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ABSTRACT 

During the last decade RNA-based therapy had a burst of interest due to all 

undeniable advantages such as high selectivity, low off-target toxicity, and the 

potential scalability to a large repertory of untreatable human diseases. Most RNA 

therapeutic molecules are inhibitory RNAs and have been developed to down-regulate 

expression of pathogenic genes. Nevertheless, a large group of diseases would strongly 

benefit from the discovery of RNAs able to increase gene expression and restore 

physiological transcription and/or translation of a specific target when low expression 

is pathogenic. 

Recently, gene-specific transcriptional activating RNAs (RNAa) (1) and non-

degradative antisense oligonucleotide (ASOs) (2) have been largely employed to 

increase the expression of selected genes. On the other hand, despite its great potential, 

long non-coding translational activation as therapeutic tool is still at its infancy. 

We have previously described SINEUPs, natural and synthetic antisense long 

non-coding RNAs, which promote translation of partially overlapping mRNAs 

through the activity of an embedded SINEB2 domain. In this study, we focused the 

attention on the SINEUP-mediated up-regulation as a possible treatment to rescue 

haploinsufficient gene-dosage. 

In this context, we developed SINEUPs for Friedreich’s ataxia (FRDA), a life-

threatening disease with neuro- and cardio-degenerative progression (3) representing 

the most frequent type of inherited ataxia, and affecting more than 15,000 patients in 

Western countries (4). This monogenic disease is caused by the hyperexpansion of 

naturally occurring GAA repeats in the first intron of the frataxin (FXN) gene, 

encoding for frataxin, a protein implicated in the biogenesis of iron-sulphur clusters. 

As the genetic defect interferes with FXN transcription, FRDA patients express a 

normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies 

are mostly aimed to restore physiological FXN expression. 

The first goal of our study was to synthesize and validate in different cell systems, 

the strongest and shortest functional FXN-specific SINEUP to increase endogenous 

frataxin protein levels with a post-transcriptional mechanism. 
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Secondly, we aimed to validate SINEUPs as RNA tools of protein synthesis in 

FRDA-derived cell lines and, finally, to investigate its capability to functional rescue 

FRDA cells defects in cellular aconitase activity, one of the hallmarks of the disease. 

In summary, we identify by in vitro screening FXN-specific SINEUPs promoting 

the recovery of disease-associated defects in patient-derived cells. Thus, we provide 

evidences that SINEUPs may be the first gene-specific therapeutic approach to activate 

FXN translation in FRDA and, more broadly, a novel scalable platform to develop new 

gene therapies for haploinsufficient diseases. 
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ACRONYMS 

AAV, adeno-associated virus; 
ACO, Aconitase enzyme; 

ACT, Actin beta; 
AGO2, argonaute 2; 

AS Uchl1, lncRNA antisense to UchL1 mRNA; 
AS, antisense; 

ASOs, antisense oligonucleotides; 
ATP, adenosine triphosphate; 

BD, binding domain; 
bp, base pair; 

cDNA, complementary DNA; 
CDS, coding sequence; 
ciRNA, circular RNA 

cox7B, cytochrome c oxidase subunit 7B; 
CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; 

CTCF, CCCTC-binding factor; 
DGCR8, DiGeorge syndrome critical region gene 8; 

DICER, endoribonuclease Dicer or helicase with RNase motif; 
ds, double-stranded 

ED, effector domain; 
ENCODE, Encyclopedia of DNA Elements; 

EPO, erythropoietin; 
eRNA, enhancer RNA; 

FANTOM, Functional Annotation of the Mammalian Genome; 
FAST-1, frataxin antisense transcript 1; 

FBS, fetal bovine serum; 
FRDA, Friedreich Ataxia; 

FXN, frataxin gene; 
GAPDH, Glyceraldehyde-3-phosphate dehydrogenase 

GFP, green fluorescent protein; 
GUSB, glucuronidase beta 

HDAC, Histon deacetylase; 
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HEK, human embryonic kidney; 

HRP, horseradish peroxidase; 
IC50, inhibitor concentration that decreases the biotransformation of a substrate at a 
single, specified concentration by 50%; 
iFXN, intermediate frataxin protein; 

invSINEB2, inverted SINE of B2 subfamily; 
invSINEB2, inverted SINEB2; 

ISC, Iron-Sulphur Cluster; 
lincRNA, long intergenic non-coding RNA; 

LINE, long interspersed elements; 
lncRNA, long non-coding RNA; 

LOFA, late-onset FRDA; 
mFXN, mature frataxin protein; 

MIRb, mammalian interspersed repetitive (MIR) element b; 
miRNA, micro RNA; 

MOE, methoxyethyl; 
MOI, multiplicity of infection; 

MPP, mitochondrial processing peptidase; 
MRC, mitochondrial respiratory chain; 

mRNA, messenger RNA; 
ncRNA, non-coding RNA; 
NMHV, nuclear localization signal – MS2 coat protein interacting domain – HA 
epitope – (3x) VP16 transactivating domain; 

nt, nucleotide; 
ORF, open reading frame; 

PD, Parkinson's disease; 
piRNA, piwi-interacting RNA; 

PRC2, polycomb repressor complex 2; 
pri-miRNA, primary miRNA; 

qRT-PCR, quantitative real time PCR; 
RIKEN CLST, Center for life science technologies; 

RIKEN PMI, Preventive Medicine & Diagnosis Innovation Program; 
RISC, RNA-induced silencing complex; 

RNA Pol, RNA polimerase; 
RNAa, activating RNA; 
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RNAi, RNA interference; 

RNase H, Ribonuclease H; 
rRNA, ribosomal RNA; 

RT, retrotranscriptase; 
S, sense; 

saRNA, small activating RNA; 
SH-SY5Y, human neuroblastoma bone marrow; 

shRNA, short harping RNA; 
SINE, short interspersed element; 

SINEB2, short interspersed element of B2 subfamily; 
SINEUP, AS lncRNA with embedded inverted SINE B2 element that UP-regulate 
target mRNA translation; 
siRNA, short-interfering RNA; 

snoRNA, small nucleolar RNA; 
SOD1, superoxide dismutase 1; 

SSOs, spice-switching oligonucleotides; 
TRBP, TAR RNA-binding protein; 

tRNA, transfer RNA; 
TSS, Transcriptional Start Site; 

UchL1, Ubiquitin carboxyl-terminal hydrolase L1; 
UTR, untranslated region; 

VEGF, vascular endothelial growth factor; 
VLOFA, very late-onset FRDA; 

WB, Western Blot. 
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INTRODUCTION 

RNA THERAPEUTICS: THE PRESENT STATE 

The discovery of catalytic RNAs and RNA interference (RNAi) in the 1980s and 

the 1990s are milestones in the understanding of RNA function. No longer an 

intermediate between DNA and protein, but a dynamic and adaptable molecule able to 

regulate gene function (5) (6) (7). It’s the breakthrough that will revolutionise 

molecular medicine, enlarging the range of “drug-able” targets and the ability to 

manipulate potentially every target transcript. 

In this context, these new therapeutic drugs should be broadly classified as 

inhibitory RNAs or activatory RNAs. The former, promote gene expression down-

regulation and include small antisense oligonucleotides (ASOs) (8,9), small interfering 

RNAs (siRNAs), and short hairpin RNAs (shRNAs,) (10) (11) . The latter, equally 

challenging, include RNAs able to activate gene-specific transcription (activatory 

RNA, RNAa) as well as enhance target translation (SINEUP, described in the next 

chapter) (12). 

RNA molecules are unstable, potentially immunogenic and requires a vehicle to 

be driven to targeted cells. Nevertheless, dozens of RNA-based therapeutics are 

currently under clinical investigation, more than 50 RNA or RNA-derived therapeutics 

have reached clinical testing with promising results.  
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Inhibitory RNAs 

AntiSense Oligonucleotides (ASOs) 

Short, single-stranded antisense oligonucleotides (ASOs) are sequence-specific 

RNAs, tipically 8-50 nucleotides long, that bind target RNA molecules by Watson-

Crick base pairing (13) and inhibit gene expression by altering mRNA splicing, 

arresting mRNA translation by blocking its recognition by the ribosomes, and inducing 

target degradation by RNase H (14) (15). 

 

Figure 1 - Antisense mechanisms. ASOs can interact with RNA transcripts including both pre-mRNA and 
mature mRNA in the nucleus and in the cytoplasm respectively. Exonic, intronic, and untranslated region (UTR) 
sites may be targeted. The chemistry and design of ASOs impact on post-binding events that can be initiated 
including modulation of mRNA maturation, RNase H-mediated degradation, and steric translation inhibition 
(16). 

Like others RNA-derived drugs, ASOs usually include chemical modifications 

to enhance its properties. Primary nucleotide sequence may be modified such as 

phosphorothioate (PS or PS ASOs) backbone modification; 2’-O-methyl (2’-O-Me), 
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2’-fluoro (2’-F) and 2’-O-methoxyethyl (2’-MOE) sugar substitution, and 2’-O-4’-C-

methylene linked bicyclic ribonucleotides (locked nucleic acid, LNA) (17) (14) (18) 

(19). 

 
Figure 2. Common ASO modification. a) Phosphate backbone modifications: native, anionic charged 
phosphodiester; charged phosphorothioate; neutral phosphotriester; neutral morpholino backbone (PMO) and 
peptide nucleic acid (PNA) backbones align nucleobases with native mRNA nucleobase spacing. b) Common 
2′ modifications of the sugar: native 2′-hydroxyl (OH), 2′-fluoro (F), 2′-hydroxymethyl (20), 2′-methoxyethyl 
(MOE) and 2′,4′-bicyclics that contain O-methylene bridge or locked nucleic acid (LNA) (21). 

Modifications at the 2’-position both enhance mRNA target binding on one hand 

and interfere negatively with RNaseH thus preventing target RNA cleavage. 

“Gapmers” design have been adopted to leave the central region (gap) unmodified in 

between the flanking 2’-modified regions. This configuration allows RNaseH 

recruitment, while binding affinity and nuclease resistance are further increased 

(Figure 3). 
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Figure 3. Antisense oligonucleotide (ASO) ‘gapmer’ design. The phosphorothioate backbone provide 
nuclease resistance, while the 2’-sugar modification exclusively on first and last nucleotides increases target 
RNA binding affinity on the outer portions of the ASO. Unmodified nucleotides allows RNaseH cleavage at the 
central region of the ASO (22) 

To date, this class is the most widely used for therapeutical applications. In this 

contest, MOE ASOs gapmers targeting mutant SOD1 are the first example of ASOs 

tested in human clinical trials to treat ASL (Amyotrophic Lateral Sclerosis) (22). 

RNA interference (RNAi) 

RNA interference is the cellular process of gene expression silencing mediated 

by small RNA acting at both post-transcriptional and transcriptional levels, throught 

transcriptional gene silencing is not currently use for clinical purposes (23). 

microRNAs (miRNA), siRNAs and Piwi-Interacting RNAs (piRNAs) comprise small 

RNAs involved in RNAi. Among them, piRNAs are still poorly characterized in 

mammals (24) (25). 

Post-transcriptional gene silencing is exploited by target mRNA degradation or 

cleavage. The first, is mediated by endogenous miRNA that, through imperfect 

complementarity, induce target degradation. On the other hand, sequence-specific 

cleavage is accomplished by both exogenous siRNAs or shRNAs having perfect or 

near-perfect base pairing with the target. After the cleavage, the target mRNA follows 

the natural degradation pathway, and therefore both endogenous and exogenous small 

RNAs-mediated processing share almost the same endogenous factor. Thus, 

siRNA/shRNA therapeutics may compete with natural miRNAs.  

Broadly, primary miRNAs (pri-miRNAs) are processed by Drosha and DGCR8 

(DiGeorge syndrome critical region gene 8) complex and then incorporated into pre-

RISC (pre RNA induced silencing complex) complex formed by Dicer and TAR RNA-
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binding protein (TRBP) (26). Likewise, Dicer/TRBP complex process both shRNAs 

and dsRNA (double-stranded RNAs) molecules into ≈21-23-nt long siRNAs. One 

strand of the siRNA, guide or passenger, may direct sequence-specific cleavage of 

target mRNA through RISC. AGO2, Argonaute 2, component of RISC has 

endonuclease activity by which target mRNA is cleaved and subsequently degraded 

by exonucleases (27). Inside RISC, the guide siRNA strand can be use to target other 

complementary mRNAs. 

All the abovementioned properties have inspired the usage of synthetic siRNA 

molecules for therapeutical knockdown of endogenous and viral mRNAs (28). 

