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Abstract

In this chapter we introduce a combined parameter and model re-
duction methodology and present its application to the efficient nu-
merical estimation of a pressure drop in a set of deformed carotids.
The aim is to simulate a wide range of possible occlusions after the
bifurcation of the carotid. A parametric description of the admissible
deformations, based on radial basis functions interpolation, is intro-
duced. Since the parameter space may be very large, the first step
in the combined reduction technique is to look for active subspaces
in order to reduce the parameter space dimension. Then, we rely on
model order reduction methods over the lower dimensional parameter
subspace, based on a POD-Galerkin approach, to further reduce the
required computational effort and enhance computational efficiency.

1 Introduction

Numerical simulations of biomedical problems is a topic of large interest
nowadays, especially for what concerns the application of shape optimiza-
tion techniques aimed at the improvement of long-term outcomes of clin-
ical interventions [50, 6]. Several challenging aspects can be identified in
such a task, especially when seeking a personalized (patient-specific) treat-
ment [65, 37, 17]: model construction and segmentation, numerical solution
of the underlying fluid dynamics equations, assimilation of clinical data (e.g.
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for boundary conditions), choice of the cost functional and medical indices
to be optimized [4, 3], as well as model deformation during the optimization
procedure. The latter is a topic of remarkable interest, since it is well known
that local geometrical features may severely affect the computational fluid
dynamics (CFD) simulation and thus the results of the optimization [32].

A challenge in the applicability of optimization procedures in the clinical
environment is the large computational time that each procedure would en-
tail. Indeed, such optimal control problems are usually tackled by means of
iterative solvers that require several expensive CFD simulations for different
geometrical configurations [39]. To this end, several authors have proposed
to employ computational reduction techniques based on reduced order (or
surrogate) models. We refer to [49, 51, 38, 30, 8, 9] for a few representa-
tive applications, as well as e.g. to [40, 23] for introductory textbooks on
the underlying methodology. These methods rely on the definition of a pa-
rameter space, which is related to the set of admissible deformations that
can be considered during the iterative optimization procedure, and its ex-
ploration to retain the most relevant features of the CFD solution on the
parameter space. It is however well known that reduced order methods
suffer from the so-called “curse of dimensionality” if the parameter space
is high-dimensional. Although there exists techniques to account for high-
dimensional parameter spaces in the reduced order modelling framework,
based e.g. on sparse grids [22, 64] or on a proper weighting of the parameter
space [21, 63], the approach that we propose in this manuscript is different
and aims at reducing the high-dimensional parameter space as well, while
preserving a very broad set of admissible deformations.

We have recently dealt with several techniques concerning efficient shape
parametrization techniques in the framework of reduced order modelling. A
first possible choice is related to the shape morphing method itself. For our
goals it suffices to classify them in two groups: general purpose or problem
specific. The design of a problem specific shape parametrization technique
should aim at reducing the high-dimensional parameter space; for instance,
the centerlines-based approach proposed in [8] is able to reduce the parame-
ter space accounting only for deformations in a cylindrical coordinates frame
of reference. In contrast, in this chapter we show a parameter space reduc-
tion technique for general purpose shape morphing methods. Among pos-
sible general purpose methods we mention Free Form Deformation (FFD)
[59, 46], Radial Basis Functions (RBF) interpolation [18, 53, 49] or Inverse
Distance Weighting (IDW) interpolation [60, 66, 35]. Broadly speaking, the
aforementioned methods require the displacement of some control points to
induce a deformation on the domain, and we identify the parameters as
the displacements of the control points. In these context, our earlier ap-
proaches to parameter space reduction have relied on screening procedures
based on Morris’ randomized one-at-a-time design [54, 11], modal analysis
[35] or semi-automatic reduction of the number of control points [7]. Each of
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Figure 1: Outline of the chapter

