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Abstract

In the present thesis we investigate distinct facets of the symmetry approach to neutrino masses and

neutrino mixing. Regarding the symmetry approach to neutrino masses, we focus on lepton number

violation, namely its relation to Froggatt-Nielsen symmetry in a low-scale seesaw model and its potential

observability in future neutrinoless double beta decay experiments. As for the symmetry approach to

neutrino mixing, we consider the effects of non-Abelian discrete flavour symmetries in the lepton sector,

which may be consistently combined with CP symmetry. We further discuss, in a bottom-up approach,

the implications of a broken modular symmetry for neutrino masses and mixing.

Keywords: Neutrino Physics; Neutrino masses; Neutrino mixing; Majorana neutrinos; CP violation;

Neutrinoless double beta decay; Seesaw mechanism; Froggatt-Nielsen mechanism; Discrete symmetries;

Generalised CP symmetry; Modular symmetry.
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Introduction 1
The miracle of the appropriateness of the language of mathematics

for the formulation of the laws of physics is a wonderful gift which

we neither understand nor deserve.

Eugene Wigner (1902-1995) [1]

Symmetry plays a central role in modern theoretical physics. Commonly, symmetry is understood as

a property of a beautiful and well-coordinated unity. In a technical sense, instead, symmetry is taken

to mean invariance under specified operations. The description of such operations and of their relations

relies on the language of group theory.

Gauge symmetries, in particular, are at heart of our current understanding of the subatomic world,

which relies on the Standard Model (SM) of particle physics. Aside from the postulated gauge symmetry,

it possesses what one may call accidental or automatic global symmetries, such as lepton number (L) and

baryon number (B). Although L and B are individually anomalous, i.e. they do not hold as symmetries

at the quantum level, the combination B − L is a bona fide, unbroken symmetry of the SM.

The SM has been spectacularly [2] (and perhaps excessively [3]) successful. The recent discovery

of the Higgs boson at the Large Hadron Collider (LHC) by the ATLAS and CMS collaborations [4, 5]

represents a significant milestone in our search to describe fundamental interactions. The SM cannot

however provide a complete description of Nature for several reasons. Aside from not including gravity, it

does not provide a viable dark matter candidate. It suffers from the hierarchy and strong CP problems.

It is additionally incomplete in the sense that it gives no justification for the quantum numbers in its

construction, no pretext for the hierarchies between the masses of different generations of fermions, and

no raison d’être for the observed pattern of quark mixing. Most relevant to the present discussion is the

fact that in the renormalisable SM, with no additions to its usual field content, neutrinos are massless

and no physical neutrino mixing is possible. Such a conclusion would be in clear contradiction with the

large body of experimental evidence on neutrino oscillations accumulated in the last 20 years.

Unveiling the properties of neutrinos and of their interactions is of importance to particle physics,

nuclear physics, astrophysics and cosmology. Neutrinos are very light neutral fermions, with masses at

least six orders of magnitude smaller than the electron mass. By definition, a neutrino of a certain

flavour is the particle which is produced alongside a charged antilepton of the same flavour (e+, µ+, τ+)

and which produces a charged lepton of the same flavour (e−, µ−, τ−) in a charged current (CC) weak

1



2 CHAPTER 1. INTRODUCTION

interaction. The fact that neutrinos mix means neutrino states of a certain flavour – a Lorentz-invariant

property – are not in direct correspondence with the states of definite mass. Neutrino mixing can in

part be described by three mixing angles. Two of these angles are quite large, θ12 ∼ 33° and θ23 ∼ 45°,

while the third is rather small, θ13 ∼ 8°. Nonetheless, the mixing in the lepton sector is relatively large

with respect to the mixing in the quark sector. In fact, the largest angle parameterising quark mixing,

the Cabibbo angle θC ∼ 13°, is comparable to the smallest angle parameterising lepton mixing. The

above observations set neutrinos apart from the rest of the SM charged matter content, suggesting that

mechanisms other than electroweak symmetry breaking (EWSB) are responsible for the generation of

neutrino masses and mixing.

Presently, the SM is seen as an effective description of Nature (see, e.g., [6]), i.e. as the low-energy

limit of a more complete, as-yet-unknown theory. A tower of non-renormalisable operators, compatible

with the SM gauge symmetry group, is expected to be present in the physical action. These operators

are understood to provide a good description of physical effects at energies sufficiently below the effective

field theory cutoff. Different new-physics scales may suppress different operators, depending on their

respective origins in the context of a particular ultraviolet (UV) completion of the SM. If one refrains

from treating B−L as sacrosanct and unbroken, the lowest floor of the effective theory operator tower is

populated by a single inhabitant: the dimension-5 Weinberg operator [7]. The presence of the Weinberg

operator generically leads to non-zero neutrino masses and mixing.1 Without further insight into the

origin of this operator, however, it seems impossible to explain the peculiarities of the observed pattern

of neutrino mixing. Moreover, it is not clear if the smallness of neutrino masses should be primarily

attributed to the largeness of the energy scale governing the overall magnitude of the Weinberg operator,

or whether some mechanism which suppresses the operator coefficients is in play.

The smallness of neutrino masses can naturally be tied to a small breaking of a symmetry, viz. lepton

number. A symmetry principle connecting the three lepton generations may also be at work in shaping

neutrino mixing. Refusing symmetry, one may embrace instead the anarchy approach to the flavour

puzzle, in which the neutrino mass matrix is assumed structureless [8]. However, the qualitative features

of the observed pattern of neutrino masses and mixing are not in correspondence with the most generic

expectations within this scheme. In particular, the random matrix scan of Ref. [8] shows that only 3% of

the randomly generated mass matrices (or less, depending on the assumed nature and origin of neutrino

masses) pass the criteria of jointly presenting a hierarchy of mass-squared differences (see further) and

having two large θ12 and θ23 plus one small θ13 mixing angles. The quantitative statement of these cuts

as originally formulated in Ref. [8] is compatible with the current experimental situation. We argue that

the observed smallness of θ13 is enough to lend credibility to the use of flavour symmetries as guiding

principles in model building.

In the present thesis, we approach the puzzle of neutrino masses and mixing through the exploration of

the possible roles of different symmetries, namely: lepton number, the Abelian Froggatt-Nielsen symme-

try, non-Abelian discrete symmetries combined with generalised CP symmetry, and modular symmetry.

1 Neutrino masses thus generated will be of Majorana nature (see also Section 1.2). Scenarios can be devised where
operators of higher dimension with respect to that of the Weinberg operator provide the leading-order contribution to
neutrino masses and mixing.
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1.1 Neutrino Masses and Mixing

1.1.1 Neutrino Oscillations

The fact that neutrinos mix has a remarkable observable consequence: neutrino oscillations. The idea

that neutrinos could undergo oscillations was theorised more than 60 years ago by Bruno Pontecorvo [9,

10]. The suggestion that the electron and muon neutrinos could be admixtures of neutrinos with different

mass was put forward by Ziro Maki, Masami Nakagawa, and Shoichi Sakata [11]. Further development of

the early theory of neutrino oscillations is due to Pontecorvo, Gribov, Eliezer, Swift, Fritzsch, Minkowski,

and Bilenky [12–18].

Neutrino oscillations are transitions in flight between neutrinos of definite flavour. In oscillation

experiments, the processes of neutrino production and neutrino detection are not typically sensitive

to the individual neutrino masses, since detectable neutrinos are ultrarelativistic. This allows one to

consistently define the neutrino flavour states

|να〉 ≡ (UPMNS)∗αk |νk〉 , (1.1)

where |νk〉 is a neutrino state with definite mass mk and UPMNS is a unitary matrix, known as the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. A conjugate relation can also be written for

antineutrino states, which by definition are produced alongside a charged lepton or produce a charged

antilepton in a CC weak interaction.

The probability that an ultrarelativistic neutrino in the flavour state |να〉, produced at a certain source

in a beam with energy E, is detected in the flavour state |νβ〉 a distance L from said source is given by:

Pαβ =
∣∣〈νβ | e−iH0L |να〉

∣∣2 =
∣∣Uβk U∗αk e−iEkL∣∣2 = U∗αk Uβk Uαj U

∗
βj exp

(
−i

∆m2
kjL

2E

)
, (1.2)

where we have assumed that the neutrino is travelling in vacuum, such that H0 is the free Hamiltonian. In

the above expression, we have defined ∆m2
kj ≡ m2

k −m2
j and have additionally abbreviated UPMNS → U .

Equation (1.2) can also be written in the form:

Pαβ = δαβ − 4
∑
k>j

Re
(
U∗αk Uβk Uαj U

∗
βj

)
sin2

(
∆m2

kjL

4E

)
+ 2

∑
k>j

Im
(
U∗αk Uβk Uαj U

∗
βj

)
sin

(
∆m2

kjL

2E

)
.

(1.3)

These equations, whose rigorous derivation is possible by treating neutrinos as propagating wave pack-

ets [19], already allow for the extraction of some general conclusions. By inspection, one sees that i) neu-

trino oscillations are not sensitive to individual neutrino masses, but instead depend on the mass-squared

differences ∆m2
kj , and ii) while oscillation experiments can measure the angles and phases entering UPMNS,

they are insensitive to rephasings from the left or from the right, e.g. UPMNS → UPMNS diag(. . . , eiϕk , . . . ),

meaning they cannot decipher the nature (Dirac or Majorana) of massive neutrinos [20].

The formula for the antineutrino oscillation probability Pᾱβ̄ can be obtained by taking U → U∗ in

Eqs. (1.2) and (1.3). Knowing that Pαβ transforms to Pᾱβ̄ under a CP transformation and to Pβ̄ᾱ under a

CPT one leads to an additional conclusion, namely that a so-called disappearance experiment measuring
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the survival probability Pαα (which due to CPT invariance, and as can be checked explicitly, equals Pᾱᾱ)

is not sensitive to CP violation (CPV). In the search for CPV effects, one has thus to consider appearance

experimental setups, in which conversion probabilities Pαβ with α 6= β are measured.

It is instructive to briefly consider the simple case of two neutrino flavours, for which:

P (2ν)
αα = 1− sin2 2θ sin2 ∆m2

21L

4E
, (1.4)

with P
(2ν)
αβ (β 6= α) = 1− P (2ν)

αα , and where the 2-flavour mixing matrix has been parameterised as

U
(2ν)
PMNS =

(
cos θ sin θ

− sin θ cos θ

) (
eiλ 0

0 1

)
, (1.5)

with θ ∈ [0, π/2] and λ ∈ [0, π). As anticipated above, phases to the right of UPMNS are irrelevant in

neutrino oscillations. Depending on the specific experimental setup, one mass-squared difference may

be the dominant source of oscillations with respect to another mass-squared difference, and the full

expression of Pαβ may reduce to a simple function of two-neutrino oscillation probabilities. This can

happen either because the oscillation length `osc ≡ 4πE/∆m2 corresponding to the neglected ∆m2 is

very large compared to L and no oscillations have taken place, or because L � `osc, in which case the

corresponding oscillations are averaged out due to limitations in energy resolution.

So far we have discussed neutrino oscillations in vacuum. However, the expressions thus derived

do not hold when neutrinos propagate through matter, where they can scatter coherently. The effect

of coherent forward elastic scattering can be described by an effective potential, which modifies the

relevant Hamiltonian, H = H0 +Hint [21]. In the case of ordinary matter, Hint depends on the (possibly

varying) number density Ne of electrons in the medium. The aforementioned conclusion that neutrino

oscillation experiments cannot decipher the nature (Dirac or Majorana) of massive neutrinos also holds

in the presence of matter [22]. Matter effects in neutrino oscillations are crucial in understanding the

flavour composition of the flux of solar neutrinos arriving at the Earth. In fact, it is not the oscillations

in vacuum between the outer solar layers and the Earth which determine the experimentally observed

flavour conversion of solar electron neutrinos. Instead, the transitions are enhanced in solar matter due

to the Mikheyev–Smirnov–Wolfenstein (MSW) effect [21, 23]. Matter effects additionally play a role in

long baseline and atmospheric neutrino oscillation experiments.

For reviews on the theory of neutrino oscillations and neutrino mixing phenomenology, the reader is

further referred to Refs. [24, 25].

1.1.2 State of the Art Overview

The first conclusive evidence for neutrino oscillations in the atmosphere was presented by the Super-

Kamiokande (Super-K) collaboration in 1998 [26] . For the flavour conversion of neutrinos coming from

the Sun, clear evidence was obtained by the Sudbury Neutrino Observatory (SNO) collaboration in

2001 [27]. In Table 1.1 we list the different types of experiment according to the energy and length scales

involved.