 

 

Figure 4 - RNAi and miRNA Biogenesis. Pri-miRNAs are transcribed from either endogenous or vector-
derived genes by RNA polymerase II or polymerase III. The pri-miRNA transcript enters the microprocessor 
complex (Drosha & DGCR8) for its first cleavage event. The resulting pre-miRNA, as well as vector-derived 
shRNAs, can then be bound by the Exportin 5 RanGTP shuttle and exported though a nuclear pore into the 
cytoplasm. In the cytoplasm, pre-miRNAs and shRNAs associate with Dicer and TRBP. Following cleavage 
event results in the production of �22-nt-long miRNA/miRNA* duplex. The guide strand of the duplex is then 
preferentially loaded into Ago, whereas the passenger strand is usually degraded (29). 

RNAi in mammals commonly deliver synthetic siRNA molecules ≈19-23 base 

pairs, with overhangs at both 3’, in order to mimic Dicer cleavage product. However 

symmetrical overhangs interfere with RISC strand choice since either guide or 

passenger strands can be selected. To avoid the selection bias, the dsRNA may be 
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designed asymmetrically with one end blunt and the second overhanging, directing 

preferentially the guide strand biogenesis, and thereby increasing siRNA potency and 

decreasing off-target effect (30). 

shRNAs may constitutively be expressed from promoters and therefore induce 

long-lasting gene silencing for the duration of their transcription and biogenesis. 

However, since they are expressed through strong RNA Pol III promoters, the natural 

miRNA machinery could saturate resulting in severe toxicity (31) (32). To overcome 

saturation, multiple shRNAs may be expressed as multicistronic transcript from RNA 

Pol II or combined with non-RNAi therapies like rybozymes and RNA decoys (33) 

(34). 

Recently, significant progress has been made in terms of siRNA/miRNA 

delivery. The most commonly used are viral vectors, both lentiviral and adeno-

associated for brain delivery (35). 

Anti-miRNA oligonucleotides (AntagoMIR) 

Dysregulation of endogenous miRNA has been liked to numerous disorders (36) 

such as cancer, autoimmune disease, and neurodegeneration. Therefore, therapeutic 

strategies to regulate miRNA activity are emerging. To date, the expression of miRNA 

sponges, small RNA competitive inhibitors, and anti miRNA ASOs (antagoMIR, anti-

miRNA or blockmir) (37) (38) are the main strategies could be adopted to achieve 

down-regulation of miRNA activity. Above all, small RNA competitive inhibitors are 

not currently used as therapeutical approach due to poor specificity and high IC50 (). 

Long non-coding RNA (lncRNAs), such as lincRNAs and pseudogenes, may 

selectively bind miRNA and thus competing with their targets and reducing the 

quantity of active miRNA (39) (40). Hence synthetic sponge may be assembled as 

composed by long non-coding transcripts containing multiple copies of the binding 

site of the target miRNA. However, their usage is still restricted to in vitro application 

and some pre-clinical testing (38). Recently, a new class of nuclear-resistant lncRNAs, 

known as circular RNAs (circRNAs), has been discovered. Generated by covalent link 

of 5’ and 3’ termini (41) (42), may act as miRNAs sponge competing with both 

lncRNAs and protein-coding RNAs. 
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miRNA inhibition through antagoMIR, single-stranded ASOs, is currently the 

technique of choice. AntagoMIR targeting different miRNAs has been developed for 

Hepatitis C virus infection, liver cancer, heart failure, and heart metabolic disorders 

(2). Among them, Miravisien (SPC3649), specifically inhibiting human endogenous 

liver-specfic miRNA required for Hepatitis C virus infection (miR-122) had 

successfully completed two Phase I trials. Already indicated as well tolerated and safe, 

Miravisien has recently advanced to Phase II clinical study (43). 

Activatory RNAs 

Non-degradative ASOs 

Taking advantage of its property to bind miRNAs, ASOs has also been employed 

for up-regulating gene expression by different mechanisms such as i.e. interfering with 

miRNA-mediated mRNA degradation pathway (2). Moreover, if designed against 

antisense (AS) lncRNAs involved in chromatin remodelling, they can block Polycomb 

Repressor Complex 2 (PRC2) assembly allowing transcription to restart (44). 

Otherwise, exon-skipping ASOs or splice-switching oligonucleotides (SSOs), can 

modulate mRNA processing by targeting pre-mRNA and thus interfering with 

splicing. (9). This last strategy has been used in the clinic for a variety of diseases, like 

Duchenne Muscolar Dystrophy (45) (46) (47), Ataxia Telangectasia (48,49), 

Frontotemporal Dementia and Parkinsonism linked to chromosome 17 (50). 

RNA activation (RNAa) 

Small RNAs able to enhance transcription, RNAa, were first described in 2006 

by Li and colleagues (51). siRNA-like molecules have been found to elicit a specific 

and prolonged stimulation of Cadherin E, p21 and VEGF transcription by targeting 

their promoters. Later on, several reports have corroborated natural RNAa as a 

pervasive phenomenon (52) (53) (54) (55) (56). 

Commonly referred as small activating RNAs (saRNAs), they may be sense or 

antisense oriented (56) and usually directed against transcription start sites (57) (58) 

(59) or surrounding polyA-site sequences (60), conserved cis-active elements of the 

gene of interest (56), and the transcribed region of the gene (61). 
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Although RNAa dynamics are still poorly understood, two classes of molecular 

mechanism can be identified. saRNAs may act binding AS transcript and theredore 

preventing down-regulation of its sense cognate (62) (63) (1) or saRNAs may convey 

transactivating macromolecular complexes to gene locus (62) (59) (64). Even if 

mismatches are quietly tolerated, they should not involve saRNA 5’ end (58). 

Two key features make them extremely promising, they display a later onset 

compared to RNAi and may exert a prolonged effect over 7 days (58). They elicit 

mRNA up-regulation that is usually within physiological ranges (56) (52) (65). 

NMHV transcription factors 

Recently, a new class of artificial transactivators has been developed. These are 

RNA-programmable enzymes, named NMHV (Nuclear localization signal - MS2 coat 

protein RNA interacting domain - HA epitope - (3x) VP16 transactivating domain) 

(66). This small and non-CRISPR-based device mainly consists of a fully synthetic, 

ribonucleoproteic transcription factor that stimulates transcription and a non-coding 

RNA "bait" domain that specifically drives the whole ribonucleoprotein to the target 

gene of interest (66). The two elements are kept together by two ancillary domains. A 

polypeptidic MS2 RNA-interacting domain (67), covalently joined to the 

ribonucleoproteic transcription factor and forming the polypeptidic "apo-factor", and 

its corresponding hairpin RNA interactor (68) (69), covalently joined to the non-

coding RNA "bait" domain forming the RNA "co- factor". 

This transactivator is 7-fold smaller than the CRISPR counterpart and, moreover, 

is active only where genes are normally expressed. Hence, it avoids potentially 

detrimental ectopic gene activation. Potentially capable of ad libitum gene stimulation, 

NMHV elicit a transcriptional gain around 2-folds. Although extremely promising to 

rescue insufficiency, NMHV requires further experimental validation. 
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SINEUPS: A NEW FUNCTIONAL CLASS OF ANTISENSE LNCRNAS 

Large-scale genomic projects, such as FANTOM (70); FANTOM Consortium 

and the RIKEN PMI and CLST (DGT) and ENCODE (71) (72) marked the beginning 

of the so called “post-genomic era”, by developing of full genome sequencing 

techniques. In this context, it was discovered that the vast majority (70-80%) of the 

mammalian genome is transcribed. Protein-coding gene represent just a small fraction 

(1-2%) of the transcriptionally active regions, therefore this prevalent transcription 

produces an extensive repository of non-coding (ncRNAs), including small ncRNAs, 

long non-coding RNAs (lncRNAs) and RNAs of Transposable Elements (TEs), 

increasing complexity in gene regulatory networks. 

Among them, lncRNAs represent the widest and most heterogeneous class of 

transcripts exceeding 200 nucleotides in length. According to LNCipedia v3.1, the 

human genome counts more then 90000 lncRNAs transcripts differing in size, 

anatomical properties, subcellular localization and biological functions (73) (74). 

However, they share features which include: being transcribed by RNA polymerase II, 

to undergo splicing, to present 5′ caps and being polyadenylated (75). Moreover, their 

organization into discrete domains seems to represent an additional common 

denominator, by which lncRNAs can recruit and coordinate the activity of multiple 

effectors. Despite, their primary sequences are poorly conserved, whilst showing 

several similarities in lncRNAs modes of action, thus reinforcing the importance of 

RNA structures in determining function.  

Based on genomic location relative to their neighbouring protein-coding genes, 

lncRNAs can be classified as intergenic (long intergenic non-coding RNAs or 

lincRNAs) if they do not overlap with any other gene or, alternatively, may overlap to 

genes in exonic, intronic or fully overlapping configuration. 

lncRNAs contribute to gene expression regulation and, moreover, have been 

reported to be involved in normal organism development as well as in disease (76) 

(77) (78). While nuclear lncRNAs can regulate transcription in cis or trans (79), 

cytoplasmic ones contribute to post-transcriptional gene expression regulation by 

“sponging” miRNAs, sequestering specific proteins, modulating translation, and 

finally interacting with ribosomes (80) (81) (82) (39) (83) (84). Interestingly, examples 
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of lncRNAs shuttling across different cellular districts in response to specific stimuli 

have also been reported (82) (85). lncRNAs function are summarized in Figure 5. 

 

 

Figure 5 - Classification of lncRNA functions. (A) LncRNAs can recruit different protein components of the 
chromatin remodelling complex to change the chromatin organizational patterns. (B) They can act as ‘sponges’ 
by base pairing with their complementary miRNAs and reducing their effects. (C) LncRNAs can play 
scaffolding roles by providing docking sites for proteins that function together in the same biological pathway. 
(D) They activate transcription of certain genes by guiding transcription factors to their promoters. (E) LncRNAs 
are capable of suppressing transcription by sequestering transcription factors and keeping them away from their 
promoters. They can modulate mRNA functioning through base pairing with them and (F) inhibiting their 
translation (G) altering their splicing patterns and (H) subjecting them to degradative pathways (86). 

One of the main features of genomes is that different genes residing in opposite 

DNA strands can co-exist within the same genomic region. As a result of bidirectional 

transcription, overlapping natural sense/antisense (S/AS) pairs are generated (72) (87) 

(88). Approximately 61-72% of all transcribed regions in mouse and human present 

lncRNAs that are in antisense orientation to adjacent protein-coding genes (87) (89). 

S/AS pairs are classified according to their reciprocal genomic organization as 5' 

head-to-head divergent, 3' tail-to-tail convergent or fully overlapping configurations 

(Figure 6). 
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Figure 6 - Classification of sense/antisense (S/AS) pairs. Sense genes are in green, AS genes in blue. Arrows 
indicate 5� to 3� direction. Gray box indicates regions of overlap. Adapted from (90) 

AS lncRNAs have been demonstrated to modulate cognate protein-coding gene 

expression in different modes (91), by affecting the epigenetic state of chromatin (92), 

exerting transcriptional control, regulating splicing (93) and mRNAs stability (94). 
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AS Uchl1 

Among the mouse genomic loci of Parkinson’s disease-associated genes, Carrieri 

and colleagues identified a spliced lncRNA transcript in the murine Ubiquitin carboxy 

terminal hydrolase 1 (Uchl1)/PARK5 gene, mapping in antisense orientation to its 

protein-coding counterpart (82). 

Named Antisense Uchl1 (AS Uchl1), this 5' head-to-head divergent lncRNA, 

initiates within the second intron of Uchl1 and overlaps the first 73 nts of the sense (S) 

mRNA including the AUG codon (-40/+33 from ATG). The non-overlapping part of 

the transcript contains two embedded repetitive sequences, SINEB1 of the F1 subclass 

(Alu) and SINEB2 of the B3 subclass (82) (Figure 7). 

 

 

Figure 7 - Uchl1/AS Uchl1 genomic organization. Uchl1 exons are in black: 3’ and 5’ UTRs are in white; AS 
Uchl1 exons are in grey; repetitive elements are in red (Alu) and in blue (SINEB2); introns are indicated as 
lines. Adapted from (82). 

In mouse, AS Uchl1 is co-expressed in 40% of tissues that present Uchl1 mRNA, 

but no AS Uchl1 is found in the absence of sense transcript (82). The two transcripts 

are differently localized. While mature Uchl1 mRNA is predominantly detected in the 

cytoplasm, AS Uchl1 is in the nucleus (82). 

Overexpression of AS Uchl1 is accompanied by an increase of UCHL1 

endogenous protein. Interestingly, produces no changes in Uchl1 mRNA levels, thus 

suggesting that AS Uchl1 expression regulation occurs at post-transcriptional level 

(82). Selective deletion of AS Uchl1 sequence elements to have led to the 

identification of two functional domains responsible for AS Uchl1-mediated 

translation upregulation: the 5' overlapping region and the inverted SINEB2 element. 

AS Uchl1 physiologically accumulates in the nucleus of dopaminergic neurons. 

However, it shuttles into the cytoplasm upon cellular stress - as induced by rapamycin, 

an inhibitor of CAP-dependent translation – where promotes translation of sense 

protein-coding mRNA by enhancing its association to heavy polysomes (82).  