these approaches results in lower dimensional parameter spaces by retaining
an “optimal” subset of the possible control points. Unfortunately, when re-
quiring very low dimensional parameter spaces (order of unity) the resulting
set of admissible deformations may be considerably shrunk. Not only, an-
other goal to achieve for complex shape parametrizations is also an efficient
positioning of control points, requiring versatility and “full” capability in
the geometric representation. To this end, in this manuscript we propose to
exploit an active subspaces (AS) method [26], building on our previous ex-
perience on a shape optimization of a naval engineering problem in [62]. AS
has been employed in many real world problems; among others, we mention
aerodynamic shape optimization [48], integrated hydrologic model [43], the
parameter reduction for the HyShot II scramjet model [28], a satellite system
model [42]. The main difference between our previous approaches and the
AS property is that our former approaches were constraining the search of a
lower dimensional parameter subspace to be parallel to a subset of the axes
of the parameter space, while the AS method will automatically identify the
“optimal” lower dimensional subspace without any such constraint, taking
a linear combination of all the original parameters. To show an example of
the resulting methodology we will consider a cardiovascular test case related
to the computation of the pressure drop of a series of deformed carotids.

The outline of the chapter is presented in Figure 1. The formulation
of the problem of estimation of the pressure drop across a stenosed carotid
artery is summarized in Section 2. Shape morphing by means of RBF inter-
polation is then introduced in Section 3. The high fidelity method, based
on finite elements, is briefly summarized in Section 4. The computed val-
ues of the quantity of interest will be used to train the AS reduction of the
parameter space in Section 5. The same high fidelity solver will be used
in Section 6 to train a Proper Orthogonal Decomposition (POD)-Galerkin
method on the lower dimensional parameter subspace. This combination
will further enhance computational efficiency for the procedure. Numerical
results and error analyses of the whole pipeline will be presented in Section 7.
Conclusions and future perspectives follow in Section 8.
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Figure 2: Representation of the reference domain Ω, inlet section Γin, rigid
walls Γwall and outlet section Γout.

2 A model cardiovascular problem: pressure drop
estimation across a stenosis

In this section we introduce the problem of the estimation of the pressure
drop across two parametrized stenoses in a carotid bifurcation.

Let Ω ⊂ Rn, n = 3, be a domain (see Figure 2), obtained from the
INRIA 3D Meshes Research Database [1], that describes an idealized carotid
bifurcation. We will call Ω the reference domain; for practical reasons this
domain happens to correspond to the healthy case (no stenoses), even though
this assumption is not fundamental for the remainder of the paper.

Let D ⊂ Rm, be the set of parameters, that we assume to be a box in
Rm, for m ∈ N. Moreover, letM(x;µ) : Rn → Rn, with µ ∈ D, be a shape
morphing that maps the reference domain Ω into the deformed domain Ω(µ)
as follows:

Ω(µ) =M(Ω;µ).

We refer to Section 3 for the actual definition of m and M for the case at
hand.

Let us consider the following steady Navier-Stokes equations: for any
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Figure 3: Sections S0, . . . , S5 employed in the relative pressure drop compu-
tation.

µ ∈ D, find (u(µ), p(µ)) ∈ H1(Ω(µ); Rn)× L2(Ω(µ)) such that:

−ν∆u(µ) + u(µ) · ∇u(µ) +∇p(µ) = 0 in Ω(µ),

div u(µ) = 0 in Ω(µ),

u(µ) = uin on Γin,

u(µ) = 0, on Γwall(µ),

ν
∂u(µ)

∂n
− p(µ)n = 0, on Γout,

(1)

where Γin is the inlet section, Γout the outlet section and Γwall(µ) are (rigid)
walls of the carotid artery. Since our interest is to vary the degree of stenosis
immediately after the bifurcation point (see Figure 3), we assume that Γin

and Γout are far away from the bifurcation and are not affected by µ. Here
u(µ) represents the unknown velocity, while p(µ) the unknown pressure.
Moreover, the inlet velocity uin is a parabolic profile and the viscosity ν is
chosen such that the resulting Reynolds number is equal to 400, correspond-
ing to the average Reynolds number over a cardiac cycle [67].

