition function can be written as a path integral

Z =

∫
Dφe−S[φ]. (2.83)
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In this representation the left hand side of equation (2.82) becomes

1

Z

∫
Dφe−S[φ]∂tS [φ] = −∂t lnZ. (2.84)

So we get

− ∂t lnZ =
1

π2
〈
∫ R

0

dx

∫ L

0

dyT T̄ 〉. (2.85)

The partition can also be expressed as

Z =
∑
n

e−LEn . (2.86)

For the left hand side of equation (2.85) we have

− ∂t lnZ =
1

Z
∑
n

∂En
∂t

Le−LEn . (2.87)

For the right hand side of equation (2.85) we have

1

π2
〈
∫ R

0

dx

∫ L

0

dyT T̄ 〉 =
1

π2Z
∑
n

〈n|
∫ R

0

dx

∫ L

0

dyT T̄ |n〉e−LEn . (2.88)

So we get
1

Z
∑
n

∂En
∂t

Le−LEn =
1

π2Z
∑
n

〈n|
∫ R

0

dx

∫ L

0

dyT T̄ |n〉e−LEn (2.89)

We can see that the equality must hold for every n. This gives equation (2.81).

We have computed
〈
n
∣∣T T̄ ∣∣n〉 in equation (2.39). Thus we get a closed differential

equation for the energy levels

∂En
∂t

+ En
∂En
∂R

+
1

R
P 2
n = 0 (2.90)

where Pn (R) = 2πln
R

is the corresponding spatial momenta of the states. Now Let us think

about the solution of equation (2.90). This equation has the same form for all eigenvalues

En (R, t) so we can omit the index n. Now we put the theory on the cylinder again. Let us

use Et (R) to denote En (R, t). Equation (2.90) is formally identical to the forced inviscid

Burgers equation, with Et (R) playing the role of velocity field and t as the time. When

P = 0 the solution is well known and is given by

Et (R) = E0 (R− tEt (R)) . (2.91)

Et (R) is the finite size energy level. We expect it to have the form Et (R) ' FtR, up

to terms bounded at R → ∞. Here Ft is the bulk vacuum energy density. In the limit
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MtR� 1 the energies are well below inelastic thresholds. We can check that the following

solution solves equation (2.90)

Et (R) ' FtR +
√
M2

t + P 2 (R) (2.92)

where

Ft =
F0

1 + tF0

(2.93)

and

Mt =
M0

1 + tF0

. (2.94)

The first term in equation (2.92) is the vacuum energy and the second term is the energy

of the particle. We can read off the t-dependence of the bulk vacuum energy and the mass

of particles. If the vacuum energy F0 = 0 then we can see the energy levels will not vary

with t. In general the solution can be written as

Et (R) = FtR + µtu (r, α) (2.95)

where r = µtR, µt is a mass scale which satisfies µt = µ0/ (1 + tF0), α = tµ0µt. For massive

theories one can take µt to be the mass of the theory. And u (r, α) is a dimensionless

function and is bounded at r →∞. Plugging the ansatz (2.95) into equation (2.90) we can

find u (r, α) satisfies the equation

∂αu+ u∂ru+
(2πl)2

r3
= 0. (2.96)

This equation contains only dimensionless quantities.

For a massive theory one can consider a state of two particles with opposite momenta p

and −p such that the total momentum is 0. In the limit M � 1
R

, Et (R) has the form

Et (R) = FtR + 2
√
M2

t + p2 +O
(
e−MtR

)
. (2.97)

The momentum p is subject to quantization condition pR + ∆t (p) = 2πn, where ∆t (p) is

the scattering phase. Now the total momentum is 0. Using equation (2.90) one finds

∂Rp = − p
R

(2.98)

∂tp =
2p

R

√
M2

t + p2. (2.99)

These indicate that ∆t (p) satisfies the condition

∆t (p) = ∆0 (p)− 2tp
√
M2

t + p2. (2.100)
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To be more clear we can act ∂t and ∂R on both sides of the following equation

pR + ∆0 (p)− 2tp
√
M2

t + p2 = 2πn. (2.101)

We obtain

R∂tp− ∂p∆0∂tp− 2p
√
M2

t + p2 − 2t∂tp
√
M2

t + p2 − 2tp2∂tp√
M2

t + p2
= 0 (2.102)

p+R∂Rp+ ∂R∆0 − 2t∂Rp
√
M2

t + p2 − 2tp2∂Rp√
M2

t + p2
= 0. (2.103)

Combined with equation (2.98) and (2.99) we get constraints for ∂p∆0 and ∂R∆0. It means

with proper choice of ∆0, ∆t can be expressed in the form of equation (2.100).

The momentum p can be expressed in terms of rapidity difference θ = θ1 − θ2

p = Mt sinh (θ/2) , (2.104)

and in terms of θ equation (2.100) can be rewriten as

∆t = ∆0 − tM2
t sinh θ. (2.105)

We see the t-flow adds a CDD factor on the two particle S-matrix

St (θ) = S0 (θ) exp
(
−itM2

t sinh θ
)
. (2.106)

We will discuss the CDD factor in the next section.

When the undeformed theory is a CFT, the energy levels have standard form

E0 (R) = F0R−
Cn
R

(2.107)

with

Cn =
π

16

(
c− 12

(
∆n + ∆̄n

))
(2.108)

where c is the central charge and ∆n, ∆̄n are the eigenvalues of the operators L0, L̄0. For

the case Pn = 0 (i.e. ∆n = ∆̄n), one can use equation (2.91) to find a solution for Et (R)

Et (R) = FtR +
R

2t̃

(
1−

√
1 +

4t̃Cn
R2

)
(2.109)

where t̃ = t (1 + tF0). When t̃Cn is negative and R < 2
√
−t̃Cn, Et (R) gets a non-zero

imaginary part. These algebraic square-root singularities of Et (R) are called “shocks”.

Shocks are not specific to the cases when the undeformed theory is a CFT. Such shock

singularities might have some connection with the UV completeness of the T T̄ deformed

theories.
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2.6 Two particle S-matrix

Massive 2D QFTs are uniquely characterized by the spectrum of stable particles and their

S-matrix. For IQFT, the presence of an infinite set of higher spin local IM implies that

the S-matrix is purely elastic which means the number of particles N and the set of their

individual momenta are preserved after scattering. Thus N → N S-matrix can be expressed

as the product of 2→ 2 S-matrices. In other words, the S-matrices are factorizable. We need

only to focus on the two particle S-matrix Ŝ (θ). The two particle S-matrix is only a function

of the particles’ rapidity difference. Deformations of IQFT that preserve integrability must

also generate deformation of the S-matrix preserving elasticity. The two particle S-matrix

Ŝ (θ) satisfies the Yang-Baxter equation and constrains of analyticity, crossing symmetry

and unitarity. Thus it is fixed up to CDD factors

Ŝ (θ)→ Ŝ (θ) Φ (θ) . (2.110)

Φ (θ) satisfies the equations

Φ (θ) Φ (−θ) = 1 (2.111)

Φ (iπ + θ) Φ (iπ − θ) = 1. (2.112)

The generally allowed phase takes the form

Φ (θ) = exp

i ∑
s∈{s}

ts sinh (sθ)

 (2.113)

where the set {s} coincides with the set of spins local IM of the IQFT. Therefore the space

of infinitesimal deformations of the S-matrix contains a finite-dimensional part related to

the deformations of solutions of the Yang-Baxter equation and an infinite-dimensional part

corresponding to deformations by CDD factors

δŜ (θ) =

i ∑
s∈{s}

δts sinh (sθ)

 Ŝ (θ) . (2.114)

For the T T̄ deformation only the lowest spin deformation is turned on and the CDD factor

simplifies to

Φ (θ) = exp

(
−i t

4
m1m2 sinh (θ)

)
(2.115)

with m1 and m2 denoting the mass of each particle. If the original theory is a CFT, it

contains only massless left- and right-moving excitations. Thus one needs to boost particle
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1 and 2 in opposite directions to the speed of light and sending the masses to zero. In this

limit the CDD factor reduces to

Φ (θ) = exp

(
−i t

8
m1m2e

θ1−θ2
)

= exp

(
−i t

4
p+

1 p
−
2

)
(2.116)

where p+
1 , p−2 are the light-cone momenta of the two particles. Thus the two particle S-matrix

of the T T̄ -deformed CFT takes the form

S = exp

(
−i t

4
p+

1 p
−
2

)
. (2.117)

The S-matrix definition of the T T̄ deformation is closely related to gravitational dressing

procedure [29]. For a two dimensional quantum field theory defined by its S-matrix elements

S({pi}), the gravitationally dressed S-matrix is defined as

S̃({pi}) = S({pi})e
il2

4

∑
i<j εαβp

α
i p
β
j (2.118)

where l2 is a parameter characterizing the dressing. The momenta are ordered according

to the corresponding rapidities. If i and j are both incoming particles and βi > βj, or if

they are both outgoing and βi < βj or if i is incoming and j is outgoing we have i < j.