 13 

Natural SINEUPs 

A large group of lncRNAs shares similar features to S/AS Uchl1, in which 

FANTOM3 identified 31 natural S/AS pairs. Recently, functional validation proved 

their analogous function (90), as is the case of AS Uxt reported to enhance endogenous 

Uxt protein synthesis when overexpressed in MN9D cells with unaffected Uxt mRNA 

levels (82). AS Uchl1 can therefore be considered as the representative member of a 

new functional class of natural antisense lncRNAs capable of up-regulating translation 

of sense overlapping transcripts. The combination of two RNA elements provides its 

biological activity: the overlapping region (Binding Domain, BD) confers target 

specificity, while the embedded inverted SINEB2 element (Effector Domain, ED) is 

required for translation enhancement (Figure 8). These lncRNAs are referred to as 

SINEUPs, as they rely on a SINEB2 sequence to UP-regulate translation in a gene-

specific manner (90,95). 

 

Figure 8 - Schematic representation of SINEUPs. SINEUP modular structure. SINEUP binding domain 
(grey): SINEUP sequence that overlaps, in antisense orientation, to the sense protein-coding mRNA. SINEUP 
effector domain (blue): non-overlapping portion of SINEUPs (grey), containing the inverted SINEB2 element 
(invB2) that confers activation of protein synthesis. 5′ to 3′ orientation of sense and antisense RNA molecules 
is indicated. Structural elements of protein-coding mRNA are shown: 5′ untranslated region (5′UTR, white), 
coding sequence (CDS, black) and 3′ untranslated region (3′UTR, white). 

The modular organization of SINEUPs strongly reflects the role of embedded 

TEs in shaping lncRNAs functional features (82) (95). In particular, TEs could provide 

binding sites for specific molecular complexes regulating SINEUP activity. At the 

same time, antisense, overlapping regions may confer target specificity through 

RNA/RNA and RNA/DNA pairing. 

However, the exact mechanism underlying the activity of the inverted SINEB2 

as ED of SINEUPs remains elusive. 
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invSINEB2: structure and function 

Recently, Podbevšek and colleagues described the secondary structure of the 

invSINEB2 element of AS Uchl1 (183 nts long) taking advantage of chemical 

footprinting and NMR studies. It folds into a structure with mostly helical secondary 

structure elements and it exhibits several bulges, asymmetric internal loops and 

hairpins (Figure 9).  

 

Figure 9 - Secondary structure of the inverted SINEB2/183 effector domain of AS Uchl1. tDMS and CMCT 
reactive nucleotides are shaded in blue and red, respectively. Internal loops and stem-loops are labelle as ILx 
and SLx, respectively. Non-reactive nucleotides are only circled. The segment shaded in gray corresponds to 
the DNA primer hybridization site (96). 

Moreover, within invSINEB2, the terminal SL1 represent a crucial structural 

determinant required for AS Uchl1 activity. The deletion of nucleotides 68–77 of 

invSINEB2 (ΔSL1) from the full length AS Uchl1 (ΔSL1 mutant) completely abolish 

the ability of AS Uchl1 RNA to up-regulate UchL1 protein levels (Figure 10) 
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Figure 10 - The SL1 hairpin contributes to AS Uchl1 activity. (A) Murine neuroblastoma N2a cells were 
transfected with AS Uchl1 and ΔSL1 mutant constructs. Control cells were transfected with an empty control 
plasmid. Protein (97) and RNA (bottom) levels showed killed activity of ΔSL1 mutant RNA. (B) Graphical 
representation of AS Uchl1 and ΔSL1 translation enhancement activity on endogenous Uchl1 mRNA in N2a 
cells (N=5). *, p=0.01; NS, not significant (p>0.5) (96). 

Further studies are needed to elucidate the precise mechanism to increase protein 

translation by the embedded invSINEB2 and to determine whether the SL1 motif is 

the sole ED portion responsible for AS Uchl1 activity. 
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Synthetic SINEUPs 

Carrieri and colleagues engineered a chimeric construct, named AS GFP, by 

swapping AS Uchl1 BD to Uchl1 with a complementary sequence to EGFP mRNA in 

antisense orientation, maintaining the whole 3' tail (about 1200 nucleotides), the 

inverted SINEUB2 and the partial Alu repeat (Figure 11). This first synthetic SINEUP 

succeeded in up-regulating GFP protein translation when co-transfected with 

corresponding sense GFP-encoding DNA in HEK 293T cells, with no effects on GFP 

mRNA levels (Figure 11) (82) (95). 

 

Figure 11 - Synthetic AS lncRNA increases target protein levels. (A)Scheme of antisense GFP construct. Δ 
5’ AS Uchl1 with repetitive elements (SINEB2, red; Alu, blue) and the overlap (green) regions are indicated. 
(B) SINEUP-GFP Activity. Adapted from (82) (95) 

A

B C
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Moreover, Yao and co-workers showed that GFP mRNA is recruited to heavy 

polysomes in AS GFP (there referred to as RNAe)-transfected cells (98) as previously 

shown for Uchl1 mRNA recruitment triggered by natural AS Uchl1 (82). 

Collectively, taking advantage of SINEUPs domain architecture, artificial 

SINEUPs may be designed by manipulating the BD to enhance target mRNA 

translation of any target of interest. Therefore, the translational regulatory properties 

of natural SINEUPs are retained by synthetic ones, likely shearing common molecular 

mechanisms, suggesting their applications as tools to selectively modulate gene 

expression in vitro and in vivo. 
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miniSINEUPs 

Evidence of SINEUPs scalability paves the way towards a potential application 

as therapeutic approach, particularly in haploinsufficient diseases. However, its 

applicability is limited by RNA length. About 1200 nts long transcripts are suitable for 

delivery systems such as viral vectors, but incompatible with the use as naked RNA 

therapeutic molecules. 

The laboratory of Prof. Gustincich demonstrated that deletions in redundant 

portions of the non-overlapping regions of AS Uchl1 don’t affect its functionality. The 

exclusive combination of the invSINEB2 sequence with AS GFP BD, called 

miniSINEUP-GFP, promotes GFP protein up-regulation at post-transcriptional level 

(Figure 12). Then, they showed that ≈250 nt long transcripts are able to retain both 

activity and mechanisms of their full-length counterparts for  a wide spectrum of 

targets and in different cell types (95) (99) (100). 

 

 

Figure 12 – miniSINEUP-GFP Activity. (A) Domain organization of miniSINEUP-GFP. Binding (gray) and 
effector (invB2, red) domains are indicated. (B) HEK 293T/17 cells were co-transfected with sense GFP vector 
together with empty vector (-SINEUP), SINEUP-GFP as positive control (+SINEUP) and miniSINEUP-GFP 
(+miniSINEUP). From (95).  
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SINEUPs as a new platform for increasing gene expression  

The discovery of a new functional class of natural and synthetic antisense 

lncRNAs that stimulate translation of sense mRNAs paves the way to interesting 

biotechnological and therapeutical applications. The modular architecture of SINEUPs 

enables engineering synthetic molecules against potentially any target of interest, by 

swapping the BD.  

Three major applications can be envisioned. 

1. Molecular biology. SINEUPs can be used as a toolkit for increasing 

expression of the gene of interest in molecular biology experiments. 

Scientists may consider them as a counterpart of siRNA technologies. 

2. Biotechnology. They can be used to increase efficiency of protein 

manufacturing procedures. Data are shown by different laboratories that 

SINEUPs can increase i.e. production of recombinant antibodies. 

3. Therapy. SINEUP technology presents two critical properties for their use in 

therapy: high specificity and low side effects. The former is ensured by fine-

tuned BD design. The latter derives from the capability to gently elicit 

translational gains within physiological range. Moreover, target gene 

stimulation occurs only where the gene is normally expressed, avoiding 

detrimental ectopic translational activation. In this context, there are several 

examples when genes causing haploinsufficient diseases may lead to other 

diseases when duplicated or their protein products are over-expressed in large 

quantities. A miniaturized version, known as miniSINEUP, implements the 

power of the tool, overhauling length as the main obstacle of SINEUP 

application in RNA therapeutics: However, delivery systems and chemical 

modifications to ensure SINEUP activity preservation are still under 

investigation. These features determine the applicability of SINEUPs as a 

new platform for increasing gene expression in vivo for therapy. Currently, 

several therapeutic needs for haploinsufficiency treatments are still unmet. 

Since the reduction to 50% or less of gene expression results in an abnormal, 

pathological phenotype, an efficient and specific SINEUP activity would be 

in principle curative by restoring physiological target levels of gene 
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expression. Many complex and metabolic diseases, where the increase of pro-

survival factors and dysregulated enzymes may impact the well being of 

patients, could as well benefit from its usage. Even if its application is still in 

its infancy, two recent studies reported SINEUPs efficiency of modulating 

protein production in vivo, encouraging their future deployment as RNA 

drugs (101) (102). SINEUP technology has been tested in a medakafish 

model of microphthalmia with linear skin defects (MLS) syndrome, caused 

by mutations in players of the mitochondrial respiratory chain (MRC) 

including the subunit 7B of cytochrome c oxidase (COX) (101). SINEUP 

targeting the endogenous cox7B mRNA has been injected in MLS morphants 

resulting in restored MRC function and phenotype. Interestingly, SINEUP 

injection fully rescued microphthalmia and microcephaly in about 50% of 

embryos, whereas the injection of a control SINEUP did not result in 

amelioration of the phenotype by reinforcing validation of SINEUP 

specificity (101). SINEUP-based therapy, referred to as RNAe, has also been 

proposed by Longo and colleagues. Evidence of SINEUP activity has been 

reported in transgenic mice targeting RNAe antisense to the growth hormone 

gene, causing heavier body weight and longer body length compared to 

control mice (102). 
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FRIEDREICH’S ATAXIA 

Friedreich’s ataxia (FRDA) was firstly described by Dr. Nicholaus Friedreich in 

1863 as inherited ataxia involving spinal cord, peripheral nerves and cerebellum (103). 

The pathogenic mutation in FRDA is a guanidine-adenine-adenine (32) trinucleotide 

repeats expansion on chromosome 9q13 (104) that leads to transcriptional silencing of 

the frataxin gene (FXN) (4). Broadly, the decrease of FXN transcription perturbs iron 

homeostasis promoting cardio- and neurodegeneration (105) (4). 

Clinical features 

Patients (75% affected individuals) typically show degeneration of large sensory 

neurons of the dorsal root ganglia, Betz pyramidal neurons of the cerebral cortex and 

lateral cortico-spinal and spinocerebellar tracts, as well as lesions in the dentate 

nucleus of the cerebellum (4). The main age of onset of symptoms is ten to fifteen 

(106). Within five years after, individuals exhibit lower-extremity weakness, 

diminished or absent joint-position, vibration sense distally, and dysartria. The latter, 

is generally of three type: mild dysarthria, hypernasality, and increased strained-

strangled vocal quality (107). Dysphagia, relates to oropharyngeal coordination, 

weakness and spasticity, is also common (92% of affected individuals) (108). 

In addition, non-neurological degeneration causes hypertrophic cardiomyopathy 

and increased incidence of diabetes mellitus. This occurs in up to 30% of patients (109) 

whereas impaired glucose tolerance is seen in up to an additional 49% (110) (111). 

Two thirds of affected individuals show increased interventricular septum thickness 

(112). Systolic dysfunction and left ventricular wall thickness appear as the disease 

progresses (113). Based on the ejection fraction, two main groups should be identified. 

The first, approximately represent 80% of affected individuals, “low risk” group with 

a normal ejection fraction that even though declined, it remains into the normal range. 

The latter, “high risk” group, had a decrease ejection fraction into the abnormal range 

combined with high mortality rate. 

Neurodegenerative motor symptoms typically appear before adolescence with 

progressive gait instability and loss of coordination, while the cardiac impairment 

usually occurs in the later stages of the disease (114). Atrial fibrillation and congestive 
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heart failure are the most common cause of mortality (115) at a mean age of 40 years 

(116). 

FRDA individuals with Late-Onset (LOFA - 26-39 years) and Very Late-Onset 

(VLOFA - after age 40 years), represent approximately 15% of patients (117) (118). 
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Genetic basis of the disease 

FXN gene 

Frataxin is a small highly conserved acidic protein (≈ 17 kDa) (NP_000135.2), 

encoded via a major transcript (NM_000144.4) in the nucleus, expressed in the 

cytoplasm and imported in the mitochondrion through an import signal in the N-

terminus. This transcript is composed of five exons (1-5a) and encodes for 210-amino 

acid protein (isoform A). Alternative splicing produces minor transcripts with exon 5b 

instead of 5a, in the presence of an additional non-coding exon 6 that may or may not 

be present (isoform B and isoform B1 respectively) (Figure 13) (119). 

