
MASTER IN HIGH PERFORMANCE COMPUTING

A HPC approach to the Boundary
Conditions for the Copernicus
biogeochemical model of the

Mediterranean Sea

Supervisor(s):
Gianpiero COSSARINI,
Alberto SARTORI

Candidate:
Marco BETTIOL

4th EDITION

2017–2018

iii

Acknowledgements
The research reported in this work was supported by OGS and CINECA under HPC-
TRES program award number 2017-19.

v

Contents

Acknowledgements iii

1 Introduction 1

2 Model overview 3
2.1 Model description . 3

2.1.1 MED-CURRENT framework . 3
2.1.2 CMEMS products . 4
2.1.3 HPC configuration and setup . 5

2.2 Boundary conditions overview and classification 5

3 Current version: OGSTM 3.2.1 7
3.1 Overview of the involved procedures 7
3.2 Profiling . 9
3.3 Issues . 9

4 New Object-Oriented structure 11
4.1 Why an Object-Oriented philosophy? 11
4.2 Class structure . 12

4.2.1 bc_data . 12
4.2.2 bc . 15
4.2.3 rivers . 20
4.2.4 sponge . 21
4.2.5 closed . 22
4.2.6 open . 22
4.2.7 nudging . 23
4.2.8 Destructors . 25

5 Improvements in the new version and benchmarks 27
5.1 Changes in the main code . 27

5.1.1 Declaration and instantiation . 27
5.1.2 Boundary values update . 28
5.1.3 Boundary condition application 30
5.1.4 Deallocation . 31

5.2 Profiling and benchmarks . 31
5.2.1 Overall time to solution . 31
5.2.2 Profiling . 32

6 Conclusions and future work 35

A Unit testing framework 37

vii

List of Abbreviations

OGSTM OGS Transport Model
BFM Biogeochemical Flux Model
OGCM Ocean Global Circulation Model
NEMO Nucleus (for) European Modeling (of) (the) Ocean
CMEMS Copernicus Marine Environment Monitoring Services
RAII Resource Allocation Is Initialization
PIMPL Pointer (to) IMPLementation
italic names Proper nouns
blue verbatim names Words used literally in the code

1

Chapter 1

Introduction

The code on which this work is focused is a coupled physical-biogeochemical model
which solves both the transport equation and the biogeochemical reactions in the
seawater. Up to the current version, the only domain in which the model is supposed
to run is the Mediterranean Sea. Its boundary conditions are thought to be invariant,
both in their geometry, in their numerical schemes and in their parameterization. In
the current version, therefore, any change in the boundary conditions is possible
only for specialized developers and is increasing a lot the time to solution anytime
any new configuration is required. Referring to fig. 1.1, the most of the time in this
case is spent in adding new subroutines on anyway modifying the existing ones,
changing some hard-coded parameters, changing input files, scripts etc. and the
run-time is only a small fraction of the overall time to solution.

FIGURE 1.1: Current time to solution. The focus of the MHPC thesis
is to reduce the red part first.

The final goal to which this project contributes to is to unlock the HPC potential
of the model by making it adaptable to different domains and to ensemble simula-
tions scenarios. The first step in this direction, and actually the real aim of this thesis,
is to build a versatile interface and infrastructure to assign the boundary conditions.
Configuring the existing boundaries, but also changing the boundaries themselves,
have to be fully supported operations. In this way the model is able to be run easily
multiple times, potentially in any domain and with different boundary conditions.
Furthermore, this operations should be carried on by the user itself, without even
touching the source code, in order to dramatically reduce the time to solution and to
enable the model to be run by a wider community.

3

Chapter 2

Model overview

2.1 Model description

This chapter gives a brief overview of the biogeochemical model which is at the basis
of the thesis work, together with a classification of its boundary conditions.

2.1.1 MED-CURRENT framework

The computational model which is at the basis of this work is the coupled physical-
biogeochemical OGSTM-BFM model [1]. It is composed by the OGSTM transport
model, which solves both the advection and the diffusion processes in seawater, and
a biogeochemical reactor, namely Biogeochemical Flux Model (BFM [2]). The two
models are online coupled and together solve the full transport/reaction equation
[3]:

∂C
∂t

= −v · ∇C +∇(K∇C) + Rbio(C, ...) , (2.1)

with the boundary conditions

C(x0) = C0 or
∂C
∂t

(x0) = α . (2.2)

C is the array of the outputs of the model, i.e. a series of 51 biogeochemical tracers
scalar fields the most important of which are:

• chlorophyll;

• phytoplankton carbon biomass;

• net primary production;

• phosphate;

• nitrate;

• oxygen;

• acidity (pH);

• partial pressure of carbon dioxide in seawater (pCO2).

The first term on RHS refers to the advection. v is the velocity, which is imposed
as a forcing field, derived from an offline coupled Ocean Global Circulation Model
(OGCM) and not computed by OGSTM itself. The second term represents the dif-
fusion process, and K is the diffusivity. The biogeochemical reactions are finally
grouped into the last term. Boundary conditions for tracers can be set either as a

4 Chapter 2. Model overview

tracer value (C0) or a tracer flow (α). Both cases can be also time dependent, as for
example when seasonal variability is considered.

The aforementioned components of the system are self-consistent. Neverthe-
less the model is run inside a wider framework including also a Data Assimila-
tion scheme named 3DVAR-BIO, used for the correction of phytoplankton functional
type variables with surface chlorophyll data coming from satellite observations. The
whole system is referred to as MedBFM model. The latest release of MedBFM is
MedBFM 2.1 which in turn includes 3DVAR-BIO 3.2, OGSTM 3.2.1 and BFM 2.1. A
summary of the components is reported in fig. 2.1.

FIGURE 2.1: Model overview: the core component is the cou-
pled physical-biogeochemical OGSTM-BFM model; velocity fields
are fully consistent with the output of a OGCM, which in the picture
is the NEMO Ocean model [4], on which MED-CURRENT system is
based. 3DVARBIO scheme is used for Data Assimilation of chloro-

phyll data.

The focus of the present work is on the modules of the system which set the
boundary conditions, which are part only of OGSTM. Therefore, from now when re-
ferring to the model, OGSTM will be implied. The current version, OGSTM 3.2.1, has
been modified in order to provide a brand new structure for the boundary condi-
tions. Together with other major updates, the new boundary scheme will be part of
the new release of the model, OGSTM 4.0. From now on, OGSTM 3.2.1 and OGSTM
4.0 will be referred to respectively as current version and new version.

2.1.2 CMEMS products

The MedBFM system is at the basis of two products developed for the European
Commission under the CMEMS1, respectively for the reanalysis of the biogeochemi-
cal state of the Mediterranean in the past 20 years and for its short-term forecasts. In
this second product, namely MEDSEA_ANALYSIS_FORECAST_BIO, the workflow
runs twice per week and produces a 10 days forecast. This configuration is used as
a reference to introduce a standard computational setup for the model, as described
below.

1Copernicus Marine Environment Monitoring Services

2.2. Boundary conditions overview and classification 5

2.1.3 HPC configuration and setup

The model is written in Fortran (90 standard) and it is parallelized in distributed
memory using MPI both when it is run on different cores inside a single compute
node and when it requires multiple nodes. With reference to the CMEMS analysis
and forecasting product, in its standard configuration the model runs on 20 comput-
ing nodes of Marconi (CINECA), using a total of 720 cores (36 cores/node). Domain
decomposition minimizes the land/water ratio for the MPI processes domain cells,
in order to optimize the load balancing. An example of domain decomposition, for
a smaller number of processes, is provided in fig. 2.2.

FIGURE 2.2: Domain decomposition in the case of 102 MPI processes.
The total number of processes is less than the standard one just to

provide a clearer picture.

2.2 Boundary conditions overview and classification

As seen before, boundary conditions for tracers are assigned either as a tracer value
or a tracer flux, potentially time dependent (eq. 2.2). The second important distinc-
tion is whether a boundary is open or closed, i.e. whether a mass flow can occur
or not at the boundaries. Since the velocity field is imposed by an offline coupled
OGCM, a boundary of OGSTM can be open only if the corresponding boundary is
open in the OGCM; otherwise it is forced to be closed.

