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Weyl anomaly, arXiv:1808.08237.

Another one of my works produced during the PhD, which is not part of this
thesis but highly motivated the two papers mentioned before, consists of an analysis
of the consequences of a toy model, trying to capture some of the physics of Weyl
anomalies in the purely gravitational context.

e T. Bautista, A. Benevides, A. Dabholkar and A. Goel, Quantum Cosmology
in Four Dimensions: arXiv:1512.03275.



Abstract: Computing quantum effective actions is paramount to any semi-classical
problem in quantum field theory. However the calculation can be extremely chal-
lenging in the presence of complicated sources or of a curved spacetime. It is possible
to progress when the sources and the gravitational field are weak, however some very
relevant physical situations require strong fields and are beyond any such approxima-
tions. Half of this thesis is devoted to developing a technique capable of computing
effective actions reliably, without assuming a weak gravitational field. The results
are applicable to classically Weyl-invariant theories living in Weyl-flat spacetimes.
The second half of the thesis is devoted to an application of this particular method.
Relatively intense magnetic fields exist in the universe, coherent at Mpc scales. Such
fields call for a primordial origin, however to date there is no clear understanding on
how they are created. The hypothesis that they are of quantum origin, coming from
the Weyl anomaly of the Standard Model itself has been discussed in the past, with
some results claiming positively that this is indeed possible. We use our methods
developed in the first half of the thesis to settle the issue proving it is actually im-
possible to generate such fields from the Weyl anomaly of the standard model alone.
We conclude that such fields, if they exist, must originate from something beyond
the Standard Model.
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Chapter 1

Introduction

General relativity is tremendously successful in describing the classical dynamics of
gravity. It does not however, incorporate the quantum properties of matter and
of gravity itself in its formulation. One may be interested in going a step further
and exploring a semiclassical theory in which quantum fluctuations are studied in
a background that is still treated classically. Such an analysis may provide insights
and predictions avoiding the complications of a full quantum treatment.

Relativistic quantum fields are the essential building blocks to describe the quan-
tum dynamics of relativistic systems. Although most of the physics of very large
scales is perfectly well covered by classical field theory, considerations in the early
universe or explorations of AdS/CFT duality naturally leads one to include quantum
effects, at least semi-classically. Such an analysis is especially important when mass-
less particles are present, since their interactions can severely modify the infrared
dynamics of field theories on curved spaces.

Semiclassical analysis has two sides, the first one consists on the effects of the
backgrounds on the quantum fluctuating fields, and the second one on describing
the back reaction of the quanta on the background fields. As has been established
during the previous decades, gravitational fields can create particles. Black holes
emit radiation with a thermal distribution, de Sitter space also generates particles
during the rapid expansion, for example. The back reaction of such particles on the
backgrounds however, is a much more challenging problem and much about it is still
unknown.

Generically quantum loops of massless particles introduce non-localities in the
correlation functions. The full spectrum of physical implications of such terms is not
yet completely understood, especially when non-trivial background fields are present.
In the non-local terms many effects are encoded such as vacuum polarisation and
particle creation, for instance. A special subclass of non-local terms in the effective
action encode information about the quantum violations of classical symmetries,
also called anomalies. They are special in that they can be read directly from the
ultraviolet behaviour of the correlators of the infrared degrees of freedom, directly
from local quantities.

The aim of this thesis is twofold. We focus on physics of special spacetimes
whose metric can be cast in the form g, = {(2)nu., called Weyl-flat spaces'. We

"Where £() is a positive function and 7 is the metric of Minkowski space.
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first develop a technique using anomalies to compute the appropriate quantum ef-
fective action relevant for a semi-classical analysis in such backgrounds. Doing so we
determine the full dependence of the quantum effective action on the Weyl factor as
well as the fate of the remaining non-local terms. Secondly we apply this technique
to a cosmological scenario concluding that the quantum fluctuations of the gauge
field actually do not get converted into classical fluctuations, contrary to the claims
of previous works.

I. Evaluation of the Effective Action The essential information about the
correlation functions of a quantum field theory can be compactly encoded in the one-
particle-irreducible (1PI) effective action. The same object can be used to compute
the semi-classical equations of motion through a variational principle. One can
then proceed to solve those equations for the expectation values of the relevant
observables. In applications to cosmology or some other scenario involving a causal
time evolution, one is primarily interested in computing the matrix elements on a
particular state, often the initial state |in). 2

The main challenge is the evaluation of the quantum effective action itself. The
problem is especially hard when light particles are involved, in which case knowledge
about the infrared behaviour is hard to obtain. In order to compute the finite
contributions one is often forced to rely on weak field approximations, which restrict
the range of validity of the analysis to very special circumstances only.

Despite the limitations, weak field perturbation can still be applied to several
interesting situations, being used to compute the leading corrections to the classical
newtonian potential [1], the quantum corrections to the bending of light [2| and to
the geometry around black holes [3], for instance. Such effects however, tend to be
tremendously small due to high value of the Plank mass, the leading correction to
the perihelion of Mercury being of one part in 10°, for example. One may hope
that in situations involving fields and interactions other than gravity and scales other
than the Plank mass, the effects may be enhanced.

One powerful approach to simplify the computation of the numerous Feynman
diagrams typically involved in such analysis is through the Covariant Heat Kernel
expansion, also referred to as the Barvinsky-Vilkovisky (BV) or non-local Heat Ker-
nel expansion. The technique consists of an asymptotic expansion of the Heat Kernel
in powers of curvatures and its contractions, such as the Riemann tensor, the gauge
curvature, the Ricci scalar and so on. The range of applicability of this expansion
is relatively small though. It is only valid for rapidly oscillating background fields,
more precisely, background satisfying the condition V2R > R2.

Most of the present analytical computations rely on a high degree of symmetry
of the relevant background or are based on small perturbations around Minkowski
space. Thus developing a technique capable of going beyond those limitations is of
paramount relevance. Field theories that are classically Weyl invariant may be more
treatable in this regard.

Weyl symmetry may be violated in the quantum level. The breaking of Weyl
symmetry leaves imprints on the expectation value of the energy momentum tensor

2Such matrix elements (in|O|in), as well as the 1P generator of such correlation functions are
called in-in.



and thus can have important consequences for the semi-classical dynamics in curved
spacetimes. Furthermore Weyl anomalies can be computed directly by local methods
and used to infer part the quantum action which incorporates them. One must be
careful though, since more often than not the information coming from the anomalies
alone is not the full answer. Quite generically the 1PI Effective action contains
infinitely many Weyl invariant non-local terms. Despite not contributing to the
anomaly, those terms may play a role in the semi-classical dynamics.

Information about Weyl invariant non-local terms is very hard to obtain. Unlike
the terms encoding the anomalies, there is no shortcut to compute those. However
exactly because they are Weyl invariant, they benefit from a tremendous simplifi-
cation when the theory is put on Weyl-flat spacetime. This means that most of
them either evaluate to zero, or can be inferred directly by flat-space Feynman dia-
grams. One can gain important knowledge about the Weyl invariant terms in such
cases. Ultimately, the technique we will discuss combines knowledge about the Weyl
anomalies with the special properties of a Weyl-flat background to go beyond the
weak field regime. The precise details can be found in chapter 2.

Classically Weyl invariant theories have a vanishing trace of the energy momen-
tum tensor, and thus do not couple to the dynamical conformal factor. However,
due to interactions, couplings acquire a dependence on the scale, which in turn con-
tributes to the expectation value of the energy momentum tensor, changing how
matter couples to the metric. A concrete scenario in which this technique can be
applied is a Robertson-Walker metric in four dimensions with a gauge theory cou-
pled to conformal matter. This simple situation could have been realised in early
stages of the universe while the standard model group was still unbroken, making
this system physically relevant as well.

II. Applications Cosmology is one appealing set up to study quantum fields in
non-trivial backgrounds. In addition to the simplicity of the metric, allowing one to
go beyond the weak field approximation at times, inflation can potentially magnify
the quantum fluctuations, enhancing what would otherwise be unobservable.

Further motivation to consider semi-classical dynamics on cosmological back-
grounds come from experiments. Several cosmological observations still lack a com-
plete theoretical understanding. Magnetic fields, for example, are observed to exist
in the universe on various cosmological scales. Magnetic fields of the order of micro
Gauss are observed in galaxies and galaxy clusters coherent on scales up to ten kilo-
parsec. In intergalactic voids, there is evidence from blazar observations for weak
magnetic fields of the order of 10715 Gauss that are coherent on magaparsec scales.
See |4, 5, 6, 7, 8,9, 10, 11] for reviews from different perspectives.

The origin of these magnetic fields has been a long-standing mystery. A coherent
field on such large scales calls for a primordial origin. However the Maxwell action by
itself cannot generate primordial magnetic fields. This is a simple consequence of the
Weyl invariance of the action. The dynamics of the electromagnetic field governed by
a Weyl invariant action in a Robertson-Walker spacetime is independent of the scale
factor and hence unaffected by the expansion of the universe. Primordial magnetic
fields therefore require a violation of the Weyl invariance of the Maxwell action.

Most models of primordial magnetogenesis |12, 13, 14] violate the Weyl invariance
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explicitly at the classical level. A simple class of models starts with the action
1
s =3 [ daeVial @) B (L.1)

where I? is an arbitrary unknown function of various scalar fields denoted collectively
by ¢. In effective field theory, I?(¢) is expected to have a Taylor expansion:
2

12(¢)~1+a1%+a2%+.... (1.2)
where «; are some couplings and M is a cutoff scale. A scalar field in four dimensions
has Weyl weight one (equal to its mass dimension). Hence, the higher dimensional
operators coupling the electromagnetic field to the scalar fields must break Weyl
invariance. If any of the scalar field has a time-dependent expectation value ¢(t)
during cosmological evolution, then it introduces a time dependence in the evolution
of the electromagnetic field that can lead to a nontrivial spectrum of fluctuations.
Models described by (1.1) provide a useful reference point for exploring the phe-
nomenology of primordial magnetic genesis. However, the conclusions depend on
the arbitrary model-dependent function I?(¢) which is not determined by known
particle physics.

It is important to consider a model-independent source of Weyl non-invariance
arising purely from quantum violations of the symmetry and investigate how intense
can the magnetic fields generated purely by this effect be. The classical Weyl invari-
ance of the Maxwell action and more generally of the Yang-Mills action is naturally
violated in the quantum theory due to the need of regularising the path integral.
This is the minimal amount of Weyl invariance one can have without introducing ex-
plicitly Weyl-breaking terms or exotic couplings that are extraneous to the Standard
Model.

It is natural to ask whether the effects of Weyl symmetry breaking can be com-
puted explicitly and if the resulting effective coupling between the fields and the
metric can generate primordial magnetic fields. As we will show, quite generically
the standard model prediction is at best 20 orders of magnitude below the observed
value. Such a negative answer to these questions indicate that the relatively intense
fields we observe come from something beyond the standard model itself.

Another theoretically interesting possibility is that fields of other groups could
have been generated while they were still unbroken, which may have left some ob-
servable imprints at the relevant scale. Could colour magnetic fields have been
generated before the QCD phase transition? We discuss this possibility in the end
of chapter 3.

Outline The thesis is organised as follows. In Chapter 2 we discuss nonlocal
effective actions in general and further go on to develop a technique to reliably
compute them in Weyl-flat spacetimes. We then proceed in Chapter 3 to apply
those methods to a cosmological scenario, estimating the amount of gauge fields
generated by an inflationary phase. We compare our results to the observed values
and conclude with future prospects. Some technical points about Weyl anomalies
and Heat Kernel expansions are discussed separately in the appendices.



Chapter 2

Nonlocal quantum effective
actions in Weyl-Flat spacetimes

Computing quantum effective actions in curved spaces is an inherently difficult prob-
lem, especially in the presence of massless particles, whose presence in quantum loops
lead to long range effects, encoded in nonlocal terms. The quantum dynamics of
such massless particles coupled to a slowly evolving metric is summarised by the
one-particle-irreducible (1PI) quantum effective action for the background fields ob-
tained by integrating out the quantum loops. Unlike the Wilsonian effective action,
the 1PI effective action necessarily contains nonlocal terms which are not derivatively
suppressed. These nonlocal terms can have interesting consequences, for example,
for primordial magnetogenesis in cosmology or for computing finite N corrections in
AdS/CFT holography.

The computation of the nonlocal quantum effective action is in principle a well-
posed problem in perturbation theory. One can regularise the path integral co-
variantly using dimensional regularisation or short proper-time regularisation and
evaluate the effective action using the background field method. However, explicit
evaluation of the path integral is forbiddingly difficult. For instance, to obtain the
one-loop effective action it is necessary to compute the heat kernel of a Laplace-
like operator in an arbitrary background, which amounts to solving the Schrodinger
problem for an arbitrary potential. For short proper time, the heat kernel can be
computed using the Schwinger-DeWitt expansion |15, 16| which is analogous to the
high temperature expansion. This is adequate for renormalising the local ultravi-
olet divergences and to obtain the Wilsonian effective action if the proper time is
short compared to the typical radius of curvature or the Compton wavelength of the
particle being integrated out. However, the nonlocal 1PI effective action receives
contributions from the entire range of the proper time integral and the Schwinger-
DeWitt expansion is in general not adequate.

To obtain the full nonlocal effective action, one could use the covariant nonlocal
expansion of the heat kernel developed by Barvinsky, Vilkovisky, and collaborators
[17, 18]. The effective action in this expansion has been worked out to third order
in curvatures in a series of important papers [19, 20, 21, 22| and illuminates a
number of subtle issues, for example, concerning anomalies and the Riegert action
[23, 24, 25, 26, 27]. However, for a general metric the explicit expressions are rather
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complicated already at the third order. Furthermore, the Barvinsky-Vilkovisky (BV)
expansion requires R? < V2R, where R denotes a generalised curvature including
both a typical geometric curvature R as well as a typical gauge field strength F'. One
is often interested though in the regime of slowly varying curvatures, R? > V?R,
for example during slow-roll inflation. This is beyond the validity of the BV regime.

