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Abstract

The thesis contains the work done during the doctorate programme at SISSA under the

supervision of P. Mnëv and A. Tanzini. This resulted in the following publications:

• In [12], reproduced in Chapter 3, we discuss the A-model as a gauge fixing of the

Poisson Sigma Model with target a symplectic structure. We complete the discussion

in [15], where a gauge fixing defined by a compatible complex structure was intro-

duced, by showing how to recover the A-model hierarchy of observables in terms

of the AKSZ observables. Moreover, we discuss the off-shell supersymmetry of the

A-model as a residual BV symmetry of the gauge fixed PSM action.

• In [13], reproduced in Chapter 4, we discuss observables of an equivariant extension

of the A-model in the framework of the AKSZ construction. We introduce the A-

model observables, a class of observables that are homotopically equivalent to the

canonical AKSZ observables but are better behaved in the gauge fixing. We discuss

them for two different choices of gauge fixing: the first one is conjectured to compute

the correlators of the A-model with target the Marsden-Weinstein reduced space; in

the second one we recover the topological Yang-Mills action coupled with A-model

so that the A-model observables are closed under supersymmetry.

• In [33], reproduced in Chapter 5, we recover the non-perturbative partition function

of 2D Yang-Mills theory from the perturbative path-integral. To achieve this goal,

we study the perturbative path-integral quantization for 2D Yang-Mills theory on

surfaces with boundaries and corners in the Batalin-Vilkovisky formalism (or, more

precisely, in its adaptation to the setting with boundaries, compatible with gluing

and cutting – the BV-BFV formalism). We prove that cutting a surface (e.g. a closed

one) into simple enough pieces – building blocks – choosing a convenient gauge-fixing

on the pieces and assembling back the partition function on the surface, one recovers

the known non-perturbative answers for 2D Yang-Mills theory.
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Chapter 1. Introduction

Chapter 1
Introduction

Locality and functorial quantum field theories

A very important feature of physical theories is locality. Classically, in lagrangian field

theories, this is encoded in the requirement for the action to be a local functional of the

fields. At the quantum level, the locality of the theory is expected to imply cutting-gluing

compatibility for the partition function. If a manifold Σ is obtained as the gluing of two

manifolds (with boundary) Σ = Σ1∪γΣ2, then the partition function on Σ should be given

by the gluing of the partition functions on Σ1 and Σ2: ZΣ = 〈ZΣ1 , ZΣ2〉γ .

A mathematical formulation of this idea was first introduced by Atiyah and Segal

in the context of topological and conformal quantum field theories [3, 47] and led to

the functorial point of view on quantum field theory (QFT). In this approach, a QFT

is a monoidal functor from a category of cobordisms of fixed dimension (with additional

structure, depending on the particular field theory) called the spacetime category, to a given

monoidal target category, e.g. the category of vector spaces. In this case, a topological

QFT associates, to (d− 1) oriented closed manifolds γ, vector spaces

Z : γ → Z(γ) .

The vector space Z(γ) is called the space of boundary states. This association should

satisfy certain properties, in particular it should agree with orientation reversing map

Z(γ) ∼= Z(γ)∗

with γ̄ the orientation-reversed (d − 1)-manifold and Z(γ)∗ the dual vector space, and

should preserve the monoidal structure:

Z(γ t γ′) = Z(γ)⊗ Z(γ′) .

To d-manifolds with boundary, Z associates linear maps between vector spaces associated

to the boundaries. If Σ is a cobordism Σ: γ −→ γ′, then the linear map

Z(Σ): Z(γ) −→ Z(γ′)

1



Chapter 1. Introduction

can be viewed as an element Z(Σ) ∈ Z(γ)∗ ⊗ Z(γ′) = Z(∂Σ), where ∂Σ = γ t γ′ is the

boundary of Σ. The vector Z(Σ) is called the state or the partition function on Σ. The

partition function of the composition of two cobordisms γ
Σ−→ γ′

Σ′−→ γ′′ is obtained by

Z(Σ ∪γ′ Σ′) = 〈Z(Σ), Z(Σ′)〉γ′

where 〈−,−〉γ′ is the dual pairing between Z(γ′) and Z(γ′) = Z(γ′)∗.

In 1 dimension this setting can be used to describe ordinary quantum mechanics:

1-dimensional manifolds with boundaries are interpreted as time intervals, to the end-

points is associated the quantum Hilbert space and to the time interval is associated the

corresponding evolution operator; the gluing of two time intervals corresponds to the usual

composition rule for propagators.

A lagrangian field theory is described classically by a local action functional Scl.
Σ on

the space of classical fields Fcl.
Σ associated to a d-manifold Σ, e.g. Fcl.

Σ can be the space of

sections of a vector bundle over Σ. A relevant question is how to construct a functorial

quantum field theory starting from a classical action functional. The BV-BFV formalism

aims to give an answer to this question and, as we will see in more detail, to extend this

idea to manifolds with higher-codimension boundaries, e.g. corners.

Gauge symmetries and BV formalism

A key feature of many relevant field theories is gauge symmetry. For example, all known

classical topological field theories have gauge symmetries. This kind of symmetry occurs

when there is some field degree of freedom which is not determined by the equations of

motion. The evolution of such gauge degrees of freedom is arbitrary and, thus, not physical.

As a consequence, physical observables cannot depend on such degrees of freedom or, in

other words, physical observables are invariant under gauge transformations. Of course,

non-physical degrees of freedom could be eliminated from the theory by assigning to them

an arbitrary, but fixed, value. Nevertheless, it is not often convenient to do so as this could

spoil some nice properties of the theory or lead to unnecessary complications. Therefore

it is typically preferred to use an excess of degrees of freedom in order to obtain a more

transparent theory.

The Batalin-Vilkovisky (BV) formalism gives a cohomological description of physical

observables for field theories defined on closed manifolds [7–9]. For simple enough gauge

symmetries the BV formalism reproduces, for a certain class of gauge-fixings, the BRST

quantization. Though, for more complicated symmetries (i.e. reducible or open gauge

symmetries) BRST fails and it is necessary to use the BV construction.

The BV formalism is based on an odd symplectic extension of the space of classical

fields. Near to the classical fields φ ∈ Fcl.
Σ , for each gauge-symmetry (and for each re-

ducibility stage in case of reducible symmetries) there is a ghost field η and for each field

there is an antifield φ‡ and η‡. This enriched space of fields, ghosts and antifields FΣ is a

graded manifold and it is endowed with an odd symplectic structure ω of degree |ω| = −1.

2



Chapter 1. Introduction

The gauge-symmetry of the classical theory is encoded in a differential Q acting on func-

tions over FΣ. This is an hamiltonian vector field ιQω = dS, where the BV action S is

an extension of the classical action S. The property Q2 = 0 of the differential, using its

hamiltonianity, can be translated in a condition for the BV action, called Classical Master

Equation (CME): {S,S} = 0, where {−,−} are the Poisson brackets given by the sym-

plectic form ω. The classical observables – i.e. gauge-invariant functionals of the classical

fields, evaluated on-shell – are recovered as the degree-zero component of the cohomology

of Q: H0
Q(FΣ).

The path-integral quantization is defined by integrating the exponential of the BV

action over a lagrangian submanifold L ⊆ FΣ, called gauge-fixing lagrangian:

ZΣ :=

∫
L⊆FΣ

e
i
~S[Φ] [DΦ] .

Since the space of fields is typically infinite-dimensional, the path-integral is not defined

measure-theoretically and has to be understood perturbatively as a formal power series

in ~, with coefficients given by amplitudes of Feynman diagrams.

For the partition function ZΣ to be independent on deformations of the gauge-fixing

lagrangian, the BV action has to be a solution of the Quantum Master Equation (QME)

∆e
i
~S[Φ] = 0 ,

where ∆ is an odd second order differential operator called BV laplacian.1 Even though

the partition function is invariant under deformations of the gauge-fixing, it may happen

that two lagrangians are not in the same homology class; this can give rise to inequivalent

gauge-fixings.

The gauge-fixed action SL inherits an odd symmetry QπL, which we call residual sym-

metry, from the BV differential. This symmetry depends not only on the lagrangian L
but also on a local symplectomorphism of a neighbourhood of L with the cotangent bun-

dle T ∗[−1]L, with the canonical symplectic structure; we call this structure a symplectic

tubular neighbourhood. In some examples – where BRST works – and for a certain choice

of local symplectomorphism, the residual symmetry coincides with the BRST symmetry.

The residual symmetry, in general, squares to zero only on-shell and defines an on-shell

cohomology which depends only on the homology class of L.

Poisson sigma model and A-model observables

BV formalism may lead to recognize apparently unrelated theories as different gauge-

fixings of the same field theory. An example of this relation can be found by comparing

1 The BV laplacian is actually well-defined only when the space of fields is finite-dimensional, e.g. for

residual fields or zero-modes. In the infinite-dimensional setting, ∆ needs to be regularized when acting

on local functionals.

3



Chapter 1. Introduction

the Poisson sigma model (PSM) with Witten’s A-model, which are two relevant topological

quantum field theories.

The A-model is a sigma model of maps from a Riemann surface to a symplectic mani-

fold and can be constructed, when the target space is Kähler, as a topological twist of the

supersymmetric sigma model. It has a supersymmetry Q which, extending the model by

introducing auxiliary fields, squares to zero off-shell. This supersymmetry is responsible

for the localization of the A-model on the space of holomorphic maps. A-model observables

compute Gromov-Witten invariants of the target symplectic manifold.

The AKSZ construction is a general procedure to lift certain geometrical data from a

source – a differential graded manifold with an invariant measure – and a target manifold

– a differential graded symplectic manifold with an hamiltonian differential – to produce

the BV data on the space of maps between them [2]. The BV formulation of the PSM

can be naturally found by the AKSZ construction applied to the space of maps between

the shifted tangent bundle of a 2-dimensional surface T [1]Σ and the shifted cotangent

bundle of a Poisson manifold T ∗[1]M (see e.g. [11, 15]). When the target is a general

Poisson structure, possibly degenerate, the PSM on the disc reproduces – for a particular

gauge-fixing – the Kontsevich formula for deformation quantization of the target Poisson

structure as a correlator of boundary observables [18]. For a different gauge-fixing, defined

by using complex structures on source and target manifolds in the case of a Kähler target,

the gauge-fixed action of PSM reproduces the A-model action after the integration of some

fields [15].

In [12] we show how the relevant structures of the A-model can be interpreted in

terms of natural constructions in its BV formulation as a complex gauge-fixing of the

PSM. In particular, the A-model supersymmetry Q squaring to zero off-shell is shown to

coincide with the residual symmetry QπL for a particular choice – depending on additional

structure of the target manifold – of the symplectic tubular neighbourhood of the gauge-

fixing lagrangian.

As every AKSZ theory, the PSM comes with a hierarchy of BV observables given by

the lift to the space of fields of the cohomology for the differential of the target, which

for the PSM is the Poisson cohomology for multivector fields. We prove the equivalence

between the A-model observables and the AKSZ hierarchy of observables of the PSM by

showing their difference to be (Q − d)-exact. This gives a natural interpretation of the

independence of the Gromov-Witten invariants on the choice of the compatible complex

structure in terms of independence on the choice of the gauge fixing.

Having understood the A-model as a gauge-fixing of an AKSZ theory, in [13] we extend

this discussion to the case where the target Poisson manifold is an hamiltonian G-space.

In this equivariant version of the PSM, the AKSZ observables are associated to the equiv-

ariant cohomology of the target. The homotopy between A-model and AKSZ observables,

found in the non-equivariant case, can be extended to the equivariant PSM and leads

to the definition of a hierarchy of A-model observables also in the equivariant setting.

4



Chapter 1. Introduction

Contrary to the AKSZ observables, the A-model observables are well behaved under the

gauge-fixings we consider and are naturally closed under the residual symmetry.

We construct two different gauge-fixings for the equivariant PSM. With the first one,

we obtain a gauge-fixed action which, if the symplectic reduction of the target manifold is

smooth, is conjectured to describe the A-model on the symplectic reduction. The second

gauge-fixing considered is constructed to recover the supersymmetric Yang-Mills action

and supersymmetry as the Lie algebra sector of the equivariant PSM gauge-fixed action

and residual symmetry.

BV-BFV quantization

The BV-BFV formalism, introduced in [22–24, 26], extends the BV quantization of gauge

theories to manifolds with boundary, in the spirit of Atiyah-Segal functorial approach to

quantum field theories. It combines (a deformation of) the BV formulation for the bulk

theory with a Batalin-Fradkin-Vilkovisky (BFV) theory on the boundary.

The BFV theory on the boundary, similarly to BV, gives a cohomological description of

the gauge symmetries of the boundary. Geometrically, the BFV space of boundary fields is

an even symplectic graded manifold (F∂ , ω∂) with an odd cohomological hamiltonian vector

field Q∂ = {S∂ ,−}, where the odd functional S∂ is the boundary action.

A classical BV-BFV theory associates to (d − 1)-closed manifolds exact BFV mani-

folds F∂ , and to d-manifolds with boundary BV manifolds over BFV manifolds, which are

(−1)-symplectic manifolds of bulk fields (FΣ, ωΣ) with a differential QΣ and a projection

π : FΣ −→ F∂Σ from bulk to boundary fields such that QΣ projects to Q∂Σ. The main

structure relation is the modified Classical Master Equation (mCME)

ιQΣ
ωΣ = dSΣ + π∗α∂Σ ,

where SΣ is the bulk action and α∂Σ is a primitive of the boundary symplectic form ω∂Σ =

dα∂Σ. The AKSZ construction can be naturally extended to manifolds with boundary and

gives examples of the above BV-BFV structure.

The gluing of two manifolds with boundary Σ = Σ1 ∪γ Σ2 corresponds, for classical

BV-BFV theories, to the fiber product over the space of boundary fields corresponding to

the gluing interface: FΣ = FΣ1 ×Fγ FΣ2 .

A classical BV-BFV theory can be seen as a functor from the category of d-dimensional

cobordisms to the BV-BFV category, with objects given by BFV manifolds and morphisms

given by BV manifolds over BFV manifolds.

The quantization of a classical BV-BFV theory depends on the choice of a lagrangian

fibration of the space of boundary fields. Different choices give different realizations of

the space of quantum states, which is defined as the graded complex (HP∂ ,Ω∂) where HP∂
is the space of half-densities Dens

1
2 (BP∂ ) on the leaf space BP∂ of the fibration, and the

coboundary operator Ω∂ is the quantization of the boundary action Ω∂ = S∂
(
q,−i~ ∂

∂q

)
.

5
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The partition function is obtained perturbatively by the path-integral of the bulk

action over a lagrangian in the fibers of the projection π̃ : FΣ −→ F∂Σ −→ BP∂ . This

perturbative path-integral is actually ill-defined in presence of zero-modes, since in this

case the kinetic operator can not be inverted to give the propagator. We have thus to split

a (finite-dimensional) space of residual fields VΣ – containing at least the zero-modes –

and path-integrate only on its complement.

The BV-BFV partition function depends, thus, on the boundary fields and on the

residual fields: it is an half-density ZΣ ∈ Dens
1
2 (BP∂Σ) ⊗ Dens

1
2 (VΣ). For the partition

function to be independent on deformations of the gauge-fixing lagrangian, it has to be a

solution of the modified Quantum Master Equation (mQME)

(Ω∂Σ + ~2∆VΣ
)ZΣ = 0 ,

where ∆VΣ
is the BV laplacian on the space of residual fields.

The spaces of residual fields form a partially ordered set of different realizations. Pass-

ing from bigger to smaller realizations – by a BV pushforward of the partition function –

can be interpreted as a version of Wilson’s renormalization group flow, and preserves the

mQME.

The gluing of partition functions is done by pairing the states in HPγ , where γ is the

gluing interface. The glued partition function is then in a realization with the space of

residual fields VΣ1×VΣ2 . To obtain the partition function on Σ = Σ1∪γ Σ2 in a realization

VΣ ⊆ VΣ1 × VΣ2 , the gluing formula is thus:

ZΣ =

∫
L⊆Y
〈ZΣ1 , ZΣ2〉HPγ ,

where L is a lagrangian submanifold and we assumed VΣ1 × VΣ2 = VΣ × Y.2

To obtain a state in HPγ from the partition function, ZΣ has to be globalized. There

are different globalization procedures which can be applied to obtain a partition function

depending only on the boundary fields; the relation between these procedures is not yet

completely understood. In this work, we will obtain global answers by integrating out the

finite-dimensional space of residual fields by a BV-pushforward. This is a non-perturbative

integration and, depending on the lagrangian gauge-fixing chosen for the BV-pushforward,

there may be inequivalent answers for the globalized partition function.

2D Yang-Mills on manifolds with corners

In [33] we apply BV-BFV formalism to the study of perturbative Yang-Mills theory on

2-dimensional surfaces with boundary. In doing so, we actually have to construct an

extension of this theory to manifolds with corners. The general BV-BFV quantization for

manifolds with higher-codimension strata of the boundary is still a work in progress.

2 The triviality condition for the bundle VΣ1 × VΣ2 −→ VΣ can actually be relaxed: it is sufficient for

this bundle to be a “Hedgehog fibration” [26] for the BV-pushforward to make sense.

6



Chapter 1. Introduction

2D Yang-Mills is a gauge field theory described, in the first order formalism, by the

classical action functional:

Scl
YM =

∫
Σ
〈B, dA+A ∧A〉+

1

2
(B,B)µ ,

depending on a 1-form A valued in g – the Lie algebra of the gauge group G – a g∗-valued

function B and a background area form µ on the worldsheet Σ. This is a perturbation

of the non-abelian BF theory obtained in the limit of zero area µ → 0. The classical BV

formulation of 2D YM is obtained by promoting the fields A and B to non-homogeneous

Lie algebra valued differential forms, the superfields A ∈ Ω(Σ; g)[1] and B ∈ Ω(Σ; g∗)

composing the BV space of bulk fields FΣ. The boundary theory is fixed by the projection

π : FΣ −→ F∂Σ = Ω(∂Σ; g)[1] ⊕ Ω(∂Σ; g∗), given by the restrictions A and B of the bulk

fields to the boundary ∂Σ.

The goal is to compute explicitly the complete (i.e. to all orders in ~) perturbative

partition function of 2D YM on an arbitrary surface and to compare our perturbative

result to the non perturbative solution known in literature [40, 53]. To make this problem

approachable, we use the features of BV-BFV quantization.

The main tool comes from the cutting/gluing property of BV-BFV. The perturbative

effective action of 2D YM is given by infinitely many Feynman diagrams, which generally

are individually very hard to compute. Gluing properties of the propagators allows to

decompose this problem in smaller steps, suitably cutting a diagram into simple enough

components and then gluing back their contributions. This can be seen as a special gauge-

fixing, involving the data of cutting the surface on which the diagram originally lives.

µ ' B
B

A µ A
A

B

Thus, it is sufficient to compute the partition function on a set of building blocks for the

surfaces to obtain, by a gluing procedure, the answer for any surface.

Another simplification comes from the symmetries of 2D YM, which allow to shift

the area form µ by an exact form to concentrate the area near boundaries. Thus we can

compute all the building blocks in the zero-area limit, i.e. for non-abelian BF theory,

except for a single cylinder which, by gluing, assigns a finite area to other surfaces.

A gauge fixing for 2D YM can be induced by a weak Hodge decomposition of the space

of fields and defines a choice for the propagator of the gauge-fixed theory. An important

class of propagators, which we use extensively and gives a fundamental contribution to

the computability of the perturbative series, is given by the axial gauge. This is a singular

gauge for product manifolds obtained collapsing first one of the two factors and then the

other; axial gauge corresponds to certain singular metric on the product manifold such

that the ratio of the scales of the two factors tends to zero or to infinity.
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Chapter 1. Introduction

The BV-BFV partition function is defined modulo (Ω∂Σ + ~2∆VΣ
)-exact terms. We

exploit this fact to simplify the computations by finding a suitable representative for ZΣ.

This is done by computing the partition function in a small model for the space of boundary

states, and then lifting the result to the full space of states.

For some surfaces, e.g. the cylinder in A-A polarization, it was also convenient to

compute only the global partition function, obtained by integrating out residual fields.

This simplifies the combinatorics of diagrams and reduces the number of relevant diagrams.

Using all the above methods, we compute the complete perturbative partition function

for the disk in B-polarization and the cylinders in A-A and B-B polarizations in the limit of

zero area, and the cylinder in A-B polarization for finite area. By gluing the above building

blocks, we obtain all the cylinders and disks with finite area. The missing building block,

needed to be able to glue together all the surfaces with boundary, is given by the pair of

pants; this last building block eludes the analysis we are able to do with the above tools

and requires the extension of the theory to manifolds with corners.

The space of fields which we assign to corners is defined by the restriction of the fields

associated to the edges and it carries an odd symplectic structure of degree +1. We now

decorate the boundary – both edges and corners – with polarizations, chosen independently

for each boundary component.

In this setting, there are a number of new operations involving corners. We can:

a) split an edge by inserting a corner in the same polarization;

b) merge two consecutive edges, if they are in the same polarization;

c) switch the polarization of a corner separating two edges in opposite polarizations;

Moreover, in some particular gauges, we can collapse an edge into a corner carrying the

same polarization. Two domains can be glued along edges, provided that the corners

where they meet are in the same polarization.

With this operations, we have a set of building blocks for surfaces with corners. In

particular, the minimal set of building blocks necessary to recover all the surfaces with

boundary (but without corners), is given by a triangle with all the edges and corners in

the A polarization, and a “bean”– a disk with zero area and two corners – with edges in

B polarization and corners in α polarization. Indeed, we can obtain any surface from a

triangulation by associating beans to thickened edges and using them to glue together the

triangles:
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Chapter 1. Introduction

In the presence of corners, the operator Ω∂ gets corrected by corner contributions,

also depending on interactions between corners and adjacent edges. We construct Ω∂

explicitly, with corner contributions expressed in terms of generating functions of the

Bernoulli numbers. We prove that Ω2
∂ = 0, so that the space of states for a stratified

boundary is a cochain complex, and we prove that the partition function for manifolds

with corners solves the mQME (Ω∂Σ + ~2∆VΣ
)ZΣ = 0.

Moreover, we show that the space of states for a stratified circle can be decomposed into

contributions of individual corners and edges. The space of states assigned to an edge is a

dg-bimodule over the space of states assigned to the corners corresponding to its endpoints.

In particular, the space of states for a corner in α-polarization is the supercommutative

dg-algebra ∧•g∗ with Chevally-Eilenberg differential. The space of states for a corner in

β-polarization is S•g with zero differential; the requirement for the module product to be

a chain map, w.r.t. Ω∂ on the edge, forces a non-commutative ∗~-product on S•g, written

in terms of the Baker-Campbell-Hausdorff formula. This structure is connected with the

Baez-Dolan-Lurie picture [4, 39] for extended topological QFT, in which codimension 2

strata are mapped to algebras, codimension 1 strata to bimodules and codimension 0

strata to bimodule morphisms.

To summarize, the main results are the following:

i) extension of the BV-BFV formulation of 2D YM to manifolds with corners.

ii) expression of the complete perturbative partition function for manifolds with bound-

ary and corners in terms of explicitly computed building blocks and gluing rules.

iii) comparison of our perturbative result with the non-perturbative solution known in

literature.

1.1 Plan of the thesis

This thesis can be divided in two main parts. The first part, containing the results

published in [12, 13], is about the Poisson sigma model on closed surfaces in BV formalism

and is constituted by Chapters 2,3,4.

In Chapter 2 we will review the BV formalism for closed manifolds, emphasising the

main constructions we will use in the following, namely the residual symmetry of the

gauge-fixed action and the AKSZ construction of BV theories.

In Chapter 3 we compare the Poisson sigma model with the A-model, giving a BV

interpretation to the A-model action – as a complex gauge-fixing of the PSM – to the

supersymmetry – as the residual symmetry of the PSM for a particular choice of symplectic

tubular neighbourhood of the gauge-fixing lagrangian – and to the A-model observables,

homotopically equivalent to the AKSZ observables of the PSM.

In Chapter 4 we construct an equivariant extension of the A-model as a gauge-fixing

of an AKSZ theory. We introduce, in particular, a hierarchy of A-model observables

9



1.1. Plan of the thesis

– which are well-behaved under the gauge-fixings we consider – and prove that they are

equivalent to the AKSZ observables. We then discuss different gauge-fixings of this theory,

establishing a connection with either the A-model on the symplectic reduction of the target

or with the topological Yang-Mills action coupled with the A-model on the target Poisson

manifold.

Chapter 5 constitutes the second part of this work and contains the results published

in [33] for 2D Yang-Mills in BV-BFV formalism on surfaces with boundary and corners.

In Section 5.2 we will review, for the reader’s convenience, the basics of the BV-BFV

formalism introduced in [22–24, 26] emphasizing the constructions that we will use for the

analysis in the rest of the thesis.

Sections 5.3,5.4 contain the main original results of this work. We will first, in Sec-

tion 5.3, compute the perturbative partition function for 2D Yang-Mills on disks and

cylinders. Then, in the first part of Section 5.4, we will discuss the extension of the

BV-BFV formalism to manifolds with corners for 2D YM. This extension will be used in

the second part of Section 5.4 to compute the perturbative 2D YM partition function on

surfaces of arbitrary genus, which induces in Ω-cohomology the known non-perturbative

answer [40, 53].

The reader who is well-acquainted with BV-BFV formalism and would like to take

the shortest route to the proof of the Main Theorem, might want to read the sections

in the following order. Sections 5.3.1, 5.3.3, 5.3.4 for the building blocks (I), (III), (IV),

which are then assembled into the Yang-Mills on a disk in Sections 5.3.5, 5.3.5. Then in

Section 5.4.1 the logic of extension to corners is explained and in Section 5.4.3 the “bean”

is computed. Finally, in Sections 5.4.6, 5.4.7 polygons (obtained from the disk) are glued

via beans into an arbitrary surface and thus the comparison theorem 5.4.16 is proven.

In Section 5.5 we will discuss how to compute, in this setting, Wilson loop observables

for both non-intersecting and intersecting loops, recovering in Ω-cohomology the known

non-perturbative result.
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Chapter 2. Background: BV formalism

Chapter 2
Background: BV formalism

In this chapter we give a brief introduction to the Batalin-Vilkovisky (BV) formulation of

gauge field theories in the graded geometry setting.

The BV formalism gives a cohomological description of the algebra of gauge-invariant

functions on the stationary surface of a classical action functional. This algebra can be find

in two steps: restricting to the stationary surface and quotienting by gauge transforma-

tions. The first step is implemented by taking an homological resolution for the functions

on the stationary surface; the second step by constructing a differential (modulo the reso-

lution differential) encoding the gauge symmetries, and passing to its cohomology on the

stationary surface. These two steps are combined by homological perturbation theory to

obtain the relevant algebra of observables as the cohomology of the BV differential [32].

We will not construct here the BV space of fields and action starting from a classical

gauge theory as sketched above; instead, we will describe the general geometrical structure

of BV theories. The classical gauge-invariant action can be then recovered by setting to

zero all the fields with non-zero ghost number in the BV action.

The BV space of fields is a (−1)-symplectic manifold with a cohomological operator Q
and the BV action S satisfying the classical master equation ιQω = dS. Moreover, there

is a second order operator ∆, the BV Laplacian, which squares to zero and generates the

Poisson brackets for the symplectic structure. In the quantum theory, the action has to

satisfy the quantum master equation ∆e
i
~S = 0. This gives the gauge invariant properties

of the partition function, defined by fixing the gauge on a lagrangian submanifold. We will

show that the gauge-fixed action has a residual symmetry, depending on the geometrical

data of a symplectic tubular neighbourhood of the lagrangian, and that this symmetry

defines an on-shell cohomology characterising the gauge-fixed observables.

We will describe the BV formalism starting from its classical aspects, in Section 2.1,

and then passing to the quantum theory in Section 2.2. In Section 2.3 we will discuss

the residual symmetry of the gauge-fixed BV action. Finally, in Section 2.4 we describe

the AKSZ construction of BV theories on the space of maps between graded manifolds.
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In Appendix A we collect the basic notions of graded geometry which we need in the

following.

For notational convenience, we will restrict to the case of bosonic classical theories only,

so that the parity of fields coincides with the ghost number modulo 2. The Z-grading given

by the ghost number, which will be denoted by | · | , will thus give the (super)commutative

properties of the fields.

2.1 Classical BV formalism

In the BV formalism the space of classical fields φ is enriched to contain also families

of ghosts η (for each reducibility stage of each gauge symmetry of the classical action

functional) and antifields φ‡ and η‡. The fields come with a grading, called ghost number,

assigning positive degree to ghosts and negative degree to antifields. These fields can

be interpreted as coordinates of a graded manifold, or more precisely of a (classical) BV

manifold.

Definition 2.1.1. A classical BV manifold is a differential graded symplectic manifold

(F, ω,Q) (see definition A.2.6), where the symplectic form has degree |ω| = −1 and the

differential is an hamiltonian vector fieldQ = {S, } for a solution S ∈ C0(F) of the Classical

Master Equation (CME) {S,S} = 0, where { , } are the Poisson brackets induced by the

symplectic structure. From the algebraic point of view, functions over F are endowed, by

the symplectic form, with the structure of a Gerstenhaber algebra.

Remark 2.1.2. It can be proved [46] that any graded symplectic manifold (N , ω) of

degree |ω| = −1 is symplectomorphic to T ∗[−1]M for some graded manifold M . This

symplectomorphism is non canonical and so it is the identification of fields, corresponding

to coordinates on the base M , and antifields, corresponding to fiber coordinates. If we

introduce local Darboux coordinates (x, x‡) the bracket reads

{F,G} =
∂rF

∂xa
∂lG

∂x‡a
− ∂rF

∂x‡a

∂lG

∂xa
, (2.1)

where ∂r and ∂l denote the right and left derivative, respectively. The CME is expressed

in these local coordinates as:
∂rS
∂x‡a

∂`S
∂xa

= 0 . (2.2)

Remark 2.1.3. Notice that for the differential, which is symplectic because of the com-

patibility condition with ω , the condition to be hamiltonian is not a trivial one, since

|Q|+ |ω| = 0 (cf. A.2.16).

Remark 2.1.4. A meaningful operation is to set to zero all fields with degree of definite

sign, defining the submanifolds F>0, F60 and F0 = F>0 ∩ F60 in the space of fields F.

Algebraically, this corresponds to quotienting the algebra of functions C(F) by the ideals
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Chapter 2. Background: BV formalism

generated by functions of degree respectively negative, positive or different from zero. The

classical action is recovered as the restriction Scl. = S|F0 of the master action to F0.

Remark 2.1.5. The BV differential Q induces by restriction a differential Q on F60.

This differential, in the BV construction, corresponds to the operator δ which gives the

homological resolution of the algebra of functions on the stationary surface (see [32]).

Therefore in [30] Felder and Kazhdan define a BV variety requiring, in addition of the

conditions in 2.1.1, also that the cohomology of Q on F60 is concentrated in zero degree.

2.2 Quantum BV formalism

A key ingredient in quantum BV theories is the BV Laplacian, which is involved in the

quantum master equation.

Definition 2.2.1. A BV algebra is a Gerstenhaber algebra (A, ·, { , }) together with a

nilpotent linear operator

∆: A→ A , ∆2 = 0 , (2.3)

which generates the Poisson brackets according to:

{f, g} = (−1)|f |∆(f · g) + (−1)|f |+1(∆f) · g − f ·∆g . (2.4)

∆ is called the BV Laplacian.

On the symplectic manifold T ∗[−1]M, an invariant definition of the BV Laplacian can

be given relating it to the divergence of hamiltonian vector fields:

∆vf :=
1

2
(−1)|f |divµvXf , (2.5)

where v is a Berezinian form on M, µv is the induced Berezinian on T ∗[−1]M and Xf =

{f, }. In local Darboux coordinates the Laplacian can be expressed as:

∆vf =
∂`

∂x‡a

∂r
∂xa

f +
1

2
{f, ln ρv} , (2.6)

where ρv is the density associated to the Berezinian µv. It can be explicitly verified, using

the property (A.46) of the divergence operator, that ∆v generates the antibracket and is

nilpotent, so that C(T ∗[−1]M) acquires the structure of a BV algebra [37].

The partition function is defined as the integral

Z =

∫
L

√
ρ e

i
~S , (2.7)

where the gauge-fixing consists in the choice of the lagrangian submanifold L ⊂ F and
√
ρ ∈ Dens

1
2 (F) is a reference half-density such that ∆

√
ρ = 0.

The role of the master equation is to ensure the path-integral to be independent on

the gauge chosen. This is established in the following theorem proved by Schwarz [46].
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Theorem 2.2.2. The integral of ∆µ-closed functions is invariant under deformations of

the lagrangian submanifold:∫
L

√
µ f =

∫
L′

√
µ f if ∆µf = 0 , (2.8)

where L and L′ are in the same homology class. Moreover the integral of ∆-exact functions

vanishes for any choice of lagrangian submanifold L:∫
L

√
µ∆µf = 0 . (2.9)

In BV theories we have
√
µ := e

i
~S
√
µv, where

√
µv is a reference half density, e.g. the

one induced by µv (see Appendix A.3).

Example 2.2.3. Let us consider the graded symplectic manifold (T ∗[−1]M,ω) with

canonical symplectic form and the Berezinian µv induced by a volume form v ∈ Ωm(M)

on M . On T ∗[−1]M take as lagrangian submanifold the conormal bundle LC = N∗[−1]C

of a submanifold C ⊂M , with induced Berezinian
√
µv (see example A.3.2). We have:∫

LC

√
µv f =

∫
C
φv(f) , (2.10)

where φv is the isomorphism between C•(T ∗[−1]M) and Ωm−•(M) given by the volume

form v. Using the definition (2.6) of the BV Laplacian we see that:∫
LC

√
µv ∆vf =

∫
C
φv(∆vf) =

∫
C

dφv(f) . (2.11)

In this example, due to the above correspondence between BV Laplacian and de Rham

differential, the Schwarz theorems follow from the Stokes theorem: the integral of a d-

exact differential form is zero and the integral on two submanifold C,C ′ ⊂M is the same

if they are in the same homology class.

In this language, a quantum BV theory consists in a BV manifold, with the BV Lapla-

cian ∆µ constructed as above, along with a choice of an homology class of lagrangian

submanifolds. Quantum observables are elements of the cohomology of the BV Laplacian

H∆µ(M). In this way their expectation values

〈O〉 =

∫
L
√
µv e

i
~S O∫

L
√
µv e

i
~S

(2.12)

does not depend on deformations of the lagrangian submanifold L chosen to fix the gauge.

Notice that it is possible to give a canonical choice for L . The canonical submanifold

F>0 defined setting to zero all fields with negative degree is lagrangian indeed. This is

because the symplectic form has degree |ω| = −1 and so F>0 is isotropic; moreover F
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Chapter 2. Background: BV formalism

is always symplectomorphic to T ∗[−1]M and therefore for each coordinate with negative

degree there is one with degree greater than or equal to zero so that F>0 is also lagrangian.

Nevertheless also other choices of lagrangian submanifolds generate well defined, but pos-

sibly inequivalent, quantum theories. This is an important feature of the BV formalism.

Once a theory is selected by the choice of L, one has still the freedom of picking a nice

representative of the homology class of lagrangian submanifolds homologous to L. This

can be viewed as a method to regularize the theory.

2.3 Residual symmetry

In this section we review the general structure of the gauge-fixed residual symmetry in BV

theories [2, 46]. Indeed, for each choice of the gauge-fixing, the gauge-fixed action SL has

an odd residual symmetry QπL induced on L by the CME. As we will see, this symmetry

depends on the choice of a local symplectomorphism between T ∗[−1]L, endowed with the

canonical symplectic form, and a neighbourhood of L in (F,Ω).