As quantity of interest we would have liked to consider the pressure drop
across the stenoses. However, due to the lack of physiological boundary con-
ditions that prescribe the pressure at the inlet, as well as non-physiological

5



homogeneous Neumann boundary conditions that prescribe zero pressure at
the outlet, this quantity of interest would be severely affected by a variation
of the degree of stenosis. To mitigate this, we resort to a relative pressure
drop dividing by the inlet pressure (i.e., the pressure drop between the in-
let and the outlet). To be more precise, denote with Pi(µ) the average of
the pressure on the section Si, i = 0, . . . , 5, as shown in Figure 3. Sections
S3 and S4 (S5, respectively) are used to quantify the pressure drop for the
stenosis on the left (right, resp.) branch, which is then divided by the pres-
sure drop between the inlet S0 and the left (right, resp.) outlet S1 (S2,
resp.). Therefore, the quantity of interest that we consider is the sum of the
relative pressure drop of the two branches:

f(µ) =
P3(µ)− P4(µ)

P0(µ)− P1(µ)
+
P3(µ)− P5(µ)

P0(µ)− P2(µ)
. (2)

3 Shape morphing based on radial basis functions
interpolation

Radial Basis Functions (RBF) are a powerful tool for shape parametrization
due to their good approximation properties [18, 49]. In this section we
summarize RBF-based shape morphing following the presentation in [35].
All the algorithms have been implemented in the open source python package
PyGeM [2], which is used to perform the shape morphing in the numerical
results showed in Section 7.

A radial basis function is any smooth real-valued function ϕ̃ : Rn → R
such that it exists ϕ : R+ → R and ϕ̃(x) = ϕ(‖x‖), where ‖ · ‖ is the
Euclidean norm in Rn.

Let us recall that parameters are denoted by µ ∈ D. The RBF shape
parametrization technique is based on the mapM(x;µ) : Rn → Rn , defined
as follows

M(x;µ) = q(x;µ) +

NC∑
i=1

γi(µ) ϕ(‖x− xCi‖). (3)

where q(x;µ) is a polynomial term to be determined, {γi(µ)}NCi=1 are weights

to be determined, and {xCi}
NC
i=1 are control points selected by the user (de-

noted by spherical markers in Figure 4), and x ∈ Ω. Among all the possible
RBF for modeling shapes we select the so-called thin plate splines [34] de-
fined as

ϕ(r;R) =
( r
R

)2
ln
( r
R

)
where r is the radial coordinate and R > 0 is a given radius.
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Figure 4: Portion of a carotid. In black the original mesh represented by
points, while in plain colors the deformed carotid. RBF interpolation control
points are denoted by spherical markers (blue: fixed, red: not fixed).

In order to find the unknowns q(x;µ) and {γi(µ)}NCi=1, let us assume that
q(x;µ) is a polynomial function of degree 1, that is

q(x;µ) = c(µ) + Q(µ)x,

for some unknown c(µ) ∈ Rn and Q(µ) ∈ Rn×n. Therefore equation (3)
can be rewritten in matrix form as follows:

M(x;µ) = c(µ) + Q(µ)x+ GT (µ)d(x), (4)

being d(x) = [ϕ(‖x − xC1‖), . . . , ϕ(‖x − xNC‖)] ∈ RNC the vector con-
structed evaluating the radial basis function on the Euclidean distance be-
tween the control points position xCi and x, and the unknown G(µ) =
[γ1(µ), . . . , γNC (µ)] ∈ RNC×n. To compute the unknowns c(µ), Q(µ) and
G(µ) we enforce interpolation conditions on the set of control points, that
is, given their initial position as

xC = [xC1 , . . . ,xCNC ] ∈ RNC×n

and their µ-dependent deformed positions as

yC(µ) = [yC1(µ), . . . ,yCNC (µ)] ∈ RNC×n, (5)
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we enforce that

M(xCi ;µ) = yCi(µ) ∀i ∈ {1, . . . ,NC}. (6)

The system is then completed by additional constraints that represent the
conservation of the total force and momentum [18, 33, 53], due to the pres-
ence of the polynomial term, as follows

NC∑
i=1

γi(µ) = 0, (7)

NC∑
i=1

γi(µ)xC1,i = · · · =
NC∑
i=1

γi(µ)xCn,i = 0, (8)

being xCi = [xC1,i , . . . ,xCn,i ] a vector collecting the i-th coordinates of all
control points. These additional constraints, together with the presence of
the polynomial term of degree one, ensures that the resulting linear sys-
tem (6)-(8) has always a unique solution (c(µ), Q(µ), G(µ)). Once the
system is solved, we can deform all the points of the mesh through M(·;µ)
to obtain the deformed configuration.