At present (2018), we are already entering a precision era for neutrino physics. The paradigm of

three-flavour neutrino (3ν) mixing – with α = e, µ, τ and k = 1, 2, 3 in Eq. (1.1) – which we consider
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Experiment type ν at source L E ∆m2 sensitivity

Solar νe ∼ 108 km 0.2−15 MeV ∼ 10−12 eV2

Atmospheric νµ,e, ν̄µ,e 20−104 km 0.5−102 GeV ∼ 10−4 eV2

Accelerator νµ, ν̄µ

short baseline (π dec. in flight) ∼ 1 km ∼ 1 GeV ∼ 1 eV2

short baseline (µ dec. at rest) ∼ 10 m ∼ 10 MeV ∼ 1 eV2

long baseline ∼ 102−103 km ∼ 1 GeV ∼ 10−3 eV2

Reactor ν̄e

short baseline ∼ 10 m ∼ 1 MeV ∼ 0.1 eV2

long baseline ∼ 1 km ∼ 1 MeV ∼ 10−3 eV2

very-long baseline ∼ 100 km ∼ 1 MeV ∼ 10−5 eV2

Table 1.1: Oscillation experiment types and typical lengths L and energies E involved [24,25].

in what follows, provides a consistent description of most of the available data. The SM, being a chiral

model, incorporates the three neutrino flavours by means of the left-handed two-component spinor fields

ναL, which together with left-handed charged-lepton fields `αL make up weak isospin doublets Lα. Such

a minimal, parity-violating inclusion is consistent with the supposed masslessness of neutrinos within

the SM and with the fact that flavour neutrinos (antineutrinos) have only been observed in Nature as

states of negative (positive) helicity. Naturally, neutrino fields in the mass basis are related to those in

the flavour basis through2 ναL(x) = (UPMNS)αk νkL(x), cf. Eq. (1.1). Neutrino mixing emerges in the

CC weak interaction following the diagonalisation of the neutrino mass matrix arising in an appropriate

extension of the SM:

LCC = − g√
2
`αL γ

µ ναLW
†
µ + h.c. = − g√

2
`αL γ

µ (UPMNS)αk νkLW
†
µ + h.c. , (1.6)

where g is the SU(2)L gauge coupling and the spacetime dependence of fields is implied. The PMNS

matrix in the 3ν case is given in its standard parameterisation by [25]:

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 diag(1, eiα21/2, eiα31/2) , (1.7)

where cij ≡ cos θij and sij ≡ sin θij , with the three mixing angles θij ∈ [0, π/2]. Here, δ ∈ [0, 2π) denotes

the Dirac CPV phase, while α21 and α31 are Majorana CPV phases [20, 28, 29], with αij ∈ [0, 2π). The

latter phases are only physical if neutrinos are Majorana particles. The last term in Eq. (1.3) encodes

CPV effects in neutrino oscillations and is proportional to sin δ, since the imaginary parts of the PMNS

quartets coincide up to a sign with the rephasing invariant JCP associated with the Dirac phase δ [30]:

∣∣Im (U∗αk Uβk Uαj U∗βj)∣∣ = |JCP| =
1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 | sin δ| . (1.8)

The quantity JCP is the leptonic analog of the rephasing invariant associated with the CP violating phase

in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, introduced in Ref. [31].

2Neutrinos with definite flavour are defined in the basis in which the charged-lepton mass matrix is diagonal.
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As anticipated, within the 3ν paradigm, oscillation experiments are able to provide information on

the 2 mass-squared differences, on the 3 mixing angles and on the Dirac phase. As we will see, the mass-

squared difference ∆m2
� responsible for solar νe and very-long baseline reactor ν̄e oscillations is much

smaller than the mass-squared difference ∆m2
A responsible for atmospheric and accelerator νµ and ν̄µ and

long baseline reactor ν̄e oscillations, ∆m2
�/|∆m2

A| ∼ 1/30. It is important to note that the sign of ∆m2
A

cannot be determined from the existing data. The two possible signs of ∆m2
A correspond to two types

of neutrino mass spectrum: ∆m2
A > 0 – a spectrum with normal ordering (NO), ∆m2

A < 0 – a spectrum

with inverted ordering (IO). In the widely-used convention which we also employ, ∆m2
� ≡ ∆m2

21 > 0,

and the lightest neutrino mass is m1 (m3) for a spectrum with NO (IO). We then have:

• m1 < m2 < m3, ∆m2
31 ≡ ∆m2

A > 0, for NO, and

• m3 < m1 < m2, −∆m2
23 ≡ ∆m2

A < 0, for IO.

For either ordering, |∆m2
A| = max(|m2

i −m2
j |), i, j = 1, 2, 3. Determination of the neutrino mass ordering

may, e.g., be possible in long baseline and atmospheric neutrino experiments owing to the dependence of

ν
(–)

µ → ν
(–)

e oscillations in matter on the sign of ∆m2
A. Information regarding the absolute scale of neutrino

masses must be obtained through means other than the study of neutrino oscillations. We postpone this

discussion to Section 3.3.

Global fits to neutrino data have been performed by several independent groups in recent years [32–39].

Interestingly, the first hints for a non-zero θ13 were extracted from a global analysis [40]. By combining

data from several independent sources, such analyses are able to provide an overall picture of the status

of 3ν oscillations. Our present knowledge of ∆m2
�, |∆m2

A|, sin2 θ12, sin2 θ23 and sin2 θ13 is rather precise.

The value of sin2 θ23 presents the largest relative uncertainty among these parameters, while its octant

remains undetermined. At 3σ CL, about half of the defining region for the Dirac CPV phase, namely

0 ∼< δ ∼< π, is excluded for both orderings [39]. There is a hint for a close to maximally CP violating

Dirac phase, δ ∼ 3π/2 [35]. Direct information on CP violation in neutrino oscillations is obtained from

the data of the T2K and NOνA experiments. The most recent fits show a preference of the data for a

spectrum with NO over IO at the 2σ CL [36,38] and even above the 3σ CL [37,39].

Due to their fast update rate, the work comprising this thesis relies on two global analyses of neutrino

data, performed by the Bari group in 2017 [38] and 2018 [39]. The latest of the two, as opposed to the

first, makes use of official Super-K χ2 maps and includes updated solar neutrino data from the Borexino

(Boron solar neutrino) and Super-K experiments. The main differences in the results correspond to: i)

a reduced uncertainty in the determination of sin2 θ23, with a change in octant preference (for the NO

case), ii) an increased preference for a spectrum with NO over IO (from ∼ 2σ to ∼ 3σ), iii) a small shift

in the ranges for ∆m2
A, and iv) a slightly improved 3σ range for δ. Bounds on the oscillation parameters

for these two analyses are shown in Figures 1.1 (2017) and 1.2 (2018), in terms of standard deviations,

nσ =
√
χ2 − χ2

min, for both orderings. The corresponding nσ ranges, with n = 1, 2, 3, are collected in

Tables 1.2 and 1.3, respectively.

In closing, we briefly mention the existence of anomalies which have challenged the 3ν mixing

paradigm, and have not been resolved so far. These anomalies have been interpreted as possible signs for
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Figure 1.1: Bounds on neutrino oscillation parameters in terms of n standard deviations, obtained

from the 2017 global analysis of Ref. [38]. Blue solid (red dashed) curves correspond to a spectrum

with NO (IO). The red dotted line corresponds to the IO case and includes the likelihood offset

with respect to NO. For each ordering, ∆m2
A is obtained from the quantities defined in Ref. [38]

using the best-fit value of ∆m2
�.

Parameter Ordering Best fit 1σ range 2σ range 3σ range

∆m2
�/10−5 eV2 Any 7.37 7.21 – 7.54 7.07 – 7.73 6.93 – 7.96

|∆m2
A|/10−3 eV2 NO 2.56 2.53 – 2.60 2.49 – 2.64 2.45 – 2.68

IO 2.54 2.51 – 2.58 2.47 – 2.62 2.43 – 2.66

sin2 θ12/10−1 Any 2.97 2.81 – 3.14 2.65 – 3.34 2.50 – 3.54

sin2 θ13/10−2 NO 2.15 2.08 – 2.22 1.99 – 2.31 1.90 – 2.40

IO 2.16 2.07 – 2.24 1.98 – 2.33 1.90 – 2.42

sin2 θ23/10−1 NO 4.25 4.10 – 4.46 3.95 – 4.70 3.81 – 6.15

IO 5.89 [4.17, 4.48] [3.99, 4.83] 3.84 – 6.36

∪ [5.67, 6.05] ∪ [5.33, 6.21]

δ/π
NO 1.38 1.18 – 1.61 1.00 – 1.90 [0, 0.17] ∪ [0.76, 2]

IO 1.31 1.12 – 1.62 0.92 – 1.88 [0, 0.15] ∪ [0.69, 2]

Table 1.2: Best-fit values and nσ (n = 1, 2, 3) ranges for neutrino oscillation parameters, obtained

from the 2017 global analysis of Ref. [38], see Figure 1.1.
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Figure 1.2: Bounds on neutrino oscillation parameters in terms of n standard deviations, obtained

from the 2018 global analysis of Ref. [39]. Blue solid (red dashed) curves correspond to a spectrum

with NO (IO). The red dotted line corresponds to the IO case and includes the likelihood offset

with respect to NO. For each ordering, ∆m2
A is obtained from the quantities defined in Ref. [39]

using the best-fit value of ∆m2
�.

Parameter Ordering Best fit 1σ range 2σ range 3σ range

∆m2
�/10−5 eV2 Any 7.34 7.20 – 7.51 7.05 – 7.69 6.92 – 7.91

|∆m2
A|/10−3 eV2 NO 2.49 2.46 – 2.53 2.43 – 2.56 2.39 – 2.59

IO 2.48 2.44 – 2.51 2.41 – 2.54 2.38 – 2.58

sin2 θ12/10−1 NO 3.04 2.91 – 3.18 2.78 – 3.32 2.65 – 3.46

IO 3.03 2.90 – 3.17 2.77 – 3.31 2.64 – 3.45

sin2 θ13/10−2 NO 2.14 2.07 – 2.23 1.98 – 2.31 1.90 – 2.39

IO 2.18 2.11 – 2.26 2.02 – 2.35 1.95 – 2.43

sin2 θ23/10−1 NO 5.51 4.81 – 5.70 4.48 – 5.88 4.30 – 6.02

IO 5.57 5.33 – 5.74 4.86 – 5.89 4.44 – 6.03

δ/π
NO 1.32 1.14 – 1.55 0.98 – 1.79 0.83 – 1.99

IO 1.52 1.37 – 1.66 1.22 – 1.79 1.07 – 1.92

Table 1.3: Best-fit values and nσ (n = 1, 2, 3) ranges for neutrino oscillation parameters, obtained

from the 2018 global analysis of Ref. [39], see Figure 1.2.
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the presence of sterile neutrino species – neutral fermions which do not take part in weak interactions,

but may mix with the three known active neutrino species. They are the LSND anomaly, the MiniBooNE

excesses, the reactor neutrino anomaly, and the Gallium anomaly (see, e.g., [25]).

1.2 Symmetry and Neutrino Masses

In 3+1 spacetime dimensions, the (restricted-)Lorentz-irreducible building blocks of spin-1/2 fermion

fields are two-component (Weyl) spinors. These come in two possible chiralities, namely left- and right-

handed spinor representations. A fermion mass term in the physical action connects left- and right-handed

spinors, ψL and ψR respectively. If these are two independent spinors, the massive particle in question is

a Dirac fermion, and the mass term reads:

−LD = mψL ψR + h.c. = mψψ , (1.9)

in 4-component notation, with ψ = ψL + ψR and m > 0 without loss of generality. Instead, as implied

by the work of Ettore Majorana [41], there exists a more economical possibility in which the spinors are

not independent from each other. One chirality of the Majorana fermion is built from the other, say

ψR = C ψL
T ≡ (ψL)C , C being the charge conjugation matrix, so that half of the number of degrees of

freedom is needed with respect to the Dirac case. The corresponding Majorana mass term reads:

−LM =
1

2
mψL (ψL)C + h.c. =

1

2
mψψ , (1.10)

with m > 0, and ψ = ψL + (ψL)C satisfying ψC = ψ. This last condition implies the equality between

particle and antiparticle, and is incompatible with a conserved fermion number. Of the known particles,

only neutrinos can be Majorana fermions since they do not carry any unbroken gauge quantum numbers

of colour or electric charge. The question of weather massive neutrinos are of Dirac or Majorana nature

remains unanswered.

At this point, one may wonder if it is possible that combinations of active neutrinos pair up to form

a Dirac fermion. This is the Zeldovich-Konopinski-Mahmoud (ZKM) idea [42, 43], originally stated for

the pairing of electron and muon neutrinos. Other choices, involving combinations of all three active

neutrinos [44], may be closer to reality. Unfortunately, these options cannot be realised exactly since

they would imply a mass degeneracy in contradiction with our knowledge of oscillation data. To make

such scenarios realistic one needs e.g. the addition of perturbations in the neutrino mass matrix and

corrections from the charged lepton sector [45]. In such a case, neutrinos are not strictly Dirac but

are instead of Majorana nature, with a very small splitting between the masses of the two Majorana

neutrinos. This splitting is much smaller than the masses themselves and in this case one has what is

usually referred to as a “pseudo-Dirac” neutrino [44,46].