The BV operator Q is, because of the classical master equation, a cohomological vector

field. On the contrary, the residual symmetry is not necessarily nilpotent, even if it

could happen that it squares to zero for some particular choice of the symplectomorphism

defining it. However QπL is always on-shell nilpotent, that is, it squares to zero only modulo

equations of motion.

Classically, only on-shell quantities are relevant as the equations of motion always hold.

If one wants observables to be QπL-invariant, it is then enough to impose this condition

on-shell. For the same reason, QπL-invariant functions are physically equivalent if they

differ by an element of the image of QπL modulo equations of motion. Whether or not the

residual symmetry is nilpotent, the algebra of classical observables is then to be identified

with the on-shell cohomology of the residual symmetry. Using homological perturbation

theory one can actually prove that, when the gauge is fixed, the on-shell cohomology of

QπL is isomorphic to the cohomology of the BV operator Q. This is true for every choice

of QπL (with fixed L). In fact, although different choices of the symplectomorphism provide

in general different residual symmetries, the on-shell cohomology of QπL does not depend

on this choice: residual symmetries coming from different choices are always related by

a trivial gauge transformation, so that they are on-shell equivalent and define the same

algebra of classical observables.

Let us start proving the existence of a residual symmetry for the gauge-fixed action.

We begin reminding the definition of tubular neighbourhood and defining a particular

class of tubular neighbourhoods in symplectic graded manifolds.

Definition 2.3.1. LetM be a graded manifold with a submanifold L. A bundle U
π−→ L,

where U is an open neighbourhood of L in M, is called tubular neighbourhood of L if the

zero section s : L→ U coincides with the inclusion ι : L ↪→ U .
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Let now (M,Ω) be a symplectic graded manifold of degree k. We call a tubular neigh-

bourhood U
π−→ L of a lagrangian manifold L ⊆ M a symplectic tubular neighbourhood

if there exists a symplectomorphism between T ∗[k]L, with the canonical symplectic form,

and U , with the symplectic form Ω|U , which is a morphism of fiber bundles.

Remark 2.3.2. More concretely, we can think of this tubular neighbourhood as an atlas

of canonical coordinates {x, x‡} adapted to L (i.e. L = {x‡ = 0}) such that the transition

functions between (x, x‡) and (y, y‡) are (y = y(x), y‡ = (∂x/∂y)x‡) so that the projection

π(x, x‡) = x is well defined.

A tubular neighbourhood U
π−→ L provides a map V 7→ V π

L from tangent vector fields

on M to tangent vector fields on L. This map is defined by

V π
L = ι∗ ◦ V |U ◦ π∗ ∈ X(L) , V ∈ X(M), (2.13)

where V |U is the restriction of V on U and ι : L ↪→ U is the inclusion map.

Thus, once we have chosen a tubular neighbourhood of the lagrangian submanifold on

which we fixed the gauge, we have a vector field on L corresponding to the BV cohomolog-

ical vector field Q = {S, }. For this tangent vector to be a symmetry of the gauge-fixed

action, the tubular neighbourhood has to be compatible with the symplectic structure.

Proposition 2.3.3. Let U
π−→ L be a symplectic tubular neighbourhood of a lagrangian

submanifold L ↪→M. Then the map (2.13) V 7→ V π
L projects the BV differential Q into

a symmetry of the gauge-fixed action:

QπLSL = 0 . (2.14)

Proof. In the Darboux coordinates of Remark 2.3.2, we have π∗f(x, x‡) = (f ◦π)(x, x‡) =

f(x) for any function f ∈ C(L). The coordinate expression for QπL is thus:

QπLf = −ι∗
(
∂rS
∂x‡i

∂`π
∗f

∂xi

)
= −∂rS

∂x‡i

∣∣∣∣
L

∂`f

∂xi
≡ Qπ iL

∂f

∂xi
. (2.15)

We now expand the BV action in the momenta x‡:

S(x, x‡) = SL(x)−Qπ iL (x)x‡i +
1

2
x‡iσ

ij(x)x‡j +O(x‡ 3) , (2.16)

where we defined

σij(x) =

(
∂`∂rS
∂x‡i∂x

‡
j

)
(x, 0) . (2.17)

We see that the components of the residual symmetry are simply the linear term in the an-

tifield expansion of the gauge-fixed action. Plugging this expansion in the master equation

we get:

0 =
1

2
{S,S}(x, x‡) = −

(
∂rS
∂x‡i

∂`S
∂xi

)
(x, x‡) = Qπ iL (x)

∂SL(x)

∂xi
+O(x‡) ,

and so QπL SL = 0 as claimed.
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Remark 2.3.4. The BV construction results in a graded manifold of the form T ∗[−1]N .

Obviously in this case there is the canonical choice L = N of lagrangian submanifold and

U = T ∗[−1]N for the symplectic tubular neighbourhood.

More generally, it can be shown that it is possible to find a symplectic tubular neigh-

bourhood for every choice of L. The odd version of Weinstein’s theorem on the existence

of a local symplectomorphism between a neighbourhood of a lagrangian submanifold and

T ∗[−1]L was proved in [46]. It must be pointed out that such a choice is non canonical

and non unique: each symplectomorphism of M into itself which keeps L fixed defines a

new symplectic tubular neighbourhood.

The residual symmetry QπL depends, through the projection π, on the choice of the

symplectic tubular neighbourhood. This ambiguity corresponds to the freedom to combine

the residual symmetry with a trivial gauge transformation:

Qπ iL (x)→ Qπ iL (x) +
∂rSL(x)

∂xj
µij(x) , with µij = (−1)(|xi|+1) (|xj |+1)µji . (2.18)

Indeed, let us see what happens if we change the symplectomorphism composing it with

a canonical transformation that leaves L fixed. Suppose to have a finite canonical trans-

formation (x, x‡) 7→ (x, x‡) generated by the function F (x, x‡) [7, 8, 50]. Then:

x‡i =
∂F

∂xi
xi =

∂F

∂x‡i
. (2.19)

Since we want L to remain the same, we have to impose that x‡ = 0 if x‡ = 0. The new

residual symmetry QFL defined by F is easily found to be:

QFL = −∂rS
∂x‡i

∣∣∣∣
x‡=0

∂

∂xi
= −

(
∂rS
∂x‡j

∂rx
‡
j

∂x‡i
+
∂rS
∂xj

∂rx
j

∂x‡i

)∣∣∣∣
x‡=0

∂

∂xi
=

= QπL −
∂rSL
∂xj

(
∂r∂`F

∂x‡i∂x
‡
j

)∣∣∣∣
x‡=0

∂

∂xi
.

(2.20)

We see that the tensor µij defined in (2.18) is, in this example:

µij =
∂r∂`F

∂x‡i∂x
‡
j

∣∣∣∣
L
, (2.21)

with the correct symmetry properties (remember that |F | = −1). Notice that the variation

of the residual symmetry depends only on the quadratic terms of the generating function

with respect to the antifields.

We anticipated that the residual symmetry, unlike Q, doesn’t in general square to zero,

as specified in the following

Proposition 2.3.5. The gauge-fixed symmetry QπL squares to zero on-shell :

1

2
[QπL,QπL] = σij

∂SL
∂xj

∂

∂xi
, (2.22)

where σij is the quadratic term in the antifield expansion of the action (2.16).
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Proof. Using the expansion (2.16) of the action to compute the linear term in the antifields

x‡ of the master equation, we get:

x‡i
∂rQπ iL
∂xj

Qπ jL +
∂rSL
∂xj

σjix‡i = 0 . (2.23)

From the definition of σij given in (2.17) we have:

|σij | = |xi|+ |xj | ; σij = (−1)|x
i| |xj |+1σji , (2.24)

The claim, then, follows using (2.23) to compute
[
QπL,QπL

]
:

1

2

[
QπL,QπL

]i
=
∂rQπ iL
∂xj

Qπ jL = −∂rSL
∂xj

σji = σij
∂`SL
∂xj

.

This, in particular, allows to define the on-shell cohomology of QπL. In fact, due to the

CME, the residual symmetry preserves the space of critical points of SL. We call then

on-shell cohomology the cohomology of the restriction of the residual symmetry to the

critical points. Moreover, since a change of the tubular neighbourhood only modifies the

residual symmetry by a trivial transformation, we have that the on-shell cohomology does

not depend on the choice of tubular neighbourhood. We denote it as Hon(Q,L).

Proposition 2.3.6. The restriction of functions on the lagrangian submanifold gives a

map in cohomology:

r : H(Q,M) −→ Hon(Q,L) . (2.25)

Moreover, if the gauge fixed action has no gauge symmetries, this map is an isomorphism

Proof. The condition of being Q-closed, once restricted to L, reads:

QπL(f)|L + Vf (S) = 0 , (2.26)

where VF = ∂rF

∂x‡i

∣∣∣
L

∂
∂xi
∈ X(L). Therefore FL is QπL-closed modulo equations of motion. For

the proof of the fact that, when SL has no gauge symmetries, this map is an isomorphism

see e.g. [32], Thm. 18.5.

We will be interested in the off-shell residual symmetry. The freedom of changing the

symplectic tubular neighbourhood can be used to look for a residual symmetry squaring

to zero on all L, not only on-shell. From (2.16), a tubular neighbourhood defines the

quadratic part of the BV action σ = 1
2x
‡
aσabx

‡
b ∈ C−2(T ∗[−1]L), where the grading is

the (opposite) fiber degree. By looking at (2.22), we see that the residual symmetry

QπL squares to zero iff δSL(σ) = 0, where δSL = ιdSL . When this happens, the off-shell

cohomology is also defined, namely the cohomology of the residual symmetry. It is clear

from (2.26) that the restriction of a BV observable to the gauge fixing lagrangian is not

in general closed under the residual symmetry.

18



Chapter 2. Background: BV formalism

2.4 AKSZ construction

In the previous sections we outlined the geometrical structure of BV theories. The classical

approach to BV, starting from a gauge invariant action functional, requires first to con-

struct the appropriate space of fields and then to find a solution of the master equation

with some boundary conditions. This task can be very difficult to pursue for compli-

cated gauge theories. We will now illustrate a method, due to Alexandrov, Kontsevich,

Schwarz and Zaboronsky [2], to directly construct (possibly infinite dimensional) classical

BV theories. Instead of starting with a gauge invariant classical action, this is eventually

recovered from a solution of the classical master equation setting to zero all fields with

negative degree.

The AKSZ method is essentially a way to induce a differential graded symplectic

structure on the space of maps (cf. Appendix A.4) between two graded manifolds with

opportune geometrical structures. A review of this construction can be found in [19] [45].

The starting data are the following:

The Source: A dg manifold (N , D) with a non degenerate D-invariant volume form µ

of degree |µ| = −n− 1 for a positive integer n (cf. (A.41) (A.42)).

The Target: A dg symplectic manifold (M, ω,Q) with |ω| = n.

From lemma A.2.16 it follows that Q = {Θ, } for some function Θ ∈ Cn+1(M) which

solves the equation {Θ,Θ} = 0 .

As we are going to discuss, the differentials and the symplectic structure of these

two spaces induce a dg symplectic structure on Maps(N ,M) such that the differential is

hamiltonian and so we will also have a solution of the CME on the space of maps.

Let us start with the dg structure. The groups of invertible maps Diff(N ) and Diff(M)

act naturally on Maps(N ,M) by respectively left and right composition. At the infinites-

imal level this means that for each vector field on N or M there is a corresponding

derivation on Maps(N ,M). For any V ∈ X(N ) and W ∈ X(M) , we will indicate with V̂

and |W the corresponding vector fields induced on Maps(N ,M) . Because left and right

group action commutes, then V̂ and |W always commute too. Moreover any cohomological

vector field on N or M induces a vector field that squares to zero. Therefore, any linear

combination

Q = aD̂ + b qQ (2.27)

is a differential on Maps(N ,M) .

The symplectic structure Ω on Maps(N ,M) is induced by the one ofM. Consider the

product N ×Maps(N ,M). The evaluation map Ev : N ×Maps(N ,M)→M defined by

Ev : (p, φ) 7→ φ(p) (2.28)

allows to pull back differential forms. Moreover, the volume form µ on N defines a fiber

integration µ∗ : Ωk(N ×Maps(N ,M))→ Ωk(Maps(N ,M))[−n− 1] of differential forms:

(µ∗η)x(v1, . . . , vk) :=

∫
N
µ(y) η(y,x)(v

′
1, . . . , v

′
k) , (2.29)

19



2.4. AKSZ construction

where v′i are the lifts of vi ∈ X(Maps(N ,M)) to X(N ×Maps(N ,M)) . Hence we are now

able to transport a differential form from M to Maps(N ,M) :

Ω•(N ×Maps(N ,M))

µ∗
��

Ω•(Maps(N ,M))[−n− 1] Ω•(M)

Ev∗
jj

µ∗Ev∗
oo

(2.30)

In particular Ω = µ∗Ev∗ω , since the volume form µ is non degenerate, is a symplectic

form with degree −1 :

Ωφ =

∫
N
µ

1

2
δφiωijδφ

j . (2.31)

We have now to check the compatibility of Q and Ω . Let us start with qQ . Notice that

ı
qQ
µ∗Ev∗ = µ∗Ev∗ıQ . Hence:

L
qQ
Ω = µ∗Ev∗LQω = 0 . (2.32)

Moreover, we have the following

Proposition 2.4.1. The map µ∗Ev∗ is an homomorphism of Poisson algebras.

Proof. For an hamiltonian vector field X = {f, } on M we have:

ı
qX
µ∗Ev∗ω = µ∗Ev∗ıXω = dµ∗Ev∗f , (2.33)

and so qXf = {µ∗Ev∗f, } . Therefore, for f, g ∈ C(M) :{
µ∗Ev∗f, µ∗Ev∗g

}
= ı

qX
dµ∗Ev∗g = µ∗Ev∗ıXdg = µ∗Ev∗

{
f, g
}
.

Thus, the differential qQ is not only compatible with Ω but it is also an hamiltonian

vector field with hamiltonian qS = µ∗Ev∗Θ :

qS[φ] =

∫
N
µΘ(φ) , φ ∈ Maps(N ,M) . (2.34)

Also D̂ is compatible with Ω . In fact the Lie derivative with respect to D̂ of any

differential form coming from M does vanish: L
D̂
µ∗Ev∗ = 0 . To prove this, notice that

the evaluation map is invariant with respect to the diagonal (right) action of Diff(N ) on

N ×Maps(N ,M) : Ev(φ−1(x), f ◦ φ) = Ev(x, f) . This implies that the lifts D′ and D̂′

of D and D̂ to N ×Maps(N ,M) coincides on forms pulled back through the evaluation

maps:

LD′Ev∗ = L
D̂′Ev∗ . (2.35)

Moreover, by the definition of fiber integration (2.29) we see that ı
D̂
µ∗ = µ∗ıD̂′ . Using

the D-invariance of the volume form, µ∗LD′ = 0 , we obtain:

L
D̂
µ∗Ev∗ = µ∗LD̂′Ev∗ = µ∗LD′Ev∗ = 0 . (2.36)
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Chapter 2. Background: BV formalism

Like qQ , also D̂ is an hamiltonian vector field. This is because the symplectic form ω has

positive degree and thus from lemma A.2.11 it is exact: ω = d(ıεω/n) = dϑ , where ε is

the Euler vector field corresponding to the grading in M . Therefore, using (2.36):

ı
D̂

Ω = ı
D̂
µ∗Ev∗ dϑ = d(ı

D̂
µ∗Ev∗ϑ) . (2.37)

Hence D̂ has hamiltonian Ŝ = −ı
D̂
µ∗Ev∗ϑ :

Ŝ[φ] = −ı
D̂

∫
N
µ

1

n
φ∗(ıεω) =

∫
N
µ

1

2n
φiωij(φ)Dφj , φ ∈ Maps(N ,M) . (2.38)

Putting all this together we proved the followingz

Theorem 2.4.2. (Maps(N ,M),Ω,Q) is a classical BV manifold (definition 2.1.1). The

hamiltonian of Q is:

S[φ] = aŜ[φ] + bqS[φ] =

∫
N
µ
( a

2n
φiωij(φ)Dφj + bΘ(φ)

)
. (2.39)

This construction also provides a class of classical observables induced by the coho-

mology of Q on the target space M, the AKSZ observables µ∗Ev∗f , for [f ] ∈ HQ(M).

Proposition 2.4.3. The map µ∗Ev∗ induces a map in cohomology:

µ∗Ev∗ : HQ(M)→ HQ(Maps(N ,M)) . (2.40)

Proof. Let f ∈ HQ(M) . Then, using proposition 2.4.1 and equation (2.36), we get:

Qµ∗Ev∗f = qQµ∗Ev∗f = µ∗Ev∗Qf = 0 .

In particular µ∗Ev∗ : Hn+1
Q (M)→ H0

Q(Maps(N ,M)) , hence to cohomology classes of

degree n+ 1 correspond classical observables:

µ∗Ev∗f =

∫
N
µF (φ) . (2.41)

Remark 2.4.4. If the source manifold of the AKSZ construction is the shifted tangent

space T [1]Σ of a two-dimensional surface, then the symplectic structure of the target must

have degree 1 . Moreover, if the target is non-negatively graded, it can be proved [46]

that it must have the form T ∗[1]M for some ordinary manifold M . Example A.2.18 thus

implies that M must be a Poisson manifold.
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Chapter 3
Poisson Sigma Model

Poisson Sigma Model (PSM) and A-model are relevant examples of two dimensional topo-

logical quantum field theories. The A-model is a sigma model of maps from a Riemann

surface to a symplectic manifold and computes the Gromov-Witten invariants of the target

manifold [52, 54]. The most general formulation of the A-model depends on the choice of a

compatible almost complex structure [52], but correlators are independent of it. When the

almost complex structure is integrable, in the Kähler case, such a model can be obtained

as a topological twist of the supersymmetric sigma model. The supersymmetry transfor-

mation is responsible for the localization of the model on the space holomorphic maps and

eventually for its non perturbative definition. In the twisted formulation, this operator

squares to zero only on-shell, but an equivalent formulation with an off-shell cohomological

supersymmetry can be obtained introducing auxiliary fields as in [52].

The PSM is a sigma model with target a general Poisson structure, possibly degenerate;

when considered on the disc it reproduces the Kontsevich formula for deformation quan-

tization of the target Poisson structure as a correlator of boundary observables (see [18]).

It is defined in terms of the AKSZ solution of the classical master equation in the Batalin-

Vilkovisky formalism [2, 45]. It must be gauge-fixed by choosing a lagrangian submanifold

of the space of fields. The general BV theory assures that a deformation of the lagrangian

does not affect the correlators; nevertheless, there can be different homology classes giving

rise to inequivalent physical theories. In [15] it was shown that when one considers the

PSM with target the inverse of the symplectic form of a Kähler manifold, the complex

structure can be used to define the gauge-fixing. The gauge-fixed action coincides then,

after a partial integration, with the action of the A-model.

We complete here this comparison by showing that the relevant features of the A-

model, observables and supersymmetry, have a natural BV interpretation in the complex

gauge-fixing of the PSM.

Let us discuss first observables. Every de Rham cohomology class of the target manifold

defines a hierarchy of observables of the A-model, whose mean values compute the Gromov-
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3.1. PSM and A-model and their observables

Witten invariants. In the AKSZ construction, there is a natural class of observables defined

starting from cohomology classes of the odd vector field encoding the geometry of the

target [45]. In the case of the PSM, this cohomology is the Lichnerowicz-Poisson (LP)

cohomology; in the non degenerate case, this is canonically isomorphic to the de Rham

cohomology. It is then natural to think that the observables of the PSM should reproduce

the hierarchy of observables of the A-model after gauge fixing. We show that this is true

but in a non trivial way.

Indeed, for every Poisson structure the contraction with the Poisson tensor defines a

map from forms to multivector fields, intertwining de Rham with LP differential. We prove

that for observables associated to multivector fields lying in the image of such a map, there

is an equivalent form, up to BV operator Q and de Rham differential d exact terms, that

in the non degenerate case and after gauge fixing reproduces the A-model hierarchy. We

call these observables A-model like observables. This fact gives an interpretation of the

well known independence of the Gromov-Witten invariants on the choice of the compatible

complex structure in terms of independence on the choice of the gauge fixing.

Next, we discuss the residual BV symmetry. This is an odd symmetry of the gauge

fixed action, that depends on the choice of a tubular neighbourhood of the gauge fixing

lagrangian. It is not true that a BV observable is closed under the residual symmetry when

restricted, yet it is closed modulo equations of motion. Moreover, the residual symmetry

squares to zero only on-shell. We prove that in the case of the complex gauge fixing of the

PSM with symplectic target, under some assumptions, there exists a choice of the tubular

neighbourhood such that the residual symmetry squares to zero off-shell and reproduces

Witten Q supersymmetry with the auxiliary field considered in [52]. In particular, the

A-model observables are closed under the residual symmetry.

In [55] it has been discussed an approach to the quantization of symplectic manifolds

based on the A-model defined on surfaces with boundary. This is a quantum field theoretic

approach to quantization that should be compared to the results of [18] and suggests a non

trivial relation between the A-model and the PSM with symplectic target on surfaces with

boundary that is worth investigating. This requires a comparison of boundary conditions

of the two models that we plan to address in a future work.

3.1 PSM and A-model and their observables

We review in this Section the definition and basic properties of PSM and A-model.

3.1.1 A-model

Let us introduce first the A-model following [52]. It is a sigma model of maps from

a Riemann surface Σ , with complex structure ε, to a smooth 2n-dimensional Kähler

manifold M , with complex structure J . Let us introduce local coordinates {σα} on Σ and

{uµ} on M . Indices are raised and lowered using the Kähler metric.
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Chapter 3. Poisson Sigma Model

The field content of the theory is given by a bosonic map φ : Σ→M with charge 0; a

section χ of φ∗(TM) with charge 1 and fermionic statistic; a one-form ρ on Σ with values

in φ∗(TM) , with charge −1 and fermionic statistics and a one-form H on Σ with values

in φ∗(TM), with charge 0 and bosonic statistics. Finally, both ρ and H satisfy the self

duality property:

ραµ = εαβJ
µ
νρ
βν ; Hαµ = εαβJ

µ
νH

βν . (3.1)

The action is given by

Sε,J =

∫
Σ

d2σ
(
− 1

4
HαµHαµ +Hα

µ∂αu
µ − iραµDαχ

µ − 1

8
ραµρανχ

ρχσR µν
ρσ

)
, (3.2)

where Dαχ
µ := ∂αχ

µ + Γµνσχν∂αu
σ denotes the covariant derivative with respect to the

Levi Civita connection (with Christoffel symbols Γµνσ) induced by the Kähler metric and R

is the corresponding Riemann tensor. The action is invariant under the action of the

supersymmetry Q:

Quµ = iχµ ,

Qχµ = 0 ,

Qρ µ
α = H µ

α − iΓµνσχ
νρ σ
α ,

QHαµ = −1

4
χνχσ

(
R µ
νσ τ +Rνσµ′τ ′J

µ′µJτ
′

τ

)
ρατ − iΓµνσχ

νHασ .

(3.3)

It can be seen that the odd vector field Q squares to zero. The field H enters quadratically

into the action so that it can be integrated out. After this integration, the action is

invariant after an odd vector field that squares to zero only on-shell. Moreover, the

comparison with the PSM model is more natural including this auxiliary field, so that we

will keep it without integrating.

The observables of the A-model are defined by classes of de Rham cohomology of M .

For an element [ω] ∈ Hk
dR(M) one can define

A(0)
ω = ωµ1...µkχ

µ1 · · ·χµk ,

A(1)
ω = ikωµ1...µkduµ1χµ2 · · ·χµk ,

A(2)
ω = −k(k − 1)

2
ωµ1...µkduµ1 ∧ duµ2χµ3 · · ·χµk ,

(3.4)

with associated A-model observables:

A(k)
ω,γk

=

∫
γk

A(k)
ω , (3.5)

where γk is a k-cycle on Σ. They satisfy

QA(i)
ω + idA(i−1)

ω = 0 , (3.6)

so that QA
(i)
ω,γi = 0.
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3.1.2 Poisson sigma model

Let us introduce now the Poisson Sigma Model (PSM). Let (M,α) be a Poisson manifold

with Poisson tensor field α and let Σ be a two dimensional closed surface. The PSM in

the AKSZ formalism is a two dimensional topological sigma model whose field content is

the space of maps between graded manifolds FΣ = Map(T [1]Σ, T ∗[1]M) . If we introduce

local coordinates xµ on M and uα on Σ , a point of FΣ is given by the superfields

xµ = xµ + η+µ
α θα +

1

2
b+µαβ θ

αθβ ,

bµ = bµ + ηµαθ
α +

1

2
x+
µαβθ

αθβ ,

(3.7)

where θα denotes the degree 1 coordinate of T [1]Σ. If we change coordinates on M as

ya = ya(x), the superfields transform as:

ya = ya(x) , ba =
∂xµ

∂ya
(x)bµ . (3.8)

The space of fields FΣ is a degree −1 symplectic manifold with symplectic structure

given by

Ω =

∫
T [1]Σ

dudθ δxµ ∧ δbµ , (3.9)

where dudθ is the canonical Berezinian on T [1]Σ. The action is given by

S =

∫
T [1]Σ

dudθ
(
bµdxµ +

1

2
αµν(x)bµbν

)
. (3.10)

The BV vector field Q = {S,−} reads

Qxµ = dxµ + αµν(x)bν ,

Qbµ = dbµ +
1

2
∂µα

νρ(x)bνbρ ,
(3.11)

where d is the de Rham differential on Σ.

We will be interested in the hierarchy of observables defined by Lichnerowicz-Poisson

cohomology. We recall that the LP differential on multivector fields of M is defined as

dα(v) = [α, v], for v ∈ C∞(T ∗[1]M) ≡ V•(M); it squares to zero since α is Poisson and we

denote by HLP (M,α) its cohomology. Let Ev : FΣ × T ∗[1]Σ→ T ∗[1]M be the evaluation

map, and let us denote Ov = Ev∗(v) for any v ∈ C∞(T ∗[1]M). We compute

Q(Ov) = dOv −
1

2
Odα(v) . (3.12)

Let us expand Ov = O(0)
v + O(1)

v + O(2)
v in form degree and assume dα(v) = 0; let γk a

k-cycle in Σ and let O(k)
v,γk ≡

∫
γk
O(k)
v , then:

Q(O(k)
v,γk

) = 0 . (3.13)
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Thus we have a hierarchy of BV observables [O(k)
v,γk ] ∈ H•(Q,FΣ) for each [v] ∈ H•LP(M).

Let us discuss now a subclass of these observables. The map ]α : Ω•(M) → V•(M)

defined as

]α : ωµ1...µkdxµ1 ∧ . . . ∧ dxµk 7→ ωµ1...µkα
µ1ν1 · · ·αµkνk∂ν1 ∧ . . . ∧ ∂νk (3.14)

intertwines de Rham and LP differential ]α ◦ d = dα ◦ ]α (see [51]) so that it descends

to ]α : H•dR(M) → H•LP(M,α). If the Poisson structure is non degenerate, it is an iso-

morphism between differential forms and multivector fields and induces an isomorphism

between LP and de Rham cohomologies.

When the LP cohomology class is in the image of this map (which is always the case

when α is non degenerate), there is an alternative expression for the corresponding PSM

observable, that we are going to discuss next. A long but straightforward computation

shows that the PSM observable O]α(ω) = Ev∗(]α(ω)) for a closed ω ∈ Ω•(M) can be

written in the following form

O(0)
]α(ω) =

ik

k!
A(0)
ω ,

O(1)
]α(ω) =

ik

k!
A(1)
ω +QC(1)

]α(ω) ,

O(2)
]α(ω) =

ik

k!
A(2)
ω +QC(2)

]α(ω) − dC
(1)
]α(ω) ,

(3.15)

where we have defined

A(0)
ω = (−i)k ωµ1...µkb

µ1 · · · bµk ,

A(1)
ω = ik(−i)k−1 ωµ1...µkdxµ1bµ2 · · · bµk ,

A(2)
ω =

k(k − 1)

2
(−i)k ωµ1...µkdxµ1dxµ2bµ3 · · · bµk ,

C
(1)
]α(ω) =

1

(k − 1)!
ωµ1...µkη

+µ1bµ2 · · · bµk ,

C
(2)
]α(ω) = ωµ1...µk

(
1

(k − 1)!
b+µ1bµ2 − 1

(k − 2)!
η+µ1dxµ2

+
1

2(k − 2)!
η+µ1Qη+µ2

)
bµ3 · · · bµk

+
1

2(k − 1)!
∂λωµ1...µkη

+λη+µ1bµ2 · · · bµk ,

(3.16)

and bµ = αµνbν . As a consequence of (3.15), for each closed form ω and k-cycle γk the

observables O(k)
]α(ω),γk

and A(k)
ω,γk =

∫
γk
A(k)
ω define the same Q-cohomology class.

3.2 Complex gauge fixing

We discuss in this section how the A-model is recovered from the PSM with Kähler target.

Let us consider now the PSM with target the inverse of the Kähler form. In [15] a gauge
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fixing has been introduced such that the gauge fixed PSM action, after a partial integration,

coincides with the action of the A-twist of the Supersymmetric sigma model.

Let us introduce complex coordinates z on Σ and xi on M . Let us consider the

lagrangian submanifold LεJ ⊂ FΣ defined by

X‡ = {x+
i , η

+i
z , ηzi, b

+i + c.c.} = 0 .

The coordinates on LεJ are collectively called X = {xı̄, ηzı̄, η+ı̄
z , bı̄ + c.c.}. Let us consider

the Christoffel symbols Γkij of the Levi-Civita connection for the Kähler metric αi̄ = igi̄

and introduce the coordinates that transform tensorially:

pz̄i = ηz̄i − Γlijη
+j
z̄ bl .

In these coordinates the gauge fixed action reads

SLεJ =

∫
Σ

dzdz̄
(

ipz̄∂z̄x
̄ − ipz̄i∂zx

i + iη+i
z̄ Dzbi − iη+̄

z Dz̄b̄

+ gkr̄Rlk̄iη
+i
z̄ η+̄

z blbr̄ + gi̄pz̄ipz̄

)
.

(3.17)

By using the transformation rules (3.8), one can check that under an holomorphic change

of coordinates yI(xi) of M , the corresponding transformation of fields on LεJ does not

depend on momenta X‡. The atlas {X,X‡} of adapted Darboux coordinates then fixes a

symplectic tubular neighbourhood of LεJ that determines the residual symmetry as

QLεJ = bi
δ

δxi
+
(
− ∂z̄xi + Γiklη

+l
z̄ b

k
) δ

δη+i
z̄

+
(
− igi̄Dz̄b

̄ + Γlkib
kpz̄l

) δ

δpz̄i
+ c.c. ,

where bi := αi̄b̄. This residual BV transformation does not square to zero off-shell, as

one can check by a direct computation.

Let us consider a different tubular neighbourhood and look for conditions under which

the corresponding residual symmetry squares to zero also off-shell. We look for a new

Darboux atlas of the space of fields adapted to the lagrangian LεJ . If X̃ and X̃‡ collectively

denote the new fields on LεJ and their coordinate momenta respectively, then a canonical

transformation can be generated by a functional G[X, X̃‡]:

X̃ =
∂G

∂X̃‡
, X‡ =

∂G

∂X
. (3.18)

This G must have degree −1 (because |X|+ |X†| = −1), must be real and local. Moreover,

we want that X̃‡(X, 0) = 0 and we can also ask without loss of generality that the canonical

transformation is such that X̃(X, 0) = X. These conditions imply that there are no terms

in G depending only on fields and that the linear term in antifields has the form XX̃†. This

transformation will define a new tubular neighbourhood provided ∂X̃/∂X‡(X, 0) 6= 0. We

will also assume, for simplicity, that the canonical transformation does not depend on any
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additional structure on Σ. The most general form of G compatible with all the above

conditions is:

G[X, X̃†] =

∫
Σ

dzdz̄

(
XX̃† + iΛı̄j p̃z̄ı̄η̃

+j
z − iΛi̄p̃ziη̃

+̄
z̄ + iTµi̄b

µη̃+i
z η̃+̄

z̄

)
, (3.19)

where Λ, T are real tensors on M . In (3.19) Greek letter indices run over all coordinates,

holomorphic and antiholomorphic. We collect here the explicit transformations

x̃µ = xµ , x̃+
µ = x+

µ − i∂µΛ̄ i pz̄̄η
+i
z + i∂µΛi̄ pziη

+̄
z̄

− i∂µTνi̄ b
νη+i
z η+̄

z̄ ,

b̃µ = bµ , b̃+µ = b+µ − iTµi̄ η
+i
z η+̄

z̄ ,

p̃z̄i = pz̄i + iΛ̄ i pz̄̄ − iTµi̄ b
µη+̄
z̄ , η̃+i

z = η+i
z ,

η̃+i
z̄ = η+i

z̄ − iΛi̄ η
+̄
z̄ , p̃zi = pzi .

(3.20)

We see that the new atlas is adapted to LεJ , and changes the tubular neighbourhood

provided Λ and T are non vanishing.

One then finally computes the new residual symmetry as:

QGLεJ = QLεJ +
(
− igl̄Λ

̄
iDz̄b

l + iΛ̄iRsr̄l̄η
+l
z̄ b

sbr̄ + bµTµi̄
(
igl̄pz̄l − ∂z̄x̄

)) δ

δpz̄i

−Λi̄

(
∂z̄x

̄ − igl̄pz̄l

) δ

δη+i
z̄

+ c.c. .

It is easy to check that (QGLεJ )2 is zero on x and b. Requiring also the vanishing of

(QGLεJ )2η+i
z̄ =

(
Λi̄g

l̄Λr̄l − gir̄
)(
gsr̄Dz̄b

s +Rr̄kūsη
+k
z̄ bsbū

)
+

+
(
∇µΛir̄ + igl̄Λi̄Tµlr̄

)(
igkr̄bµpz̄k − bµ∂z̄xr̄

)
,

(3.21)

fixes the following conditions:

Λi̄g
l̄Λr̄l = gir̄ , Tµlr̄ = −igiκ̄Λκ̄l∇µΛir̄ . (3.22)

It can be explicitly shown that these constraints on Λ and T are sufficient to have

also (QGLεJ )2pz̄i = 0.

The possibility of choosing a tubular neighbourhood, for which the residual symmetry

is cohomological, thus depends on the existence of an invertible orthogonal (1, 1) tensor

Λ satisfying ΛJ + JΛ = 0. There are obstructions to the existence of this structure; for

instance a direct computation shows that it does not exist on S2. This choice is possible

in many cases, for instance when Λ is a complex structure that defines, together with

J , a hyperkähler structure with hyperkähler metric g. We remark that these data define

the space filling coisotropic brane discussed in [35] and appear in the quantization scheme

through the A-model described in [55]. It is not clear to us if the above condition on Λ is
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also necessary and so if there is really an obstruction to the existence of the cohomological

residual symmetry.

Finally let us compare the gauge fixed action and its residual symmetry with the action

of the A-model and its supersymmetry. Let us define

H i
z̄ := −∂z̄xi − Λi̄(∂z̄x

̄ + α̄kpz̄k) , H ı̄
z = H i

z̄ . (3.23)

In these new variables the gauge fixed action and residual BV symmetry read

SLεJ =

∫
Σ

dzdz̄
(
− iαi̄H

i
z̄H

̄
z − iαi̄H

i
z̄∂zx

̄ − iαi̄H
̄
z∂z̄x

i + iαi̄∂zx
i∂z̄x

̄

− iαi̄∂z̄x
i∂zx

̄ + iαi̄η
+i
z̄ Dzb

̄ + iαi̄η
+̄
z Dz̄b

i −Rr̄l̄iη+i
z̄ η+̄

z br̄bl
)
,

QGLεJ = bi
δ

δxi
+
(
H i
z̄ + Γiklη

+l
z̄ b

k
) δ

δη+i
z̄

+
(
−Rik̄lη+l

z̄ b
kb̄ − Γiklb

lHk
z̄

) δ

δH i
z̄

+ c.c.