The dressed amplitudes satisfy all the requirements of S-matrix. But their high energy

behaviour is incompatible with the existence of a UV fixed point. This novel type of high

energy behaviour is dubbed asymptotic fragility. A dressed theory exhibits many features

expected from a gravitational theory. There are some evidence strongly indicating that

the T T̄ deformation is equivalent to the gravitational dressing[29]. With the definition of

rapidity one finds
il2

4
εαβp

α
i p

β
j = −il

2

4
m1m2 sinh (θ) (2.119)

By comparing equation (2.115) with equation (2.118) we find t = l2 so t needs to be positive.

2.7 Holographic description of the T T̄ deformation

The T T̄ -deformed CFT has a nice holographic dual description which is AdS3 with a finite

radial cutoff [17, 35]. This becomes a case of the AdS3/CFT2 correspondence. On the bulk

side the boundary lies not at asymptotic infinity but instead at a finite radius. The idea of

some deformation of CFT dual to gravity with a cutoff boundary surface is studied in [40–42].

[43, 44] proposed the duality of T T̄ -deformed CFT and AdS3 with finite radial cutoff. The

motivation is the agreement between several quantities computed on the two sides including

the deformed energy spectrum and the propagation speeds of small perturbations. Stress

tensor correlators can also be matched for the deformed CFT on the boundary and classical

pure gravity in the bulk.
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Now let us discuss the matching of the deformed energy spectrum. Starting from the

original theory with action S0. The T T̄ deformed CFT action is defined by the equation

dS (t)

dt
=

∫
d2x
√
gT T̄ (x) (2.120)

with boundary condition

S (t) = S0. (2.121)

For a theory with a single mass scale µ dimensional analysis yields

µ
dS

dµ
=

1

2π

∫
d2x
√
gT ii . (2.122)

A CFT deformed by T T̄ has single scale for finite t

t =
1

µ2
. (2.123)

Comparing equation (2.120) and equation (2.122) we get the trace relation

T ii = −4πtT T̄ . (2.124)

We have discussed that the finite size energy levels for the T T̄ deformed theory on a cylinder

of circumference satisfy the equation

∂En
∂t

+ En
∂En
∂R

+
1

R
P 2
n = 0. (2.125)

The solution for general Pn is

En = − R

2π2t

√1− 4π2t

R
En,0 +

(
2π2t

R
Pn

)2

− 1

 . (2.126)

The dual gravity of the T T̄ -deformed CFT is a BTZ blackhole in a region of AdS with

finite radial cutoff r = rc. The gravitational action for pure gravity in AdS3 is

S = − 1

16πG

∫
M

d3x
√
g
(
R + 2l−2

)
− 1

8πG

∫
∂M

d2x
√
h
(
K − l−1

)
. (2.127)

Here Euclidean signature is chosen and AdS radius is set to be 1 (l = 1). The curvature

conventions are that R (AdS3) = −6. hij is the metric on the boundary. In a coordinate

system with the metric

ds2 = dρ2 + gij (x, ρ) dxidxj (2.128)

the extrinsic curvature is

Kij =
1

2
∂ρgij. (2.129)
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The Einstein’s equations are

Eµν = Rµν −
1

2
Rgµν − gµν = 0 (2.130)

takes the form

Ei
j = −∂ρ

(
Ki
j − δijK

)
−KKi

j +
1

2
δij
(
KmnKmn +K2

)
− δij = 0 (2.131)

Eρ
j = ∇i (Kij −Kgij) = 0 (2.132)

Eρ
ρ = −1

2
R(2) +

1

2

(
K2 −KijKij

)
− 1 = 0. (2.133)

The boundary stress tensor can be obtained by varying the action

δS =
1

4π

∫
d2x
√
hT ijδhij. (2.134)

The stress tensor is

Tij =
1

4G
(Kij −Kgij + gij) . (2.135)

It obeys ∇iTij = 0 by the equation Eρ
j = 0. So we can compute the trace of the stress

tensor

T ii =
1

4G
(2−K) (2.136)

and

T T̄ =
1

8

(
T ijTij −

(
T ii
)2
)

= − 1

64G2
(2−K)− R(2)

128G2
. (2.137)

On a flat boundary metric we have

T ii = −16GTT̄ . (2.138)

By comparing with the trace relation of the deformed CFT (2.124), we read the dictionary

t =
4G

π
. (2.139)

By solving the bulk equation of motion with boundary condition, the action (2.127) becomes

a functional of the boundary metric. The gravitational energy of the blackhole can be

computed from the boundary stress tensor

E = EL =
L

2π

∫
dφ
√
gφφu

iujTij (2.140)

where φ is the coordinate of the spatial circle on the boundary and L is the size of the

spatial circle. The result is

E =
L2

2π2t

(
1− r−1

c f (r)
)

(2.141)

=
L2

2π2t

1−

√
1− 4π2t

L
M +

(
2π2t

L
J

)2
 .
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This agrees with the energy spectrum of T T̄ -deformed CFT (2.126) under the identification

M = E0, J = p.

The propagation speed of stress energy perturbations is derived using the conservation

equation and trace relation. On a flat metric ds2 = dzdz̄, these equations can be written as

∂z̄Tzz + ∂zTzz̄ = 0 (2.142)

∂zTz̄z̄ + ∂z̄Tzz̄ = 0 (2.143)

Tzz̄ + πt
(
TzzTz̄z̄ − (Tzz̄)

2) = 0. (2.144)

By converting these equation to Lorentzian signature and linearizing round constant back-

ground 〈Tij〉 we get the perturbation propagation speed as

v+ = 1 + 2πt 〈T++〉+O
(
t2
)

(2.145)

v− = 1 + 2πt 〈T−−〉+O
(
t2
)
. (2.146)

This agrees with the CFT results stated in [17]. The superluminal nature of these speeds

for λ > 0 has been discussed in [42, 45]. We see the results of the deformed energy spectrum

and propagation speeds match on both side. In addition, it has been shown that the results

of the stress tensor correlators also agree with each other[35]. We refrain from going to the

details here.
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Chapter 3

T T̄ -deformation in closed form

3.1 The T T̄ flow equation

We have discussed the T T̄ flow equation in equation (2.80). Now we discuss it from another

point of view. Let M denote a two dimensional manifold equipped with a (Euclidean) metric

tensor gµν with µ, ν = 1, 2 and consider a QFT on M whose dynamics is governed by the

local action

S◦ =

∫
M

d2x
√
gL◦(Φ, gµν , λ) . (3.1)

Here L◦ denotes the Lagrangian for the local fields which we have collectively denoted by

Φ. The coupling constants, denoted by λ, control the strength of interactions among the

fields as well as with local sources. The partition function of this theory,

Z◦[gµν , λ] =

∫
[DΦ] e−S◦ , (3.2)

thus depends on the constants λ as well as the background metric gµν . The T T̄ -flow equation

is the first order differential equation in a real deformation parameter t,(
∂

∂t
+ ∆

)
Zt = 0 , (3.3)

where the functional operator ∆ above is defined as

∆ = lim
δ→0

∫
M

d2x
2
√
g
εµνερσ

δ

δgµρ(x+ δ)

δ

δgνσ(x− δ)
. (3.4)

The initial condition for (3.3) is provided by the undeformed theory Zt=0 = Z◦. Once the

initial condition is given, then the solution is uniquely determined.

27
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For Lagrangian theories, equation (3.3) becomes the equation for the action functional

∂S

∂t
= (S, S) (3.5)

where the pairing ( · , · ) is defined via

(X, Y ) = lim
δ→0

∫
M

d2x
2
√
g
εµνερσ

δX

δgµρ(x+ δ)

δY

δgνσ(x− δ)
, (3.6)

for local functionals X and Y . Equation (3.5) is derived in [9], where the absence of contact

terms in the T T̄ composite operator is proven to follow from general assumptions1. This

implies that the point splitting regulator δ in the definition of the T T̄ composite operator

can be removed after the regularisation of the QFT and does not compete with its UV

regulator.

Our approach to integrating T T̄ -variations is concretely obtained by giving a class of

solutions of (3.5). The computation of the path integral for the deformed theory is a

different issue which we do not address here and we restrict our analysis to the deformation

problem of the classical action. We propose a simple integration technique for equation

(3.5) which follows from the locality of the action, the absence of space-time derivatives in

∆ and covariance under diffeomorphisms Diff(M).