In the context of the SM, a Majorana mass term for the left-handed (LH) neutrino fields cannot

be introduced directly, since it would violate weak isospin by one unit. Indeed, three conserved family

lepton numbers Lα (α = e, µ, τ), and thus a conserved (standard) lepton number L ≡ Le + Lµ + Lτ ,
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exist automatically in the SM at the renormalisable level.3 As mentioned, such conserved charges are

incompatible with neutrinos of Majorana nature. However, the SM has to be extended due to the

existence of neutrino masses and mixing. Neutrino oscillation data then imply that each of the family

numbers Le,µ,τ is not a good symmetry individually, since all conversion probabilities Pαβ with α 6= β

are non-vanishing in the 3ν framework.

A lepton-number charge can still be unbroken in the relevant SM extension. In this case, massive

neutrinos cannot be Majorana and must instead be of Dirac nature. If, however, the SM extension brings

about lepton-number-violating interactions, massive neutrinos can be of Majorana nature.

A straightforward extension of the SM accommodating neutrino masses and mixing consists in adding

to it so-called right-handed (RH) fermion fields, which are singlets under the SM gauge group. Their

presence does not affect the cancellation of gauge anomalies, meaning their number is not constrained

a priori. They also fit neatly into matter multiplets of SO(10) grand unified theories (GUTs). Due

to the presence of these extra, independent chiral fields, Yukawa interactions analogous to those of up-

type quarks can be introduced in the Lagrangian (density), leading to Dirac mass terms for neutrinos

after EWSB. Without further modifications to the model, the smallness of neutrino masses would be a

consequence of the (unexplained) smallness of these Yukawa couplings yν .

In contrast to the case of LH fields, the SM gauge structure does not forbid direct Majorana terms

for the RH singlets. Once Majorana terms are present, they generically “infect” the Dirac-type terms,

i.e., after mass-matrix diagonalisation, the fields with definite masses will be of Majorana nature. The

case where the direct Majorana masses M are large with respect to the electroweak scale, v = 174

GeV, corresponds to the celebrated type I seesaw mechanism [47–51]. In this case, neutrino masses are

parametrically given by mk ∼ y2
ν v

2/M . Realisations of the seesaw mechanism with non-singlet fields

exist, such as the type II [28, 52–55], type III [56] and radiative [57, 58] seesaws (see, e.g., [59, 60]).

Integrating out the heavy fields, an imprint of (B−)L violation is left at low energies in the form of

Majorana neutrino masses, encoded in the aforementioned Weinberg operator:

LW =
1

2

wαβ
Λ

(
LCα H

c∗
) (

Hc† Lβ

)
+ h.c. , (1.11)

where Hc is the Higgs conjugate doublet, Λ is the cutoff scale of the effective operator, and the wαβ are

(in general) complex coefficients. One has the matching w/Λ ∼ y2
ν/M (see, e.g., [61]).

It is possible to have instead Dirac neutrinos in a SM extension. A necessary and sufficient condition

for the existence of Dirac massive neutrinos is the presence of a conserved lepton number U(1)L′ as a

symmetry of the mass matrix and weak interactions [46,62]. Examples of such a conserved lepton number

are L′ = Le − Lµ for the ZKM model, and L′ = Le − Lµ ± Lτ for the models of Refs. [44] and [45],

respectively. In realistic models extending the SM, however, one expects that if such a (classically)

conserved charge exists, it is of the form L′ = L + . . ., where the ellipsis refers to new fields carrying

lepton number. In passing we note that, at the level of the full Lagrangian, a discrete version of this

symmetry is possible. Dirac neutrinos are present in the model of Ref. [63] where the continuous U(1)L′ is

a symmetry of the mass matrix and weak interactions but is broken to a discrete subgroup in Yukawa-type

3While this discussion focuses on L and the Lα (α = e, µ, τ), one should keep in mind that in the SM the non-anomalous
quantities are B/3− Lα and consequently B − L, as previously noted.
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couplings and in the scalar potential.

Throughout this thesis, we focus on what are ultimately Majorana neutrino masses. As we have

seen, there is a connection between symmetry and the nature of neutrino masses. Thus, small neutrino

Majorana masses can arise as a result of a small breaking of such a symmetry. This connection is explored

in the low-scale seesaw scenario of Chapter 2.

The breaking of lepton number may have played a central role in generating the baryon asymmetry of

the Universe (BAU), out of which we are fundamentally born. A dynamical origin of the BAU requires

C, CP and (naturally) B violation, as well as a departure from thermal equilibrium [64]. Baryogenesis

through leptogenesis [65] is based on the possibility that electroweak sphaleron processes [66,67] convert

an asymmetry in lepton number into an asymmetry in B, thus sourcing the BAU. We discuss, also in

Chapter 2, the possibility of incorporating baryogenesis in the context of the studied seesaw model.

Finally, we mention that, due to the V − A structure of weak interactions, the ability to distinguish

experimentally between the unknown Dirac or Majorana nature of neutrinos disappears as their masses

go to zero. This implies that the rate of processes which would allow to make the Dirac vs. Majorana

distinction are suppressed by the smallness of neutrino masses, and this is sometimes referred to as the

“Practical Dirac-Majorana Confusion Theorem” [68]. The most promising tool to unveil the nature of

neutrino masses is the search for neutrinoless double beta ((ββ)0ν-)decay, whose observation would imply

that the lepton number L is violated and also that neutrinos are Majorana particles. We dedicate Chap-

ter 3 to the investigation of the conditions under which this decay, generated by standard contributions,

may potentially be observable in far-future experiments.

1.3 Symmetry and Neutrino Mixing

1.3.1 The Discrete Symmetry Approach

The pattern of mixing that has emerged from neutrino oscillation data may offer a window into the

origins of flavour. In the flavour sector of the (extended) SM there are 20 unexplained mass and mixing

low-energy parameters – 6 lepton and 6 quark masses, 6 angles and 2 Dirac CPV phases – plus 2 Majorana

phases in the leptonic sector if neutrinos are Majorana fermions. Confronted with such a multitude of

quantities, one may wonder about the existence of some organising principle which constrains the flavour

sector. Finding such a principle means solving a piece of the so-called flavour puzzle.

Flavour symmetries may provide the sought-after guiding principle. These are also known as horizontal

symmetries, since they unify fermions of different generations, as opposed to the GUT philosophy, where

unification happens “vertically” inside each generation, see Figure 1.3. Although we focus on the lepton

sector, extensions of the flavour symmetry to the quark sector are welcome and needed to create a unified

portrayal of fermion masses and mixing. In such a scenario, the radical disparities in the mixing patterns

of quarks and leptons should be justified.

If the flavour symmetry group is Abelian, all its irreducible representations (irreps) are one-dimensional,

meaning different families are not unified inside multiplets. Nevertheless, such unequal treatment of

generations proves useful if one aims at explaining hierarchical structures. The Froggatt-Nielsen (FN)
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Figure 1.3: Schematic comparison of flavour symmetries, which act “horizontally” across different

generations, and GUT gauge symmetries, which act “vertically” inside each generation. The

representations into which the chiral fields fit are model dependent.

construction [69] makes use of a continuous symmetry U(1)FN and is used to justify fermion hierar-

chies. In a minimal FN setup, a SM-neutral scalar field S is introduced. This field has a FN charge

assignment of opposite sign with respect to that of the usual Yukawa terms, say QFN(S) = −1 and

−QFN(ψiL) +QFN(ψjR) = nij > 0. In this way, direct Yukawa terms are forbidden and only arise from

effective operators once S acquires a vacuum expectation value (VEV) and breaks the U(1)FN symmetry:

L ⊃ kij

(
S

ΛFN

)nij
ψiLH ψjR → kij ε

nij ψiLH ψjR , (1.12)

where H is the Higgs doublet and we have defined ε ≡ 〈S〉 /ΛFN. The scale ΛFN is associated with other

flavoured heavy fields not playing a role at low energies (see also [70]). The key insight here is that ε may

be sufficiently smaller than unity and thus work as an expansion parameter. Then, hierarchical spectra

can naturally be accommodated by selecting appropriate combinations nij of charges. One should keep in

mind that although this is a valuable mechanism to explain hierarchies, entries of the mass matrices with

the same suppression in terms of powers of ε may still present O(1) uncertainties between themselves, as

the coefficients kij are not precisely determined.

While the FN approach is appropriate for a qualitative characterisation of fermion masses when

hierarchies are present, non-Abelian discrete symmetries are able to provide a quantitative picture of

mixing. In fact, precise relations between parameters can be predicted if different generations of fermions

are unified in a multiplet of the non-Abelian symmetry group Gf , which admits larger-dimensional irreps.

The three SU(2)L lepton doublets are naturally arranged into triplet irreps. Such horizontal unification

allows for the presence of large mixing angles in the lepton sector. Also, discrete symmetries are a simple

and economical choice when compared to continuous ones. The former can be embedded in the latter

and may allow to naturally obtain the needed vacuum alignments. Extensions of the SM encompassing

non-Abelian discrete flavour symmetries have been considered extensively in attempts to unravel the

flavour puzzle. For reviews on this subject, the reader is referred to Refs. [71–74].

The breaking of the flavour symmetry is needed to distinguish the leptons, but may proceed in such

a way that invariance under some elements of the group remains at low energy. Said invariances are

called residual symmetries and typically yield predictions for the values of – and/or correlations between
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– low-energy neutrino mixing parameters.

To understand the low-energy implications of the presence of a flavour symmetry, consider the lepton-

sector Lagrangian in an arbitrary flavour basis (no mixing in LCC):

L` = −1

2

(
Mν

)
ij
νCiR νjL −

(
Me

)
ij
`iL `jR + h.c. , (1.13)

where Me and Mν are the charged-lepton Dirac and neutrino Majorana mass matrices, respectively,

and νCiR ≡ (νiL)C . As suggested, the lepton doublets Li = (νiL, `iL)T are assumed to transform under

a three-dimensional irrep of the flavour group. Under the action of an element g ∈ Gf one then has

Li → (ρL(g))ij Lj , where ρL denotes the representation matrix.

Residual symmetries manifest themselves as independent symmetries of the mass matrices Me and

Mν , under remnant groups Ge and Gν , respectively. The knowledge of which symmetries survive may

be enough to severely constrain the shape of UPMNS. In particular, Ge and Gν must be subgroups of

the maximal exact symmetries the corresponding mass matrices may possess. Considering the case of

Majorana neutrinos with non-zero and non-degenerate masses, the largest symmetries Me and Mν can

have are U(1)×U(1) and the Klein symmetry Z2 × Z2, respectively [75]. This group structure can be

inferred in the mass basis. Note also that a joint rephasing (sign flip) of all `iL (νiL) plays no role in

constraining the shapes of the mass matrices, which is why only subgroups of SU(3) need to be considered.

For ge ∈ Ge and gν ∈ Gν , one has the invariance conditions:

ρL(gν)T Mν ρL(gν) = Mν , (1.14)

ρL(ge)
†MeM

†
e ρL(ge) = MeM

†
e , (1.15)

which imply the vanishing of commutators [MeM
†
e , ρL(ge)] = [M†ν Mν , ρL(gν)] = 0, meaning MeM

†
e

(M†ν Mν) and ρL(ge) (ρL(gν)) are diagonalised by the same matrix. Recall than in an arbitrary flavour

basis we have UPMNS = U†e Uν , with

UTν Mν Uν = diag(m1,m2,m3) ⇒ U†ν M
†
ν Mν Uν = diag(m2

1,m
2
2,m

2
3) , (1.16)

U†e MeM
†
e Ue = diag(m2

e,m
2
µ,m

2
τ ) . (1.17)

Thus, up to permutations, rephasings, and unitary rotations in subspaces of degenerate eigenvalues of

the ρL, the matrices Ue,ν are obtained from those diagonalising (the given) ρL(ge,ν).