(3.24)

which coincides, up to the topological term iαi̄∂zx
i∂z̄x

̄− iαi̄∂z̄x
i∂zx

̄, with the extension

of the A-model with the auxiliary field H given in (2.16) of [52] after the field identification

xµ ≡ uµ, bµ ≡ iχµ, η+ı̄
z ≡ ρı̄z. With these field identifications, the restriction of the

observables A(k)
ω defined in (3.16) on LεJ coincides with the A-model observables A

(k)
ω

in (3.4); in particular they are closed under the cohomological residual symmetry QGLεJ .

3.3 Final remarks

In this chapter we compared the Poisson Sigma Model with complex gauge fixing with the

A-model. We proved that the hierarchy of observables of PSM up to Q and d exact terms

coincides after complex gauge fixing with the A-model hierarchy. Moreover, we identified

the gauge fixed action of the PSM with the action of the A-model containing the non

dynamical field and we determined a symplectic tubular neighbourhood of the gauge-fixing

lagrangian such that the residual symmetry coincides with A-model supersymmetry. This

analysis shows that the two models are the same when considered on surfaces without

boundary; in particular this gives a BV explanation to the fact that Gromov-Witten

invariants are independent on the choice of complex structure, as in the BV setting this

corresponds to a choice of gauge fixing.

This analysis should be extended to the case with boundary. Both models provide

a framework for quantization of the symplectic structure on the target. On the PSM

side, the Kontsevich formula [36] for deformation quantization is reproduced in [18] as

a correlator of the model on the disk. On the A-model side, in [55] the quantization is

provided by the space of coisotropic branes. It will be natural to develop for this case the

BV-BFV construction introduced in [23].
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Chapter 4
Observables in the equivariant A-model

The AKSZ method [2] is a very elegant geometrical construction of solutions of the classical

master equation (CME) in the Batalin-Vilkovisky (BV) formalism. It gives solutions in

terms of geometrical data that are very compactly formulated in the language of graded

geometry. The AKSZ space of fields is the space of maps from the source graded manifold

T [1]Σ where Σ is a d-dimensional manifold to the targetM, which is a degree (d−1) graded

symplectic manifold endowed with a degree one hamiltonian vector field Q = {Θ,−} such

that Q2 = 0. The solution of the CME, even for classical actions whose gauge invariance

is very intricated, can be obtained on the spot directly from these data, without using the

tools of homological perturbation theory: see for instance [45] for an introduction to the

subject and the discussion of the Courant Sigma Model.

In the BV setting the simplest version of gauge fixing is realized by expressing the

antifields as functions of the fields; once that the symplectic interpretation is taken into

account and the space of fields is seen as an odd symplectic manifold, the gauge fixing is

a choice of a lagrangian submanifold L of the BV space of fields F. Even if the BV vector

field Q is not in general parallel to L, the gauge fixed action still has an odd symmetry QπL
obtained by projectingQ to L. We call this odd vector field of L the residual BV symmetry.

This projection is not unique and depends on an additional geometrical datum, the choice

of a symplectic tubular neighbourhood of L, i.e. a (local) identification of F with T ∗[−1]L.

This choice can always be done, although in a non unique way; different choices coincide

on-shell, i.e. when restricted to the surface of solutions of equations of motion. In examples

this odd symmetry of the gauge fixed action is an interesting object and so it is worth

to take it into account in the full picture. For instance in the BV treatment of ordinary

gauge theories it is the BRST differential; in the A-model it is the supersymmetry [12].

A relevant aspect where one can appreciate the beauty of the AKSZ solution is the

construction of observables. Indeed, there is a chain map from the complex of the ho-

mological vector field Q of the target M to the complex of Q that defines the so called

AKSZ observables. Unfortunately, in general we cannot expect that after gauge fixing a
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BV observable is closed under the residual BV symmetry and AKSZ observables are not

special in this regard. So in certain cases, it can be useful to introduce an equivalent set

of observables that have a better behaviour for the gauge fixing.

This study began in [12] for the case of the A-model, seen as a complex gauge fixing

of the Poisson Sigma Model with non degenerate target. In this case, the target graded

manifold is just T [1]M with M symplectic and Q the de Rham vector field of M ; AKSZ

observables are then defined in terms of closed forms on M . In [12] it was shown that

one can define an equivalent class of observables, which we called A-model observables,

related by an explicit homotopy to the AKSZ ones, that are closed under the residual

BV symmetry fixed by the complex gauge fixing. The name is due to the fact that they

reproduce Witten’s hierarchy of observables for the A-model in [52].

In this chapter we extend the analysis to an equivariant version of the Poisson Sigma

Model. This is an AKSZ theory that was studied in [11, 48, 58]. The geometrical data

of the target encode a hamiltonian G space, i.e. a symplectic manifold M with an action

of a Lie group G with an equivariant momentum map µ. The target homological vector

field encodes the Weil model for equivariant geometry so that the AKSZ observables are

associated to equivariant cohomology. In [11] this theory was considered as a model for

the PSM with target the symplectic reduction µ−1(0)/G. We introduce the analogue of

A-model observables that depend on a minimal set of fields and introduce an explicit

homotopy with the AKSZ observables.

We consider two different gauge fixings which are compatible with the A-model ob-

servables. The first one is relevant when the symplectic reduction of the target space is

smooth; we conjecture that the theory computes the A-model correlator of the reduced

symplectic manifold in the spirit of [11]. In the second one, we recover for the Lie alge-

bra sector the supersymmetric Yang Mills action and the residual BV symmetry is the

supersymmetry generator.

4.1 A-model and PSM correspondence reconsidered

The correspondence between the AKSZ observables of the PSM and the observables of the

A-model established in [12] can be better understood starting from an homotopy between

maps of superspaces.

Let M be a symplectic manifold and let us denote with α = αµνdxµdxν the sym-

plectic form. The Poisson Sigma Model (PSM) with non degenerate target is the AKSZ

construction with target T ∗[1]M and hamiltonian αµνbµbν , where {xµ, bµ} are the degree

(0, 1) coordinates of T ∗[1]M and αµν is the inverse of αµν . The space of AKSZ field is

FΣ = Maps(T [1]Σ, T ∗[1]M). The symplectic form identifies it with Maps(T [1]Σ, T [1]M)

and finally with T [1](Maps(T [1]Σ,M)) ≡ T [1]MΣ. With this identification observables

are forms on MΣ. Let the superfields (x,b) ∈ FΣ be decomposed as

xµ = xµ + η+µ + b+µ , bµ = bµ + ηµ + x+
µ .
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The de Rham differential δ ofMΣ acts as δxµ = bµ ≡ α(x)µνbν . It can also be interpreted

as the (infinitesimal) diffeomorphism obtained by composing the superfields with the (in-

finitesimal) diffeomorphism of the target T [1]M defined by the de Rham differential. The

BV differential is then defined as

Q = δ−d′Σ ,

where d′Σ is the vector field of FΣ obtained by the action of the de Rham differential of Σ on

the superfields. More geometrically, d′Σ ∈ Vect(FΣ) is the (infinitesimal) diffeomorphism

of FΣ obtained by composing maps with the (infinitesimal) diffeomorphism of the source

defined by the de Rham differential. Although d′Σ must not be confused with dΣ acting

on Σ, they coincide on functions of the (evaluated) superfields, i.e.

(d′Σ − dΣ)f(x(u, θ),b(u, θ)) = 0 . (4.1)

It is explicitly given by the following formulas:

d′Σx = 0 , d′Σb = 0 ,

d′Ση
+ = dΣx , d′Ση = dΣb ,

d′Σb
+ = dΣη

+ , d′Σx
+ = dΣη .

(4.2)

We are going to define the A-model hierarchy of observables. Let us consider the

degree 0 evaluation map ev : MΣ × T [1]Σ −→M defined as:

ev(x;u, θ) = x(u) . (4.3)

Since FΣ is a vector bundle over MΣ we can extend ev to a vector bundle morphism

êv : FΣ × T [1]Σ→ T [1]M over ev by asking that for each f ∈ C∞(M) we have

êv∗df = (Q+ dΣ)ev∗f .

We then compute

êv∗dxµ = (Q+ dΣ)xµ = bµ + dΣx
µ .

For every ω ∈ Ω•M we can associate a functional Aω

Aω ≡ êv∗ω = ω(x, b+dΣx) (4.4)

satisfying by construction (Q+dΣ)Aω = Adω. If then dω = 0 we say that Aω is the

A-model hierarchy of observables of the PSM associated to ω.

The AKSZ hierarchy described in the previous section, after the identification given

between T [1]M and T ∗[1]M given by α, is defined for each ω ∈ ΩM as

Oω = ω(x(u, θ),b(u, θ)) = Ev∗ω (4.5)

where the evaluation map Ev : FΣ × T [1]Σ→ T [1]M defined in (2.28) and given by

Ev(x,b, u, θ) = (x(u, θ),b(u, θ)) (4.6)
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is a vector bundle morphism over Ev : MΣ × T [1]Σ −→M defined as

Ev(x;u, θ) = x(u, θ) . (4.7)

The two morphisms ev and Ev are homotopic with homotopy k : MΣ×T [1]Σ×[0, 1] −→M

given by

k(x;u, θ; t) = x(u, tθ) = x(u) + tη+(u) + t2b+(u) . (4.8)

We extend it to the vector bundle morphism k̂ : FΣ × T [1]Σ × T [1]I → T [1]M over k by

imposing that for each f ∈ C∞(M) we have

k̂∗df = (Q+ dΣ + dI)k
∗f ,

where dI is the de Rham differential of I = [0, 1]. We compute

k̂∗dxµ = δXµ + tδη+µ + t2δb+µ + (1− t)dΣx
µ + t(1− t)dΣη

+µ + dt(η+µ + 2tb+µ) . (4.9)

We then define K(ω) =
∫

[0,1] k̂
∗(ω) for each ω ∈ ΩM . By construction we have that

k̂∗ω|t=0 = ev∗ω = Aω and k̂∗ω|t=1 = Ev∗ω = Oω and

Oω −Aω = K(dω)− (Q+dΣ)K(ω) . (4.10)

It is now a direct computation to check that the homotopy K coincides with the one

defined in [12].

Let us finally discuss the gauge fixing. Let us introduce the complex structures ε on Σ

and J , compatible with α, on M . We denote the holomorphic coordinates as z and xi on Σ

and M . Let us choose the complex gauge fixing for the superfields x and b introduced

in [15] and discussed in [12] so that we recover the A-model action for that sector. The

gauge fixing lagrangian L on the A-model sector is defined by

x+ = b+ = ηzi = ηz̄ı̄ = η+i
z = η+ı̄

z̄ = 0 . (4.11)

The gauge fixed action (3.17) reads

SLεJ =

∫
Σ

(
− ipz̄∂z̄x

̄ + ipz̄i∂zx
i − iη+i

z̄ Dzbi + iη+̄
z Dz̄b̄

+gkr̄Rlk̄iη
+i
z̄ η+̄

z blbr̄ + gi̄pz̄ipz̄

)
,

(4.12)

where pz̄i = ηz̄j +Γkijη
+j
z̄ bk. Variables appearing in (4.11) are the momenta of a symplectic

tubular neighbourhood that determines the BV residual symmetry, as explained in Sec-

tion 2.3. Contrary to AKSZ observables, the A-model observables do not depend on the

momenta so that their restriction to LεJ is closed under the BV residual symmetry.
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4.2 Equivariant A-model from AKSZ

We discuss in this section a BV approach to the equivariant version of the A-model. The

geometrical setting consists of a Poisson manifold (M,α) with an action of a Lie group G

by Poisson diffeomorphisms. We require the existence of an equivariant momentum map

µ : M → g∗, where g = Lie G. By momentum map we mean that the fundamental vector

fields of the G action are hamiltonian vector field. We will be mainly interested in the non

degenerate case where this is the usual notion of hamiltonian G-action.

4.2.1 Definition of the model

The model that we are going to discuss was considered in [11, 48, 58]. The graded geometric

formulation of the equivariant formulation and its AKSZ theory that we are going to use

was discussed in [11]. We briefly recall it.

The equivariant differential can be described by a hamiltonian vector field Q on the

symplectic graded manifold T ∗[1]
(
M×T [1]g[1]

)
. If we take coordinates (xµ, bµ) on T ∗[1]M

and (ca, φa) of degree (1, 2) with momenta (ξa, ξ̃a) of degree (0,−1) on T ∗[1]T [1]g[1], we

can define the degree 2 hamiltonian

Θ =
1

2
αµνbµbν−ξaφa−µaφa + vµa bµc

a +
1

2
ξa[c, c]

a+ξ̃a[c, φ]a , (4.13)

so that Q(·) = {Θ, ·} reads:

Qxµ = αµνbν + cavµa ,

Qbµ =
1

2
∂µα

ρσbρbσ + ∂µv
ρ
abρc

a − φa∂µµa ,

Qca = φa − 1

2
fabdc

bcd ,

Qφa = −fabccbφc ,

Qξa = vµa bµ − f cabξccb−f cabξ̃cφb ,

Qξ̃a = ξa + µa + f cabξ̃cc
b .

(4.14)

We recover the Kalkman model for Poisson equivariant cohomology as the differential

graded subalgebra W (M,π, g) generated by {x, b, c, φ}. We consider here the case where

α is non degenerate and let bµ = αµνbν . We then compute

Qxµ = bµ + cavµa ,

Qbµ = −φavµa + cabν∂νv
µ
a .

(4.15)

so that (W (M,π, g), Q) coincides with the Kalkman model for equivariant cohomology

(see [34]).

If we look at the target manifold T ∗[1](M×T [1]g[1]) again as a tangent bundle T [1](M×
g[1]×g∗[−1]) so that the de Rham differential is defined as dxµ = bµ, dca = φa and dξ̃a = ξa
we immediately recognize that

Q = d + s , ds+ sd = s2 = d2 = 0 . (4.16)
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Remark 4.2.1. The identification of the target manifold with T [1](M×g[1]×g∗[−1]) can

be expressed by defining the tangent fiber degree as deg x = deg c = deg ξ̃ = 0 and deg b =

deg φ = deg ξ = 1. Moreover, deg d = 1 and deg s = 0. Following [11], the antighost

degree ag = −gh + deg, where gh is the natural degree of the target graded manifold,

gives the target manifold the structure of BFV manifold, a model for the symplectic

reduction of T ∗[1]M with respect to the constraints µ = 0 and vνabν = 0. We recall that

the BFV (Batalin-Fradkin-Vilkovisky) manifolds in general give an homological resolution

of constrained system and can be seen as a mathematical formulation of BRST in the

hamiltonian setting (see [6, 49]).

Remark 4.2.2. The map ϕ : W →W defined as ϕ(x, b, c, φ) = (x, b̃, c, φ̃) where

φ̃ = φ− 1

2
[c, c] , b̃µ = bµ + cavµa (4.17)

intertwines Q|W and the de Rham differential d. Since the Lie algebra part is acyclic,

the cohomology of (W,Q) then coincides with HdR(M). Let us introduce the contraction

operator ιa = ∂
∂ca and Lie derivative La on the Lie algebra variables; then we can write

the Kalkman differential as

Q|W = dM + ca(Lva + La)− φa(ιva − ιa) ,

where dM denotes the de Rham differential on M , Lva and ιva are the usual Lie derivative

and contraction operators on forms, respectively. We then see that the subcomplex W ′ =⋂
a (ker ιa ∩ ker(La + Lva)) ⊂ W of elements that are independent on c and g-invariant

coincides with the Cartan model for equivariant cohomology.

Let us now consider the AKSZ sigma model with source
(
T [1]Σ,dΣ

)
and target T ∗[1]

(
M×

T [1]g[1]
)

with differential Q. We can introduce the superfields:

x = x+ η+ + b+ , b = b+ η + x+ ,

c = c+A+ ξ+ , Ξ = ξ +A+ + c+ ,

Φ = φ+ ψ + ξ̃+ , Ξ̃ = ξ̃ + ψ+ + φ+ .

(4.18)

The cohomological BV vector field is Q = qQ − d′Σ, where qQ is the vector field obtained

by composing maps with the (infinitesimal) diffeomorphism of the target defined by Q.

Recalling that bµ = αµν(x)bν , it acts on the fields x, b, c, A, φ, ψ as

Qxµ = bµ + cava ,

Qbµ = −∂νvµa bνca − vµaφa ,

Qca = φa − 1

2
[c, c]a ,

QAa = ψ − [c, A]a − dΣc ,

Qφa = −[c, φ]a ,

Qψa = −[c, ψ]a − [A, φ]a − dΣφ
a .

(4.19)
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We finally write the AKSZ action as

S =

∫
T [1]Σ

1

2
αµν(x)bµbν −ΞaΦ

a − µa(x)Φa + vµa (x)bµc
a +

1

2
Ξa[c, c]a

+Ξ̃a[c,Φ]a − bµdΣxµ −ΞadΣca − Ξ̃adΣΦa .

(4.20)

4.2.2 Equivariant A-model and AKSZ observables

We want to define here the analogue of A-model observables for the equivariant model.

Let us look for a map analogue to the partial evaluation map defined in (4.3). Since the

target space is the shifted tangent bundle T [1]M with M = M × g[1]× g∗[−1] the space

FΣ of AKSZ fields is T [1]Map(T [1]Σ,M); we then start with a map

ev0 : Map(T [1]Σ,M)× T [1]Σ→M

defined as

ev0(x, c, Ξ̃;u, θ) = (x(u), c(u) +A(u, θ), 0) . (4.21)

Since the target space differential (4.16) is not simply the de Rham differential, on forms

we do not take the pull-back of ev0, as in the previous section, but we look for a vector

bundle morphism êv0 : FΣ × T [1]Σ → T [1]M over ev0 that intertwines the differential

Q+ dΣ with the target differential Q, i.e.

êv∗0Qω = (Q+ dΣ)êv∗0ω .

From the discussion in Remark 4.2.1, we can conclude that êv0 is completely fixed by ev0:

indeed the equivariant differential decomposes as Q = d + s with deg s = 0 so that for

each f ∈ C(M) we have

êv∗0df = êv∗0(Q− s)f = (Q+ dΣ)ev∗0f − ev∗0sf .

We then compute

êv∗0b = êv∗0dx = êv∗0(Qx− cava) = (Q+ dΣ)x− (ca +Aa)va

= b+ dΣx−Aava ,

êv∗0φ = êv∗0dc = êv∗0

(
Qc+

1

2
[c, c]

)
= (Q+ dΣ)(c+A) +

1

2
[c+A, c+A]

= φ+ ψ + F (A) ,

êv∗0ξa = êv∗0dξ̃a = êv∗0(Qξ̃a − [ξ̃, c]a − µa) = −µa .

(4.22)

We then finally define for each ω(x, c, ξ̃, b, φ, ξ) ∈ C(T [1](M × g[1]× g∗[−1])) the following

functional

Aω := êv∗0ω = ω(x, c+A, 0, b+ dΣx−Aava, φ+ ψ + F (A),−µ) . (4.23)
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If Qω = 0 then by construction (Q + dΣ)Aω = 0 and we say that Aω is the A-model

observable associated to ω. In particular we will associate to every equivariantly closed

form an observable.

Recall that the AKSZ observable associated to ω is Oω = Ev∗(ω), the pullback of ω

along the evaluation map Ev : FΣ × T [1]Σ→ T [1]M with

Ev(x, c,Ξ,b,Φ, Ξ̃;u, θ) = (x(u, θ), c(u, θ),Ξ(u, θ),b(u, θ),Φ(u, θ), Ξ̃(u, θ)) .

The map Ev is a bundle map over Ev0 : Map(T [1]Σ,M)× T [1]Σ→M defined as

Ev0(x, c, Ξ̃;u, θ) = (x(u, θ), c(u, θ), Ξ̃(u, θ)) .

We discuss now a homotopy between the A-model and AKSZ observables generalizing

the discussion that we had in the previous section. We start with the following homotopy

between ev0 and (the restriction of) Ev

κ : Map(T [1]Σ,M)× T [1]Σ× [0, 1]→M

defined as

κ(x, c, Ξ̃;u, θ, t) = (x+ tη+ + t2x+, c+A+ t2ξ+, tΞ̃(u, θ)) . (4.24)

We then look for

κ̂ : FΣ × T [1]Σ× T [1][0, 1]→ T [1]M

over κ so that

(Q+ dΣ + dI)κ̂
∗ = κ̂∗Q , (4.25)

where dI is the de Rham differential of I = [0, 1]. Again κ̂ is completely determined by κ

and moreover by construction

κ̂∗ω|t=0 = Aω , κ̂∗ω|t=1 = Oω .

We then compute

κ̂∗bµ = κ̂∗dxµ = (Q+ dΣ + dI)κ
∗xµ − κ∗(cavµa )

= bµ + (1− t)dΣx
µ − (1− t)Aavµa + t(1− t)∂νvµaη+ν + t(1− t)dΣη

+µ+

+ dt(η+µ + 2tb+µ) + t2δb+µ + tδη+µ ,

κ̂∗φ = κ̂∗dc = (Q+ dΣ + dI)κ
∗c+

1

2
[κ∗c, κ∗c]

= φ+ ψ + (1− t2)F (A) + t2ξ̃+ + 2tξ+dt ,

κ̂∗ξ = κ̂∗dξ̃ = (Q+ dΣ + dI)(tΞ̃)− t[Ξ̃, κ∗c]− κ∗µ .

(4.26)

If we define K(·) =
∫
I κ
∗(·), we get

Oω −Aω = K(Qω)− (Q+ dΣ)Kω . (4.27)

Of course, if we set to zero all the variables associated to the Lie algebra g, we recover

the homotopy between the AKSZ observables of the PSM and the A-model observables

described in (4.9).
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4.2.3 Cohomology of Q

An interesting consequence of (4.27) is the following characterization of the cohomology

of the target differential Q defined in (4.14). Indeed, after the restriction to zero form

observables, dΣ does not appear in (4.27) and Q acts as qQ, the vector field obtained

composing the maps of FΣ with the infinitesimal diffeomorphism of the target defined

by Q. In other terms it does not involve derivatives with respect to the source coordinates,

so that it is a pointwise relation that can be read as a relation defined on the target as

follows.

Let i : W (M,π, g) → A ≡ (C(T ∗[1](M × g[1])), Q) be the injection of the Kalkman

model described in Subsection 4.2.1 and let p : A →W (M,π, g) be the quotient map with

kernel generated by ξ+µ and ξ̃. It is a direct check to verify that p is a chain map. Clearly

we have that p ◦ i = idW . Now it is clear that (4.27) for forms of degree 0 translates into

idA − i ◦ p = K0 ◦Q−Q ◦ K0 (4.28)

where

K0(ω) =

∫
I
ω(x, c, tξ̃, b, φ, tξ − (1− t)µ+ dIt ξ̃)

for each ω ∈ A. We can then conclude that i and p are inverse up to homotopy so that the

cohomology of Q is isomorphic to the cohomology of the Kalkman complex (or equivalently

of the Weil complex, see [34]) that is de Rham cohomology HdR(M) (see Remark 4.2.2).

It is maybe useful to stress that we are not restricting it to the subcomplex W ′ giving

equivariant cohomology. Finally, if ϕ : W → W is the isomorphism defined in (4.17) and

Θ is the degree 2 hamiltonian in (4.13), then ϕ(p(Θ)) = −α, so that we can say that −Θ

represents in A the class of the symplectic form in the de Rham cohomology of M .

4.3 Gauge fixing

We discuss here two different gauge fixings of the AKSZ theory discussed in the previous

section. The A-model sector is always gauge fixed with the complex gauge fixing defined

in (4.11).

In both cases the lagrangian gauge fixing L is given together with an adapted sym-

plectic tubular neighbourhood, i.e. a symplectomorphism between the BV space of fields

FΣ and T ∗[−1]L that fixes also a residual BV symmetry as explained in Section 2.3. The

A-model observables do not depend on the momenta so that after the restriction they are

invariant under the residual BV symmetry.

4.3.1 Gauge fixing for the symplectic reduction

We assume that ∂kv
ı̄
a = 0, i.e. the real G action on M gives rise to an holomorphic action

of GC. It can be checked that, once we assume the complex gauge fixing (4.11), the ghost c

disappears from the action.
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According to the discussion in Remark 4.2.1, the target manifold of the AKSZ construc-

tion is a BFV space, i.e. a model for the symplectic reduction of T ∗[1]M with respect to

the graded constraints µ = 0 and vνbν = 0. If the G action is free on µ = 0 then µ−1(0)/G

is smooth and the reduced space is T ∗[1](µ−1(0)/G). In this case the BV theory should

be regarded as equivalent to the Poisson Sigma Model with the reduced target. According

to the discussion in [11], the natural gauge fixing of the Lie algebra sector is defined by

putting the antighosts variables to zero; this means:

Ξ = Ξ̃ = 0 . (4.29)

The residual gauge symmetry QL given by this symplectic tubular neighbourhood is

directly read from (4.19) together with

QLηz̄i = ∂iα
k̄ηz̄kb̄ + ∂iµaψ

a
z̄ + ∂i∂jµaη

+j
z̄ φa+

+ ∂iv
j
a(ηz̄jc

a + bjψ
a
z̄ ) + ∂i∂jv

k
aη

+j
z̄ bkc

a ,

QLη+i
z̄ = −∂zxi + ∂kα

i̄η+k
z̄ b̄ + viaA

a
z̄ + ∂kv

i
aη

+k
z̄ ca ,

QLξ+ = ξ̃+ − F (A)− [c, ξ+] ,

QLξ̃+ = −dΣψ − [A,ψ]− [c, ξ̃+]− [ξ+, φ] .

(4.30)

Since the A-model observables defined in (4.23) are independent on the coordinates (4.11)

and (4.29), they are also invariant when restricted to the gauge fixing lagrangian underQL.

This is not true for the AKSZ observables.

After the introduction of an arbitrary affine connection Γ and the definition of pz̄j =

ηz̄j + Γkjiη
+i
z̄ bk, we obtain the gauge-fixed action SL = SLεJ +SLg where SLεJ is computed

in (4.12) and

SLg =

∫
Σ

(
µaξ̃

+a + ∂iµaη
+i
z̄ ψaz + ∂ı̄µaη

ı̄
zψ

a
z̄ + ∂i∂̄µaη

+i
z̄ η+̄

z φa + viabiξ
+a + viapiz̄A

a
z+

+∇kviaη+k
z̄ biA

a
z + vı̄abı̄ξ

+a + vıapı̄zA
a
z̄ +∇k̄vıaη+k̄

z bı̄A
a
z̄

)
.

(4.31)

This action is quadratic in the fields p, which can then be integrated out. Their

equations of motion are pz̄i = αi̄∂z̄x
̄ − αi̄v̄aAaz̄ and the effective action obtained with

this integration is thus:

SL =

∫
Σ

(
η+i
z̄ Dzbi + η+̄

z Dz̄b̄ + αr̄kRlk̄iη
+i
z̄ η+̄

z blbr̄ + αi̄∂Ax
i∂̄Ax

̄+

+∇lvkaη+l
z̄ bkA

a
z +∇̄vk̄aη+̄

z bk̄A
a
z̄ +

(
viabi + v̄ab̄

)
ξ+a
zz̄ +

+ µaξ̃
+a + ∂̄µaη

+̄
z ψaz̄ + ∂iµaη

+i
z̄ ψaz + ∂i∂̄µaη

+̄
z η+i

z̄ φa
)
,

(4.32)

where ∂Ax
i = ∂zx

i+viaA
a
z . The dependence on the connection A is now at most quadratic

and the quadratic term is non degenerate if det(va, vb) 6= 0. This is guaranteed if the G
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action is free on µ−1(0), so that this action is well defined when the symplectic reduction

µ−1(0)/G is smooth.

By construction the Lie algebra fields are Lagrange multipliers that constrain the

system to µa(x+ η+) = 0 and va(x+ η+)i(b+ η)i = 0. We know that in Kähler reduction

T (µ−1(0))/G is realized as the sub-bundle J(gM )⊥ ∩ g⊥M ⊂ T (µ−1(0)), where gM denotes

the bundle spanned by the g-vectors. The zero and one form component of µ(x+ η+) = 0

force then the field x to take values in µ−1(0) and η+ in T (µ−1(0))/G. The two form

constraint ∂i∂̄µaη
i
z̄η
̄
z = 0 is instead just a consequence of the interplay between the

constraint on superfields and the complex gauge fixing and it has not a geometric origin.

One way to avoid it is to modify (4.29) to

c = 0 , Ξ = c+ , Ξ̃ = 0 . (4.33)

This fixes the ghost c and makes c+ be the multiplier for φ = 0 so that the above undesired

constraint disappears. It must be clear that with this choice the A-model observables

depending on c are not anymore invariant under the residual gauge fixing.

4.3.2 The gauge multiplet and topological Yang-Mills

We consider here a different gauge fixing of the Lie algebra sector that recovers the so

called topological Yang-Mills theory in two dimensions, considered by Witten in [56].

This connection was already established in [58]; here we use a slightly different gauge

fixing and emphasize the relation between the residual gauge symmetry and the gauge

multiplet of supersymmetry. The basic tool for introducing topological Yang-Mills theory

is the gauge multiplet of 2d supersymmetry. In our BV framework it must appear as a

residual BV symmetry of the gauge fixed action. We have first to recognize all the fields

needed to reconstruct the gauge multiplet. The gauge multiplet consists in the following

fields

φ ψ A H χ η λ

ghost # 2 1 0 0 -1 -1 -2

form # 0 1 1 0 0 0 0

(4.34)

where the parity is the ghost modulo 2. It is easy to see that we already have almost all

these fields by doing the following matches

AKSZ φ ψ A ξ ξ̃ - -

gauge multiplet φ ψ A H χ η λ
(4.35)

The fields η and λ do not appear in the PSM but can be introduced as a trivial pair. Let

us define the trivial pair λ, ρ ∈ Ω0(Σ; g) of ghost number −2 and −1 respectively and with

momenta λ+, ρ+ ∈ Ω2(Σ; g∗) of ghost degree 1 and 0. The BV action will be shifted to

S ′ := S +

∫
Σ
λ+
a ρ

a (4.36)
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4.3. Gauge fixing

and correspondingly we have the following action of the BV symmetry for λ and ρ:

Qλa = ρa , Qρa = 0 . (4.37)

If we define ζ := ρ+ [c, λ] we get the transformations:

Qλ = ζ − [c, λ] , Qζ = [φ, λ]− [c, ζ] . (4.38)

The gauge multiplet is reconstructed with ζ ∼ η.

We can now collect the action of Q on these fields

Qφ = −[c, φ] , Qψ = −[c, ψ]− [A, φ]− dΣφ ,

QA = ψ − [c, A]− dΣc , Qξ = −[ξ, c]− [ξ̃, φ] ,

Qξ̃ = ξ − [ξ̃, c] , Qλ = ζ − [c, λ] ,

Qζ = [φ, λ]− [c, ζ] Qc = φ− 1

2
[c, c] .

(4.39)

We then see that

Q = δBRST + δsusy ,

i.e. it encodes the superymmetry and the BRST transformation of the gauge multiplet.

The action of topological Yang-Mills is recovered by defining the lagrangian Lf with

the gauge-fixing fermion f defined as

f =

∫
Σ

1

2
〈ξ̃, ?ξ〉+ 〈DAλ, ψ〉 , (4.40)

where DA is the covariant derivative of A, ? is the Hodge star for a metric on Σ and 〈, 〉
is a non degenerate invariant bilinear form on g.

SLf = SL0 +Qf = Q
(
f −

∫
Σ
〈ξ̃, FA〉

)
=

∫
Σ

(1

2
〈ξ, ?ξ〉 − 〈ξ, FA〉 − 〈ξ̃, DAψ〉+ 〈DAζ, ψ〉+

+ 〈DAλ,DAφ〉+
1

2
〈[ξ̃, ξ̃], ?φ〉+ 〈[ψ, λ], ψ〉

)
.

(4.41)

The residual BV symmetry is then given by the same formulas as in (4.39). In partic-

ular, the A-model observables are just functions of (c, φ,A, ψ) and so are invariant. The

full gauge fixed action is then recovered as:

SL =

∫
Σ

(
η+i
z̄ Dzbi + η+̄

z Dz̄b̄ + αr̄kRlk̄iη
+i
z̄ η+̄

z blbr̄ + αi̄∂Ax
i∂̄Ax

̄+

+∇lvkaη+l
z̄ bkA

a
z −∇̄vk̄aη+̄

z bk̄A
a
z̄ + ∂̄µaη

+̄
z ψaz̄+

+ ∂iµaη
+i
z̄ ψaz + ∂i∂̄µaη

+̄
z η+i

z̄ φa+

+
1

2
〈ξ, ?ξ〉 − 〈ξ, FA〉 − 〈ξ̃, DAψ〉+ 〈DAζ, ψ〉+

+ 〈DAλ,DAφ〉+
1

2
〈[ξ̃, ξ̃], ?φ〉+ 〈[ψ, λ], ψ〉

)
.

(4.42)
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Up to residual BV transformations this action depends only on equivariant cohomology

class of (α + µ). By construction the BV action (4.20) is defined by the target data

through the AKSZ observable associated to the hamiltonian Θ in (4.13). As we proved,

this observable is connected to the corresponding A-model observable via the homotopy K.

Thus the BV action can be decomposed as: kinetic term + A-model observable + BV

exact term. The A-model observables are well-behaved under our gauge-fixing, however

BV exact terms become generically QπL-exact terms only on-shell. However if we choose

QπL-symmetry to close off-shell then the gauge fixed action can be written as A-model

observable associated to (α+µ) plus QπL-exact terms, similar to the construction presented

in [1].
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Chapter 5
2D Yang-Mills on surfaces with corners in

BV-BFV formalism

5.1 Introduction

In this chapter we study the perturbative path-integral quantization of 2D Yang-Mills

theory, defined classically by the first-order action functional

Scl
YM =

∫
Σ
〈B, dA+A ∧A〉+

1

2
µ (B,B) , (5.1)

with fields A, a 1-form on the surface Σ with coefficients in a semi-simple Lie algebra

g = Lie(G), for G a compact simply-connected structure group, and B, a 0-form valued

in g∗, and where µ is a fixed background 2-form (the “area form”) on Σ. Here 〈, 〉 is the

pairing between g and g∗ and (, ) is the inverse Killing form.1 We study 2D Yang-Mills

theory in the Batalin-Vilkovisky formalism on oriented surfaces Σ with boundaries and

corners allowed.2 The quantization is constructed in such a way that it is compatible with

gluing and cutting of surfaces.

Our primary motivating goal is to construct explicit partition functions of 2D Yang-

Mills theory on arbitrary surfaces via the perturbative path-integral quantization, Z =∫
e

i
~SYM , and to compare them with the known non-perturbative answers [40, 53] formu-

lated in terms of the representation-theoretic data of the structure group G. There are

two immediate problems to deal with:

Gauge symmetry. To define the Feynman diagrams giving the perturbative expan-

sion of the path-integral, one needs to deal with the gauge symmetry of the action creating

1 The case µ = 0 of the action functional (5.1) defines the so-called non-abelian BF theory, which is a

topological field theory, i.e., is invariant under diffeomorphisms of surfaces.
2 We assume orientability for convenience of the formalism, but in fact one can define the theory on

non-orientable surfaces as well, twisting the field B by the orientation line bundle and defining µ to be a

density on Σ, rather than a 2-form. The integral (5.1) is then also understood as an integral of a density.
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the degeneracy of stationary phase points in the path-integral. To do this, we employ

the Batalin-Vilkovisky (BV) formalism. In the BV formalism, the classical fields A,B are

promoted to non-homogeneous differential forms on the surface (whose homogeneous com-

ponents are the original classical fields, the Faddeev-Popov ghost for the gauge symmetry

and the anti-fields for those) and the gauge-fixing consists in the choice of a lagrangian

submanifold in the BV fields.