With reference to fig. 2.3, if an OGCM boundary is closed there are two possi-
ble configurations. If a tracer flow is set (usually only in a few surface cells), the
boundary is defined as a river, since this is the case in which an amount of tracers
is discharged from the rivers or from a small strait into the ocean. Differently, if a
tracer value is set, the boundary is defined just closed. Moving to the right side of the
diagram in fig. 2.3, if the OGCM provides an open boundary (or also when OGSTM
is run on a subset of the OGCM domain, and therefore a non null velocity field is
available regardless of the OGCM boundary type) two more options are available.
The velocity field can be artificially nullified in OGSTM, yielding a so called sponge2

boundary, or it can be left unvaried, providing a fully open boundary also to OGSTM.
In the first case usually a smoothing function is provided as well, in order to relax
the velocity field to the OGCM values far from the boundary.

2The name is a common jargon in oceanographic modeling and derives from the fact that setting to
zero the velocity field at the boundary is like "absorbing" the mass.

6 Chapter 2. Model overview

FIGURE 2.3: Boundary classification. Colors scheme is the same used
later (see fig. 4.1) to map the boundary types into the actual classes.
Generic boundary conditions for OGSTM are marked in grey, while
biundaries of every specific type are marked in green. Nudging fea-
ture is marked in orange and it is meant to be an optional feature for

any boundary type.

For each of the four boundary types, and additional specification is whether to
gradually relax or not the tracer fields to the given values at the boundaries using a
Newtonian dumping term, also known as nudging. The nudging term is thought to be
optional and is useful to provide numerical stability to the model. In order to apply
it, a 3D set of tracer values has to be assigned in proximity of the boundary and used
to adjust the model outputs. This can be done through a weighted combination of
imposed and predicted values, with the weight spanning from 1 at the boundary to
0 in the inner domain. The fact that this behavior can be applied or not to any of the
boundary types is crucial for the choice of the design pattern for its implementation,
as described in subsection 4.2.7.

7

Chapter 3

Current version: OGSTM 3.2.1

This chapter gives an overview of the current code structure, focusing mostly on
the boundary conditions modules. A brief description of these modules is provided,
together with some profiling data. The related issues and the reasons behind the
choice of moving to a new implementation are discussed as well.

3.1 Overview of the involved procedures

A crucial point that is worth to introduce from the beginning is that, up to version
3.2.1, OGSTM has been designed to run always in the same domain, i.e. the Mediter-
ranean Sea. For this reason the current implementation does not allow to change the
boundary conditions geometry and neither their type, unless with deep changes in
the code. Among the boundaries needed by the model in this configuration, the ones
of interest for this work are all the rivers that flows into the Mediterranean and the
two straits of Dardanelles and Gibraltar. An overview is provided in fig. 3.1. Due to
its dimensions, Dardanelles strait is actually treated as a river input and its bound-
ary conditions fall inside the rivers boundary conditions subset. On the other hand,
Gibraltar strait, much deeper and wider, is configured as a sponge boundary and a
nudging term is applied on it. [5], [6], [7]

FIGURE 3.1: Boundary conditions overview.

8 Chapter 3. Current version: OGSTM 3.2.1

Boundary conditions related subroutines are essentially divided in two groups.
The first ones are called once in the initialization phase, while the others are in-
voked at every time step. All the variables and matrices needed for storing bound-
ary data are declared as global variables in a dedicated module (BC_mem) and are
allocated during the initialization phase. Allocation is performed inside the domrea
subroutine, together with the operations for reading the boundary data from the
data files, divide them among the MPI processes and re-index them accordingly.
The sequence of operations is repeated for every boundary, i.e. for the Gibraltar
strait and for the rivers and Dardanelles. An example is provided in code box 3.1,
which shows the main workflow for the Gibraltar strait: read a netcdf file with the
data (readnc_int_1d), check which boundary cells fall into the involved MPI pro-
cess (COUNT_InSubDomain_GIB), allocate memory (alloc_DTATRC_local_gib) and re-
index the cells (GIBRe_indexing).

LISTING 3.1: Workflow for the Gibraltar boundary condition initial-
ization in the current code

filename = ’BC/GIB_’// TC_GIB%TimeStrings (1)//’.nc’
call readnc_int_1d(filename , ’gib_idxt_N1p ’, Gsizeglo , &

gib_idxtglo)
Gsize = COUNT_InSubDomain_GIB(Gsizeglo , gib_idxtglo)
if (Gsize .ne. 0) then

call alloc_DTATRC_local_gib
B = GIBRe_indexing ()

endif

Inside the step subroutine, which integrates the model at every time step, a sepa-
rate subroutine is called for each boundary, so in this case both for the rivers (bc_tin)
and for Gibraltar (bc_gib). Different sets of boundary conditions are provided for a
series of times, and need to be interpolated at every new time step. The main proce-
dures invoked for each boundary are three: load_<BC_NAME>, swap_<BC_NAME> and
actualize_<BC_NAME>. They are used, respectively, to load in memory one single set
of data, to swap in memory two sets of data referring to two different times and to in-
terpolate the data. Further details on the interpolation will be given in section 4.2.1,
together with the new implementation. Again, a few example lines are reported for
the Gibraltar boundary in code box 3.2.

LISTING 3.2: Subroutines for the Gibraltar boundary condition inter-
polation in the current code

if (...) then
! [...]
call swap_GIB
! [...]
call load_GIB (...)

end if

select case (...)
case (0)

if (...) then
call actualize_GIB (...)

end if
case (1)

call actualize_GIB ()

3.2. Profiling 9

end select

Finally, the actual application of the boundary condition for the tracers is done
inside the trcdmp subroutine (in which a different code block is contained for each
boundary), whereas conditions on the outputs of the OGCM, as for example setting
the velocity field to zero in a sponge boundary, are applied inside the init_phys
subroutine.

3.2 Profiling

Before examining some possibles bottlenecks of this implementation, some profil-
ing data are reported. Table 3.1 summarizes the run-times of a few subroutines of
the model. Among them, the aforementioned bc_tin and bc_gib are included, to-
gether with two other boundary related subroutines (for the atmosphere and the
CO2, which are out of the scope of this work but still useful for a time comparison)
and with the most important subroutines which are launched at every time step, i.e
trcstp, which solves both the advection and the diffusion equations, and step itself,
which embeds all the previous ones. The model configuration is the standard one
used in the CMEMS forecast.

TABLE 3.1: operative chain subroutines elapsed times for current ver-
sion: boundaries and main integration step

Subroutine Overall time (s) Single call time (s)

bcTIN 1.97 e-01 1.97 e-05
bcGIB 1.13 e-01 1.13 e-05
bcATM 1.71 e-01 1.71 e-05
bcCO2 1.08 e-01 1.08 e-05

trcstp 6.29 e+03 6.29 e-01
stp 1.22 e+04 1.22 e+00

It can be easily seen how the run-times for the boundary conditions subroutines
are negligible with respect to the time required by a full integration step. Neverthe-
less, the actual time to solution to be considered includes also, and above all, the
time spent in adapting the code to different boundary conditions and to configure
the model accordingly, which, as discussed later, is far from being negligible.

A further hint of the low impact of the boundary conditions operations in terms
of computational effort is given by the following I/O profiling obtained with Dar-
shan with the same configuration and summarized in fig. 3.2. Input files includes
mesh files, restart files and boundary conditions files. Although dominant in terms
of number of operations (right graph), input file readings together requires a very
small portion of the actual run-time (left graph, red column), by far smaller also than
the output files writing percentage (left graph, green column).

3.3 Issues

Despite its low impact in the actual run-time, such an implementation is fine only if
every small detail of a model configuration at the boundaries is supposed to be left
unchanged. As soon as some boundary conditions have to be added or removed,

10 Chapter 3. Current version: OGSTM 3.2.1

FIGURE 3.2: I/O profile of the current version.

or even modified only with respect to a few parameters, some important restrictions
arise:

• many parameters are hard-coded, and replicated in many parts of the code.
Even a minor change in the number or in the values of a boundary condition
requires an analysis and a refactoring of the code, with the consequence of gen-
erating potential errors and typos and anyway increasing the time to solution;

• adding a new boundary means rewriting and adding calls to the full set of
subroutines that are needed to upload and apply the boundary data. Code
size would rapidly grow, together with the time spent by the developer and
the chances to introduce bugs.