To close, we go through two simple examples of applications of the non-Abelian discrete symmetry

paradigm. The first is µ− τ exchange symmetry [76,77]. In this case, the residual symmetries are taken

to be Ge = Z3 = {1, T, T 2} and Gν = Z2 = {1, U ′}, with the representation matrices

ρL(T ) =

1 0 0

0 ω2 0

0 0 ω

 , ρL(U ′) =

1 0 0

0 0 1

0 1 0

 , (1.18)

in a certain basis, and ω ≡ e2πi/3. The Z3 symmetry is enough to distinguish the charged-leptons and

render the corresponding mass matrix diagonal in the chosen basis. Up to permutations and unphysical

rephasings, one has Ue = 1. On the other hand, one sees that

Ω† ρL(U ′) Ω = diag(1, 1,−1) , with Ω =

1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2

 , (1.19)
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meaning that, up to permutations and rephasings, one has:

UPMNS = Uν = ΩU12(θ12, δ12) =

 cos θ12 sin θ12 0

− sin θ12/
√

2 cos θ12/
√

2 −1/
√

2

−sin θ12/
√

2 cos θ12/
√

2 1/
√

2

 , (1.20)

where U12(θ12, δ12) is a unitary rotation matrix in the 1-2 plane parameterised by an angle θ12 and a

phase δ12, the latter having been absorbed in the undetermined Majorana phase matrix (not shown). In

this scenario, one predicts maximal θ23 = π/4 and θ13 = 0, while θ12 remains unconstrained. Extending

Gν to the full Klein symmetry allows to fix the value of θ12. This brings us to our second example, where

the mixing pattern is predicted to be tribimaximal (TBM) [78]. TBM mixing is achievable for instance

if Gf = A4 [79] or Gf = S4 [80] – in the former case, one of the Z2 factors arises accidentally. If we take

Gf = S4 (see also Chapter 4 and appendix A), the flavour group includes elements S, T and U which in

a certain basis correspond to the representation matrices:

ρL(S) =
1

3

−1 2 2

2 −1 2

2 2 −1

 , ρL(T ) =

1 0 0

0 ω2 0

0 0 ω

 , ρL(U) = −

1 0 0

0 0 1

0 1 0

 . (1.21)

Taking the residual symmetries to be Ge = Z3 = {1, T, T 2} and Gν = Z2 ×Z2 = {1, S, U, SU}, implies a

further constraint on the matrix of Eq. (1.20), yielding

UPMNS = UTBM ≡


√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2

 . (1.22)

In this setup, one finds θ12 = arccos
(√

2/3
)
' 35°, with sin2 θ12 = 1/3.

Taken at face value, both examples considered above predict θ13 = 0 (and the vanishing of JCP)

and are presently excluded. While these simple patterns do not give a good fit to the data, they can

nevertheless be interpreted as leading order results, subject to corrections. These corrections may arise,

for instance, in the form of charged-lepton rotations (perhaps Ge = Z3 is too strict a condition), renor-

malisation group running, or higher-order operators in a UV complete model.

1.3.2 Combining CP with Discrete Symmetries

An interesting extension of the discrete symmetry framework outlined above comes from additionally

considering invariance under CP transformations. Crucial to this approach is the recognition that the

most general CP transformation one can impose on fermion multiplets ψ acts non-trivially in flavour

space [81–84]:

ψ(x) → iX γ0 C ψ(xP )
T
, (1.23)

where X is a unitary matrix carrying flavour indices and x = (x0, ~x) goes into xP = (x0,−~x) under

parity. CP transformations with non-trivial flavour rotations X 6= 1 are often referred to as generalised

CP (gCP) transformations, as opposed to canonical ones (for which X = 1).

If such gCP transformations represent residual symmetries, we are led to new invariance conditions

on the mass matrices. Suppose that, in the unbroken phase, the matrix XL appears in a gCP symme-

try transformation of the lepton-doublet flavour multiplet. The requirement that Mν preserves such a
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symmetry at low energy implies:

XT
L Mν XL = M∗ν , (1.24)

in some flavour basis. Thus, the presence of just a residual gCP symmetry may lead by itself to interesting

predictions. This is the case for the so-called µ − τ reflection symmetry [85, 86] (distinct from the

aforementioned exchange symmetry), which corresponds to taking

XL =

1 0 0

0 0 1

0 1 0

 (1.25)

as the residual gCP symmetry matrix in the neutrino sector. Then, Eq. (1.24) constrains the mass matrix

to have the form:

Mν =

 a b b∗

b c d

b∗ d c∗

 , (1.26)

with a, d ∈ R and b, c ∈ C. This in turn implies |(UPMNS)µk| = |(UPMNS)τk|, for k = 1, 2, 3 (see Ref. [86]

for a proof), from which maximal atmospheric mixing follows, θ23 = π/4, while θ12 and θ13 remain

unconstrained. If furthermore θ13 6= 0 (as is known to be the case), then cos δ = 0, meaning a maximal

Dirac CPV phase, δ = π/2, 3π/2, is predicted. Additionally, knowing that neutrinos are non-degenerate,

the Majorana phases can be shown to take the CP-conserving values α21,31 = 0, π [86].

In what follows, we will consider scenarios where both a non-Abelian discrete symmetry and some

gCP symmetry are present in the flavour model. The concurrent presence of flavour and gCP symmetries

constrains the possible form of the gCP matrices. In particular, given the flavour symmetry group Gf

acting as before in the lepton sector, the XL matrix must obey the so-called consistency condition [87,88]:

XL ρL(g)∗XL
−1 = ρL(u(g)) , (1.27)

where u is a class-inverting automorphism of Gf , mapping an element g ∈ Gf into g′ = u(g) ∈ Gf , the

latter belonging to the conjugacy class of g−1 [89]. This condition is obtained by applying in sequence a

gCP transformation, followed by a flavour transformation associated with the group element g ∈ Gf , and

finally an inverse gCP transformation, and noticing that the resulting transformation must correspond

to an element of Gf since the Lagrangian is unchanged. Failing to satisfy such a condition means one

has misidentified the full flavour symmetry of the model [88].

The approach of combining gCP and flavour symmetries, which we discuss further in Chapter 4, is

powerful in that it allows to constrain Majorana phases, something flavour symmetries cannot achieve

by themselves. As an application of this setup, consider the example of combining Gf = S4 flavour

and gCP symmetries. Here, using the same presentation of S4 as before, Ge = Z3 = {1, T, T 2}, and

Gν = Z2×Hν
CP, with Z2 = {1, S} and Hν

CP being the group of residual CP transformations in the neutrino

sector, containing a single non-trivial element Xν . One possible choice for this element is Xν = ρ(U),

and it leads to maximal atmospheric mixing, sin2 θ23 = 1/2, maximal Dirac phase, δ = π/2, 3π/2 and

CP-conserving Majorana phases, α21,31 = 0, π, while predicting the interesting correlation [87,90]:

sin2 θ12 =
1

3 cos2 θ13
. (1.28)
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In this scenario, mixing is determined up to an unknown continuous parameter. We note that at present

(see Table 1.3), however, taking sin2 θ23 in its full 3σ range, a value of sin2 θ12 satisfying the above relation

lies outside the corresponding 2σ range.

1.3.3 A New Approach: Modular Symmetry

A generalisation of the discrete symmetry approach based on modular symmetry has recently been put

forward in Ref. [91] and further explored in Refs. [92–95]. In this setup, invariance under finite subgroups

ΓN (N > 1) of the modular group shapes the relevant mass matrices. Fields carrying a non-trivial

representation under ΓN are assigned a modular weight, transforming with a scale factor in addition

to the usual unitary rotation representing the discrete group. To build an invariant action under such

transformations, special functions of the modular field with the appropriate scaling properties (modular

forms) need to be present in order to provide compensating factors. By setting modular weights to zero,

the construction reduces to a regular, flavour-symmetric one.

The models considered are supersymmetric (SUSY) and predictive. In their minimal realisation,

only one complex VEV breaks the modular symmetry and, together with superpotential parameters, it

fixes the neutrino and charged-lepton mass matrices, determining not only mixing and CPV phases, but

also masses and mass-squared differences. There is a limited number of sources for deviations from the

leading-order predictions in such models, such as SUSY breaking and renormalisation group running.

A systematic exploration of the modular invariance paradigm in bottom-up approaches to the flavour

puzzle is desirable but still lacking at the moment. The predictive power of the present approach and the

existence of successful benchmarks make this model-building avenue worthy of future study.

1.4 Outline

In the four chapters which follow we consider distinct facets of what has so far been described as the

symmetry approach to neutrino masses and to neutrino mixing.

In Chapter 2, we present a low-scale seesaw scenario in which a connection exists between symme-

try and neutrino masses. In particular, the smallness of these masses is related to the smallness of

Yukawa couplings protected by an approximately conserved (non-standard) lepton number. The spe-

cific realisation of such a scenario considers yet another kind of symmetry, the aforementioned (Abelian)

Froggatt-Nielsen symmetry, which in a certain limit mimics the required lepton number symmetry.

In Chapter 3, we analyse neutrinoless double-beta decay, a process whose existence signals the Ma-

jorana nature of massive neutrinos and the rupture of the standard lepton number symmetry L. After

considering a generic situation, we look into bounds on the (ββ)0ν-decay rate for choices of Majorana

phases in line with predictive schemes combining flavour and generalised CP symmetries.

In Chapter 4, we look into a more flexible scheme combining flavour and gCP symmetries. Our

analysis is based on the flavour group Gf = S4 and on particular, small residual symmetry groups. We

focus on correlations between mixing parameters, following from the symmetry breaking pattern.

In Chapter 5, we explore the predictions of minimalistic models based on the modular group Γ4 ' S4.
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In this setup, modular symmetry breaking determines mixing angles, CPV phases and ratios of masses

and of mass-squared differences.

Chapter 6 contains our concluding remarks.





Symmetry-protected

Low-scale Seesaw 2
The seesaw mechanism explains naturally the smallness of neutrino masses, which in the standard

type I scenario has its origin in large lepton-number violating Majorana masses of right-handed neutrinos.

An appealing aspect of this setup is that one can relate the existence of large Majorana masses of the RH

neutrino fields to a spontaneous breaking of some high-scale symmetry, say GUT symmetry. However,

direct tests of the standard seesaw mechanism are almost impossible due to the largeness of the scales

involved with respect to the electroweak scale.

In the present chapter, following Ref. [96], we consider a symmetry-protected seesaw scenario where

small Majorana neutrino masses arise as a result of an approximately conserved (non-standard) lep-

ton number. We first establish our setup independently of the origin of the considered Yukawa and

mass matrix structures. Afterwards, we detail a Froggatt-Nielsen scenario where such structures are re-

alised, predicting relations between magnitudes of Yukawa couplings. In this context, we further discuss

predictions for CPV phases, aspects of the low-energy phenomenology and the possibility of successful

leptogenesis.

2.1 Symmetry-protected Setup

We minimally extend the Standard Model by adding two RH neutrinos, i.e., two chiral fields νaR(x),

a = 1, 2, which are singlets under the SM gauge symmetry group. Following the notations of Refs. [97–

100], the relevant low-energy Lagrangian is

Lν = − νaR (MT
D)aα ναL −

1

2
νaR (MN )ab ν

C
bL + h.c. , (2.1)

with νCaL ≡ (νaR)C ≡ C νaR
T . MN = (MN )T is the 2× 2 Majorana mass matrix of RH neutrinos, while

MD denotes the 3 × 2 neutrino Dirac mass matrix, generated from the Yukawa couplings of neutrinos

following the breaking of electroweak symmetry. These Yukawa interactions read

LY = − νaR (Y TD )aαH
c† Lα + h.c. , MD = v YD , (2.2)

where Lα(x) = (ναL(x), `αL(x))T , the Higgs conjugate doublet is defined as Hc ≡ iσ2H
∗, and H =

(H+, H0)T is the Higgs doublet field whose neutral component acquires a VEV v =
〈
H0
〉

= 174 GeV.

The matrix of neutrino Yukawa couplings has the form

YD ≡

 ge1 ge2

gµ1 gµ2

gτ1 gτ2

 , (2.3)

19
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where gαa denotes the coupling of Lα(x) to νaR(x), α = e, µ, τ , a = 1, 2.