 

Figure 13 - Schematic representation of the genomic structure of FXN on the long arm of chromosome 9 
(position 9q13) with centromeric (9qc) to telomeric (9qt) orientation indicated. Two alternate transcripts are 
shown. Adapted from (120). 

Two major transcription start sites (57) were identified in the FXN gene: TSS1 

(119) and TSS2 (121) respectively 221bp and 62bp upstream of the ATG translation 

start site. The region in-between is thought to be TATA-less downstream promoter, 

transcription factors binding sites (122), as well as insulator protein CCCTC-binding 

factor (CTCF) (Figure 14) (123). 
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GAA triplet repeat expansion 

The human FXN locus is located on chromosome 9q21 and contains normally 

from 10 to 66 GAA-triplet repeats within the first intron, whereas FRDA patients carry 

an intronic homozygous expansion of natural tandem repeats up to 1700 triplets (119). 

In a small percentage of cases, however, patients are compound heterozygotes for 

GAA expansion on one FXN allele and a small insertion, deletion or point mutation in 

FXN open reading frame on the other (124). In contrast, in rare instances, GAA repeats 

are interrupted by other nucleotides usually closed to the 3’ end of the repeat tract. 

Such “rare interrupted FNX alleles” may be associated with a later onset of the disease 

(125). All pathogenic variants result in a loss of frataxin function. Apart from (32) n 

repeats, a number of repetitive DNA element have been identified at FXN locus, 

including L2 (LINE) (126), Alu (SINE), and MIRb (119) (127). Their precise function 

in FXN regulation is still not known. 

 

Figure 14 – Graphical rappresentation of 5’ end of the frataxin gene. Minimal promoter, exon 1 and the 
promoter proximal end of intron 1 are shown. TSS1 and TSS2 refer to transcription start sites described in two 
different studies. The positions of various interspersed repeated sequences are indicated by the rectangles 
outlined with black dashed lines. The dotted black arrow indicates the estimated extent of the FXN antisense 
transcript-1 (FAST-1) transcript based on nested PCR. Arrows indicate the location of the binding sites for 
serum response factor (SRF), activator protein 2 (AP2), CCCTC-binding factor (CTCF), an early growth 
response protein 3 (EGR3)-like factor and an E-box binding protein which have been shown to be positive 
regulators of FXN expression. From (121). 
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Deficiency of FXN transcript levels and ultimately of frataxin protein results in a 

secondary deficiency of iron-sulfur cluster-containing enzymes, mislocalization of 

cellular iron, and increased sensitivity to oxidative stress, and therefore an impaired 

mitochondrial respiratory function. 

Despite the clinical outcome is not precisely predictable based on genotype, it 

has been demonstrated that longer hyperexpansions result in a more severe phenotype 

with an earlier onset and faster progression (128) (129) (130) (131). This inverse 

correlation it is clear even from both LOFA (<500 repeats) and VLOFA (<300 repeats) 

individuals (132) (133). Moreover, cardiomyopathy is more present in patient with 

large expansions (130) (128) (129,134) (135). 
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FXN transcription inhibition 

Although the mechanism by which GAA triplet repeat expansion leads to FXN 

silencing is still not precisely understood, two main hypotheses has been proposed.  

Firstly, GAA repeat expansions may impair FXN transcription by inducing the 

formation of triple helical DNA structures (sticky DNA) (136) or persistent 

DNA/RNA hybrids (R-loops) (137) that infers with elongation. On the other hand, 

epigenetic silencing, via repressive chromatin formation in the sequence flanking the 

expanded GAA region or near the FXN promoter, may interfere with both 

transcriptional initiation and elongation (138) (123) (139) (121) (140) (141,142) (143) 

(Figure 15). 

 

Figure 15 - Models of FXN gene silencing in FRDA. (A) Unaffected individuals, contain active histone marks 
of gene transcription initiation and elongation at the FXN promoter and intron 1 regions. (B) Potential silencing 
mechanisms in FRDA patients: (i) the GAA•TTC repeat may adopt abnormal non-B DNA structures (triplexes) 
or DNA•RNA hybrid structures (R loops), which impede the process of RNA polymerase and thus reduce FXN 
gene transcription, (57) increased levels of DNA methylation and HP1 and significant enrichment of repressive 
histone marks at the FXN gene trigger heterochromatin formation that may lead to more pronounced FXN gene 
silencing (144)  
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Antisense RNA transcripts are known to play a crucial role in gene regulation, 

and have previously associated with TNR expansion disease e.g. Huntington disease 

(145) (123). Moreover, the CCCTC-binding factor (CTCF) protein has a fundamental 

role of preventing DNA methylation spreading. Bidichandani and colleagues found 

increased levels of frataxin antisense transcript (FAST-1) in patient-derived cell lines 

associated to depleted CTCF binding site, suggesting involvement of these factor in 

heterochromatin formation and perhaps in FXN silencing (Figure 16) (144) (123) 

(138). However, since DNA methylation at the CTCF-binding site within the 5’ UTR 

region of FXN gene has not been detected (123) (138), further evidences are needed, 

since they likely should be highly relevant for an epigenetic-based therapy for FRDA. 

 

Figure 16 - (A) Unaffected: normal-sized GAA repeat (B) FRDA: GAA repeat expansion. Gray boxes represent 
regions of disease-associated DNA methylation and hydroxymethylation. Arrow marks represent the directions 
and levels of transcription for FXN and FAST-1. Blue bars represent exons of the FXN gene. Red triangles 
indicate GAA repeats within intron 1 of the FXN gene. From (144) (123) (138). 

Lastly, based on the ability of repeats to bind splicing factors, it has been 

suggested that FXN mRNA deficit results from an altered splicing (146). Reduced 

splicing is related to intron length in yeast, where the largest one is <1 Kb (147). 

However, many efficiently spliced human introns are much longer, including normal 

FXN intron 1 (11 Kb). Since a very unstable splice isoform has been shown in FRDA 

cells (117) (148), this issue is still unsolved. 
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Epigenetic changes associated with FRDA 

DNA methylation and hydroxymethylation, post-traslational histone 

modification, chromatin remodelling, and non-coding RNA effects are laid down in 

epigenetic mechanisms that produce effects on gene expression without involving 

changes in the primary DNA sequence. A potential involvement in FRDA disease was 

firstly suggested by heterochromatin-sensitive cell surface reporter gene silencing in 

transgenic mice by position effect variegation (PEV) mediated by a nearby long GAA 

expansion (149). Further studies have subsequently identified epigenetic changes, 

which may be involved in FXN gene silencing in FRDA (138) (140) (148) (121) (123) 

(139) (150) (151) (152) (153) (154). 

Initial investigation of DNA methylation within FXN gene revealed 

hypermethylation of three out of fifteen specific CpG sites up-stream the expansion in 

patient-derived lymphoblasts compared to healthy controls (151). Sandi and 

colleagues corroborated previous finding in FRDA patient autopsy brain, heart, and 

cerebellum tissues (138). Moreover, direct correlation between expansion length and 

the extend of DNA methylation in FRDA patient blood samples has also be found. 

Post-translational histone modification is associated with heterochromatin 

formation and gene silencing, particularly histone hypoacetilation (e.g. H3K9) and 

increased histone methylation (e.g. H3K9me2, H3K9me3, HeK27me3, and 

H4K20me3). Modification at the FXN locus were first identified by Gottesfeld and 

colleagues by identifying increased H3K9me2 and H3K9me3 in FRDA 

lymphoblastoid cells (139). Further studies reported changed histone modification at 

the FXN 5’UTR region, FXN promoter, up- and down-stream GAA repeat expansion 

in FRDA patient and mouse models (138) (123) (150) (151). Recent studies have 

shown decreased level of H3K9me3, HeK27me3, and H4K20me3 at the up- and 

down-stream GAA repeats expanded region indicating transcription elongation 

impairment. Moreover, unchanged modification at the promoter region has recently 

been reported. This indicates that an elongation defect occurs rather than an early 

transcription initiation deficit (121) (148) (153). 

In summary, frataxin expression deficiency in FRDA is mainly caused by GAA 

expansion-induced transcriptional silencing mediated by epigenetic modification. 
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Frataxin 

Structure 

Frataxins are small proteins highly conserved from bacteria to mammals, mainly, 

but not exclusively, confined inside the mitochondrial matrix (155) (156) (157). Musco 

and colleagues determined the structure of human frataxin isoform A (158), as well as 

the E. coli homologue CyaY and the mature form yeast homologue Yfh1. All these 

structures shared similar fold reflecting high degree of sequence conservation, thus 

suggesting a common function. As confirmed by De-Phaganon end colleagues, 

frataxin structure consists in six-stranded β-antiparallel sheet, flanked by N- and C-

terminal α-helices, with no main surface cavity (Figure 17) (159). Residues on the α-

helices are negatively charged, which can be responsible of iron-binding. Unlikely, β-

antiparallel sheet surface is mostly uncharged, probably involved in protein-protein 

interactions. 

 

 

Figure 17 - Structure of frataxin. Compact αβ sandwich, with α helices in turquoise and β strands in green. 
Strands β1–β5 form a flat antiparallel β sheet that interacts with the two helices, α1 and α2. The two helices are 
nearly parallel to each other and to the plane of the large β sheet. A second, smaller β sheet is formed by the C 
terminus of β5 and strands β6 and β7. Adapted from (159). 
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Processing 

Encoded in the nucleus, human frataxin protein is synthesized in the cytoplasm 

as 210 amino acid precursor (23 kDa). The N-terminal portion contains mitochondrial 

import sequence (41 amino acid long) that directs its transport into the mitochondrial 

matrix (155) (156). Here, it is converted into the functional mature form through the 

two-step proteolytic maturation mediated by mitochondrial processing peptidase 

(MPP) enzymes. An initial cleavage, within Gly41 and Leu42, generates the 

intermediate form (iFXN; 19 kDa) by removing the transit peptide  (160). However, 

longer intermediate form may be produced in some normal cells when the normal 

processing is impaired (161). 

 The second site of cleavage has longly been controversial (162) (160) (163) 

(164). Based on the putative second site, three mature forms have been proposed by 

different in vitro studies: m56-FXN (Ala55 and Ser56; 17 kDa) (162), m81-FXN (Lys80 

and Ser81; 14.2 kDa) (160), and m78-FXN (Asn77 and Leu78; 14.5 kDa) (163). 

Moreover, both m81-FXN and m78-FXN has been reported as degradation products (d-

FXN) in human heart extracts (165) (163) (158) (162).  In addition, further confusion 

turned out from the abnormal mobility observed on SDS-PAGE for yeast, murine, and 

human frataxin, attributed to its acidic nature (164) (166) (162) (167). Lastly, 

Schmucker and colleagues provided greater clarity that the endogenous mature 

frataxin corresponds to m81-FXN, supporting previous results (160). Most importantly, 

they demonstrated m81-FXN capability to rescue the survival of deficient murine 

fibroblasts. (Figure 18) (168). 

The two-step processing by MPP (mitochondrial processing peptidase) should 

also have regulatory function, since it has been demonstrated in rat liver mitochondria 

that the second cleavage is finely tuned. While the precursor is rapidly cleaved, the 

intermediate cleavage is slower, limiting m81-FXN rate in certain conditions (162) 

(161). 
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Figure 18 – Schematic representation of the different forms of frataxin. The precursor is targeted to the 
mitochondrion and undergoes a two-step maturation process. The intermediate and the three described mature 
forms are represented. The conserved globular domain which starts at amino acid 90 is indicated by the gray 
area. Scheme is not drown in scale. 

The mystery of frataxin cellular function 

Frataxin down-regulation causes deregulation of the mitochondrial iron 

metabolism pathway and subsequent mitochondrial iron loading. Three major 

pathways are involved: iron-sulfur cluster (ISC) biosynthesis, haem biogenesis and 

mitochondrial iron storage (105). The various proposed molecular functions derive 

from the capability of the protein to bind iron (Figure 19). 

 

Figure 19 - Iron binding. Adjacent frataxin molecules are colored green and yellow. Iron, depicted as a red 
sphere, is coordinated to His-177. Distances in Å (dotted lines) are between the nucleus of iron and its closest 
neighbours. Adapted from (159). 

Initially, due to the observation of Yfh1 oligomers and multimers with 

ferroxidase activity in presence of an excess of iron, frataxin has been proposed as iron 

storage protein. That same activity prompted the protective function from iron-

	1WTLGRRA…PLCGRR		42RTDIDATCTPRR56SNQRGLNQIWNVKKQSVYLM78R81GTLGHPGSLDET…SGK210	
MWTLGRRA…PLCGRRGLRTDIDATCTPRRASSNQRGLNQIWNVKKQSVYLMNLRKSGTLGHPGSLDET…SGKDA	
	

	1WTLGRRA…PLCGRR		42RTDIDATCTPRR56SNQRGLNQIWNVKKQSVYLM78R81GTLGHPGSLDET…SGK210	
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Intermediate	 (42-210)	19	kDa

M56-FXN	(56-210)	17kDa

M78-FXN	(78-210)	14.5	kDa

M81-FXN	(81-210)	14.2	kDa
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mediated oxidative stress resulting from toxic reactive oxygen species (ROS) and 

abnormal mitochondrial deposits (103). Some evidence suggests iron chaperone or 

“donor” function in iron-dependent reactios, such as ISC and heam biosynthesis. 