The aim of the present work is to find practical methods to go beyond these limi-
tations but only for a restricted class of metrics that are Weyl-flat and for classically
Weyl invariant actions. In this case, one can exploit the symmetries of the problem.
The only dynamical mode of the background metric is the Weyl factor which is a
single function. The Weyl anomaly is the Weyl variation of the action which can be
viewed as a first order scalar functional equation for the action that can be easily
integrated. The initial value of the action functional can often be determined by the
flat space results. In this manner, the entire effective action including its anomalous
dependence on the Weyl factor can be determined efficiently.

The main advantage of our approach is that one can extract the essential physics
with relative ease. Weyl anomalous dimensions of local operators (or equivalently
the beta functions) can be computed reliably using local computations such as the
Schwinger-DeWitt expansion. The resulting actions are necessarily nonlocal much
like the Wess-Zumino action for chiral anomalies!. Even though we relax the restric-
tion R? < V2R, we still need to assume F? < V2F for a typical field strength F.
In summary, the Barvinsky-Vilkovisky regime requires rapidly varying curvature as
well as rapidly varying field-strength whereas our regime requires only rapidly vary-
ing field-strength. Our method essentially re-sums the BV expansion to all orders
in curvatures albeit for a restricted class of Weyl-flat metrics as we discuss in §2.2.6.

These nonlocal actions for Weyl-flat metrics can have a number of interesting
applications. In AdS/CFT correspondence, Weyl-flat metrics are relevant for the
bulk description of renormalisation group flows in the boundary CFT. Loop effects
of massless supergravity fields are important, for example, in the computation of
finite NV effects in the bulk such as the finite charge corrections to the Bekenstein-
Hawking entropy of black holes |28, 29, 30, 31]. In cosmology, the Robertson-Walker
metric for an isotropic and homogeneous universe with flat spatial section is Weyl
flat. During many epochs in the early universe, various particles can be massless
or nearly massless compared to the Hubble scale. Quantum loops of these particles
can lead to an anomalous dependence on the Weyl factor which can have interesting
consequences. For example, in massless electrodynamics it can contribute to the
generation of primordial magnetic fields [32, 12, 13, 33, 31] where one is precisely
in the regime of rapidly varying field strengths but slowly varying curvatures. This
approach can also be useful for exploring the stability of de Sitter spacetime, and the
cosmological evolution of the Weyl factor and other physical parameters in quasi de
Sitter spacetimes in four dimensions similar to the two-dimensional models analysed
in [35, 36, 37]. Possible implications of nonlocal actions have been explored, for
example, in [38, 39, 40, 41, 42, 43, 44, 15].

!The chiral anomaly itself can be deduced from local Schwinger-DeWitt expansion. The nonlocal
Wess-Zumino action is then obtained by the Wess-Zumino construction which essentially integrates
the local anomaly equation. Our method extends this procedure to situations with nontrivial beta
functions.
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2.1 Effective Actions from Weyl Anomalies

In this section we describe the general method for computing the quantum effective
action at the one-loop order for essentially all the standard model fields in Weyl-flat
spacetimes by integrating the Weyl anomaly. To simplify the discussion, we ignore
Yukawa couplings and work in the conformal massless limit so that all couplings are
dimensionless. Dimensionful couplings and non-conformal scalars can possibly be
incorporated with some modifications. We first review elements of the background
field method and gauge fixing to set up our conventions. We then discuss the anoma-
lies in terms of the Schwinger-DeWitt expansion and a lemma to obtain the effective
action by integrating the anomaly.

2.1.1 Classical actions and the Background Field method

Consider the classical action for a conformally coupled real scalar field ¢ with quartic
self-interaction:

Llg ol = [ deV/dl | 51902 + R+ 56 2.)
where Ag is the bare coupling and R the Ricci scalar for the metric g. This can also
be viewed as the bare action in the ultraviolet if we regard the fields as bare fields.
Even though we are interested in the Lorentzian action, for subsequent computations
it is convenient to use the Wick-rotated action on the Euclidean section:

Silg el = [ o/ 51Vl + R+ Y1t (22)

We denote the Lorentzian action by Z and the Euclidean action by §. Wick
rotation of Lorentzian time t to Euclidean time ¢ can be thought of as a coordinate
change t = —itg in the complexified spacetime. Tensors transform as tensors under
this coordinate change and in particular the Lagrangian transforms as a scalar. The
path integral is defined with weight €2 in Lorentzian spacetime but with e~
in Euclidean space. Using the fact that the volume element \/@ equals /—¢g on
Lorentzian section but /g on the Euclidean section, the two actions are simply
related by Z[g, ¢] = —S|g, ¢| as above.

In the background field method [16], one splits the quantum field as ¢ = ¢+ @, a
sum of a background field ¢ and the quantum fluctuations () around this background.
The quantum effective action S[p] for the background field ¢ is then given by the
path integral

em(SMﬂwz/DQWM«%MQ+ﬂJMQ% (2.3)

where the external current

5S[e] _ 9Sole]
dp(z)  bp(x)

is a function of the background field adjusted so that the tadpoles vanish order
by order in perturbation theory. We use short-proper time cutoff as a manifestly

Jp](z) = +... (2.4)
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covariant regulator in the heat kernel method as described below. In renormalised
perturbation theory, the UV divergences are renormalised with appropriately chosen
counter-terms and all physical quantities are expressed in terms of the renormalised
coupling A defined at a mass scale M. At one-loop order, the path integral can be
approximated by the Gaussian functional integral

e=Silo:#] — —Solg:] /DQe_é (QIOg|@) (2.5)

where O, is the quadratic fluctuation operator in the background:

Ag? 1
O,=-V2+22 L °R (2.6)
2 ' 6
with

V2= | "0, . (2.7)

1
7(‘9“
Tl (Vg

The Gaussian integral can be evaluated in terms of the determinant of O,
1 1
S =380+ 5 log det (O,) = Sp + §Tr log (O,,) . (2.8)
We use the convention
[ daVidlaal =1 10) = [dagl@lwok).  (@9)

We next consider gauge theory, concretely an SU(N) Yang-Mills field coupled
to a massless complex scalar and a massless Dirac fermion transforming in the fun-
damental representation. The classical Lorentzian action is

Tolg, A] Z/d% 9] [

1

1 —
T2 Fi P + DR + CRI® +i T el D,V |, (2.10)
€0

where €3 is the bare gauge coupling and a is the adjoint index (a = 1,2,...,N? —
1). The covariant derivative is now defined including both the spin and the gauge
connection:

1
D, := 8u+§wﬁﬂJaﬁ+AZTa, (, 3=0,...,3), (2.11)

where {J,3} are the Lorentz representation matrices and {7, } are the anti-Hermitian
SU(N) representation matrices normalised so that trp(7,T3) = —%5(15, in the funda-

mental representation F. The quantum field fl“ is a sum of a background A, and a

~

quantum fluctuation a,, A, = A, +a,. To choose the background gauge, the gauge
transformation of the quantum gauge field

5 A, = Dye =086+ Ay, € (2.12)
can be split as

0cA, = Ope+ [Ay, €] := Dye, deay, = [ay, €] . (2.13)
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It is convenient to choose the background gauge D, a* = 0 so that the effective action
for the background field is manifestly gauge invariant. We set the background fields
for ® and ¥ to zero. Following the standard Fadeev-Popov procedure we add the
gauge fixing term and ghost Euclidean actions which at one-loop are of the form

1
Syf /d43: Vgl ]Dua”|2 , Sgh = —/d4x Vi0gleD*c  (2.14)

n 2e3¢

where the covariant derivatives contain only the background connection. We hence-
forth use the 't Hooft-Feynman gauge & = 1.
The one-loop quantum effective action is then given by

1 1
S1 =50+ Trlog (Og) — 5 Trlog (Oy) + 5 Trlog (O4) — Trlog (O.) . (2.15)
The operators involved are typically of the second-order Laplace-type
Or=—-9¢g""D,D,1+E, (2.16)

where D), is the covariant derivative defined above which depends on the represen-
tation of the field, 1 is the identity in the representation space of the field, and E is
the ‘endomorphism matrix’ that depends on the background fields.

The regularised functional trace for various operators O can be expressed in
terms of the diagonal elements of the corresponding heat kernels K¢(s) := e Or
by the standard expression:

(e}

Trlog (Oy) :_/cis TrKf(s) = —/Cis/d4$ lg|(x|tr K¢(s)|z)

[d
= —/SS /d4x\/|g|trKf(x,x;s). (2.17)

Here ‘Tr’ is a total trace including the spacetime ‘index’ z as in (2.9) as well as the
matrix indices of the Lorentz and SU(N) representations, whereas ‘tr’ is a trace
over only the matrix indices?. The short proper time cut-off € has mass dimension
—2 and hence we can write € = MO_2 and regard M, as the UV mass cutoff.

In general, it is not possible to evaluate K¢(x,x;s) explicitly for all values of the
proper time. However, exploiting Weyl anomalies and the symmetries of Weyl-flat
backgrounds, it is possible to compute S avoiding the proper time integral altogether,
as we discuss in the next two sections.

2.1.2 Weyl Anomaly and the Local Renormalisation Group

Since regularisation with a short proper time cutoff € is manifestly covariant, we do

not expect any anomalies in the diffeomorphism invariance. On the other hand, the

cutoff scale My introduces a mass scale and there is a potential for Weyl anomalies.
The local Weyl transformation of the spacetime metric g, is defined by

Guv — eQE(x)g;w ) g;w — 6_26(36)9“” ) (2'18>

2See for example [47, 48] for notational conventions.
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or infinitesimally,

g (@) = g™ (x) — 2&(x) g () - (2.19)
All other fields we denote collectively as {x} which transform with Weyl weights
{Ar} N

Xp(a) = e 20y (x). (2.20)

In particular, in four dimensions, a conformally coupled scalar field has Weyl weight
1, a fermion field has weight 3/2, a gauge field has weight 0 so that the kinetic terms
are scale invariant. The local Weyl group G is an infinite dimensional abelian group
with generators {.J,} acting on the space of fields®:

J

Toi= =297 (@) oxs(x)”

g (x) Agxy(r) (2.21)

Treating the coordinate x of the local scaling parameter () as a continuous index,
we can write an element of this group as

et (2.22)

with the ‘summation’ convention
§-J:=) &y = /d4x§(x)Jx. (2.23)

A Weyl-flat metric can be written as

uv = 62977/W = GQ'J(U) (2'24)

and is on the Weyl-orbit of the flat Minkowski metric 7,
Weyl invariance of the classical action implies that

Jz (Solg: x¢]) = 0. (2.25)

The cutoff € required for defining the quantum path integral breaks Weyl invariance.
Consequently the 1PI quantum effective action S for the background fields is no
longer Weyl invariant. The quantum violation of classical Weyl invariance can be
expressed as an anomaly equation:

Jz (Slg, x¢]) == <—2g“”(;g(fw(gg) — Ay Xf(sxéf(x)> (Slg: x5)) = —A(x)V/g , (2.26)

where A(x) is the Weyl anomaly scalar®. Since the violation of the Weyl symmetry
is a result of the short-distance regulator, one expects on general grounds that the

3Dimensionful couplings could be treated as additional ‘spurion’ scalar fields with Weyl dimen-
sions equal to their classical mass dimensions so that the classical action is rendered Weyl invariant.
This more general situation will be discussed in [419]. In this case, the background fields {x s} will
include also the spurion fields.

“In conformal field theory, Weyl anomaly is usually understood to mean only the ‘conformal
anomaly’ in curved spacetime at the conformal fixed point, arising from the Weyl non-invariance
of the measure. We denote this anomaly by C(z). More generally, interactions perturb the theory
away from the fixed point and the nontrivial beta functions generate a renormalisation group flow.
In this case, the Weyl anomaly A(x) includes the ‘beta function anomaly’ B(z) in addition to the
conformal anomaly and thus A(z) = B(z) + C(z). This notation should not be confused with the
Type-A and Type-B classification of anomalies [50].
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anomaly A must be local even though the 1PI action is generically nonlocal. In
particular, it must admit a local expansion in terms of the background fields. The
locality of the anomaly is of crucial importance. At one-loop, one can prove it
explicitly and obtain a formula for the anomaly in terms of the local Schwinger-
DeWitt expansion.

We illustrate the general argument for the conformally coupled scalar field .
The infinitesimal Weyl variation of the quadratic action for the quantum fluctuation
vanishes:

5e(QI010) = e [ ' V15l Q(x) 0, Q(z) =o. (2.27)

Using the Weyl transformations of ¢ and the background metric g,,, we conclude
that
00, = —26&(x) O, (2.28)

up to boundary terms. The quadratic fluctuation operator O, is thus covariant
under Weyl transformations with weight 2. It then follows that

17 1 [
0¢Silg, ] = Q/d; Trde 59 = 2/ds Tr (60,)e 5% (2.29)

— / ds / d'a /gl 56(x) (] tr O, 0% |z) (2.30)

€

_ /ds /d%@ég S {al tre=O|z) (2.31)

Performing the s integral we obtain®

581 [97 90]
0&(x)

A similar reasoning can be used for fermions since the Dirac action is Weyl invariant
in all dimensions. For gauge fields, there is an additional subtlety because the gauge
fixed action and the ghost action are not separately Weyl invariant. However, one
obtains an analogous expression for the combined system of gauge and ghost fields
[51]. Both for fermions and the gauge-ghosts system, the quadratic operators have
Weyl weight two. The action of the Weyl generator on the field space is thus given
by

= Jx (S1lg. ¢]) = —(altre=O¢fa) /gl = ~tr Kp(w,25€)V/]g].  (2.32)

Te (Silg xr)) = —A@)V]gl = =2 nytr Kp(w,z50)4/]g] (2.33)

f

where ny is the coefficient of Trlog(Oy) in (2.15) consistent with our convention in
(2.17). Thus, np =1, ny = —%, ne=—1,na=mny,= %

Equation (2.33) shows the anomaly is determined entirely by the short proper
time behavior of the heat kernel. Since the proper time cutoff € effectively provides
a covariant short-distance cutoff in spacetime, the resulting anomaly A(x) is indeed

SIf the operator O, has no zero modes there is no contribution from the upper limit of the
integral.
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local. Therefore, it must admit an expansion in terms of local fields V;(x): for the
beta function anomaly,

Bl) = 3 BVi(w); (2.34)

the C(x) anomaly is purely gravitational and has a similar expansion in terms of the
local functionals of the metric such as the Euler density |52, 53, 54].