The full 5× 5 neutrino Dirac-Majorana mass matrix, given below in the (νL, ν
C
L ) basis, can be made

block-diagonal by use of a unitary matrix Ω,

ΩT

(
0 MD

MT
D MN

)
Ω =

(
U∗ν m̂U

†
ν 0

0 V ∗M̂V †

)
, (2.4)

where m̂ ≡ diag(m1,m2,m3) contains the masses mi of the light Majorana neutrino mass eigenstates νi,

while M̂ ≡ diag(M1,M2) contains the masses M1,2 of the heavy Majorana neutrinos, N1,2. Here, Uν and

V are 3× 3 and 2× 2 unitary matrices, respectively. The matrix Ω can be parametrised as [97,101]:

Ω = exp

(
0 R

−R† 0

)
=

(
1− 1

2RR
† R

−R† 1− 1
2R
†R

)
+O(R3) , (2.5)

under the assumption that the elements of the 3× 2 complex matrix R are small, which will be justified

later. At leading order in R, the following relations hold [97]:

R∗ ' MDM
−1
N , (2.6)

Mν ≡ U∗ν m̂U
†
ν ' R∗MNR

† −R∗MT
D −MDR

† = −R∗MNR
† , (2.7)

V ∗M̂V † ' MN +
1

2
RTR∗MN +

1

2
MNR

†R ' MN , (2.8)

where we have used Eq. (2.6) to get the last equality in Eq. (2.7).1 From the first two we recover the

well-known seesaw formula for the light neutrino mass matrix,

Mν = −MDM
−1
N MT

D . (2.9)

We are interested in the case where only the lepton-number-conserving Majorana mass term of ν1R(x)

and ν2R(x), M νT1R C
−1 ν2R, with M > 0 and, e.g., L′(ν1R) = −1 and L′(ν2R) = +1, L′ being the total

lepton charge, is present in the Lagrangian. The conserved charge is a non-standard lepton charge which

is expressed in terms of the individual lepton charges Lα, α = e, µ, τ , and La(νbR) = − δab, a, b = 1, 2,

as:

L′ = Le + Lµ + Lτ + L1 − L2 , (2.10)

with L′(ν1R) = L1(ν1R) = −1 and L′(ν2R) = −L2(ν2R) = +1. We will drop the prime in L′ in what

follows. In this case the Majorana mass matrix of RH neutrinos ν1R(x) and ν2R(x) reads:

MN =

(
0 M

M 0

)
. (2.11)

Using Eqs. (2.2), (2.3) and Eq. (2.9), we get the following expression for the light neutrino Majorana

mass matrix Mν :

Mν = − v
2

M

 2 ge1 ge2 gµ1 ge2 + ge1 gµ2 gτ1 ge2 + ge1 gτ2

gµ1 ge2 + ge1 gµ2 2 gµ1 gµ2 gτ1 gµ2 + gµ1 gτ2

gτ1 ge2 + ge1 gτ2 gτ1 gµ2 + gµ1 gτ2 2 gτ1 gτ2

 . (2.12)

1The factors 1/2 in the two terms ∝ RTR∗MN and ∝MNR
†R in Eq. (2.8) are missing in the corresponding expression

in Ref. [97]. These two terms provide a sub-leading correction to the leading term MN and have been neglected in the
discussion of the phenomenology in Ref. [97]. We will also neglect them in the phenomenological analysis we perform.
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With the assignments L(ν1R) = −1 and L(ν2R) = +1 made, the requirement of conservation of

the total lepton charge L leads to gα1 = 0, α = e, µ, τ . In this limit of gα1 = 0, we have Mν = 0,

the light neutrino masses vanish and ν1R and νC2L combine to form a Dirac fermion ND of mass M̃ =√
M2 + v2

∑
α |gα2|2,

ND =
N1 ± iN2√

2
= ν1R + νC2L , (2.13)

with Nk = NkL + NkR ≡ NkL + (NkL)C = C Nk
T

, k = 1, 2, and ν1R = (N1R ± iN2R)/
√

2, νC2L =

(N1L±iN2L)/
√

2. These general results can be inferred just from the form of the conserved non-standard

lepton charge of Eq. (2.10). In particular, min(n+, n−) and |n+ − n−| are the numbers of massive Dirac

and massless neutrinos, respectively, n+ (n−) being the number of charges entering into the expression

for L with positive (negative) sign [62].

Thus, the massive fields Nk(x) are related to the fields νaR(x) by νaR(x) ' V ∗akNkR(x), where

V =
1√
2

(
1 ∓i
1 ±i

)
, (2.14)

where the upper (lower) signs correspond to the case with the upper (lower) signs in Eq. (2.13) and in

the expressions for ν1R and νC2L given after it. We will adhere to the upper-sign convention further on.

Small L-violating couplings gα1 6= 0 split the Dirac fermion ND into two Majorana fermions N1 and

N2 which have very close but different masses, M1 6= M2, |M2 −M1| � M1,2. As a consequence, ND

corresponds to a pseudo-Dirac particle [44,46]. Of the three light massive neutrinos, one remains massless

(at tree level) while the other two acquire non-zero and different masses. The splitting between the masses

of N1 and N2 is of the order of one of the light neutrino mass differences and thus is extremely difficult

to resolve in practice.

More specifically, in the case of a neutrino mass spectrum with normal ordering, we have (at tree

level) keeping terms up to 4th power in the Yukawa couplings gα1 and gα2 and taking gαa to be real for

simplicity:

m1 = 0 , m2,3 '
1

M

[√
∆

(
1− D(A2 + ∆)

2M2∆

)
∓A

(
1− D

M2

)]
+O(g6

αa) , (2.15)

where

D ≡ v2
(
g2
e1 + g2

µ1 + g2
τ1 + g2

e2 + g2
µ2 + g2

τ2

)
, (2.16)

∆ ≡ v4
(
g2
e1 + g2

µ1 + g2
τ1

) (
g2
e2 + g2

µ2 + g2
τ2

)
, (2.17)

A ≡ v2 (ge1 ge2 + gµ1 gµ2 + gτ1 gτ2) . (2.18)

The heavy neutrino mass spectrum is given by:

M1,2 ' M

[
1 +

D

2M2
− 1

2M4

(
∆ + 2A2 +

D2

4

)]
∓ A

M

(
1− D

M2

)
+O(g6

αa) . (2.19)

The values of m2,3 and M1,2 given in Eqs. (2.15) and (2.19) can be obtained as approximate solutions of

the exact mass-eigenvalue equation:

λ4 − λ2
(
M2 +D

)
− 2λM A−

(
∆−A2

)
= 0 . (2.20)
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Note that, as it follows from Eqs. (2.15) and (2.19), we have [97]: M2−M1 ' 2(A/M)(1−D/M2) =

m3 −m2. Therefore, the splitting between M2 and M1, as we have already noted, is exceedingly small.

Indeed, for a neutrino mass spectrum with normal ordering and m1 = 0, we have m2 =
√

∆m2
21 '

8.6× 10−3 eV, m3 =
√

∆m2
31 ' 0.051 eV, and

M2 −M1 = m3 −m2 ' 0.042 eV , (2.21)

where we have used the best-fit values of ∆m2
21 and ∆m2

31 determined in the global analysis of neutrino

oscillation data of Ref. [38] (see Fig. 1.1 and Table 1.2). Even though in the present chapter we consistently

rely on the global analysis of Ref. [38], as in the original work we report on, our conclusions are unchanged

when considering the updated data. The corrections to the matrix V which diagonalises MN are of the

order of AD/M4 and are negligible, as was noticed also in [97].

To leading order in (real) gα1 and gα2, the expressions in Eqs. (2.15) and (2.19) simplify signifi-

cantly [97]:

m1 = 0 , m2 '
1

M

(√
∆−A

)
, m3 '

1

M

(√
∆ +A

)
, (2.22)

M1 ' M

(
1 +

D

2M2

)
− A

M
, M2 ' M

(
1 +

D

2M2

)
+
A

M
. (2.23)

The low-energy phenomenology involving the pseudo-Dirac neutrino ND, or equivalently the Majorana

neutrinos N1 and N2, is controlled by the matrix RV of couplings of N1 and N2 to the charged leptons

in the weak charged lepton current (see Section 2.5). When both gα1 and gα2 couplings are present, this

matrix is given by:

RV ' 1√
2

v

M

 g∗e1 + g∗e2 i (g∗e1 − g∗e2)

g∗µ1 + g∗µ2 i (g∗µ1 − g∗µ2)

g∗τ1 + g∗τ2 i (g∗τ1 − g∗τ2)

 . (2.24)

It follows from the preceding discussion that the generation of non-zero light neutrino masses may be

directly related to the generation of the L-non-conserving neutrino Yukawa couplings gα1 6= 0, α = e, µ, τ .

Among the many possible mechanisms leading to gα1 6= 0 there is one we will discuss further, that can

lead to exceedingly small gα1, say |gα1| ∼ 10−12−10−8. In this case the RH neutrinos can have masses in

the few GeV to a few TeV range and the neutrino Yukawa couplings |gα2| can be much larger than |gα1|,

of the order |gα2| ∼ 10−4 − 10−2, leading to interesting low-energy phenomenology. For these ranges of

|gα2| and M , the approximations D/M2 � 1 and M̃ 'M are valid and will be used in what follows, i.e.,

we will use Eqs. (2.22) and (2.23).

Thus, in the scenario we are interested in with two RH neutrinos possessing a Majorana mass term

which conserves the total lepton charge L, the smallness of the light Majorana neutrino masses is related

to the smallness of the L-non-conserving neutrino Yukawa couplings gα1 and not to the RH neutrinos

having large Majorana masses in the range of ∼ (1010−1014) GeV. Moreover, in contrast to the standard

seesaw scenario, the heavy Majorana neutrinos of the scenario of interest, having masses at the TeV or

lower scale, are in principle directly observable in collider (LHC, future e+ − e− and p− p) experiments.

The low-scale type I seesaw scenario of interest with two RH neutrinos ν1R and ν2R with L-conserving

Majorana mass term and L-conserving (L-non-conserving) neutrino Yukawa couplings gα2 (gα1) of ν2R

(of ν1R) was considered in Ref. [97] on purely phenomenological grounds (see also, e.g., [102,103]). It was
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pointed out in Ref. [97], in particular, that the strong hierarchy |gα1| � |gβ2|, α, β = e, µ, τ , is a perfectly

viable possibility from the point of view of generation of the light Majorana neutrino masses and that

in this case the L-non-conserving effects would be hardly observable. In the next section we provide a

possible theoretical justification of the strong hierarchy between the L-conserving and L-non-conserving

neutrino Yukawa couplings based on the Froggatt-Nielsen approach to the flavour problem.

2.2 Froggatt-Nielsen Realisation

We work in a supersymmetric (SUSY) framework and consider a global broken U(1)FN Froggatt-

Nielsen flavour symmetry, whose charge assignments we motivate below. We will show how an approx-

imate U(1)L symmetry, related to the L-conservation, may arise in such a model, with gα1 6= 0 as the

leading L-breaking effect responsible for neutrino masses.

In our setup, one of the RH neutrino chiral superfields has a negative charge under U(1)FN, namely

QFN(N̂2) = −1, while the other carries a positive FN charge, QFN(N̂1) ≡ n > 0. The FN mechanism

is (as usual) realised thanks to the VEV of the lowest component S of a chiral superfield Ŝ, which is a

singlet under the SM gauge symmetry group and carries negative FN charge, QFN(Ŝ) = −1. Charges for

the L̂α superfields follow a standard lopsided assignment [104], namely QFN(L̂e) = 2, QFN(L̂µ) = 1, and

QFN(L̂τ ) = 1, which allows for large νµ – ντ mixing. For definiteness we take QFN(Ĥu) = 0, QFN(êc) = 4,

QFN(µ̂c) = 2, and QFN(τ̂c) = 0. The FN suppression parameter ε = 〈S〉 /ΛFN is thus chosen to be close

to the sine of the Cabibbo angle λC , specifically ε = 0.2, in order to reproduce the hierarchies between

charged lepton masses (see also [105, 106]). Here, ΛFN is the FN flavour dynamics scale. The charge

assignments under U(1)FN relevant to the present study are summarised in Table 2.1.

Ŝ N̂1 N̂2 Ĥu L̂e L̂µ L̂τ êc µ̂c τ̂ c

QFN −1 n −1 0 2 1 1 4 2 0

Table 2.1: Charge assignments of lepton superfields under the U(1)FN symmetry group.

The effective superpotential for the neutrino sector reads:2

Wν ∼ M0 (ε2n N̂1 N̂1 + εn−1 N̂1 N̂2) + (ε L̂e + L̂µ + L̂τ ) (εn+1 N̂1 + g2 N̂2) Ĥu , (2.25)

where M0 ∼ ΛFN and g2 is an a priori O(1) coupling. Due to the condition of holomorphicity of the

superpotential, no quadratic term for N̂2 is allowed, justifying the absence of the Majorana mass term

M νT2R C
−1 ν2R. This framework may naturally arrange for the suppression (MN )11 � (MN )12, as well

as for a hierarchy between RH masses and the FN scale, M ∼ εn−1 ΛFN � ΛFN, provided the charge n

is sufficiently large.

The limit of a large N̂1 charge, n � 1, is quite interesting. In this limit, one finds an accidental

(approximate) U(1)L symmetry, with assignments L(N̂1,2) = ±1. Furthermore, the desired hierarchy

between (would-be) L-breaking and (would-be) L-conserving Yukawa couplings, |gα1| ∼ εn+1 � |gβ2|,
2The presence of an R-parity preventing the usual L- and B-violating terms in the MSSM superpotential is assumed.
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is manifestly achieved. Finally, the mass term for N̂1 is suppressed with respect to ΛFN by the FN

parameter to the power of 2n� 1. This observation and the holomorphicity of the superpotential justify

the absence of diagonal Majorana mass terms M νTaR C
−1 νaR, a = 1, 2, in Eq. (2.11) which could push

up the light neutrino masses to unwanted heavy scales. We will focus on the case of a sufficiently large

charge n in what follows.