These are the main reasons behind the choice of writing from scratch a new im-
plementation for the boundary conditions, which will be described in the following
chapters. The aim is to minimize the time to solution focusing on the model initial-
ization phase, of course without slowing down the computational phase.

11

Chapter 4

New Object-Oriented structure

The basic principle in Object-Oriented programming is to map a series of variables
and a series procedures into a single programming abstraction named class; the two
series are defined, respectively, members and methods of the class. Different classes
can share common features by inheriting from a common base class. If a class in-
herits from a base class, it belongs to that class, so it shares the same members and
methods of that class. Additional members and methods defined in the derived class
contribute to the definition of the specific features of the new class. Objects are con-
crete representations of a class and are instantiated, i.e. allocated in memory, with a
call to a dedicated method of the class named constructor.

In this chapter the new Object-Oriented implementation is introduced and dis-
cussed. A first section explains the reasons behind an Object-Oriented paradigm,
whereas in the following part the single classes are introduced.

4.1 Why an Object-Oriented philosophy?

The main purpose of this work is to make the code flexible and easy to use under a
change of:

• boundary parameters (boundary data, subset of tracers etc.);

• type of boundary;

• number of boundaries.

The final goal is to let the user free to assign an arbitrary number of boundaries of
any kind, possibly doing this through a namelist1 file, without even touching the
source code. The whole implementation relies on an Object Oriented paradigm, in
which the main idea is to associate each type of boundary to a different class. Some
methods are the same for every boundary class. Furthermore, a series of methods
needs to be overridden by every class, in order to come up with an unique interface
and handle each object in the same way, regardless of its type. The reasons behind
this approach are at least three:

• any number of boundaries, of any type, can be instantiated by simply calling
the proper constructors;

• every customization for a specific boundary can be obtained by simply passing
the desired parameters as argument to the constructor. In this way the bound-
ary initialization, including memory allocation and data input, is carried out
by a single call in the main code, without additional modules for the memory

1Usually this is the term used for files containing the list of parameters for the model initialization.

12 Chapter 4. New Object-Oriented structure

management and without declaring the needed arrays and matrices as global
variables in different parts of the code. All the auxiliary variables and pro-
cedures declared and/or implemented in the current version are now hidden
under the object instantiation, which requires all the arguments to be read from
a namelist. In Object-Oriented programming, this concept is defined as RAII
(Resource Acquisition Is Initialization) [8]. The idea behind it is to bind all the re-
sources that are needed by the object to its lifetime. This means that resources
such as the allocated heap memory, the execution thread etc. are allocated by
the constructor and are preserved until they are deallocated by the destructor
(see 4.2.8).

• every action that needs to be performed on the boundary can be included in
a single loop over all the istantiated boundaries, calling the same methods on
different objects, regardless of their types (object polymorphism).

The new version of the boundary modules has been developed using Modern
Fortran (2003 standard), which, among the major updates, introduces also Object-
Oriented syntax and features [9]. Compatibility of OGSTM 3.2.1 under the new
standard has been tested and guaranteed before moving to the new implementa-
tion.

4.2 Class structure

An overview of the final inheritance diagram is provided in fig. 4.1. The new scheme
is based on a base2 class, bc, from which every different boundary class inherits,
implementing the same template. The other two members of the structure are a
wrapper over the data files, bc_data, and a decorator (see subsection 4.2.7), nudging,
which provides nudging features to any boundary type if necessary. The inheritance
diagram follows the boundary classification provided in 2.2, and colors are set ac-
cordingly. A detailed description of the implemented objects follows.

4.2.1 bc_data

This is a wrapper over the data structures which contains the full dataset needed by
the boundary. The dataset consists of a series of files referring to some specific times
distributed along the whole simulation period. Boundary conditions can be yearly
periodic, as for climatological data updated each month or each season, or they can
just evolve without a given periodicity. At every time step a boundary condition
object needs to know which are the two data files that refer to the current time inter-
val. Therefore, bc_data class handles a list of netcdf data files and a corresponding
list of times, with a method to get the corresponding data given the times list in-
dex (get_file_by_index). Lists are allocated and initialized inside the constructor,
which is itself in charge of the memory management, according to RAII. It features
two main constructors. The default one is inferring the time each file refers to from
a time string contained in the file name itself. In this case the files and times lists
will have the same length (fig. 4.2). The second, instead, is used to handle yearly
periodic boundary conditions (e.g. climatological). Here only the constant part of
the time string (i.e. month, day, hour etc.) is inferred from the files, and the list of
times is computed and replicated for every simulation year, form start to end year

2Usually, in similar inheritance diagrams, the base class is defined abstract, whereas in this imple-
mentation it is not. The reasons behind this choice are explained in 4.2.2.

4.2. Class structure 13

FIGURE 4.1: Class inheritance diagram based on the boundary clas-
sification provided in 2.2. Colors are mapping those of fig. 2.3. Class
boxes are splitted in two parts, respectively for members and meth-
ods. Only the most significant members and methods are reported
and omitted ones are replaced with the symbol ![...]. Arrows are used
for inheritance, while plain lines are used when one of the class mem-

bers points to an object of the linked class.

(fig. 4.3). Therefore, this constructor accepts two arguments more (simulation start
and end times).

FIGURE 4.2: Non periodic files and times lists.

Constructor overloading (code box 4.1) is achieved through an interface. An
empty constructor which does not allocate any list is also included. It is useful in the
case a boundary with no data is needed (see for example the nudging class 4.2.7).
The compiler will then select the right implementation depending on the number
and the type of the arguments.

LISTING 4.1: constructor overloading for the bc_data class

interface bc_data
module procedure bc_data_empty
module procedure bc_data_default

14 Chapter 4. New Object-Oriented structure

FIGURE 4.3: Periodic files and times lists.

module procedure bc_data_year
end interface bc_data

! [...]

type(bc_data) function bc_data_empty ()
! [...]

end function bc_data_empty

type(bc_data) function bc_data_default(files_namelist)
character(len=22), intent(in) :: files_namelist
! [...]

end function bc_data_default

type(bc_data) function bc_data_year(files_namelist , &
start_time_string , &
end_time_string)

character(len=27), intent(in) :: files_namelist
character(len=17), intent(in) :: start_time_string
character(len=17), intent(in) :: end_time_string
! [...]

end function bc_data_year

The current version linearly interpolates the data of the two extremes of the time
interval in order to obtain the data at any given time inside the interval (see also
fig. 4.4 in the following subsection). This part is now delegated to the bc_data
class itself, through its get_interpolation_factor method, which indeed returns
the weight for the linear interpolation. Besides doing this, it also updates, if neces-
sary, two integer attributes of the class to keep track of the current interval’s indexes.
Sometimes it is just required to set the right interval without interpolating the data.
This can be done through the set_current_interval method, which shares with
the previous one only the updating part. Current interval indexes can be accessed
via the get_prev_idx and get_next_idx getters, while the boolean new_interval
method returns whether the interval has changed or not after the last call either to
set_current_interval or get_interpolation_factor.

Data files are supposed to refer only to the tracers fields. They are netcdf-4 files
containing both an indexed set of values and the cells to which the values refer, i.e.
the boundary geometry. Depending on the type of boundary, values can refer both
to tracer values and to tracer flux values (each boundary class will then override its
methods accordingly).

4.2. Class structure 15

4.2.2 bc

This is the base class which defines the interface for every new boundary. Its mem-
bers and methods will be common to every derived class. bc class role, indeed,
is to own and/or implement common attributes and/or methods which provide
common features to every type of boundary. Its only member, m_bc_data, follows
a Pointer To Implementation (PIMPL) design pattern [10]. The purpose of a PIMPL
is to move implementation details into a separate class, which is accessed through
a pointer. m_bc_data, indeed, is a pointer to a bc_data object, which handles the
operations on the list of files. The pointer allocation and the instantiation of the
corresponding object are done inside the constructor. Overloaded bc constructors
differs only in the call to the proper bc_data constructor (code box 4.2).