The Weyl anomaly equation is closely related to the local renormalisation group
[55, 56, 57] and the coefficients 3; can be simply related to the usual beta functions.
We illustrate this connection for Yang-Mills theory. The Weyl variation of the action
with respect to the Weyl factor Q of the metric (2.24) is given by (2.54) at one loop:

ISilo. ) = S0 — BVl = | POV (239

where b is given by (2.55) and we have ignored the purely gravitational C(x) anomaly.
To relate it to the local renormalisation group, we note that a Weyl scaling of
the metric increases length scales or decreases mass scales. Hence we can regard
M(z) := Me(®) to be the position-dependent local renormalisation scale® M ().
Therefore,

M(z) 51?4 ) = 5?2 ok (2.36)

If the scale M(x) is position dependent, then it is natural to regard all renormalised
couplings to be also position-dependent expectation values of nondynamical ‘spurion’
fields. For example, regarding, 1/e? = \.(z) as position dependent, and using (2.36)
and (2.35) we conclude that

5 5
M ) —0, 2.
@51 TP | =0 (2.37)
with )
D de?
Boi= MZE = M = b, (2.38)

For constant M (x), functional derivatives are replaced by ordinary derivatives and
one recovers the usual position-independent ‘global’ homogeneous renormalisation
group equation.

More generally, the local renormalisation group equation is best thought of as a
Weyl anomaly equation (2.26) with a local expansion for the anomaly A.

2.1.3 Integration of the Weyl Anomaly

Our goal is to deduce the nonlocal quantum effective action S|g, xf] by integrating
the local Weyl anomaly. Towards this end, we consider the following trivial identity”

5This is true as long as one is dealing with ‘primary’ fields such as guv or Fy,, which transform
covariantly under Weyl transformation. In general, ‘secondary’ fields such as R, or V¢ are also
relevant, which contain derivatives of the primary fields. In this case, the Weyl transformations
contain terms with derivatives of the Weyl factor Q and the equality (2.36) holds only up to these
derivatives [55, 58, 59, 60, 61, 56, 49].

"We thank Adam Schwimmer for this formulation.
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1
et = 1+/ dtels7 ¢.J. (2.39)
0

We wish to compute S[g, x¢] for (g, x ) on the Weyl-orbit of (g, x¢) with Weyl factor
Q(x):
(9:x7) = ¢*(g,xy) - (2.40)

Using the identity above we obtain

Slgxsl = (Slg.xs) = (1+ / dte““sz-J) (Sl3. %) (2.41)

1
— S[g,;z,»H/O dtetQ'JQ-J(S[g,xf])

1
= Slaul - [ are® ([ a0 Vi Al )
where we have used (2.26) in the last line. Using (2.40) we then conclude®

8[97Xf] - S[gvif] + SA[g7Q7>_(f] ) (242)

where

1
S4l9: 2 /] = — /0 dt / dhe\[|g 2190 Q(z) Al xpe 1 (@) (243)

is the contribution to the action from the anomaly. Lorentzian continuation of (2.42)
gives a similar equation

but with Z4 given by

1
ZAlg, 2, X7 ::/0 dt/d‘*m/yge?tﬂ(m Q(x) A[§€2tQ,)_(f e Bt () (2.45)

because the anomaly scalar does not change sign under Wick rotation.

Equation (2.42) is a simple identity that follows essentially from the group struc-
ture of Weyl transformations. It is thus applicable to any order in perturbation
theory if we can compute the Weyl anomaly to that order. To compute the effec-
tive action to the one-loop order, one can use the expression (2.43) with the Weyl
anomaly given in terms of the heat kernel as in (2.33). Since the short-time ex-
pansion of the heat kernel is determined by the local Schwinger-DeWitt expansion,
we see that (2.42) enables us to determine the entire quantum effective action for
Weyl-flat background metrics knowing only the local expansion.

Note that the left hand side of (2.44) depends only on the physical metric whereas
the right hand side a priori depends on the fiducial metric g and €2 separately. It

8The argument g of the action S[g, xs] functional here refers to the covariant tensor g,, and
not g"”.
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must therefore be true that the action on the right hand side exhibits ‘fiducial Weyl
gauge invariance’
g—eX@g Q=0 ((x), (2.46)

under which the fiducial metric g transforms but the physical metric ¢ is invariant.
This gauge invariance reflects the fact that splitting g into g and €2 is ambiguous, and
all splits related by a fiducial gauge transformation are physically equivalent. The
fiducial gauge invariance of the right hand side of (2.44) is necessary to show that
it depends only on the physical metric. As we explain in §2.2.6, it is often far from
obvious how the answer obtained using our method can be expressed covariantly
entirely in terms of the physical metric. However, the procedure guarantees that
this must be the case.

2.1.4 Schwinger-DeWitt Expansion of the Heat Kernel

For small values of s (compared to the typical generalised curvatures) the coincident
Heat Kernel K(x,z;s) admits an expansion in terms of local quantities. This is
immediately relevant for the computation of the divergent terms on the effective
action, to compute the one loop integrals of very massive particles or to evaluate
the expectation value of the regularised trace of the energy momentum tensor in the
absence of dimensionful parameters. In even dimensions we have:

tr K (z,x;8) = (47ri)d/2 Zoan(x) s" (2.47)

The a,(z) are the Gilkey-Seeley-HaMiDeW [62, 63, 64, 65, 66, 67, 68, 69, 70, 71]
coefficients? which are local scalar functions of the background fields. A general
expression in any spacetime dimension is known explicitly for the first few of them
in terms of E and geometric invariants.

Because the first few terms have negative powers of s, the above short time
expansion is divergent when s — 0. The divergences can be renormalized by ap-
propriate local counterterms in the action. For the trace of the energy momentum
tensor of massless quantal’ the n < d/2 terms don’t contribute in dimensional reg-
ularization and in other regularization schemes they are all of trivial cohomology
of the Weyl group'! and thus are eliminated by adding local counterterms in the
action. The a4/ term is finite when we take the regulator to zero and aq/, is directly
related to the Weyl anomaly (up to some trivial cohomology terms). In any case
the nontrivial part of the 7" is completely contained in aq/o:

(T = (2.48)

1
(4m) /2 /2

When computing the effective action we integrate over the proper time s, in this
case the n = d/2 term is logarithmically divergent and is related to the running of
marginal couplings. In the presence of a heavy mass (compared to the curvatures)

9 After Hadamard, Minakshisundaram, and DeWitt [72, 73].
1071 this case T is direclty related to the coincident Heat Kernel as it follows from 2.32.
"For further discussion on this see A.



2.1. EFFECTIVE ACTIONS FROM WEYL ANOMALIES 15

such that 2> <1 the effective action can be computed directly by the Schwinger-
DeWitt expansion as the s integral is exponentially suppressed away from s = 0.
Notice that the a, in the next expression are the ones coming of the expansion of
the massless kernel.

5 To(=D?*+E+m?) = ain+Tiog—5 ( > — 5 [ d'sy/gtran(w)
n=d/2+1

(2.49)

d/2 d/2 n m2
Liog = a )d/2/ xfz d/2—n In () tray, (2.50)

where

112
In particular on flat space we can use this expansion to read the Coleman-Weinberg
effective potential. For example, in the massless A¢* we have O = —9?+ %¢2, where
¢ is the constant background field. In this case the massless kernel has ag = 1 and

an, = 0 for n > 0. Up to divergent terms, the one-loop correction to the action
simplifies to

1 A¢4 Ap?
~Trl 2 4 —_— 2.51
2rn<3+ d>> 642/d <2M (2.51)
The relevant a,(z) coefficients for O = —D? + E, up to spacetime dimension d = 4,
are given by [18]
ag = trl (2.52)

1
a; = tr<6R1—E>

1 1 1 1
= tr({-E*~ - V?E- —RE+ —Q,, Q"
2 r(z 6V &g HET gt

1 5 1 3
— (6V’R+-R*——E;+-W?) 1
T 180 ( ViRt 27Ty ’
where tr 1 traces all indices, V,, := 0,, +w,, is the covariant derivative involving only
the spin connection, and Q,,, = [Dy, D, | is the field strength of the full connection.

E, is the Euler density in four dimensions and W? is the square of the Weyl tensor
W, defined by

Ey = Ry, R™P — 4R, R* + R? (2.53)
1
W? = Ru,wR™P — 2R, R" + g1:52 :

In four dimensions, the anomaly A = B+C is determined by az(z). In Table 2.1
we list the anomalies for the operators appearing in the Yang-Mills and conformally-
coupled scalar actions. We have dropped the terms proportional to V2R and V2?.
Such operators follow from the Weyl variation of local terms in the action, namely
R? and R ?, hence are not genuine anomalies [74]. The vector potential operator
04 corresponds to the Feynman gauge € = 1 and F? := Fj, F*#. Note that the
az(x) coefficients for the ghost and vector operators individually contain a term
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proportional to R?. This is related to the the fact that the operators are not in-
dividually Weyl covariant. However, taken together, the R? terms cancel from the

anomaly as expected from the Wess-Zumino consistency condition'?.
Field @ 16728 16m2C
P -D*+ 1R —& F? &g (—Es+3W?)
¢,é -D? N 2 NSl (<5 R? + By — 3W?)
Ay ~D?g" + R — 2 F SN 2 NP1 (5R? — 32 By + 21 W?)
% ~D*+ 1R - 1F,TH" —1 F? & (-HE +9W?)
@ —V2+ § R+ 5007 INZpt w5 (—Es+3W?)

Table 2.1: Weyl anomalies in d = 4. The contributions from the complex scalars
® and fermions ¥ to the B anomaly are different for the abelian and non-abelian
cases. In the table we have indicated the non-abelian ones relevant for Yang-Mills.
For quantum electrodynamics, the contributions are multiplied by a factor of two
due to the choice of normalisation of the non-abelian gauge group generators.

Putting these results together, the Weyl anomaly equation for Yang-Mills is

rsilg.A) = "2 — (L) - ) ) Vi (2.54)

with

1

b=
4872

(Ng 4 4Np — 22N) (2.55)

for an SU(INV) theory with Ng scalars and Np fermions in the fundamental. In
quantum electrodynamics integrating out Np fermions and Ng scalars, one would
get a similar result with

1

For the real scalar field ¢ with quartic self-interaction, we similarly obtain

nsilo) = S8 - (et —c@) Vil @)

with the beta function coeflicient given by

3
© 1672
128ee appendix A for a more precise discussion on the Wess-Zumino consistency condition and
on the Cohomology of the Weyl group.

b (2.58)
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2.2 Nonlocal Effective Actions

In this section we derive the one-loop quantum effective actions from the anomalies
following the discussion in the previous section. We drop the subscript ‘1’ used
earlier to indicate the one-loop results. As a simple illustration, we first derive the
two dimensional Polyakov action from the C(z) anomaly. In four dimensions, we
ignore the C(z) anomaly and focus only on the B(x) anomaly to derive the effective
action for the background fields €2, A, .

2.2.1 The Polyakov action in Two Dimensions

The trace anomaly (2.26) for a massless free scalar in two dimensions is given by
A(z) = tr Ky(z, x,€) . (2.59)

The finite contribution to the trace in two dimensions is given by the coefficient
a(x):
1 1 1 1
_ - “Rl1)=—R. 2.
A(z) gy ai(x) ym tr <6 R > Y R (2.60)

In this case B = 0 and the anomaly is purely gravitational. Using (2.42) and the
Weyl transformation for the Ricci scalar

R=e¢2(R-2V2Q) for g¢=e*g, (2.61)

the effective action is given by Z[¢, g] = Z[¢, g] + Z¢[g, 2] with

1
Tclg, Q] = /dt/d% | €2t 2@) | Q(z) Alg et @)
0
1

_ b 2 [T 2t0() 240@) (B o S2
= 5 dt/d xz\/|g|e Qx)e (R—2tV°Q(x))
0
L [ e . B
- 247r/dx 91 (99)% + RQ(x)) , (2.62)

which is the Liouville action with the correct normalisation. For g, = d,,,, one can
solve (2.61) for Q in terms of g using the fact that R = 0, and obtain the Polyakov
action

1 1
Telg) = ~ 56 d2x\/\g\RﬁR. (2.63)

Since in two dimensions every metric is Weyl flat, these results are valid for a general
metric.

2.2.2 Quantum Effective Action for Yang-Mills Theory

Applying (2.45) to the B anomaly of the Yang-Mills theory (2.54) in a Weyl-flat
spacetime gives

Teln. 4] = —1 [ d's 107 F () 00) Fislo). (2.64)
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The flat space action can be easily determined from standard computations and is
given by

I A}———:l‘/d%nﬂ Fe (z) (x| 1—96%Anlo — ly) EP7 (y) (2.65)
m, - 4 62 (M) Y po 9 g M2 Yy a Yy .

where —0? is the flat-space d’Alembertian and M is an arbitrary offshell subtraction
point. The kets |z) here are normalised as in (2.9) but now with the flat metric 7.
The logarithm of an operator is defined by the spectral representation

o o 1 1

For the flat space d’Alembertian the logarithm can also be defined by a Fourier

transform:
2 d*p i P2
(x| log <]\42) ly) = / (27r)4e P(@=y) Jog (W) . (2.67)

Putting the two things together in (2.44) we conclude

2
Tlg, Al = —4621]\/[) /d4:v nPen°P I [1 - gez(M) log (]\;) +be*(M) Q] Fos
(2.68)
where the logarithmic operator is to be understood as a bilocal expression integrated
over y as in (2.65). There is a gravitational piece coming from the C anomaly which
we do not discuss.

Note that the action (2.64) arising from the anomaly follows from the local
Schwinger-DeWitt expansion and does not require any weak-field approximation.
Thus, the main limitation in computing (2.68) comes from the evaluation of the
flat space action (2.65). In (2.65) we have used the weak gauge field approximation
F* < V*F? as one normally does in flat space quantum field theory. It may be
possible to compute the flat space action in other regimes, for example, in the regime
of constant field strength. This can extend the range of validity of our results.