Let us summarise our logic. The first observation is that equation (3.5), being first order

in t, has a unique solution for any initial (undeformed) local action. Locality of the operator

∆ therefore suggests that we should look for a solution which can be expressed as a local

functional S(t) =
∫
M

d2x
√
gL(t) at finite t. We next observe that the deformation operator

∆ does not generate terms involving derivatives of the metric unless such terms are already

present in the undeformed Lagrangian2. Consider a theory T◦ on a two dimensional manifold

M endowed with the Euclidean metric tensor gµν whose dynamics is captured by the local

action S◦ =
∫

d2x
√
gL◦. We are interested in finding a solution to the flow equation (3.5)

in terms of a local functional

S(t) =

∫
d2x
√
gL(t) , (3.7)

1This is analogous to the absence of contact terms for the YM curvature which facilitates the derivation

of Migdal’s loop equations in Yang-Mills theories. Furthermore, the analogue of Polyakov’s loop Laplacian

for YM is ∆ above (See §7.2 in [46]).
2In the absence of such terms therefore the deformed Lagrangian can be viewed as a function only of

certain combinations of the dynamical fields and couplings. The form of these “invariants” is dictated by

the flow equation (3.12) as well as the explicit dependence of the undeformed Lagrangian on the metric.

This, as it will be shown later, induces very strict dependences on the metric and allows the complete

integration of the T T̄ -flow equation.
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with the initial condition L(t = 0) = L◦. Plugging (3.7) into the rhs of (3.5) we find

(S, S) =

∫
d2xOT T̄ , (3.8)

where the (local) T T̄ -operator is given by

OT T̄ =
1

2
εµνερσTµρTνσ . (3.9)

Since the theory described by S(t) is coupled to the background metric tensor gµν , the

associated energy momentum tensor can be extracted by looking at small variations of the

metric,

Tµν =
−2
√
g

δS(t)

δ gµν
= gµνL(t)− 2

∂L(t)

∂gµν
, (3.10)

where the second equality holds under the condition that the undeformed Lagrangian de-

pends algebraically on the metric tensor. The unique solution of the T T̄ -flow equation

will, as already mentioned, enjoy the same property. Using this expression for the energy

momentum tensor enables us to recast the T T̄ -operator as

OT T̄ = L2 − 2Lgµν ∂L
∂gµν

+ 2εµνερσ
∂L
∂gµρ

∂L
∂gνσ

. (3.11)

Therefore eq.(3.5) reads

∂tL = OT T̄ , (3.12)

Here the notation is a bit different from equation (2.80). This is not a problem since we

can always absorb a constant into the definition of the parameter t. We will discuss the

implementation of this method in the specific cases in the next sections. The upshot is that

equation (3.12) reduces to a partial differential equation in the deformation variable t and

invariants formed from the metric and the dynamical fields. We will show that in many

examples the flow equation can be recast as the (extended) Burgers’ equation. Since the

Burgers’ equation can be reduced to quadratures via the method of characteristics, we can

present the explicit solution depending on the form of the initial condition.

We remark that the link between the Burgers’ equation and the T T̄ -deformed action was

already observed in [47], where the appearance of its characteristic curve was rebuilt from

the assumption of validity of the non-linear integral equation for the theory. Our approach

leads directly to the Burgers’ equation and in a more general setting.
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In the following we will first analyze the example of a single massless scalar field to

familiarise the reader with our approach and to set up the notation. We then solve the case

of an interacting scalar field in closed form and for an arbitrary potential before considering

a general σ-model with an arbitrary target metric and B-field and the WZW model. We also

discuss the result of a power expansion of the solution of the T T̄ -deformation equation in the

case in which a curvature coupling is turned on and show the proliferation of higher order

derivatives at higher orders in the deformation parameter. In section 3.7 we explicitly solve

the T T̄ -deformation of a massive Dirac fermion with quartic interaction, i.e. the massive

Thirring model, and show that the solution is in this case given by a finite power series in

t. We dedicate section 3.8 to possible higher dimensional generalisations.

3.2 Free massless scalar field

As our first example we would like to find the unique solution to equation (3.12) with the

initial condition provided by the action for a free real scalar field

S◦ =
1

2

∫
d2x
√
g gµν∂µφ∂νφ . (3.13)

In the following we find it convenient to define the symmetric – and metric independent –

tensor

Xµν := ∂µφ∂νφ (3.14)

whose trace we denote by X = gµνXµν . The initial Lagrangian is

L◦ =
1

2
X , (3.15)

If we expand the deformed Lagrangian in terms of t

L =
∞∑
j=0

tjL(j). (3.16)

Then L(j) can be computed order by order.

∂tL =
∞∑
j=1

jtj−1L(j). (3.17)

The flow equation can be expanded as

∑
j=0

(j + 1) tjL(j+1) =

j∑
k=0

εµρευσ
(

1
√
g

δS(k)

δgµν

)(
1
√
g

δS(j−k)

δgρσ

)
. (3.18)

The first few orders can be computed as follows
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L(1) =
1

2
εµρευσ

(
2
√
g

δS(0)

δgµν

)(
2
√
g

δS(0)

δgρσ

)
(3.19)

=
1

2
εµρευσ

(
−1

2
gµνL(0) + ∂µφ∂υφ

)(
−1

2
gµνL(0) + ∂µφ∂υφ

)
= −1

4
X2.

Based on L(0) and L(1) we can compute L(2)

2L(2) = εµρευσ
(

2
√
g

δS(0)

δgµν

)(
2
√
g

δS(1)

δgρσ

)
(3.20)

= εµρευσ
(
−1

2
gµνX + ∂µφ∂υφ

)(
1

4
gρσX

2 −X∂ρφ∂σφ
)

=
1

2
X3

L(2) =
1

4
X3. (3.21)

For L(3) there are two terms

3L(3) = εµρευσ
(

2
√
g

δS(0)

δgµν

)(
2
√
g

δS(2)

δgρσ

)
+

1

2
εµρευσ

(
2
√
g

δS(1)

δgµν

)(
2
√
g

δS(1)

δgρσ

)
= εµρευσ

(
−1

2
gµνX + ∂µφ∂υφ

)(
−1

4
gρσX

3 +
3

2
X2∂ρφ∂σφ

)
(3.22)

+
1

2
εµρευσ

(
1

4
gρσX

2 −X∂ρφ∂σφ
)(

1

4
gρσX

2 −X∂ρφ∂σφ
)

= −15

16
X4

L(3) = − 5

16
X4. (3.23)

So the first few terms in t are

L =
1

2
X − 1

4
tX2 +

1

4
t2X3 − 5

16
t3X4 + ... (3.24)

Now we show how to directly solve the flow equation and derive the closed form for the

deformed Lagrangian. we expect the deformed Lagrangian to depend on the fields only

through Xµν . Moreover, since any diffeomorphism invariant function of Xµν and the metric

is only a function of the scalar X we conclude that the deformed Lagrangian is only a
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function of two scalar variables t and X, i.e. L = L(t,X). Consequently the deformation

operator (3.11) takes the simple form

OT T̄ = L2 − 2LX∂XL , (3.25)

yielding the flow equation

∂tL = (1−X∂X)L2 (3.26)

= −X2∂X

(
1

X
L2

)
.

Set

L = −
√
Xf (3.27)

Y =
1√
X

(3.28)

so that

∂Y

∂X
= −X−3/2 (3.29)

−2X3/2∂X = ∂Y . (3.30)

The flow equation becomes

2∂tf = −∂Y f 2 (3.31)

f (0, Y ) = F0 (Y ) (3.32)

As discussed in the appendix this is Burger’s equation and is solved by

f (t, Y ) = f0 (Y − f (Y, t) t) . (3.33)

So we have

L0 = −
√
Xf0 (3.34)

=
1

2
X

=
√
X

1

2Y

which means

f0 (Y ) = − 1

2Y
. (3.35)

Thus we get equation for f (t, Y )

f =
−1

2(Y − Ft)
. (3.36)
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We can solve for F (t, Y )

f =
−Y ±

√
Y 2 + 2t

−2t
. (3.37)

So we get the deformed Lagrangian

L = −
√
Xf (3.38)

=
−1 +

√
1 + 2tX

2t
.

Note that the solution (3.38) is smooth for t ≥ 0 but can become imaginary for t < 0.

This is closely related to the fact that the spectrum of the deformed theory on a circle

exhibits Hagedorn behavior for t < 0. The analysis above extends to more general boundary

conditions which we discuss below.