Related alternative hypothesis indicates frataxin as metabolic switch, shifting iron 

from one metabolic pathway (e.g. ISC biosynthesis) to another (e.g. heam 

biosynthesis) (169). Interestingly, CyaY may function as iron sensor inhibiting the rate 

of ISC biosynthesis in case of both high iron availability and low disposal of 

downstream ISC apo-receptor. The latter remains to be demonstrated in eukaryotes 

(170). 

In summary, although its primary function is still debated (171), mature frataxin 

is a key component of the iron-sulphur cluster (172) biosynthetic apparatus (173) (168) 

(174), which provides the essential cofactor to all ISC-dependent enzymes of the cell 

(175) (176). As consequence of insufficient FXN expression, defective ISC 

biosynthesis triggers a series of vicious cycles leading to deregulated intracellular iron 

homeostasis, impaired mitochondrial electron transport chain and higher sensitivity to 

trigger oxidant- and stress-induced cell death (177) (178) (179). Despite many studies, 

the rationale behind the impact of frataxin deficiency is still poorly understood. 
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Therapeutical approaches in FRDA: goals and objectives 

Numerous therapeutical approaches in FRDA are currently in various phases of 

development and testing, and may broadly be classified into two major categories: 

drugs aiming to treat typical FRDA manifestation and those intended to increase 

frataxin content (180) (181). As far as our interest on protein up-regulation, here only 

treatments aiming to up-regulate frataxin protein content and mRNA transcription will 

be presented. 

Erythropoietin (EPO) is a glycoprotein produced in the kidney as hypoxia 

response and it is currently accepted for chronic anemia treatment. Moreover, it has 

cyto-protective and tissue regeneration properties. Previous study reported that human 

erythropoietin raises the amount of frataxin protein without increasing FXN mRNA 

levels (182). The observed increase was hypothesized to be attributable to a post-

translational mechanism, as by influencing frataxin protein half-life (183). However, 

the exact pathway by which erythropoietin upregulates frataxin remains unknown and 

a role in protein translation process cannot be ruled out. 

Histon deacetylase (HDAC) inhibitors are chromatin-modifying enzymes, 

reported to revert FXN silencing by interfering with hypoacetylation and 

hypermethylation of histones, usually seen in association to GAA repeat expansion in 

FRDA (184) (185). Nicotinamide, also known as vitamin B3, treatment was associated 

with FXN mRNA and protein levels upregulation to levels seen in asymptomatic 

heterozygous carriers. However, adverse events were often encountered upon dose 

escalation, thus suggesting that dosage should be individually adjusted (181) (150). 

Similarly, RG2833, another HDAC inhibitor, up-regulates FXN mRNA, but it is 

poorly adsorbed in central nervous system. In addition, a possible conversion into a 

toxic metabolite led to the premature termination of its phase II trial (185). To date, a 

new generation of molecules is under development to enhance potency as well as to 

prevent formation of dangerous metabolites. 

Resveratrol is a natural polyphenol with antioxidant, anticancer, and 

neuroprotective properties and it was found to up-regulate frataxin in both FRDA 

patient-derived cells and mouse model (186). However, it presents several important 

side effects as well as delivery issues. 
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Interferon-γ is an endogenous cytokine involved in both immune response and 

iron redistribution upon viral infection (187) (188). It is a currently FDA-approved 

treatment for chronic granulomatous disease and severe malignant osteopetrosis (180). 

Interferon-γ has been reported to enhance FXN expression in FRDA fibroblasts as well 

as in dorsal root ganglia of mouse model, probably by enhancing transcription and or 

stabilizing FXN mRNA (189). However, several pilot studies in phase III trials showed 

no statistical significant differences between individuals taking interferon-γ and 

placebo. 

New promising approaches are represented by gene therapy, gene and protein 

modulation, and protein replacement.  

A novel delivery system, known as trans-activator transcription (57), represents 

an innovative delivery approach. TAT is short peptidic fragment able to reach multiple 

tissue and cellular organelles, including mitochondrion. A knock-out mice injection of 

engineered small fusion-protein (TAT-FXN) resulted in a prolonged life span (up to 

53% longer than untreated mice) and an improvement of cardiac function with 

increased heart rate, growth velocity, and cardiac output. Treated mice showed 

enhanced cardiac aconitase levels suggesting improvement in iron-sulfur dependent 

protein regulation (190). Therefore, exogenous protein replacement of missing 

frataxin represent a promising approach for therapeutic intervention in FRDA. Clinical 

trials are expected to begin within a few years. 

An analogous approach, recombinant FXN mRNA nanoparticles, avoiding naked 

mRNA degradation, was successfully delivered in mice, resulting in effective frataxin 

translation. However, further optimization is still required (191). 

The mechanism of frataxin degradation is not fully elucidated. Benini and 

colleagues recently identified RNF126 as selective E3 ligase responsible of frataxin 

ubiquitination and therefore degradation (192). Therefore, hopefully down-regulation 

of FXN breakdown should also represent a novel potential therapeutical approach. 

Recently, oligonucleotide-based approach has got off an auspicious start in RNA 

therapeutics with the latest FDA approval of nusinersen in Spinal Muscular Atrophy 

(SMA) (193) (194) (195). Even though the mechanism trigging FXN transcriptional 

silencing is still incompletely elucidated, chromatin modification it is well known to 
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elicit FXN expression repression. In FRDA the pathological expanded GGA triplet 

repeats could bind the complementary genomic DNA, resulting in the formation of R-

loops that infer with transcription. Oligonucleotides (synthetic duplex RNAs) targeting 

the expanded mRNA repetitive region, by obstructing interaction with genomic DNA 

result in frataxin up-regulation to normal levels (4-6fold increase) by normalizing FXN 

gene expression (3-4folds) in patient-derived cells. Employment of single-stranded 

locked nucleic acid (LNA) oligonucleotide has been also revealed effective. 

Lastly, oligonucleotides may be applied on antisense lncRNAs degradation 

(FAST-1), also responsible of FXN repression, if coupled with RNAse-H enzyme that 

catalyzes RNA cleavage and degradation (51) (196). 

Oligonucleotide-based strategy could theoretically be targeted also on 

downstream events, such as gene methylation as well as miRNAs suppression (120). 

To date, no clinical candidates have been defined, even though PGC1α and NRF2 

down-regulation have been recently proposed (180). 

Up to date, the most promising potential therapy to ameliorate or restore frataxin 

levels in patients is the gene therapy. The rescue of frataxin loss may be achieved either 

by gene editing or by the delivery of wild type FXN by intravenous administration of 

viral vectors. In the former case, CRISPR-Cas9 and related technology were 

successfully applied in mice (197) (198). In the latter, AAV9-frataxin injection 

reverses the functional features of cardiomyopathy when injected in pre-symtomatic - 

cardiac frataxin - knock-out mice. More importantly, same results have been reported 

with those experiencing heart failure (199). Moreover, increased frataxin expression 

reduces cardiac hypertrophy, and prolong life span when compared with untreated 

mice. However, the potential risk of over-replacement is still the major concern (200). 

In addition, infection with TALE (transcription activator-like effector) proteins 

coupled with a TAD (transcription activation domain) specifically directed at the 

human frataxin promoter leads to a 2fold increase in the expression of frataxin, both 

mature mRNA and protein content (201). However, immunological tolerance to 

specific proteins is still an open issue of this method. 

The serious risk of aberrant overexpression is shared by all above mentioned new 

promising strategies. Controversial results have been published on the effectiveness of 
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overexpression itself. While frataxin up-regulation shows evident phenotype 

amelioration in different disease models (200) (202) (203), it may even be toxic due 

to its disturbing effect on Fe-S biogenesis and increasing oxidative stress (204) (205). 

Taking advantage of the HEK-cFXN inducible model (206) effects of overexpression 

have been monitored over time. Surprisingly, it led to a prominent decreased ATP 

production and an even more pronounced oxidative stress (205). It is worth noting that 

negative outcomes refers to a healthy environment, since HEK cells normally produce 

frataxin. Indeed, Navarro and colleagues, observed deleterious effects at the 

biochemical, histological and behavioural levels in transgenic overexpressing flies, yet 

at the same time also indicated complete rescue of aconitase activity in knockdown 

flies’ mutants (204). Thus, the understanding of the exact amount of frataxin required 

to revert patient phenotypes without any side effects still remain a crucial unmet issue. 

These results may further strengthen the use of SINEUPs as potentially ideal 

therapeutic strategy to restore physiological levels. 
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MATERIAL AND METHODS 

OLIGONUCLEOTIDES 

The complete list of oligonucleotides used for cloning, quantitative real-time 

PCR experiments and lentivirus titration is included in Supplementary Information 

(Figure S1). 

CONSTRUCTS 

SINEUP-FXN were generated using pcDNA 3.1(-)- Δ5’-AS Uchl1 as backbone 

(82) lacking the region of overlap (BD) to Uchl1 and retaining AS Uchl1 ED. 

BDs were designed in antisense orientation to the most widely expressed human 

FXN mRNA, targeting the first or the second AUG, with longer or shorter overlapping 

region, following pairing roles of S/AS Uchl1 (82). Oligonucleotides were annealed 

and cloned into recipient plasmid.  

For the plasmid-driven expression of miniSINEUP-FXN, we constructed a DNA 

cassette containing the H1 RNA polymerase III promoter followed by the BDs of 

SINEUP-FXN of interest, the invSINEB2 of AS Uchl1 (95), and a minimal 

polyadenylation signal (207). The cassette was cloned into the AseI restriction site of 

pEGFP-C2 vector (Clontech), with the H1 promoter oriented in the opposite direction 

with respect to the CMV promoter.  The resulting family of plasmids is designed to 

constitutively express a miniSINEUP of interest and the enhanced Green Fluorescent 

Protein (EGFP) as a reporter,  and is renamed miniSINEUP_DUAL. 

All SINEUP and miniSINEUP-containing vectors were verified by sequencing. 

CELL LINES 

HEK 293T/17 were obtained from ATCC® (Cat. No. CRL-11268™) and 

maintained in culture with Dulbecco’s Modified Eagle Medium (DMEM) 

GlutaMAX™ Supplement (Gibco by Life Technologies, Cat. No. 41090-028) 

supplemented with 10% fetal bovine serum (Euroclone, Cat. No. ECS0180L) and 1% 

antibiotics (penicillin/streptomycin), as suggested by the vendor.  
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SH-SY5Y cells were obtained from ATCC® (Cat. No. CRL-2266™) and 

maintained in culture with RPMI supplemented with GlutaMAX, 10% fetal bovine 

serum not inactivated (Euroclone, Cat. No. ECS0180L) and 1% antibiotics 

(penicillin/streptomycin). 

Human GM04078 fibroblasts, from a clinically affected FRDA patient 

homozygous for the GAA expansion in the FXN gene with alleles of approximately 

541 and 420 repeats, were obtained from NIGMS Human Genetic Repository, Coriell 

Institute for Medical Research (Camden, NJ, USA). Cells were maintained in culture 

with Minimum Essential Medium (41) HEPES, GlutaMAX™ Supplement (Gibco by 

Life Technologies, Cat. No. 42360024) supplemented with 15% fetal bovine serum 

heat inactivated (Euroclone, Cat. No. ECS0180L), 1% non-essential amino acids and 

1% antibiotics (penicillin/streptomycin). 

Human GM16214 lymphoblasts from a clinically affected FRDA patient 

homozygous for the GAA expansion in the FXN gene with alleles containing 

approximately 700 and 600 repeats and human GM16215 lymphoblasts from a 

clinically unaffected parent with only one allele containing 830 repeats (mother of 

affected GM16214), were obtained from NIGMS Human Genetic Repository, Coriell 

Institute for Medical Research (Camden, NJ, USA). Both cell lines were maintained 

in culture with RPMI 1640 Medium (Euroclone ECB9006) supplemented with 15% 

fetal bovine serum heat inactivated (Hyclone CHA1115L),100 U/mg 

penicillin/streptomycin (Euroclone ECB3001D) and 2 mM L-glutamine (Euroclone 

ECB3000D). 

TRANSFECTIONS 

HEK 293T/17 and SH-SY5Y cells were plated in 6 well-plates the day before 

transfection at 60% confluency (4x105 cells/well) and transfected with 4 µg of 

SINEUPs or miniSINEUPs encoding plasmids using Lipofectamine® 2000 

(Invitrogen™ by Life Technologies, Cat. No. 11668019) and following 

manufacturer’s instructions. Cells were collected 48 hours after transfection. RNA and 

protein were obtained from the same transfection in each replica. 



 39 

RECOMBINANT LENTIVIRUS PRODUCTION AND TITRATION. 