The lopsided choice of FN charges for the lepton doublets is responsible for the structure |ge2| : |gµ2| :

|gτ2| ' ε : 1 : 1 of Yukawa couplings of ν2R. However, due to the large FN charge of ν1R, such FN

flavour structure might be diluted in the L-violating Yukawa couplings. Indeed, for each insertion of Ŝ,

a factor of ε is in principle accompanied by an O(1) factor. This uncertainty makes it impossible to have

an unambiguous prediction for the ratios |ge1| : |gµ1| : |gτ1| in the model under discussion. This is in

contrast to the case of the gα2 couplings.

Thus, in the present setup, the Yukawa matrix YD obeys the following structure (up to phases):

YD ∼

 ge1 ε g2

gµ1 g2

gτ1 g2

 sinβ , (2.26)

with sinβ =
〈
H0
u

〉
/v, and where gα1, g2 > 0, and the hierarchy gα1 � g2 ∼< 1 is naturally realised. We

see from Eq. (2.12) that the scale of light neutrino masses depends on the size of the product gα1 g2,

namely

(Mν)αβ ∼
v2 sin2 β

M
(gα1 + gβ1) g2 . (2.27)

The gα1 couplings represent a linear-like [107] contribution to light neutrino masses. In the FN

realisation, the RH neutrino Majorana mass matrix reads

MN =

(
µ M

M 0

)
, (2.28)

with an inverse-like [108–110] component µ, which gives a subleading contribution to light neutrino

masses. Despite being suppressed, the quadratic term for N̂1, and thus the Majorana mass term

µ νT1R C
−1 ν1R, may still play a non-negligible role, for instance, in studies of leptogenesis. A complete

suppression of µ can be achieved through the modification of our setup which we summarise in the follow-

ing. Consider (4+1) dimensions where the extra dimension is compactified on an S1/Z2 orbifold. This

extra dimension has two fixed points, y1 and y2, where an enhanced symmetry may arise. We localize

all SM fields on y1, a new chiral superfield Φ̂ (with lowest component Φ) on y2, and allow the FN field

S and both RH neutrino fields to propagate in the bulk. We impose, aside from the aforementioned FN

symmetry (QFN(Φ) = 0), an U(1)B−L̂ symmetry with the charge assignments (B − L̂)(ν1,2R) = −1 and

(B − L̂)(Φ) = +2. Notice that L̂ does not coincide with the previously defined lepton charge L.3 Then,

interactions of the type Φ νTaR C
−1 νbR (a, b = 1, 2) are allowed, provided a sufficient number of insertions

of S are considered. They generate mass terms for the RH neutrinos once Φ develops a non-zero VEV,

〈Φ〉 6= 0. The Yukawa couplings gαa are allowed and retain their FN hierarchy. Assuming an enhanced

U(1)L symmetry at y2 with charges L(ν1R) = −1, L(ν2R) = +1 and L(Φ) = 0, diagonal Majorana mass

3Indeed, we have L̂(ν1R) = L̂(ν2R) = +1 while L(ν1R) = −L(ν2R) = −1 (see Section 2.1).
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terms for ν1,2R are thus forbidden. The situation is that of Section 2.1, where FN plays the role of an

approximate lepton number.

2.3 Neutrino Mixing

The addition of the terms of Eq. (2.1) to the SM Lagrangian leads to a PMNS neutrino mixing matrix,

UPMNS, which is not unitary. Indeed, the charged and neutral current weak interactions involving the

light Majorana neutrinos νi read:

LνCC = − g√
2
`αL γµ

(
U†e (1 + η)Uν

)
αi
νiLW

µ + h.c. , (2.29)

LνNC = − g

2cw
νiL γµ

(
U†ν (1 + 2η)Uν

)
ij
νjL Z

µ , (2.30)

where α = e, µ, τ , cw is the cosine of the Weinberg angle, and Ue is the unitary matrix originating from

the diagonalisation of the charged lepton mass matrix and η ≡ −RR†/2. The transformation Ue does not

affect the power counting in the structure of Eq. (2.26), though it may provide a source of deviations. We

then choose to work in the charged lepton mass basis, in which Ue = 1. In this basis the neutrino mixing

matrix is given by: UPMNS = (1 + η)Uν , where Uν is the unitary matrix diagonalising the Majorana

neutrino mass matrix generated by the seesaw mechanism and η describes the deviation from unitarity

of the PMNS matrix. As we will see further, the experimental constraints on the elements of η imply

|ηαβ | ∼< 10−3, α, β = e, µ, τ .

Due to the structure of the matrix of Yukawa couplings YD given in Eq. (2.26), in the scheme we

are considering, a spectrum with normal ordering, m1 < m2 < m3, is favoured over inverted ordering.

We henceforth consider the NO case, for which, as we have already commented, we have m1 = 0,

m2 =
√

∆m2
21, and m3 =

√
∆m2

31. Working in the basis of a diagonal charged-lepton mass term and

neglecting the deviations from unitarity, which are parametrised by η, we identify the PMNS mixing

matrix with the unitary matrix Uν which diagonalises Mν , UPMNS ' Uν . Given that one neutrino is

massless (at tree level), the neutrino mixing matrix can be parametrised as (cf. Eq. (1.7)):

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 diag(1, eiα/2, 1) , (2.31)

where δ and α denote the Dirac and Majorana CPV phases, respectively, δ, α ∈ [0, 2π).

2.4 Predictions for CPV Phases

It proves convenient for our further analysis to use the Casas-Ibarra parametrisation [111] of the Dirac

mass matrix MD (neutrino Yukawa matrix YD):

MD = v YD = i U∗PMNS

√
m̂O

√
M̂ V † , (2.32)
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where m̂ = diag(m1,m2,m3) and O is a complex orthogonal matrix. In the scheme with two heavy RH

Majorana neutrinos the matrix O has the form [112,113]:

O =

 0 0

cos θ̂ ± sin θ̂

− sin θ̂ ± cos θ̂

 , for NO mass spectrum, (2.33)

O =

 cos θ̂ ± sin θ̂

− sin θ̂ ± cos θ̂

0 0

 , for IO mass spectrum, (2.34)

where θ̂ ≡ ω − iξ. The O-matrix in the case of NO spectrum of interest can be decomposed as follows:4

O =
eiθ̂

2

 0 0

1 ∓i
i ±1

+
e−iθ̂

2

 0 0

1 ±i
−i ±1

 = O+ +O− . (2.35)

The Dirac neutrino mass matrix can be presented accordingly as MD = MD++MD−, in a self-explanatory

notation. For the elements of MD+ = v YD+ and MD− = v YD− we get:

v (YD)αa = v (YD+)αa + v (YD−)αa = v g(+)
αa + v g(−)

αa , α = e, µ, τ, a = 1, 2 , (2.36)

where

v g
(+)
α1 ' i

eiωeξ

2
√

2

(√
M1 ±

√
M2

)
(
√
m2 U

∗
α2 + i

√
m3 U

∗
α3) , (2.37)

v g
(+)
α2 ' i

eiωeξ

2
√

2

(√
M1 ∓

√
M2

)
(
√
m2 U

∗
α2 + i

√
m3 U

∗
α3) , (2.38)

v g
(−)
α1 ' i

e−iωe−ξ

2
√

2

(√
M1 ∓

√
M2

)
(
√
m2 U

∗
α2 − i

√
m3 U

∗
α3) , (2.39)

v g
(−)
α2 ' i

e−iωe−ξ

2
√

2

(√
M1 ±

√
M2

)
(
√
m2 U

∗
α2 − i

√
m3 U

∗
α3) , (2.40)

with the abbreviation UPMNS → U , used also in what follows. Given the fact that (
√
M2−

√
M1)/(

√
M2 +

√
M1) ' (m3−m2)/(4M)� 1 and, e.g., for M = 10 (100) GeV, (m3−m2)/(4M) ' 10−12 (10−13), it is

clear from Eqs. (2.37) – (2.40) that for ξ = 0 we have (barring accidental cancellations): |g(−)
α1 | � |g

(+)
β1 |,

|g(+)
α2 | � |g(−)

β2 |, |g
(+)
α1 | ∼ |g

(−)
β2 |, and thus |gα1| ∼ |gβ2|, where we have used the upper signs in the

expressions for g
(±)
α1 and g

(±)
β2 . Unless otherwise stated we will employ this sign choice in the discussion

which follows.

Taking for definiteness ξ < 0, it follows from Eqs. (2.37) – (2.40) that |g(−)
αa | (|g(+)

αa |) grows (decreases)

exponentially with |ξ|.5 Therefore, for sufficiently large |ξ| we will have

|g(+)
α1 |
|g(−)
β2 |

= e−2|ξ| rαβ � 1 , rαβ ≡
∣∣√m2 U

∗
α2 + i

√
m3 U

∗
α3

∣∣∣∣∣√m2 U∗β2 − i
√
m3 U∗β3

∣∣∣ , α, β = e, µ, τ . (2.41)

Using the 3σ allowed ranges of the neutrino oscillation parameters found in the global analysis of the

neutrino oscillation data in Ref. [38] and given in Table 1.2 and varying the CP violation phases in the

4A similar decomposition exists for the IO spectrum [98].
5Obviously, if ξ > 0, |g(+)

αa | (|g(−)
αa |) will grow (decrease) exponentially with ξ.



2.4. Predictions for CPV Phases 27

PMNS matrix in their defining intervals it is not difficult to show that the ratios r in Eq. (2.41) vary in

the interval rαβ = (0.04− 22.5).

Therefore even for the maximal cited value of rαβ we would have |g(+)
α1 | � |g

(−)
β2 | for a sufficiently

large value of |ξ|. At the same time the inequalities |g(−)
α1 |/|g

(−)
β2 | � 1 and |g(+)

α2 |/|g
(−)
β2 | � 1, α, β = e, µ, τ ,

hold. Thus, for ξ < 0 and sufficiently large |ξ| we get the hierarchy of Yukawa couplings: |gα1| ' |g(+)
α1 | �

|gβ2| ' |g(−)
β2 |. For |ξ| = 9, for example, we find for rαβ ' 1: |gα1|/|gβ2| ' |g(+)

α1 |/|g
(−)
β2 | ' 1.5 × 10−8,

which is in the range of values relevant for our discussion (see Section 2.1). We get the same hierarchy

of Yukawa couplings, |gα1| � |gβ2|, α, β = e, µ, τ , in the case of the lower signs in the expressions in

Eqs. (2.37) – (2.40) for sufficiently large ξ > 0. In this case |gα1| ' |g(−)
α1 | � |gβ2| ' |g(+)

β2 |.

We will show next that, given the present neutrino oscillation data, enforcing the flavour pattern

specified in Eq. (2.26) results in preferences for a Dirac phase δ close to π/4, 3π/4, 5π/4, 7π/4, and for

a Majorana phase α close to zero.

As we have seen, the matrix of neutrino Yukawa couplings YD can be reconstructed up to normal-

ization, a complex parameter, and a sign using Eqs. (2.32) and (2.35) (for NO spectrum). For the cases

of interest, with sufficiently large values of |ξ|, necessary to ensure the requisite hierarchy of Yukawa

couplings |gα1| � |gβ2|, α, β = e, µ, τ , the ratios of (absolute values of) Yukawa couplings read:

R
(1)
αβ ≡

|gα1|
|gβ1|

'
∣∣√m2 U

∗
α2 ± i

√
m3 U

∗
α3

∣∣∣∣∣√m2 U∗β2 ± i
√
m3 U∗β3

∣∣∣ , (2.42)

R
(2)
αβ ≡

|gα2|
|gβ2|

'
∣∣√m2 U

∗
α2 ∓ i

√
m3 U

∗
α3

∣∣∣∣∣√m2 U∗β2 ∓ i
√
m3 U∗β3

∣∣∣ , (2.43)

where the upper and lower signs correspond to the case with ξ < 0 and upper signs in Eq. (2.35) and to

the case with ξ > 0 and lower signs in Eq. (2.35), respectively. Recall that |gα1| ' |g(+)
α1 |, |gα2| ' |g(−)

α2 |

in the former case (ξ < 0), and |gα1| ' |g(−)
α1 |, |gα2| ' |g(+)

α2 | in the latter (ξ > 0).

One sees that the dependence on the complex parameter θ̂ drops out in the ratios R
(1,2)
αβ , which

are determined by the light neutrino masses m2 and m3 and by neutrino mixing parameters only, once

the sign in O in Eq. (2.35) (or equivalently in Eqs. (2.37) – (2.40)) is fixed. In particular, the flavour

structure depends on the elements Uα2 and Uα3 of the PMNS matrix. Given the fact that m2 =
√

∆m2
21,

m3 =
√

∆m2
31, and that ∆m2

21, ∆m2
31 and the three neutrino mixing angles θ12, θ23 and θ13 have been

determined in neutrino oscillation experiments with a rather high precision, the quantities R
(1)
αβ and R

(2)
αβ

depend only on the CPV phases δ and α once the sign of ξ is fixed. This means that knowing any two

of the ratios |gα1|/|gβ1| or |gα2|/|gβ2|, α 6= β = e, µ, τ allows to determine both phases δ and α.