In order to exemplify (5) in our case, let us consider again Figure 4,
where control points are denoted by spherical markers. In order to enforce
the deformation to be localized, we will move all control points close to the
stenosis (colored in red) in the normal direction, thus varying the occlusion,
while we will keep fixed a few control points far away from the stenosis
(colored in blue). Therefore, for all fixed control points the right hand side
of (6) is defined employing

yCi(µ) = xCi ∀i ∈ {1, . . . ,N fixed
C },

while for all non-fixed control points

yCi(µ) = xCi − µini ∀i ∈ {1, . . . ,m},

where NC = N fixed
C +m, µi denotes the i-th element in µ and ni the outer

unit normal to the wall evaluated at xCi . In our case we have chosen m = 10,
N fixed
C = 55 (not all control points are shown in Figure 4), and the parameter

range is D = [0, 0.3]m, resulting in a wide range of possible different stenosis
scenarios (see Figure 5 for an idea of the possible configurations).

4 High fidelity solver based on the finite element
method

In this section we summarize the high fidelity solver that will be used in the
training of both the active subspace (see Section 5) and the POD-Galerkin
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Figure 5: Three different deformations produced varying the m = 10 pa-
rameters.

reduction (see Section 6). Let (V,Q) be an inf-sup stable finite element
(FE) pair, being Vδ(µ) ⊂ H1(Ωδ(µ); Rn) and Qδ(µ) ⊂ L2(Ωδ(µ)), being δ
the maximum diameter size of a tetrahedralization1 Ωδ of Ω; Taylor-Hood
P2−P1 FE has been employed in the numerical experiments shown in Section
7.

The high fidelity approximation of (1) reads: for any µ ∈ D, find
(uδ(µ), pδ(µ)) ∈ Vδ(µ) × Qδ(µ) such that uδ(µ) = uin on Γin, uδ(µ) =
0, on Γwall(µ) and:{

a(uδ,vδ;µ) + b(vδ, pδ;µ) + c(uδ,uδ,vδ;µ) = 0, ∀vδ ∈ Vδ(µ),

b(uδ, qδ;µ) = 0, ∀q ∈ Qδ(µ),
(9)

where

a(uδ,vδ;µ) =

∫
Ω(µ)

ν∇uδ : ∇vδ dx, b(vδ, qδ;µ) = −
∫

Ω(µ)
qδ div vδ dx

are the bilinear forms associated to the diffusion and divergence operators,
respectively, whereas

c(uδ,vδ, zδ;µ) =

∫
Ω(µ)

(∇vδ uδ) · zδ dx

is the trilinear form related to the nonlinear advection term. Let {ϕδi }
Nδ

u
i=1

and {ζδk}
Nδ
p

k=1 the bases of Vδ(µ) and Qδ(µ), respectively. Then, (9) can be
equivalently rewritten as the following nonlinear system: for any µ ∈ D,
find (u(µ),p(µ)) ∈ RNδ

u × RNδ
p such that2:[

A(µ) + C(u(µ);µ) BT (µ)
B(µ) 0

] [
u(µ)
p(µ)

]
=

[
f(µ)
g(µ)

]
, (10)

1In order to simplify the exposition we will report the FE formulation on the deformed
domain Ω(µ). However, it should be noted that only the mesh Ωδ of the reference domain
Ω is generated, and deformed meshes Ωδ(µ) are obtained through the mapping M(·;µ).

2The non-homogeneous right-hand side accounts for boundary conditions via a lifting.

9



where, for 1 ≤ i, j ≤ N δ
u and 1 ≤ k ≤ N δ

p :

(A(µ))ij = a(ϕδj ,ϕ
δ
i ;µ), (B(µ))ki = b(ϕδi , ζ

δ
k ;µ),

(C(u(µ);µ))ij = c
(
uδ(µ),ϕδj ,ϕ

δ
i ;µ
)
,

(11)

and

uδ(µ) =

Nδ
u∑

i=1

ui(µ)ϕδi , pδ(µ) =

Nδ
p∑

k=1

pk(µ)ζδk ,

For any µ ∈ D the nonlinear system (10) is solved via a Newton method, and
the quantity of interest f(µ) is computed according to (2) in a postprocessing
stage. The solution of the Navier-Stokes problem for a representative value
of µ is shown in Figure 6.