Selected miniSINEUP-FXN were cloned into a TetON-controlled lentiviral 

vector, based on the pCCLsin.PPT.hPGK.EGFP.Wpre backbone (208). Recombinant 

third generation self-inactivating (SIN) lentiviruses were produced and titrated as 

previously described (208). Briefly, HEK 293T/17 cells were transfected using 

LipoD293™ DNA In Vitro Transfection Reagent (SignaGen Laboratories, Cat. No. 

SL100668-5) with the transfer vector plasmid plus three auxiliary plasmids (pMD2 

VSV.G; pMDLg/pRRE;  pRSV-REV). The conditioned medium was collected after 

24 and 48hs, filtered and ultra-centrifuged at 50000 RCF on a fixed angle rotor (JA 

25.50 Beckmann Coulter) for 165 min at 4°C. Viral pellets were resuspended in DPBS 

without BSA (Gibco, Cat. No. 14190250). miniSINEUP-expressing lentiviral particles 

were titrated by Real Time quantitative PCR after infection of HEK293T/17 cells. One 

end-point fluorescence-titrated lentivirus was included in each PCR titration session 

and PCR-titers were converted into fluorescence-equivalent titers throughout the 

study. 

INFECTION OF HUMAN FRDA FIBROBLASTS 

At least 8.5 *105 FRDA fibroblasts were plated onto a 100 mm plate with medium 

supplemented with Hexadimethrine bromide at a final concentration of 0.009 µg/ml 

and infected with the appropriate miniSINEUP-expressing lentiviral vector 

(multiplicity of infection, MOI 10) together with trans-activating lentiviral vector 

(MOI 10). Cells were treated with doxycycline (1 m g/ml) every 48 hours after 

transduction and collected after 4 days of treatment. RNA and proteins were obtained 

from the same infection in each replica. 

STABLE TRANSFECTIONS OF FRDA LYMPHOBLASTS 

FRDA GM16214 lymphoblasts were transfected by electroporation as already 

described (156). Briefly, 15x106 cells were incubated in 0.4 ml of RPMI 1640 for 10 

min on ice with 30 µg of pMiniSINEUP-FXN constructs or relative empty vector. 

After electroporation at 260 V/950 microfarads (Bio-Rad GenePulser II), cells were 

left 30 min on ice and resuspended in 5 ml of complete RPMI 1640 medium. After 4 

h, live cells were recovered by Lympholyte-Human (Cedarlane Laboratories) density 
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gradient centrifugation and re-plated. Stable transfectants were obtained from cultures 

in selection medium containing 600 µg /ml G418 (Sigma) for at least 15 days. 

ACONITASE ASSAYS 

Whole-cell extracts from GM16215 lymphoblasts, GM16214 lymphoblasts and 

GM16214 lymphoblasts stably expressing miniSINEUPs were prepared in ice-cold 

CelLytic M buffer (Sigma–Aldrich) supplemented with 2 mM sodium citrate and 

Complete EDTA-free protease inhibitor cocktail (Roche Diagnostic). 

Spectrophotometric aconitase assays were performed at 25°C with 100 µg of cell 

extracts using the BIOXYTECH Aconitase-340 Assay (OxisResearch 21041). 

Spectrophotometric citrate synthase activities were assessed at 25°C with 10 µg of cell 

extracts using the Citrate Synthase Assay Kit (Sigma–Aldrich CS0720). For the 

calculation of the activities, one unit of enzyme was expressed as the amount of protein 

that converted 1 µmol of substrate per minute at 25°C.  

WESTERN BLOT 

Transfected HEK 293T/17 and SH-SY5Y cells were washed twice and collected 

in PBS 1X. Cell pellets were directly lysed in 300 µL of Laemmli sample buffer, 

briefly sonicated, boiled and loaded 10-20 µl/each sample on 10-15% SDS-PAGE gel. 

Infected human FRDA fibroblasts were collected in PBS 1X. Cell pellets were 

dissolved in 100 µL of Laemmli sample buffer, briefly sonicated, boiled and loaded 

20 µl/each sample on 10-15% SDS-PAGE gel. 

Proteins were transferred to nitrocellulose membrane (Amersham™, Cat. No. 

GEH10600001) for 1 hour at 100V. Membranes were blocked with 3% Bovine Serum 

Albumin (SIGMA, Cat. No. A2058) in TBST 1X solution for 1 hour at room 

temperature and then incubated with primary antibodies. The following antibodies 

were used: anti-FXN 4µg/ml (Abcam, Cat. No. 18A5DB1) overnight at 4°C followed 

by 1-hour incubation at room temperature with horseradish peroxidase-conjugated 

goat anti-mouse antibody (DakoCytomation, Glostrup, Denmark), anti-β-Actin-

Peroxidase 1:20000 (SIGMA, Cat. No. A3854). Proteins of interest were visualized 

with the Amersham™ ECL™ Detection Reagents (GE Healthcare by SIGMA, Cat. No. 

RPN2105) or LiteAblot TURBO Extra-Sensitive Chemioluminescent Substrate 
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(EuroClone, Cat. No. EMP012001). Western blotting images were acquired using with 

Alliance LD2-77WL system (Uvitec, Cambridge) and band intensity was calculated 

using ImageJ software. 

FRDA lymphoblasts extracts were prepared in ice-cold lysis buffer (50 mM Tris-

HCl pH 7.5, 150 mM NaCl, 1% Igepal CA-630, 5 mM EDTA, 5 mM EGTA) 

supplemented with Complete Protease Inhibitor Cocktail (Roche Diagnostics). 

Lysates were clarified by centrifugation, supernatants were mixed with 10× Laemmli 

sample buffer and boiled for 5 min at 95°C. 50 µg of protein extracts were resolved by 

12% SDS-PAGE gels and transferred to 0.2 µM nitrocellulose membrane (Trans-Blot 

Turbo Transfer pack, Bio-Rad). Membranes were blocked with 5% non-fat dry milk 

in PBS/0.1% Tween 20 and incubated with the indicated primary and secondary 

antibodies: mAb anti-FXN (MAB-10876 Immunological Sciences), mAb anti-α-

tubulin (clone DM1A, Sigma-Aldrich) and secondary antibody horseradish peroxidase 

(HRP)-conjugated goat anti-mouse (Thermo Fisher Scientific). The immunoreactive 

bands were detected by enhanced chemiluminescence (ECL, GE Healthcare) and 

imaged with a ChemiDoc XRS system (Bio-Rad). Densitometric analysis was 

performed using ImageLab 5.2 software (Bio-Rad). 

RNA ISOLATION, REVERSE TRANSCRIPTION AND QUANTITATIVE RT-PCR 

Total RNA was extracted from cell pellets using TRIzol® Reagent (Thermo 

Fisher, Cat. No. 15596026) and following manufacturer’s instructions. 

For HEK 293T/17, SH-SY5Y and GM04078 fibroblasts, RNA samples were 

subjected to TURBO™ DNase (Invitrogen, Cat. No. AM1907) treatment, to avoid 

plasmid DNA contamination. A total of 1 µg of RNA was subjected to 

retrotranscription using iScript™cDNA Synthesis Kit (Bio-Rad, Cat. No. 1708890), 

according to manufacturer’s instructions. qRT-PCR was carried out using SYBR green 

fluorescent dye (iQ SYBR Green Super Mix, Bio-Rad, Cat. No. 1708884) and an 

iCycler IQ Real time PCR System (Bio-Rad). The reactions were performed on diluted 

cDNA (1:8). Human GAPDH was used as normalizing control in all qRT-PCR 

experiments. 

For GM16214 and GM16215 lymphoblasts, cDNA was prepared using the 

SuperScript VILO cDNA synthesis kit (Thermo Fisher). Levels of human FXN mRNA 
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and miniSINEUPs RNA expression were assessed by real-time qPCR using the 

StepOne Plus Instrument (Applied Biosystems), normalized with the control genes 

expression. The assays were performed using the TaqMan primers listed in Sup.Fig.1 

(Applied Biosystems). GUSB, GAPDH and ACT were used as control housekeeping 

genes. 

The amplified transcripts were quantified using the comparative Ct method and 

the differences in gene expression were presented as normalized fold expression with 

ΔΔCt method (209). 

STATISTICAL ANALYSIS 

In all experiments the significance of differences between groups was evaluated 

by unpaired t-test with Welch's correction, p<0.05 were considered significant. 

Quantitative data are presented as mean ± SEM of at least three independent 

experiments.  



 43 

RESULTS 

1. SYNTHETIC SINEUP-FXN: DESIGN AND SCREENING 

Since SINEUPs target the mRNA sequence around the starting AUG, the precise 

knowledge of the real sites of transcription initiation is crucial, especially in cells and 

tissues relevant for the gene of interest and its associated disease. In our experience, 

we have found that the annotation of the reference sequence is often not representative 

of the cell-type-specific usage of transcription start sites (TSSs) and of 5'UTRs in 

endogenous mRNAs. To build FXN-specific SINEUPs, we interrogated FANTOM5 

collection of Cap Analysis of Gene Expression (CAGE) datasets, which represents the 

widest catalogue of annotated promoters and TSSs in mammalian samples (57). Using 

the Zenbu Genome Browser Tool for data visualization (210), we monitored TSS 

usage at the human FXN locus with a specific focus on human cells lines and tissues 

relevant for FRDA (Figure 20). 

 

Figure 201 – FXN locus view. ZENBU genome browser view of FXN locus showing FXN alternative TSS 
usage (TSS1, TSS2 and TSS3) in FANTOM5 samples and selected libraries. FXN reference sequences and 
Gencode annotated transcripts are indicated. The genomic position of the GAA triplet.  
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Unexpectedly, we found that the annotated reference sequences are poorly 

representative in human samples. Rather, at least two additional variants (TSS1 and 

TSS2) of human FXN mRNA exist that are positioned more closely to the initiating 

AUG and are supported by “robust” statistical definition of promoters in FANTOM5. 

The use of these alternative TSSs finds further confirmation in the Gencode catalogue 

of transcripts (ENST00000396366, ENST00000498653) (Figure 20). 

Based on TSS analysis, we designed FXN-specific SINEUPs (SINEUP-FXN) in 

antisense orientation to the most widely expressed variant of human FXN mRNA and 

following the pairing rules of S/AS Uchl1 (82). BDs were initially designed according 

to the canonical -40/+32 anatomy (95) and its shortest -40/+4 BD variant (211) (100). 

Although FXN mRNA has a very short 5’ UTRs, we included the -40 versions of 

SINEUPs to investigate whether extra sequences at the 5’ of the overlapping region 

could influence SINEUP activity. We then generated additional SINEUP-FXN by 

trimming BD sequences at both extremes, following a strategy previously used to 

optimize SINEUPs for overexpressed mRNAs but not yet tested for endogenous genes. 

Finally, since another methionine (M76) is positioned in frame in the second exon after 

the GAA-triplets repeat, we designed three additional BDs overlapping this sequence, 

immediately after or across the exon I/exon II boundary (Figure 21). 

 

 

Figure 21. Scheme of human FXN gene (5’ end) and BDs design of synthetic SINEUP-FXN. 
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Each BD variant was combined with the ED of the natural AS Uchl1 that so far 

represents the most potent translational activation domain for SINEUPs (Figure 22). 

To screen the activity of SINEUP-FXN, we took advantage of HEK 293T/17 cells 

which own the same TSSs of cells relevant for the pathology and have been proven to 

support SINEUP activity of a variety of SINEUPs targeting endogenous genes (95) 

(unpublished results). 

 
Figure 22 - Schematic representation of SINEUPs functional domains. The binding domain (overlap) 
provides SINEUP specificity and is in antisense orientation to the sense protein-coding mRNA (Target). The 
inverted SINEB2 element (invB2) is the effector domain (blue) and confers enhancement of protein synthesis. 

HEK 293T/17 cells were transfected with SINEUP-FXN (+SINEUP) or an empty 

control vector (-SINEUP). SINEUP activity was estimated as fold changes in protein 

levels in +SINEUP compared to –SINEUP conditions by western blotting (Figure 

23/a). qRT-PCR quantification of FXN mRNA was carried out to confirm SINEUPs 

act at post-transcriptional levels (Figure 23b). 