It is instructive to deduce this result using dimensional regularisation. Again,
the classical action (or the bare action in the UV) is given by

Iolg, A] = d'z\/1g1 9" 97" Fpy Fag - (2.69)

)
4ef
The classical energy momentum tensor

1 1
Tﬁf/ =3 (FﬁaFS 7 - 4guuF2> (2.70)
€0

is traceless. At the quantum level, the nonzero beta function implies a quantum
violation of Weyl invariance. For a manifestly gauge-invariant computation of this

Weyl anomaly we use dimensional regularisation. In 4 — ¢ dimensions, the bare
coupling ey is related to the coupling e renormalised at scale M by

1 1 b de 2
- M€ _Z M = —b. 2.71
(62 5) ’ dM (2.71)
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There is the usual pole coming from loop integrations of quantum fluctuations
around a background field. For a Weyl-flat metric, the dimensionally regularised
background field action depends only on the background gauge field and the Weyl
factor €2

1 b

Fa a 2.72
52 (272

1
5[0, A] = -1 /d4sx ‘n|npanaﬁ 0 M~ (=
This implies that the Weyl variation of the renormalised effective action for the
background field is no longer zero and is given by

b
6Z[n, N, A] = —4/614;13\/|77|F2 59, (2.73)
consistent with the results obtained using the proper time regularisation.

2.2.3 Quantum Effective Action for a Self-interacting Scalar Field

For a conformally coupled scalar field ¢, one can similarly determine the one-loop
effective action Z[g, ¢]. Integrating the B anomaly of (2.57) gives

Taln 2.6 =% [ d'z 6t(e) 00a). (274)

with b given by (2.58) and A being the renormalised quartic coupling defined at the
scale M. The flat space action obtained from standard computations gives

Zin.gl = - [ate [Ji0p8 + 5020 (1+ 5108 (15 ) ) #'0)] - 2)

Using (2.44), the full effective action is given by

lg.o) = - [ e [Floo + 25 (1+ S1og (55 ) -0900) ) 0] - (279

As in the case of the Yang-Mills action, the part of the action (2.74) arising from
the anomaly does not require any weak-field approximation and is exact. The flat
space action (2.75) is valid only assuming rapidly varying field. It could be evaluated
though in other regimes of interest using techniques such as the large proper time
expansion developed in [75, 76] or the Coleman-Weinberg method. However, note
that when the field ¢ is in the Coleman-Weinberg regime, the field ¢ may not be
unless the scale factor is also slowly varying.

We see that the net effect of the Weyl anomaly in the combined action is to change
the renormalisation scale to an effective local renormalisation scale M (x) := Me2(*)
consistent with (2.36). One can explain the answer intuitively if the scale factor
is varying slowly compared to the typical scale of field variations (for example in
a particle physics experiment in an expanding universe). In this case, one can use
local momentum expansion to write —9? = k2. In local experiments (2.76) can be
interpreted as a flat space action with momentum-squared k? but with a position
dependent cutoff M (z). One can equivalently interpret k*/M?(z) as p?(x)/M? in
terms of physical momentum-squared p? = e 2@ 2 with a fixed RG scale M.
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This suggests that we can use the local renormalisation group to define a position-
dependent ‘running’ coupling

NP() = (277
1 - 3log (%)

b 2(z b? 2(z
A [1 + §log <p]\;2)) + Zlog2 <p]\/([2)> +} .
Equation (2.77) re-sums the leading logarithms to all orders as with the usual renor-
malisation group but now locally. The effective coupling decreases as the universe
expands because the beta function is positive. Consequently, the renormalisation-
group improved answer becomes better and better at late times even though naive
perturbation theory would break down. The local renormalisation group thus ex-
tends the range of applicability of the perturbative computations.

In more general situations with a rapidly varying scale factor, one cannot use the
momentum basis as above but equation (2.76) is still valid. One might be tempted
to interpret the full answer in terms of the logarithm of the covariant d’Alembertian
in curved spacetime, log (—V2 /M 2). However, the full covariantisation is rather

nontrivial and requires many more nonlocal covariant terms which combine into a
Weyl-invariant piece [22, 77]. We discuss this in detail in §2.2.6.

2.2.4 Equations of Motion

If we are interested in the equations of motion of the fields in a fixed background
metric, then the metric does not need to be varied and can be assumed to be Weyl
flat. The equations of motion for the background Yang-Mills field follow straight-
forwardly from the action Z[g, A] (2.68) and are given by

= . 2
JA, JA, 0 (2.78)

The first term gives the logarithmic modifications to the flat space equations of
motion arising from integrating out massless charged particles. The second term
gives rise to the anomalous coupling to the conformal factor of the metric which
breaks the Weyl invariance. Similar considerations extend to the equations of motion
for the Weyl-transformed scalar @.

These actions are thus adequate for studying the equations of motion for the
fluctuations of the gauge field or a scalar field in an arbitrary Robertson-Walker
background including the full anomalous dependence on the Weyl factor. This is
the situation one encounters, for example, in studying the primordial perturbations
of a scalar or of the electromagnetic field in a slowly rolling inflationary background.

2.2.5 The Curvature expansion

In the weak curvature limit, we can compare our results with the covariant curvature
expansion developed by Barvinsky, Vilkovisky, and collaborators |17, 18, 19, 20, 21,

|. Tt provides a useful check on our results obtained using a rather different method
which does not rely on the weak curvature approximation.
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The curvature expansion benefits from being easily made covariant as well as
from not making a small proper time s expansion, thus allowing one to integrate
over the proper time to obtain a meaningful finite terms in the effective action
in the presence of massless particles. The price to be paid is a restrictive limit of
validity regarding the properties of the background fields involved. This perturbative
expansion requires rapidly oscillating fields (when compared to their typical values).
Much like a gravitational wave travelling on almost flat space and and unlike the
typical FRW metric.

The main idea behind the Barvinsky-Vilkovisky (BV) expansion is to decompose
the metric as g,, = 1y + hy and treat the fluctuations h,,, as well as interaction
terms as perturbations. The heat equation satisfied by the kernel K(s) can be
solved perturbatively around flat space using the analog of the Dirac interaction
picture in quantum mechanics. Here the flat space laplacian plays the role of the
"free Hamiltonian" and corrections to that are accounted by a proper time ordered
product. This analogy follows from the fact that the Heat equation is quite similar
to the Schroedinger equation.

aiK(s) +OK(s) =0 (2.79)

The perturbative answers then can be ‘covariantised” and express in terms of covari-
ant derivatives and polynomials of generalised curvature tensors which will schemat-
ically be denoted as R, which includes both terms like R, as well as F),,. This
expansion is valid for small generalised curvatures but for the entire range of the
proper time s.

If we rewrite O as —0? — V we can write the Heat equation as:

0 1 _ (52
5.5 = (*+V)K (2.80)

and then proceed to expand K as Ky + K1+ Ko + ..., where K, is an operator of
order V", with Ky(0) = 1 and K;(0) = 0 for ¢ > 1. From that we obtain a system
of equations for each K.

o

— K, = 0°K, 2.81
55 150 0K (2.81)
QKl = 9’K,+ VK,

Js

whose solution can be found iteratively:

Ko(s) = e (2.82)

Kl(s) = /Os dt K()(S - t)VKo(t)
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Defining V(s) = Ko(—s)V Ky(s) we have

Ko(s) [1—1—/ it V(ty) / /tl dtrdts V)V (t2) + ... | (2.83)
= Zm/ / TV (t1)... V(tn)}dty ... dt

The final answer is guaranteed to possess general covariance if one choses the ap-
propriate background field gauge. Although the perturbation theory just employed
breaks covariance, one can easily covariantise the obtained expressions at a given
order in curvature. The computation of the proper time integrals is complicated
but necessary to obtain the non-local form factors on the trace of the Heat Kernel
and consequently in the Effective Action. Fortunately those form factors have been
computed for a large class of operators that one may encounter in field theory, up to
third order in generalised curvatures (including the curvature of gauge connections
as well as interaction potentials) in [17, 18, 19, 20, 21, 22].

For O of the form!® —1D? + E. we have

TrK(s) = W /ddx\/§ tr {1 + s [ém - E} + (2.84)

K, (s)

s [mwfmc(—sv?)R“” +1Rfrr(—sV?*)R+ Rfre(—sV*)E +

+Efrp(—sVHE + wam(—sv%ﬂﬂ + 0(733)}

where f; are simple functions, all given in terms of the basic function

1
2) = €18z ,
fla) = [ de (285)
Namely,

1 1
fric(z) = @‘Fﬁ(f(f)_l) (2.86)
fra(e) = sl@)+ o (@)~ — oo (f() ~ 1)
fre(e) = —pf@) - 5 (F@) 1)
fep(r) = %f(w)
foole) = —5-(f(&) 1)

The effective action can thus be obtained by evaluating the integral (2.17). The
final answer can be expressed in terms of non-local ‘form factors’ and schematically
takes the form

S = Sy+8loc+ / dlz \g|2% v2)R1R2+Zf V3, —-VHRIRIR3(i)+O(RY) .
i=1 i=1
(2.87)

3Where D, is defined as in 2.11 to include both the spacetime connection and a generic gauge
connection.
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The notation is a shorthand for terms containing all possible combinations of cur-
vatures such as Rfpr(—V?)R and Fo(—V?3, V3, —V%)F1“VF2”UR3‘7M, for example.
The form factors v and F as functions of the covariant Laplacian are generically non-
local operators, and are to be understood as properly convoluted with the functions
they act upon [18]. A similar result has been obtained for massless quantum elec-
trodynamics by a somewhat different method by Donoghue and El-Menoufi |77, 78]
by evaluating the one-loop Feynman diagrams for small metric fluctuations around
flat space and then covariantising the answers.

An important advantage of this expansion is that it gives all nonlocal terms
in the action directly to a given order in perturbation theory. The price to pay
though is that these expressions are necessarily perturbative, valid only in the regime
of R? « V?R. Note that there are two perturbative expansions at work. The
loop expansion parameter is e or A, while the BV expansion involves a further
approximation which treats the field perturbations, such as hy,,, A, or V" as small.
This weak field approximation implies that terms of the form 9?h0%h are to be
regarded as much smaller than terms of the form 9*h even though both have the
same number of derivatives. Upon covariantisation, it implies that the BV expansion
is valid if R? <« V?R. By contrast, the local Schwinger-DeWitt expansion is valid
for short proper time eR < 1 or equivalently for the entire weak gravity regime
R < Mg without any further restrictions on curvatures.

2.2.6 Barvinsky-Vilkovisky Expansion and Conformal Decomposi-
tion

To compare (2.87) with our results, it is necessary to go to third order in the BV
expansion. Explicit expressions to this order have been worked out in [20] but they
are rather complicated going over several pages. It is not immediately obvious how
these expressions could reduce to the simple expressions that we obtained earlier.
However, one can use the fact that the Weyl variation of the BV effective action must
correctly reproduce the local Weyl anomaly. This observation suggests a ‘conformal
decomposition’ of the action in terms of a Weyl-invariant piece and a Weyl-variant
piece [21, 22, 77]. This conformal decomposition is what is most easily compared
with our results.

To illustrate the idea, consider the BV effective action for quantum electrody-
namics obtained by integrating out massless charged fields in the presence a back-
ground gauge field A. To third order in curvatures it is given by [77]:

Tlg,A] = —1/d4a: 9] {12FWF’“’ b [F’“’log( V;) F 41l =R+
4 e 2 M 3 V
+  4RM v12 <10g (‘Mv;) <F50F5 7 igwﬂ) — F,log < Mv;) F? +
b o og ( ) ) — b Ly ]
- 4bFWFaﬂ o2 W} + O(RY) (2.88)

where the logarithm of the covariant d’Alembertian log(—V?/M?) is defined as in
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(2.66) and

1
2472

1

b= 9672

(Ng +4Np) , b=

(—Ns + 2Np). (2.89)

Note that b is the usual beta function coefficient (2.56) in flat space but b is relevant
only in curved backgrounds. We have ignored the purely gravitational terms coming
from the C anomaly that are independent of the background gauge field.

It turns out that except for the second term in the square bracket, all other terms
in (2.88) are actually Weyl invariant [22, 77]. This ‘conformal decomposition’ then
implies that the only Weyl-variant term that could contribute to the B anomaly is
precisely this second term:

. b (11
Iplg, Al = —4/d4$\/ g F* (—GVQR> By - (2.90)

Since all other terms taken together are Weyl invariant, for a Weyl-flat metric they
must reduce to the one-loop effective action on flat space (2.65):

I[n, A = —i /d%: FHv [62(1M) - glog (;fj)} F. (2.91)

Hence for a Weyl-flat metric the action (2.88) simplifies dramatically to

Tlg, Al = I[n, Al + Ip[n, Q, A] . (2.92)

We would like to compare this result with the one obtained by integrating the
anomaly:

I[gaA] :I[naA] +IB[77aQaA]7 with IB[nagvA] = _g /d4$ Q($) F,LWFMV‘

(2.93)
To this end, we note that the Weyl factor [g](z) can be expressed as a nonlocal
covariant functional of the metric [79, 80, 23] given by
1
Qi) = § [y Vgl Calavy) Filol ). (299
where

2 2
Fylg] := Eulg] - gVQR[g] = (Ruypo R*P° — 4R, R" + R? — gv2R) [g], (2.95)

and the Green function G4(z,y) defined by

) (g —
ALl y) = 09 (@, ) i fwmw

is the inverse of the Weyl-covariant quartic differential operator

(2.96)

1 2
Adlg) = (V?) + 2R V,V, + 5 (V'R) V, = SR V7. (2.97)
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The expression (2.94) follows from the fact that for metrics related by a Weyl rescal-

ing g, = e2(2) Nuv, the corresponding Fy scalars are related by
Filg) = e ' (Faln] + 4 Aa[n) Q) , (2.98)
and the operators A4 by
Aufg] = e Auln]. (2.99)

Since the Minkowski reference metric satisfies Fy[n] = 0 the expression (2.94) fol-
lows from inverting (2.98). This expression is manifestly covariant but nonlocal,
consistent with the fact that the anomalous {2 dependence represents genuine long-
distance quantum effects that cannot be removed by counter-terms that are local
functionals of the metric.