(a) Velocity field (b) Vorticity

Figure 6: Velocity and vorticity fields for a representative choice of µ ∈ D.

5 Parameter space reduction by active subspaces
property

The active subspaces (AS) property has been emphasized recently, see for
example P. Constantine in [26]. It concerns the properties of a parametric
scalar function and it is exploited for dimension reduction in parameter
studies. The main idea behind the active subspaces is the following: we
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rescale the inputs (the parameters µ, in our case) and then rotate the inputs
domain with respect to the origin in such a way lower dimension behavior
of the output function (the normalized pressure drop f(µ), in our case) is
revealed. The active subspaces identify a set of important directions in the
space of all inputs, instead of identifying a subset of the inputs as important.
The latter approach would have indeed resulted in similar limitations as in
our previous works [11, 35, 7]. If the output of the simulation does not change
on average along a particular direction of the parameters, then we can safely
ignore that direction in the parameter study. When an active subspace
is identified for the problem of interest, it is possible to perform different
parameter studies such as integration, optimization, response surfaces [16],
and statistical inversion [44].

Now we review the process of finding active subspaces. Let us assume3

f : Rm → R is a scalar function and ρ : Rm → R+ a probability density
function. For our sake a uniform probability density will suffice, as all pos-
sible geometrical configurations can be drawn with equal probability. In
particular, we assume f continuous and differentiable in the support of ρ,
with continuous and square-integrable (with respect to the measure induced
by ρ) derivatives. The active subspaces of the pair (f, ρ) are the eigenspaces
of the covariance matrix associated to the gradients ∇µf . To this end we de-
fine the so-called uncentered covariance matrix of the gradients of f (among
others see [31] for a more deep understanding of these operators), denoted
by Σ, whose elements are the average products of partial derivatives of the
simulations’ input/output map, i.e.:

Σ = E [∇µf ∇µfT ] =

∫
D

(∇µf)(∇µf)Tρ dµ, (12)

where E[·] is the expected value. To approximate the eigenpairs of this
matrix it is common to use a Monte Carlo method as follows [52, 24]:

Σ ≈ 1

NAS
train

NAS
train∑
i=1

∇µfi∇µfTi , (13)

where we draw NAS
train independent samples µ(i) from the measure ρ and

where ∇µfi = ∇µf(µ(i)). The matrix Σ is symmetric and positive semidef-
inite, so it admits a real eigenvalue decomposition

Σ = WΛWT , (14)

where W is a m×m orthogonal matrix of eigenvectors, and Λ is the diagonal
matrix of non-negative eigenvalues arranged in descending order.

3In this section we will omit the dependence on µ. It should be understood that
f = f(µ), ρ = ρ(µ), etc.
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We now form a lower dimensional parameter subspace by selecting the
first M eigenvectors, for some M < m. On average, perturbations in the
first set of coordinates change f more than perturbations in the second set
of coordinates. While low eigenvalues suggest that the corresponding vector
is in the nullspace of the covariance matrix. Discarding these vectors we can
construct an approximation of f . For the sake of notation, let us partition
Λ and W as follows:

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] ,

where Λ1 = diag(λ1, . . . , λM ), and W1 contains the first M eigenvectors.
The active subspace is the the range of W1. The inactive subspace is the
range of the remaining eigenvectors in W2. The linear combinations of
the input parameters with weights from the important eigenvectors are the
active variables. We approximate the behaviour of the objective function by
projecting the full parameter space onto the active subspace.

Given the input parameters in the full space we can map forward to the
active subspace. Respectively we have the following formulas for the active
variable µM and the inactive variable η:

µM = WT
1 µ ∈ RM , η = WT

2 µ ∈ Rm−M . (15)

That means that any point in the parameter space µ ∈ Rm can be expressed
in terms of µM and η as follows:

µ = WWTµ = W1W
T
1 µ+ W2W

T
2 µ = W1µM + W2η.

So it is possible to rewrite f as

f(µ) = f(W1µM + W2η),

and construct a surrogate quantity of interest g using only the active vari-
ables

f(µ) ≈ g(WT
1 µ) = g(µM ).