In Figs. 2.1 and 2.2 we present the ratios R
(1,2)
αβ as a function of δ for the case ξ < 0 and two

representative values of the Majorana phase α. Figure 2.1 is obtained using the best-fit values of ∆m2
21,31

and sin2 θij taken from Table 1.2. In Fig. 2.2 we show the ranges in which R
(1,2)
αβ vary when ∆m2

21,31 and

the sin2 θij are varied in their respective 3σ allowed intervals given in Table 1.2. In Table 2.2 we report

the respective intervals in which each of the six ratios can lie. As Table 2.2 indicates, certain specific

simple patterns cannot be realised within the scheme considered. Among those are, for example, the

patterns |ge1| : |gµ1| : |gτ1| ' 1 : 1 : 1 and |ge2| : |gµ2| : |gτ2| ' 1 : 1 : 1.

The flavour structure of Eq. (2.26), which is naturally realised in the model of Section 2.2, corresponds
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Figure 2.1: Ratios R
(1,2)
αβ of (absolute values of) Yukawa couplings for a NO neutrino spectrum as

a function of the Dirac phase δ for a Majorana phase α = 0 (left panel) and α = π (right panel),

in the case ξ < 0. The figure is obtained using the best-fit values of ∆m2
21,31 and sin2 θij quoted

in Table 1.2. The vertical grey band indicates values of δ which are disfavoured at 3σ. The case

ξ > 0 is obtained by exchanging R
(1)
αβ and R

(2)
αβ .
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Figure 2.2: Ratios R
(1,2)
αβ of (absolute values of) Yukawa couplings for a NO neutrino spectrum as

a function of the Dirac phase δ for a Majorana phase α = 0 (left panel) and α = π (right panel),

in the case ξ < 0. Bands are obtained by varying ∆m2
21,31 and the sin2 θij in their respective

3σ allowed ranges given in Table 1.2. In the case α = π, the upper boundary of the R
(2)
µτ band

(not shown) is located at R
(2)
µτ ' 3.0− 3.2. The vertical grey band indicates values of δ which are

disfavoured at 3σ. The case ξ > 0 is obtained by exchanging R
(1)
αβ and R

(2)
αβ .
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Ratio Allowed range

R
(1)
eµ 0.05− 1.28

R
(1)
eτ 0.04− 0.63

R
(1)
µτ 0.31− 1.23

R
(2)
eµ 0.04− 0.63

R
(2)
eτ 0.05− 1.26

R
(2)
µτ 0.80− 3.21

Table 2.2: Ranges for the ratios of absolute values of Yukawa couplings, obtained by varying

∆m2
21,31, the sin2 θij , and δ in their respective 3σ allowed ranges and α in its defining range, for

ξ < 0. The case ξ > 0 is obtained by exchanging R
(1)
αβ and R

(2)
αβ .

to the pattern |ge2| : |gµ2| : |gτ2| ' ε : 1 : 1, and thus to R
(2)
eµ ' R(2)

eτ ' ε and R
(2)
µτ ' 1. The requirement

of having R
(2)
µτ ' 1 favours α close to zero.6 As can be inferred from Fig. 2.1, given the best-fit values

of neutrino mass-squared differences and mixing parameters, the requirement of R
(2)
eµ ' R

(2)
eτ ' ε = 0.2

leads, for ξ < 0, to the prediction of δ ' 5π/4, 7π/4.7 Taking into account the 3σ allowed ranges of

∆m2
21,31 and sin2 θij leads, as Fig. 2.2 shows, to δ lying in narrow intervals around the values 5π/4 and

7π/4, if α ' 0. Allowing for a somewhat smaller value of ε, e.g., ε = 0.15, we find that δ should lie in the

interval δ ' [5π/4, 7π/4] which includes the value 3π/2 (see Fig. 2.2).

For δ ' 5π/4, 7π/4, α = 0 and the best-fit values of ∆m2
21,31 and of the sin2 θij we get the following

pattern of the Yukawa couplings of ν1R: |ge1| : |gµ1| : |gτ1| ∼ 0.5 : 1 : 1.

For ξ > 0, using the same arguments we obtain instead δ ' π/4, 3π/4, or δ ' [π/4, 3π/4]. According

to global analyses, however, these values of δ are strongly disfavoured by data.

In a more phenomenological approach, we get δ ' 3π/2 provided, e.g., |ge2| : |gµ2| : |gτ2| ' 0.14 : 1 : 1

and α ' π/5. In this case, the remaining ratios read |ge1| : |gµ1| : |gτ1| ' 0.5 : 0.7 : 1. In the GUT-

inspired scenario of Ref. [115], a different FN charge assignment leads to ε = 0.06, in which case δ ' 3π/2

is favoured.

2.5 Phenomenology

The low-energy phenomenology of the model of interest resembles that of the model with two heavy

Majorana neutrinos N1,2 forming a pseudo-Dirac pair considered in [97–99], in which the splitting between

the masses of N1,2 is exceedingly small. For this model, direct and indirect constraints on the model

parameters, which do not depend on the splitting between the masses of N1 and N2, as well as expected

sensitivities of future lepton colliders have been analysed, e.g., in Refs. [97–99,116,117] (see also [118–120]).

Due to the mixing of LH and RH neutrino fields, i) the PMNS neutrino mixing matrix, as we have

already noted, is not unitary, as also the expressions for the charged and neutral current weak interaction

6Marginalizing over δ (either in its defining or in its 3σ range) and varying ∆m2
21,31 and the sin2 θij in their respective

3σ allowed ranges, the requirement that |R(2)
µτ − 1| < 0.1 implies α < 0.36π ∨ α > 1.64π, independently of the sign of ξ.

However, if we require that the relative probability of α having a given value in the indicated intervals is not less than 0.15,
then we have α < 0.2π or α > 1.8π. For these values of α and ε = 0.2, the predictions for δ can be read off from the plots
where α = 0.

7Similar predictions for CPV phases δ and α were obtained in a different context in Ref. [114].
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of the light Majorana neutrinos νi given in Eqs. (2.29) and (2.30) show, and ii) the heavy Majorana

neutrinos N1,2 also participate in charged and neutral current weak interactions with the W± and Z0

bosons:

LNCC = − g√
2
`αL γµ

(
RV
)
αk
NkLW

µ + h.c. , (2.44)

LNNC = − g

2cw
ναL γµ

(
RV
)
αk
NkL Z

µ + h.c. . (2.45)

Due to the Yukawa interactions, see Eq. (2.2), there are interactions of the heavy Majorana neutrinos

N1,2 with the SM Higgs boson h as well (see [100]):

LNH = −Mk

v
ναL

(
RV
)
αk
NkR h + h.c. . (2.46)

2.5.1 Neutrino Mass Matrix and Non-unitarity Bounds

The first constraint on the RV elements follows from the fact that the elements of the light neutrino

Majorana mass matrix, (Mν)αβ , have rather small maximal values. Indeed, as follows from Eq. (2.7), we

have [97]:

|(Mν)αβ | = |U∗αjmj U
∗
βj | '

∣∣∣∣∣∑
a

(RV )∗αaMa (RV )∗βa

∣∣∣∣∣ , α, β = e, µ, τ , (2.47)

where the sum is effectively over j = 2, 3 since in the model considered m1 = 0.8 The elements of the

neutrino Majorana mass matrix depend, apart from m2 =
√

∆m2
21 ' 8.6 × 10−3 eV, m3 =

√
∆m2

31 '

0.051 eV, θ12, θ23, θ13, on the CPV phases δ and α. The maximal value a given element of Mν can have

depends on its flavour indices. It is not difficult to derive these maximal values using the results reported

in Table 1.2. We have:

i) |(Mν)ee| ∼< 4.3× 10−3 eV (α+ 2δ = 0);

ii) |(Mν)eµ| ∼< 9.2× 10−3 eV (δ = π, α = π);

iii) |(Mν)eτ | ∼< 9.2× 10−3 eV (δ = 0, α = π);

iv) |(Mν)µµ| ∼< 3.4× 10−2 eV (δ = π, α = 0);

v) |(Mν)µτ | ∼< 2.9× 10−2 eV (δ = 3π/2, α = π);

vi) |(Mν)ττ | ∼< 3.5× 10−2 eV (δ = 0, α = 0).

The quoted maximal values are reached for the values of the CPV phases given in the brackets. It should

be added that the dependence of max(|(Mν)αβ |), α, β = µ, τ , on CPV phases is rather weak since the

terms involving δ always include the suppressing factor sin θ13, while the term∝ m2 is considerably smaller

(typically by a factor of 10) than the term ∝ m3, as m2/m3 ' 0.17. We will consider |(Mν)ee| ∼< 4×10−3

eV, |(Mν)eµ|, |(Mν)eτ | ∼< 9 × 10−3 eV, and |(Mν)αβ | ∼< 3 × 10−2 eV, α, β = µ, τ , as reference maximal

values in the numerical analysis which follows.

8Strictly speaking, we have m1 = 0 only at tree level. Higher order corrections lead to a non-zero value of m1, which is
however negligibly small.
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From the expression for RV given in Eq. (2.24) and Eq. (2.47), and taking into account the mass

splitting between N1 and N2, we get to leading order in |gα1|, |gβ2| and |gα1gβ2|:

|(Mν)αβ | '
v2

M
|gα1gβ2 + gα2gβ1|+O(gα1gβ1) , (2.48)

which coincides (up to higher order corrections) with the form given in Eq. (2.12). Thus, for a given

value of M , the upper bounds on |(Mν)αβ | lead via Eq. (2.47) to upper bounds on the magnitude of the

product of the neutrino Yukawa couplings of ν1R and ν2R, gα1 and gβ2. As we have seen, these bounds

depend on the flavour of the lepton doublet to which ν1R and ν2R are coupled.

For M = 100 GeV (1 TeV), for example, the constraint of interest |(Mν)ee| ∼< 4 × 10−3 eV implies

2|ge1ge2| ∼< 1.3 × 10−14 (1.3 × 10−13). This upper limit can be satisfied for, e.g., |ge1| ∼ 0.65 × 10−12

(0.65×10−11) and |ge2| ∼ 10−2. The upper bounds on |ge1gα2 +gα1ge2|, α = µ, τ , are approximately by a

factor of 2 larger than the quoted upper bound on 2|ge1ge2|, while those on |gα1gβ2 + gα2gβ1|, α, β = µ, τ

are larger approximately by a factor of 8.

In Refs. [97, 98] the constraint in Eq. (2.47) is satisfied by finding a region, in the general parameter

space of the model considered, in which to leading order
∑
a=1,2 (RV )∗αaMa (RV )∗βa = 0, i.e., the two

terms in the sum cancel. In the version of the low-scale type I seesaw model with two RH neutrinos

we are considering the constraint in Eq. (2.47) is satisfied due to smallness of the product of Yukawa

couplings |gα1| and |gβ2|. In the model under consideration one gets
∑
a=1,2 (RV )∗αaMa (RV )∗βa = 0 in

the limit of negligible couplings gα1. Indeed, setting gα1 = 0 we get M1 = M2 and the expression for the

matrix RV takes the form:

RV =
1√
2

v

M

 g∗e2 −i g∗e2
g∗µ2 −i g∗µ2

g∗τ2 −i g∗τ2

 . (2.49)

This implies

(RV )α1 = −i (RV )α2 , α = e, µ, τ , (2.50)

which together with the equality M1 = M2 leads to
∑
a=1,2 (RV )∗αaMa (RV )∗βa = 0.

As we have already discussed, the matrix η ≡ −RR†/2 = −(RV ) (RV )†/2 = η† parametrises the

deviations from unitary of the PMNS matrix. The elements of η are constrained by precision electroweak

data and data on flavour observables. For heavy Majorana neutrino masses above the electroweak scale

the most updated set of constraints on the absolute values of the elements of η at 2σ C.L. reads [121,122]:

|η| <

 1.3× 10−3 1.2× 10−5 1.4× 10−3

1.2× 10−5 2.2× 10−4 6.0× 10−4

1.4× 10−3 6.0× 10−4 2.8× 10−3

 . (2.51)

The upper bound on the e−µ elements is relaxed to |ηeµ| < 3.4×10−4 for heavy Majorana neutrino masses

below the electroweak scale (but still above the kaon mass, Mk ∼> 500 MeV) due to the restoration of a

GIM cancellation [123]. The above constraints on η justify the assumption made in Section 2.1 regarding

the smallness of the elements of R.

Using the expression for RV given in Eq. (2.24) we find that, to leading order in gα1, gβ2, |gα1| � |gβ2|,

we have:

|ηαβ | '
1

2

v2

M2
|gα2 gβ2|+O(gα1 gβ2, gβ1 gα2) . (2.52)
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As a consequence, if M is given, the experimental limits on |η| cited in Eq. (2.51), in contrast to the limits

on |(Mν)αβ |, imply upper bounds on |gα2 gβ2|, i.e., on the Yukawa couplings of ν2R. For, e.g., M = 100

GeV we find, depending on the flavour indices, |gα2 gβ2|1/2 ∼< (2.8× 10−3 − 4.3× 10−2), i.e., |gα2| can be

relatively large. This can lead to interesting low-energy phenomenology involving the heavy Majorana

neutrinos N1,2.