3.3 Interacting scalar field

An immediate generalisation of the above result follows from the altered boundary condition

L(0, X) =
1

2
X + V (3.39)

where V = V (φ) is an arbitrary potential so long as it is independent of the background

metric. Now we expect the deformed Lagrangian to have to have the form L = L(t,X, V ).

The flow equation is the same as the free massless scalar case

2∂tf = −∂Y f 2 (3.40)

f (0, Y ) = f0 (Y ) . (3.41)

The initial condition now is

L0 = −
√
Xf0 (3.42)

=
1

2
X + V

=
√
X

(
1

2

√
X +

V√
X

)
=
√
X

(
1

2Y
+ Y V

)
which gives

f0 (Y ) = − 1

2Y
− Y V. (3.43)

So we get f (t, Y )

f =
−1

2(Y − ft)
− V (Y − ft) . (3.44)



34 CHAPTER 3. T T̄ -DEFORMATION IN CLOSED FORM

This is a simple quadratic equation for f . We can solve for f

f =
1

Y t

1− 2tV

1− tV
− 1

Y t

√(
1− 2tV

1− tV

)2

+ 2t
2 + V Y 2

Y 2 − 4t
. (3.45)

Thus we get the deformed Lagrangian

L = − 1

2t

1− 2tV

1− tV
+

1

2t

√(
1− 2tV

1− tV

)2

+ 2t
X + 2V

1− tX
. (3.46)

This agrees with (and significantly simplifies) the expression obtained in [47] whose first few

terms were first presented in [34].

3.4 Curvature couplings

Another generalisation of (3.38) is obtained by imposing as the boundary condition a La-

grangian with curvature couplings. As an example, consider the undeformed Lagrangian

L(t = 0) =
1

2
X + α◦φR (3.47)

where R denotes the Ricci scalar associated with the background metric gµν . This La-

grangian describes a theory with central charge c = 1 + 6Q2, where α◦ =
√

2πQ. We may

think of (3.47) as a deformation of the free theory and thus expand the solution to the flow

equation in powers of α◦,

L =
N∑
n=0

αn◦L(n) and Tµν =
N∑
n=0

αn◦T
(n)
µν ,

where

T (n)
µν = − 2

√
g

δ

δgµν

∫
d2x
√
gL(n) .

Using this expansion we can solve the flow equation,

∂tL =
1

2
εµρευσTµνTρσ ,

order by order in α◦. At order α0
◦ we recover (3.38), while the flow equation at order α◦

reads

∂tL(1) = εµρευσT (0)
µν T

(1)
ρσ .

This equation can in turn be solved order by order in t with the first few terms given by

L(1) = φR− 2tX�φ+ 2t2X2�φ− 8

3
t3X3�φ+O

(
t3
)
.
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This leads us to consider the following ansatz

L(1) = φR + f (tX)�φ .

Plugging this ansatz in the flow equation yields

2
√

1 + 2y + f ′ (y) y
√

1 + 2y + 2q (y)− 2 = 0 ,

where y = tX, and

q (y) = 1 +

∫
dy

yf ′(y)

2
√

1 + 2y
.

Solving for f (y) we obtain the deformed Lagrangian

L(t) = − 1

2t
+

1

2t

√
1 + 2tX + α◦ [φR− log (1 + 2tX)�φ] +O

(
α2
◦
)
. (3.48)

As one might have expected, upon deformation, the Ricci scalar term induces higher deriva-

tive corrections with the second order derivative term �φ = ∇µ∂µφ appearing at order α◦.

The α◦-expansion of the deformed Lagrangian therefore takes the form of an expansion in

higher derivative terms which have proved too cumbersome to determine.

3.5 Non-linear σ-model

Now that the logic is clear lets see if we can generalise the above analysis to multiple scalar

fields described by the σ-model action

S◦ =
1

2

∫
d2x
√
g
[
gµν∂µφ

i∂νφ
jGij(φ) + εµν∂µφ

i∂νφ
jBij(φ)

]
. (3.49)

As before we define a set of metric independent tensors

X ij
µν = ∂µφ

i∂νφ
j , (3.50)

and the (density) scalars

X ij = gµνX ij
µν and X̃ ij =

√
gεµν∂µφ

i∂νφ
j . (3.51)

Note that the scalar densities X̃ ij are independent of the background metric. In fact the

entire B-term is metric independent and therefore topological. Furthermore, topological

terms are not affected by continuous, non-geometric, parameter deformations of the theory.

The upshot is that the topological B-term is unaffected by the deformation and does not

enter the analysis below.
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The deformed Lagrangian depends on the metric only through the worldsheet scalars

X ij and X̃ ij/
√
g. Moreover, the latter only depends on the metric through the factor

Ω =
√
g. Therefore the deformed Lagrangian is expected to be a function of the deformation

parameter t, the variables X ij and of Ω, i.e.

L = L(t,X ij,Ω) . (3.52)

This allows us to considerably simplify the expression for the deformation operator (3.11)

OT T̄ =
2X̃ ikX̃jl

Ω2

∂L
∂X ij

∂L
∂Xkl

− 2Ω
∂L
∂Ω

X ij ∂L
∂X ij

+ Ω2

(
∂L
∂Ω

)2

+

(
1−X ij ∂

∂X ij
+ Ω

∂

∂Ω

)
L2 .

(3.53)

Note that factors of X̃ ij in this equation should be treated as constant coefficients as they

do not depend on the metric.

So far we have only insisted on invariance under worldsheet diffeomorphisms. However,

we expect the deformed Lagrangian to also be invariant under target space diffeomorphisms.

This further constrains the form of the deformed Lagrangian such that it can only depend

on the scalar X = GijX
ij, and the above equation simplifies to

∂tL =
2X̃ ijX̃ij

Ω2

(
∂L
∂X

)2

− 2Ω
∂L
∂Ω

X
∂L
∂X

+ Ω2

(
∂L
∂Ω

)2

+

(
1−X ∂

∂X
+ Ω

∂

∂Ω

)
L2 . (3.54)

The solution to the above equation is given by

L = − 1

2t
+

1

2t

√
1 + 2tX + 2t2X̃ ijX̃ijΩ−2 , (3.55)

satisfying the boundary condition L(t = 0) = X/2. The solution (3.55) is valid for arbitrary

target space metric, generalising the case of a flat metric which already appeared in [47].

As was explained the B-term does not enter the analysis and is only introduced through

LB(t = 0) = X/2 +BijX̃
ijΩ−1 resulting in the deformed action

L = − 1

2t
+

1

2t

√
1 + 2tX + 2t2X̃ ijX̃ijΩ−2 +BijX̃

ijΩ−1 . (3.56)

3.6 WZW model

The analysis of σ-models in section 3.5 can readily be applied to Wess-Zumino-Witten

(WZW) models. For simplicity we limit the discussion to the case of SU(N) WZW theory

described by the action

S◦ =
k

8π

∫
M

d2x
√
ggµν Tr

(
γ−1∂µγγ

−1∂νγ
)

+
ik

16π2

∫
B3

[
Tr γ−1dγ

]3
(3.57)

where B3 is any three manifold whose boundary is the the worldsheet M . The second term

in the WZW action above is topological and thus, as explained in section 3.5, does not enter

the flow equation and can be treated as a shift in the initial conditions.
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In order to use the results of the previous section we first have to express the WZW action

in the σ-model variables. To this end we define the su(N)-valued vector field

Aaµt
a = γ−1∂µγ (3.58)

where ta denote the generators of the su(N). In analogy with the σ-model analysis of the

previous section we define the scalars

Xab =
k

4π
gµνAaµA

b
ν , (3.59)

and the scalar densities

X̃ab =
k
√
g

4π
εµνAaµA

b
ν . (3.60)

The deformed Lagrangian satisfies the same equation (3.54) as any σ-model. The resulting

deformed action is therefore given by

S =

∫
M

d2x
√
g

[
− 1

2t
+

1

2t

√
1 + 2tX + 2t2X̃ ijX̃ijΩ−2

]
+

ik

16π2

∫
B3

[
Tr γ−1dγ

]3
, (3.61)

where the terms under the square-root are expressed in terms of the original fields γ as

X =
k

4π
gµν Tr

(
γ−1∂µγγ

−1∂νγ
)
, (3.62)

and
X̃ ijX̃ij

Ω2
=

(
k

4π

)2

εµνερσ Tr
(
γ−1∂µγγ

−1∂ργ
)

Tr
(
γ−1∂νγγ

−1∂σγ
)
. (3.63)

3.7 Massive Thirring model

We now turn our attention to theories with fermionic fields. Consider a single Dirac fermion

with the undeformed action

S◦ =

∫
d2x
√
g

[
i

2

(
ψ̄γµ∇µψ −∇µψ̄γ

µψ
)