LISTING 4.2: constructor overloading for the bc class

type bc
type(bc_data), pointer :: m_bc_data => null()

contains
! [...]

end type bc

! [...]

type(bc) function bc_empty ()
allocate(bc_empty%m_bc_data)
bc_empty%m_bc_data = bc_data ()

end function bc_empty

type(bc) function bc_default(files_namelist)
! [...]
allocate(bc_default%m_bc_data)
bc_default%m_bc_data = bc_data(files_namelist)

end function bc_default

type(bc) function bc_year(files_namelist , &
start_time_string , &
end_time_string)

! [...]
allocate(bc_year%m_bc_data)
bc_year%m_bc_data = bc_data(files_namelist , &

start_time_string , &
end_time_string)

end function bc_year

Even though the data files can be intrinsically different from each other (an open
boundary for example relies on a 2D set of values, while a nudging is usually ap-
plied on a 3D geometry), every boundary will always refer to a list of files, and
will always operate in the same way on them. For this reason, file operations are
contained and implemented in the base class. Those methods are actually just a se-
ries of wrappers around the setters and the getters of the bc_data class, including
get_file_by_index, set_current_interval and get_interpolation_factor. As
an example, in code box 4.3 the implementation of the get_interpolation_factor

16 Chapter 4. New Object-Oriented structure

method is displayed. It calls the corresponding method in bc_data and uses a logical
output variables to keep track of the possible jump on a new time interval.

LISTING 4.3: get_interpolation_factor method for the bc class

double precision function get_interpolation_factor(self , &
current_time_string , &
new_data)

class(bc), intent(inout) :: self
character(len=17), intent(in) :: current_time_string
logical , optional , intent(out) :: new_data

get_interpolation_factor = &
self%m_bc_data%get_interpolation_factor(&

current_time_string)
new_data = self%m_bc_data%new_interval ()

end function get_interpolation_factor

These are the only methods that are implemented in the bc base class. All the
other methods are just declared in order to provide the common interface to the
child classes, but not implemented. In a fully Object-Oriented implementation, these
methods should have been declared deferred, similarly to what is done with virtual
methods in other programming languages such as C++. bc class would have been
thus a truly abstract class and the child classes would have been forced to imple-
ment the deferred methods, causing a compiler error otherwise. Complying with
the Fortran 2003 standard, this would have led to a documented issue [11], i.e. to the
fact that base class constructors would not have been callable inside a constructor
of a derived class, for the same reason why an object of an abstract class just can-
not be istantiated. Possible solutions are to move to Fortran 2008 standard (which
overcomes this issue allowing the use of base constructors while inheriting from
an abstract class), interposing an additional class between the abstract one and the
child classes and avoid using the base class constructors, moving what is done here
to other delegated subroutines. The first two solutions are definitely appropriate,
but would add unnecessary complexity to the code, at least considering the rela-
tively small number of classes involved. Opting for the third one would be actually
as simple as renaming a few methods, but, still, it would drift the implementation
apart from a pure Object-Oriented style, essentially moving members initialization
outside the constructors. For this reason the final choice has been not to use deferred
methods and not to define bc abstract, even though this is the intended behavior.

The methods that define the general interface are the followings:

• load, swap and actualize: they are all related to time interpolation and are
needed, respectively, to load in memory the data of the extreme of a time in-
terval, to swap in memory the data of two extremes and to set the right values
according to the interpolation weight, as described in fig. 4.4.

Their signatures are reported in code box 4.4.

LISTING 4.4: load swap and actualize methods for the bc class

subroutine load(self , idx)
class(bc), intent(inout) :: self

4.2. Class structure 17

FIGURE 4.4: Role of the three methods load, swap and actualize in
the time interpolation.

integer , intent(in) :: idx
! [...]

end subroutine load

subroutine swap(self)
class(bc), intent(inout) :: self
! [...]

end subroutine swap

subroutine actualize(self , weight)
class(bc), intent(inout) :: self
double precision , intent(in) :: weight
! [...]

end subroutine actualize

load needs to know which is the interval index to load the data from. swap just
moves the loaded data to an auxiliary matrix, which is going to be a private
member of the derived class. actualize requires a weight to correct the loaded
data, even if the weight of the linear interpolation can be computed by the
class itself through its bc_data object. In this way the method is more flexible
when the linear interpolation option is not enabled in the namelist file, and the
weight needs to be set always to 1.

• apply: this is called to set the final values of the tracer fields near the bound-
aries, according to the type of boundary. Model output fields are adjusted
according to the boundary scheme. Its full signature is reported in code box
4.5.

LISTING 4.5: apply method for the bc class

subroutine apply(self , e3t , n_tracers , trb , tra)

use modul_param , only: jpk , jpj , jpi

implicit none

class(bc), intent(inout) :: self
double precision , &

dimension(jpk , jpj , jpi), &

18 Chapter 4. New Object-Oriented structure

intent(in) :: e3t
integer , intent(in) :: n_tracers
double precision , &

dimension(jpk , jpj , jpi , n_tracers), &
intent(in) :: trb

double precision , &
dimension(jpk , jpj , jpi , n_tracers), &
intent(inout) :: tra

! [...]

end subroutine apply

jpi, jpj and jpk are the three local dimensions of the MPI process, set as global
variables in the parameter module. Together with n_tracers, which is the to-
tal number of tracers, they are needed to specify the dimension of the tracers
global matrices tra and trb. The method operates on the final output matrix
(tra), modifying the model outputs according to the proper boundary scheme.
e3t is just a vertical scale factor used to correct the (scalar) tracer fields accord-
ing to the domain mesh.

• apply_nudging: a private method used to simplify the apply method if a nudg-
ing scheme has to be included in the fields correction. The signature is reported
in code box 4.6.

LISTING 4.6: apply_nudging method for the bc class

subroutine apply_nudging(self , e3t , n_tracers , &
rst_tracers , trb , tra)

use modul_param , only: jpk , jpj , jpi

implicit none

class(bc), intent(inout) :: self
double precision , &

dimension(jpk , jpj , jpi), &
intent(in) :: e3t

integer , intent(in) :: n_tracers
double precision , &

dimension(jpk , jpj , jpi , n_tracers), &
intent(in) :: rst_tracers

double precision , &
dimension(jpk , jpj , jpi , n_tracers), &
intent(in) :: trb

double precision , &
dimension(jpk , jpj , jpi , n_tracers), &
intent(inout) :: tra

! [...]

end subroutine apply_nudging

4.2. Class structure 19

With respect to the previous one, it requires a restoration matrix (rst_tracers)
to adjust the tracer values at the boundary. Such an information is part of the
nudging scheme and therefore is owned by the nudging decorator.

• apply_phys: used to adjust the values of the velocity fields at the boundaries.
Velocity fields are imposed to the model, usually according to the output of
the NEMO Ocean Model or of an equivalent OGCM. Anyway they are not
computed directly by OGSTM. Nevertheless with some specific boundary con-
ditions schemes these outputs still need to be modified at the boundaries. This
is the case for example of the sponge boundary, in which the velocity fields are
forcefully set to zero at the boundary of OGSTM, in order for it to be closed.
In such cases, this method is necessary both to nullify the velocity field com-
ponents and to smooth the actual values of the OGCM forcing fields. The full
signature is reported in code box 4.7.

LISTING 4.7: apply_phys method for the bc class

subroutine apply_phys(self , lat , sponge_t , sponge_vel)

use modul_param , only: jpk , jpj , jpi

implicit none

class(bc), intent(inout) :: self
double precision , &

dimension(jpj , jpi), &
intent(in) :: lat

double precision , &
dimension(jpj , jpi), &
intent(out) :: sponge_t

double precision , &
dimension(jpk , jpj , jpi), &
intent(out) :: sponge_vel

! [...]

end subroutine apply_phys

lat is a global variable containing the latitude values for the model domain.
sponge_vel is the global variable which contains the attenuated values for the
velocities and will then be used in the same way the current version does
to adjust the external velocities at the boundaries. Sometimes it is necessary
to adjust coherently also the scalar fields of the OCG model. This is why
the sponge_t matrix is also provided as an argument, with the same role of
sponge_vel but for scalar fields.

In the following sections all the derived classes are discussed in details. They are
rivers, sponge, closed and open, plus a fifth one, nudging, which implements the
decorator pattern. A final remark on destructors is also provided.

20 Chapter 4. New Object-Oriented structure

4.2.3 rivers

rivers is the first class that inherits from bc implementing all the base class meth-
ods, resulting in a fully self-consistent boundary object. As the name says, it maps
boundaries that in the boundary classification are defined as rivers. This means that
its data files are supposed to contain the values of a potentially time dependent
tracer flow at the boundaries, i.e. discharges of an amount of tracers from the rivers
to the ocean, with a given seasonal variability. In the standard configuration of the
model, a single set of files includes all the rivers that flow into the Mediterranean
Sea at once. The class structure is of course flexible enough to allow to instantiate
different objects for different subsets of rivers.