We found that SINEUP activity varies significantly according to the overlapping 

region. When SINEUP-FXN were designed around the initiating AUG as transcribed 

from both TSS1 and TSS2 and maintaining extra sequences at the 5’ end, we found 

that the activity is regulated by the length of overlap to the coding sequence (CDS). In 

particular, the canonical configuration of -40/+32 showed no effects on frataxin levels 

(data not shown). Instead, BDs with minimal (-40/+4) or no (-40/+0) overlap to the 

CDS induced up-regulation of mature frataxin in the range of 1.4-fold. Minimal up-

regulation was also obtained with SINEUPs targeting 5’UTRs from TSS1, albeit with 

some variability. When the overlapping region corresponds exactly to the 5’UTR from 

TSS2, as it is the case for -14/+0 and -14/+4 configurations, SINEUPs reached the 

highest potency (1.7- to 2-fold increase). 
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When BD was designed at -40/+4 (exon 2) and -10/-75/+4 (exon1-exon2) relative 

to internal in frame M76-AUG, we could not measure any increment in frataxin protein 

relative to controls. Instead, when the BD did not overlap the M76-AUG sequence but 

retained a complementarity to its preceding regions, as in the -40/+0 (M76) 

configuration, it generated a SINEUP that could substantially up-regulate frataxin up 

to 1.5-fold (Figure 23a) 

In summary, we successfully designed synthetic SINEUPs able to increase the 

quantity of frataxin protein with no effects on its mRNA levels (Figure 23b). SINEUP-

mediated up-regulation was in the range of 1.4- to 2.4-fold increase (Figure 23a). 
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Figure 23 – SINEUP-fxn screening a) SINEUP-FXN variants were screened in HEK 293T/17 cell line. Control 
cells were transfected with empty vector. Protein levels were analyzed by western blot with anti-FXN antibody 
and SINEUP activity was calculated as increase in protein quantities relative to empty control samples (fold 
changes are shown). Summary of data on SINEUP activity (bottom), as frataxin protein quantities in 
HEK293T/17 cells. Data indicate mean ± SEM and are representative of four independent experiments. p values 
are calculated by unpaired t-test with Welch’s correction. *, p<0,05; **, p<0,01, ***, p<0,001; ns, non-
significant; b) RNA levels were analyzed by qRT- PCR with target-specific and SINEUP primers, respectively. 
In all conditions, FXN mRNA quantities were stable (ns, p > 0.05). 
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2. SYNTHETIC MINISINEUP-FXN ARE ACTIVE IN VITRO 

Synthetic SINEUPs derived from natural AS Uchl1 RNA are about 1200 

nucleotides long. For their potential usage as RNA therapeutics, shorter functional 

molecules retaining SINEUP translation enhancement activity are needed. Therefore, 

each BD variant of the most effective SINEUP-FXN was combined exclusively with 

the invSINEB2 (ED) sequence, producing ≈250 nucleotides long transcripts 

(miniSINEUP-FXN) (Figure 24). Four different BDs were selected (-40/+0, -14/+4, 

14/+0 on M1 and -40/+0 on M76), covering various anatomies of overlap to FXN 

mRNA. 

 
Figure 24 - Schematic representation of miniSINEUPs functional domains and design. 

miniSINEUPs were then tested in HEK293T/17 cells as before. We found that 

SINEUP miniaturization did not alter the activity of the selected molecules towards 

endogenous frataxin (Figure 25), strongly supporting the modularity of SINEUPs. As 

one of the prominent FRDA phenotypes involves the central nervous system, we 

monitored miniSINEUP-FXN in human neuroblastoma SH-SY5Y cell line confirming 

their activities (data not shown). Moreover, to asses the specificity we performed BD 

blast analysis that showed three different miniSINEUPs off-targets, with different 

degrees of confidence. By westerblot analysis, extracts derived from replicas taken 

into account for the validation were tested for those off-targets, resulting in any protein 

perturbation as a result of putative unspecific binding (Figure S2). 
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Altogether, miniSINEUPs promoted protein induction consistently in the range 

of 1.4- to 2.0-fold, proving that miniSINEUP-FXN retain the same mechanism and 

efficiency of their full-length counterpart with the advantage of being shorter (Figure 

25a). 

 
Figure 25 - miniSINEUP-FXN activity in HEK293T/17 cell line. a)Protein levels were analyzed by western 
blot with anti-FXN antibody and SINEUP activity was calculated as increase in protein levels relative to empty 
control samples (fold changes are shown). Summary of data on SINEUP activity (bottom), as frataxin protein 
quantities in HEK293T/17 cells. Data indicate mean ± SEM and are representative of four independent 
experiments. p values are calculated by unpaired t-test with Welch’s correction. *, p<0,05; **, p<0,01, ***, 
p<0,001; b) RNA levels (bottom) were analyzed by qRT-PCR with target-specific and SINEUP primers, 
respectively. In all conditions, FXN mRNA quantities were stable (ns, p>0.05). 
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3. PROTEIN RESCUE IN FRDA-DERIVED FIBROBLASTS 

FRDA-derived cells represent the most relevant cellular model to test therapeutic 

strategies for patients, as they carry the complete FXN locus together with pathogenic 

GAA-triplet repeat expansions (212). The most promising miniSINEUP-FXN were 

cloned into a lentiviral expression vector, in-between the doxycycline-controlled TREt 

promoter and BGHpA to build inducible recombinant lentiviral particles (LVs 

miniSINEUP-FXN). We took advantage of LVs, paired with a constitutive rtTA2S-

M2 trans-activator, to drive delayed and TetON-controlled expression of 

miniSINEUP-FXN. An additional virus, lacking miniSINEUPs, was used as a 

negative control. To optimize induction conditions, lentiviral particles were 

transduced in SH-SY5Y cells, and miniSINEUP expression and frataxin levels were 

measured at different time points, following a single or a double doxycycline (Doxo) 

induction (Figure S3a) We found that a single Doxo stimulation, combined with tests 

at 48 hours, was not sufficient to trigger SINEUP-mediated increase in frataxin 

quantities. Instead, a double treatment protocol was crucial to promote protein 

induction (Figure S3b). We then applied the double-Doxo protocol to infected FRDA 

cells as a proof of principle that SINEUPs could be exploited in a pathological context. 

Among available patients-derived cells, we selected primary FRDA fibroblasts 

(GM04078) carrying a hyper-expansion of about 541 repeats on one allele and 420 

repeats on the other, and showing an intermediate phenotype. All LV-miniSINEUPs 

led to an increase in frataxin quantities in the range of 1.6 to 2.1 fold (Figure 26a), as 

observed in cells with physiological numbers of GAA repeats. Importantly, the 

position of SINEUP BD relative to the GAA expansion and the presence of the 

pathological expansion itself did not interfere with the observed protein increase in 

patients’ cells. Considering that GM04078 cells show reduced levels of frataxin, 

averaging around 40% when compared to age- or sex-matched healthy-derived cells 

(213), SINEUP activity rescued physiological protein quantities in this FRDA cellular 

model. 
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Figure 26 - Protein rescue in frda-derived fibroblasts. a) Primary fibroblasts derived from a FRDA patient 
(GM04078) were infected with inducible lentiviral vectors driving miniSINEUP-FXN expression. Control cells 
were infected with empty virus. Protein levels were analyzed by western blot with anti-FXN antibody and 
SINEUP activity was calculated as increase in protein levels relative to empty control samples (fold changes are 
shown). Summary of the effects of miniSINEUPs on frataxin protein quantities in FRDA cells. Data indicate 
mean ± SEM and are representative of four independent experiments. p values are calculated by unpaired t-test 
with Welch’s correction. *, p<0,05; **, p<0,01, ***, p<0,001; b) RNA levels (bottom) were analyzed by qRT-
PCR with target-specific and SINEUP primers, respectively. In all conditions, FXN mRNA quantities were 
stable (ns, p > 0.05). 
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4. THERAPEUTICAL PROTEIN RESCUE IN FRDA-DERIVED 

LYMPHOBLASTS 

The ability of miniSINEUP-FXN to up-regulate endogenous frataxin levels in 

patient’s fibroblasts prompted us to evaluate their therapeutic potential in a different 

FRDA cellular model. To this purpose, we employed FRDA-derived lymphoblasts, 

which carry the pathogenic expansion of GAA repeats and show reduced levels of the 

protein when compared to controls. 

Frataxin-deficient lymphoblasts derived from a FRDA patient (GM16214) were 

stably transfected either with the miniSINEUP-FXN targeting the initiating AUG (BD 

-40/+0 on M1) or an empty vector as negative control. Following antibiotic selection, 

independent clonal subpopulations were monitored by western blot (Figure 27a) and 

real-time PCR analysis (Figure 27b) Frataxin protein levels were evaluated in whole 

cell extracts from different clones and compared to untransfected lymphoblasts. As 

expected, extracts from FRDA cells showed a significant deficit of FXN expression 

with respect to control lymphoblasts derived from the healthy heterozygous patient’s 

mother. Analysis of independent miniSINEUP clones revealed a strong rescue of 

frataxin levels while negative control transfectants showed no significative change. In 

particular, we observed an upregulation ranging from 1.5- to 3.8-fold when compared 

to negative controls (Figure 27a). FXN mRNA expression was quite similar in FRDA 

patient cells, negative control clones and miniSINEUP-FXN clones, confirming their 

post-transcriptional mode of action (Figure 27b). Next, we investigated whether a 

miniSINEUP-FXN targeting the AUG downstream GAA expansions (BD -40/+0 on 

M76) could exert the same activity in these cells. To this purpose, we generated new 

stably transfected FRDA cells. As shown in Fig. 5a, this miniSINEUP-FXN was able 

to increase frataxin protein levels from 1.6- to 2.3-fold (Figure 27a). According to the 

translational mechanism, levels of FXN mRNA never showed significant changes. 

Collectively, data indicate that each miniSINEUP-FXN variant restored physiological 

levels of frataxin protein in FRDA-derived cells.  
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Figure 27 - Therapeutical protein rescue in frda-derived lymphoblasts. Lymphoblasts derived from a FRDA 
patient (GM16214) were stably transfected with miniSINEUP-FXN constructs targeting the M1 AUG (-40/+0) 
or the M76 AUG (-40/+0). Control cells were stably transfected with empty vector. a) Upper panel: 
representative western blot analysis with anti-FXN antibody shows protein levels in GM16214 cells (FRDA), 
GM16215 cells (Healthy) and different FRDA clones transfected with empty vector (-), miniSINEUP-FXN M1 
(-40/+0) or M76 (-40/+0). Frataxin fold changes are relative to untransfected FRDA cells. Lower panel: 
summary of frataxin protein levels in untransfected and transfected cells. Data indicate mean ± SEM from at 
least four independent experiments. p values are calculated by unpaired t-test with Welch’s correction (**, 
p<0,01, ***, p<0,001). b) RNA levels were analyzed by qRT-PCR in untransfected and transfected cells 
described in (a). Left panel: FXN mRNA quantitation. Right panel: SINEUP RNA quantitation. In all conditions 
referring to FRDA cells, FXN mRNA quantities were stable (ns, p > 0.05). 
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5. FUNCTIONAL RESCUE OF DISEASE-ASSOCIATED PHENOTYPE 

As previously reported by several studies, frataxin-deficient cells are primarily 

affected by defective ISC biosynthesis. Accordingly, insufficient frataxin levels 

trigger a typical loss in the activity of aconitases, two different ISC-dependent 

enzymes located in mitochondrial and cytosolic compartments. To assess the 

functional impact of SINEUPs, aconitase activity was chosen as a functional readout 

of restoring frataxin physiological levels on the above-described FRDA stable 

transfectants. To evaluate the status of aconitases, enzyme activity was monitored in 

total lysates from miniSINEUP-FXN clones and untrasfected lymphoblasts by 

spectrophotometric assays. Extracts from these FRDA-derived cells exhibited a loss 

of aconitase activity close to 50% when compared to healthy-derived cells from the 

patient’s parent. Total aconitase activity was strongly rescued in FRDA lymphoblasts 

stably expressing miniSINEUP-FXN targeting the initiating AUG (BD -40/+0 on M1) 

while it was not restored in negative control cells. Furthermore, the deficit was also 

rescued in cells expressing the miniSINEUP-FXN variant, which targets internal AUG 

(BD -40/+0 on M76) and is capable as well to increase mature frataxin quantities 

(Figure 28a) Measured as a control, activity of citrate synthase, the Krebs cycle 

enzyme catalyzing the preceding step respect to aconitase, but lacking ISC, did not 

show significant fluctuations in assayed extracts (Figure 28b). These results 

demonstrate the rescue of the major disease-associated phenotype in cells derived from 

an FRDA patient. Altogether, our data prove that a treatment with miniSINEUPs 

targeting frataxin achieved protein physiological levels and a consistent rescue of 

pathophysiological defects in FRDA-derived cells. 
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Figure 28 – Aconitase Activity Assay. Enzyme assays on lymphoblasts derived from a FRDA patient 
(GM16214) stably transfected with miniSINEUP-FXN constructs targeting the M1 AUG (-40/+0) or the M76 
AUG (-40/+0). Control cells were stably transfected with empty vector. a) Aconitase assay shows enzyme 
activity in GM16214 cells (FRDA), GM16215 cells (Healthy) and FRDA clones transfected with empty vector 
(-), miniSINEUP-FXN M1 (-40/+0) or M76 (-40/+0). b) Citrate Synthase assay shows enzyme activity in 
untransfected and transfected cells described in (a). All data indicate mean ± SEM from at least four independent 
experiments. p values are calculated by unpaired t-test with Welch’s correction (*, p<0,05; **, p<0,01; ***, 
p<0,001; ns, p > 0.05).  
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DISCUSSION 

FRDA is a rare genetic disorder caused by an insufficient quantity of frataxin 

protein. Since its discovery in 1996, the understanding of frataxin functions has grown 

rapidly (171). However, no effective therapy is currently available to the patients (214). 