Computability of the perturbative answers. Generally, Feynman diagrams are

given by certain integrals over configuration spaces of points on the surface, with the

integrand given by a product of propagators which depend on the details of the gauge-

fixing, and typically these integrals are very hard to compute. The remedy for this comes

from two ideas:

i) Firstly, we employ the BV-BFV refinement of the Batalin-Vilkovisky formalism con-

structed in [23, 26] – a refinement adapted to gauge theories on manifolds with bound-

aries allowed, compatible with gluing and cutting (thus, it is a version of BV quanti-

zation compatible with Atiyah-Segal functorial picture of QFT). In this formalism, we

can recover the perturbative partition function on a surface from cutting the surface

into pieces – the appropriate “building blocks of surfaces”, calculating the perturba-

tive partition function on the pieces and then assembling back into the answer for the

whole surface via the gluing formula.

ii) Secondly, to compute the answers on our building blocks, we employ special gauge-

fixings which allow for explicit computation of Feynman diagrams on the building

block. E.g. we use the axial gauge for cylinders. This procedure is equivalent to

imposing a very special gauge-fixing, involving the data of cutting into the building

blocks, on the theory on the surface we started with.

For instance, the following Feynman graph for 2D Yang-Mills theory on a sphere

µ

µ '

IV

B
B

I

A µ A
A

III

B
IV

Figure 5.1: A two-loops Feynman diagram for 2D Yang-Mills on the sphere, computed by suitably

cutting the surface. The darker regions are the ones where the 2-form µ is allowed to be nonzero.
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is given by a complicated integral in Lorenz gauge on the sphere (e.g. the one associ-

ated to the standard round metric), but in our approach it is explicitly computable,

once we split the sphere into four pieces (figure 5.1).

Remark 5.1.1. Axial gauge, which we often use, corresponds to a singular propagator

which can be obtained as a limit of metric propagators (given by smooth forms on the

configuration space of two points) corresponding to the degeneration of geometry of the

cylinder where the ratio of the circumference to the length tends either to zero or to

infinity (corresponding to two versions of the axial gauge). Thus, our computable answers

obtained in a convenient gauge arise as a limit (corresponding to a limiting point on a

certain curve in the space of metrics on the surface Σ) of perturbative answers computed

with smooth propagators.

5.1.1 Surfaces of non-negative Euler characteristic

Surfaces of non-negative Euler characteristic (possibly with boundary, but with no corners)

can be decomposed into the following building blocks:

(I) Cylinder with polarizations A,B fixed on the two boundary circles (i.e. with bound-

ary conditions prescribing the pullback of A to one boundary circle, and the pullback

of B to the other circle), with a nonzero area form µ allowed.

(II) Cylinder with polarization B fixed on both boundaries, with the background 2-form

µ = 0.

(III) Cylinder with polarization A fixed on both boundaries, with µ = 0.

(IV) Disk with polarization B on the boundary and with µ = 0.

A
I

B B
II

B A
III

A
IV

B

This is the premise of the BV-BFV formalism as in [26], where the connected components

of the boundary are decorated with either A- or B-polarization (boundary condition), and

one is allowed to glue an A-boundary circle of one surface to a B-boundary circle of another

surface.

We manage to compute building blocks (I-III) explicitly using the axial gauge, whereas

the building block (IV) can be computed in any gauge due to the vanishing of almost all

Feynman diagrams by a degree counting argument. We use the fact that the partition

function can only depend on the total area of a surface to concentrate the area form µ
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on building blocks (I).3 Block (III) is the most complicated in this list. We only compute

it modulo BV-exact terms: the latter ultimately become irrelevant once we pass from

cochain-level answers to the reduced space of states and reduced partition functions (i.e.,

once we integrate out the bulk residual fields and pass to the cohomology of the boundary

BFV differential Ω).4

The cohomology in degree 0 of the BFV differential Ω on (the BFV model for) the

space of states on a circle HBFV,A
S1 in the A-polarization yields the standard (reduced)

space of states of 2D Yang-Mills theory – the space of class functions on the group G,

Hred
S1 = L2(G)G (see Section 5.2.4). The following is the central result in this chapter.

Theorem I. The BV-BFV partition function of 2D Yang-Mills theory for Σ any surface

with (possibly empty) boundary, with boundary circles decorated with A-polarization,

induces, after integrating out the bulk residual fields and passing to the cohomology of

the boundary BFV operator Ω, the Migdal-Witten non-perturbative partition function of

2D Yang-Mills:[∫
residual fields

ZBV−BFV(Σ)

]
=
∑
R

(dimR)χ(Σ) e−
i~a
2
·C2(R) |R〉⊗n︸ ︷︷ ︸

Znon−pert(Σ)

∈ (Hred
S1 )⊗n . (5.2)

Here on the left, [. . . ] stands for passing to the class in zeroth Ω-cohomology. On

the right side, non-perturbative partition function is given as the sum over irreducible

representations R of the structure group G, dimR is the dimension of the representation

and C2(R) is the value of the quadratic Casimir; |R〉 is the class function on G corre-

sponding to the character of the representation R, mapping g 7→ trRg ; χ(Σ) is the Euler

characteristic; n is the number of boundary circles in Σ; a =
∫

Σ µ is the total area of the

surface.

We first prove the comparison (5.2) for the case of Σ a disk in Section 5.3.5, by

presenting the disk as a gluing of building blocks (I), (III) and (IV) above. We prove the

Theorem I for a general surface in Section 5.4.

The gluing property of the r.h.s. of (5.2) is

Z(Σ1 ∪S1 Σ2) = 〈Z(Σ1), Z(Σ2)〉Hred
S1

.

Here on the right side one has the pairing in the space of states for the circle over which

the surfaces are being glued. In the BV-BFV framework it corresponds to gluing two

A-boundary circles via an “infinitesimally short” B−B cylinder – our building block (II).

3 More precisely, changing the area form µ by an exact 2-form dγ amounts in the BV language to a

canonical transformation of the action and the associated change of the partition function by a BV-exact

term. Therefore, working modulo BV exact terms, one can concentrate the area term in an arbitrarily

small region. We thank Alberto S. Cattaneo for this remark.
4 In particular, we exploit the gauge-invariance of the answer, known a priori from the quantum master

equation, to reduce to the case of constant connections on the boundary.
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5.1.2 General surfaces, surfaces with corners

To extend the result (5.2) to general surfaces we have to consider gluing and cutting with

corners. In this setting we continue to decorate the codimension 1 strata – circles and

intervals – with a choice of polarization, A or B, and we also decorate the codimension 2

corners with a choice of polarization, α or β (corresponding to fixing the value of either field

A or field B in the corner).5 For gluing, we require that if several domains are meeting at

a corner, the respective corner polarizations are the same (unlike the situation with gluing

over codimension 1 strata – those should have the opposite polarization coming from the

two sides of the stratum):6

α

αα
B A

B
A

A
B

In this setup, one can perform the following moves on codimension 1 strata:

(a) One can split an A-interval (or an A-circle) on the boundary of a surface into k ≥ 2

A-intervals separated by α-corners. Then the partition function for a new surface

is obtained by evaluating the partition function for the old surface evaluated on the

concatenation of the fields A on the k intervals.

A

split

A1 A2 . . . Ak

α1
. . .αk−1

Similarly, one can split a B-interval (or circle) into k ≥ 2 B-intervals separated by

β-corners.

5 We think of a corner carrying a polarization as the result of a collapse of an interval carrying same

polarization, see the discussion of the picture I and picture II for corners in section 5.4.

A
collapse

α

6 Actually the BV-BFV formalism does not prescribe, in principle, a particular compatibility between

polarizations for the gluing. What we describe here is a choice that simplifies the computations.

49



5.1. Introduction

(b) One has the inverse of the move (a): one can merge k A-intervals separated by α-

corners into a single A-interval – this corresponds to evaluating the partition function

on the field A restricted to the smaller sub-intervals and to the points separating them.

One can do the same for the B/β polarizations.

(c) One can switch between the polarizations of the corner separating an A-interval and

a B-interval.

(d) One can integrate out (the field corresponding to) the β-corner separating two A-

intervals, merging them together. Likewise, one can integrate out an α-corner sepa-

rating two B-intervals.

The minimal set of building blocks, sufficient to construct all closed surfaces is the follow-

ing:

(i) A disk with boundary subdivided into k intervals, all in A-polarization, and all

corners taken in α-polarization, with a possibly nonzero 2-form µ.

A
A

A

A
A

α

α

α

α

α

splitting A gluing

I

III

IV
BA A

B

A

This building block is computed via the A-disk which is expressed in terms of the

building blocks (I,III,IV) above; then one applies the splitting move to the boundary.

(Recall that in our convention the shaded regions are those that are allowed to carry

a nonvanishing 2-form µ.)

(ii) A “bean” – a disk with boundary subdivided into two B-intervals, with the two

corners in α-polarization.
α

B

α

B

This block is computed from considering an axial gauge on a square and collapsing

two opposite sides to two points.

Then one can e.g. triangulate any surface, assign the building block (i) with k = 3 to each

triangle and glue them using building blocks (ii), thickening the edges of the triangulation

into “beans”.
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This way one can construct the partition function for any surface with boundary and

corners, as long as corners are all in α-polarization (boundary intervals and circles can

be in any polarization). To produce all decorations of both boundary components and

corners, one needs the following additional building block:

(iii) Disk in A-polarization, with a single β-corner.

Then one can use the building block (iii), together with the moves on the boundary, to

create any combination of polarizations of arcs and corners on the boundary of a surface.7

Using the building blocks (i), (ii), we immediately obtain the proof of Theorem I for a

general surface Σ (see Sections 5.4.6, 5.4.7).

Remark 5.1.2. Theorem I in fact applies also to non-orientable surfaces, assuming the

theory in the non-orientable case is defined as in footnote 2.

Remark 5.1.3. Here we are constructing a “pragmatic” extension of the BV-BFV frame-

work to codimension 2 corners in the case of 2D Yang-Mills theory, motivated by the

problem of computing explicit partition functions on surfaces (e.g., closed ones) of arbi-

trary genus. The general theory of quantization with corners in the BV-BFV formalism

is work in progress and will be expanded on in a separate publication.

5.1.3 Main results

• Construction, in terms of explicitly computed building blocks and the gluing rule, of

the partition function of 2D Yang-Mills in BV-BFV formalism on any oriented surface

with boundary and corners, with any combination of polarizations ∈ {A,B} assigned

to the codimension 1 strata and polarizations ∈ {α, β} assigned to codimension 2

strata.

• Theorem I above, providing the comparison between the perturbative BV-BFV result

in the case of a surface with A-polarized boundary and the known non-perturbative

result.
7 One starts with a surface with the corners only in α polarization and creates the desired β-corners

surrounded by two A-arcs by gluing in the block (iii) – see Figure 5.12 in Section 5.4.1 and formula (5.107).

One creates the β-corners surrounded by two B-arcs by the splitting move and β-corners surrounded by

an A-arc and a B-arc by the switch move.
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• In Section 5.4.2 we prove that:

– The BV-BFV partition function on a surface Σ with corners satisfies the modi-

fied quantum master equation (~2∆ + Ω∂Σ)Z = 0, with ∆ the BV Laplacian on

bulk residual fields (in the minimal realization, they are modelled on de Rham

cohomology of the surface), and with Ω∂Σ the boundary BFV operator. We

construct the operator Ω∂Σ explicitly. In particular, apart from the edge con-

tributions it contains quite nontrivial corner contributions, expressed in terms

of the generating function for Bernoulli numbers.

– We prove that Ω squares to zero, and thus the space of states H for a stratified

boundary is a cochain complex.

– We show that the space of states for a stratified circle can be disassembled into

contributions of edges and corners, as the tensor product of certain differential

graded (dg) bimodules – spaces of states assigned to the intervals (depending on

the polarization of the interval and of its endponts) – over certain dg algebras

– the spaces of states for the corners. In particular, an α-corner gets assigned

the supercommutative dg algebra ∧•g∗ with Chevalley-Eilenberg differential.

A β-corner gets assigned the algebra S•g endowed with zero differential and a

non-commutative star-product, written in terms of Baker-Campbell-Hausdorff

formula.

This picture in particular establishes a link with Baez-Dolan-Lurie setup [4, 39]

of extended topological quantum field theory where (in one of the models) one

maps strata of the spacetime manifold of codimension 2, 1, 0, respectively, to

algebras, bimodules and bimodule morphisms.8

5.2 Background: BV-BFV formalism

We will start this section reviewing the basic constructions of the BV-BFV formalism

and fixing the notation. We will then apply this construction to obtain the BV-BFV

formulation of the non-abelian BF theory and Yang-Mills theory reviewing some of the

known results. For a complete and detailed discussion of this topic we refer to [22–24, 26],

where this formalism was first introduced.

5.2.1 Classical BV-BFV

Definition 5.2.1. A BFV manifold is given by the triple (F∂ , α
∂ ,Q∂), where: the space

of boundary fields F∂ is an exact graded symplectic manifold with 0-symplectic form ω∂ =

8 A version of extension of Atiyah’s axioms accommodating the non-perturbative answers for 2D Yang-

Mills with corners was previously suggested in [43]. It can be obtained from our picture by fixing polar-

izations on all strata to A, α and passing to the zeroth cohomology of the BFV differential Ω.
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dα∂ and Q∂ is a homological symplectic vector field of degree 1.9

In particular the condition LQ∂dα∂ = 0 for the vector field Q∂ , since |Q∂ |+ |ω∂ | 6= 0,

implies that it is also hamiltonian: ıQ∂ω
∂ = dS∂ . This defines the degree 1 hamiltonian S∂ ,

which we will call the boundary BFV action.

Definition 5.2.2. A BV-BFV manifold, over a BFV manifold (F∂ , α
∂ ,Q∂), is a quintuple

(F, ω,S,Q, π), where the space of bulk fields (F, ω) is a (−1)-symplectic manifold, the bulk

action S is a function of the fields, the bulk BRST operator Q is a homological vector

field of degree 1 and π : F → F∂ is a surjective submersion, satisfying the following two

compatibility conditions:

i) the bulk homological vector field projects on the boundary homological vector field:

dπQ = Q∂ ;

ii) the modified Classical Master Equation (mCME) holds: ıQω = dS + π∗α∂ .

A classical BV-BFV theory is constructed for manifolds with boundaries of some fixed

dimension n. It consists of the association to each manifold with boundary Σ of a BV-BFV

manifold FΣ over the BFV manifold F∂Σ associated to the boundary ∂Σ. This association

has to be compatible with disjoint union and “gluing” in the following sense:

i) a disjoint union maps to the direct product: FΣ1tΣ2 = FΣ1 × FΣ2 ;

ii) a gluing of two manifolds maps to the fiber product over the space of fields associated

to the gluing interface γ: FΣ1∪γΣ2 = FΣ1 ×Fγ FΣ2 .

Remark 5.2.3. This can be interpreted as a covariant monoidal functor from the space-

time category, with (n− 1) closed manifolds as objects and n-manifolds with boundary as

morphisms with composition given by gluing,10 to the BFV category, where objects are

BFV manifolds, morphisms are BV-BFV manifolds over (products of in- and out-) BFV

manifolds, and composition is given by fiber products. The monoidal structure on the

spacetime category is given by the disjoint union, while on the BFV category side it is

given by the direct product.

Remark 5.2.4. On closed manifolds this construction reduces to a classical BV theory,

which gives a homological resolution of the space of classical states for lagrangian gauge

field theories and is the classical starting point for the BV quantization of such theories [7,

32].

9 For simplicity we will consider, here and in the following, all the gradings to be Z gradings. The parity,

determining the commuting/anticommuting properties of coordinates, is given by the degree mod 2.
10 Depending on the specific theory, the spacetime category could have additional structures: for exam-

ples manifolds could be oriented, Riemannian, etc. Also, depending on the specific theory, there may be

subtleties to defining the spacetime category as an actual category. This discussion is beyond the scope of

(and is not relevant to) this thesis.
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5.2.2 Quantum BV-BFV

A quantum BV-BFV theory associates to an (n − 1) manifold γ a graded cochain com-

plex Hγ , the space of states, with a coboundary operator Ωγ called the quantum BFV

charge. To n-manifolds with boundary Σ the quantum theory assigns a (finite-dimensional)

(−1)-symplectic manifold (VΣ, ωVΣ
) , the space of residual fields, and the partition func-

tion, which is an element ZΣ ∈ H∂Σ⊗Dens
1
2 (VΣ) in the boundary space of states tensored

with the half-densities on the residual fields.11 The partition function has to satisfy the

modified Quantum Master Equation (mQME):

(Ω∂Σ + ~2∆VΣ
)ZΣ = 0 , (5.3)

where ∆VΣ
is the canonical BV Laplacian on the half-densities of the residual fields. The

partition function is understood to be defined modulo (Ω∂Σ + ~2∆VΣ
)-exact terms. Also,

the quantum theory satisfies compatibility conditions with respect to the disjoint union

and the gluing of spacetime manifolds:

i) To disjoint unions, reflecting the quantum nature of the theory, the BV-BFV theory

associates the tensor product of the spaces of states, Hγ1tγ2 = Hγ1 ⊗Hγ2 , the direct

product of residual fields VΣ1tΣ2 = VΣ1 × VΣ2 and the tensor product of partition

functions, ZΣ1tΣ2 = ZΣ1 ⊗ ZΣ2 .

ii) To the gluing of two manifolds the theory associates the partition function obtained

as the pairing, in the space of states of the gluing interface, of the partition functions

of the constituent manifolds: ZΣ1∪γΣ2 = 〈ZΣ1 , ZΣ2〉γ .12

Quantum observables are defined to be cohomology classes of the coboundary operator

Z−1
Σ (Ω∂Σ + ~2∆VΣ

)(ZΣ · . . . ) , with expectation value computed by a BV pushforward

of a representative O times the partition function, i.e. integrating their product over a

lagrangian L ⊂ V :

〈O〉Σ :=

∫
L
OZΣ . (5.4)

The lagrangian submanifold L has here the meaning of gauge-fixing for the integration

over residual fields and the closedness of OZΣ with respect to Ω∂Σ + ~2∆VΣ
ensures that

the Ω∂Σ-cohomology class resulting from the integration does not depend on the particular

choice of gauge fixing thanks to the following theorem [26, 42].

Theorem 5.2.5. Let (M1, ω2) and (M2, ω2) be two graded manifolds with odd symplectic

forms ωi and canonical Laplacians ∆i . ConsiderM =M1×M2 with product symplectic

11 The space of residual fields is not uniquely determined, but comes in a poset of different realizations.

The partition function for a smaller realization can be reached with a BV-pushforward (see Subsection 5.2.3

for further discussion).
12 For oriented spacetime manifolds, this is the dual pairing between Hγ and H∗γ : since the two bound-

aries that are glued together must have opposite orientations, the associated vector spaces are dual to each

other.
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form and canonical Laplacian ∆ and let L,L′ ⊂M2 be any two lagrangian submanifolds

which can be deformed into each other. For any half-density f ∈ Dens
1
2 (M) we have:

i)
∫
L∆f = ∆1

∫
L f

ii)
∫
L f −

∫
L′ f = ∆1ξ for some ξ ∈ Dens

1
2 (M1) , if ∆f = 0 .

In particular, when M1 is just a point, the r.h.s. of the two equations above vanishes.

5.2.3 Quantization

The quantization procedure is a way to get a quantum BV-BFV theory from the data of a

classical BV-BFV theory. The first object to construct is the space of states Hγ , which is

obtained from the space of boundary fields Fγ by choosing a lagrangian foliation, or more

generally a polarization P . We will assume in the following that the 1-form αγ vanishes

along the fibers of P ; if this is not the case, we can use a gauge transformation:

αγ 7→ αγ − dfγ , SΣ 7→ SΣ + π∗fγ , (5.5)

which uses an arbitrary function fγ of the boundary fields to shift αγ and the bulk action in

such a way that the mCME is preserved (cf. def. 5.2.2). The space of states of the quantum

theory is defined as the space of complex-valued functions13 the leaf space BPγ = Fγ/P (or

more generally the space of polarized sections of the trivial “prequantum” U(1)-bundle

over Fγ).

Hγ := FunC(BPγ ) . (5.6)

In other words, the space of quantum states is obtained as the geometric quantization of

the space of boundary fields [26].

The space of quantum states forms a cochain complex. The coboundary operator Ωγ

is constructed as the quantization of the boundary action Sγ . Suppose we have Darboux

coordinates (q, p) on Fγ , where q are also coordinates of BPγ . The operator Ωγ is the

standard-ordering quantization of the action:

Ωγ := Sγ
(
q,−i~

∂

∂q

)
, (5.7)

where all the derivatives are positioned to the right. For the theories we will consider in

this chapter, with this definition Ωγ squares to zero; in general it could be needed to add

quantum corrections to (5.7) for Ωγ to actually be a coboundary operator.14

Let us consider now the data associated to the bulk n-manifolds. The space of bulk

fields has a fibration over BP∂Σ defined by composing the projection to the boundary fields

13 Another possible model for states uses half-densities instead of functions. These two models are

isomorphic, with the isomorphism given by multiplication by a fixed reference half-density.
14 In general there might be cohomological obstructions to do that. Moreover, the partition function

might be not compatible with the so constructed Ω, causing the mQME to fail.
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with the projection given by the polarization: FΣ
π−→ F∂Σ −→ BP∂Σ . Suppose for simplicity

that this is a trivial bundle: FΣ = B̃P∂Σ × Y , where B̃P∂Σ is some bulk extension of BP∂Σ

and Y is some (−1)-symplectic manifold. This assumption will hold in all the theories

considered in the following.

The space of residual fields can be taken to be any (finite-dimensional) symplectic

subspace V of the space of fields,15 separating it as Y = V × Y ′ , where Y ′ is the space of

fluctuations. The partition function is now defined as a BV pushforward of the exponen-

tiated bulk action:

ZΣ(P;V) :=

∫
L

e
i
~SΣ , (5.8)

where L ⊂ Y ′ is a lagrangian submanifold. If ∆YSΣ = 0, theorem 5.2.5 implies that the

partition function is a solution of the mQME (5.3).16 Moreover, we have that ZΣ does not

depend on (deformations of) the gauge-fixing lagrangian L used in the BV pushforward,

up to (Ω + ~2∆)-exact terms.

The discussion, until now, assumes a finite-dimensional situation. This is usually not

the setting of quantum field theories; for infinite-dimensional spaces one needs a more

delicate analysis to prove the mQME and to prove that the dependence of the partition

on the gauge-fixing is BV-exact. A way to make sense of infinite-dimensional integrals is

through perturbation theory, as discussed in the following section.

Perturbative expansion

The space of fields FΣ is typically infinite-dimensional, for example it can contain the

de Rham complex of differential forms over Σ. As a consequence, the integral (5.8) defining

the partition function is (almost always) ill-defined as a measure-theoretic integral and

has to be understood as a perturbative series written in terms of the Feynman diagrams

coming from the interactions in the bulk action expanded around a point x0 ∈ M in the

Euler-Lagrange moduli space – the space of solutions of classical equations of motion of SΣ

(modulo gauge symmetries).

In order for the perturbative expansion to be well-defined, the gauge-fixed action –

the restriction of SΣ to the gauge-fixing lagrangian L – needs to have isolated critical

points. It is important to remark that this condition does not, in general, hold for every

lagrangian.

The existence of such a “good gauge-fixing” depends on the choice of residual fields. In

particular the quadratic part of the bulk action can have zero-modes V0
Σ , i.e. bulk fields

15 In the framework of perturbation theory, the requirement that the integral (5.8) below is perturbatively

well-defined, imposes restrictions on the possible choices of V. E.g. V for perturbed BF theories has to be

modelled on a deformation retract of the de Rham complex of the bulk manifold.
16 In the theories considered in the following this condition is verified. However, this is not always the

case and there can be theories where the bulk action needs quantum corrections in order for the mQME

to hold. This is connected in particular to the presence of quantum anomalies in the theory.
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configurations that are annihilated by the kinetic operator.17 Zero-modes correspond to

the tangent directions to the Euler-Lagrange moduli space (cf. [26], appendix F) and

therefore their presence in the space of fluctuations indicates non-isolated critical points

of the action and obstructs the perturbative expansion. Thus, the space of residual fields

has to at least contain the space of zero-modes for a good gauge-fixing lagrangian to exist:

V0
Σ ⊆ VΣ . When the residual fields coincide with zero modes we say that the perturbative

partition function is in its minimal realization.

Another consequence of the infinite dimensions of FΣ is that also the Laplacian is ill-

defined. The equations containing it are thus only formal (or require a regularization).18

In particular, theorem 5.2.5 is proved in a finite-dimensional setting. An important point

is thus that even if the action is formally annihilated by the Laplacian, the mQME is only

expected to hold and needs to be verified for each particular theory. For perturbed BF the-

ories, including 2D Yang-Mills, the mQME has been proved in the infinite-dimensional per-

turbative setting in [26] and relies on the Stokes’ theorem for integrals over compactified

configuration spaces of points.

Renormalization and globalization

A non-minimal realization of a theory is obtained when the zero-modes are a proper subset

of the space of residual fields. Of course there are different, inequivalent, non-minimal

realizations of any theory. Given a non-minimal realization, one can obtain a smaller one

by a BV pushforward. If V ′Σ = V ′′Σ × Y ′ , with V0
Σ ⊂ V ′′Σ , then:

ZΣ(P;V ′′) =

∫
L
ZΣ(P;V ′) (5.9)

for a lagrangian submanifold L ⊂ Y ′ . The set of all possible realizations forms therefore a

partially ordered set, with the final object given by the minimal realization. Passing from

bigger to smaller realizations can be interpreted as following the renormalization group

flow.

Remark 5.2.6. According to the gluing prescription (cf. section 5.2.2), the residual fields

of the glued manifold are the direct product of the residual fields of the two manifolds

being glued. In particular this means that, generally, if we glue together two partition

functions in the minimal realization the result of the gluing will not be in the minimal

realization. Let Σ = Σ1 ∪γ Σ2 ; it typically happens that V0
Σ ⊂ V0

Σ1
× V0

Σ2
. The minimal

realization for the glued manifold has then to be obtained via a BV pushforward:

ZΣ(V0
Σ) =

∫
L
〈ZΣ1(V0

Σ1
), ZΣ2(V0

Σ2
)〉 . (5.10)

17 See section 5.2.4 for the definition of zero modes in 2D YM.
18 The BV Laplacian becomes non-singular within the framework of renormalization theory on the level

of residulal fields. See also [28] for the discussion of how the RG flow regularizes the BV Laplacian.
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Because of its perturbative definition, the partition function depends on the point x0 ∈
M around which we are expanding and carries only local information on field configurations

infinitesimally close to x0 (it is defined on a formal neighbourhood of x0). Nevertheless,

at least in the theories considered in this chapter, its minimal realization is the Taylor

expansion of a global half-density on the tangent bundle of the Euler-Lagrange moduli

space (cf. [26], appendix F). Thus, under some assumptions, it can be integrated on the

zero section of TM . This corresponds to setting to zero all the zero-modes ν ∈ V0
Σ and

integrating the partition function on the Euler-Lagrange moduli space

ZΣ(P) =

∫
M
ZΣ(P,V0

Σ; x0)
∣∣
ν=0
∈ Dens

1
2 (BP∂Σ) , (5.11)

obtaining a globalized partition function depending only on the boundary fields in BP∂Σ .

Another way to obtain a partition function which does not depend on V0
Σ is to integrate

its minimal realization over all the zero-modes, again using a BV pushforward. Notice that

this cannot be done in a perturbative way – the propagator cannot be defined for zero

modes – but since V0
Σ is a finite-dimensional space, the BV pushforward is well-defined as

an ordinary integral on a supermanifold:

ZΣ(P) =

∫
L⊂V0

Σ

ZΣ(P,V0
Σ) . (5.12)

This can be viewed as an alternative definition of a globalized partition function and

in fact, when both this integral and the one in (5.11) can be computed explicitly, they

coincide (cf. section 5.4.7).19 However, the precise relation between the two globalization

procedures is to be understood better.

5.2.4 BV-BFV formulation of 2D YM

We will review in this section the BV-BFV construction for 2D Yang-Mills and non-abelian

BF theories; for a deeper discussion and for some of the proofs we refer to [22, 26].

Let G be a Lie group with Lie algebra g and let A be a connection 1-form on a principal

G-bundle over a 2-dimensional surface Σ. In the first order formalism the classical YM

action can be written in the following form:

SΣ(A,B) =

∫
Σ
〈B,FA〉+

1

2

∫
Σ

(B,B)µ , (5.13)

where the auxiliary field B is a zero-form valued in g∗ , FA is the curvature 2-form of A ,

〈·, ·〉 is the dual pairing between g and g∗ , (·, ·) is an invariant non-degenerate pairing

on g∗ and µ is the volume 2-form associated to a metric on Σ . We see that 2D YM can

be treated as a perturbation of 2D non-abelian BF theory, which can be obtained in the

19 One caveat is that one needs to take care to avoid possible overcounting when integrating over zero-

modes, cf. Remark 5.3.12 below.
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zero-area limit µ→ 0 . In the following sections we will generally find it useful to consider

BF theory first, introducing the area term only afterwards.

On closed surfaces, the classical BV construction enhances the space of fields by adding

differential forms of every degree, usually called ghosts and antifields for positive or neg-

ative internal degree respectively. The BV space of fields over Σ is then

FΣ = Ω(Σ; g)[1]⊕ Ω(Σ; g∗) 3 (A,B) , (5.14)

where A and B are the superfields associated to A = A(1) and B = B(0) which are their

degree-zero components.20 The BV space of fields is a symplectic graded space, with

(−1)-symplectic form given by:

ωΣ =

∫
Σ
〈δB, δA〉 . (5.15)

The BV action on a closed manifold is

SΣ =

∫
Σ
〈B,dA +

1

2
[A,A]〉+

1

2

∫
Σ

(B,B)µ (5.16)

and the corresponding hamiltonian vector field, the homological vector field QΣ , is:

QΣ =

∫
Σ

〈
dA +

1

2
[A,A],

δ

δA

〉
+

∫
Σ

〈
dB + ad∗AB,

δ

δB

〉
+

∫
Σ

(
B,

δ

δB

)
µ , (5.17)

In the BV-BFV construction the bulk fields, symplectic structure, action and homo-

logical vector field are again the ones described above. Notice that now, when Σ has a

non-empty boundary ∂Σ , the homological vector field (5.17) is not the hamiltonian vector

field of the action (5.16). Indeed, it is not even symplectic:

ıQΣ
ωΣ = δSΣ +

∫
∂Σ
〈B, δA〉 . (5.18)

The boundary fields F∂Σ are defined analogously to the bulk:

F∂Σ = Ω(∂Σ; g)[1]⊕ Ω(∂Σ; g∗) 3 (A,B) . (5.19)

We can thus define the projection π : FΣ −→ F∂Σ to be just the restriction (pullback) to ∂Σ

of the bulk fields. This, taking into account the compatibility conditions of def. 5.2.2, fixes

the remaining boundary data. From (5.18) we get

α∂Σ =

∫
∂Σ
〈B, δA〉 , ω∂Σ = δα∂Σ = −

∫
∂Σ
〈δB, δA〉 , (5.20)

the boundary homological vector field is the projection of the bulk homological vector field

Q∂Σ = dπQΣ =

∫
∂Σ

(〈
dA +

1

2
[A,A],

δ

δA

〉
+
〈

dB + ad∗AB,
δ

δB

〉)
(5.21)

20 We will denote by A(n) the n-form component of a superfield A .
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and thus the boundary action is obtained as the hamiltonian of Q∂Σ :

S∂Σ =

∫
∂Σ
〈B,dA +

1

2
[A,A]〉 . (5.22)

Notice that, for degree reasons, the area form µ does not appear in the boundary data. The

boundary BFV manifold for 2D YM is thus exactly the same as in BF theory; actually,

the only difference between the two theories is the area term in the bulk action and,

consequently, the state (partition function) defined by the two quantum theories.

To quantize the theory, we need to choose a polarization of the space of boundary

fields. From (5.20) we see that there are two simple choices of polarization: the A-

polarization PA ,21 for which the leaf space is decribed by the A fields

BPA
∂Σ = Ω(∂Σ; g)[1] (5.23)

and the B-polarization PB , for which the leaf space is described by the B fields

BPB
∂Σ = Ω(∂Σ; g∗) . (5.24)

We will, in the rest of this chapter, always use these two transversal polarizations, arbi-

trarily splitting the boundary of a manifold into the disjoint22 union of two components,

∂Σ := ∂BΣt∂AΣ , and choosing the product polarization which assigns the B-polarization

to the first and the A-polarization to the latter boundary component:

BP∂Σ = Ω(∂AΣ; g)[1]⊕ Ω(∂BΣ; g∗) . (5.25)

The boundary one-form α∂Σ does not vanish on the fibers of this polarization (cf. (5.20))

but it can be adapted to this choice using a gauge transformation (5.5):

αP∂Σ = α∂Σ + δ

∫
∂BΣ
〈B,A〉 =

∫
∂AΣ
〈B, δA〉 −

∫
∂BΣ
〈δB,A〉 ,

SPΣ = SΣ −
∫
∂BΣ
〈B,A〉 .

(5.26)

We can now quantize, with the above polarization, the boundary action to obtain the

coboundary operator ΩP∂Σ :

ΩP∂Σ =

∫
∂AΣ

i~
(

dAa +
1

2
fabcAbAc

)
δ

δAa
+

∫
∂BΣ

(
i~dBa

δ

δBa
− ~2

2
fabcBa

δ

δBb
δ

δBc

)
.

(5.27)

Here fabc are the structure constants of the Lie algebra g.

21 In the terminology of [26], this is “A-representation”, or “ δ
δB -polarization” (as those are the vector

fields spanning the tangential lagrangian distribution on the phase space).
22 However, when we start considering corners in section 5.4, the disjointness assumption will fail along

codimension 2 strata.
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To write the partition function we lift BP∂Σ to FΣ = B̃P∂Σ×YΣ by taking (discontinuous)

bulk extensions (Ã, B̃) of the boundary fields (cf. the discussion in [26], Section 3.4). We

can now split the bulk fields YΣ into residual fields (a, b) ∈ VΣ and fluctuations (α, β) ∈ Y ′Σ :

A = Ã + a + α , B = B̃ + b + β . (5.28)

We can finally define the partition function as the (perturbative) path-integral:

ZΣ[A,B; a, b] =

∫
L⊂Y ′Σ

D[α, β] e
i
~S
P
Σ (Ã+a+α,B̃+b+β) . (5.29)

Remark 5.2.7. To avoid the appearance of ill-defined derivatives of the discontinuous

fields (Ã, B̃) in the bulk action SPΣ , we integrate by parts rewriting it as:

SPΣ (Ã + a + α, B̃ + b + β) = SPΣ (a + α, b + β) +
1

2

∫
Σ

(b + β, b + β)µ

+

∫
∂AΣ
〈b + β, Ã〉 −

∫
∂BΣ
〈B̃, a + α〉 .

(5.30)

The boundary fields thus act as currents in the perturbative expansion of the partition

function.

We are now in the position of writing down the diagrammatic elements of the Feynman

diagrams expansion of the theory:23

propagator

η

B boundary source

B

A boundary source

A (5.31)

BF interaction YM interaction

µ

b zero-modes

b

a zero-modes

a

With these vertices we can compose a large set of non-trivial Feynman diagrams

(e.g. figure 5.2). The general strategy will be to cut the surface, and hence Feynman

diagrams, in such a way that there is a simple choice of propagators on each compo-

nent which allows us to compute the partition function for that surface. Then, using the

gluing properties of BV-BFV theories, we can glue back all the pieces to recover the par-

tition function on the original surface we started with. This procedure can be viewed as

a method to construct a complicated propagator on the starting surface which, though,

allows explicit computations.

23Zero-modes are here understood as “loose” half-hedges.
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A • • • •

••

•

•

B

Figure 5.2: Two examples of the many possible Feynman diagrams for 2D YM on a surface with

boundary.