+ V

]
, (3.64)

where the potential is given by

V = −mψ̄ψ +
λ

4
ψ̄γaψ ψ̄γaψ . (3.65)

The covariant derivative acts on the fermions via

∇µψ = ∂µψ +
i

2
ωµγ

3ψ, ∇µψ̄ = ∂µψ̄ −
i

2
ωµψ̄γ

3, γµ = eµaγ
a , (3.66)
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and the spin connection (in two dimensions) satisfies

ωabµ = εab
(

1

2
εcdω

cd
µ

)
= εabωµ , (3.67)

with ε12 = −ε21 = 1. To study the T T̄ -flow of this theory we first define the 2 × 2 matrix

X as follows

Xab =
i

2

(
ψ̄γa∇bψ −∇bψ̄γaψ

)
. (3.68)

Here a and b are flat indices which are raised, lowered and contracted with the flat (Eu-

clidean) metric δab. Using (3.66) one can show that

Xaµ = ebµXab =
i

2

(
ψ̄γa∇µψ −∇µψ̄γaψ

)
=
i

2

(
ψ̄γa∂µψ − ∂µψ̄γaψ

)
. (3.69)

which is manifestly independent of the metric. Since the undeformed Lagrangian (3.64) is

simply L◦ = TrX + V = eaµXaµ + V , we can work out the energy momentum tensor of the

undeformed theory

T
(0)
ab =

2
√
g
eµae

ν
b

δS(0)

δgµν
= 2eµae

ν
b

∂eλc
∂gµν

Xcλ − δabL(0) = X(ab) − δab (TrX + V ) . (3.70)

It is clear that the deformed Lagrangian is constructed solely from X and V and since

these only contain the fermionic fields ψ, ψ̄ and their first derivatives we conclude that the

deformed Lagrangian can only contain products of up to order X4, X2V and V 2 as all higher

powers vanish identically. We therefore expect the t-expansion of the deformed Lagrangian

to terminate. Consequently we expand the Lagrangian and the energy momentum tensor

of the deformed theory as

L =
N∑
n=0

tnL(n) and Tµν =
N∑
n=0

tnT (n)
µν , (3.71)

where

T (n)
µν = − 2

√
g

δ

δgµν

∫
d2x
√
gL(n) . (3.72)

Employing this expansion we can solve the flow equation3

∂tL =
1

2
εµρενσTµνTρσ =

1

2
(gµνTµν)

2 − 1

2
T µνTµν , (3.73)

order by order. Using (3.71), our flow equation (3.73) at order tn−1 reads

L(n) =
1

2n
(gµνgρσ − gµσgρν)

∑
i+j=n−1

(2− δij)T (i)
µν T

(j)
ρσ . (3.74)

3Here we have used the identity gµνgρσ − gρνgµσ = εµρενσ which holds true in two dimensions.
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Since L(n) only depends on the metric through X we can apply the chain rule to obtain

2eµae
ν
b

∂L
∂gµν

= Xc(aδb)d
∂L
∂Xcd

. (3.75)

Furthermore, as we will see below L(n) only depends on the symmetric part of X which

we will denote by X̃ab = X(ab). We can now solve (3.73) order by order starting from the

undeformed energy momentum tensor (3.70). At order t0 we have

L(1) =
1

2
(TrX)2 − 1

2
Tr(X̃2) + V 2 + V TrX , (3.76)

from which we can evaluate T
(1)
ab as follows

T
(1)
ab = Tr X̃X̃ab −

(
X̃X

)
(ab)

+ V X̃ab − 2δabL(1) . (3.77)

Next we analyze the flow equation (3.73) at order t1 which, after dividing by 2t, reads

L(2) =
1

4
Tr X̃3 − 3

8
Tr X̃ Tr X̃2 +

1

8

(
Tr X̃

)3

+
V

4

(
(Tr X̃)2 − Tr X̃2

)
. (3.78)

The corresponding contribution to the energy momentum tensor is

T
(2)
ab =

3

4
(X̃2X)(ab) −

3

4
(Tr X̃)(X̃X)(ab) −

3

8

(
Tr X̃2 − (Tr X̃)2

)
X̃ab

+
V

2

(
(X̃X)(ab) − Tr X̃ X̃ab

)
− δabL(2) .

(3.79)

The final term in the t-expansion of the Lagrangian is determined by equating the terms at

order t2 in (3.73). At this order we find

L(3) = −1

6
Tr X̃4 +

1

12
(Tr X̃2)2 +

1

4
Tr X̃ Tr X̃3 − 5

24
(Tr X̃)2 Tr X̃2 +

1

24
(Tr X̃)4 . (3.80)

Note that the higher order terms in the t-expansion of the flow equation (3.73) vanish

identically thanks to the Grassmann nature of the fermionic fields from which X is built.

The final form of the T T̄ -deformed Lagrangian is therefore

L = Tr X̃ + V +
t

2

(
(Tr X̃)2 − Tr X̃2 + 2V (V + Tr X̃)

)
+
t2

2

(
Tr X̃3 − 3

2
Tr X̃ Tr X̃2 +

1

2
(Tr X̃)3 + V (Tr X̃)2 − V Tr X̃2

)
− t3

3

(
2 Tr X̃4 − (Tr X̃2)2 − 3 Tr X̃ Tr X̃3 +

5

2
(Tr X̃)2 Tr X̃2 − 1

2
(Tr X̃)4

)
,

(3.81)

where X̃ is given by

X̃ab =
i

2

(
ψ̄γ(a∇b)ψ −∇(aψ̄γb)ψ

)
. (3.82)
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By expanding (3.81) and using Fierz identities one can in fact show that the expression for

the Lagrangian drastically simplifies to

L = L(0) +
t

4

(
(Tr X̃)2 − Tr X̃2 + 2m2(ψ̄ψ)2 − 2mψ̄ψTr X̃

)
− t2

8
mψ̄ψ

(
(Tr X̃)2 − Tr X̃2

)
.

(3.83)

The explicit form of the T T̄ -deformed Lagrangian in (flat) complex coordinates is

L(t) = i
(
ψ̄−
←→
∂z ψ− − ψ̄+

←→
∂z̄ ψ+

)
−m

(
ψ̄−ψ+ − ψ̄+ψ−

)
+ (λ−m2t)ψ̄+ψ̄−ψ+ψ−

− imt

2

[
ψ̄+ψ̄− (ψ−∂zψ− − ψ+∂z̄ψ+) + ψ+ψ−

(
ψ̄−∂zψ̄− − ψ̄+∂z̄ψ̄+

)]
+
t

4

[(
ψ̄+

←→
∂z̄ ψ+

)(
ψ̄−
←→
∂z ψ−

)
+ ψ̄−∂zψ̄−ψ−∂zψ− + ψ̄+∂z̄ψ̄+ψ+∂z̄ψ+ − 2

(
ψ̄+

←→
∂z ψ+

)(
ψ̄−
←→
∂z̄ ψ−

)]
− mt2

8
ψ̄+ψ̄−ψ+ψ−

(
∂zψ̄−∂z̄ψ+ − ∂z̄ψ̄+∂zψ− − 2∂z̄ψ̄−∂zψ+ + 2∂zψ̄+∂z̄ψ−

)
.

(3.84)

We stress that the expansion in the deformation parameter terminates. This is akin to

the observation made in [31] for a Lorentz-breaking irrelevant deformation analogous to

T T̄ . Consequently we anticipate that for the deformed theory to receive an infinite series

of corrections, as is the case for the Goldstino [48], we need to turn on an infinite tower of

irrelevant deformations.

3.8 Generalisation to higher dimensions

Let us consider higher dimensional generalisations of the T T̄ -deformations. Such a general-

isation was recently proposed by J. Cardy [10] in the form of | detT |1/α with α = D − 1 in

D dimensions. We will treat this generalisation, for more general values of the parameter

α, in some detail later in the section.

Let us remark in passing that there is another possible generalisation of the T T̄ -deformation

which remains quadratic in the energy momentum tensor. Starting in two dimensions we

first use the identity εµνερσ = gµρgνσ − gνρgµσ. This suggests the following D-dimensional

generalisation of the flow equation

∂tS =
1

2

∫
dDx
√
g

[
(gµρgνσ − gνρgµσ)

(
−2
√
g

δS

δgµρ

)(
−2
√
g

δS

δgνσ

)]
. (3.85)

For a single scalar field – without conformal couplings – the flow equation for the Lagrangian

takes the form

∂tL = (D − 1)
[
(D/2)L2 − 2X∂XLL

]
, (3.86)
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where X = ∂µφg
µν∂νφ, which reduces to the Burgers’ equation. Although we do not treat

this case further in this work, let us note that this could have a more natural AdS dual

interpretation compared to the (detT )1/α. Whether either of these generalisations can

be defined at the quantum level remains an open question. We remark that the scaling

solution, i.e. with Lt=0 = 1
2
X, of this equation is given by solving the algebraic equation(

1 + D(D−1)
2

tL
)4−D

LD = (X/2)D. Therefore, the free massless scalar in four dimensions is

a fixed point of the flow and one needs to turn on a potential (or a conformal coupling) to

have a nontrivial evolution.