In addition to the base class member (i.e. the data object), the most important
members added in this class are the followings:3

• name: just a string with the name, chosen by the user and passed to the con-
structor.

• global_size and size: respectively, global and local (per single MPI process)
size of the boundary, i.e. number of cells to which a boundary value is as-
signed. These values are inferred directly from the boundary data files.

• n_vars and var_names: respectively, number and names of the tracers to which
a boundary condition is assigned. Usually only a subset of the tracers that
constitute the model output are set at the boundaries. The subset is set by the
user and passed to the constructor.

• values: matrix with pre-computed time interpolated values that represent the
final set of values to be assigned at the boundaries. They are not the final
values of the tracer fields at the boundaries, which indeed is set by the apply
method and depends on the boundary scheme.

Like in bc class, the constructor is overloaded through an interface, in order to
handle both periodic and non periodic data; number and type of the arguments will
decide which is to be called (code box 4.8).

LISTING 4.8: constructor overloading for the rivers class

interface rivers
module procedure rivers_default
module procedure rivers_year

end interface rivers

The constructors implementation is in code box 4.9 (only the default one is re-
ported):

LISTING 4.9: default constructor for the rivers class

type(rivers) function rivers_default(files_namelist , &
bc_name , n_vars , vars , var_names_idx)

character(len=22), intent(in) :: files_namelist
character(len=3) :: bc_name

3In the actual implementation, all the class member names use an identifier to distinguish them,
e.g., from the corresponding names that are passed to the constructors or to other methods; here, for
clarity’s sake, only the meaningful part of the name is reported.

4.2. Class structure 21

integer , intent(in) :: n_vars
character(len=23), intent(in) :: vars ! var_names
integer (4), dimension(n_vars), intent(in) :: &

var_names_idx

! parent class constructor
rivers_default%bc = bc(files_namelist)

call rivers_default%init_members(&
bc_name , n_vars , vars , var_names_idx)

end function rivers_default

The first argument (files_namelist) is passed to the base class constructor. This
call is actually the only part that needs to be modified when overloading the con-
structor for periodic and non periodic data. bc constructor is already overloaded,
so the only change that needs to be done is adding two more arguments to the call,
namely the start and the end time strings of the simulation. Everything else is com-
mon to the two constructors, and this is why they are implemented as delegating
costructors [12]. An auxiliary method, defined target constructor, (init_members) is
implemented and it is called in turn right after the call to the constructors. The target
constructor is in charge of allocating and initializing all the members that are added
to the base class. To do this, netcdf data files are read through the standard netcdf-
fortran subroutines. Furthermore, a specific subroutine is defined in order to assign
the boundary cells to the right MPI process. The logic behind similar operations and
their implementation is nearly the same of the current version, with the substantial
difference that now everything is unified and executed right when the boundaries
are instantiated, just with one line of code containing the call to the constructor.
Among the constructor arguments, the only one that has not been introduced so far
is var_names_idx, an array containing basically the same information as the variable
names one, just indexed with respect to the complete list of tracers (the information
is obviously redundant, and has been added just for convenience’s sake).

rivers class then implements all the methods that are declared but not imple-
mented in the base class interface. load, swap, actualize and apply implementa-
tions are similar to those of version 3.2.1. In particular, apply is simply adding the
boundary constant tracer flow to the final tracer fields. apply_nudging is left unim-
plemented, since so far the model does not need this feature for this type of bound-
ary. Neither apply_phys is implemented, in this case because rivers boundaries, by
definition, are closed also in the OGCM; velocities are already set to zero and there
is no point in modifying them at the boundaries.

4.2.4 sponge

The sponge class maps a boundary which is forced to be closed even if in the OGCM
is not. It needs to know how to modify the velocities at the boundary; in particu-
lar it should be able to set them to zero at the boundary and to adapt them to the
OGCM values according to a given function. Furthermore, maybe less important
from a numerical point of view but still not negligible (for example for the short
wave radiation), a correction to the scalar fields of the OGCM is also to be provided.
Therefore, besides the members that are added to the base class also by the rivers
class, i.e. name, global_size, size, n_vars, var_names and values (just to cite the

22 Chapter 4. New Object-Oriented structure

most important ones), sponge class introduces also a few members that are needed
to parameterize the smoothing function for the velocities and to adjust the selected
scalar fields. For the moment it has been adopted the same scheme of the current ver-
sion, i.e. a correction within a certain distance form the boundary (namely length),
a constant attenuation value for the scalar fields (reduction_value_t) and a Gaus-
sian smoothing function for the velocities with variance governed by the parameter
alpha.

sponge class data are supposed to be a set of values for a subset of tracers, as-
signed to a 3D region around the boundary. The reason behind this data scheme
is to provide numerical stability to the model solution. Forcing the boundary to be
closed, when in the OGCM is not, may result in unreliable solutions for the tracer
fields near the boundary. The availability of a large set of tracers data in the bound-
ary area, usually coming from the literature, allows OGSTM to bind its output to
more trustworthy values. In this case, this is obtained through a nudging term,
and this is why sponge class does not even implement the apply method. Only
apply_nudging is implemented, and the class is thought to be used along with a
nudging decorator (see 4.2.7).

Constructors are overloaded as usual to handle both periodic and non periodic
data (code box 4.10).

LISTING 4.10: constructor overloading for the sponge class

interface sponge
module procedure sponge_default
module procedure sponge_year

end interface sponge

Exactly like in the rivers class the most of the initialization work is carried out by
a target constructor. Its implementation, as long as those of load, swap and actualize,
are nearly identical to the previous ones, except for some technicalities due to the
fact than now values are set on a 3D domain. Finally, the apply_phys method is
now fully implemented and is the one in charge of providing the modified values to
adjust both the velocities and the scalar fields of the OGCM.

4.2.5 closed

closed class maps a boundary which is closed also for the OGCM and in which,
unlike in rivers, a set of tracer values is provided instead of a set of fluxes. Normally,
also in this case a nudging term is applied in order to determine reasonable values for
the tracers in the proximity of the boundary. With the current code structure, nudging
features come for free due to the nudging decorator (see 4.2.7). The implementation
of closed is exactly the same as sponge, with the only difference that apply_phys is
not implemented here, since no changes have to be applied to the OGCM outputs.

4.2.6 open

open class, instead, will implement an open boundary for OGSTM, given an open
boundary in the OGCM too. It is not fully developed yet. In fact its implementation
will differ from the previous ones mostly for what concerns the apply method and
a debate on its actual physical implementation is still underway at the time of writ-
ing. The main difference is that in this case the tracer fluxes at the boundary can be
determined as long as a 2D surface of tracers values is provided there. This is due
to the non-null velocity fields at the boundary, which allows a direct computation of

4.2. Class structure 23

the tracer flows. Having nudging as an optional feature is particularly useful in this
case, since it can help in assuring numerical stability while the boundary condition
parameters are still being fine-tuned.

4.2.7 nudging

nudging class is both inheriting from bc class and owning a pointer to a bc object
(fig. 4.5).

FIGURE 4.5: Decorator pattern for the nudging class.

This pattern is known as decorator and is a general pattern in Object-Oriented
programming. Since it is inheriting from bc, it is a bc. Furthermore, associating its
pointer to an already instantiated bc object of any kind (both of base class or any
of the derived classes) it also has a bc, i.e. it can refer inside its methods directly
to that object, decorating it with additional features. In this case this is particularly
useful because, as stated in section 2.2, nudging features should be optional for every
type of boundary. Using standard inheritance, this would have resulted in having
twice the boundary classes seen so far. For example, it would have been necessary
to implement both a river class and a river_with_nudging class, the same for the
sponge class and so on. Using a decorator, instead, allows to instantiate an object
of the desired type and, only if needed, to instantiate also a nudging object with its
pointer associated to the first one. This is achieved by simply passing the first object
to the nudging constructor and associating the member pointer accordingly, as can
be seen from the implementation in code box 4.11.