When R? < V2R one can expand the expression for Q (2.94) in curvatures to

obtain
11

Q[g](z) = Tev2

which when substituted in (2.93) reproduces the anomaly action obtained in the BV
regime (2.90).

To recover the full expression for € in the Barvinsky-Vilkovisky formalism one
must invert the operator Ay perturbatively, which involves higher and higher orders
in curvatures. As a result, the expression (2.94) for  will similarly involve terms to
arbitrary order in the curvature expansion. This implies that to recover the exact
and simple expression (2.68) obtained by integrating the Weyl anomaly it would
be necessary to re-sum the covariant perturbation theory (2.88) to all orders in
curvatures R for the class of Weyl-flat metrics. Since Zg already contains F2, the
next correction is of order F2R? ~ R* in the generalised curvature expansion. In
other words,

R+ O(R?) (2.100)

I5[n, Q, A] = Ip[n, Q, Al + O(RY). (2.101)

Already at order R?, the expression in the BV expansion becomes unmanageable. It
is remarkable that the simple expression (2.44) re-sums this expansion to all orders
albeit for a restricted class of Weyl-flat metrics.

Thus, explicit ‘covariantisation’ of our answer obtained by integrating the anomaly
can lead to rather complicated expressions even though the exact answer (2.93) is
strikingly simple. As noted earlier, our procedure guarantees that the full answer
depends only the physical metric g even though a priori the right hand side appears
to depend on 7, and ) separately.






Chapter 3

Primordial Magnetogenesis

It is well known that the cosmological expansion in the early universe can induce
particle production. The most well known example is cosmic inflation which freezes
the quantum fluctuations of the inflaton field into classical fluctuations, thus sourcing
the large-scale structures in the universe. While a rapidly expanding universe can
source field fluctuations for scalars with small masses, the generation of gauge fields
is a more subtle problem. The classical dynamics of gauge fields is governed by a
Weyl invariant action. This means that in a Friedmann-Robertson-Walker spacetime
it is independent of the scale factor, and hence unaffected by the expansion of the
universe.

However, the classical Weyl invariance of the Yang-Mills action is violated in
the quantum theory because of the need to regularise the path integral. These Weyl
anomalies, or equivalently the nontrivial beta functions of the theory, imply that the
quantum effective action obtained after integrating out massless charged particles
is no longer Weyl invariant. This is expected to lead to an anomalous dependence
on the scale factor under a fairly mild assumption that the masses of the charged
particles that contribute to the quantum loops are negligible compared to the Hubble
scale during the cosmological era of interest. For the Maxwell theory, the violation
of Weyl invariance can lead to gauge field excitations in the early universe, and thus
to the generation of electromagnetic fields.

In our universe, magnetic fields are observed on various scales such as in galaxies
and galaxy clusters. Recent gamma ray observations suggest the presence of mag-
netic fields even in intergalactic voids. In order to explain the origin of the magnetic
fields, theories of primordial magnetogenesis have been studied in the literature,
where most models violate the Weyl invariance explicitly at the classical level by
coupling the gauge field to some degrees of freedom beyond the Standard Model of
particle physics [32, 12]. See e.g. |1, 5, 6, 81, 7, 8, 9, 11| for reviews on magnetic
fields in the universe from different perspectives.

It was pointed out in [32]| that the Weyl anomaly of quantum electrodynamics
itself should also induce magnetic field generation. If true, this would be a natural
realisation of primordial magnetogenesis within the Standard Model. Moreover,
since the anomaly is intrinsic to the Standard Model, its contribution to the magnetic
fields, if any, is irreducible'. Hence it is important to evaluate this also for the

Tt is irreducible in the sense that unless the beta function was zero, this contribution would

27
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purpose of identifying the minimum seed magnetic fields of our universe. Since [32],
there have indeed been many studies on this topic. However, there is currently little
consensus on the effect of the Weyl anomaly on magnetic field generation. One of the
main difficulties in proceeding with these computations is that the quantum effective
action in curved spacetime is in general very hard to evaluate. In principle, it is a
well-posed problem in perturbation theory. One can regularise the path integral
covariantly using dimensional regularisation or short proper-time regularisation and
evaluate the effective action using the background field method. However, explicit
evaluation of the path integral for a generic metric is not feasible. For instance, to
obtain the one-loop effective action it is necessary to compute the heat kernel of
a Laplace-like operator in an arbitrary background, which amounts to solving the
Schrédinger problem for an arbitrary potential.

One could evaluate the effective action perturbatively in the weak field limit using
covariant nonlocal expansion of the heat kernel developed by Barvinsky, Vilkovisky,
and collaborators [17, 18]. The effective action in this expansion has been worked
out to third order in curvatures [19, 20, 21, 22]. Similar results have been obtained
independently by Donoghue and El-Menoufi |78, 77] using Feynman diagrams. Some
of the earlier works on primordial magnetogenesis from anomalies, e.g. [33], relies
on the effective action derived in this weak field approximation. The weak field
expansion is valid in the regime R? < V2R, where R denotes a generalised cur-
vature including both a typical geometric curvature R as well as a typical gauge
field strength F'. During slow-roll inflation, one is in the regime of slowly vary-
ing geometric curvatures, R? > V2R, whereas during matter domination, one has
R? ~ V2R. Thus, during much of the cosmological evolution, the curvatures are not
weak compared to their derivatives. Therefore, to study primordial magnetogenesis
reliably over a long range of cosmological evolution, it is essential to overcome the
limitations of the weak field approximation.

As we discussed in chapter 2, one can go beyond the weak field approximation
for Weyl flat spacetimes. In this case, one can exploit Weyl anomalies and the
simplicity of the background metric to completely determine the dependence of
the effective action on the scale factor at one-loop even when the changes in the
scale factor are large. The main advantage of this approach is that Weyl anomalous
dimensions of local operators can be computed reliably using local computations such
as the Schwinger-DeWitt expansion without requiring the weak field approximation
R? <« V?R. The resulting action obtained by integrating the anomaly is necessarily
nonlocal and essentially resums the Barvinsky-Vilkovisky expansion to all orders in
curvatures albeit for the restricted class of Weyl-flat metrics. A practical advantage
is that one can extract the essential physics with relative ease using only the local
Schwinger-DeWitt expansion which is computationally much simpler.

In this chapter we use the quantum effective action of 2.68 beyond the weak
field limit, and present the first consistent computation of the effect of the Weyl
anomaly on cosmological magnetic field generation. We study U(1) gauge fields
originating as vacuum fluctuations in the inflationary universe, and analyse their
evolution during the inflation and post-inflation epochs. Our main conclusion is
that there is no production of coherent magnetic fields from the Weyl anomaly of

always be there, regardless of the possible extraneous sources of Weyl symmetry breaking such as
couplings between the gauge field and inflaton.
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quantum electrodynamics, contrary to the claims of previous works. Our results
hold independently of the details of the cosmological history, or of the number of
massless charged particles in the theory. We show, in particular, that even if there
were extra charged particles in addition to those of the Standard Model, the Weyl
anomaly with an increased beta function still would not produce any magnetic fields.

Since the time-dependence introduced by the Weyl anomaly is unusually weak,
the analysis of the (non)generation of magnetic fields requires careful consideration
of the nature of the field fluctuations, in particular whether they are classical or
quantum. For this purpose, we introduce general criteria for assessing the quantum-
ness of field fluctuations. Using these criteria, we find that the quantum fluctuations
of the gauge field actually do not get converted into classical fluctuations.

This chapter is organised as follows. In §3.1 we specialise the results of chapter 2
regarding the one-loop quantum effective action for a Weyl-flat metric to the specific
case of an abelian field in an expanding universe. In §3.2 we canonically quantise
the gauge fields using this action and introduce the criteria for quantumness. In §3.3
we analyse the evolution of the gauge field in the early universe and show that there
is no production of coherent magnetic fields. In §3.4 we comment on the relation of
our work to earlier works and conclude with a discussion of possible extensions.

3.1 Nonlocal Effective Action for Quantum Electrody-
namics

In the early universe before the electroweak phase transition, quarks and leptons
are massless?. Consider the hypercharge U(1) gauge field of the Standard Model
coupled to these massless Dirac fermions which we collectively denote by W. Here
we follow the same procedure introduced in 2.2.2 specialising to this particular case.
The classical Lorentzian action in curved spacetime is

1

P E,F" +iWTI*et D, V| , (3.1)
€0

Salg 4.9 =~ [ ata gl |

where F,, = 0,A, — 0,4,, and e% is the bare charge. The covariant derivative
is defined including both the gauge connection A, and the spin connection in the
spinor representation wzb:

i

D#::@l—2

Wi Jap — iQA,, (3.2)

where {J,;} are the Lorentz representation matrices and Q is the quantised charge
of the field in units of eg.
Classically, this action is invariant under Weyl transformation:

G — ezg(m)gw,, g — 6_25(9”)9“”, v — e_%g(x)\ll, A, — A, (3.3)

2The expectation value of the Higgs field could fluctuate during inflation with an amplitude of
the order of the inflationary Hubble scale. However, since most of the Yukawa couplings are small,
the induced masses for these fermions would still be smaller than the Hubble scale which could be
treated as effectively massless.
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The Weyl symmetry is anomalous because in the quantum theory one must introduce
a mass scale M to renormalise the theory which violates the Weyl invariance. The
Weyl anomaly introduces a coupling of the gauge field to the Weyl factor of the
metric. To analyse its effects on the fluctuations one can proceed in two steps. One
can first perform the path integral over fermions treating both the metric and the
gauge field as backgrounds. The resulting effective action for the electromagnetic
field will include all quantum effects of fermions in loops. It is necessarily nonlocal
because it is obtained by integrating out massless fields. One can then quantise the
gauge field using this effective action to study the propagation of photons including
all vacuum polarisation effects as well as interactions with the background metric.

In flat spacetime, with g,,, = 1., the quantum effective action can be computed
using standard field theory methods. Up to one loop order, the quadratic action for
the gauge fields is given by?

Sﬂat[na - /d4 [ ,ul/ FW/ /d4y F;w ( _y)FMV(y) (3'4)
where e? = e2(M) is the coupling renormalised at a renormalisation scale M, and

f(e) is the beta function of loge, i.e.,

dloge

W = /S’(e). (3.5)

The beta function of quantum electrodynamics takes positive values, which is written
as

2 2
Ble) = b%, where b= TrGEg )
Here the coefficient b is expressed in terms of the trace of the charge operator taken
over all massless charged fermions?. To keep the discussion general, we will also
allow for the possibility of extra massless charged particles beyond the Standard
Model in the early universe, and treat the beta function as an arbitrary positive
parameter.
As mentioned in section 2.2.2, the bilocal kernel in the second term of the action

can be defined by a Fourier transform:

82 d4p : i pypu
L(z —y) = (z|log <M2) ly) = / (27T)4ep“( v) log ( Ve ) . (3.7)

The more familiar look of the action, in momentum space, takes the form

(3.6)

1 d*p

Sﬁat[n>A] = _4762 (271’)4

17°0°% Fpo(—p) [1—Blog <pﬁ;ﬂ Fap(p).  (38)

Here one can more easily recognise the first term as the classical action with renor-
malised coupling and the second term as the usual one-loop logarithmic running of
the coupling constant.

3The quantum effective action in general contains higher powers of the field strength but the
resulting nonlinearities will not be relevant for our purposes.

4The photon field is related to the hypercharge gauge field by a number of order unity that
depends on the Weinberg angle. This distinction will not be important for our conclusions.
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Figure 3.1: The first term in the top line represents the classical propagation of the
photon whereas the second term in the top line represents the one-loop correction
to the propagator due to vacuum polarisation in flat space. All diagrams in the
bottom line represent vacuum polarisation in the presence of a curved metric g, =
Nyuv + by treating hy,, as a perturbation. The Barvinsky-Vilkovisky expansion gives
the covariantized nonlocal action resumming the specific powers of A required for
general covariance. Equation (3.11) obtained by integrating the anomaly resums
these diagrams to all orders into a simple expression for Weyl-flat spacetimes.

To get some intuition about the effects of a curved spacetime, it is useful to
consider the weak field limit so that the metric is close to being flat, g, = 7., +hyuw .
If hy, is very small, then one can treat it as a perturbation to compute the corrections
using Feynman diagrams. Various corrections arising from the interactions with the
non-flat background metric are shown diagrammatically in Figure 3.1 for the photon
propagator. It is clear that even at one loop order, there are an infinite number of
diagrams that contribute to the propagator. The Barvinsky-Vilkovisky expansion
and related results complete the obtained expressions into non-linear and covariant
functions of h,,. Doing so however to a fixed order in h,, implies one neglects
higher curvatures when compared to higher derivatives. More concretely,

R? ~ (9*h)?, V?R ~ 8*h. (3.9)

As a result this ‘curvature expansion’ is very different from the usual ‘derivative
expansion’ and is justified only in the limit V2R > R2. If one is interested in a
metric such as the Friedmann-Robertson-Walker metric that differs substantially
from the Minkowski metric, a perturbative evaluation in this weak field limit clearly
would not be adequate.

As we have discussed in chapter 2, for Weyl-flat metrics, i.e., metrics of the
form g, = 62917“,,, it is indeed possible to obtain the quantum effective action at
one-loop as an exact functional of €2 without assuming small h. This is achieved by
integrating the Weyl anomaly and matching with the flat space results 2.42. The
part of the action that contains the gauge field takes a simple form?:

S[gaA] = Sﬂat[naA] + 53[777Q7A] ) (31())

5In the space of metrics, this action is evaluated in the subspace of Weyl-flat metrics. For this
reason it is beyond the reach of this method to compute the equations of motion for the background
metric which requires a functional variation with respect to g,. even in directions orthogonal to
the Weyl orbits.
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where Shy; is the effective action at one-loop as in (3.4), and Sg has the anomalous
dependence on the Weyl factor (or the scale factor in a Friedmann-Robertson-Walker
spacetime):

Suln, 2 Al = =35 [ d'e Q) Fu (@) P (@) (3.11)

where the indices are raised using the Minkowski metric as in (3.4). Thus the total
effective action can be written as

_ 92

L [ty R ol [t B1oe (s ) | P, (1)

5= "4

Even though the resummed answer of (3.11) is a local functional of €2, it must
come from nonlocal terms when expressed in terms of the original metric g,,,. There
are non-local functionals that evaluate to the Weyl factor Q(z) on Weyl-flat back-
grounds [79, 80, 23]. One example is the Riegert functional as we mentioned in 2.94:

Qo) = ; [y Vg Galern) Filg)0) (313)

where Fy is given by 2.95 and the Green function G4(x,y) defined by

§W(z —y)

Vgl

is the inverse of the Weyl-covariant quartic differential operator Ay defined in 2.97.