In our pipeline, the surrogate quantity of interest g will be obtained querying
a POD-Galerkin reduced order model, as described in the next section.

Active subspaces can be seen in the more general context of ridge ap-
proximation (see for example [55, 45]). It can be proved that, under certain
conditions, the active subspace is a good starting point in optimal ridge
approximation and it is nearly stationary as shown in [27, 41].

6 Model order reduction based on a POD-Galerkin
method

In this section we now briefly summarize the POD-Galerkin method that
we employ for the model order reduction of the high fidelity approxima-
tion (10) of the Navier-Stokes equations (1), based on the usual offline-online
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paradigm [56, 14, 10, 40]. The main novelty in this section is that the train-
ing during the offline stage (as well as the testing during the online one) will
be carried out only over the active (parameter) subspace, and not over the
full parameter space D.

Let us denote by ΞPOD
train = {µ(i)

M }
NPOD

train
i=1 ⊂ D a training set of NPOD

train points
chosen randomly over the active subspace, i.e. the range of W1. During the
offline stage, we assemble the following snapshots matrices:

Su = [u(µ
(1)
M ) | . . . | u(µ

(Ntrain)
M )] ∈ RN

δ
u×NPOD

train ,

Sp = [p(µ
(1)
M ) | . . . | p(µ

(Ntrain)
M )] ∈ RN

δ
p×NPOD

train ,

Ss = [s(µ
(1)
M ) | . . . | s(µ

(Ntrain)
M )] ∈ RN

δ
u×NPOD

train ,

where (u(·),p(·)) is the FE solution of (10), and the supremizer solution
s(·) is obtained by a FE approximation of the following elliptic equation:
for each µ ∈ ΞPOD

train , assuming (an approximation of) pδ(µ) to be known,
find sδ(µ) ∈ Vδ(µ) such that

(sδ(µ),vδ)Vδ(µ) = b(vδ, pδ(µ);µ) ∀vδ ∈ Vδ(µ),

where (·, ·)Vδ(µ) represents the inner products in H1(Ω(µ); Rn). Indeed,
sδ(µ) is such that

sδ(µ) = arg sup
vδ 6=0

b(vδ, pδ(µ);µ)

‖vδ‖Vδ(µ)
,

and the inf-sup constant

βδ(µ) = inf
qδ 6=0

sup
vδ 6=0

b(vδ, pδ(µ);µ)

‖vδ‖Vδ(µ)‖qδ‖Qδ(µ)

is related to the the supremizer solution as follows:

(βδ(µ))2 = inf
qδ 6=0

‖sδ(µ)‖Vδ(µ)

‖qδ‖Qδ(µ)
.

Such supremizers are employed at the reduced order level to enhance the inf-
sup stability of the reduced system, which is essential to obtain an accurate
approximation of the pressure. We refer to [58, 10] for further details on
supremizers, as well as to [19, 61, 5] for possible alternative approaches.

A POD basis for the velocity, pressure and supremizer spaces can be
obtained by considering the singular value decomposition of the following
matrices [57, 15]

X
1/2
u Su, X1/2

p Sp, X
1/2
u Ss,

being Xu and Xp FE matrices corresponding to the discretization of the
inner products in H1(Ω; Rn) and L2(Ω), respectively. The first Nu, Np, Ns
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(respectively) left singular vectors are then considered as basis functions

{ϕn}Nu
n=1, {ζn}

Np
n=1, {φn}

Ns
n=1 of the reduced basis spaces. Therefore, the re-

duced spaces for velocity VN and pressure QN , of cardinality Nu,s = Nu+Ns

and Np, respectively, are then obtained as

VN = span({ϕn}Nu
n=1, {φn}

Ns
n=1), QN = span({ζn}

Np
n=1).

Finally, let us introduce the corresponding basis functions matrices

Zu,s = [ϕ1| . . . |ϕNu
|φ1| . . . |φNs

] ∈ RN
δ
u×Nu,s ,

Zp = [ζ1| . . . |ζNp ] ∈ RN
δ
p×Np .