We now turn our attention to the flow instigated by an operator of the form (− detT )1/α

in D-dimensions resulting in the flow equation

∂tS =
1

α−D

∫
dDx
√
g

[
−1

D!
εµ1...µDεν1...νD

(
−2
√
g

δS

δgµ1ν1

)
. . .

(
−2
√
g

δS

δgµDνD

)]1/α

(3.87)

where α is a real parameter4. For this to be an irrelevant deformation for CFTs we take

0 < α < D and we further assume α to be an integer. Let us integrate the above equation

in the case of a scalar field φ by reducing it to a partial differential equation. Once more

we define X = ∂µφg
µν∂νφ and write the solution as

S =

∫
dDx
√
gL(X, t) (3.88)

with the initial condition

L(X, 0) =
1

2
X + V (3.89)

for a generic local potential V = V (φ). Since the deformed Lagrangian only depends on the

background metric through X the expression for the associated energy momentum tensor

simplifies to
−2
√
g

δS

δgµν
= gµνL − 2∂XL∂µφ∂νφ . (3.90)

Using the above expression, equation (3.87) simplifies to

∂tL =
1

α−D
[
−LD + 2LD−1(X∂X)L

]1/α
. (3.91)

This can be further simplified by considering the redefinition

Y = (−1)αX
α−D

2 and L =
√
Xf

1
D−α , (3.92)

yielding

(∂tf)α + fα∂Y f = 0 , (3.93)

4The case of [10] is α = D − 1, but we keep this parameter free to different examples.
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which reduces to the Burgers’ equation for α = 1. The relevant initial condition is obtained

by inverting the above redefinitions in f =
(
X−1/2L

)D−α
and X = [(−1)αY ]

2
α−D . The initial

condition therefore takes the form

f(0, Y ) = (−1)αY

{
1

2
[(−1)αY ]

2
α−D + V

}D−α
. (3.94)

Below we solve (3.93) with this initial condition in a few cases.

The solution of the Burgers’ equation, that is (3.93) with α = 1, is given by solving the

implicit equation,

f(t, Y ) = f (0, Y − tf(t, Y )) , (3.95)

which for our initial condition reads

f

tf − Y
=

[
1

2
(tf − Y )

2
1−D + V

]D−1

. (3.96)

Exact solutions of equation (3.96) can be obtained explicitly for low values of the dimen-

sion D and for a generic potential. The solution drastically simplifies in the case of the

massless free scalar, i.e. V = 0, and reads as

f(t, Y ) =
1

2t

(
Y +

√
Y 2 +

t

2D−3

)
. (3.97)

This results in the deformed Lagrangian

LD,1(t,X) =

{
1

2t

[√
1 + 4t(X/2)D−1 − 1

]}1/(D−1)

. (3.98)

Another interesting case which can be simplified is the scaling solution for the free massless

scalar field and arbitrary value of α. In this case the differential equation,

(∂tf)α + fα∂Y f = 0 , (3.99)

is accompanied by the simple boundary condition f(0, Y ) = (−1)α

2D−α
1
Y

. We can further reduce

eq. (3.99) by using scaling symmetry. This enables us to set

f(t, Y ) = (−α/2)αt−
α
2K
(
Y t−

α
2

)
, (3.100)

and reduces the PDE above to an ODE in the variable Z = Y t−
α
2 :

0 =

(
1 + Z

K ′

K

)α
+K ′ . (3.101)
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This equation should have a solution such that K ∼ 1
kZ

for large positive Z and with

k = 2D−2α(α)α. After some thought one can see that such a solution indeed exists. Of

course, the case α = 1 reproduces the solution (3.97) for the Burgers’ equation. The

explicit solution for the first few small integer values of α can be computed by reducing to

quadratures. For example, at α = 2 we find

K =
1

c2Z + c
with c2 = 2D−2, (3.102)

where the two possible signs of c are related by the t→ −t symmetry of the equation. The

corresponding Lagrangian (with c = 2(D−2)/2) is

LD,2 =
X

2

1[
1 + t(X/2)

D−2
2

] 1
D−2

. (3.103)

In particular, for D = 3, the above Lagrangian is the result of integrating the (detT )
1

D−1

deformation proposed in [10] for a free scalar field theory in three dimensions which takes

the simple form

L3,2 =
X

2

1

1 + t
√
X/2

. (3.104)
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Chapter 4

Conclusions and discussions

In this thesis we review all the background of T T̄ deformation and the applications to

holography. Then we focus on studying the flow equation for the T T̄ deformed QFTs and

its extensions to higher dimensions, both for conformal and for massive theories.

In Chapter 2, we first review the construction of T T̄ operator by Zamolodchikov [4].

The non-derivative divergent parts of the operators T (z) T̄ (z′) and Θ (z) Θ (z′) cancel each

other in the limit z → z′. Thus we can define the compostie operator T T̄ = T (z) T̄ (z′) −
Θ (z) Θ (z′) upto total derivative terms. The T T̄ operator turns out to be a special case of a

kind of local operatorsXs, which are constructed from local conserved currents (Ts+1 (z) ,Θs−1 (z))

by Ts+1 (z) T̄s+1 (z′) − Θs−1 (z) Θ̄s−1 (z′). Each Xs generate a deformation of the IQFT by

equation (1.4). Smirnov and Zamolodchikov [9] proved the above deformation preserves

integrability. The idea is under the deformation if we deform the conserved currents in a

systematic way the local IM Pσ of the theory are still conserved. The T T̄ deformation is

special in that the deformed theories are solvable in a certain sense, even when the origi-

nal theory is not integrable. When the theory is put on a cylinder with circumference R

one can derive the closed differential equation for energy levels (2.90) for the T T̄ deformed

theory from which one can solve for the energy levels. The flow equation for the deformed

Lagrangian density (2.80) is also discussed. We then review the deformation of two particle

S-matrix under the T T̄ deformation of CFT. At last we review the cutoff AdS/T T̄ -deformed

CFT duality following [35]. In this duality the T T̄ deformation represents a geometric cutoff

that places the QFT on a Dirichlet boundary at finite radial distance. The motivation is

the correspondence between quantities computed on the two sides, including the deformed

energy spectrum and the perturbative propagation speeds.

In Chapter 3 we propose a simple integration technique for the T T̄ flow equation. The

flow equation induced by the T T̄ deformation can be reformulated as a functional equation.

We notice the deformation operator does not generate terms involving derivatives of the

metric unless such terms are already present in the undeformed Lagrangian. The flow

equation reduces to a partial differential equation in the deformation variable t and invariants

45
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formed from the metric and the dynamical fields. In many cases the PDE can be solved

exactly giving the deformed Lagrangian in closed form. We study many cases including

notably non-linear σ-models and the massive Thirring model. We also try to make some

generalisations to higher dimensions.

There are many other theories of interest in two dimensions to which our approach

can be applied, notably Yang-Mills theories and gauged linear σ-models as well as their

supersymmetric counterparts. Moreover, the method presented here can be extended to

flows instigated by analogs of the T T̄ -operator involving higher spin currents proposed in

[9] or symmetry breaking currents such as the one discussed in [31]. One of the most pressing

questions left unanswered is the issue of extending the exact integration method to theories

whose undeformed action includes curvature couplings, such as the conformal coupling term

for scalars in higher dimensions. Another crucial issue yet to be addressed with regards to

the higher dimensional generalisations of the T T̄ operator is to analyze the existence or

absence of contact terms, along the lines of [4], for the composite operator (detT )1/α in

D > 2 and for different values of α. The holographic interpretation of T T̄ -like deformations

in higher dimensions is also of great interest and needs to be addressed.