AY[g]Ga(z,y) = (3.14)

The Riegert functional (2.94) is manifestly covariant but nonlocal, consistent
with the fact that the anomalous 2 dependence represents genuine long-distance
quantum effects that cannot be removed by counter-terms that are local functionals
of the metric. In the perturbative Barvinsky-Vilkovisky regime we have R? < V2R
and one can expand the expression for Q (2.94) in curvatures to obtain to leading

order -
0 - =

It is clear from (2.94) that this expression receives corrections to all orders in R.
The simple expression (2.93) effectively resums these contributions to all orders as
explained in chapter 2.

R+.... (3.15)

There are other functionals that naturally appear when integrating anomalies.
The distinction for us would be particularly important is we were to compute the
equations of motion for the metric. Since this is not our case and we are interested
solely on Weyl-flat spacetimes, we won’t discuss the differences in detail here, but a
deeper discussion can be found at [22].

In four dimensions there is one other natural functional that evaluates to 2. It
is interesting to notice that it does coincide with the Riegert functional 2.94 in the
first term in weak field expansion. The reason for that is that by definition they
must differ by Weyl invariant terms. Since there are no Weyl invariant terms linear
in the curvatures in four dimensions, the difference between them can only be seen
from the quadratic order and beyond.
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3.2 Quantisation of the Gauge Field

We now quantise the gauge field in a flat Friedmann-Robertson-Walker background,

ds® = a(1)? (—dT2 + dar:2) . (3.16)

Here the Weyl factor 2 = log a now depends only on time. For later convenience we
rewrite the effective action (3.12) in the form

1
S = _1 /d4l‘1d4l'zz2(l’1,$2)F#V($1)Fﬂy($2), (317)

with

1 d4]€ ; I ~ CL2 ~ k, kY
2 - iky (2l —2k) _ * B v
Pionan) = 3 [ e 0 1= s () = os (72 )|
(3.18

where z# and k* are comoving coordinates and wave number, respectively, and the
indices are raised and lowered with the Minkowski metric. We have introduced
a reference "scale factor" a4 in order to split the action into k,kY-dependent and
independent parts; this splitting is completely arbitrary, and hence a, can also be
chosen arbitrarily.

3.2.1 Simplified Effective Action

Let us decompose the spatial components of the gauge field into irrotational and
incompressible parts,

Ay = (Ao, S +V;) with 8;V; =0, (3.19)

where we use Latin letters to denote spatial indices (i = 1,2,3), and the sum over
repeated spatial indices is implied irrespective of their positions. One can check that
Ap is a Lagrange multiplier, whose constraint equation can be used to eliminate both
Ap and S from the action to yield
1
S = 5 /d4x1d4x2 IZ(Z‘l, .CCQ) {VZ(JZl)Vi/(xg) — 82‘/](371)8,‘/](3:2)} s (320)

where we drop surface terms, and a prime denotes a derivative with respect to the
conformal time 7. We now go to momentum space,

3 .
Ve = Y [ G ) o). (321)

p=1,2

where egp )(k:) (p = 1,2) are two orthonormal polarisation vectors that satisfy

P (k) ki =0, P (k) (k) = 6y (3.22)

7 (3

From these conditions, it follows that

Z El(p)(k) Egp)(k) = 0ij — ?7 (3.23)
p=1,2
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where we use k to denote the amplitude of the spatial wave number, ie. k =
|k|. Unlike the spacetime indices, we do not assume implicit summation over the
polarisation index (p).

The equation of motion of V; requires the mode function ué )( ) to obey

0:{1+2B10g <a(7)>}{ ”(”)( ) + k2u (P)( )}+2B“I(7)u/(p)(7)

Oy a(T) k

Ak o - kot

In order to estimate the second line, let us make the crude assumption that the
kY integral amounts to the replacement

A0 o ke, kt ) =
/27‘(‘6 ( )lOg <]\4lf2az> — 5(7' — 7') lOg (W) y (325)

where the coefficient of §(7 — 7) is obtained by integrating both sides over 7. Then
comparing with the terms in the { } parentheses in the first line of (3.24), one sees
that the second line is negligible when

2
‘1+2510g (a )‘>> ’Blog <Mk2a2ﬂ (3.26)

The second line of the equation of motion follows from the log(k, k") term
of (3.18) in the action. Hence as long as the wave modes of interest satisfy the
condition (3.26), we can ignore this term and use a simplified effective action of

(3.24)

Sioe = —i / d*x I(1)? Fp(z)F™ (2), (3.27)

I(1)? = e% [1 + 243 1og (‘Z(T)ﬂ . (3.28)

where

Qx

The equation of motion (3.24) reduces to

!

up® +217u,§ '+ k2P = 0. (3.29)
The action of the form (3.27) with various time-dependent functions I? has been
studied in the context of primordial magnetogenesis since the seminal work of [12].
However we stress that, unlike many models of magnetogenesis whose time depen-
dences are attributed to couplings to scalar fields extraneous to the Standard Model,
here, the function I? of (3.28) arises from the Weyl anomaly of quantum electrody-
namics and thus is intrinsic to the Standard Model. It should also be noted that, due
to the positivity of the beta function of quantum electrodynamics, I? monotonically

increases in time.
As is indicated by the equation of motion, there is no mixing between different
wave modes under the simplified action. This allows us to take the parameter a,
differently for each wave mode upon carrying out computations. For convenience we

will choose
k
a, = —
*x 7‘ [7

(3.30)
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so that the simplifying condition (3.26) can be satisfied for a sufficiently long period
of time for every wave mode. However we should also remark that even with this
choice, the log(k, k") term does not drop out completely. This is because we have
used the approximation (3.25), and thus in the right hand side of the condition (3.26),
the argument of the log should be considered to have some width around k% /M?a2.
Hence we rewrite the simplifying condition for the choice of (3.30), by combining
with the further assumption of I? > 0, as

alM

1—|—26’10g< A

) > 6. (3.31)
If, on the other hand, the log(k, k") term cannot be ignored, this signals that the
theory is strongly coupled®. The Landau pole at which the coupling e blows up can
be read off from the running of the coupling (3.5) as

Amax = M exp <215) . (3.32)

In terms of this, (3.31) is rewritten as k/a < Amaxexp(—1/2). Hence the simplify-
ing condition can be understood as the requirement that the physical momentum
should be below the Landau pole during the times when one wishes to carry out
computations.

The function Z? (3.18) in the full effective action is independent of the renormal-
isation scale M, since the coupling runs as (3.5). We note that with the choice (3.30)
for ay, the function I? (3.28) in the simplified action also becomes independent of M.

3.2.2 Canonical Quantisation

In order to quantise the gauge field, we promote V; to an operator,

d3k ik-x —ik-x *
Vire) =3 / o P () {e* Pl (7) + e F PP (n)} (3.33)
p=1,2

where agcp ) and aL(p

tation relations,

)

are annihilation and creation operators satisfying the commu-

@, a\?] = (o[, i) =0, [P, o] 9] = 2m)P 516Dk —1).  (3.34)

For V; and its conjugate momentum which follows from the Lagrangian £ = (12/2)(V/V/—
0;V;0;Vj) (cf. (3.20)) as

oL
=

we further impose the commutation relations
[Vi(7->$)a Vj(Ta y)] = [Hi(T’m)7 Hj(7->y)] =0,

i0j 3.36
W) ) =9 (5, 22). O

II; = I*V/, (3.35)

The condition (3.31) is rewritten as I? > 3/e? = b/2. Violating this condition provides an
explicit example of what is often referred to in the literature as the “strong coupling problem” of
magnetogenesis with a tiny I [13].
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The second line can be rewritten using (3.23) as
[ Z(T7$)a ](T’y)] =1 Z (271')3 € € ( )ej ( ) ( . )
p=1,2
Choosing the polarisation vectors such that
P (k) = P (~k), (3.38)

one can check that the commutation relations (3.34) are equivalent to (3.36) when
the mode function is independent of the direction of k, i.e.,

ulP) = uP), (3.39)
and also obeys
e (u,(f)u;:(p) _ uz(p)u;(p)) — (3.40)

It follows from the equation of motion (3.29) that the left hand side of this condition
is time-independent, and thus this sets the normalisation of the mode function.

3.2.3 Photon Number and Quantumness Measure

Before proceeding to compute the cosmological evolution of the gauge field fluctu-
ations, we introduce two measures of ‘quantumness’ to determine when the field
fluctuations can be regarded as classical. See also [33, &1] for discussions along
similar lines.

In order to separately discuss each wave mode, we focus on the Fourier compo-
nents of the operator V; (3.33) and its conjugate momentum:

p=h? o (3.41)
Hl(T’ :C) - p;2/ (277)3 o ’Ep) (k) ﬂ-l(cp) (7-)

The Fourier modes can be expressed in terms of the annihilation and creation oper-
ators as

7)I(cID) (7_) — aip)uip)(T)_’_aT(Z)uz(p) (7_)’ Trl(cp) (T) — I(T)2 (ag)ugp) (T) 4 CLT_(Z)U;:(P) (T)) .

The commutation relations (3.34) or (3.36) entail

o (), 0 (0] = W @) M (] =0, W (), m " (0] = i(2m)° 716 ke +1).
(3.43)

We now introduce time-dependent annihilation and creation operators as

i 2P (r ¢
b)) = SI<T>UL”)<T>+¢% '?(T(>)’ bL(p)(”EﬁI“)“@'i“)‘m%’
(




3.2. QUANTISATION OF THE GAUGE FIELD 37

so that b;cp ) and b};(p ) satisfy equal-time commutation relations similar to (3.34) of

agcp ) and a};(p ), as well as diagonalise the Hamiltonian,

d ’f <b1 Dy 4

I:I = /d3l‘ (Hz‘/zl

Q[b( p) bT(P)}) (3‘45>
p=1,2

The two sets of annihilation and creation operators are related by
() = ol (M) al 480 ()Y, 07 () = i (1) P+ 87 (r)a, (3.46)

through time-dependent Bogoliubov coefficients:

(p) k (p) i /(p) p) k
=7 + — , =7 . 3.47
ak ( 2 m k ) ( 2 \/* > ( )

Using the normalisation condition (3.40), one can check that the amplitudes of the
coefficients obey

|a](€P)|2 _ |ﬁ](f’)|2 =1, (3.48)
2 ’ul(p)|2 1
ap= L (k: upp s ) L (3.9

When an adiabatic vacuum exists, bJ,;(p )bgcp ) counts the numbers of photons with
polarisation p and comoving momentum k. However this operator itself is defined
at all times, and it can be interpreted as an instantaneous photon number. Now let
us suppose agcp ) and ag 1®) ¢4 have initially diagonalised the Hamiltonian, i.e. 3, ) _
in the distant past, and that the system was initially in a vacuum state defined by
agcp ) |0) = 0 for p = 1,2 and for all k. Then at some later time, the number of created
photons per comoving volume is written as

dk 2
W0} = Z / (Skg) I8P (350

dk

where V = [ d3z = (27)36()(0). Thus one sees that 3%\5,(41))\2 represents the num-
ber of photons with polarisation p and comoving momentum of order” k, within a
comoving sphere of radius k~!. The photon number | ﬁ,gp ) |2 (we will omit the coeffi-
cient % as we are interested in order-of-magnitude estimates) is useful for judging
whether magnetic field generation takes place: A successful magnetogenesis model
that gives rise to magnetic fields with correlation length of k! does so by creating

a large number of photons with momentum k, thus is characterised by | ﬁ,(f )\2 > 1.

On the other hand, if the photon number is as small as \B,ip)\z = O(1), then it is
clearly not enough to support coherent magnetic fields in the universe.

"We assume that \ﬂ,(f)|2 is smooth in k so that it does not have sharp features in any narrow
range of Ak < k.
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One can define another measure of quantumness introduced in [34] (see also
discussions in [35]), by the product of the standard deviations of v,(cp ) and ﬂ,(cp ) in

units of their commutator:

1/2

(») (») (») (»)
O OWRO0 OO TR [ _ o ) )|

P (r), ) (r)]2

/i,(gp) (r) =

3.51
This quantity also corresponds to the classical volume of the space spanned Eoy ’UZ
and 7_g, divided by their quantum uncertainty®. It takes a value of /@,(Cp ) ~ 1 if the
gauge field fluctuation with wave number k is quantum mechanical. On the other
hand, if the fluctuations are effectively classical and large compared to the quantum
uncertainty, then ﬁ,(cp ) > 1.

This measure can also be used to quantify the conversion of quantum fluctuations
into classical ones. As an example, consider a (nearly) massless scalar field in a
de Sitter background (such as the inflaton), for which the measure s can similarly
be defined in terms of the scalar fluctuation and its conjugate momentum. Given
that the fluctuation starts in a Bunch-Davies vacuum when the wave mode k is
deep inside the Hubble horizon, one can check that xj grows from ~ 1 when the
wave mode is inside the horizon, to ki > 1 outside the horizon, suggesting that the
quantum fluctuations “become classical” upon horizon exit.

The quantumness measure can also be expressed in terms of the Bogoliubov
coefficients as

(kP2 = i (aP)? — (8?2 2 _ % 11802 (1 n IB;?’)IQ) sin? {arg(a’gmﬁ;(p))}’
(3.52)
where we have used (3.48) upon moving to the far right hand side. This clearly shows
that ﬁgf ) takes its minimum value 1 /2 when there is no photon production, i.e., for
ﬁ,(cp ) — 0. TIs is also useful to note that the instantaneous photon number |ﬁ,(€p )|2

corresponds to the sum of squares of the standard deviations of v,(cp ) and W’(cp ) with

weights (kI%)*!, cf. (3.49). An inequality relation of

1
BPPR > k! — 3 (3.53)

is satisfied.