Let us now denote by ΞPOD
test = {µ(j)

M }
NPOD

test
j=1 ⊂ D a testing set of NPOD

test

points chosen randomly over the active subspace. During the online stage,
for any µM ∈ ΞPOD

test , we solve the following reduced nonlinear system: find
(uN (µM ),pN (µM )) ∈ RNu,s × RNp such that[

AN (µM ) + CN (uN (µM );µM ) BT
N (µM )

BN (µM ) 0

] [
uN (µM )
pN (µM )

]
=

[
fN (µM )
gN (µM )

]
,

where

AN (µM ) = ZTu,s A(µM ) Zu,s, BN (µM ) = ZTp B(µM ) Zu,s,

CN (w;µM ) = ZTu,s C(Zu,s w;µM ) Zu,s.

In order to obtain the maximum efficiency, the reduced system should not
require evaluations of quantities defined on the high fidelity mesh; a standard
approach based on the empirical interpolation method [13] and its discrete
variants, as well as alternatives based on gappy POD [20], could be consid-
ered. We omit any additional detail on this topic for the sake of brevity, as
this is already extensively discussed in the literature cited in this section.

7 Numerical results

In this section we present the results of the complete pipeline applied to
a specific artery bifurcation. Moreover we demonstrate the improvements
obtained using the pipeline with respect to the POD approach on the full
parameter space.

The mesh is discretized using tetrahedral cells; a FE approximation by
P2−P1 elements is used, resulting in 265049 degrees of freedom. FEniCS is
employed for the implementation of the high fidelity solver [47].

Let us recall that the parameter space is a m = 10 dimensional space. In
particular the parameters are the displacements of 10 different RBF control
points along the orthogonal direction with respect to the surface. The mov-
ing control points are located in the two branches just after the bifurcation
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in order to simulate a stenosed carotid. In Figure 4 it is possible to observe
the original undeformed carotid in black and the moving control points in
red with a possible deformation. The PyGeM open source package is used
to perform the deformation [2].

Since the deformations are made with respect to the reference geometry,
the quality of the resulting mesh after interpolation could decrease. To
address this problem we computed the aspect ratio [36] of all the tetrahedra
of each deformed mesh. In Figure 7a we plot the minimum, the maximum
and the mean of such ratio. Even though the maximum values of such index
are increased by the deformation process, a sensible deterioration in mesh
quality affects at most 0.07% of the total number of tetrahedra. Results
are reported in Figure 7b, which summarizes the percentage of cells for
which the aspect ratio is above the maximum value it had in the reference
configuration. Thus, we conclude that the deformations impact on the mesh
quality is negligible.

(a) Maximum, minimum, and mean value
of the aspect ratio for all the mesh defor-
mations.

(b) Percentage of tetrahedra with an aspect
ratio above the maximum value of the refer-
ence geometry.

Figure 7: Aspect ratio for each deformed mesh in the training set (a) and
percentage of cells above the maximum aspect ratio of the reference mesh
with respect to the total number of cells (b).

Recalling Section 5, we need to construct the uncentered covariance ma-
trix Σ defined in (12). As shown in (13), we use a Monte Carlo method,
in order to construct the matrix Σ, using the software [25]. The number
of training samples that we employ is NAS

train = 250. Even though it may
be challenging to explore a 10 dimensional space, heuristics reported in [26]
suggest this choice of NAS

train is enough for the purposes of the active sub-
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Figure 8: Eigenvalue estimates in block circles with the bootstrap intervals
(grey region). The order-of-magnitude gaps between the eigenvalues suggest
confidence in the dominance of the active subspace.

spaces identification. In order to approximate the gradients of the pressure
drop f with respect to the parameters, that is ∇µf , we use a local linear
model that approximates the gradients with the best linear approximation
using 17 nearest neighbors. After constructing the matrix Σ we calculate
its real eigenvalue decomposition.

(a) One active variable. (b) Two active variables.

Figure 9: Sufficient summary plots for (a) one and (b) two active variables
using the training dataset.