Ω-cohomology in A-polarization on a circle

In [26] it was proven that the partition function for 2D YM (and other perturbations of

abelian BF) solves the mQME. In the following sections, to simplify some computations,

we will exploit this fact by choosing a suitable representative for the cohomology class of

the partition function. In particular it will be useful to know the cohomology of Ω , in

ghost degree zero, on the space of boundary fields in A polarization. From equation (5.27)

we see that Ω acts as a gauge transformation, thus Ω-closed functionals of ghost degree

zero are just gauge-invariant functionals of the connection, which are isomorphic to class

functions on the simply connected Lie group G integrating the Lie algebra g . An alterna-

tive approach is to split Ω into the “abelian” part, i.e. the de Rham differential d , plus a

perturbation δ containing the structure constants of the Lie algebra:

Ω =

∫
S1

dAa(0)

δ

δAa(1)︸ ︷︷ ︸
d

+

∫
S1

(
1

2
fabcAb(0)A

c
(0)

δ

δAa(0)

+ fabcAb(0)A
c
(1)

δ

δAa(1)

)
︸ ︷︷ ︸

δ

.
(5.32)

We can then compute the cohomology via the homological perturbation lemma [31]. The

cohomology of d is given by functions on the de Rham cohomology H•dR(S1; g)[1] ; choosing

the coordinate t on the circle, these can be represented as functions of the “constant fields”

A(0) and A(1)dt , where A(0) ∈ g[1] and A(1) ∈ g . Now if we compute the cohomology of

the induced differential

δ =
1

2
fabcAb(0)A

c
(0)

δ

δAa(0)

+ fabcAb(0)A
c
(1)

δ

δAa(1)
(5.33)

on H•dR(S1; g)[1] , we get that in ghost degree zero it is given by G-invariant functions

on the Lie algebra g . Comparing with the previous answer, we see that the correct

Ω-cohomology corresponds to the subspace of G-invariant functions on g coming as the

pullback by the exponential map exp: g→ G of class functions on G . Such functions on g

are determined by their values on the fundamental domain B0 of the exponential map

(e.g. for G = SU(2) , B0 is a ball in g centered at the origin).24 The discrepancy between

24 Generally, B0 is the connected component of the origin in g − φ−1(0) where the function φ : g →
R , φ(x) := det sinh(adx/2)

adx/2
, is the Jacobian of the exponential map. In other words, B0 is the set of
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Chapter 5. 2D Yang-Mills on surfaces with corners in BV-BFV formalism

the correct cohomology of Ω and the cohomology of δ is due to a convergence issue arising

in homological perturbation theory.25 The useful remark coming from this discussion is

that, modulo Ω-exact terms, the partition function and the physical observables can be

represented as a (G-invariant) function of constant fields valued in a neighbourhood of zero

in g . Moreover, in ghost degree zero, for Ω-closed objects – depending only on A(1) – the

“reduced wavefunction” Ψ(A(1)) can be lifted to an Ω-closed function in the non-reduced

space of states by evaluating Ψ on the logarithm of the holonomy of A(1) .

Hodge propagators and axial gauge

The kinetic term in the YM action (5.16) is of the kind
∫

Σ〈B, DA〉 , where D is a differential

on Y•Σ . Since the propagator is the integral kernel of the inverse of D , we want to find

where the differential can actually be inverted.

Let (K, i, p) be a retraction of (Y•Σ, D) on its cohomology (V•, 0) , i.e. a triple where

K : Y•Σ −→ Y
•−1
Σ is a chain homotopy, i : V•Σ ↪→ Y•Σ a chain inclusion and p : Y•Σ � V•Σ a

chain projection satisfying:

K2 = p ◦K = K ◦ i = 0 , i ◦ p = id , DK +KD = id− i ◦ p . (5.34)

Then the complex Y•Σ has a weak Hodge decomposition:

Y•Σ = ΠY•Σ︸︷︷︸
'V•Σ

⊕KY•+1
Σ ⊕DY•−1

Σ︸ ︷︷ ︸
=Y ′•Σ

,
(5.35)

where we have defined Π := i ◦ p . From eq. (5.34), the differential D is invertible as an

operator from the image of the chain homotopy K to D-exact cochains D : KY•+1
Σ −→

DY•−1
Σ and its inverse is precisely the chain homotopy itself: K = D−1 .

The gauge can thus be fixed on the lagrangian L = KYΣ ; the propagator η(x′;x) ,

with this gauge-fixing, is defined as the integral kernel of the chain homotopy:

Kω(x) =

∫
Σ3x′

η(x;x′) ∧ ω(x′) , ω ∈ YΣ . (5.36)

When spacetime is a product manifold, Σ = Σ1 × Σ2 , there is a particular class of

propagators which can be induced on Σ from lower-dimensional propagators on the two

factors [14]. Since the differential forms on a product manifold are the (closure) of the

sum of products of the differential forms on the two factors, we have YΣ = YΣ1⊗YΣ2 . For

each pair of contractions (K`, i`, p`) on the factors YΣ` we have an induced weak Hodge

elements x ∈ g such that all eigenvalues of adx are contained in the interval (−2πi, 2πi) ⊂ iR .
25 This problem is a version of the Gribov ambiguity (Gribov copies) problem in 4d Yang-Mills theory

– the problem of gauge-fixing “section” intersecting the gauge orbits more than once. For that reason, we

will refer to B0 as the “Gribov region”.
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5.3. 2D YM for surfaces of non-negative Euler characteristic

decomposition on YΣ :

YΣ =

=ΠYΣ'VΣ︷ ︸︸ ︷(
Π1YΣ1 ⊗Π2YΣ2

)
⊕

KYΣ︷ ︸︸ ︷(
Π1YΣ1 ⊗K2YΣ2

)
⊕
(
K1YΣ1 ⊗ YΣ2

)
⊕
(
Π1YΣ1 ⊗D2YΣ2

)
⊕
(
D1YΣ1 ⊗ YΣ2

)
.

(5.37)

The zero modes are the product of the zero modes on the two factors and the induced

chain homotopy is K = Π1⊗K2⊕K1⊗ idYΣ2
. The associated gauge is called axial gauge.

If we call π` the integral kernel of Π` , the axial gauge propagator is:

η(x1, x2;x′1, x
′
2) = π1(x1;x′1) ∧ η2(x2;x′2) + η1(x1;x′1) ∧ δ(x2;x′2) . (5.38)

5.3 2D YM for surfaces of non-negative Euler characteristic

In this section we will consider 2D YM on manifolds with codimension 1 boundaries. With

a good choice of propagators and exploiting the gluing properties of BV-BFV theories, we

will be able in this setting to explicitly compute all Feynman diagrams and sum the pertur-

bative series to find the complete partition function of this theory on disks and cylinders.

The globalized realization of the partition function on a disk in the A polarization will

coincide with the well-known non-perturbative solution of 2D YM [40, 53].26

We consider a set of generators, under gluing, for orientable surfaces of non-negative

Euler characteristic: the disk and the cylinder. At the level of the field theory constructed

on such surfaces, we have to also consider the data of the polarization associated to the

boundaries. The building blocks for 2D YM can be thus chosen to be the disk in the B
polarization, the cylinder in A−A polarization and the cylinder in the B−B polarization.

Moreover, using the invariance of the theory under area-preserving diffeomorphisms, we

can concentrate the support of the volume form µ near the boundaries; this allows to use

as generators the above surfaces in the limit of zero area, i.e. for BF theory, at the cost

of introducing as fourth generator a YM cylinder in A−B polarization with finite volume

(figure 5.3).

5.3.1 A-B polarization on the cylinder

Let us start studying the BF theory on the cylinder, Σ = S1×I 3 (τ, t) , I = [0, 1] . We will

firstly choose B polarization on S1 × {0} = ∂BΣ and A polarization on S1 × {1} = ∂AΣ .

The space of bulk fields, with this polarization, is Y = Ω(Σ, ∂BΣ; g)[1] ⊕ Ω(Σ, ∂AΣ; g) .

Since the relative cohomology H(Σ, ∂iΣ) is trivial with the above choice of boundaries, we

have no zero-modes. Thus the connected diagrams contributing to the effective action of

the theory are trees with one root on ∂BΣ and leafs on ∂AΣ or 1-loop diagrams with trees

rooted on a point of the loop and leafs on ∂AΣ (figure 5.4).

26 Although we can present, e.g., the sphere and the torus as assembled from building blocks considered

in this section, globalization integrals for them are perturbatively obstructed, see Section 5.3.5. We obtain

a non-singular globalized answer in these cases as a part of the general result of Section 5.4.
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BBF

A

A

BF

B

B

BF A BYM

Figure 5.3: Building blocks for 2D YM on surfaces with non-negative Euler characteristic.

B A B A

Figure 5.4: Connected diagrams for non-abelian BF on the cylinder in A-B polarization.

To compute these diagrams we can use the axial-gauge, with propagator (cf. B.2):

(t, τ) (t′, τ ′) = η(t, τ ; t′, τ ′) = −Θ(t′ − t)δ(τ − τ ′)(dτ ′ − dτ) . (5.39)

Looking at this propagator we immediately notice that it is a zero-form on the interval I .

Since each bulk vertex carries an integration over S1 × I , the differential form associated

to a diagram has the right form components (that is, s.t. its integral over the configuration

space doesn’t vanish) only if it doesn’t contain any bulk vertex. Thus there is only one

non-vanishing diagram contributing to the effective action:

Seff
BF[B,A] = =

∫
∂AΣ
〈p∗B,A〉 , (5.40)

where p : Σ −→ ∂BΣ is a projection to the B-boundary.

The Yang-Mills action can be rewritten as a perturbation of BF:

SYM = SBF +
1

2

∫
Σ
µ tr(B2) . (5.41)

The additional bivalent interaction vertex is proportional to the volume form µ . For degree

counting reasons analogous to the one described above, the only additional non-vanishing

Feynman diagram is the one containing a single YM vertex:

Seff
YM = + µ =

∫
∂AΣ
〈p∗B,A〉+

1

2

∫
∂BΣ

p∗µ trB2 , (5.42)

where the last integral is the integral of a density, with p∗µ the pushforward of µ, viewed

as a density on the cylinder, to the B-circle. Thus we proved the following:
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5.3. 2D YM for surfaces of non-negative Euler characteristic

Proposition 5.3.1 (YM on A-B cylinder). The partition function for a YM cylinder in

the A-B polarization is:

Z[A,B] = exp
i

~

(∫
∂AΣ
〈p∗B,A〉+

1

2

∫
∂BΣ

p∗µ trB2
)
. (5.43)

A YM A-B cylinder can be glued to other YM surfaces with boundary to modify their

volume. In particular in this way one can convert BF (µ = 0) to YM.

5.3.2 B-B polarization on the cylinder

Another possible choice is to take the B polarization on both the boundary components

of the cylinder. This time the bulk fields are Y = Ω(M ; g)[1] ⊕ Ω(M,∂M ; g) , with zero-

modes V = H(M ; g)[1]⊕H(M,∂M ; g) ' H(S1; g)[1]⊕H(S1; g)[−1] . More explicitly, the

zero-modes can be described expanding with respect to a basis [χi] of H(S1) and its dual

[χi] :

a = aiχ
i ∈ H(S1; g)[1] , b = biχi ∧ dt ∈ H(S1; g)[−1] . (5.44)

We can again fix the gauge using the axial-gauge, obtaining the propagator (B.9):

η(t, τ ; t′, τ ′) =
(
t′ −Θ(t′ − t)

)
δ(τ ′ − τ)(dτ ′ − dτ) + dt′

(
Θ(τ − τ ′)− τ + τ ′ − 1

2

)
. (5.45)

Now the effective action contains trees with root on one of the boundaries and leafs in

the bulk or 1-loop diagrams with trees rooted on the loop and leafs in the bulk. Luckily,

a lot of these diagrams vanish as it is shown by the following

Lemma 5.3.2. For BF theory on a cylinder with B-B polarization in the axial gauge, all

the diagrams containing a bulk vertex with attached two a zero-modes vanish:

Γ
= 0 . (5.46)

Proof. Consider any diagram of the kind depicted in formula (5.46). The associated dif-

ferential form on the configuration space of the diagram will be of the kind

Γc(t, τ) η(t, τ ; t′, τ ′) f cab a
a(τ ′) ab(τ ′) .

Since a has no form component along dt , using the axial-gauge propagator (5.45) we have

for the corresponding amplitude:∫
Γc(t, τ) f cab a

a(τ ′) ab(τ ′) η(t, τ ; t′, τ ′)

= f cab a
ia ajb

∫
Γc(t, τ)

∫
S1

χi(τ ′) χj(τ
′)
(

Θ(τ − τ ′)− τ + τ ′ − 1

2

)
= 0 .

(5.47)
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In particular this means that contributions to the effective action only come from either

one single zero-mode attached to one of the two boundaries or from 1-loop diagrams with

n > 2 vertices, each attached to a single a zero-mode (figure 5.5). These diagrams can

be explicitly evaluated and the perturbative series can be summed to obtain the effective

action.

B
B̃

B
B̃

B
B̃

B
B̃n

Figure 5.5: Connected diagrams for non-abelian BF on the cylinder in B-B polarization.

Proposition 5.3.3. The partition function for BF theory on the cylinder in B-B polar-

ization is:

Z[B, B̃, a, b] = exp

(
i

2~

∫
I×S1

〈b, [a, a]〉+
i

~

∫
S1

〈B− B̃, a〉+
∑
n>2

1

n
tr(ada1)n

Bn
n!

)
· ρV

= e
i

2~
∫
I×S1 〈b,[a,a]〉+ i

~
∫
S1 〈B−B̃,a〉 det

(
sinh

(
ada1/2

)
ada1/2

)
· ρV .

(5.48)

Here ρV = (−i~)dim gD
1
2 a D

1
2 b is the reference half-density on the space of zero-modes.

Proof. We refer for the proof to Appendix C.

Remark 5.3.4 (Reference half-densities on residual fields). Generally, we choose the

following reference half-density on the space of residual fields V:

ρV =
2∏

k=0

(ξk)
dk ·D

1
2 a D

1
2 b . (5.49)

Here D
1
2 a D

1
2 b is the standard half-density on V, inducing the standard Berezin-Lebesgue

densities da, db on the lagrangians b = 0 and a = 0, respectively. Also, dk is the dimension

of the subspace of V corresponding to a-fields of de Rham degree k ∈ {0, 1, 2}; in particular,

for V the zero-modes, dk = dimHk(Σ, ∂AΣ; g) are the Betti numbers of relative de Rham

cohomology. Factors ξk are as follows:

ξ0 = −i~, ξ1 = 1, ξ2 =
1

2π~
. (5.50)
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The logic behind this normalization is that for V = W [1] ⊕W ∗[−2] with W a complex

(concentrated in degrees 0, 1, 2) and V ′ = W ′[1]⊕W ′∗[−2] with W ′ a deformation retract of

W , we would like the BV pushforward of the half-density ρV e
i
~ 〈b,da〉 on V (corresponding

to abstract abelian BF theory associated to W ) to yield ρV ′ e
i
~ 〈b
′,da′〉 on V ′. Thus, we

recover the normalization of reference half-densities from the automorphicity with respect

to BV pushforwards. Most general normalization satisfying this condition is:

ξ0 = −i~φ, ξ1 = φ−1, ξ2 =
φ

2π~
, (5.51)

with φ 6= 0 an arbitrary constant. Our choice is to set φ = 1 which will ultimately lead

to the number-valued partition function of 2D Yang-Mills with standard normalization.

Choosing any other φ would induce a rescaling of partition functions by

ZΣ 7→ φχ(Σ)·dim g ZΣ , (5.52)

which reflects an inherent ambiguity of the normalization of path-integral measure. We

refer the reader to [25] for details on the normalization of half-densities compatible with

BV pushforwards.

5.3.3 A-A polarization on the cylinder

The last polarization choice we will consider consists in taking A polarization for both the

boundaries of the cylinder. With this polarization the bulk fields are Y = Ω(M,∂M ; g)[1]⊕
Ω(M ; g) . The zero-modes V = H(M,∂M ; g)[1]⊕H(M ; g) ' H(S1; g)⊕H(S1; g) can be

expanded as:

a = aiχ
i ∧ dt , b = biχi . (5.53)

The axial-gauge propagator is now (B.9):

η(t, τ ; t′, τ ′) =
(
Θ(t− t′)− t

)
δ(τ ′ − τ)(dτ ′ − dτ)− dt

(
Θ(τ − τ ′)− τ + τ ′ − 1

2

)
. (5.54)

The effective action contains trees with the root in the bulk and leafs on one of the

boundaries or 1-loop diagrams with trees rooted on the loop and leafs either on the bound-

ary or decorated with the zero mode a1 . Also with this polarization an analogue of

lemma 5.3.2 holds:

Lemma 5.3.5. For BF theory on a cylinder with A-A polarization in the axial gauge, all

the diagrams containing a bulk vertex with attached two a zero-modes vanish:

Γ
= 0 . (5.55)

Proof. The proof follows trivially from degree counting, since a zero-modes always have a

component along dt .
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The diagrams contributing to the effective action can be restricted further by reducing

to the case of constant fields A, Ã . Indeed, the gauge-invariance of the partition function

(expressed by the mQME) implies that it is sufficient to evaluate it on constant 1-form

fields A = dtA(1) , Ã = dt Ã(1) , with A(1), Ã(1) ∈ g two constants. Then the value of the

partition function for generic fields A, Ã is recovered (modulo a BV-exact term, cf. (5.56)

below) by evaluating the constant-field result on the logs of holonomies A(1) = logU(A) ,

Ã(1) = logU(Ã) .27 Here U(· · · ) stands for the holonomy of a connection 1-form around a

circle. In other words, using the language of homological perturbation theory, we have a

quasi-isomorphism between the two models for the space of states for an A-circle:

(i) The full BFV model HA = FunC(Ω•(S1, g)[1]) given by functions of a general differ-

ential form A on the circle, with differential Ω defined by (5.32).

(ii) The constant-field model HA,const = FunC(H•(S1, g)[1]) – functions of a constant

form A(0) + dtA(1) , with differential δ defined by (5.33).

We have two chain maps: first, the projection pH : HA → HA,const – evaluation of a

wavefunction on constant forms or equivalently the pullback pH = ι∗ by the inclusion

of the cohomology by as constant forms H•(S1, g) 7→ Ω•(S1, g) . Second, the inclusion

iH : HA,const → HA sending Ψ 7→
(

Ψ: A 7→ Ψ
(
A(0)

∣∣
p
, logU(A)

))
where p is the base

point on the circle used to define the holonomy. Denoting KH the chain homotopy for

the retraction of chain complexes (HA,Ω)  (HA,const, δ) , we have the following (cf. the

discussion of the reduced partition function in [25], section 7.4):

iH ◦ pH Z = (id−KHΩ− ΩKH)Z = Z + (Ω + ~2∆)(· · · ) , (5.56)

where · · · = −KHZ . The left hand side in (5.56) is exactly the partition function evaluated

on constant 1-form fields having the same holonomy as the original non-constant ones.

Lemma 5.3.6. For BF theory on a cylinder with A-A polarization in the axial gauge, all

the diagrams containing a bulk vertex with attached two boundary fields vanish, assuming

that A and Ã are constant 1-forms.

A , Ã
Γ

=

ÃA ΓΓ
= 0 . (5.57)

Proof. Using the assumption of constancy of boundary fields and the axial-gauge propa-

gator (5.54), when we have two boundary fields connected to the same bulk vertex we find

the amplitude:∫
Γc(t̃, τ̃) f cab Aa Ab η(t̃, τ̃ ; t, τ) η(t, τ ; 0, τ ′) η(t, τ ; 0, τ ′′)

=
1

2
f cab Aa Ab

∫
Γc(t̃, τ̃)η(t̃, τ̃ ; t, τ)

∫
S1

dτ ′
(

Θ(τ − τ ′)− τ + τ ′ − 1

2

)
= 0 .

(5.58)

27 For simplicity of notations we are omitting the subscript of the 1-form A(1) when it appears in the

holonomy U(A).
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Similar amplitudes are found also in the case one or both the boundary fields live on the

boundary at t = 1 .

A Ã = A

Figure 5.6: Relevant loop diagrams for the globalized effective action of BF theory on a cylinder

with A-A polarization

Like in the case of non-abelian BF theory on closed surfaces, the computation of

the effective action greatly simplifies if we look at the globalized answer. In this case

we can define the globalized partition function by integrating the perturbative partition

function over a lagrangian submanifold of the space of residual fields. If Seff [A,B, a, b]

is the perturbative effective action on the space of boundary fields and zero-modes and

L ⊂ V is a lagrangian submanifold, the globalized partition function can be defined as:

Z =

∫
L

e
i
~Seff [A,B,a,b] . (5.59)

A possible choice for the lagrangian is L := {a = 0} , which in particular implies that all

diagrams containing a zero-modes will not contribute to the globalized effective action.

The effective action of BF theory is always linear in the b zero-modes. Moreover, for the

A-A polarization on the cylinder in the axial gauge, lemma 5.3.6 implies that there are no

tree diagrams with this L . Thus:

Z =

∫
db

(2π~)dim g
e

i
~
∫
S1 〈b,A−Ã〉+ i

~Seff(A,Ã,a=0,b=0) =
( i

~

)dim g
δ(A, Ã)e

i
~Seff(A,Ã=A,a=0,b=0) .

(5.60)

The loop diagrams contributing to the globalized effective action are now only those where

each loop vertex is connected to a boundary field with a single propagator and the fields

on the two boundary components coincide (figure 5.6). The amplitude of such a diagram

with n boundary fields is:

− 1

n
tr(adnA(1)

)

∫
(S1)n

dτ1 · · · dτn ηS1(τ1; τn)ηS1(τn; τn−1) · · · ηS1(τ2; τ1) . (5.61)

The integrals involved are exactly the same as the ones of the case of B-B polarization (C.1).

Thus we have:

Proposition 5.3.7. The globalized partition function for BF theory on the cylinder in

the A-A polarization is

Z[A, Ã] =
( i

~

)dim g
δ(logU(A), logU(Ã)) · δ(Ap, Ãp̃) det

(
sinh

(
adlogU(A)/2

)
adlogU(A)/2

)−1

(5.62)
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where U(· · · ) is the holonomy of the connection around a circle and Ap, Ãp̃ are the zero-

form components of boundary fields A, Ã evaluated at the base points p, p̃ on the two

boundary circles.

Remark 5.3.8. Since det

(
sinh
(

adx/2
)

adx/2

)
is the determinant of the Jacobian of the expo-

nential map exp: g −→ G, we can rewrite (5.62) in terms of the delta function on the Lie

group:

Z[A, Ã] =
( i

~

)dim g
δ(Ap, Ãp̃) · δG(U(A), U(Ã)) . (5.63)

5.3.4 B polarization on the disk

Let us consider now non-abelian BF theory on the disk D . Using the B polarization

on the boundary, the bulk fields are Y = Ω(D; g)[1] ⊕ Ω(D,S1; g) . The zero-modes are

V = g[1]⊕g∗[−2] with generators the constant zero-form [1 · ta] and an area 2-form [µ · ta] ,

where ta and ta are dual basis of g and g∗ .

The Feynman graphs appearing in the effective action are trees, with root either in a

boundary B-field or in a b zero-mode in the bulk, or 1-loop diagrams (figure 5.7).

B B B

Figure 5.7: Connected diagrams for non-abelian BF on the disk in B polarization.

Proposition 5.3.9. In the effective action for BF theory on the disk in B-polarization, all

the diagrams containing at least one propagator are vanishing. In particular the partition

function reads:

Z[B, a, b] = exp
i

~

(
−
∫
S1

〈B, a〉+

∫
D

1

2
〈b, [a, a]〉

)
· ρV , (5.64)

with ρV = (−i~)dim gD
1
2 a D

1
2 b the reference half-density on residual fields.

Proof. The result follows from degree counting. Let us consider first a tree diagram rooted

in the bulk. If n is the number of bulk vertices, then we have n − 1 propagators, n + 1

a zero-modes and one b zero-mode. Since propagators are 1-forms, a only has the zero-

form component and b is a 2-form, then the differential form associated to the diagram

is a (n + 1)-form. This has to be integrated on the configuration space of the diagram,

which is of dimension 2n . Thus the only possibly non-vanishing diagram is for n = 1 . Its

contribution is:
1

2

∫
D
〈b, [a, a]〉 . (5.65)
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Consider now a tree diagram rooted on the boundary with n bulk vertices. We have n

propagators, n + 1 a zero-modes and one boundary field B . Thus the differential form

associated to the diagram is a n-form or a (n + 1)-form, depending on the form degree

of B , and has to be integrated again on a (2n + 1)-dimensional configuration space. In

this case we only have a contribution with n = 0 :

−
∫
S1

〈B, a〉 . (5.66)

Last, for a 1-loop diagram with n > 1 vertices in the loop and l vertices in the trees rooted

on the n loop vertices, we have n+ l propagators and n+ l a zero-modes. Thus we have to

integrate a differential form of degree n+ l on a 2(n+ l)-dimensional configuration space

and, since n > 1 , we have no non-vanishing contributions.

5.3.5 Gluing

We computed the YM partition function on the A-B cylinder and the BF partition function

on the B-disk and the A-A cylinder. As we will show in this section, using the gluing

property of BV-BFV theories, this is sufficient to prove a gluing formula between A-

polarized boundaries and to find the YM state on any surface with non-negative Euler

characteristic.

BF disk in A polarization

The BF disk in A polarization can be obtained changing polarization to the disk in B
polarization by gluing to it an A-A BF cylinder (figure 5.8).

BF B̃ ∪S1 BFÃ A = BF A

Figure 5.8: A disk as the gluing of a B disk with an A-A cylinder.

For the A-A cylinder we only know the projection in Ω cohomology of the globalized

answer; since both globalization and projection to cohomology commute with gluing, we

are still able to compute the partition function for the disk. The glued partition function is:

Z[A] =

∫
dadB̃dÃ e−

i
~
∫
S1 〈B̃,a−Ã〉 δ(Ap, Ãp̃)

· det

(
sinh

(
adlogU(A)/2

)
adlogU(A)/2

)−1

δ(logU(Ã), logU(A))

= det

(
sinh

(
adlogU(A)/2

)
adlogU(A)/2

)−1

δ(logU(A), 0) = δG(elogU(A), I)

= δG(U(A), I) .

(5.67)
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Remark 5.3.10. To have consistency with gluing, we assume that the integration measure

over the boundary fields is normalized in such a way that∫
dB̃dÃ e

i
~
∫
S1 〈B̃,Ã〉 = 1 . (5.68)

As a matter of convenience, we moreover distribute the normalization between dÃ and dB̃
in such a way that ∫

dB̃ e
i
~
∫
S1 〈B̃,Ã〉 = δ(Ã) . (5.69)

YM disk in A polarization

We can obtain the partition function for the YM disk in A polarization gluing to the BF

disk a YM cylinder in A-B polarization (figure 5.9).

BF Ã ∪S1 YMB̃ A = YM A

Figure 5.9: YM A disk as the gluing of a BF A disk with a YM A-B cylinder.

As the partition function for the BF disk, also the YM partition function coincides

with the non-perturbative answer.

Proposition 5.3.11. The globalized partition function for 2D YM on the disk in A-

polarization is:

ZYM[A] =
∑
R

(dim R) χR(U(A)) e−
i~a
2
C2(R) , (5.70)

where a =
∫
µ is the area of the disk, χR the character and C2(R) the quadratic Casimir

of the representation R .

Proof. Gluing a BF disk to a YM cylinder in A-B polarization we get:

ZYM[A] =

∫
dB̃dÃ e−

i
~
∫
S1 〈B̃,(Ã−A)〉− i

2~
∫
S1×I µ tr(B̃2)δ(U(Ã), I)

= e
i~a
2

(
∂
∂A ,

∂
∂A

)
δ(U(A), I) = 〈I| e−

i
~HYM |U(A)〉

=
∑
R

(dim R) χR(U(A)) e−
i~a
2
C2(R) .

(5.71)
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Gluing circles in A polarization

Two boundaries in A polarization can be glued together using a BF cylinder in B-B
polarization. If ZΣi [Ai] is the globalized partition function on a surface Σi , i = 1, 2 , and

Σ is the gluing Σ1 ∪S1 Σ2 along a common boundary in A polarization, we get:

ZΣ =

∫
dB̃dÃ dBdA da1 e

i
~
∫
S1 〈B̃,(Ã−a)〉− i

~
∫
S1 〈B,(A−a)〉+ i

2~ 〈b
(2),[a(0),a(0)]〉

· det

(
sinh

(
ada1/2

)
ada1/2

)
ZΣ1 [A] ZΣ2 [Ã] · ρV

= ρV · e
i

2~ 〈b
(2),[a(0),a(0)]〉

∫
G

dU ZΣ1 [U ] ZΣ2 [U ] ,

(5.72)

which coincides with the gluing formula for YM known in literature [40, 53] up to a

zero-mode dependent factor. Here, instead of integrating out the zero-modes on the B-

B cylinder completely (which would yield an ill-defined integral), we performed a partial

integration (BV pushforward), retaining the zero-modes a(0), b(2). Here the index in brack-

ets stands for the form degree of a zero-mode and ρV = (−i~)dim gD
1
2 a(0) D

1
2 b(2) is the

reference half-density on the remaining zero-modes.

Remark 5.3.12. In (5.72), the domain of integration over a1 is the “Gribov region”

B0 ⊂ g (cf. subsection 5.2.4) – the preimage of an open dense subset of the group G under

the exponential map exp: g → G . On one hand, this is the domain corresponding to

values of a for which the sum of Feynman diagrams converges. On the other hand, this

corresponds to avoiding overcounting when performing the globalization via integrating

over zero-modes as opposed to integrating over the moduli space of solutions of Euler-

Lagrange equations.

Other surfaces of non-negative Euler characteristic

To obtain the YM cylinder in A-A polarization we can simply change polarization to the

YM A-B cylinder by gluing a BF cylinder (figure 5.10):

ZYM[A,A′] =
( i

~

)dim g
∫

dB̃dÃ e−
i
~
∫
S1 〈B̃,(Ã−A)〉− i

2~
∫
µ tr(B̃2)δG(U(Ã), U(A′)) δ(A′p′ , Ãp̃)

=
( i

~

)dim g
δ(A′p′ ,Ap)

∑
R

(dim R) χR
(
U−1(A′) · U(A)

)
e−

i~a
2
C2(R) .

(5.73)

Remark 5.3.13. The answer (5.73) does not coincide with the non-perturbative answer,

which will be recovered perturbatively in Section 5.4 using manifolds with corners. This

discrepancy is due to the presence of inequivalent gauge-fixings in the globalization process.

Let us now compute the YM partition function for a sphere S2 obtained by the gluing

of two disks: one with area a and in the A polarization, the other with zero area and in

B polarization.
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BFA′ Ã ∪S1 YMB̃ A = YMA′ A

Figure 5.10: YM A-A cylinder as the gluing of a BF A-A cylinder with a YM A-B cylinder.

D

DBB
A

Using the globalized partition function (5.70) for the A-disk and the non-globalized

answer (5.64) for the B-disk we get:

ZS
2

YM[a, b] = ρV

∫
dA dB e

− i
~
∫
S1 〈B,A−a〉+ i

2~
∫
DB
〈b,[a,a]〉

ZDYM[A]

= ρV · e
i

2~
∫
DB
〈b,[a,a]〉

ZDYM[U(A) = I]

= ρV · e
i

2~
∫
〈b,[a,a]〉

∑
R

(dim R)2 e−
i~a
2
C2(R) .

(5.74)

Here ρV = (−i~)dim gD
1
2 a D

1
2 b is the reference half-density on zero-modes. We immedi-

ately notice that this non-globalized answer consists of the product of a function of the

zero-modes times the non-perturbative Migdal-Witten partition function for the sphere.

Moreover, the partition function (5.74) does not produce well-defined global answers by

integrating out the zero modes.

Similarly, trying to calculate the globalized partition function for the torus by gluing

a YM cylinder in A-A polarization (5.73) with a cylinder in B-B polarization (5.48), one

obtains an ill-defined answer.

Remark 5.3.14. We remark that the form of the perturbative answer here – as the

non-perturbative (number-valued) answer times the exponential of a cubic term in zero-

modes – is similar to the form of the perturbative result for Chern-Simons theory in BV

formalism on a rational homology 3-sphere [21]:

ZCS = ρV · e
i

2~ 〈a
(3),[a(0),a(0)]〉 · e

i
~ ζ(~) .

Here ζ(~) is the sum of contributions of connected 3-valent graphs without leaves.

Remark 5.3.15. The gluing construction of Section 5.4 (gluing along edges rather than

circles) produces a well-defined globalized answer for all surfaces – including the cylinder,

the sphere and the torus – coinciding with the non-perturbative answer in case of surfaces
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with boundary in A-polarization (5.2). In particular, the gluing construction of Section 5.4

produces the answer for the sphere as in (5.74) but without the zero-mode factor. This

discrepancy is due to inequivalence of gauge-fixings used in the two approaches.

5.4 2D Yang-Mills for general surfaces with boundaries and

corners

To be able to compute the partition function of 2D YM for general surfaces we need to also

consider corners, i.e. codimension 2 strata – marked points on the boundary. In topology

surfaces can be described as collections of polygons modulo an equivalence relation which

identifies pairs of edges. The idea is to transport this description to the level of field

theory: if we can compute the partition function on polygons with arbitrary combinations

of polarizations associated to the edges, then we can recover the partition function on

surfaces with boundary by gluing pairs of edges with transversal polarizations.

In this section we will formulate a set of rules for corners dictated by the logic of the

path-integral and find a set of building blocks that generates under gluing 2D YM on all

manifolds with boundaries and corners. We will then discuss the mQME in presence of

corners and compute the partition function of the various building blocks. Finally, we

will use the results of this analysis to prove a gluing formula in presence of corners and

compute the 2D YM partition function on a generic surface with boundary, recovering the

well known non-perturbative solution.

5.4.1 Corners and building blocks for 2D YM

The partition function is an element of the space of boundary states, which are defined by

the data of a choice of polarization on the boundary; this choice reflects on the (fluctuations

of the) bulk fields by imposing boundary conditions. In the presence of corners dividing

two arcs with different polarizations, we have to consider mixed boundary conditions for

the bulk fields. More generally we can associate a polarization also to corners, inducing

boundary conditions for all adjacent bulk or boundary fields. In this case, corners can

be considered as collapsed arcs, with associated polarization the same as the corner they

represent, but carrying only some of the boundary fields, namely the ones pulled back

from the corner (i.e. constant zero-forms).

Notice that the presence of a corner with the same polarization as one of the adja-

cent edges has no effect on the partition function (but could require modifications of Ω :

cf. section 5.4.2). For example taking a corner with the same polarization of both adjacent

edges simply means that we are formally splitting the boundary field into two concatenat-
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ing fields, but this doesn’t change the boundary conditions for the bulk fields:

Z

( A
α
B

)
' Z

( A
β
B

)
;

Z

( A
α
A

)
' Z

(
A
)

; Z

( B
β
B

)
' Z

(
B
)
.

(5.75)

Moreover, by “freeing” the bulk fields from the boundary conditions imposed by a corner,

i.e., upon integrating over all possible values of corner fields, the partition function of the

surface without that corner is recovered:∫
Dβ Z

( A
β
A

)
= Z

(
A
)

;

∫
Dα Z

( B
α
B

)
= Z

(
B
)
.

(5.76)

The gluing of two arcs is analogous to the case without corners, with the only additional

requirement that the fields of the corners that will be identified by the gluing have to

coincide:∫
D(A,B) e−

i
~
∫
〈B,A〉 Z

(
A
)
Z

(
B

)
= Z

( )
. (5.77)

All these statements will be tested with explicit computations in the following sections.

Remark 5.4.1. Let the surface Σ be the result of gluing of surfaces Σ1 and Σ2 along

an interval I, as above. Assume that the partition functions for Σ1, Σ2 are computed

perturbatively, using the propagators η1, η2. Then the gluing formula (5.77) above yields

the partition function for the glued surface Σ computed using the “glued propagator”

η = η1 ∗ η2 on Σ, constructed as follows:

• For x, y ∈ Σ1, η(x, y) = η1(x, y).