Appendix A

Method of characteristic curves

The flow equation can actually be solved independently through the method of characteristic

curves. Lets first rewrite the equation in a more familiar form by defining

y := −2X−1/2, f(y, t) := −1

2
yL(4/y2, t) (A.1)

The equation translates to the following equation for our new function f as a function of

the new variable y and t:

∂tf + f∂yf = 0 (A.2)

This equation is known as the Burger’s equation and can be solved as follows. Consider the

three dimensional space R3 spanned by three real variables {t, y, f}. The above equation

defines a (hyper)surface Σ in this space whose normal vector field is

n = (∂tf, ∂yf, −1) (A.3)

since the one for ∂tf dt+ ∂yf dy − df vanishes identically when projected onto the surface

f = f(t, y). Equation (A.2) has a simple geometrical interpretation as it simply states that

the vector field

v = (1, f, 0) (A.4)

is tangent to Σ and defines a characteristic curve. We can parameterize such a curve with

a parameter s and set

v =

(
dt

ds
,

dy

ds
,

df

ds

)
⇒ dt

ds
= 1,

dy

ds
= f,

df

ds
= 0 (A.5)

The first equation dt
ds

= 0 enables us choose s = t to parameterize the curve. The second

and third equation together then yield

df

dt
=

d2y

dt2
= 0 ⇒ y(t) = y◦ + tf ⇒ y◦ = y(t)− tf (A.6)
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Note that the third equation as an equation for f = f(y(t), t) reads

df(y(t), t)

dt
= ∂tf +

dy

dt
∂yf = ∂tf + f∂yf = 0 (A.7)

which is simply (A.2). However, this equation is also constraining f(y(t), t) to be constant

along the curve. This implies

f(y(t), t) = f(y(0), 0) = f(y◦, 0) = f(y(t)− tf, 0) (A.8)

where f(u, 0) is related to the undeformed Lagrangian

f(u, 0) = −1

2
uL(4/u2, 0) (A.9)



Appendix B

Details of integrating T T̄ deformed

theories with curvature couplings

Consider the undeformed Lagrangian

L(t = 0) =
1

2
X + α◦φR (B.1)

where R denotes the Ricci scalar associated with the background metric gµν . This La-

grangian describes a theory with central charge c = 1 + 6Q2, where α◦ =
√

2πQ. let us

use the notation L(j)
i to denote the expansion of term order (tj, αi0). The expansion can be

written as

L =
∑
i

∑
j

αi0t
jL(j)

i (B.2)

∂tL =
∑
i

∑
j=1

αi0jt
j−1L(j)

i . (B.3)

The flow equation is expanded as

∑
i

∑
j=0

(j + 1)αi0t
jL(j+1)

i =
i∑

q=0

j∑
k=0

αi0t
jεµρευσT (k)

qµνT
(j−k)
(i−q)ρσ (B.4)

where

T
(j)
iµν = − 2

√
g

δ

δgµν

∫
d2x
√
gL(j)

i . (B.5)

The initial condition is now

L(0)
0 =

1

2
X (B.6)

L(0)
1 = α0φR. (B.7)
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Also we know that at order α0
0 we recover the result of free massless scalar

L0 =
−1 +

√
1 + 2tX

2t
. (B.8)

To calculate the energy-momentum tensor we need to vary the Ricci scalar R against the

metric gµν . For example let us compute the variation of φ
√
gR

δ (φ
√
gR) (B.9)

= δ (φ
√
ggµνRµν)

= φ
√
g

(
gµνδRµν + δgµνRµν −

1

2
gµνδg

µνR

)
.

The first term is

φ
√
ggµνδRµν (B.10)

= φ
√
g∇ρ

(
gµνδΓρµν − gµρδΓλµλ

)
= φ∂ρ

(√
ggµνδΓρµν −

√
ggµρδΓλµλ

)
.

Variation of Christoffel symbol is

δΓρµν =
1

2
gρλ [∇υδgµλ +∇µδgυλ −∇λδgµυ] (B.11)

δΓβµβ =
1

2
gβλ [∇βδgµλ +∇µδgβλ −∇λδgµβ] . (B.12)

So the first term is computed as

√
gφgµνδRµν (B.13)

= −1

2

√
g∂ρφ

(
gµνgρλ [∇υδgµλ +∇µδgυλ −∇λδgµυ]− gµρgβλ [∇βδgµλ +∇µδgβλ −∇λδgµβ]

)
= −1

2

√
g∂ρφ

(
−∇υδg

ρυ −∇µδg
ρµ +∇λ

(
δgµνgρλgµυ

)
−
(
−∇βδg

βρ −∇µ

(
gµρgβλδg

βλ
)

+∇λδg
ρλ
))

= −√g∇µ∇ρφδg
ρµ +

1

2

√
g

(
∇λ∇ρφ

(
δgµνgρλgµυ

)
+

1

2

√
g∇µ∇ρφ

(
gµρgβλδg

βλ
))

=
1

2

√
g
(
�φgµυδg

µν + �φgβλδg
βλ
)
−√g∇µ∇ρφδg

ρµ

=
√
g�φgµυδg

µν −√g∇µ∇υφδg
µυ

where

�φ = gρλ∇λ∇ρφ. (B.14)
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So we get

δ (φ
√
gR) (B.15)

=
√
gφ

(
gµνδRµν + δgµνRµν −

1

2
gµνδg

µνR

)
=
√
gφgµνδRµν +

√
gφ

(
Rµν −

1

2
gµνδg

µνR

)
δgµν

=
√
g�φgµυδg

µν −√g∇µ∇υφδg
µυ +

√
gφ

(
Rµν −

1

2
gµνR

)
δgµν

=
√
g�φgµυδg

µν −√g∇µ∇υφδg
µυ.

In two dimensions we have

Rµν −
1

2
gµνR = 0. (B.16)

The flow equation at order α0 is

α0L(1)
1 =

1∑
q=0

α0ε
µρευσT (0)

qµνT
(0)
(i−q)µν (B.17)

= 2α0ε
µρευσT

(0)
0µνT

(0)
1ρσ.

We need to compute T
(0)
0µν and T

(0)
1µν

T
(0)
0µν =

1

2
Xµν −

1

4
gµνX (B.18)

T
(0)
1µν = �φgµυ −∇µ∇υφ (B.19)

and the corresponding trace

TrT
(0)
0 = 0 (B.20)

TrT
(0)
1 = 2�φ−�φ+Rφ− φR = �φ (B.21)

where we have used

φδR (B.22)

= φ (gµνδRµν + δgµνRµν)

= φgµνδRµν + δgµνRµνφ

= �φgµυδg
µν −∇µ∇υφδg

µυ + δgµνRµνφ.
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Since

φgµνδRµν (B.23)

= �φgµυδg
µν −∇µ∇υφδg

µυ,

L(1)
1 is easily computed

L(1)
1 (B.24)

= −4

(
1

2
Xµν − 1

4
gµνX

)
(�φgµυ −∇µ∇υφ)

= −2�φX.

We go on to compute L(2)
1

2α0tL(2)
1 = 2α0tε

µρευσT
(0)
0µνT

(1)
1µν + 2α0tε

µρευσT
(1)
0µνT

(0)
1µν . (B.25)

The first term is computed as

T
(0)
0µν =

1

2
Xµν −

1

4
gµνX (B.26)

TrT
(0)
0 = 0 (B.27)

T
(1)
1µν = −�φXµν +

1

2
∇µX∂νφ+

1

2
∇νX∂µφ−

1

2
∂γX∂λφg

λγgµν −
1

2
X�φgµν +

1

2
�φXgµν(B.28)

= −�φXµν +
1

2
∇µX∂νφ+

1

2
∇νX∂µφ−

1

2
∂γX∂λφg

λγgµν .

So

εµρευσT
(0)
0µνT

(1)
1µν (B.29)

= 4

(
−1

2
Xµν +

1

4
gµνX

)(
−�φXµν +

1

2
∇µX∂νφ+

1

2
∇νX∂µφ−

1

2
∂γX∂λφg

λγgµν

)
=

3

2
X2�φ.

To compute the second term we need

T
(1)
0µν = −1

4
XXµν +

1

16
X2gµυ (B.30)

TrT
(1)
0 = −1

8
X2 (B.31)

T
(0)
1µν = �φgµυ −∇µ∇υφ (B.32)

TrT
(0)
1 = �φ. (B.33)
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Thus

εµρευσT
(1)
0µνT

(0)
1ρσ (B.34)

= −1

2
X2�φ+ 4

(
1

4
XXµν − 1

16
X2gµν

)
(�φgµυ −∇µ∇υφ)

=
1

2
X2�φ.

Together we have

L(2)
1 = εµρευσT

(0)
0µνT

(1)
1µν + εµρευσT

(1)
0µνT

(0)
1µν (B.35)

=
3

2
X2�φ+

1

2
X2�φ

= 2X2�φ.