LISTING 4.11: implementation of the decorator pattern for the nudg-
ing class

type , extends(bc) :: nudging

class(bc), pointer :: m_bc_no_nudging => null()
! [...]

contains

24 Chapter 4. New Object-Oriented structure

! [...]

end type nudging

! [...]

type(nudging) function nudging_default(bc_no_nudging , ...)

class(bc), target , intent(in) :: bc_no_nudging
! [...]

! parent class constructor
nudging_default%bc = bc()

call nudging_default%init_members(bc_no_nudging , ...)

end function nudging_default

! [...]

subroutine init_members(self , bc_no_nudging , ...)

class(nudging), intent(inout) :: self
class(bc), target , intent(in) :: bc_no_nudging
! [...]

! pointer to bc_no_nudging association
self%m_bc_no_nudging => bc_no_nudging

end subroutine init_members

The class keyword, used for the member pointer, enables object polymorphism,
allowing the pointer to a bc object to be associated to any object that inherits from
the bc class. Note also that the base class constructor that is called in the nudging
decorator is the empty one. In this way no dataset is associated to the nudging
decorator, since a dataset is already associated to the decorated object through its
own constructor.

The main members that are added to the base class, besides the pointer to the bc
object, are the followings:

• data_file: a netcdf4 file with restoration coefficients and other nudging related
parameters, passed to the constructor.

• n_nudging_vars and nudging_vars: respectively, number and names of the
tracers to which the nudging scheme is to be applied. Usually they coincide
with the subset of tracers to which the boundary condition is applied, but this
is not strictly necessary. The list of values is set by the user and passed to the
constructor.

• rst_tracers: final matrix with the restoration values, which is used to apply
the nudging to the tracer fields at the boundary.

4.2. Class structure 25

All the methods are just wrappers of the decorated object methods, with the
exception of the apply method (which calls the apply_nudging method of the deco-
rated object, passing its rst_tracers matrix as an argument) and the apply_nudging
one, which is just not implemented since there will be no need to apply an additional
nudging to a nudging object.

4.2.8 Destructors

A destructor is needed to explicitly deallocate what has been allocated in the heap by
the constructor, to deassociate pointers and in general to do what needs to be done
when the object is destroyed in order to avoid memory leaks. Fortran provides a
keyword, final, which should let the destructor be called automatically any time the
object itself is deallocated. Unfortunately, Fortran 2003 does not provide full support
for this feature [9] and in this version of the model destructors are just declared and
implemented as ordinary methods. They need therefore to be called explicitly any
time an object is going to be deallocated, so both when this is done explicitly for
heap allocation and when the object is going out of scope.

27

Chapter 5

Improvements in the new version
and benchmarks

In the previous chapter, the implementation of the new Object-Oriented structure
has been introduced and discussed. Once the new classes have been implemented,
the current version of the code has to be modified any time an action on the bound-
ary condition is required. The idea indeed is to substitute the calls to the previous
subroutines for the boundary conditions with calls the new methods. In the follow-
ing section these changes will be introduced in detail. Furthermore, in section 5.2
some profiling data and benchmarks are discussed in order to give also a quantita-
tive description of the benefits of the new implementation.

5.1 Changes in the main code

Once a complete Object-Oriented structure is provided, only a few lines have to be
added to the main modules in order to perform all the boundary-related operations,
from instantiating the objects to computing the boundary values and updating the
output fields, up to deallocating the memory.

All the boundary-related code in the current version modules and subroutines
has been removed in the new version, and replaced with calls to the new methods
which can be essentially grouped into four parts:

• declaration and instantiation;

• boundary values update;

• boundary condition application;

• deallocation.

5.1.1 Declaration and instantiation

For every requested boundary condition, the corresponding object is first declared
and then instantiated. Here is an example of the objects needed for the CMEMS
configuration on the Mediterranean Sea. In this case three boundary objects are
required: all_rivers, which takes care of all the rivers at once, gibraltar_sponge,
which is supposed to be a sponge boundary at Gibraltar and gibraltar, which is
the whole boundary at Gibraltar, decorated with a nudging. In the example in code
box 5.1, for every boundary, the default constructor is called, i.e. the non periodic
one.

28 Chapter 5. Improvements in the new version and benchmarks

LISTING 5.1: calls to the boundary condition constructors in the new
version

type(rivers), pointer :: all_rivers => null()
type(sponge), pointer :: gibraltar_sponge => null()
type(nudging), pointer :: gibraltar => null()

allocate(all_rivers)
allocate(gibraltar_sponge)
allocate(gibraltar)

all_rivers = rivers(&
"files_namelist_riv.dat", &
"riv", &
6, &
"N1p␣N3n␣N5s␣O3c␣O3h␣O2o", &
(/2, 3, 6, 49, 50, 1/) &
)

gibraltar_sponge = sponge(&
"files_namelist_gib.dat", &
"gib", &
7, &
"O2o␣N1p␣N3n␣N5s␣O3c␣O3h␣N6r", &
(/1, 2, 3, 6, 49, 50, 7/), &
1.0d0, &
1.0d-6, &
-7.5d0 &
)

gibraltar = nudging(&
gibraltar_sponge , &
"bounmask.nc", &
7, &
"O2o␣N1p␣N3n␣N5s␣O3c␣O3h␣N6r", &
(/1, 2, 3, 6, 49, 50, 7/), &
(/1.0d0, 1.0d0, 1.0d0, 1.0d0, 2.0d0, 2.0d0, 2.0d0/), &
51&
)

These lines of code replace actually the list of matrices and auxiliary variables
that in the current version are declared and allocated for each boundary, along with
the hard-coded lists of tracers, and all the auxiliary methods that in the current ver-
sion are called explicitly and repeated for each boundary. Among them are for ex-
ample the subroutines to handle netcdf files, those to compute the local size of the
MPI processes etc.

5.1.2 Boundary values update

A combination of load, swap and actualize methods is required at every time step
in order to interpolate the boundary data of the right time interval. In the current
version a subroutine to update the boundary data at every time step is provided
for each boundary. Its name changes depending on the boundary type, but inside
it the three methods are called using the same logic. The new version is providing

5.1. Changes in the main code 29

a much shorter syntax, due both to the fact that load, swap and actualize are now
declared in the parent class and overridden by every derived class, and to object
polymorphism. A unique procedure, called update_bc, is provided to update the data
of any boundary type. The procedure is contained inside a module, which defines
also a pointer to a generic bc class object. The boundary which needs to be updated
is supposed to be already instantiated. It is passed as an argument to update_bc and
here declared as a target belonging itself to the bc class. After associating the mod-
ule pointer to the desired object, any of the base class methods can be called on the
pointer (and so on the object), regardless of the specific type. The same procedure
can thus be used for every boundary object inheriting from the base class, improving
a lot both the compactness and the maintainability of the code. The structure of the
update_bc subroutine is reported in code box 5.2. Note also how, besides the three
aforementioned methods, also methods referring to the data files (get_prev_idx,
get_next_idx, get_interpolation_factor, ...) are overridden and used here. They
are implemented once in the base class and are owned by definition by every inher-
iting class.

LISTING 5.2: implementation of the update subroutine in the new
version

module bc_update_mod

! [...]

class(bc), pointer :: m_bc => null()

contains

subroutine update_bc(bc_iter , ...)

class(bc), target , intent(inout) :: bc_iter
! [...]

m_bc => bc_iter

! [...]

weight = m_bc%get_interpolation_factor (...)

! [...]

call m_bc%load(m_bc%get_prev_idx ())
call m_bc%swap()
call m_bc%load(m_bc%get_next_idx ())

! [...]

call m_bc%actualize(weight)

end subroutine update_bc

end module bc_update_mod

30 Chapter 5. Improvements in the new version and benchmarks

The logic used in the implementation of the bc_update module relies on the same
concept of the factory design pattern [13]. The factory pattern is used to instantiate
an object of any class that inherits from the same base class. A pointer to the base
class is associated to a new object of the desired type, through a call to the specific
constructor, and then returned. In a factory class this approach is used specifically
to create new objects, but it can be of course generalized to other class methods, and
this is exactly what has been done with the update method. In principle, any call to
the boundary methods could be handled in this way, even though it may not always
be the best choice. For example, this approach is useful when updating the bound-
ary values, since using overridden methods simplifies a lot the implementation, as
seen above. On the contrary, it can result more convoluted if used with constructors.
In this case the factory method has to know how to construct each type of boundary,
i.e. it has to call the right constructor. Now, different constructors require poten-
tially a different list of arguments, both in number and in types. Deciding which
arguments must be passed to the factory method may not be straightforward and
anyway not easier than calling the constructors separately, which indeed is what
has been established in the new version.