• For x, y ∈ Σ2, η(x, y) = η2(x, y).

• For x ∈ Σ2, y ∈ Σ1, η(x, y) = 0.

• For x ∈ Σ1, y ∈ Σ2, we have:

A

B

z

x

y

I
Σ2Σ1

η(x, y) =

∫
I3z

η1(x, z)η2(z, y) . (5.78)

This is precisely the gluing construction for propagators from [26], which turns out to

work also in the setting with corners.
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Assuming this set of rules for the corners, we have the following set of building blocks

for 2D YM, as illustrated in figure 5.11. The disk in the A polarization was already

computed in section 5.3.5 and, using equation (5.75), it is equivalent to a polygon with an

arbitrary number of edges where all the edges and the corners are in A-polarization. To

change polarization of one of its edges, we can glue to it the BF disk with two corners in the

α polarization and two edges in B polarization. The last BF disk of figure 5.11, with only

one A-edge and one corner in the opposite polarization, can be then used in combination

with the other building blocks to change the polarization of one corner (figure 5.12). In

this way we can obtain a polygon with any number of edges and with any combination

of polarizations associated to edges and corners; thus we can also obtain the partition

function for any given surface with boundary (and corners).

A
YM BB

α

α

BF
A

βBF

Figure 5.11: Building blocks for 2D YM with corners.

α

A

A
α

α

B
α

B
α

B

α

B

α
α

A

A

α

A
α

A
β −→

A

A

β

α

α

Figure 5.12: The polarization on a corner can be changed by gluing. In this picture it is illustrated

how to convert a corner in α polarization to a corner in β polarization using the building blocks

of figure 5.11.

5.4.2 Corners, spaces of states and the modified quantum master equa-

tion

We have two pictures for surfaces with boundary and corners.

I. (Non-polarized corners.) Boundary circles are split into intervals by vertices

(corners). Each interval carries a polarization A or B, corresponding to imposing the

boundary condition on the pullback to the interval of the bulk field A or B. Corners

do not carry a polarization.
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II. (Polarized corners.) In addition to the intervals carrying a polarization A or B,

each corner is also equipped with a polarization α or β corresponding to prescribing

the pullback of either A or B field to the corner.

Picture II is our main framework in this thesis. One can transition from picture I to

picture II by collapsing every other arc on a circle (assuming that initially the number

of arcs was even) into a vertex with the corresponding polarization, by the rule A → α,

B→ β. One obtains the partition function ZII in the picture II by evaluating the partition

function ZI of picture I on constant 0-form fields on the arcs that are being collapsed –

pullbacks of the corner fields to the arc. E.g., for a disk with the boundary split into 4 arcs

of alternating polarizations in picture I, collapsing the B-arcs into β-corners corresponds

to the following:

ZII(A1, β1,A2, β2; zero-modes) = ZI(A1,B1 = β1,A2,B2 = β2; zero-modes) . (5.79)

A1

B1

A2

B2

I

collapse

collapse

A1

β1

A2

β2

II

Picture I: non-polarized corners. Modified quantum master equation

Consider a circle (thought of as a boundary component of a surface Σ) split by n points

p1, p2, . . . , p2m = p0 (“corners”) into intervals I1, I2, . . . , I2m with Ik = [pk−1, pk].

p0 = p2mp1

p2 p2m−1

I2m

I1

I2
B

A
B

A

Assume that we fix the A-polarization on the intervals Ik with k odd and the B-polarization

for k even. We understand that we can, by a tautological transformation, further subdivide

each A- or B-interval into several intervals carrying the same polarization. No polarization

data is assigned to the corners pk (this is our “picture I” for corners).

The BFV space of states H, associated to the circle with such a stratification and

a choice of polarizations, is the space of complex-valued functions of the fields on the

intervals:

H =
{

functions Ψ(A|I1 ,B|I2 , . . . ,B|I2m)
}
. (5.80)
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The space of states is equipped with the BFV operator (which with an appropriate refine-

ment becomes a differential, see Remark 5.4.3 below)

Ω =
∑
k odd

ΩA
Ik

+
∑
k even

ΩB
Ik︸ ︷︷ ︸

edge contributions

+
∑
k odd

ΩAB
pk

+
∑
k even

ΩBA
pk︸ ︷︷ ︸

corner contributions

. (5.81)

Here the edge contributions from the intervals, depending on the polarization, are:

ΩA
I = i~

∫
I

〈
dA +

1

2
[A,A],

δ

δA

〉
, (5.82)

ΩB
I =

∫
I

i~
〈

dB,
δ

δB

〉
+ (i~)2

〈
B,

1

2

[ δ
δB
,
δ

δB

]〉
. (5.83)

The corner contributions from the vertices pk are the multiplication operators by the

product of the limiting values of the A-field and the B-field coming from the incident arcs,

with a sign depending on the order of the arcs relative to the orientation:

ΩAB
p = −〈Bp,Ap〉 , ΩBA

p = 〈Bp,Ap〉 . (5.84)

These corner contributions to the boundary BFV operator Ω and their necessity for the

modified quantum master equation were observed by Alberto S. Cattaneo [16].

The following is a refinement of Lemma 4.11 in [26] for a surface with boundary, with

non-polarized corners allowed, in the case of 2D Yang-Mills theory.

Proposition 5.4.2 (mQME in picture I). The BV-BFV partition function Z of 2D Yang-

Mills theory on a surface with boundary consisting of stratified circles decorated with a

choice of A,B polarizations on the codimension 1 strata (and no polarization data on

codimension 2 strata) satisfies the mQME

(~2∆ + Ω)Z = 0 , (5.85)

where Ω is the sum of expressions (5.81) for the stratified boundary circles.

Sketch of proof. The proof follows the proof of Lemma 4.11 in [26] where we need to take

care of collapses of point near a corner. Let Γ be a Feynman graph for the partition

function; its contribution to Z is
∫
CΓ
ωΓ : the integral over the configuration space CΓ

– where vertices of Γ are restricted to the respective strata of Σ (bulk, boundary arcs

or corners) – of ωΓ, the differential form on CΓ, which is the product of propagators,

boundary fields and zero-modes, as prescribed by the combinatorics of Γ.28 One considers

the Stokes’ theorem for configuration space integrals:

i~
∑

Γ

∫
CΓ

dωΓ = i~
∑

Γ

∫
∂CΓ

ωΓ . (5.86)

28 A tacit assumption in this proof is that the propagator is a smooth 1-form on the configuration space

of two points. E.g, the “metric propagator” arising from Hodge theory satisfies this property. Singular

propagators considered in this thesis arise as limits of such smooth propagators.
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On the left hand side, the terms with d acting on the propagators assemble into ~2∆Z and

the terms with d acting on A,B fields assemble into Ω0Z where Ω0 = i~
∫
∂AΣ

〈
dA , δ

δA
〉

+

i~
∫
∂BΣ

〈
dB , δ

δB
〉
. Here ∂AΣ and ∂BΣ are the parts of the boundary equipped with po-

larizations A and B, respectively. Thus, the l.h.s. of (5.86) is (~2∆ + Ω0)Z. The r.h.s.

contains several types of terms, corresponding to types of boundary strata of CΓ:

i) Collapses of 2 points in the bulk – cancel out when summed over graphs, due to the

classical master equation satisfied by the BV action.

ii) Collapses of ≥ 3 points in the bulk – vanish by the standard vanishing arguments for

hidden strata of the configuration spaces [36].

iii) Collapses of one or more points at a point on a boundary arc. These contributions

assemble into −Ω1Z, where contributions to the differential operator Ω1 are given by

the collapsed subgraphs.

iv) Collapses of several points at a corner – they assemble into −Ω2Z.

Thus, one obtains the modified quantum master equation (5.85) with Ω = Ω0 + Ω1 + Ω2.

Analyzing the possible contributing collapses at an arc yields two graphs contributing

to Ω1:

A

→ i~
∫
∂AΣ

〈1

2

[
A,A

]
,
δ

δA

〉
,

B

→ (i~)2

∫
∂BΣ

〈
B ,

1

2

[ δ
δB
,
δ

δB

]〉
.

(5.87)

For Ω2, the only contributing graphs are

A Bp

→ −〈Bp,Ap〉 ,

AB p

→ 〈Bp,Ap〉 . (5.88)

Remark 5.4.3. It was found out in [26] that, in order to have the property Ω2 = 0

for the BFV operator, generally one should consider a certain refinement of the space of

states, allowing the states to depend on the so-called “composite fields” on the boundary,

which correspond in Feynman diagrams to boundary vertices of valency ≥ 2.29 We are

29 In fact, the operator Ω constructed above (5.81) with edge contributions (5.82,5.83) and corner

contributions (5.84) does not satisfy Ω2 = 0 on the nose, whenever corners are present. In the setting
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not considering composite fields in this thesis: below, in Section 5.4.2, we manage to

construct Ω for the setting of polarized corners, which squares to zero on the nose, without

having to introduce composite fields.

Picture II: polarized corners

Now consider a circle split by n points p1, . . . , pn = p0 (“corners”) into intervals I1, . . . , In.

Assume that for each k we fix on the interval Ik the polarization Pk ∈ {A,B} – i.e. we

prescribe either the the pullback of Ak field A or the pullback Bk of the field B on Ik (by

an abuse of notations, we denote the differential form Ak or Bk also by Pk). Likewise, we

fix a polarization ξk ∈ {α, β} on the corners pk.

p0 = pn

p1

p2

pn−1

ξn
ξ1

ξ2

ξn−1

In

I1

I2

Pn
P1

P2 (5.89)

The BFV space of states H, associated to the circle with such a stratification and

a choice of polarizations, is the space of complex-valued functions of the fields on the

intervals and the corners, subject to the natural corner value conditions:

H =

{
functions Ψ(P1, ξ1,P2, ξn, . . . ,Pn, ξn)

∣∣∣
Pk|pk = ξk if polarizations Pk and ξk agree

Pk|pk−1
= ξk−1 if polarizations Pk and ξk−1 agree

}
.

(5.90)

Here we say that the polarization of an interval “agrees” with the polarization of the

incident corner if this pair of polarizations is either (A, α) or (B, β). The space of states

is a cochain complex with the differential

Ω =
∑
k

ΩPk
Ik︸︷︷︸

edge contribution from Ik

+
∑
k

Ω
PkξkPk+1
pk︸ ︷︷ ︸

corner contribution from pk

, (5.91)

where the edge contributions are given by (5.82,5.83).

The corner contributions to Ω depend on the polarization ξk at the corner and po-

larizations of the incident edges Pk,Pk+1 and are assembled from the contribution of the

corner itself and the contributions of the corner interacting with the incident edges:

Ω
PkξkPk+1
pk = ΩPkξk

pk
+ Ωξk

pk
+ Ω

ξkPk+1
pk . (5.92)

of [26] this is remedied by adding corrections to Ω, depending on composite boundary fields. Then in

addition to the diagrams (5.88) at a corner one should consider other diagrams, involving boundary vertices

of valency ≥ 2.
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Here the pure corner contributions are:

Ωα
p = i~

〈1

2

[
α, α

]
,
∂

∂α

〉
, Ωβ

p = 0 . (5.93)

The corner-edge contributions ΩPξ
p ,Ω

ξP
p vanish if the polarization ξ at the corner matches

the polarization P of the incident edge. For mismatching corner-edge polarizations, we

have nontrivial contributions to Ω:

A β

p −→
〈
β,F−

(
adi~ ∂

∂β

)
Ap
〉
,

Aβ

p −→
〈
β,F+

(
adi~ ∂

∂β

)
Ap
〉
,

B α

p −→
〈
Bp,F+

(
adi~ ∂

∂Bp

)
α
〉
,

Bα

p −→
〈
Bp,F−

(
adi~ ∂

∂Bp

)
α
〉
.

(5.94)

Here we have introduced the following functions:

F+(x) =
x

1− e−x
=
∞∑
j=0

(−1)j
Bj
j!
xj = 1 +

x

2
+
x2

12
− x4

720
+ · · · ,

F−(x) =
x

1− ex
= −

∞∑
j=0

Bj
j!
xj = −1 +

x

2
− x2

12
+

x4

720
+ · · · ,

(5.95)

where Bj are the Bernoulli numbers B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , . . .

In (5.94), functions F± are evaluated on x = adi~ ∂
∂β

, producing End(g)-valued derivations

(of infinite order) of the space of functions of β. Further in this section we will also need

the following two functions, related to the generating functions for Bernoulli polynomials:

G+(t, x) =
1− e−tx

1− e−x
, G−(t, x) =

1− e(1−t)x

1− ex
. (5.96)

Note that, when acting on the partition function, the complicated operators ΩBα
p ,ΩαB

p

from (5.94) act simply as multiplication operators

ΩBα
p ∼ 〈Bp, α〉 , ΩαB

p ∼ −〈Bp, α〉 , (5.97)

since the derivative in the corner value of the field B acts by zero. Thus, we have:

ΩBα
p = 〈Bp, α〉+ · · · , ΩαB

p = −〈Bp, α〉+ · · · , (5.98)

where we have added the terms · · · (irrelevant for the master equation) so as to have the

property Ω2 = 0. To be precise, we impose the following mild restriction on the states.

Assumption 5.4.4 (Admissible states). We assume that the states do not depend ex-

plicitly on the limiting values of 1-form components of fields A,B at corners. I.e., for p a

corner, the derivatives ∂

∂A(1)
p

, ∂

∂B(1)
p

act by zero on on admissible states.
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Then, by a direct computation, one verifies the following (we give the explicit proof in

Appendix D.1).

Proposition 5.4.5. For a stratified circle, with any choice of polarizations on the strata,

the operator Ω as defined by (5.91,5.93,5.94) satisfies Ω2 = 0 on admissible states in the

sense of Assumption 5.4.4.

Let us introduce the following terminology. For a product of intervals (or circles) I×J
with I parameterized by coordinate t and J parameterized by τ , we call the axial gauge

propagator containing δ(τ − τ ′) parallel to I (and perpendicular to J), since the intervals

on which the δ-term is supported are parallel to I. Note that in all the computations of

Section 5.3, the axial gauge was always chosen to be perpendicular to the boundary.

Consider a surface Σ with stratified boundary circles in picture II, as in (5.89), i.e.,

with arcs and corners carrying polarization data. We can view such a surface as a limit

at s→ 0 of a family of surfaces Σs, with corners of Σ expanded into arcs of corresponding

polarization (thus, surfaces Σs for s > 0 are in picture I). Let ηs be a family of propagators

(corresponding to a family of gauge-fixings) on the surfaces Σs, converging to a propagator

η on Σ. We make the following assumption.

Assumption 5.4.6 (Collapsible gauge condition). The contraction of the propagator ηs
with a 1-form B(1) on the B-interval Is ⊂ ∂Σs that is being collapsed into a β-corner p of

Σ, becomes supported at p in the limit s→ 0.

This assumption can be realized by considering an s-dependent family of metric gauge-

fixings associated to equipping Σs with a metric gs in which the B-arc undergoing the

collapse is placed at the end of a long “tentacle”. Thus, at s → 0, the β-corner is placed

infinitely far from the rest of the surface.

B
s→ 0

β

Put another way, if both arcs adjacent to Is are in A-polarization, the assumption requires

that ηs asymptotically approaches the axial gauge propagator η(t, τ ; t′, τ ′) = (Θ(t− t′)− t)
·δ(τ − τ ′) (dτ ′−dτ)−dtΘ(τ ′− τ) (the axial propagator parallel to Is) near the collapsing

interval Is, as s → 0, with t the coordinate along Is and τ the coordinate along the

“tentacle”.

Proposition 5.4.7 (mQME in picture II). Under the assumption above, the partition

function Z for the surface Σ with boundary and corners equipped with polarization data,

satisfies the modified quantum master equation

(~2∆ + Ω)Z = 0 ,
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where Ω is given as the sum of expressions (5.91) over the boundary circles, with edge

contributions given by (5.82,5.83) and corner contributions defined by (5.92,5.93,5.94).

Here Z is understood as the limit s → 0 of the evaluation of partition function of

picture I on Σs on the fields pulled back from edges and corners of Σ along the collapse

map Σs → Σ. See Remark 5.4.8 below for an explicit example of the mQME with corners

in the picture II. Also, in Remark 5.4.14 we will have a non-example showing that the

mQME does indeed fail without the Assumption 5.4.6.

Sketch of proof. Proposition 5.4.7 arises as a corollary of Proposition 5.4.2, since Z is

understood as a limit s → 0, in the sense explained above, of partition functions Zs
on surfaces Σs in picture I, which do satisfy the modified quantum master equation by

Proposition 5.4.2. Contribution i~
〈

1
2

[
α, α

]
, ∂
∂α

〉
to Ω in picture II at a B − α − B corner

arises as an s→ 0 limit of the A-edge contribution (5.82) from the A-edge of Σs collapsing

to the corner.

Next, consider an A − β − A corner where, in addition to Assumption 5.4.6, we as-

sume for the moment that the 0-form component of the A field is continuous through

the corner. In this case, the corner contribution to Ω given by (5.92,5.94) simplifies to

ΩAβA = i~
〈
[Ap, β], ∂∂β

〉
and it arises from the fact that Zs depends on the 1-form field B(1)

at the edge Is collapsing into the β-corner p, and this dependence is important for the

mQME in picture I. Using the Assumption 5.4.6 and the continuity of A(0) through the

corner, the dependence of Zs on B(1) for small s is: Zs ∼ e
i
~
∫
Is
〈B(1),Ap〉, and one has:

ΩB
IsZs ∼

(
i~
∫
Is

〈
[Ap,B(0)],

∂

∂B(0)

〉)
Zs → i~

〈
[Ap, β],

∂

∂β

〉
Z .

Therefore, one can compensate for the loss of dependence on B(1) during the collapse by

inclusion of the term i~
〈
[Ap, β], ∂∂β

〉
in Ω.

Finally, consider the A−β−A corner without assuming the continuity of A(0) through

the corner. To analyze the dependence of Zs on B(1), we cut a rectangle R out of Σs at

the collapsing edge:

A

A
B

zoom in

A1

A2 I2

A3

BI1 R

τ

t B2 Σ̃ (5.99)

Thus, we present the surface Σs as R ∪I2 Σ̃. Computing the partition function on the

rectangle in the axial gauge,30 setting A1 = Ap+0, A3 = Ap−0 – constant zero-forms, the

30 We are using the axial gauge propagator parallel to Is, i.e. η(t, τ ; t′, τ ′) =

(Θ(t− t′)− t) δ(τ − τ ′) (dτ ′ − dτ)− dtΘ(τ ′ − τ) with t, τ the vertical and horizontal coordinate on the

rectangle. This choice is the one consistent with the Assumption 5.4.6.
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limiting values of A(0) to the right and left of the corner p on Σ, and setting A2 = dtA –

a constant 1-form, we find the following:

ZR = e
i
~
∫
Īs

dt 〈B(0),A〉+〈B(1),G−(t,adA)Ap+0+G+(t,adA)Ap−0〉 , (5.100)

with G± as in (5.96). Here the integral is over t ∈ [0, 1], or equivalently over Is with

reversed orientation. This implies

(ΩB
Is + 〈β,Ap+0〉 − 〈β,Ap−0〉)ZR

∣∣∣
B=β

= −〈β,F−(adA)Ap+0 + F+(adA)Ap−0〉 e
i
~ 〈β,A〉 .

(5.101)

The operator acting on ZR on the left hand side is the part of the Ω in picture I corre-

sponding to the collapsing interval Is and its two endpoints. Thus, combining with the

gluing formula for partition functions we have:

(ΩB
Is + 〈β,Ap+0〉 − 〈β,Ap−0〉)

∫
dA dβ′ ZR · e−

i
~ 〈β
′,A〉 · Z

Σ̃
(β′, · · · )︸ ︷︷ ︸

ZΣs

=

= 〈β,F+(adi~ ∂
∂β

)Ap+0 + F−(adi~ ∂
∂β

)Ap−0〉 ZΣ̃
(β, · · · ) . (5.102)

Thus, the action on ZΣs of the part of Ω in picture I corresponding to the collapsing interval

(with its endpoints) is compensated by the action on the partition function in picture II of

the operator appearing on the right hand side – which is precisely our anticipated corner

contribution in picture II, ΩAβA = ΩAβ + ΩβA, see (5.94).

Remark 5.4.8. Another argument for the contribution to Ω from a β-corner is as follows.

In Section 5.4.5 we will obtain the explicit partition function for an A-disk D with a single

β-corner

Aβp

p− 0

p+ 0

in the form

ZD = e
i
~ 〈β,logU(A)〉 , (5.103)

with U(A) the holonomy of the 1-form field A(1) along the boundary circle. From Baker-

Campbell-Hausdorff formula, one finds

ΩA logU(A) = −i~ (F+(adlogU(A))Ap−0 + F−(adlogU(A))Ap+0) , (5.104)

which implies

ΩAZD = 〈β,F+(adlogU(A))Ap−0 + F−(adlogU(A))Ap+0〉 · ZD . (5.105)

86



Chapter 5. 2D Yang-Mills on surfaces with corners in BV-BFV formalism

From this one immediately sees that

(ΩA + ΩβA
p + ΩAβ

p )ZD = 0 , (5.106)

with the corner contributions as prescribed by (5.94). Thus, the mQME works by a direct

computation. For a general surface Σ containing a β-corner, surrounded by A-edges, one

can cut out a disk around the corner and the mQME will follow from the one we just

checked for the disk and from the one for the remaining part of the surface (thus by

induction one can reduce to the case of surfaces without A− β − A-corners).

β A B
A
A

α

α

A

A

(5.107)

Yet another approach to the proof of Proposition 5.4.7, explaining the corner contri-

butions (5.94), is in the vein of the proof of Proposition 5.4.2, with Ω given by Feynman

subgraphs collapsing at the boundary/corners. Consider e.g. a collapse at a A − β − A
corner. The following subgraphs are contributing:

A

A
β

zoom in
B

A

A
t

τ

,
B

A

A

(5.108)

One computes these contributions to Ω using the propagator η = (Θ(t − t′) − t)δ(τ −
τ ′)(dτ − dτ ′)− dtΘ(τ ′− τ) in the rectangle that we see when zooming into the corner. In

the zoomed-in picture we are considering configurations of points modulo the horizontal

rescalings τ 7→ c·τ . We fix a representative of the quotient by fixing the horizontal position

of one marked vertex. Edges leaving the collapsing subgraph are assigned the expression

dt · i~ ∂
∂β (the factor dt comes from the propagator associated to the external edge). The

graphs in (5.108) are easily computed and yield, when summed over the number of external

edges, ΩAβA = ΩAβ + ΩβA with ΩAβ,ΩβA given by the formulae (5.94).

Space of states for the stratified circle as assembled from spaces of states for

edges and corners

One can regard the space of states 5.90 for the stratified circle as constructed from the

spaces of states for individual edges. One assigns to an interval (with chosen polarization P
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in the bulk and ξ, ξ′ on the endpoints) a space of states – a cochain complex – constructed

as the space of functions on the P-field at the edge and fields at the corners (understood as

independent fields if the corner and edge polarizations disagree; if the polarizations agree,

the corner field is the limiting value of the edge field):

A
I

ξ

pin

ξ′

pout
−→ Hξ,A,ξ

′

I = FunC

({
g[1]

g∗

}
×g[1] Ω•(I, g)[1]×g[1]

{
g[1]

g∗

})
,

Ωξ,A,ξ′
I = Ωξ

in + ΩξA
in + ΩA

I + ΩAξ′
out + Ωξ′

out ,

B
I

ξ

pin

ξ′

pout
−→ Hξ,B,ξ

′

I = FunC

({
g[1]

g∗

}
×g∗ Ω•(I, g∗)×g∗

{
g[1]

g∗

})
,

Ωξ,A,ξ′
I = Ωξ

in + ΩξB
in + ΩB

I + ΩBξ′
out + Ωξ′

out .
(5.109)

Here top/bottom choice for the fiber product factors on the left/right corresponds to α

or β polarization on the left/right endpoint. Note that the polarizations of the endpoints

affect the BFV differential, which is given by the edge term defined by (5.82,5.83) plus the

two endpoint-edge terms defined by (5.94), plus two pure endpoint terms defined by (5.93).

One can also assign a space of states to a corner p in α- or β-polarization as follows:

Hαp = FunC(g[1]) = C⊗ ∧•g∗ , Ωα
p =

i~
2

〈
[α, α],

∂

∂α

〉
,

Hβp = FunC(g∗) = C⊗ S•g , Ωβ
p = 0 .

(5.110)

Note that, as a cochain complex, Hα,A,αI is quasi-isomorphic to Hαp – the Chevalley-

Eilenberg complex of the Lie algebra g. Geometrically, this corresponds to the collapse of

an A-interval with endpoints in α-polarization into a single α-point. Likewise, the cochain

complex Hβ,B,βI is quasi-isomorphic to Hβp :

Hα,A,αI  Hαp , Hβ,B,βI  Hβp . (5.111)

One can regard Hαp and Hβp as differential graded algebras. The algebra structure

on Hαp is the standard supercommutative multiplication in the exterior algebra, while for

Hβp we need to deform the näıve commutative product in the symmetric algebra into a

star-product ∗~ – the deformation quantization of the Kirillov-Kostant-Souriaux Poisson

structure on g∗, as we explain below.

One can regard the space of states for the interval as a bimodule over the spaces of

states associated to the end-points. The action of the end-point algebra Hξp on the space

of states Hξ,P,ξ
′

I for the edge is via multiplication in the algebra, e.g. ψ(α)⊗Ψ(α,P, ξ′) 7→
ψ(α)Ψ(α,P, ξ′), ψ(β)⊗Ψ(β,P, ξ′) 7→ ψ(β)∗~Ψ(β,P, ξ′). The reason we need to deform the

product in Hβ from the commutative one is that we want the edge to give a differential

graded bimodule over the corner spaces. In particular, the module structure map Hβp ⊗
Hβ,A,ξ

′

I → Hβ,A,ξ
′

I should be a chain map with respect to the differential ΩβA
p + ΩA

I + ΩAξ′
p′ .
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This requirement is incompatible with the commutative product on Hβp and forces the

following associative non-commutative deformation ∗~ : Hβ ⊗Hβ → Hβ.

Proposition 5.4.9. The associative product structure ∗~ on Hβ is fixed uniquely by the

two properties:

i) The module structure map m : Hβp ⊗Hβ,A,ξ
′

I → Hβ,A,ξ
′

I , obtained by extending ∗~ by

linearity in the second factor, is a chain map.

ii) ∗~ is unital with ψ(β) = 1 the unit.

The product ∗~ is explicitly described as follows:

e−
i
~ 〈β,x〉 ∗~ e−

i
~ 〈β,y〉 = e−

i
~ 〈β,BCH(x,y)〉 (5.112)

Here x, y ∈ g are arbitrary parameters in the Lie algebra and BCH(x, y) = log(exey) is

the Baker-Campbell-Hausdorff group law.

Proof. Let us check that the star-product (5.112) does indeed make the module structure

map a chain map. Note that, for ψ(β) = e−
i
~ 〈β,x〉, the action of ΩβA

p on ψ can be written

as

ΩβA
p ψ = 〈β,F+(adx)Ap〉ψ = i~

d

dε

∣∣∣
ε=0

e−
i
~ 〈β,BCH(x,εAp)〉 = i~

d

dε

∣∣∣
ε=0

ψ ∗~ e−
i
~ 〈β,εAp〉 ,

(5.113)

with ε an odd, ghost degree −1 parameter and ∗~ defined by (5.112). Here we have used

the identity BCH(x, y) = x+ F+(adx)y+O(y2). This implies that for any Ψ ∈ Hβ,A,ξ
′

I we

have:

ΩβA
p Ψ = i~

d

dε

∣∣∣
ε=0

Ψ ∗~ e−
i
~ 〈β,εAp〉 . (5.114)

Therefore, for any ψ̃ ∈ Hβp we have:

m ◦ (id⊗ ΩβA)(ψ̃ ⊗Ψ) = i~
d

dε

∣∣∣
ε=0

ψ̃ ∗~
(
Ψ ∗~ e−

i
~ 〈β,εAp〉

)
= i~

d

dε

∣∣∣
ε=0

(
ψ̃ ∗~ Ψ

)
∗~ e−

i
~ 〈β,εAp〉 = ΩβA ◦m(ψ̃ ⊗Ψ) .

(5.115)

Here we used the associativity of the star-product (5.112). Note that the other pieces of

the differential, ΩA
I and Ωξ′

p′ , clearly commute with the module structure map m. Thus we

have proven that m, defined by (5.112) and extended by Fun(A, ξ′)-linearity in the second

factor, is indeed a chain map.

Moreover, assume that • is some unital associative product on Hβ with ψ(β) = 1 the

unit. Then the argument above shows that the module structure map m defined using

• is a chain map if and only if ψ1 • (ψ2 ∗~ ψ3) = (ψ1 • ψ2) ∗~ ψ3 for any ψ1,2,3 ∈ Hβ.

Choosing ψ2 = 1, we obtain ψ1 • ψ3 = ψ1 ∗~ ψ3. This proves uniqueness of the star-

product (5.112).
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Gluing two intervals over a point corresponds to taking the tensor product of the spaces

of states for the intervals over the algebra associated to the point:31

P1

I1

ξ′ ξ

p

P2

I2

ξ′′

−→ H = Hξ
′,P1,ξ
I1

⊗Hξp H
ξ,P2,ξ′′

I2
. (5.116)

The space of states (5.90) for the stratified circle can then be written, in terms of the

spaces of states for intervals and corners introduced above, as:

H =
(
Hξn,P1,ξ1
I1

⊗Hξ1p1
Hξ1,P2,ξ2
I2

· · · ⊗
Hξn−1
pn−1

Hξn−1,Pn,ξn
In

)
⊗
Hξnpn⊗

(
Hξnpn
)op Hξnpn . (5.117)

Here the superscript op stands for the opposite algebra.

Remark 5.4.10. Denote I = ∪lk=1Ik be the union of l consecutive intervals on the

stratified circle (5.89) and J = ∪nk=l+1Ik the union of the remaining intervals, and let

p = p0, q = pl be the points separating I and J . The globalized partition function Z for

the disk D filling the stratified circle is, by the mQME, an Ω-closed element of the space

of states

HS1 = HI ⊗Hq HJ ⊗Hp⊗Hop
p
Hp ∼= Hom(Hq ,Hp)−bimod(HĪ ,HJ ) . (5.118)

Here on the right hand side we have the space of morphisms of dg bimodules over Hq on

the left and Hp on the right; bar on Ī stands for orientation reversal. Thus, the partition

function for a disk can be seen as a bimodule morphism between two bimodules associated

to the two arcs constituting the boundary.

Z
J Ī

q

p

Note that the picture for 2D Yang-Mills we just described, mapping points to algebras,

intervals to bimodules and disks to morphisms of bimodules, is in agreement with Baez-

Dolan-Lurie setting of extended topological quantum field theory [4, 39], with the correc-

tion that our spaces of states depend on the choice of polarization and partition functions

depend on the area of the surface (and pre-globalization partition functions additionally

depend on residual fields).

31 Note that, in dg setting, when taking the tensor product M1 ⊗A M2 of a right A-module M1 and

a left A-module M2 over a dg algebra A, the total differential is the sum of the differentials on M1, M2

minus the differential on A.
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Towards quantization of codimension 2 corners in more general BV-BFV the-

ories

The algebraHβ, ∗~ is isomorphic to U~(g) – the enveloping algebra of g with the normalized

Lie bracket i~[−,−]. This algebra arises as Kontsevich’s deformation quantization [18, 36]

of the algebra of functions on g∗ equipped with the Kirillov-Kostant-Souriaux linear Pois-

son structure. This observation fits well into the following expected picture of quantization

of corners of codimension 2.

In a general gauge theory, a codimension 2 stratum γ is classically associated a BFV

“corner phase space” [23] Φγ equipped with a degree +1 symplectic form ωγ and a

BFV charge Sγ of degree +2. On the level of quantization, we impose a polarization

Φγ ' T ∗[1]Bγ . The BFV charge Sγ generates a P∞ (Poisson up-to-homotopy) algebra

structure on C∞(Bγ), coming from interpreting Sγ as a self-commuting polyvector Π on

Bγ .32 Then the quantum space of states Hγ is expected to be the A∞ algebra obtained

as Kontsevich’s deformation quantization of the P∞ algebra C∞(Bγ). In particular, the

A∞ structure maps arise from Feynman diagrams on a thickening of γ to γ × D, with

D a 2-disk, for a field theory coming from the AKSZ construction on the mapping space

Map(T [1]D,Φγ). We plan to revisit this construction in more detail in a future work on

corners in BV-BFV formalism.

Note that, in the case of 2D Yang-Mills theory, the corner phase space is Φp = g[1]⊕g∗,
with ωp = 〈dβ,dα〉, Sp = 1

2〈β, [α, α]〉. Deformation quantization of C∞(g∗) with Poisson

bivector Π = 1
2〈β, [

∂
∂β
∧, ∂

∂β ]〉 yields the algebra Hβ. Taking the opposite polarization,

one gets the deformation quantization of C∞(g[1]) = ∧g∗ with 1-vector Π = 1
2〈[α, α], ∂

∂α〉,
which is the dg algebra Hα.

In general, one expects all the structure maps on (and between) the spaces of states

associated to various strata to come from Feynman diagrams.

A related picture was obtained in [20] in the context of Poisson sigma model on a

disk with intervals on the boundary decorated with coisotropic submanifolds Ci of the

Poisson target M . In this setting the quantization yields algebras assigned to intervals

(deformation quantization of the rings of functions on Ci) and bimodules assigned to the

corners separating the intervals. In particular, the algebra Hβ arises in this context as a

quantization of the space-filling coisotropic in M = g∗. This picture can be thought of as

Poincaré dual to our picture on the boundary of a disk.

Gluing regions along an interval and the Fourier transform property of BFV

differentials

Recall that the BFV differentials for an A-circle and a B-circle are related by Fourier

transform. This property in particular implies that mQME is compatible with gluing: if

32 Equivalently, the P∞ structure arises from Sγ via the derived bracket construction, {ψ1, . . . , ψn}Π :=

(· · · (Sγ , ψ1), · · · , ψn) with ψ1, . . . , ψn ∈ C∞(Bγ). The brackets (−,−) on the r.h.s. are the Poisson

brackets on functions on the phase space Φγ defined by ωγ .
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5.4. 2D Yang-Mills for general surfaces with boundaries and corners

Σ = Σ1∪S1Σ2 a union of surfaces over a circle and if partition functions ZΣ1 , ZΣ2 are known

to satisfy mQME, then the glued partition function ZΣ = 〈ZΣ1 , ZΣ2〉HS1 automatically

satisfies mQME on the glued surface.

One has an analogous property in the setting with corners. Consider e.g. an A-

interval I parameterized by t ∈ [0, 1] with endpoints in polarizations ξ, ξ′ and consider

a B-interval Ĩ parameterized by t̃ ∈ [0, 1], with endpoints in ξ′, ξ. Let r : I → Ĩ be an

orientation-reversing diffeomorphism t 7→ t̃ = 1 − t. Gluing along r corresponds to the

following pairing of states on I and Ĩ:

〈−,−〉I : Hξ,A,ξ
′

I ⊗Hξ
′,B,ξ
Ĩ

−→ C

ψ1 ⊗ ψ2 7→
∫
DADB ψ1(ξ,A, ξ′) · e−

i
~
∫
I〈r
∗B,A〉 · ψ2(ξ′,B, ξ)

(5.119)

One easily verifies the following:

〈(ΩξA
in + ΩA

I + ΩAξ′
out)ψ1, ψ2〉I = −〈ψ1, (Ω

ξ′B
in + ΩB

Ĩ
+ ΩBξ

out)ψ2〉I . (5.120)

Here we are making the Assumption 5.4.4 on states ψ1, ψ2. In other words, the operators

ΩξA
in + ΩA

I + ΩAξ′
out and Ωξ′B

in + ΩB
Ĩ

+ ΩBξ
out are, up to sign, the Fourier transform of each other

(when acting on admissible states).