Similarly for L(3)
1

3L(2+1)
1 = 2εµρευσT

(1)
0µνT

(1)
1ρσ + 2εµρευσT

(2)
0µνT

(0)
1ρσ + 2εµρευσT

(0)
0µνT

(2)
1ρσ. (B.36)

Let us collect the energy-momentum tensors

T
(1)
0µν = −1

4
XXµν +

1

16
X2gµυ (B.37)

T
(1)
1µν = −�φXµν +

1

2
∇µX∂νφ+

1

2
∇νX∂µφ−

1

2
∂γX∂λφg

λγgµν (B.38)

T
(2)
0µν =

3

16
X2Xµν −

1

32
gµυX

3 (B.39)

T
(0)
1µν = �φgµυ −∇µ∇υφ (B.40)

T
(0)
0µν =

1

2
Xµν −

1

4
gµνX (B.41)

T
(2)
1µν = X�φXµν −

1

2
X∇µX∂νφ−

1

2
X∇νX∂µφ+

1

2
X∂γX∂λφg

λγgµν −
1

4
X2�φgµν(B.42)

where we have used

1

2
α0X

2δ (�φ) (B.43)

= −α0X∇αX∂λφδg
αλ +

1

2
α0X∂γX∂λφg

λγgαβδg
αβ +

1

4
α0X

2�φgαβδg
αβ

and the trace
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TrT
(1)
0 = −1

8
X2 (B.44)

TrT
(1)
1 = −�φX (B.45)

TrT
(2)
0 =

1

8
X3 (B.46)

TrT
(0)
1 = �φ (B.47)

TrT
(0)
0 = 0 (B.48)

TrT
(2)
1 =

1

2
X2�φ. (B.49)

Together we get

L(3)
1 = −8

3
X3�φ. (B.50)

Put the first terms together

L1 = φR− 2tX�φ+ 2t2X2�φ− 8

3
t3X3�φ+O

(
t3
)
. (B.51)

This leads us to consider the following ansatz

L1 = φR + f (tX)�φ. (B.52)

Then

T1µν = �φgµν −∇µ∇νφ+ f ′ (tX) tXµν�φ−
1

2
∂µf∂νφ−

1

2
∂νf∂µφ (B.53)

+
1

2
∂ρf∂

ρφgµν +
1

2
f�φgµν −

1

2
gµνf (tX)�φ

= �φgµν −∇µ∇νφ+ f ′ (tX) tXµν�φ−
1

2
∂µf∂νφ−

1

2
∂νf∂µφ+

1

2
∂ρf∂

ρφgµν

and

TrT1 = �φ+ f ′ (tX) tX�φ. (B.54)

Our flow equation is

∂tL = εµρευσ
(

1
√
g

δS

δgµν

)(
1
√
g

δS

δgρσ

)
. (B.55)

Expand it on α0

∑
i

αi0∂tLi = αi0

i∑
k=0

εµρευσTkµνT(i−k)ρσ. (B.56)
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Now for i = 1

∂tL1 = 2εµρευσT0µνT1ρσ. (B.57)

Since

L0 = − 1

2t
+

1

2t

√
1 + 2tX, (B.58)

we have

T0µν =
Xµν

2
√

1 + 2tX
+

1

4t
gµν −

√
1 + 2tX

4t
gµν (B.59)

TrT0 =
X

2
√

1 + 2tX
+

1

2t
−
√

1 + 2tX

t
. (B.60)

The flow equation

f ′X�φ (B.61)

= 2�φ

(
1

4t
− 1

4t

√
1 + 2tX +

1

2
f ′X − 1

2
f ′
√

1 + 2tXX − 1

2t
q (2tX)−

√
1 + 2tX

4t

)
where

q (y) = 1 +

∫
y

2
√

1 + 2y
f ′dy. (B.62)

Multiply t on both sides we get

2
√

1 + 2y + f ′y
√

1 + y + 2q (y)− 2 = 0 (B.63)

where

y = tX. (B.64)

solve for f ′

f ′ (y) = − 1

1 + 2y
+

C1

2y (1 + 2y)
(B.65)

f (y) = C1 log 2y − (1 + C1) log (1 + 2y) + C2 (B.66)

with initial condition

lim
y→0

f (y) = 0. (B.67)

we get

f (y) = − log (1 + 2y) . (B.68)

So

L1 = φR− log (1 + 2tX)�φ (B.69)
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L =− 1

2t
+

1

2t

√
1 + 2tX + α0φR− α0 log (1 + 2tX)�φ+O

(
α2

0

)
. (B.70)

We can go on to investigate order α2
0 terms. We can easily compute

L(0)
2 = 0 (B.71)

L(1)
2 =

1

2
RX (B.72)

for L(2)
2 we have

L(2)
2 = εµρευσ

(
T

(0)
2µνT

(1)
0ρσ + T

(0)
1µνT

(1)
1ρσ + T

(0)
0µνT

(1)
2ρσ

)
(B.73)

= εµρευσ
(
T

(0)
1µνT

(1)
1ρσ + T

(0)
0µνT

(1)
2ρσ

)
.

We need

T
(0)
1µν = �φgµυ −∇µ∇υφ (B.74)

T
(1)
1µν = −�φXµν +

1

2
∇µX∂νφ+

1

2
∇νX∂µφ−

1

2
∂γX∂λφg

λγgµν (B.75)

T
(0)
0µν =

1

2
Xµν −

1

4
gµνX (B.76)

T
(1)
2µν =

1

2
XµνR +

1

2
�Xgµυ −

1

2
∇µ∇υX (B.77)

and the trace

TrT
(0)
1 = �φ (B.78)

TrT
(1)
1 = −�φX (B.79)

TrT
(0)
0 = 0 (B.80)

TrT
(1)
2 =

1

2
XR +

1

2
�X. (B.81)

We get

L(2)
2 = T

(0)
1µνT

(1)
1ρσ + T

(0)
0µνT

(1)
2ρσ (B.82)

= −1

8
RX2 − 5

4
Y�φ− 1

2
X�X.

To compute L(3)
2
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3α2
0t

3L(2+1)
2 =

2∑
q=0

2∑
k=0

αi0t
jεµρευσT (k)

qµνT
(j−k)
(i−q)ρσ (B.83)

= εµρευσ
(
T

(1)
1µνT

(1)
1ρσ + 2T

(1)
0µνT

(1)
2ρσ + 2T

(0)
1µνT

(2)
1ρσ + 2T

(0)
0µνT

(2)
2ρσ

)
,

we need

T
(1)
1µν = −�φXµν +

1

2
∇µX∂νφ+

1

2
∇νX∂µφ−

1

2
∂γX∂λφg

λγgµν (B.84)

T
(1)
0µν = −1

4
XXµν +

1

16
X2gµυ (B.85)

T
(1)
2µν =

1

2
XµνR +

1

2
�Xgµυ −

1

2
∇µ∇υX (B.86)

T
(0)
1µν = �φgµυ −∇µ∇υφ (B.87)

T
(2)
1µν = X�φXµν −

1

2
X∇µX∂νφ−

1

2
X∇νX∂µφ+

1

2
X∂γX∂λφg

λγgµν −
1

4
X2�φgµν(B.88)

T
(0)
0µν =

1

2
Xµν −

1

4
gµνX. (B.89)

Also we need to compute T
(2)
2µν , since

L(2)
2 = −1

8
RX2 − 5

4
X3�φ−

1

2
X�X (B.90)

T
(2)
2µν = −1

4
RXXµν −

1

8
�X2gµυ +

1

8
∇µ∇υX

2 (B.91)

+
5

8
∇µX3∂νφ+

5

8
∇νX3∂µφ−

5

8
∂γX3∂λφg

λγgµν

−5

8
∂µX∂νφ�φ−

5

8
∂νX∂µφ�φ+

5

4
Xµν (�φ)2 +

5

4
Xµν∇ρφ∇ρ (�φ)

+
1

2
Xµν�X +

1

2
∂µX∂νX −

1

4
Y gµν −

1

4
X�Xgµν

+gµυ

(
1

16
RX2 +

5

8
X3�φ+

1

4
X�X

)
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TrT
(2)
2 (B.92)

= −1

4
RX2 − 1

4
�X2 +

1

8
�X2

−5

4
X3�φ+

5

4
X (�φ)2 +

5

4
X∇ρφ∇ρ (�φ)

+
1

8
RX2 +

5

4
X3�φ+

1

2
X�X

= −1

8
RX2 − 1

8
�X2 +

5

4
X (�φ)2 +

5

4
X∇ρφ∇ρ (�φ) +

1

2
X�X

= −1

8
RX2 − 1

4
Y +

1

4
X�X +

5

4
X (�φ)2 +

5

4
X∇ρφ∇ρ (�φ)

where

X3 = ∂ρX∂ρφ (B.93)

Y = ∂ρX∂ρX. (B.94)

We get

L(3)
2 =

1

16

(
3RX3 + 6X2�X − 8X2 (�φ)2 + 96XX3�φ+ 6X2

3

)
. (B.95)
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