The classical Maxwell theory is described by setting I? = 1/e?, with which the
mode function is a linear combination of plane waves. Then |ﬁ,(€p )| simply corresponds
to the amplitude of the coefficient of the negative frequency wave, and thus is time-
independent. It can also be checked in this case that arg(a,(cp )Bz(p )) = —2kT +const.,
and hence one sees from (3.52) that K’(cp ) for plane waves oscillates in time within
the range 1/2 < /i,(cp) <1/2+ ]ﬂ,(cp)P.

(p)
k

8Here x,"’ is defined slightly differently from the x introduced in Appendix B.3 of [84]: k =

(2H<kp))—2.
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3.3 Cosmological Evolution of the Gauge Field

The anomalous dependence of the effective action for quantum electrodynamics on
the scale factor couples the gauge field to the cosmological expansion. Here, in
order to study the time evolution, the initial condition of the gauge field needs to
be specified. A natural option is to start as quantum fluctuations when the wave
modes were once deep inside the Hubble horizon of the inflationary universe. This
Bunch-Davies vacuum during the early stage of the inflationary epoch will be the
starting point of our computation.

It should also be noted that the scale factor dependence does not “switch off”, as
long as there are massless particles around, and thus the cosmological background
continues to affect the gauge field equation of motion even after inflation. (In this
respect, the effect of the Weyl anomaly serves as a subclass of the inflationary plus
post-inflationary magnetogenesis scenario proposed in [141].) After inflation ends, the
universe typically enters an epoch dominated by a harmonically oscillating inflaton
field, whose kinetic and potential energies averaged over the oscillation are equal and
thus behaves as pressureless matter. Then eventually the inflaton decays and heats
up the universe; during this reheating phase, the universe is expected to become
filled with charged particles and thus the gauge field evolution can no longer be
described by the source-free equation of motion (3.29). We also note that after
the electroweak phase transition, the charged particles in the Standard Model will
obtain masses and therefore our effective action (2.93) becomes invalid. Hence the
gauge field evolution will be followed up until the time of reheating or electroweak
phase transition, whichever happens earlier.

3.3.1 Bunch-Davies Vacuum

For the purpose of obtaining a gauge field solution that corresponds to the vac-
uum fluctuations, it is convenient to rewrite the equation of motion (3.29) into the
following form:

7\ 1/2
Tug)” + w? Tup =0, where wp= | . 3.54
k I

We have dropped the polarisation index (p) because the action is symmetric between
the two polarisations. This equation admits an approximate solution of the WKB-

type

up P (r) = 1>1(T> exp (—z‘ / a7 wk(ﬂ) : (3.55)

2w (r
given that the time-dependent frequency wy satisfies the adiabatic conditions,

2

! 1
=31 “g‘« 1. (3.56)
w w
k k
When further
W2 >0, (3.57)

then wy is real and positive, and the WKB solution (3.55) describes a positive
frequency solution that satisfies the normalisation condition (3.40). The period
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when the above conditions are satisfied can be understood by noting that

I b [aH\?> H’ b
Wi (k;) (1 T am 212> : (3.58)

Here H = a’/a® is the Hubble rate. The simplifying condition (3.31) imposes b <
212, and |H'/aH?| < 1 is usually satisfied in a cosmological background. Hence
for wave modes that are inside the Hubble horizon, i.e. k > aH, it follows that
k*>> |I”/1|. This yields w} ~ k?, satisfying the conditions (3.56) and (3.57).

In an inflationary universe, if one traces fluctuations with a fixed comoving wave
number k back in time, then its physical wavelength becomes smaller than the
Hubble radius. Therefore we adopt the solution (3.55) when each wave mode was
sub-horizon during inflation, and take as the initial state the Bunch-Davies vac-
uum |0) annihilated by ag. Starting from this initial condition, we will see in the
following sections how the vacuum fluctuations evolve as the universe expands.

3.3.2 Landau Pole Bound

If we go back in time sufficiently far, the physical momentum of a comoving mode k
hits the Landau pole (3.32) and we enter the strong coupling regime. Here the
simplifying condition (3.31) also breaks down. Hence in order to be able to set the
Bunch-Davies initial condition while maintaining perturbative control, there needs
to be a period during inflation when k/a < Apax as well as the adiabaticity (3.56)
and stability (3.57) conditions hold simultaneously. We just saw that the conditions
(3.56) and (3.57) hold when the mode is sub-horizon, i.e. k/a > Hi,f, where Hin¢
is the Hubble rate during inflation. Therefore we infer a bound for the inflationary
Hubble rate

Hmf < AmaXa (359)

so that the Bunch-Davies vacuum can be adopted during the period of Hiys < k/a <
Amax. We also see that this Landau pole bound on inflation collectively describes
the various conditions imposed in the previous sections, namely, adiabaticity (3.56)
and stability (3.57) during the early stage of inflation, as well as the simplifying
condition (3.31) throughout the times of interest.

The current observational limit on primordial gravitational waves sets an upper
bound on the inflation scale as Hiyy < 10 GeV [?]. The Landau pole Apax can
be smaller than this observational bound if there were sufficiently many massless
charged particles in the early universe. Taking for example the coupling to run
through e?(My) ~ 47/128 at My ~ 91.2GeV [30], a beta function coefficient as
large as b = 0.4 would lead to Apax < 10 GeV. For such a large beta function,
the adiabatic and perturbative regimes cannot coexist for the gauge field during
high-scale inflation.

3.3.3 Slowly Running Coupling

Before analysing the gauge field evolution in full generality, let us first focus on cases
with tiny beta functions. Such cases can be treated analytically, by approximating
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the I? function (3.28) for small § as

1 a 28
I? ~ 2 () . (3.60)

Ay

We will later verify the validity of this approximation by comparing with the results
obtained from the original logarithmic 2.

In a flat Friedmann-Robertson-Walker universe with a constant equation of
state w, the equation of motion (3.29) under the power-law I? admits solutions
in terms of Hankel functions as [11],

2 k 1 23
up = 2" {clHél)(z) + CQHIS2)(Z)} , where z= T3 8w ol V= T Tr e
(3.61)

and the coeflicients c¢q, ¢o are independent of time. Here, the equation of state
parameter w can take any value except for —1/3, and the variable z scales with the
scale factor as z o< a(!*3%)/2 The time derivative of the mode function is written
as

uj, = sign(1 + 3w) k2" {clHil_)l(z) + CQH£2_)1(Z)} . (3.62)

The behaviours of uj, and ), in the super-horizon limit, i.e. z — 0, can be read off
from the asymptotic forms of the Hankel function:

HY () = (B2E) ~-r0) (5)7

A UL
#2)(2) = (H21(2) ~ =0 e -0 (3)
T 2
which are valid when B is small such that 0 < v < 1 is satisfied.
During Inflation
The inflationary epoch is characterised by the equation of state w = —1 and a time-
independent Hubble rate Hj,s. The solution that asymptotes to a positive frequency
solution in the past is
1
1 T 2 (1) k
_ = HY O —— 3.64
Y (aHmf> 147 (aHinf ’ (364

whose normalisation is set by (3.40) up to an unphysical phase. Therefore the
amplitudes of the mode function and its time derivative are obtained as

MO daHye | 348 \ aHyg o k ’
, o ) (3.65)
EIZ|U/ |2 _ Tk H(l) ) k - (F(§ - 5))2 2aHinf —2h
P 4aHys | —3+8 \ aHing o k ’

where the far right hand sides show the asymptotic forms in the super-horizon
limit obtained by using (3.63). The geometric mean of these amplitudes yields
the quantumness measure (3.51),

wk 1) k (1) k
= HY H - . .
4aHinf %"—ﬁ (aHinf _%—’—’B aHinf (3 66)

Kk
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In the sub-horizon limit k/aH;ys — oo, this parameter approaches ki ~ 1/2 and
thus the gauge field fluctuations are quantum mechanical, which should be the case
since we have started in the Bunch-Davies vacuum.

The important question is whether the fluctuations become classical upon hori-
zon exit, as in the case for light scalar fields during inflation. Using the reflection
relation I'(w)I['(1 — w) = 7/ sin(nw) for w ¢ Z, the asymptotic value of the quan-
tumness parameter in the super-horizon limit k/aHi,s — 0 is obtained as

g o — (3.67)

2 cos(mf3)

Thus we find that xj, becomes time-independent outside the horizon, and its asymp-
totic value depends’ only on B. Most importantly, k is of order unity for B <1
This implies that if the beta function is small in the early universe, the time-
dependence induced by the Weyl anomaly is not sufficient for converting vacuum
fluctuations of the gauge field into classical ones. Therefore no classical magnetic
fields would arise.

We also estimate the instantaneous photon number (3.49) outside the horizon
by summing the asymptotic expressions of (3.65), yielding

1,7 28 17 aH e\ ~28
182 ~ (C(3 +8)° <2aﬂmf) n I (%47rﬁ)) <2 Hmf> L (3.68)

47 k k 2

The first term grows in time as o aQ'é, hence it will eventually dominate the right
hand side if we wait long enough. In a realistic cosmology, however, this term does
not become much larger than unity. We will see this explicitly in the following
sections.

After Inflation

One can evaluate the mode function also in the effectively matter-dominated epoch
after inflation by matching solutions for w = —1 and w = 0 at the end of inflation.
However let us take a simplified approach: From the solutions (3.61) and (3.62) for
generic w, and the asymptotic forms of the Hankel function (3.63), one can infer the
time-dependences of the mode function outside the horizon in a generic cosmological
background as i i

Plug|? < a®®,  IPlu})? o« a™2P. (3.69)

These super-horizon evolutions are determined only by the beta function /3. Hence
we find that for wave modes that exit the horizon during inflation, the super-
horizon expressions in (3.65) continue to hold even after inflation, until the mode
re-enters the horizon.!? In particular, the super-horizon expressions (3.67) for sy,

9Since the approximate expression (3.60) for I* explicitly depends on the renormalisation
scale M, so does the asymptotic value (3.67). However this M-dependence is tiny for slowly
running couplings.

10This kind of argument breaks down when the leading order approximations for the two Hankel
functions H,Sl)(z) and HﬁQ)(z) cancel each other in the mode function. Such cases are presented
in [14]. However in the current case where the power B of the I? function is tiny, the cancellation
does not happen as we will see in the next section by comparing with numerical results that the
scaling (3.69) indeed holds until horizon re-entry.
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and (3.68) for |B;]? also hold while the wave mode is outside the horizon; these
expressions are the main results of the small-3 analysis. Thus we find that ki stays
constant, while |3|? basically continues to grow until horizon re-entry.

If the mode re-enters the horizon before reheating and electroweak phase tran-
sition, then we can continually use our effective action for analysing the gauge field
dynamics. Inside the horizon, where adiabaticity is recovered, the photon num-
ber |Bk|? becomes constant. On the other hand, the quantumness parameter
oscillates in time between 1/2 and 1/2 + |B|?, as described below (3.53).

We see from (3.68) that in order to have substantial photon production, i.e.
|Bk|? > 1, the quantity (aHint/k)?*? needs to become large while the mode is outside
the horizon. A larger Hi,s and B, as well as a smaller k are favourable for this
purpose. Here, for example, the magnitude of aHj,¢/k upon the electroweak phase
transition at Tpw ~ 100 GeV is, given that the universe has thermalised by then,

Hiy, Hiy k -
EW it 1 (fe> <a .10 Gpc> , (3.70)
0

where ag is the scale factor today. The detailed value can be modified for different
cosmological histories, but what is relevant here is that even with the observably
allowed highest inflation scale Hiys ~ 10'* GeV, and with the size of the observable
universe ag/k ~ 10 Gpc (or even on scales tens of orders of magnitude beyond that),
if the beta function is 3 = 0(0.01), then (agw Hint/k)?® = 0(10). Hence the number
of photons created over the cosmological history would only be of |3;|?> = O(10),
which is too small to support coherent magnetic fields.

On the other hand, the power-law I? (3.60) with § = 1 yields an equation of
motion equivalent to that of a minimally coupled massless scalar field. Indeed, if one
were to use the power-law 12 with B > 1, then |Bk|? and kg are found to significantly
grow outside the horizon; thus one would conclude that gauge fluctuations do become
classical and give rise to cosmological magnetic fields for a large beta function.
However, in reality the power-law approximation breaks down when f is not tiny,
and we will explicitly see in the next section that the fluctuations of the gauge field
actually never become classical, independently of the value of /3’ )

3.3.4 General Coupling

In order to analyse quantum electrodynamics with generic beta functions, we have
numerically solved the equation of motion (3.29) for the original logarithmic I? func-
tion (3.28), with a, chosen as (3.30). Starting from the WKB initial condition (3.55)
during inflation when Hiyr < k/a < Apax is satisfied, the mode function is computed
in an inflationary as well as the post-inflation matter-dominated backgrounds. For
the coupling we used e?(Myz ~ 91.2GeV) ~ 47/128 [36], and considered it to run
with a constant beta function coefficient b in (3.6) which is of order 0.1 for three

light generations!!.

"1n reality, b is not a constant since the number of effectively massless particles depends on
the energy scale. Moreover, the hypercharge is related to the physical electric charge through
the Weinberg angle. However, these do not change the orders of magnitude of Sx and ki for the
electromagnetic field.
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In Figure 3.2 we plot the evolution of |8;|? and k), — 1/2 as functions of the scale
factor a/ag. Here the inflation scale is fixed to Hi,s = 10'* GeV, and the reheating
temperature to To, = 100 GeV such that it coincides with the scale of electroweak
phase transition. The beta function coefficient is taken as b = 0.01 (thus S(Mz) ~
5 x 107%), and the gauge field parameters are shown for two wave numbers: k/ag =
(10 Gpe) ™! (red lines) which corresponds to the size of the observable universe today,
and k/ag = (107®pc)~! (blue lines) which re-enters the Hubble horizon before
reheating. The figure displays the time evolution from when both modes are inside
the horizon during inflation, until the time of reheating. The vertical dotted line
indicates the end of inflation, and the dot-dashed lines for the moments of Hubble
horizon exit/re-entry. With the beta function being tiny, the analytic expressions
(3.67) and (3.68) derived in the previous section well describe the behaviours of
ki and |Bg|? outside the horizon. After the mode k/ag = (107¢pc)~! re-enters the
horizon (after the blue dot-dashed line on the right), |3%|> becomes constant whereas
Ky oscillates within the range of (3.53). |Bx|? is larger for smaller k as there is more
time for super-horizon evolution, however even with k/ag = (10 Gpc) ™!, |Bk|? does
not exceed unity by the time of reheating.