Once defined the new subroutine, the calls to the previous ones are replaced by
the lines reported in code box 5.3.

LISTING 5.3: calls to the update subroutine in the new version

call update_bc(all_rivers , ...)
call update_bc(gibraltar , ...)

5.1.3 Boundary condition application

The section in which the boundary conditions for the tracers are actually applied
on the final tracers matrix is straightforwardly modified. The involved subroutine is
trcdmp. Here for each boundary two explicit nested loops are in charge of setting the
final values in the tracers matrix. All that is needed is to replace each of them with
a call to the apply method. In code box 5.4 there is an example for the configuration
with two boundaries (rivers and Gibraltar).

LISTING 5.4: boundary conditions application in the new version

call all_rivers%apply (...)
call gibraltar%apply (...)

In case of a sponge boundary, also the fields of the OGCM need to be modified.
Differently from the apply method, this operation has to be performed just once,
during the initialization phase. After that a global matrix with the sponge correction
terms is set and it is used at every time step to adjust the current data coming from
the OGCM. Again, for each sponge boundary, the three nested loops which are set-
ting the final matrix have to be replaced by just one single call to the apply_phys
method (code box 5.5).

LISTING 5.5: call to the apply_phys method in the new version

call gibraltar%apply_phys (...)

5.2. Profiling and benchmarks 31

5.1.4 Deallocation

Object destructors need to be called inside the ogstm_finalize subroutine in order
to deallocate everything that has been allocated in the heap. A destructor is called for
each instantiated object, as shown in code box 5.6.

LISTING 5.6: memory deallocation in the new version

call all_rivers%rivers_destructor ()
call gibraltar_sponge%sponge_destructor ()
call gibraltar%nudging_destructor ()

Note that the order in which the destructors are called is the inverse of the instan-
tiation order. This is to avoid bad pointers association and corrupted objects. For
example, given a sponge decorated with a nudging, the sponge constructor is called
before the nudging constructor. Attempting to destruct the sponge first would leave
the nudging decorator in a corrupted state since its inner pointer would be pointing
to a non-existing object and its methods, which are relying on it, would probably
show undesired behaviors.

5.2 Profiling and benchmarks

The motivation behind this work is to build a flexible and versatile interface to as-
sign and handle the boundary conditions. As a consequence, a quantitative analysis
of the results shall not rely (at least not for the most part) on traditional metrics
such as for example execution time or scalability. In an ensemble simulations sce-
nario, in which boundary condition of the same type and with the same geometry
are slightly varied, or new boundary conditions are added to the model, it is fun-
damental to minimize the impact of such perturbations on the model configuration.
The current time to solution is dramatically increased due to the time spent in up-
dating or adding new subroutines to the model, allocating new matrices etc. Such
operations require both time resources and developers with a solid knowledge of
the code. The final goal of the new version, instead, is to let users themselves change
the boundary configuration, enabling the model to be run potentially in any domain
and by a wider community.

5.2.1 Overall time to solution

Table 5.1 gives an as much quantitative as possible overview of the progress in this
sense. It describes, for every possible change of the boundary configuration, the ef-
fort which is required to set up the model. Note that the focus of this analysis is the
effort spent in refactoring the code, and not, for example, in preparing new input
files for the boundaries or change the values of the data files. This activity is out
of the scope of this work, but anyway it is worth to notice that new datasets are not
necessarily written by the user, since for example they can be themselves the outputs
of a coupled global model. The first two columns report the effort respectively for
the current and the new version. A third column, namely New ++ is also provided
with the effort for a slightly different implementation of the new version, in which
the constructors parameters are read from a namelist file and the methods are called
inside a loop over all the boundaries. These additional features are not enabled
yet, just because the current configurations of the model require only a few bound-
aries and the code is more readable without additional changes. Applying them is

32 Chapter 5. Improvements in the new version and benchmarks

straightforward and has the advantage of moving all the configurations to external
namelist files, allowing to run different simulations without even recompiling the
code.

TABLE 5.1: Comparison of the effort required to modify the bound-
ary conditions for three versions of the code: current one, new one
and new with additional namelist files and for loops over the bound-
aries. The generic term lines refers both to modified, added or re-
moved lines. Note that the new version provides the option to apply

or not the nudging.

Current New New ++

Modify a BC ≤ 30 lines ≤ 2 lines namelist
Add a new BC ' 300 to 400 lines 6 to 10 lines namelist
Add / remove nudging not allowed ≤ 7 lines namelist

5.2.2 Profiling

Tables 5.2 and 5.3 show the result of a simple profiling of the code with respect to
the execution times of its different modules. As stated before, the aim of the work
is not actually to improve the run-time of the model. Even in the current version,
indeed, all the procedures related to the boundary conditions are taking a few or-
ders of magnitude less time than the most computational intensive ones (such as the
subroutines for the advection and the diffusion). Any possible improvement in their
performances would therefore result imperceptible if compared with the overall run-
time. Nevertheless, it is important to check whether with the new implementation
the timings of the single procedures are still comparable or, for example, the new
structure introduces new bottlenecks in the system.

A few tests have been run using a dataset with the resolution of 0.25◦ both in lati-
tude and in longitude and one computational node of the KNL partition of CINECA,
with 59 MPI processes. The number of processes is the result of an algorithm for the
domain decomposition. Its aim is both to get as close as possible to the desired
number of processes (which in this case has been set to 68, i.e. the available cores
on a KNL partition) and to minimize the land / water ratio in the computational
domains. The length of the simulation has been set to 2 days, i.e. 96 time steps. Two
simulations have been run, first using the current version and then the new one.
The methods and subroutines of interest are those which update the two boundary
conditions at the rivers and at the Gibraltar strait (they are called in both cases with
the original names bcTIN and bcGIB, but in the new code they refer to the newly
implemented update_bc). For a time comparison also the trcstp and stp subrou-
tines have been reported. The first one is in charge of solving both advection and
diffusion, while the second one computes a full time step. All the aforementioned
subroutines are called inside the stp one, and therefore its run-time will be greater
or equal than the sum of the previous ones. The results are reported separately in
table 5.2 and 5.3.

The resulting times are an average for the same subroutines over all the MPI
processes. The possible choices here were at least three. One could have run a serial
version of the code, but this would have lead to a very unrealistic domain, with
only one rectangle covering the whole Mediterranean and a lot of land regions in it.
The second choice would have been to consider the maximum time over all the MPI

5.2. Profiling and benchmarks 33

process instead of the average. Opting for the average, however, has the advantage
of focusing on how good a subroutine is performing overall, averaging the effects of
a potential unbalance in the MPI processes, which is out of the scope of this work.

TABLE 5.2: subroutines elapsed times for current version: boundaries
and main integration step

Subroutine Overall time (s) Single call time (s)

bcTIN 2.78 e-01 2.90 e-03
bcGIB 2.39 e+00 2.49 e-02

bcATM 4.12 e-02 4.30 e-04
bcCO2 1.29 e-02 1.34 e-04

trcstp 2.53 e+02 2.63 e+00
stp 3.14 e+02 3.27 e+00

TABLE 5.3: subroutines elapsed times for new version: boundaries
and main integration step

Subroutine Overall time (s) Single call time (s)

bcTIN 2.36 e-01 2.45 e-03
bcGIB 3.61 e-01 3.76 e-03

bcATM 2.82 e-02 2.94 e-04
bcCO2 1.58 e-02 1.64 e-04

trcstp 2.54 e+02 2.64 e+00
stp 3.08 e+02 3.21 e+00

It can be seen from the profiling data how nothing changed in terms of ratio be-
tween run-times of the boundary conditions subroutines and the core ones. Actually,
in the new version, the Gibraltar (i.e. a sponge decorated with a nudging) update sub-
routine execution time is even an order of magnitude less than in the current version.
Most likely, this is the result of some optimization which has been applied when
rewriting the methods. For example the time interpolation procedure has been con-
siderably simplified due to the simpler structure for the data files; furthermore, also
the workflow of the updating subroutine is more linear, with an optimized number
of branches. This is an example of how a different design pattern, besides providing
more flexibility, can also enhance the code performances.