The eigenvalues of the covariance matrix in descending order are depicted
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Figure 10: Surrogate model error with respect to the active subspace di-
mension and the order of the response surface.

in Figure 8. The presence of gaps between the eigenvalues supports the
existence of an active subspace. We can investigate the proper dimension of
the active subspace using scatter plots that contain all available regression
information that are called sufficient summary plots [29]. Recalling (15),
Figure 9 shows f(µ) against µM = WT

1 µ, where WT
1 contains the first one

and the first two eigenvectors, respectively. An active subspace of dimension
one could suffice, but the band-width of the scatter points is quite large, so
we prefer to retain more information about the output function by using a
two dimensional active subspace.

To support this decision we construct a response surface varying the di-
mension of the active subspace and the order of the polynomial surface and
we compute the relative error with respect to a test dataset. We can see
from Figure 10 that on average the bidimensional subspace is the best choice
in terms of information retention and dimension of the reduced parameter
space. We underline that the choice of the active subspace dimension de-
pends on the problem, the accuracy, and the goal you want to achieve. For
the purpose of this chapter the choice we made is a very good compromise
and does not affect the following results.
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(a) Velocity. (b) Supremizers.

(c) Pressure.

Figure 11: POD singular values as a function of the number N of POD
modes for(a) velocity, (b) supremizers, and (c) pressure.

Once the active subspace W1 has been identified, we turn to the POD-
Galerkin model order reduction defined in Section 6. The proposed com-
bined methodology (denoted as “ROM + AS” in Figures 11-12) will be
compared to the standard POD-Galerkin approach on the full parame-
ter space (denoted as “ROM” in Figures 11-12) in order to highlight the
effectiveness of our proposed method. The open source library RBniCS
[40, 12] is employed to implement both methodologies. During the train-
ing phase, we select a training set of size NPOD

train and compute a POD
of the resulting snapshots. In the case of the combined methodology we
have chosen NPOD

train = 100, while in the standard approach we have chosen
NPOD

train = NAS
train. Corresponding POD singular values are show in Figure 11
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(a) Velocity error. (b) Pressure error.

Figure 12: Relative errors between the high fidelity solution and the reduced
order one, as a function N , for (a) velocity and (b) pressure component.

for velocity, supremizers and pressure, as a function of the number N of
selected POD modes. The results show a slower decay for the standard
approach when compared to the combined one, meaning that the standard
approach has to deal with a considerably larger solution manifold. If the
final goal is to evaluate the quantity of interest, it is much more convenient
to use the combined method, which is able to provide a much smaller solu-
tion manifold by neglecting the inactive (and so less interesting) directions.
Indeed, Figure 12 shows that the combined methodology is able to reach rel-
ative errors which are up to an order of magnitude smaller when compared to
the standard one, for both velocity (Figure 12a) and pressure (Figure 12b)
when N = 20. The errors are average relative errors on a testing set of
cardinality NPOD

test = 100. A similar error analysis can be carried out for the
quantity of interest, showing a trend similar to the one in Figure 12b.

8 Conclusions and perspectives

In this chapter we have presented a combined parameter and computational
model reduction by means of active subspaces and POD-Galerkin meth-
ods, and we applied the proposed combined method on a synthetic problem
related to the estimation of the pressure drop across a stenosed artery bifur-
cation. First, we reduced the high dimensional parameter space into a lower
dimensional parameter subspace by means of the active subspaces property.
Our numerical test case, related to the deformation of two stenoses, shows
an effective reduction of the dimensionality of the parameter space, from 10
control points displacements to 2 active variables. Just the active param-
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eter subspace is then employed for a further model reduction by means of
a POD-Galerkin method. When comparing the performance (in terms of
errors) of the resulting reduced order model with a standard one (without
active subspaces preprocessing), the proposed approach shows better results
up to an order of magnitude. This is due to the fact that the standard ap-
proach has to account for several directions in the parameter space (the
inactive subspaces) which only account for negligible variations in the pres-
sure drop and thus could have been neglected. The proposed methodology
could find further developments in more realistic cardiovascular problems,
for what concerns both the geometry (e.g. patient’s personalization) and
the mathematical model (e.g. unsteadiness, compliance). Moreover, several
enhancements on the combination of the two approaches could be foreseen;
among the possible ones, we mention a more tight coupling between the
training stages of active subspaces and POD-Galerkin sampling methods
based on a greedy approach in order to avoid the solution of several high
fidelity problems for two (possibly large) training sets.
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