The main root of the pathology is the impaired transcription of FXN gene as result of 

GAA repeat expansion. Disease onset, severity and rate of progression are strictly 

dependent on the length of repeat expansion and ultimately frataxin levels. 

Homozygous GAA expansion leads to a pronounced drop in protein levels, up to only 

20-30% compared to non-carrier’s healthy individuals. Interestingly, heterozygous 

carriers are clinically healthy with protein levels ranging from 50% to 70% of controls 

(215,216). 

During the last decade RNA-based therapy had a burst of interest because of both 

the high selectivity and the potential scalability to a large repertory of untreatable 

human diseases. Most RNA therapeutic molecules are inhibitory RNAs and have been 

developed to down-regulate expression of pathogenic genes. Among them, Small 

Inhibitory RNAs (siRNAs) and Anti-Sense Oligonucleotides (ASOs) are currently 

being tested in clinical trials for different disorders. Despite a huge improvement in 

terms of RNA stabilization, off-target effects reduction and on-target activity 

maximization, delivery still requires to be optimized. To this purpose, advanced carrier 

nanoparticles and new-generation adenoviral-associated vectors may eventually lead 

to new efficient target-specific drugs delivery. Furthermore, nucleic acid-based drugs 

can be directly delivered into the brain by intratechal injection. Thus, among others, a 

modified ASO targeting ISS-N1 (Intronic Splicing Silencer N1) has been successfully 

administrated in human CNS by intratechal injection (217) and it has been recently 

approved by FDA for spinal muscular atrophy treatment. 

On the other hand, a large group of diseases would strongly benefit from 

transcriptional- or translation-stimulating drugs able to rescue physiological levels of 

a specific target protein (12). 

Currently, there are no therapies to treat the disease or prevent its progression. 

The most promising approaches point to restore sufficient frataxin levels (180), mostly 

by enhancing FXN transcription. Among them, IFN-γ (189) and dyclonine (97) have 
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been identified as encouraging candidates by drug repositioning programs. Synthetic 

histone deacetylase (HDAC) inhibitors have been described to increase FXN mRNA 

in FRDA-derived cells and in FRDA animal models (139) (218). More recently, 

synthetic nucleic acids were successfully employed targeting GAA repeats, acting as 

R-loops inhibitors (51). Moreover, polyamide-based transcription factors capable of 

binding GAA microsatellite were developed (219). Interestingly, protein replacement 

therapy, based on TAT-frataxin delivery (190), and frataxin degradation prevention, 

by a class of ubiquitin-competing small molecules (220), have been recently proposed 

as potential treatments targeting the frataxin polipeptide. Finally, an effective gene 

replacement strategy in the FRDA mouse model opened new opportunities for gene 

therapy in the future (199). 

Recently, gene-specific transcriptional activating RNAs (RNAa) (1) and non-

degradative ASOs (2) have been employed to increase the expression of selected genes. 

As insufficient amounts of FXN mRNA are responsible for frataxin deficiency, this 

latter class of activating RNAs should be beneficial. It has been demonstrated that GAA 

expansion leads to DNA-RNA hybrid (R-loop) formation in vitro (221) (222) and 

inhibition of transcription due to RNA polymerase arrest. Interestingly, ASOs targeting 

FXN GAA repeat and R-loop structure are able to increase FXN mRNA in different 

FRDA patient-derived cell lines (223). 

Almost all investigated molecules capable of elevating frataxin are currently 

aimed at increasing FXN transcription. In this context, SINEUPs represent a new and 

alternative approach to increase FXN expression, acting at post-transcriptional level. 

SINEUP-FXN are in antisense orientation 5’ head-to-head to the most widely 

expressed FXN mRNA. Starting from canonical -40/+32 on M1, we screened different 

BDs to identify the shortest ones, while maintaining specificity. Each variant was 

combined with the ED of AS Uchl1 that so far represents the most potent translational 

activation domain for SINEUPs. Here we show that synthetic SINEUPs against the 

endogenous mRNA of FXN are able to increase its protein synthesis. Furthermore, we 

demonstrate BD’s flexibility designing them around the initiating AUG of target 

mRNA as well as covering an internal in-frame methionine. While AUG overlap is 

crucial to retain SINEUP activity when targeting over-expressed mRNAs (100), we 
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prove it is not for endogenous transcripts. In addition, shrinking the BD down to 14 

nts still maintains strong target protein up-regulation. 

The vast majority of RNA-based therapeutics has been demonstrated to be too 

charged and/or too large to enter cells (21). Therefore, SINEUPs miniaturization is 

required to favour its delivery (95). Here we provide further evidence that 

miniSINEUP-FXNs are equally active than their longer counterparts. Chemical 

footprinting of invSINEB2 has recently identified several structural regions that are 

required for the ability of AS Uchl1 to increase translation, including a short terminal 

stem loop hairpin structure (SL1) as key structural determinant (96). Therefore, it is 

tempting to speculate that an even shorter and more active ED could be obtained based 

on structural data, thus providing further optimization of SINEUPs towards their 

therapeutic application (Gustincich S., unpublished; Carninci P., unpublished). 

Finally, we demonstrate for the first time that FXN expression can be targeted 

specifically at translational level, providing evidence that synthetic SINEUPs and 

miniSINEUPs positively regulate frataxin in human healthy cell lines (from 20% to 

50%). More importantly, FRDA-derived fibroblasts and lymphoblasts showed an 

accumulation of mature frataxin in the range of two folds of the amounts in untreated 

cells, without increasing FXN mRNA levels. In this context, miniSINEUP-FXN 

targeting the first AUG in FRDA lymphoblasts re-establishes FXN physiological 

levels, indistinguishable from those of healthy controls. The role of frataxin as 

activator of the ISC biosynthetic machinery (168,173,174) and as iron-chaperone, that 

provides ferrous iron in a bioavailable form (224-226), are the most well-defined 

molecular functions for this protein. In this context, frataxin is dually linked to cellular 

aconitases activity. The role of frataxin in the biosynthesis of ISC impacts on cellular 

availability of the prosthetic group required for both enzymes’ function (227). 

Furthermore, frataxin can physically interact with mitochondrial and cytosolic 

aconitase, with the ability to protect or reactivate the enzyme’s cofactor (226,228). 

Accordingly, rescue of aconitase defects has been associated to therapeutic increase of 

frataxin levels in cellular and animal models of FRDA (183,197,218,229). Therefore, 

we proved that the additional frataxin protein, as induced by miniSINEUPs, was 

functional and able to rescue the activity of ISC-dependent enzymes to physiological 
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levels in patient’s lymphoblasts. It is striking that we observed the recovery of more 

than 90% of aconitase activity in presence of the most effective miniSINEUP-FXN. 

In conclusion, we provide strong evidence that synthetic SINEUPs enhance 

endogenous protein expression to the physiological range in a cellular model of a 

monogenic disease.  

Their ability to revert pathophysiological phenotypes in human patients’ cells 

warrants the pre-clinical evaluation of a SINEUP-based therapy to treat FRDA. More 

broadly, these evidences support that synthetic SINEUPs represent a scalable platform 

to treat haploinsufficiency disorders. 
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SUPPLEMENTARY FIRGURES & TABLES 

SUPPLEMENTARY FIGURE S1 

Cloning Oligo Name: Sequence (5’ → 3’): Features: 

FXN.9 FWD TCGAGGCTGCTCCGGGTCTGCCGCCCGCTCCGCCCTCCAGCGCTG BD 

FXN.9 REV CAGCGCTGGAGGGCGGAGCGGGCGGCAGACCCGGAGCAGCC BD 

FXN.10 FWD TCGAGGCTGCTCCGGGTCT BD 

FXN.10 REV AGACCCGGAGCAGCC BD 

FXN.11 FWD TCGAGACATGCTGCTCCGGGTCT BD 

FXN.11 REV AGACCCGGAGCAGCATGTC BD 

FXN.12 FWD TCGAGTCATCAAATAGACACTCTGCTTTTTGACATTCCAAATCTGGTTG BD 

FXN12. REV CAACCAGATTTGGAATGTCAAAAAGCAGAGTGTCTATTTGATGAC BD 

FXN.13 FWD TCGAGCAAATAGACACTCTGCTTTTTGACATTCCAAATCTGGTTG BD 

FXN13. REV CAACCAGATTTGGAATGTCAAAAAGCAGAGTGTCTATTTGC BD 

FXN.14 FWD TCGAGCAAATAGACACTCTGCTTTTTGACATTCCAAATCTGGTTGAGGCCACGTTGGTTCGAACTTGCGCGGCGG BD 

FXN14. REV CCGCCGCGCAAGTTCGAACCAACGTGGCCTCAACCAGATTTGGAATGTCAAAAAGCAGAGTGTCTATTTGC BD 

SyberGreen Assay    
qRT-PCR Oligo 
Name: 

Sequence (5’ → 3’): Features: 

hGAPDH FWD TCTCTGCTCCTCCTGTTC Housekeeping gene 

hGAPDH REV GCCCAATACGACCAAATCC Housekeeping gene 

mAS3' Uchl1 FWD CTGGTGTGTATTATCTCTTATGC ED (SINEUP) 

mAS3' Uchl1 REV CTCCCGAGTCTCTGTAGC ED (SINEUP) 

pTSinvB2 FWD CAGTGCTAGAGGAGGTCAGAAGA ED (miniSINEUP) 

pTSinvB2 REV GGAGCTAAAGAGATGGCTCAGCACTT ED (miniSINEUP) 

hFXN FWD1 GTGATCAACAAGCAGACGCCAAACAAGCA FRDA Fibroblast 

hFXN REV1 GTACACCCAGTTTTTCCCAGTCCAGTCA FRDA Fibroblast 

hFXN FWD2 CCTTGCAGACAAGCCATACACGTTTGAG FRDA Fibroblast 

hFXN REV2 CTGCTTGTTGATCACATAGGTTCCTAGATC FRDA Fibroblast 

hFXN FWD GGAAACGCTGGACTCTTTAGC Human Cell lines 

hFXN REV CCAGTTTGACAGTTAAGACACCA Human Cell lines 

TaqMan Assay 
qRT-PCR Oligo 
Name: 

Sequence (5’ → 3’): Features: 

FXN Hs00175940_m1 Target 

hGAPDH Hs99999905_m1 Housekeeping gene 

GUSB Hs00939627_m1 Housekeeping gene 

ACTB Hs99999903_m1 Housekeeping gene 

miniSINEUP ED FWD GGTCAGAAGAGGGCATTGGA, ED (miniSINEUP) 

miniSINEUP ED REV CCACCACGAGGTTACCGTATAAC ED (miniSINEUP) 

Probe CCCCCAGAACTGG ED Probe 

Figure S1 – List of primers. Complete list of oligonucleotides used in this study for cloning and quantitative 
PCR experiments. 
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SUPPLEMENTARY FIGURE S2 
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Figure S2 – miniSINEUP specificity. a) Blast analysis of miniSINEUPs BDs off-targets against Human 
Genome transcripts; highlighted in red chosen off-targets for each BD; b) Off-targets protein levels were 
analyzed by western blot with anti-stx1b, anti-fam49, anti-gcp5 antibodies staining and off-target protein levels 
were calculated relative to empty control samples (fold changes are shown); analysed protein lysates are relative 
to replicas of miniSINEUPs activity experiments (Figure 25); c) Summary of data of protein quantities. Data 
indicate mean ± SEM and are representative of four independent experiments. p values are calculated by 
unpaired t-test with Welch’s correction. *, p<0,05; **, p<0,01, ***, p<0,001. 
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SUPPLEMENTARY FIGURE S3 

 
Figure S3 - Setup of inducible lentiviral delivery of miniSINEUP in vitro in human cell lines. a) Schematic 
overview of Single Induction and Double Induction protocol used with lentiviral vectors expressing 
miniSINEUP-FXN. The time of Infection, Induction of expression (Doxo Treatment) and Collection of RNA 
and protein samples are shown. (b) Human neuroblastoma SH-SY5Y cells were infected with lentiviral vectors 
expressing miniSINEUPs (LV miniSINEUP) or empty control virus (-) as indicated and following the Single 
Induction or Double Induction protocols. Protein levels were analyzed by western blot with anti-FXN antibody 
and SINEUP activity was calculated as increase in protein levels relative to empty control samples (fold changes 
are shown). Scatter plot graph (bottom) shows summary of results (frataxin protein fold-induction). Data 
indicate mean ± SEM and are representative of three independent experiments. p values are calculated by 
unpaired t-test with Welch’s correction. *, p<0,05; **, p<0,01, ***, p<0,001. 
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