35

Chapter 6

Conclusions and future work

The main results of this work can be summarized as follows:

• boundary conditions modules have been fully rewritten in an Object-Oriented
style. In this way the structure is completely flexible with respect both to the
configuration of any boundary and to the addition of new boundaries of any
type that falls into the classification of chapter 3;

• the new design does not add any bottlenecks to the current version and, in-
stead, the execution time for updating the boundaries at each time step is de-
creased by one order of magnitude;

• High Performance Computing is applied by dramatically reducing the time to
solution. No more hard coding on the main code is required, and only very
few lines of code (ore even none with a few further configurations) need to be
modified for configuring the boundaries in the desired way, providing better
maintenance and portability to the code;

• a more flexible management of data files has been achieved. Data periodicity
is now fully enclosed in a dedicated class and any time distribution of the data
files across the simulation time is supported.

This new structure opens the way to a lot of possible applications, any of which
will probably require a comparable effort with respect to this thesis work. The key
feature that is now enabled is the possibility to run ensemble simulations, and this
is a base ground for many further studies, such as:

• implementing a flexible sensitivity/calibration framework to get more accu-
rate model output;

• coupling the Mediterranean forecast system with global or adjacent CMEMS
forecast systems;

• running an uncertainty quantification analysis;

• calibrating the model with a Reduced Basis approach.

37

Appendix A

Unit testing framework

The unit testing framework used in this project is pFUnit 3.2.9 [14]. pFUnit enables
JUnit-like testing of Fortran software and was originally created by developers from
NASA and NGC TASC. It has been chosen as the default tool for the unit tests of the
new version of the code essentially for two reasons:

• it is written in modern Fortran and not only it is compliant with modern For-
tran programming techniques (including Object Oriented programming), but
it makes also use of them itself;

• it supports both serial and MPI parallel unit testing.

The working principle is simple and it is better described through an example of
a serial unit test taken from the project. Writing a new test requires to write a new
class that extends one of the pre-built pFUnit classes. For example, with reference
to code box A.1, the new test class here defined inherits from the TestCase class.
TestCase is useful when multiple tests can share the same testing environment, like
in this case, when, after instantiating an object of the bc class, multiple tests are
performed on it.

LISTING A.1: test case for the bc class

module test_bc_default_mod

use bc_mod
use pfunit_mod

implicit none

public :: test_bc_default

@TestCase
type , extends(TestCase) :: test_bc_default

type(bc), pointer :: m_bc => null()
contains

procedure :: setUp ! overrrides generic
procedure :: tearDown ! overrides generic

end type test_bc_default

contains

subroutine setUp(this)
class(test_bc_default), intent(inout) :: this

38 Appendix A. Unit testing framework

allocate(this%m_bc)
this%m_bc = bc("files_namelist_gib.dat")

end subroutine setUp

subroutine tearDown(this)

class(test_bc_default), intent(inout) :: this

! explicitly call destructor before deallocating
call this%m_bc%bc_destructor ()

deallocate(this%m_bc)
write(*, *) ’INFO:␣m_bc_deallocated ’
nullify(this%m_bc)
write(*, *) ’INFO:␣m_bc_deassociated ’

end subroutine tearDown

@Test
subroutine test_file_names(this)

class(test_bc_default), intent(inout) :: this
@assertEqual("GIB_20170215 -12:00:00. nc", &

this%m_bc%get_file_by_index (1))
@assertEqual("GIB_20170515 -12:00:00. nc", &

this%m_bc%get_file_by_index (2))
@assertEqual("GIB_20170815 -12:00:00. nc", &

this%m_bc%get_file_by_index (3))
@assertEqual("GIB_20171115 -12:00:00. nc", &

this%m_bc%get_file_by_index (4))
end subroutine test_file_names

@Test
subroutine test_new_data(this)

class(test_bc_default), intent(inout) :: this
double precision :: interpolation_factor
logical :: new_data
interpolation_factor = &

this%m_bc%get_interpolation_factor(&
"20170814 -00:00:00", new_data)

@assertTrue(new_data , "should␣be␣new␣data")
interpolation_factor = &

this%m_bc%get_interpolation_factor(&
"20170815 -00:00:00", new_data)

@assertFalse(new_data , "should␣be␣same␣data")

! [...]

end subroutine test_new_data

end module test_bc_default_mod

Appendix A. Unit testing framework 39

With reference to the code, the new object defined here is test_bc_default,
which extends TestCase and adds as a member a pointer to a bc class object. Two
type-bound procedures, setUp and tearDown, which actually plays the role respec-
tively of the constructor and the destructor, need to be overridden. In particular,
here the role of the constructor is to instantiate the bc object. All the needed tests
are then annotated with the @Test keyword and defined as type-bound procedures,
which can in turn refer to the bc object and call any of its methods. Many assert
directives are provided, as for example assertEqual, assertTrue and assertFalse.

Before being compiled, the code needs to be given as an input to a Python script,
included in the distribution, which basically parses the annotations and provides
the final source code. A configuration file, testSuites.inc, is used to tell the pFU-
nit makefile which test modules to include in the final executable. pFUnit output
provides then a detailed stacktrace for every encountered failure.

41

Bibliography

[1] G. Cossarini, S. Salon, G. Bolzon, A. Teruzzi, P. Lazzari, E. Clementi, Mediter-
ranean Sea biogeochemistry reanalysis - Quality information document, Copernicus
Marine Environment Monitoring Service, 2017.

[2] BFM model website, http://bfm-community.eu/

[3] G. Cossarini, S. Querin, C. Solidoro, G. Sannino, P. Lazzari, V. Di Biagio, G. Bol-
zon, Development of BFMCOUPLER (v1.0), the coupling scheme that links the MIT-
gcm and BFM models for ocean biogeochemistry simulations, Geosci. Model Dev., 10,
2017, 1423–1445.

[4] NEMO model website, https://www.nemo-ocean.eu/

[5] I. E. Huertas, A. F. Ríos, J. García-Lafuente, A. Makaoui, S. Rodríguez-Gálvez,
A. Sánchez-Román, A. Orbi, J. Ruíz, F. F. Pérez, Anthropogenic and natural CO2
exchange through the Strait of Gibraltar, Biogeosciences, 6, 2009, 647-662.

[6] M. de la Paz, E. M. Huertas, X. A. Padín, M. Gónzalez-Dávila, M. Santana-
Casiano, J. M. Forja, A. Orbi, F. F. Pérez, A. F. Ríos, Reconstruction of the seasonal
cycle of air-sea CO2 fluxes in the Strait of Gibraltar, In Marine Chemistry, 126, Is-
sues 1-4, 2011, 155-162.

[7] M. Álvarez, H. Sanleón-Bartolomé, T. Tanhua, L. Mintrop, A. Luchetta, C. Can-
toni, K. Schroeder, G. Civitarese, The CO2 system in the Mediterranean Sea: a basin
wide perspective, Ocean Science, 10(1), 2014, 69-92.

[8] C++ documentation website, https://en.cppreference.com/w/cpp/language/raii

[9] K. Holcomb, Scientific programming in Fortran 2003 - A tutorial including Object-
Oriented Programming, University of Virginia, 2012.

[10] C++ documentation website, https://en.cppreference.com/w/cpp/language/pimpl

[11] Intel Developer Zone, forum topic, https://software.intel.com/en-us/forums/intel-
visual-fortran-compiler-for-windows/topic/559996

[12] C++ documentation website,
https://en.cppreference.com/w/cpp/language/initializer_list

[13] Fortran Wiki, http://fortranwiki.org/fortran/show/Factory+Pattern

[14] pFUnit project website, http://pfunit.sourceforge.net/

	Acknowledgements
	Introduction
	Model overview
	Model description
	MED-CURRENT framework
	CMEMS products
	HPC configuration and setup

	Boundary conditions overview and classification

	Current version: OGSTM 3.2.1
	Overview of the involved procedures
	Profiling
	Issues

	New Object-Oriented structure
	Why an Object-Oriented philosophy?
	Class structure
	bc_data
	bc
	rivers
	sponge
	closed
	open
	nudging
	Destructors

	Improvements in the new version and benchmarks
	Changes in the main code
	Declaration and instantiation
	Boundary values update
	Boundary condition application
	Deallocation

	Profiling and benchmarks
	Overall time to solution
	Profiling

	Conclusions and future work
	Unit testing framework