This immediately implies the following. Assume that Σ is a result of gluing of sur-

faces Σ1 and Σ2 via attaching an interval I ⊂ ∂Σ1 to Ĩ ⊂ ∂Σ2 along the diffeomorphism

r. Then for Ψ1 ∈ H∂Σ1 , Ψ2 ∈ H∂Σ2 any two states on the boundary of Σ1, Σ2, we have

Ω∂Σ〈Ψ1,Ψ2〉I = 〈Ω∂Σ1Ψ1,Ψ2〉I + 〈Ψ1,Ω∂Σ2Ψ2〉I , (5.121)

where 〈Ψ1,Ψ2〉I ∈ H∂Σ is understood as the “gluing” of states Ψ1, Ψ2 along I.

Σ1

ξ

A I

ξ′

Σ2

ξ′

BĨ

ξ

r

In particular, if the partition functions on Σ1,Σ2 are known to satisfy the mQME, the

glued partition function ZΣ = 〈ZΣ1 , ZΣ2〉I automatically satisfies the mQME on Σ.

Small model for states on an A-interval

In preparation for the calculations of section 5.4.5, we want to present a “small model”

for the space of states on an A-interval, corresponding to the passage to a constant 1-form

field A(1) on the interval. This is an extension of the discussion of section 5.3.3 (and in

particular, formula (5.56)), and of section 5.2.4.
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Chapter 5. 2D Yang-Mills on surfaces with corners in BV-BFV formalism

Consider a single interval in A-polarization:

A
I

A0

p0

A1

p1
(5.122)

We view its endpoints as corners in picture I (non-polarized), with A0, A1 the limiting

values of the 0-form field A at the endpoints p0, p1. Equivalently, we can treat the endpoint

in picture II, putting α-polarization on them, with corner fields α0,1 identified with A0,1.

The space of states for the interval (5.122) is a cochain complex

H = FunC
(
Ω•(I, g)[1]

)
=
{

Ψ(A)
}

(5.123)

with differential

Ω = i~
(∫ 〈

dA(0) + [A(0),A(1)] ,
δ

δA(1)

〉
+

∫ 〈1

2
[A(0),A(0)] ,

δ

δA(0)

〉)
. (5.124)

One has the following “small” quasi-isomorphic model for the space of states – the

cochain complex

Hsmall = FunC

(
C•(I, g)[1]

)
=
{

Ψ
(
A0, A, A1

)}
. (5.125)

Here C•(I, g) = g⊕g[−1]⊕g is the complex of g-valued cellular cochains on the interval I

endowed with the standard CW complex structure, with two 0-cells p0, p1 and a single

1-cell I. Variables A0, A1 ∈ g[1] are the values of the cochain on the 0-cells p0 and p1

(endpoints), respectively, and A ∈ g is the value of the cochain on the 1-cell I itself. The

differential on Hsmall is given by:

Ωsmall = i~
(〈1

2

[
A0, A0

]
,

∂

∂A0

〉
+
〈1

2

[
A1, A1

]
,

∂

∂A1

〉
+

−
〈
F−(adA) ◦ A0 + F+(adA) ◦ A1 ,

∂

∂A

〉)
.

(5.126)

The chain projection pH : H → Hsmall is the following map:

Ψ 7→
(

Ψ: {A0, A, A1} 7→ Ψ
(
A(0) = G−(t, adA) ◦ A0 + G+(t, adA) ◦ A1 , A(1) = dt · A

))
.

(5.127)

Here we parameterize the interval by the coordinate t ∈ [0, 1] and G± are the generating

functions for Bernoulli polynomials (5.96).

The chain inclusion iH : Hsmall → H is given as follows:

iH : Ψ 7→
(

Ψ : A 7→ Ψ
(
A0 = A0 , A1 = A1 , A = logU(A)

))
(5.128)

Here the group element U(· · · ) ∈ G is the holonomy of the connection 1-form along the

interval I.
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5.4. 2D Yang-Mills for general surfaces with boundaries and corners

Remark 5.4.11. The space of statesH,Ω is the Chevalley-Eilenberg complex (or the dual

of the bar complex) of the differential graded Lie algebra of g-valued differential forms on

the interval, Ω•(I, g), d, [−,−]. Likewise, Hsmall,Ωsmall is the Chevalley-Eilenberg complex

for the L∞ algebra structure on g-valued cellular cochains on an interval, constructed

in [41, 42, see also [38, 57]]. This L∞ algebra arises as the homotopy transfer of the “big”

algebra Ω•(I, g) onto the deformation retract C•(I, g) – cochains, realized as Whitney

forms on the interval. Chain map (5.127) corresponds to the L∞ morphism from C•(I, g) to

Ω•(I, g) constructed explicitly in [41, 42, – Statement 14]; it is a non-abelian deformation of

the inclusion of cochains as Whitney forms. The map (5.128), constructed via holonomies,

corresponds to the L∞ morphism from forms to cochains - the non-abelian version of the

integration-over-cells map, cf. [5]. We give a proof of the chain map property of(5.128) in

Appendix D.2.

H

Hsmall

iH pH

forms

cell cochains

L∞ inclusion

L∞ projection

bar construction

One has similar small models for the space of states on the A-interval with endpoints

in any combination of polarizations ξ0, ξ1. E.g. for both endpoints in β-polarization,

we have the small model (5.125,5.126) and the maps (5.127,5.128), where we adjoin the

corner variables β0, β1 on which the wavefunctions Ψ, Ψ are allowed to depend, and we

add corner-edge terms ΩβA, ΩAβ (5.94) to the respective differentials Ω and Ωsmall.

Finally, consider a surface Σ with stratified boundary circles decorated with an arbi-

trary combination of polarizations of arcs and corners. By the discussion above, we have

a small quasi-isomorphic model H′ for the space of states H corresponding to replacing

the states on some (or all) A-arcs with respective small models for A-arcs in the formula

(5.117), and we have chain maps pH : H → H′, iH : H′ → H. They correspond to a quasi-

isomorphism of complexes and thus there exists a chain homotopy KH : H → H between

the identity and the projection iH ◦ pH. Therefore, we can apply the argument (5.56) to

the partition function Z on Σ:

iH ◦ pH Z = Z + (Ω + ~2∆)(· · · ) . (5.129)

In particular, one can recover Z, modulo BV exact terms, by evaluating it on constant

1-forms dt · Ak on the boundary arcs, provided that their holonomy coincides with the

holonomy of the original A(1) field along the respective intervals, i.e. Ak = logUIk(A).
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Chapter 5. 2D Yang-Mills on surfaces with corners in BV-BFV formalism

5.4.3 BF B-disk with two α corners

Let us consider now the case of a BF disk with the boundary split into two arcs γi : [0, 1]→
S1 , i = 1, 2 , with γi(0) = v0 and γi(1) = v1 , both in B polarization. On both vertices of

the arcs we fix the value αi for the restriction of the bulk A fields. Expanding the vertices vi
into two edges in A polarization we can think of this disk as a square (Figure 5.13).

B B̃

α

α̃

←→
t

τ b

a
α

α̃ α̃

α

Ã = α̃

A = α

B B̃

Figure 5.13: B disk with the boundary split into two arcs separated by points in A-polarization.

The square can be viewed as the product of two intervals, with A or B polarization

on both endpoints respectively. The zero-modes now contain 1-form components for the

a and b fields: a = a1dτ , b = b1dt . A possible choice for axial-gauge propagator is

(cf. appendix (B.1)):

η(t, τ ; t′τ ′) = (Θ(τ − τ ′)− τ)dt′ − (Θ(t′ − t)− t′)δ(τ ′ − τ)(dτ ′ − dτ) . (5.130)

The contributing Feynman diagrams to the effective action are wheels with n a zero-

modes and trees, rooted either on the B(1) boundary field or on the b zero-mode and ending

on one A(0) boundary field, with no bifurcations and the insertion of n leafs decorated with

a zero-modes (Figure 5.14).

α

α̃ α̃

α

Ã = α̃

A = α

B B̃
n

α

α̃ α̃

α

Ã = α̃

A = α

B B̃n

Figure 5.14: Examples of the tree and 1-loop Feynman diagrams contributing to the effective

action for the BF disk in B polarization with two α corners.

Proposition 5.4.12. The partition function for the BF disk in B polarization with two
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5.4. 2D Yang-Mills for general surfaces with boundaries and corners

α corners is:

Z = exp
( i

~

∫
γ
〈B, a + G+(τ, ada1)α+ G−(τ, ada1)α̃〉+

− i

~

∫
γ̃
〈B̃, a + G+(τ, ada1)α+ G−(τ, ada1)α̃〉+

+
i

~
〈b1,F+(ada1)α+ F−(ada1)α̃〉

)
det

(
sinh

(
ada1/2

)
ada1/2

)
· ρV ,

(5.131)

where ρV = D
1
2 a D

1
2 b is the reference half-density on zero-modes.

Proof. See Appendix C.

5.4.4 BF B-disk with one α corner

Let us consider a disk in B-polarization with a single corner in α-polarization. We will

denote by α the value of the zero-form component of the A-fields on the corner. Notice

that the space of zero-modes is now empty, in contrast to the B-disk without corners or

with two α corners.

B

α

←→

α

α α

α

Ã = α

A = α

B A′ = α

Figure 5.15: B disk with one α corner as the “collapse” of three edges in a square.

The corner can be expanded to an A-polarized edge with A = α, which can be then split

in three consecutive edges. We then get a square, which is the product of an A-A interval

times an A-B interval (Figure 5.15). We can thus choose the axial gauge propagator to

compute the effective action. If we denote with t the coordinate on the A-A interval and

with τ the coordinate on the A-B interval we have:

η(t, τ ; t′, τ ′) = −Θ(τ ′ − τ)δ(t′ − t)(dt′ − dt) . (5.132)

Since there are no zero-modes and the boundary A-field has only the zero-form com-

ponent α , from degree counting we get that the only non-vanishing diagrams contributing

to the partition function are the ones containing no interaction vertices:

Z[B, α] = e−
i
~
∫
I〈B,α〉 . (5.133)
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Chapter 5. 2D Yang-Mills on surfaces with corners in BV-BFV formalism

Remark 5.4.13. If we compare this effective action with the one of the B-disk without

corners (5.64) we notice that the corner field α plays here the role of the a zero-mode (the

other term for action (5.64), containing only the zero-modes, is vanishing when restricted

to the globalizing lagrangian L = {b = 0}). Thus, integrating over the fields on the corner

reproduces the globalized effective action for the B-disk without corners.

We can also compare (5.133) with the partition function of the B-disk with two corners

computed in (5.131). We recover the partition function for the disk with one corner

globalizing (5.131) over L = {a = 0} and then integrating out one corner field α.

5.4.5 BF A-disk with one β-corner

In order to calculate the one remaining building block of the theory, the partition function

for an A-disk with a single β-corner, we do the following. We first consider a disk D

with boundary split into two intervals in A and B-polarization with the two corners not

decorated by polarization data (i.e. in the setting of the “picture I” for corners, cf. sub-

section 5.4.2).33

p′

A

p

B r ←−

τ

tB A (5.134)

The partition function is easily computed by expanding the corners into two intervals

(with arbitrary polarization) and putting the axial gauge on the square.34 This yields the

answer

Z(A,B) = e
i
~
∫
∂AD
〈r∗B,A〉

, (5.135)

where r is an orientation-reversing involution on the boundary of the disk, mapping the

A-arc diffeomorphically onto the B-arc, having the two corners as fixed points (in terms of

the square, r is the involution (t, 0)↔ (t, 1)). This partition function satisfies the mQME,

ΩZ = 0, with Ω = ΩA
∂A

+ ΩB
∂B

+ 〈Bp,Ap〉 − 〈Bp′ ,Ap′〉, as per Proposition 5.4.2, and as one

can easily check explicitly.

Remark 5.4.14. One can consider collapsing the A- or B-arc on the boundary of the

33 In fact, we can decorate the two corners with an arbitrary choice of polarizations ξ, ξ′. The partition

function does not depend on this choice.
34 Here we use the axial gauge with the propagator η(t, τ ; t′, τ ′) = δ(t′ − t) (dt′ − dt) Θ(τ ′ − τ).
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5.4. 2D Yang-Mills for general surfaces with boundaries and corners

disk (5.134):

AB

B α Aβ

collapse collapse

• Collapsing the A-arc into an α-corner, we obtain a B-disk with a single α-corner

(in the picture II). Moreover, evaluating the partition function (5.135) on B = β,

we obtain the partition function Z(B, α) = e−
i
~
∫
∂D〈B,α〉, which agrees with our re-

sult (5.133) from Section 5.4.4 and, indeed, satisfies the mQME with Ω = ΩB
∂D −

〈B
∣∣+0

−0
, α〉+i~〈12 [α, α], ∂

∂α〉. Here B
∣∣+0

−0
is the jump of the field B when passing through

the α-corner in positive direction.

• Collapsing the B-arc of the disk (5.134) into a β-corner, we obtain a A-disk with a

single β-corner. However, evaluating the partition function (5.135) on B = β yields

e
i
~
∫
∂D〈β,A〉 which does not satisfy the mQME! The reason for this is that the gauge-

fixing on the disk (5.134) which was used to compute the partition function (5.135),

which in turn came from the axial gauge on a square, is not “collapsible”, i.e. fails

Assumption 5.4.6, and therefore Proposition 5.4.7 does not apply and we obtained

a nonsensical answer after the collapse of the B-arc.

Using the construction of Section 5.4.2, we can consider the projection pH to the “small

model” for the states on the A-arc followed by respective inclusion iH, cf. (5.127,5.128).

Thus we obtain a version of the partition function, factored through the small model for

A-states:

Z̃(A,B) = iH ◦ pH Z

= e
i
~
∫
∂AD

〈
r∗B(0),dt logU(A)

〉
+
〈
r∗B(1),G−(t,adlogU(A))Ap+G+(t,adlogU(A))Ap′

〉
.

(5.136)

Note that, by (5.129), Z̃ = Z + Ω(· · · ) – a modification of the answer (5.135) by an Ω-

exact term; this deformation can be interpreted as corresponding to a computation in a

different gauge.35 Also, observe that in (5.136), the field B(1) only interacts with the corner

values of A(0), and thus the gauge corresponding to the answer (5.136) is “collapsible”,

i.e., satisfies the Assumption 5.4.6. Therefore, we can collapse the B-arc into a β-corner,

as in Section 5.4.2, by setting B(0) = β, B(1) = 0 in (5.136). Thus we finally arrive to the

following result.

35 We also remark that the answer (5.136) can be obtained directly, by starting with an A-disk with two

α-corners, and gluing it along one of the boundary arcs to the “bean” (5.131).
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Proposition 5.4.15. The partition function for an A-disk with a single β-corner is:

Z(A, β) = e
i
~ 〈β,logU(A)〉 . (5.137)

Note that this answer has a rigidity property: it cannot be changed by a BV-exact

term Ω(· · · ) for a degree reason – there no boundary/corner fields of negative degree

needed to construct a degree −1 primitive. The answer (5.137) does indeed satisfy the

mQME, i.e. is Ω-closed, as we have verified explicitly in Remark 5.4.8 above.

5.4.6 Gluing arcs in A polarization

We want now to recover the YM gluing law of two arcs in A polarization. To compute this

gluing law we can use an intermediate BF disk with the boundary split in two arcs with B
polarization, separated by points in α polarization (figure 5.16). Thus, gluing together two

A-arcs with endpoints in α-polarization, via the “bean” (5.131), for the partition function

of the glued surface we obtain the following:

ZΣ =

∫
dBdB̃dÃ dA da1 e

i
~
∫
γ〈B,a−A+G−(τ,ada1 )α0+G+(τ,ada1 )α1〉

· e−
i
~
∫
γ̃〈B̃,a−Ã+G−(τ,ada1 )α0+G+(τ,ada1 )α1〉 det

(
sinh

(
ada1/2

)
ada1/2

)
ZΣ1 [A] ZΣ2 [Ã]

=

∫
a1∈B0

da1 det

(
sinh

(
ada1/2

)
ada1/2

)
ZΣ1

[
A = a + G−(τ, ada1)α0 + G+(τ, ada1)α1

]
· ZΣ2

[
Ã = a + G−(τ, ada1)α0 + G+(τ, ada1)α1

]
.

(5.138)

Here the integration domain for the zero-mode a1 is the “Gribov region” B0 ⊂ g . Notice

that in this gluing formula the states on the A-arcs factor through the “small model” for

the space of states introduced in Section 5.4.2.

If we assume also that the all boundary strata of Σ1, Σ2 are in A-polarization and that

partition functions ZΣ1 , ZΣ2 are globalized, then the partition functions of Σ1, Σ2 does

not depend on the ghost fields A(0),Ã(0)
36 and so the gluing formula reduces to

ZΣ =

∫
G

dU(A) ZΣ1 [U(A)] ZΣ2 [U(A)] , (5.139)

which coincides with the gluing formula for YM known in literature [40, 53].

36 Independence on the ghosts can be seen by assembling the surface with A-boundary by gluing A-

polygons using beans as above. Partition functions for polygons do not depend on the ghosts and the

gluing formula (5.138) does not generate ghost dependence. A curious point is that the answer for A-

A cylinder in Section 5.3.3 did contain ghost dependence which seems to contradict what we are saying

here. In fact, there is no contradiction, rather there are inequivalent gauge-fixings: one can obtain an A-

A cylinder from an A-square, gluing two opposite sides using the bean (5.131). Choosing the gauge-fixing

for the globalization on the bean as in (5.138) – integrating over a1 – we get the answer for the cylinder

without the ghost delta-function. If instead we use the opposite globalization on the bean – integrating

over b1 – we obtain the answer of Section 5.3.3, involving the ghost delta-function.
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A

α1

α0

BFB B̃

α1

α0

Ã

α0

α1

=

α0

α1

Figure 5.16: Two A-polarized boundaries glued together using an intermediate B-B BF disk.

5.4.7 2D YM partition function on surfaces with boundaries

We can now compute the partition function on a general surface with boundaries. Indeed,

any surface with boundary can be obtained by gluing edges of some polygon (or a collection

of polygons – any triangulation or a cellular decomposition gives a presentation of the

surface of this kind). Thus using the gluing properties of BV-BFV theories we can compute

the YM partition function on a general surface with boundary starting from the partition

function on the disk with the boundary split in several arcs γi :

ZD2 [A1, . . . ,An] =
∑
R

(dim R) χR
(
Uγ1(A1) · · ·Uγn(An)

)
e−

i~a
2
C2(R) . (5.140)

Each time we glue together two arcs, using the property (5.139), we have an integral of

the kind: ∫
G

dU χR(V UWU †) =
χR(V )χR(W )

dim R
,∫

G
dU χR(V U)χR(WU †) =

χR(VW )

dim R
.

(5.141)

This way we get the following result.

Theorem 5.4.16. The globalized YM partition function on a surface with genus g and

b boundaries in the A polarization is:

ZΣg,b [A1, . . . ,Ab] =
∑
R

(dim R)2−2g−be−
i~a
2
C2(R)

b∏
i=1

χR
(
Ubi(Ai)

)
. (5.142)

5.5 Wilson loop observables

Let us consider now observables in 2D YM. These are operators on the Hilbert space HΓ

associated to some boundary Γ which, in A polarization, is the space of functions of the

holonomy UΓ(A) .

Let us consider for example the multiplication operator for the factor χR(UΓ(A)) for

some representation R . We can compute the matrix element of this operator between
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two states defined by the partition functions on two surfaces Σ1 and Σ2 with the same

boundary Γ = S1 . Using the gluing rule (5.72) for boundaries in A polarization we get:

〈ZΣ1 |χR(UΓ(A))|ZΣ2〉 =

∫
G

dU ZΣ1(U †)χR(U)ZΣ2(U)

=
∑
R1,R2

(dim R1)1−2g1(dim R2)1−2g2e−
i~a1

2
C2(R1)− i~a2

2
C2(R2)

∫
G

dU χR1(U †)χR(U)χR2(U)

=
∑
R1,R2

(dim R1)1−2g1(dim R2)1−2g2e−
i~a1

2
C2(R1)− i~a2

2
C2(R2)NR1

R,R2
,

(5.143)

where we used the expression (5.142) for the partition functions of the surfaces Σi , with

genus gi , and where NR1
R,R2

are the fusion numbers defined by the decomposition of the

product of irreducible representations: R ⊗ R2 = ⊕R1N
R1
R,R2

R1 . This quite obviously

corresponds to the computation of the expectation value of a non self-intersecting Wilson

loop WR(Γ) on the surface Σ1
⋃

Γ Σ2 .

More generally, we can consider operators going from some space of “inbound” states

to some “outbound” states: O : Hin → Hout . Such an operator can be represented by

a surface (possibly with corners) with the appropriate boundary components, i.e. such

that the boundary Hilbert space is H∗in ⊗ Hout , and a particular state corresponding

to O . The operator now acts on the inbound states by gluing. For example to the

(non self-intersecting) Wilson loop we computed above we can associate a cylinder in A-A
polarization and the state χR(U(A))δ(U(A), U(A′)) .

Γ

Γ′

Figure 5.17: Two intersecting Wilson loops Γ and Γ′ on the 2-sphere.

Consider now the case of two Wilson loops WΓ(R)WΓ′(R
′) intersecting in 2 points:

Γ ∩ Γ′ = v1 ∪ v2 . We can view them as 4 separate arcs γi, γ
′
i , i = 1, 2 , joining the

two intersection points. These intersecting Wilson loops can be thought as a multi-

plication operator on the space of states of the 4 arcs – multiplication by the factor

χR
(
Uγ1(A1)Uγ2(A2)

)
χR′
(
Uγ′1(A′1)Uγ′2(A′2)

)
. We can thus compute matrix elements be-

tween states defined by surfaces with opportune boundary components. Let us consider

for example four disks, each with the boundary circle separated into two arcs, glued into
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a sphere with two intersecting Wilson loops as in figure 5.17:

〈WΓ(R)WΓ′(R
′)〉S2 =

∑
R1,R2,
R3,R4

e−
i~
2

∑
i aiC2(Ri)

∏
i

(dim Ri)

∫
G

dU1dU2dU3dU4 χR(U1U3)

·χR′(U2U4)χR1(U4U1)χR2(U †1U2)χR3(U †2U
†
3)χR4(U3U

†
4) .

(5.144)

This integral can be evaluated using the Peter-Weyl theorem (part 3) which implies:∫
G

dU R1(U)ii′R2(U)jj′R3(U †)k
′
k =

1

dim R3

∑
µ

Cµ(R1, R2;R3)ijk C
∗
µ(R1, R2;R3)k

′
i′j′ ,

(5.145)

where Cµ(R1, R2;R3)ijk are Clebsch-Gordan coefficients.37 We get:

〈WΓ(R)WΓ′(R
′)〉S2 =

∑
R1,R2,
R3,R4

e−
i~
2

∑
i aiC2(Ri)

dim R1

dim R3

∑
µ1,µ2
µ3,µ4

Cµ1(R,R1;R2)ijk C
∗
µ1

(R,R1;R2)k
′
i′j′

· Cµ2(R′, R2;R3)lkmC
∗
µ2

(R′, R2;R3)m
′

l′k′Cµ3(R,R4;R3)i
′n′
m′ C

∗
µ3

(R,R4;R3)minCµ4(R′, R1;R4)l
′j′

n′

· C∗µ4
(R′, R1;R4)nlj =

∑
R1,R2,
R3,R4

e−
i~
2

∑
i aiC2(Ri)

∏
i=1,...,4

(dim Ri)
∑
µ1,µ2
µ3,µ4

{ R R1 R2

R′ R3 R4

}µ1µ2

µ3µ4

{
R′ R1 R4
R R3 R2

}µ3µ4

µ1µ2
,

(5.146)

where
{ R R1 R2

R′ R3 R4

}µ1µ2

µ3µ4
are Wigner 6-j symbols.38

We can generalize this to compute the value of any number of (possibly intersecting)

Wilson loops over any surface with boundary. Given a set of Wilson loops we can consider

separately the various Wilson lines connecting intersection points.39 Each line carries a

group variable and and contributes with the integral (5.145), whereR1 is the representation

of the Wilson loop containing that line and R2, R3 are the representations carried by the

two regions adjacent to that line. The main observation is that this integral factorises

into the product of two Clebsch-Gordan coefficents, each depending only on indices living

37 If we have representations R1, R2 we can decompose their product into the sum of irreducible rep-

resentations. Let {ei1} and {ej2} be two basis of the representation spaces of R1 and R2 respectively, and

let {ekµa
} be a basis of their tensor product such that the product representation is in the block-diagonal

form, where a denotes the irreps and µa labels the various copies of the representation Ra appearing in

the product R1 ⊗R2 . The Clebsh-Gordan coefficients are defined as the basis changing coefficients:

ei1 ⊗ ej2 =
∑
a

∑
µa

Cµa(1, 2; a)ijk e
k
µa

.

38 6-j symbols are defined by:

{
R1 R2 R3

R4 R5 R6

}µ1µ2

µ3µ4

=
Cµ1(R1, R2;R3)ijk

(dim R3)
1
2

Cµ2(R4, R3;R5)lkm

(dim R5)
1
2

C∗µ3
(R1, R6;R5)min

(dim R5)
1
2

C∗µ4
(R4, R2;R6)nlj

(dim R6)
1
2

.

39 If a loop has no intersections, then its contribution will be NR3
R1,R2

as in equation (5.143).
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on one of the two edges of the line.40 Thus when 4 lines meet at an intersection point,

the factors associated to that intersection combine to give a 6-j symbol, as in the previous

example:

R1

R2

R3

R4

R
µ3

Rµ1
R′µ4

R′
µ2

 

{
R R1 R2

R′ R3 R4

}µ1µ2

µ3µ4

≡ G(R,R′; . . . ) . (5.147)

Finally, the expectation value of a set of Wilson loops {Γl} on a surface Σ is given by the

following formula:

〈
∏
l

WΓl(Rl)〉Σ =
∑
Rλ

∏
λ

e−
i~
2
aλC2(Rλ)(dim Rλ)2−2gλ−bλ

∏
bλ

χRλ(Ubλ)

·
∏
v

∑
µi

Gv(Rl;Rλ;µi)
∏
l0

N(Rl0 ;Rλ) .
(5.148)

where the index λ runs over connected components Σλ of the surface obtained by cutting

Σ along the Wilson loops, bλ labels the boundaries of Σ contained in Σλ , v labels the

intersections between loops, Gv indicates the 6-j symbol at the vertex v evaluated on

the surrounding representations according to (5.147) and N(Rl0 ;Rλ) denotes the fusion

numbers for the non-intersecting Wilson loops labelled by l0 .

40 Each oriented boundary, or Wilson loop, carries the character of the holonomy of A . If we split the

circle into various arcs, then it will carry the character of the products of the holonomies over different

arcs, multiplied according to the orientation of the loop. This defines inbound and outbound indices for

the holonomy over each oriented arc.
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Appendix A
Elements of graded geometry

A.1 Graded manifolds

Definition A.1.1. A graded manifoldM over the body M is a sheaf of Z-graded commu-

tative algebras C(M) , over a smooth manifold M , locally isomorphic to the free graded

commutative algebra C∞(U)⊗S(V ) , where U ⊆M is an open subset and V is a Z-graded

vector space with symmetric graded algebra S(V ). Such a local isomorphism is called an

affine coordinate chart overM and the sheaf C(M) is called the sheaf of polynomial func-

tions over M . The sheaf of polynomial function can be decomposed according to the

grading C(M) =
⊕

k∈Z Ck(M) , where Ck(M) is locally isomorphic to C∞(M)⊗ Sk(V ) .

Graded manifolds form the category GrMflds, where morphisms are homomorphisms

of graded algebras: Mor(M,N ) = Hom(C(N ), C(M)) . Smooth manifolds are graded

manifolds with zero degree, that is with C(M) = C0(M) = C∞(M) , and form a full

subcategory of GrMflds.

A real supermanifold can be defined in a similar way, simply substituting the Z-graded

vector space V in the definition A.1.1 with ΠRm .

Some intuition on the definition of graded manifolds can be acquired thinking about

generators of the algebra C∞(U) ⊗ S(V ) as local coordinates on M . Roughly speaking

this is similar to smooth manifolds: locally there are graded-coordinates which are patched

together with degree-preserving morphisms.

Let us see now some simple but relevant examples of graded manifolds.

Example A.1.2. Let TM
π−→ M be the tangent bundle to a smooth manifold M with

dimension dim(M) = m . Given local coordinates xµ over an open subset U ⊆ M and

called θµ the fiber coordinates relative to the basis {∂µ = ∂/∂xµ} , we can define local

coordinates (xµ, θν) of TM over π−1(U) . The graded manifold obtained assigning degree 1

to fiber coordinates is denoted by T [1]M :

|xµ| = 0 ; |θµ| = 1 . (A.1)
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The patching between different coordinate systems is defined by:

x̃µ = x̃µ(x) ; θ̃µ =
∂x̃µ

∂xν
θν . (A.2)

A polynomial function f ∈ C(T [1]M) takes locally the form:

f(x, θ) =
∑

k=0,...,m

1

k!
fµ1,...,µk(x) θµ1 · · · θµk . (A.3)

By definition, fiber coordinates θ are anticommuting and their transformation rules (A.2)

are identical with those of differentials dxµ . The sheaf of polynomial functions over T [1]M

is then naturally identified with differential forms over M :

C•(T [1]M) = Ω•(M) . (A.4)

Example A.1.3. In the same way as the previous example, the graded manifold T ∗[−1]M

is defined by giving degree −1 to fiber coordinates of the cotangent bundle T ∗M of

a smooth manifold. Polynomial functions on T ∗[−1]M are then identified with multi-

vector fields , i.e. sections of the exterior product of tangent bundles: C•(T ∗[−1]M) =

Sec(Λ−•TM) .

In GrMflds tangent vector fields are defined like in smooth manifolds.

Definition A.1.4. A tangent vector field X ∈ X(M) on a graded manifold M is a

derivation of the graded algebra C(M) . Using affine local homogeneous coordinates xa

for M , tangent vector fields can be written in the form:1

X = Xa ∂

∂xa
. (A.5)

The vector field X has degree |X| if its components have degree |Xa| = |X|+ |xa| .

Remark A.1.5. On vector fields are defined the brackets [ , ] : X(M)×X(M)→ X(M)

[X,Y ] = X ◦ Y − (−1)|X| |Y |Y ◦X (A.6)

or, using homogeneous coordinates:

[X,Y ] = Xa∂Y
b

∂xa
∂

∂xb
− (−1)|X| |Y | Y b∂X

a

∂xb
∂

∂xa
. (A.7)

Since [ , ] are Lie brackets with zero degree, vector fields are a sheaf of graded Lie algebras.

1When dealing with graded quantities, it is important to distinguish left and right derivatives. Unless

noted otherwise, we assume derivatives acts from the left.
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Definition A.1.6. LetM be a graded manifold. The Euler vector field is the derivation ε

of the polynomial functions C(M) defined by:

εf = kf ∀ f ∈ Ck(M) . (A.8)

If xa are homogeneous local affine coordinates of M , then the Euler vector field has the

form:

ε = |xa|xa ∂

∂xa
. (A.9)

In particular the body M is recovered as the set of fixed points of ε.

Remark A.1.7. The Euler vector field gives the degree of a vector field X through the

Lie derivative LεX = [ε,X] . Indeed, in homogeneous coordinates xa we have:

LεX = |xb|xb∂X
a

∂xb
∂

∂xa
−Xa∂|xb|xb

∂xa
∂

∂xb
=

= (|Xa| − |xa|)Xa ∂

∂xa
= |X|X .

(A.10)

Using the Euler vector field we can give an intuitive definition of vector bundle in

GrMflds.

Definition A.1.8. Let A and M be graded manifolds. A vector bundle in GrMflds is a

surjective immersion A −→M and a linear structure given by an additional Euler vector

field εvect which assigns degree 1 to fiber coordinates and degree 0 to functions pulled back

from M .

We can now generalize the notation used in example A.1.2 to vector bundles. We

will call shifted vector bundle the graded manifold A[n] corresponding to the Euler vector

field εA+nεvect . Hence, all fiber coordinates have degree shifted by n with respect to the

grading in A .

Example A.1.9. Let M be a graded manifold with homogeneous local coordinates xa .

The tangent bundle TM is the graded manifold described by local coordinates (xa, θa)

with grading and gluing rules given by:

|θa| = |xa| ; θ̃a = θb
∂x̃a

∂xb
. (A.11)

Clearly TM is a vector bundle on M with projection (x, θ) 7→ x and Euler vector field:

εTM = |xa|
(
θa

∂

∂θa
+ xa

∂

∂xa

)
, εvect = θa

∂

∂θa
. (A.12)

The shifted tangent bundle T [1]M is simply defined by the new Euler vector field εT [1]M =

εTM + εvect Coordinates θ in T [1]M have degree |θa| = |xa| + 1 , while the degree of x

and the gluing rules remain the same.
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A.2 Differentials and symplectic structure

Definition A.2.1. A differential Q , or cohomological vector field, is an anticommuting

vector field with degree 1 :

[ε,Q] = 1 ; [Q,Q] = 0 , (A.13)

where ε is the Euler vector field. Graded manifolds endowed with a differential are called

differential graded manifolds and form the category dgMflds .

Example A.2.2. Let T [1]M be the shifted tangent bundle of an ordinary smooth mani-

fold M as in the example A.1.2. On this graded manifold it is defined the cohomological

vector field d :

d = θµ
∂

∂xµ
. (A.14)

We already noticed that the algebra of polynomial functions on T [1]M coincides with the

exterior algebra of the differential forms on M . The cohomological vector field d then

corresponds to the de Rham differential on Ω(M) .

This example motivates the following definition of differential forms on graded mani-

folds.

Definition A.2.3. Differential forms on a graded manifold M are the polynomial func-

tions on its shifted tangent bundle:

Ω(M) = C(T [1]M) . (A.15)

On T [1]M there is the cohomological vector field

d = θa
∂

∂xa
, d: C•(T [1]M)→ C•+1(T [1]M) , (A.16)

where (xa, θa) are homogeneous local affine coordinates like in example A.1.9. C(T [1]M)

endowed with the differential d is the de Rham complex (Ω(M),d) of M .

Remark A.2.4. To each vector field X on a graded manifold M corresponds a vector

field ıX on T [1]M defined by:

ıX = (−1)|X|Xa ∂

∂θa
, ıX : C•(T [1]M)→ C•−1(T [1]M) . (A.17)

The interior product ıX has degree |ıX | = |X|−1 . Lie derivative on differential forms Ω(M)

is then defined through the Cartan formula:

LX = [ıX ,d] = ıXd + (−1)|X|d ıX . (A.18)

With a direct calculation, it can be shown that:

|LX | = |X| , [LX , LY ] = L[X,Y ] , [LX ,d] = 0 . (A.19)
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We remarked in A.1.7 that Lie derivative with respect to the Euler vector field returns

the degree of tangent vectors. Indeed, the grading on tangent and cotangent bundles is

given by the Euler vector field ofM lifted canonically to TM or T ∗M via Lie derivative.

Consider for example the tangent bundle TM . If ε is the Euler vector field on M we

have:

Lεdx
a = dLεx

a = |xa|dxa , (A.20)

i.e. the grading of TM is given by the Lie derivative Lε .

Definition A.2.5. A p-form of degree k is a form ω ∈ Ω(M) with εvect ω = pω and

Lε ω = k ω.

With this definition, the structure of symplectic manifold can be extended to graded

manifolds in a natural way.