Figure 3.3 shows |3;|? and xj —1/2 as functions of the beta function coefficient b.
Here the wave number is fixed to k/ag = (10 Gpe) ™!, and the reheating temperature
to Tyen = 100GeV. The gauge field parameters |f;|? and xj in the figure are
evaluated at the electroweak phase transition, which coincides with the time of
reheating. The solid curves with different colours correspond to different inflation
scales, which are chosen as Hi,; = 10 GeV (blue), 10° GeV (orange), and 1 GeV
(red). The Landau pole bound on the inflation scale (3.59) imposes an upper bound
on the beta function coefficient as bmax ~ 0.4 for Hins = 10 GeV, and bpax ~ 1.1
for Hyys = 10 GeV. The computations have been performed for values of b up to
0.7 X bmax, which are shown as the endpoints of the blue and orange curves. On the
other hand, if the inflation scale is as low as Hi,s/2m < 100 GeV, the electroweak
symmetry would already be broken during inflation. However even in such cases,
there might still be massless charged particles in the early universe for some reason.
Hence for completeness, we have also carried out computations with H;,r = 1 GeV.
There is no Landau pole bound on b with such a low-scale inflation, as is obvious
from His being smaller than the scale My where we set the coupling. Hence this
extreme case allows us to assess the implications of large beta functions, although
it should also be noted that as one increases b, perturbation theory will eventually
break down.

The wave mode k/ag = (10 Gpc)~! for which the parameters are evaluated is
way outside the horizon at the electroweak phase transition, thus the super-horizon
approximations (3.67) and (3.68) should be valid for small beta functions. These are
shown as the dashed lines in the plots: In the left panel, (3.68) is plotted using (3.70),
with the colours of the dashed lines corresponding to the different inflation scales.
In the right panel there is just one black dashed line, because (3.67) for ki only
depends on the beta function.'?> The analytic approximations indeed agree well
with the numerical results at b < 0.1. With larger b, the numerical results for
Hir = 10 GeV and 10° GeV show that even when approaching the Landau pole

12The expressions (3.67) and (3.68) assume a tiny beta function, hence upon plotting the dashed
lines, the running is neglected and the coupling is fixed to e? = 47/128.
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Figure 3.2: Time evolution of the instantaneous photon number |3 |? (dashed lines)
and quantumness parameter s subtracted by 1/2 (solid lines), for wave numbers
k/ag = (10Gpc)~! (red lines) and (10~®pc)~! (blue lines). The beta function
coefficient is set to b = 0.01. The background cosmology is fixed as Hj,; = 104 GeV
where inflation ends at the vertical dotted line, and reheating with T}, = 100 GeV
taking place at the right edge of the plot. The wave mode k/ag = (10 Gpc) ™! exits
the Hubble horizon at the vertical red dot-dashed line, whereas k/ag = (1076 pc)~!
exits and then re-enters the horizon at the blue dot-dashed lines.
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Figure 3.3: Instantaneous photon number |3|? (left) and quantumness parameter
subtracted by 1/2 (right) at the electroweak phase transition, as functions of the beta
function coefficient b. The results are shown for a wave number k/ag = (10 Gpc) L.
The reheating temperature is fixed to T, = 100 GeV, while the inflation scale is
varied as Hi,r = 1014 GeV (blue solid lines), 10° GeV (orange solid), and 1 GeV (red
solid). The endpoints of the curves show where the Landau pole bound is saturated
(see text for details). The dashed lines show the analytic approximations derived

for small beta functions: (3.68) for 8|2, and (3.67) for ry.
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bound, the parameters |3;|? and ry are at most of order unity. For Hi,s = 1GeV
(assuming the existence of massless charged particles), |3x|? and xx become less
sensitive to b at b = 1 and thus turns out not to exceed order unity even with
large b. Here we have focused on a rather small wave number k/ag = (10 Gpc)~?
and a low reheating temperature 1., = 100 GeV; however for larger k and Tyep,
the value of |3¢|? upon reheating becomes even smaller as there is less time for the
super-horizon evolution.

A heuristic argument for why the logarithmic I? function (3.28) never leads to
substantial photon production goes as follows: Even if the beta function is as large
as B = 1, while the universe expands by, say, 100 e-foldings starting from a,, the
logarithmic I? grows only by a factor of 200. On the other hand, if one were to
obtain the same growth rate with a power-law I? (3.60), the power would have to
be as small as 3 ~ 0.03; then it is clear from the expressions (3.67) and (3.68) that
the effect on photon production is tiny.

Thus we find that, for generic values of the beta function, inflation/reheating
scales, and wave number, the instantaneous photon number |3|> and quantumness
measure ki do not become much greater than unity. Here, the physical meaning
of |Bx|> may seem ambiguous when the wave mode is outside the horizon and thus
an adiabatic vacuum is absent. However as was discussed above (3.70), the quan-
tity |Bx|? needs to become large while outside the horizon in order to have a large
number of photons to support coherent magnetic fields. Moreover, the quantumness
measure ki is bounded from above by [Bk|? + 1/2, cf. (3.53). Therefore we can
conclude that, unless some additional process significantly excites the gauge field
after the electroweak phase transition or reheating (namely, after our effective ac-
tion becomes invalid), the Weyl anomaly does not convert vacuum fluctuations of
the gauge field into classical fluctuations, let alone coherent magnetic fields in the
universe.

3.4 Conclusions and Discussion

We have analysed cosmological excitation of magnetic fields due to the Weyl anomaly
of quantum electrodynamics. Despite the anomalous dependence of the quantum
effective action on the scale factor of the metric, we showed that the vacuum fluc-
tuations of the gauge field do not get converted into classical fluctuations, as long
as inflation happens at scales below the Landau pole. In particular, the number
of photons with a comoving momentum & produced within a comoving volume k3
was found to be at most of order unity, for generic k. With such a small number of
created photons, we conclude that the Weyl anomaly does not give rise to coherent
magnetic fields in the universe. Our conclusion is independent of the details of the
cosmological history, or the number of massless charged particles in the theory.

For obtaining this result, which disproves the claims of many previous works,
there were two key ingredients. The first was the quantum effective action beyond
the weak gravitational field limit. We saw that, especially for cases where the beta
function of quantum electrodynamics was large in the early universe, one could draw
dramatically incorrect conclusions from inappropriate assumptions about the effec-
tive action. The essential point is that the anomalous dependence of the effective
action on the metric is associated to the renormalisation group flow of the gauge cou-
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pling, and therefore the dependence is only logarithmic in the scale factor, cf. (3.17)
and (3.18); this is in contrast with the case of massless scalar fields having power-
law dependences on the scale factor at the classical level. The second element was a
proper evaluation of the nature of the gauge field fluctuations, which we discussed
quantitatively in terms of the photon number (3.49) and the quantumness parame-
ter (3.51). Focusing on these quantities, we explicitly showed that the logarithmic
dependence on the background metric induced by the Weyl anomaly does not lead
to any generation of coherent classical magnetic fields.

We now briefly comment on some of the earlier works on Weyl anomaly-driven
magnetogenesis. The original works [87, 82] approximated the effect from the Weyl
anomaly as a power-law I? for a generic beta function, and thus arrived at the
incorrect conclusion that a large beta function gives rise to observably large magnetic
fields. On the other hand, the recent work [33] relies on the effective action derived in
the weak gravitational field limit. The Weyl factor in an inflationary background is
computed using the curvature expansion of (3.15), which yields  ~ (2/3) log a in the
asymptotic future, instead of the exact answer of log a. At any rate, a logarithmic I?
is obtained with a form similar to (3.28) up to numerical coefficients. However,
the fact that a logarithmic I? cannot produce enough photons to support coherent
magnetic fields was overlooked.

Our considerations can also be applied to quantum chromodynamics. The ef-
fective action is analogous to (2.93) with 3 given by the beta function of quantum
chromodynamics coupled to massless quarks. One main difference from electrody-
namics is that the beta function is negative, yielding asymptotic freedom; hence
the theory goes into the strongly coupled regime in the late universe. The time
evolution of the mode function can further be altered by the nonlinearities of the
Yang-Mills action. Here, since the dependence of the effective action on the scale
factor is anyway logarithmic, it may turn out that colour magnetic fields are also
not generated by the Weyl anomaly; however, it would be worthwhile to analyse
systematically the range of possibilities that can arise for SU(N) Yang-Mills fields.
With such analyses, one should also be able to evaluate the effect of the possible
mixing of the SU(2) gauge field fluctuations into the photons upon the electroweak
phase transition, which we did not consider in this chapter. The study of the effects
of the Weyl anomaly in the strongly coupled regime, for instance electrodynamics
with inflation scales higher than the Landau pole (thus with a very large beta func-
tion), or chromodynamics near the confinement transition is very interesting but
would require nonperturbative methods.






Chapter 4

Conclusion

In this thesis we have analysed the semi-classical physics of quantum fields in Weyl-
flat spacetimes. We have shown that non-localities coming from virtual massless
particles can be handled beyond the weak field approximation. The complete gamut
of physical consequences is still open to exploration, we have focused on the simplest
application: primordial magnetogenesis in cosmology. It is conceivable that such
ideas may find use in computing finite N corrections in holography or in other
cosmological scenarios.

We described how quantum effective actions encoding information about the
RG-flow can be computed efficiently for Weyl-flat metrics. In essence our method
works by simplifying the non-local Weyl invariant terms by using Weyl-flatness of
the background. Then, by integrating the Weyl anomaly we compute the remaining
terms. This relies only on the local Schwinger-DeWitt expansion of the heat kernel
avoiding the weak field approximation for the background metric.

As an illustration, we obtained the quantum effective action for the Yang-Mills
field coupled to conformal matter, and the self-interacting massless scalar field.
It was shown that our action reduces to the nonlocal action obtained using the
Barvinsky-Vilkovisky covariant perturbation theory in the regime R? <« V2R for a
typical curvature scale R, but has a greater range of validity effectively re-summing
the covariant perturbation theory to all orders in curvatures (but only for Weyl-flat
spacetimes). In particular, it is applicable also in the opposite regime R? > V2R,
which is often of interest in cosmology.

One of the main results of the thesis is determining precisely how the gauge field
couples to the scale factor of the metric. We investigated the possibility of the Weyl
anomaly of the standard model itself sourcing the cosmological magnetic fields in
the early universe using the effective action developed in chapter 2. We concluded
that the Weyl anomaly is cannot convert vacuum fluctuations of the gauge field into
classical fluctuations, independently of the number of massless charged particles in
the theory. Our results reinforce the conclusion that the physics behind such intense
magnetic fields on huge scales must come from beyond the Standard Model.

On-going explorations involve generalising the results to theories that are not
classically Weyl invariant, allowing for mass terms and non-conformal couplings as
well as applications of those results to some subtle problems in Liouville theory.
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Appendix A

Cohomology of Weyl Anomalies

Weyl anomalies can be analysed in the context of cohomology theory. Studying
the cohomology of the Weyl group on field space can be useful for classifying the
consistent terms that can appear as a Weyl anomaly as well as to separate the non-
trivial cohomological terms from the ones that are simply a variation of a local term
in the action [74]. For definiteness consider a self-interacting scalar field coupled to
a dynamical gauge boson and to a non-trivial metric, such that the action is Weyl
invariant in four dimensions.

1 1 A
Sy Ay, 9] = / d'z \/g {—4F2 + Do + SR+ Lot (A.1)
M !

This action is invariant under the transformation

d(z) — e “Pe(x) (A.2)
Ay(z) — Au(x) (A.3)
Gur(x) — g, (z) A4)

where w(z) is any function.
One way we can study the cohomology of the Weyl group action is by introducing
an anticommuting parameter in the infinitesimal Weyl transformation, defined by:

1) 1)
W= /d4x <259uu5g - f¢>5¢> (A.5)
uv

The statement of Weyl invariance can then be written as:
WS[p, Ay, 9] =0 (A.6)

The quantum effective action defined from S need not be invariant under Weyl
transformations. That is to say
WI'=2¢C (A.7)

Since £ is an anticommuting variable, W is automatically nilpotent. Nilpotency of
W implies that C is of the form C = W~y + A with WA = 0 and A # W4, where v
and 7 are local actions. Here A is the true anomaly while the remaining terms can
be affected by different renormalisation choices.
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C; WC; Yi Wi
[ ERpn RHPA —4 [ REVEE [ Ry pr RMPA —4 [¢VPR
J &R R —4 [ REVZ¢E J R R* —4 [EVPR
[ ¢R? —12 [ REVEE [ R? —12 [¢V2R
[EV2R 0
R — [ 7€V J oV — [&VvEe?
JERS? —6 [ ¢ £V | R&® —6 [£V2°
J &o 0 /¢! 0
9 — [&V2¢? 0
8 [ EF,, Frv 0 [ Fyp FHv 0

Here we included in the same table a list of all possible terms that can appear
in C and 7 and their respective variations. In all the expressions [ is a shorthand
for [ NG d*z. Certain terms were not included because of parity.

Notice that C4 = —%W’yg, Cy = %’}/67 which means such terms are simply the
Weyl variation of a local term in the action and thus are not anomalies. The con-
dition WC = 0 forces some of the C; to appear only in specific linear combinations,
that is:

1

W2 = RuypnR*" = 2R, RY + S R?

Ey =Ry, R"P — 4R, R" + R (A.8)
1

K =—¢V?p+ chzF

We then conclude that for this particular example the Weyl anomaly is generally
given by

A= / d*z\/g¢ (aW? + a2Eq + azK + as¢’ + asF, F™) (A.9)

where the coefficients can be fixed by a direct computation.
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