Definition A.2.6. A symplectic form of degree n in GrMflds is a two-form ω ∈ Ω2(M)

i) homogeneous of degree n : Lε ω = nω ;

ii) closed with respect to the de Rham differential: dω = 0 ;

iii) non singular, i.e. such that the vector bundle morphism ω : TM → T ∗[n]M is an

isomorphism.

The pair (M, ω) is called symplectic graded manifold of degree n . If on (M, ω) there is a

differential Q preserving the symplectic form, that is such that LQω = 0 , then (M, ω,Q)

is a differential graded symplectic manifold.

Example A.2.7. Every ordinary symplectic manifold (M,ω) can be viewed as a graded

symplectic manifold with εM = 0 and so |ω| = 0 .

Example A.2.8. Consider the graded manifold R[1] with coordinate x and Euler vector

field ε = x ∂
∂x . The tangent bundle T [1](R[1]) has coordinates (x,dx) , with |dx| = 2

and Lεdx = dx . The two-form ω = dx dx is then a symplectic form on R[1] of degree

Lεω = 2ω .

Example A.2.9. Let M be an ordinary smooth manifold, i.e. with εM = 0 , and T ∗[1]M

its shifted cotangent bundle with homogeneous coordinates (xµ, pν) like in example A.1.2.

The Euler vector field ε = εvect for T ∗[1]M is:

ε = pµ
∂

∂pµ
. (A.21)

Consider now the vector bundle T ∗[2](T ∗[1]M) . Local coordinates on T ∗[1]M define the

basis {dxµ,dpν} for the fibers and the corresponding fiber coordinates (θµ, ψ
ν) . The

grading on T ∗[2](T ∗[1]M) is given by the Euler vector field ε̃ = Lε + 2εvect , so that
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(x, p, θ, ψ) have degree respectively 0 , 1 , 2 and 1 . Coordinates transformation rules are

easily found to be:

x̃µ = x̃µ(x) ; p̃µ =
∂xν

∂x̃µ
pν ; ψ̃µ =

∂pν
∂p̃µ

ψν =
∂x̃µ

∂xν
ψν ;

θ̃µ =
∂xν

∂x̃µ
θν + ψν

∂pν
∂x̃µ

=
∂xν

∂x̃µ
θν +

∂2x̃ρ

∂xγ∂xν
∂xγ

∂x̃µ
∂xσ

∂x̃ρ
ψν pσ =

=
∂xν

∂x̃µ
θν +

∂2xσ

∂x̃ρ∂x̃µ
∂x̃ρ

∂xν
pσ ψ

ν ;

(A.22)

Notice that, as it should be, all these transformations are degree-preserving. Moreover θ

undergoes an affine transformation, whence the word affine in the definition A.1.1 of

coordinates on a graded manifold. There is a canonical symplectic form given by:

ω = dxµdθµ + dpµdψµ ; |ω| = 2 . (A.23)

Also, we can define the differential Q :

Q = ψµ
∂

∂xµ
+ θµ

∂

∂pµ
; |Q| = 1 ; Q2 = 0 . (A.24)

As this differential is compatible with the symplectic structure, LQω = 0 , T ∗[2](T ∗[1]M)

is a differential graded symplectic manifold of degree 2 .

Example A.2.10. In general T ∗[n]M is a symplectic graded manifold with canonical

symplectic form:

ω = dxadθa ; |ω| = n ; (A.25)

where xa are homogeneous local affine coordinates of M and θa are the fiber coordinates

relative to the basis dxa .

Lemma A.2.11. Let ω be a symplectic form. If ω has degree n 6= 0 , then it is exact.

Proof. By definition ω is closed and of degree n . Then:

nω = Lεω = d(ıεω) . (A.26)

If n 6= 0 we have:

ω = d
ıεω

n
. (A.27)

Definition A.2.12. Let (M, ω) be a symplectic graded manifold of degree n . A tangent

vector field X over M is called:

i) Symplectic if the 1-form ıXω is closed, or equivalently if LXω = 0 ;

ii) hamiltonian if the 1-form ıXω is exact, i.e. if ∃ f ∈ C(M) such that:

ıXω = (−1)n+1df . (A.28)
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An hamiltonian vector field with hamiltonian function f is denoted by Xf .

Remark A.2.13. Like in ordinary symplectic geometry, symplectic vector fields generates

canonical transformations [7, 8, 50], which preserve the symplectic structure.

Definition A.2.14. Let (M, ω) be a symplectic graded manifold of degree n . On C(M)

are defined the Poisson brackets { , } : Cr(M)× Cs(M)→ Cr+s−n(M) :

{f, g} = Xfg = (−1)|X
f | ıXf dg = (−1)|f |+1ıXf ıXg ω ; f, g ∈ C(M) . (A.29)

Remark A.2.15. Poisson brackets give to C(M) the structure of a graded Lie algebra.

Moreover, the map f 7→ Xf is an homomorphisms of graded Lie algebras:

X{f,g} = [Xf , Xg] . (A.30)

Lemma A.2.16. Let (M, ω) be a symplectic graded manifold of degree n and X a

symplectic vector field of degree k . If n+ k 6= 0 , then X is hamiltonian.

Proof. We have LεX = k , Lεω = n and d(ıXω) = 0 . Then

(n+ k)ıXω = Lε(ıXω) = d(ıεıXω) (A.31)

and so X = Xf , with

f = (−1)n+1 ıεıXω

n+ k
. (A.32)

Remark A.2.17. Let (M, ω,Q) be a differential graded symplectic manifold, with |ω| =
n. Suppose Q to be hamiltonian, i.e. Q = {S, } for some hamiltonian S ∈ C(M).

Reminding that |Q| = 1 and |{S, }| = |S| − n , it must be |S| = n+ 1. Thus, we have:

0 = [Q,Q]f = {{S, S}, f} ∀ f ∈ C(M) . (A.33)

This implies {S, S} is a constant of degree |{S, S}| = n + 2. As a non zero constant has

to be of degree zero, S satisfies the classical master equation {S, S} = 0.

Example A.2.18. Let us consider T ∗[1]M with the canonical symplectic form ω of de-

gree 1 and a solution S of the classical master equation {S, S}. Let {x, θ} be local co-

ordinates of degree respectively 0 and 1. As the action is of degree 2, it must have the

form:

S =
1

2
αµν(x)θµθν . (A.34)

Therefore the action corresponds to a bivector field on M . The master equation reads:

{S, S} = 2αµν∂να
ρσθµθρθσ (A.35)

and so {S, S} = 0 implies that αµν is a Poisson bivector field on M .
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A.3 Integration on supermanifolds

Before to define the integration on supermanifolds, let us remind how to integrate over

odd variables. Let {θα} be a set of generators of a Grassmann algebra G (for concreteness

one could take G = S(R0|n)). Then:∫
dθα = 0 ;

∫
dθα θβ = δαβ . (A.36)

Consider now the algebra of functions C(Rm|n) with even generators xµ . A function

f ∈ C(Rm|n) has the form f(x, θ) = f(0)(x) + θαf
α
(1)(x) + . . . + θ1 · · · θnf(n)(x) . The

integral over Rm|n is:∫
Rm|n

[dx1 · · · dxmdθn · · · dθ1] f(x, θ) =

∫
Rm

dx1 · · · dxm f(n)(x) (A.37)

For the integral to be independent of the particular choice of coordinates on Rm|n , the

measure has to transform according to the following rule [29]:

[dx1 · · · dxmdθn · · · dθ1] = [dx̃1 · · · dx̃mdθ̃n · · · dθ̃1] Ber

(
∂X

∂X̃

)
, (A.38)

where X = (x, θ) → X̃ =
(
x̃(x, θ), θ̃(x, θ)

)
is a general change of coordinates and the

Berezinian is defined by:

∂X

∂X̃
=

(
∂x/∂x̃ ∂x/∂θ̃

∂θ/∂x̃ ∂θ/∂θ̃

)
≡

(
A B

C D

)
,

Ber

(
∂X

∂X̃

)
= det(A−BD−1C) det(D)−1 .

(A.39)

Notice that the Berezinian is defined only if D is invertible, but this is always true for a

change of coordinates. In the particular case in which the change of coordinates does not

mix odd and even generators (B = C = 0) the Berezinian gives simply a determinant of

the Jacobian matrix for the even coordinates and the inverse of the Jacobian determinant

for the odd generators.

Integration on supermanifolds is defined from the above Berezin integration alike inte-

gration on smooth manifold is constructed from the integral over Rm [10]. Let us consider

a supermanifold M with dimension dim(M) = (m,n) over the base space M and take

an atlas {Ua} of M . By definition, the algebra C(M) is locally C∞(Ua) ⊗ S(ΠRn) . Let

Σa = {xi, θα} be a set of generators of C∞(Ua)⊗ S(ΠRn) . Moreover, for each Ua choose

a local density ρa(Xa) such that:

i) ρa(X̃a) = Ber(∂Xa/∂X̃a) ρa(Xa(X̃a)) ;

ii) on the intersection Ua ∩ Ub : ρa(Xa) = Ber(∂Xb/∂Xa) ρb(Xb(Xa)) .
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The objects which can be integrated on a supermanifold are the Berezinian forms ρ

defined by: ∫
M
ρ =

∑
a

∫
[dx1 · · · dxmdθn · · · dθ1] ρasa , (A.40)

where {sa(x)} is a partition of the unity subordinated to the open cover {Ua} . Notice

that thanks to the transformation rules of ρa , this definition depends neither on the atlas

nor on the partition of unity chosen. Obviously, for every function f ∈ C(M) , ρf is again

a Berezinian form and so the choice of a Berezinian form allows to integrate any function

as
∫
M ρ f .

Definition A.3.1. A Berezinian form ρ is called non degenerate if the bilinear form

〈f, g〉 =

∫
M
ρ fg , f, g ∈ C(M) , (A.41)

is non degenerate. Moreover, given a vector field v ∈ X(M) , the Berezinian form ρ is

v-invariant if ∫
M
ρ v(f) = 0 (A.42)

for every function f ∈ C(M) .

For every odd vector bundle E −→ M , with M an ordinary smooth manifold, a

Berezinian form can be viewed as a section of the Berezinian bundle ∧E ⊗ ∧topT ∗M :

indeed it associates to functions C(E) ' Γ(∧E∗) top forms to be integrated on M [17]. A

non degenerate Berezinian is then obtained as a nowhere-vanishing section concentrated

in top degree on E : µ ∈ Γ(∧topE ⊗ ∧topT ∗M) .

Example A.3.2. Consider the odd cotangent bundle ΠT ∗M .2 The Berezinian bun-

dle is Ber(ΠT ∗M) = (∧mT ∗M)⊗2 , where dim(M) = m . Hence, to every volume form

v ∈ Ωm(M) there is an associated Berezinian. As we already remarked, functions on

ΠT ∗M can be identified with multivector fields, therefore a volume form on M defines

the isomorphism φv : C•(ΠT ∗M) → Ωm−•(M) , φv(f) = ıfv . The Berezinian form µv
associated to v is: ∫

ΠT ∗M

µv f =

∫
M

v ∧ φv(f) . (A.43)

Let now C be a submanifold of M . A volume form on M also induces a Berezinian on the

odd conormal bundle ΠN∗C ⊂ ΠT ∗M .3 Indeed the Berezinian bundle is Ber(ΠN∗C) =

2 We recall that the parity reversion functor Π exchanges even and odd fiber coordinates.
3 The normal bundle NC of C ⊂M , dim(C) = k, is defined by the short exact sequence of bundles:

0→ TC → TCM → NC → 0 .

The conormal bundle N∗C is its dual, namely: N∗pC = {η ∈ T ∗pM | η(w) = 0 ∀w ∈ TpC} , p ∈ C .

Moreover N∗C is a lagrangian submanifold of T ∗M with the canonical symplectic structure.
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∧m−kN∗C⊗∧kT ∗C = ∧mT ∗CM and a volume form v determines a section
√
µv ∈ Γ(Ber(ΠN∗C))

by restriction: ∫
ΠN∗C

√
µv f =

∫
C

φv(f̃) , (A.44)

where f̃ is any function on ΠT ∗CM such that f̃ |ΠN∗C = f .

The constructions contained in the previous example can be generalized in the graded

setting [46]: to every Berezinian form v on a graded manifoldM is canonically associated

a Berezinian on T ∗[k]M; moreover every Berezinian µ on T ∗[k]M , induces canonically an

half density
√
µ which can be integrated on lagrangian submanifolds, where it induces a

Berezinian.

In the graded setting there is a definition of divergence analogous to the one in ordinary

differential geometry [37].

Lemma A.3.3. For every Berezinian form µ there is a map divµ : X(M) → C(M) such

that: ∫
M
µX(f) = −

∫
M
µ (divµX)f , ∀ f ∈ C(M) . (A.45)

Moreover, the divergence operator divµ satisfies:

divµ(fX) = fdivµX + (−1)|f | |X|X(f) . (A.46)

A.4 Mapping spaces between graded manifolds

We recall here some basic definitions and facts about mapping space of graded manifolds.

A more detailed discussion can be found, for example, in [27, 44]. In physics literature a

map between two graded manifolds is what is called a superfield. If M and N are two

supermanifolds with coordinates respectively (x, θ) and (y, η) – where x and y are even

and θ and η are odd variables – then superfields from M to N can be expressed by an

expansion in the odd variables:

y(x, θ) = y(x) + y′(x)θ ,

η(x, θ) = η(x) + η′(x)θ .
(A.47)

Before showing how superfields looks in general, we are going to give the formal def-

inition of mapping space. For smooth manifolds the space of maps, that is the space of

smooth morphisms between two manifolds, satisfies the important property:

Mor(P ×N,M) = Mor(P,Mor(N,M)) . (A.48)

The problem is that this property does not hold for morphisms in GrMflds and so it is

useful to change the definition of the mapping space between two graded manifolds. It
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can be shown that there exists a graded manifold Maps(X ,Y) , canonically associated to

a pair (X ,Y) , such that:

Mor(Z × X ,Y) ∼= Mor(Z,Maps(X ,Y)) (A.49)

for any graded manifold Z (here Mor is in GrMflds, see definition A.1.1). With this

definition of mapping space, one recovers the property (A.48) also for graded manifolds:

Maps(Z × X ,Y) ∼= Maps(Z,Maps(X ,Y)).

Let us take for example X and Y to be non negatively graded, with coordinates respec-

tively x = {xµ0 ;xν1} and y = {yia}, where the subscript indicates the degree. A morphism

between the graded manifolds Z × X and Y can be expanded according to the degree in

X as:

yi0(x, z) = yi0,0(x0, z) + yi(0,−1)µ(x0, z)x
µ
1 + yi(0,−2)µν(x0, z)x

µ
1x

ν
1 + . . . ;

yi1(x, z) = yi1,1(x0, z) + yi(1,0)µ(x0, z)x
µ
1 + yi(1,−1)µν(x0, z)x

µ
1x

ν
1 + . . . ;

yi2(x, z) = yi2,2(x0, z) + yi(2,1)µ(x0, z)x
µ
1 + yi(2,0)µν(x0, z)x

µ
1x

ν
1 + . . . ;

...

(A.50)

where the functions y(a,b)(x0; z) are of total degree |y(a,b)| = b. The relation (A.49) tells

that the functions y(a,b)(x0) are to be considered as coordinates of degree b of the graded

manifold Maps(X ,Y). The transformation rules for y(a,b)(x0) are induced by the ones on

X and Y.

Notice that ya,0(x0) corresponds to degree-preserving maps Mor(X ,Y), which are then

naturally included in Maps(X ,Y) as the submanifold of degree zero, but there are also

the coordinates y(a,b>0)(x0) corresponding to maps with non-zero degree. Moreover we

remark that, in spite of the fact that we took both X and Y to be non-negatively graded,

Maps(X ,Y) has in general both positive and negative degrees.

Although in general Maps(X ,Y) is infinite-dimensional, this is not always the case as

shown in the following example.

Example A.4.1. Let M be any graded manifold and consider Maps(R[−1],M) . If e is

the coordinate of R[−1] and xµa are local coordinates of M with degree a, we have the

superfields:

xµa(e) = xµ(a,0) + xµ(a,a+1)e . (A.51)

Under a change of coordinate y(x) on M the superfields becomes:

yµa(e) = yµ(a,0)(x(·,0)) +
∂yµa
∂xνb

(x(·,0))x
ν
(b,b+1)e . (A.52)

We see then that x(a,a+1) transform as fiber coordinates of the tangent bundle to M and

so we have the isomorphism Maps(R[−1],M) = T [1]M .
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Appendix B
Propagators

We collect in this appendix the computations of the propagators used in Chapter 5.4.

We will firstly consider one-dimensional BF propagator on the circle and on the interval

with the various possible polarizations on the two end-points. Then we will use these to

compute the axial-gauge propagator on 2D surfaces, in particular on the cylinder S1 × I
and on the square I × I .

B.1 One-dimensional propagators

Propagator on the circle

Let us consider non-abelian BF theory on the circle S1 . We are looking for the propagator

when we expand the action with respect to the trivial connection. In this case the kinetic

term is
∫
S1〈B, dA〉 . The space of zero-modes is thus given by the de Rham cohomology:

V = HdR(S1; g)[1]⊕HdR(S1; g∗) . If τ ∈ [0, 1] is the coordinate of the circle, we have the

corresponding basis [1], [dτ ] for the cohomology of the circle and the following coordinate

expression for the zero modes:

a = a0 + a1dτ , b = b0 + b1dτ , (B.1)

where a(i) ∈ g and b(i) ∈ g∗ . A Hodge decomposition for the de Rham complex of the

circle is given by the following induction data:

Πω(τ) =

∫
S1

(dτ ′ − dτ)ω(τ ′) ,

Kω(τ) =

∫
S1

(
Θ(τ − τ ′)− τ + τ ′ − 1

2

)
ω(τ ′) .

(B.2)

117



B.1. One-dimensional propagators

The extension to the space of fields –Lie-algebra valued differential forms– is immediate

and the resulting propagator is:1

ηS1
a, τ ′b, τ = ηS1(τ, b; τ ′, a) =

(
Θ(τ − τ ′)− τ + τ ′ − 1

2

)
δab . (B.3)

Propagators on the interval

Interval in A-B polarization

Let us consider now BF theory on the unit interval I = [0, 1] with B polarization at {0}
and A polarization at {1} . The space of bulk fields is now given by differential forms

with Dirichlet boundary conditions on one of the two endpoints. The cohomology of the

differential d on this space of differential forms is vanishing, thus the space of zero-modes

is empty V = 0 . The chain homotopy K is now

Kω(t) =

∫ 1

t
ω(t′) (B.4)

and we have the corresponding propagator

η
t′t = η(t; t′) = −Θ(t′ − t) . (B.5)

Notice that propagation can only occur if t < t′ , i.e. moving away from the B endpoint

and toward the A endpoint of the interval.

Interval in A-A polarization

If we take the A polarization on both endpoints of the interval, the A fields will have

Dirichlet boundary conditions at the endpoints while the B fields will have free boundary

conditions: Y = Ω(I, ∂I; g)[1]⊕Ω(I; g∗) . The cohomology is concentrated in form-degree 1

for the A fields and in form-degree 0 for the B fields

V = H(I, ∂I; g)[1]⊕H(I; g∗) ' g[1]⊕ g∗ , (B.6)

so that the form-degree expansion of the zero modes is a = a1dt , b = b0 . The chain

retraction is given by the following data:

η(t, t′) = Θ(t− t′)− t , π(t, t′) = −dt . (B.7)

Interval in B-B polarization

The interval with B polarization on both endpoints has the role of A and B fields reversed

with respect to the previous case. The space of bulk fields is Y = Ω(I; g)[1]⊕Ω(I, ∂I; g∗)

and the zero-modes are: a = a0 , b = b1dt . The propagator and the projection to

cohomology are:

η(t, t′) = −Θ(t′ − t) + t′ , π(t, t′) = dt′ . (B.8)
1 The Lie-algebra part of the propagator in this thesis is always the identity δab and will be often omitted.
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B.2 Axial gauge propagators on the cylinder

Consider now a cylinder S1 × I and let t denote the coordinate of the interval, τ the

coordinate along the circle, χi a basis for the cohomology of S1 and χi its dual basis.

Using the 1-dimensional propagators of appendix B.1, from the axial-gauge formula (5.38)

we get the following propagators on the cylinder.

zero-modes
η(τ, t; τ ′, t′)

τ ′, t′τ, t

P
ol

ar
iz

at
io

n

A− B 0 −Θ(t′ − t)δ(τ − τ ′)(dτ ′ − dτ)

A− A
a = ai dt ∧ χi

(Θ(t− t′)− t)δ(τ ′ − τ)(dτ ′ − dτ)− dt
(
Θ(τ − τ ′)− τ − τ ′ − 1

2

)
b = bi χi

B− B
a = ai χ

i

(t′ −Θ(t′ − t))δ(τ ′ − τ)(dτ ′ − dτ) + dt′
(
Θ(τ − τ ′)− τ − τ ′ − 1

2

)
b = bi dt ∧ χi

(B.9)

Reversing the role of the circle and the interval in formula (5.38) we would obtain different

expressions for the propagator, called for the cylinder horizontal gauge, but we don’t need

this choice in this thesis.
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Appendix C
Computations of some Feynman diagrams

We present here the proofs of Propositions 5.3.3, 5.4.12, consisting in the evaluation of

tree and loop diagrams in the axial gauge. These computations are variations of the ones

contained in [42], Lemma 3 and 4, obtained in the 1-dimensional setting.

Proof of Proposition 5.3.3. We have to evaluate the 1-loop diagrams of figure 5.5. The

amplitude for a diagram with n > 2 vertices is:

1

n
tr(adna1

)

∫
(S1)n

dτ1 · · · dτn ηS1(τ1; τ2) · · · ηS1(τn−1; τn)ηS1(τn; τ1)

=
1

n
tr(ada1)n tr

(
K(χ1 ∧ •)

)n
.

(C.1)

where we choose the basis χ0 = 1, χ1 = dτ for H•(S1) and K is the chain homotopy with

integral kernel ηS1(τ ; τ ′) = Θ(τ − τ ′)− τ + τ ′− 1
2 . We will compute tr

(
K(χ1 ∧•)

)n
in the

monomial basis 1, τ, τ2, . . . . Let us define the generating function:

fm(x, τ) =
∞∑
n=0

xn
(
K(χ1 ∧ •)

)n
τm . (C.2)

Applying xK(χ1 ∧ •) on both sides we get

xK(χ1fm)(x, τ) = fm(x, τ)− τm (C.3)

and, differentiating w.r.t. τ , we obtain the differential equation:

∂

∂τ
fm = xfm +mτm−1 − x

∫ 1

0
dτ fm . (C.4)

Solutions to the above equation are of the form

fm(x, τ) = A(x)exτ +B(x) + exτ
∫ τ

0
dτ̃ mτ̃m−1e−xτ̃ , (C.5)
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where A(x) = 1
ex−1(1 − ex

∫ 1
0 dτ mτm−1e−xτ ) and B(x) is to be determined from the

boundary conditions. Since K(χ1fm)(x, 0) = K(χ1fm)(x, 1) , from (C.3) we have:

fm(x, 1)− 1 = fm(x, 0) = xK(χ1fm)(x, 0)

= x

∫ 1

0
dτ
(
A(x)exτ +B(x) + exτ

∫ τ

0
dτ̃ mτ̃m−1e−xτ̃

)
(τ − 1

2
)

= A(x)g(x) + C(x) ,

(C.6)

where g(x) = x
∫ 1

0 dτ̃ (τ̃ − 1
2)exτ̃ and C(x) = x

∫ 1
0 dτ exτ (τ − 1

2)
∫ τ

0 dτ̃ mτ̃m−1e−xτ̃ . More-

over from (C.5) we have fm(x, 0) = A(x) +B(x) and thus:

fm(x, τ) =
exτ − 1

ex − 1

(
1− ex

∫ 1

0
dτ̃ mτ̃m−1e−xτ̃

)
+ exτ

∫ τ

0
dτ̃ mτ̃m−1e−xτ̃ + fm(x, 0) .

(C.7)

We can now extract the trace of powers ofM := K(χ1∧•) from the series of the coefficients

of τm in the expansion of fm :

fmm(x) :=
∞∑
n=0

〈τm|xnMn|τm〉 ,

⇒
∞∑
m=1

(fmm(x)− 1) =

∞∑
n=1

xntrMn .

(C.8)

The coefficients fmm(x) can be read from (C.7):

fm(x, τ) =
exτ − 1

ex − 1

m−1∑
k=0

m!

(m− k)!
x−k −

m−1∑
k=0

m!

(m− k)!
τm−kx−k + fm(x, 0),

⇒ fmm(x) = 1− 1

ex − 1

∞∑
k=m+1

xk

k!
.

(C.9)

Thus we get:

∞∑
n=1

xntrMn = − 1

ex − 1

∞∑
m=1

∞∑
k=m+1

xk

k!
= − 1

ex − 1

∞∑
k=2

k − 1

k!
xk

= 1− x− x

ex − 1
= −1

2
x−

∞∑
n=2

Bn
n!
xn ,

⇒ trMn = −Bn
n!

for n > 2 ,

(C.10)

where Bn are the Bernoulli numbers.

Proof of Proposition 5.4.12. We have to evaluate the diagrams of the kind depicted in

figure 5.14. The amplitude In for a tree rooted on a B boundary field and ending on α is:

In = (−1)n+1

∫
I×(n+1)

〈B(1)(τ0), ηI(τ0, τ1) · · · ηI(τn−1, τn) ηI(τn, 1) adna1
α〉dτ0 · · · dτn ,

(C.11)

122



Appendix C. Computations of some Feynman diagrams

where ηI(τ, τ
′) = Θ(τ − τ ′) − τ . The result of this integral can be expressed in terms of

the Bernoulli polynomials:

In = (−1)n
∫
I

〈
B(1)(τ),

Bn+1(τ)−Bn+1

(n+ 1)!
adna1

α
〉
. (C.12)

To prove (C.12), let us define the operator Kg(τ) :=
∫
I ηI(τ, τ

′)g(τ ′)dτ ′ and the generating

function

f(x; τ) :=
∞∑
n=0

xnKn(t) . (C.13)

This function satisfies the differential equation:

∂

∂τ
f(x; τ) = xf(x; τ) + 1−

∫
I
f(x; τ ′)dτ ′ = xf(x; τ) + C(x) , (C.14)

where C(x) does not depend on τ . Since only the term n = 0 contributes to f evaluated

on the endpoints τ = 0, 1, f satisfies f(x; 0) = 0, f(x; 1) = 1. Solving the differential

equation with this boundary conditions we get:

f(x; τ) =
1− exτ

1− ex
=

1

x

( x

1− ex
− xexτ

1− ex
)

=
∞∑
n=0

Bn+1(τ)−Bn+1

(n+ 1)!
xn . (C.15)

Since K(1) = 0, we have Kn(ηI(τ ; 1)) = −Kn(ηI(τ ; 0)). Thus, similar contributions

to C.12 come from trees ending on α̃ (the main difference being in the term for n = 0) or

rooted on B̃ or on b. By summing over n we get, for the tree part of the effective action:

Seff.
tree =

∫ 1

0
〈B(1)(τ)− B̃(1)(τ),G+(τ, ada1)α+ G−(τ, ada1)α̃〉dτ+

+〈b1,F+(ada1)α+ F−(ada1)α̃〉 .
(C.16)

The amplitude for a wheel diagram is:

− i~
n

tr(adna1
)

∫
In

dτ1 · · · dτn ηI(τ1; τ2) · · · ηI(τn−1; τn)ηI(τn; τ1) . (C.17)

This integral is the same as the one appearing in [42] and can be computed with the

technique used to prove equation C.1. The result for the loop contribution to the effective

action is thus:

Seff.
loop = −i~

∑
n>2

1

n!
tr(adna1

)
Bn
n

= −i~ tr

(
log

(
sinh(ada1/2)

ada1/2

))
. (C.18)
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Appendix D
Two technical proofs

D.1 Proof of Proposition 5.4.5

Here we present a direct computational proof that Ω2 = 0 for a stratified circle, with any

choice of polarizations on the edges and corners.

First note that edge contributions ΩA
I , ΩB

I and pure corner contributions Ωα
p , Ωβ

p all

square to zero. Also, edge contributions and pure corner contributions commute. In

particular, we have

Ω2 =
∑
k

(
Ω
PkξkPk+1
pk

)2
+
[
Ω
PkξkPk+1
pk ,ΩPk

Ik
+ Ω

Pk+1

Ik+1

]
. (D.1)

Denote BCH(x, y) = log(exey) for x, y ∈ g – the Baker-Campbell-Hausdorff group law.

We will need the following identities

BCH(x, y) = x+ F+(adx)y +O(y2) , BCH(x, y) = y − F−(ady)x+O(x2) (D.2)

which are the cases of the BCH formula when either first or second argument is infinites-

imal.

Let us study e.g. a β-corner p surrounded by a B-edge I ′ on the left and an A-edge I on

the right. We have ΩBβA
p = ΩβA

p given by (5.94). Applying this operator to a wavefunction

of form ψ(β) = e−
i
~ 〈β,x〉, with x ∈ g a parameter, yields

ΩβA
p ψ = 〈β,F+(adx)Ap〉ψ = i~

d

dε
e−

i
~ 〈β,BCH(x,εAp)〉 , (D.3)

with ε an odd parameter. Here we have used the first identity in (D.2). Note that similarly

one can write ΩAβ
p ψ = −i~ d

dεe
− i

~ 〈β,BCH(εAp,x)〉, using the second identity in (D.2).
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This implies:

(
ΩβA
p

)2
ψ = (i~)2 d

dε2

d

dε1
e−

i
~ 〈β,BCH(BCH(x,ε1 Ap),ε2 Ap)〉

= (i~)2 d

dε2

d

dε1
e−

i
~ 〈β,BCH(x,BCH(ε1 Ap,ε2 Ap))〉

= (i~)2 d

dε2

d

dε1
e−

i
~ 〈β,BCH(x,(ε1+ε2)Ap− 1

2
ε1ε2 [Ap,Ap])〉

= (i~)2 d

dε2

d

dε1
e−

i
~ 〈β,BCH(x,− 1

2
ε1ε2 [Ap,Ap])〉

= − i~
2

〈
[Ap,Ap],

∂

∂Ap

〉
ΩβA
p ψ = −[ΩA

I ,Ω
βA
p ]ψ .

(D.4)

Note that the main trick of this computation is the use of associativity of the BCH

formula. Operators
(
ΩβA
p

)2
, [ΩA

I ,Ω
βA
p ] are multiplication operators in the variable Ap,

thus the computation above, for ψ independent of Ap is sufficient to ascertain that(
ΩβA
p

)2
+ [ΩβA

p ,ΩA
I ] = 0 as operators. Further, note that [ΩβA

p ,ΩB
I′ ] contains derivatives in

B(1)
p and therefore vanishes on admissible states, in the sense of Assumption 5.4.4. This

proves that the contribution of a BβA corner to Ω2 (cf. the right hand side of (D.1))

vanishes. The case AβB is an orientation reversal of the case we just studied; it is treated

analogously and also yields a zero contribution to the r.h.s. of (D.1).

Case of an AβA corner is treated similarly. Here ΩAβA
p = ΩAβ

p + ΩβA
p . We have(

ΩβA
p

)2
+ [ΩβA

p ,ΩA
I ] = 0 as above, and similarly

(
ΩAβ
p

)2
+ [ΩAβ

p ,ΩA
I′ ] = 0. We also need to

understand the term [ΩAβ
p ,ΩβA

p ], which is done similarly to (D.4):

ΩAβ
p ΩβA

p ψ = −(i~)2 d

dε2

d

dε1
e−

i
~ 〈β,BCH(ε2 Ap−0,BCH(x,ε1 Ap+0))〉

= −(i~)2 d

dε2

d

dε1
e−

i
~ 〈β,BCH(BCH(ε2 Ap−0,x),ε1 Ap+0))〉 = −ΩβA

p ΩAβ
p ψ .

(D.5)

Hence, [ΩAβ
p ,ΩβA

p ] = 0 and the contribution of an AβA corner to the r.h.s. of (D.1)

vanishes.

In the case of an AαB corner, we have ΩAαB
p = Ωα

p + ΩαB
p . By a computation similar

to (D.4), one shows that (
(
ΩαB
p

)2
+ [Ωα

p ,Ω
αB
p ])ψ = 0 for ψ = e−

i
~ 〈Bp,x〉. Together with(

Ωα
p

)2
= 0, this shows that

(
ΩAαB
p

)2
= 0. Furthermore, [ΩAαB

p ,ΩA
I′ ] = 0 and [ΩAαB

p ,ΩB
I ] = 0

on admissible states. Thus, the contribution an AαB to the r.h.s. of (D.1) also vanishes.

Orientation-reversed case BαA is similar.

Case of a BαB corner is similar to the above: we have ΩBαB
p = ΩBα

p + Ωα
p + ΩαB

p . As

above, we have
(
ΩαB
p

)2
+ [Ωα

p ,Ω
αB
p ] = 0 and similarly

(
ΩBα
p

)2
+ [Ωα

p ,Ω
Bα
p ] = 0. One also

trivially has [ΩBα
p ,ΩαB

p ] = 0. Thus,
(
ΩBαB
p

)2
= 0. Also, the corner contribution to Ω

commutes with the edge terms on admissible states. This proves that the contribution of

a BαB corner to the r.h.s. of (D.1) vanishes, too.
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Appendix D. Two technical proofs

Cases of AαA and BβB corners are trivial. This finishes the proof that all terms in

the sum (D.1) over the corners vanish, and thus Ω2 = 0 for an arbitrarily stratified and

polarized circle.

D.2 A check of the chain map property of the inclusion of

the small model for A-states on an interval into the full

model

One can check directly that (5.128) is indeed a chain map. First, it is clearly an algebra

morphism (w.r.t. the standard supercommutative pointwise product on Fun(· · · )), so it

is enough to check the chain map property on a set of generators of Hsmall. Assume for

simplicity that g ⊂ MatN is a matrix Lie algebra and choose as generators

fk,ρ := tr ρAk , gρ := tr ρ eA , (D.6)

with ρ ∈ MatN arbitrary parameter and k = 0, 1. From (5.126) and (5.128), we imme-

diately obtain that iH ◦ Ωsmall = Ω ◦ iH when applied to the generators fk,ρ. For gρ,

from (5.126,5.128) and from the rule for the deformation of holonomy under an infinitesi-

mal gauge transformation, we obtain:

(iH ◦ Ωsmall)gρ = (Ω ◦ iH)gρ = −i~ tr ρ
(
U(A) · A1 − A0 · U(A)

)
. (D.7)

Here we used the observation that Ωsmallgρ = −i~ tr ρ(eXc1 − c0eX) with shorthand nota-

tion c0 = A0, c1 = A1, X = A. Indeed, we have

i

~
Ωsmallgρ = tr ρ

∑
p,q≥0

1

(p+ q + 1)!
Xp(F+(adX)c1 + F−(adX)c0)Xq

= tr ρ
∑

p,q,j,l≥0

1

(p+ q + 1)!

(
(−1)lB+

j+l

j!l!
Xj+pc1X

l+q −
(−1)lB−j+l

j!l!
Xj+pc0X

l+q

)
,

(D.8)

where B+
i and B−i are the Taylor coefficients of F+(x) and −F−(x), respectively. Note

that, for x, y scalars, we have∑
p,q,j,l≥0

1

(p+ q + 1)!

(−1)lB+
j+l

j!l!
xj+pyl+q =

( ∑
p,q≥0

xpyq

(p+ q + 1)!

)(∑
j,l≥0

(−1)lB+
j+l

j!l!
xjyl

)

=
ex − ey

x− y
· F+(x− y) = ex

(D.9)

and, similarly,
∑

p,q,j,l≥0
1

(p+q+1)!

(−1)lB−j+l
j!l! xj+pyl+q = ey. Thus:

i

~
Ωsmallgρ = tr ρ

(
eXc1 − c0eX

)
(D.10)

as claimed.
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