2.5.2 LFV Observables and Higgs Decays

The predictions of the model under discussion for the rates of the lepton flavour violating (LFV)

µ→ eγ and µ→ eee decays and µ−e conversion in nuclei, as can be shown, depend on |(RV )∗µ1(RV )e1 +

(RV )∗µ2(RV )e2|2 ' 4 |(RV )∗µ2(RV )e2|2, where we have used Eq. (2.50), and on the masses M1 'M2 'M

of the heavy Majorana neutrinos N1 and N2. The expressions for the µ → eγ and µ → eee decay

branching ratios, BR(µ → eγ) and BR(µ → eee), and for the relative µ − e conversion in a nucleus X,

CR(µX → eX), coincide with those given in Refs. [98,99]. The best experimental limits on BR(µ→ eγ),

BR(µ→ eee) and CR(µX → eX) have been obtained by the MEG [124], SINDRUM [125] and SINDRUM

II [126,127] collaborations:

BR(µ→ eγ) < 4.2× 10−13 (90% C.L.) , (2.53)

BR(µ→ eee) < 1.0× 10−12 (90% C.L.) , (2.54)

CR(µTi→ eTi) < 4.3× 10−12 (90% C.L.) , (2.55)

CR(µAu→ eAu) < 7× 10−13 (90% C.L.) . (2.56)

The planned MEG II update of the MEG experiment [128] is expected to reach sensitivity to BR(µ→

eγ) ' 4× 10−14. The sensitivity to BR(µ→ eee) is expected to experience a dramatic increase of up to

four orders of magnitude with the realisation of the Mu3e Project [129], which aims at probing values

down to BR(µ→ eee) ∼ 10−16 in its phase II of operation. Using an aluminium target, the Mu2e [130]

and COMET [131] collaborations plan to ultimately be sensitive to CR(µAl → eAl) ∼ 6 × 10−17. The

PRISM/PRIME project [132] aims at an impressive increase of sensitivity to the µ − e conversion rate

in titanium, planning to probe values down to CR(µTi → eTi) ∼ 10−18, an improvement of six orders

of magnitude with respect to the bound of Eq. (2.55).

We show in Fig. 2.3 the limits on |gµ2 ge2| implied by the experimental bounds in Eqs. (2.53) – (2.56),

as a function of the mass M , as well as the prospective sensitivity of the future planned experiments MEG

II, Mu3e, Mu2e, COMET and PRISM/PRIME. The data from these experiments, as Fig. 2.3 indicates,

will allow to test for values of |gµ2 ge2| quite smaller than the existing limits, with a significant potential

for a discovery.

For reference, the most stringent bounds on the branching ratios for the LFV processes τ → eγ, τ → µγ

and τ → µµµ at present are obtained by the BaBar [133] and Belle [134] collaborations, respectively:

BR(τ → eγ) < 3.3× 10−8 (90% C.L.) , (2.57)

BR(τ → µγ) < 4.4× 10−8 (90% C.L.) , (2.58)

BR(τ → µµµ) < 2.1× 10−8 (90% C.L.) . (2.59)
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Figure 2.3: Present limits (solid lines) and expected future sensitivities (dotted, dashed and dot-

dashed lines) on |gµ2||ge2| from data on muon LFV processes, as a function of the mass M of heavy

Majorana neutrinos.

Even taking into account the prospective sensitivity of next generation experiments, non-unitarity con-

siderations dominate the constraints on |ge2gτ2| and |gµ2gτ2|.

The interactions given in Eq. (2.46) open up novel decay channels for the Higgs boson, provided the

masses of the heavy neutrinos N1,2 are below the Higgs boson mass, mh. For M1,2 < mh ' 125.1 GeV,

the new Higgs decay modes are those into one light and one heavy neutrino, h → ναLNk, α = e, µ, τ ,

k = 1, 2. The phenomenology of the Higgs decays h→ ναLNk in the model considered in this chapter is

similar to that of the same decay investigated in detail in Ref. [100] in the model discussed in Ref. [98].

The rate of the decay h → ναLN1,2 to any ναL and N1 or N2 is given in Ref. [100] and in the limit of

zero mass splitting of N1,2 (M1 = M2 = M) reads:

Γ(h→ ν N) =
mh

16π

(
1− M2

m2
h

)2
M2

v2

∑
α,k

∣∣(RV )
αk

∣∣2 , (2.60)

where in the model considered by us

M2

v2

∑
α,k

∣∣(RV )
αk

∣∣2 ' |ge2|2 + |gµ2|2 + |gτ2|2 , (2.61)

and we have used Eqs. (2.49) and (2.50). The dominant decay mode of the SM Higgs boson is into bottom

quark-antiquark pair, b− b̄. The decay rate is given by:

Γ(h→ b b̄) =
3mh

16π

(mb

v

)2
(

1− 4m2
b

m2
h

)3/2

, (2.62)

mb ' 4.18 GeV being the b quark mass (in the MS scheme). The SM branching ratio of this decay

is 58.4% [135]. The formula for Γ(h → bb̄) offers an interesting parallel with the one for Γ(h → νN).
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Namely, they are structurally identical save for the exponents 2 and 3/2, a difference which has its origin

in the phase space integration. The total SM decay width of the Higgs boson is rather small [135]:

ΓSM
tot ' 4.07× 10−3 GeV.

The upper bound on (
∑
α |gα2|2) is determined essentially by the upper bound on |gτ2|2 = 2|ηττ |M2/v2,

which is less stringent than the upper bounds on |ge2|2 and |gµ2|2. Using the bound |ηττ | < 2.8 × 10−3

quoted in Eq. (2.51), we get for M = 100 GeV the upper bound |gτ2|2 < 1.8 × 10−3. For the

Higgs decay rate Γ(h → ν N) in the case of M = 100 GeV and, e.g., (
∑
α |gα2|2) = 10−3, we get

Γ(h→ ν N) = 3.2× 10−4 GeV. This decay rate would lead to an increase of the total SM decay width of

the Higgs boson by approximately 8%. Thus, the presence of the h → ν N decay would modify the SM

prediction for the branching ratio for any generic (allowed in the SM) decay of the Higgs particle [100],

decreasing it.

We briefly comment on neutrinoless double beta decay. The relevant observable is the absolute value

of the effective neutrino Majorana mass |〈m〉| (see, e.g., [136]), which receives an extra contribution from

the exchange of heavy Majorana neutrinos N1 and N2. This contribution should be added to the one

due to light Majorana neutrino exchange [137,138] (see also [97,139]). The sum of the two contributions

can lead, in principle, to |〈m〉| that differs significantly from the one due to light Majorana neutrino

exchange. The contribution due to the N1,2 exchange in |〈m〉| in the model considered is proportional,

in particular, to the difference between the masses of N1 and N2, which form a pseudo-Dirac pair. For

M ∼> 1 GeV, as can be shown, it is strongly suppressed in the present setup due to the extremely small

N1,2 mass difference, the stringent upper limit on |ge2|2, and the values of the relevant nuclear matrix

elements (NME), which at M = 1 GeV are smaller approximately by a factor of 6× 10−2 than the NME

for the light neutrino exchange and scale with M as (0.9 GeV/M)2. As a consequence, the contribution to

|〈m〉| due to the exchange of N1 and N2 is significantly smaller than the contribution from the exchange

of light Majorana neutrinos νi. Thus, the analysis of the standard (ββ)0ν-decay rate performed in the

following chapter of this thesis is applicable to the case at hand.

2.6 Leptogenesis

Finally, we discuss the issue of leptogenesis. For temperatures above the electroweak phase transition

(EWPT), the Higgs VEV vanishes and thus, in the considered setup, the splitting between the masses of

heavy neutrinos originates from the (suppressed) Majorana mass term µ νT1R C
−1 ν1R, with µ ∼ εn+1M ∼

|gα1|M . This component of the heavy neutrino mass matrix – which in our case presents a subleading

contribution to neutrino masses – is then crucial for resonant leptogenesis to proceed (see, e.g., [140]). The

resonant condition reads µ ' Γ/2, where Γ denotes the average heavy neutrino decay width. However,

the values of µ, Γ and neutrino masses are tightly connected in the FN model we analyse, which, together

with the required smallness of µ, prevents reproducing the observed baryon asymmetry of the Universe

(BAU), ηobs
B ' (6.09± 0.06)× 10−10 [141].

One may instead successfully generate the observed BAU through the mechanism of anti-leptogenesis

[142] (also known as “neutrino-assisted GUT baryogenesis”). In this case, an excess of both baryon
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number B and lepton number L̂ (see Section 2.2) is produced at a high energy scale (T > 1012 GeV,

possibly related to grand unification), while conserving B − L̂. If there are new L̂-violating interactions

in thermal equilibrium at such high temperature, they may erase the lepton number excess while leaving

the baryon number excess untouched, since sphalerons are not efficient at these times. At later times,

sphalerons are responsible for only a partial conversion of the baryon number excess into a lepton number

excess, while some of the baryon excess remains.

Unlike resonant leptogenesis, the anti-leptogenesis mechanism relies on a suppression of the L̂-violating

heavy neutrino mass splitting above the EWPT, in order not to wash-out the asymmetry generated

at a high scale. Modifying our setup as detailed in the end of Section 2.2, the Majorana mass term

µ νT1R C
−1 ν1R is forbidden and the heavy neutrinos are degenerate above the EWPT. One then adds a

third RH neutrino in the bulk with (B− L̂)(ν3R) = −1 and vanishing U(1)L charge, such that its Yukawa

couplings, which violate lepton number, are allowed, and such that the mass term M3 ν
T
3R C

−1 ν3R is

generated, M3 ∼ 〈Φ〉. Notice that only one such RH neutrino is needed to erase lepton number at high

temperatures (M3 ∼ (1012 − 1013) GeV), and that there is a large region of parameter space where

the new contribution to the neutrino mass matrix is negligible [143]. Given these conditions, successful

(anti-)leptogenesis may proceed.

2.7 Chapter Summary

In the present chapter we have explored a symmetry-protected scenario of neutrino mass generation,

where two RH neutrinos are added to the SM. In the class of models considered, the main source of L-

violation responsible for the neutrino masses are small lepton-charge violating Yukawa couplings gα1 (α =

e, µ, τ) to one of the RH neutrinos, ν1R. Thus, the smallness of the light Majorana neutrino masses is

related to the smallness of the gα1 and not to the RH neutrinos having large Majorana masses in the

range of ∼ (1010 − 1014) GeV as in the standard seesaw scenario. We have considered heavy Majorana

neutrinos forming a pseudo-Dirac pair with masses M1,2 ' M at the TeV or lower scale, which are

potentially observable in collider experiments.

The setup described above can be realised in a Froggatt-Nielsen (FN) scheme, as detailed in Section

2.2. In such a model, no U(1)L symmetry is imposed, and instead the suppression of L-violating operators

arises in the limit of a large FN charge for ν1R, which mimics lepton number conservation. The FN

charge assignments are partly motivated by large νµ – ντ mixing. The structure of the Yukawa couplings

gαa (a = 1, 2) is then determined by the FN charges, and yields |ge2| : |gµ2| : |gτ2| ' ε : 1 : 1, where

ε ' λC ' 0.2 is the FN suppression parameter, while no unambiguous prediction may be extracted for

the ratios |ge1| : |gµ1| : |gτ1|.

It is interesting to point out that, given the exceedingly small splitting between heavy neutrinos, the

dependence on the Casas-Ibarra complex parameter drops out in the ratios between absolute values of

Yukawa couplings to the same RH neutrino. These ratios are then determined (up to the exchange of

gα1 and gα2) by neutrino low-energy parameters alone, namely, by neutrino masses, mixing angles and

CPV phases δ and α. Given the Yukawa structure of our model, |ge2| : |gµ2| : |gτ2| ' ε : 1 : 1 with
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ε ' λC ' 0.2, the Dirac CPV phase δ is predicted to have approximately one of the values δ ' π/4, 3π/4,

or 5π/4, 7π/4, or to lie in an interval around one of these values, while a Majorana CPV phase α ' 0 is

preferred (Figs. 2.1 and 2.2).

In the considered scenario, the maximal values of the elements of the neutrino mass matrix lead

to constraints on the combinations |gα1gβ2 + gβ1gα2|, α, β = e, µ, τ , which depend on products of L-

conserving and L-violating Yukawa couplings (see Section 2.5.1). Deviations from unitarity of the PMNS

matrix constrain instead the products |gα2gβ2| of L-conserving couplings alone. In particular, the product

|gµ2ge2| is constrained by data on muon lepton flavour violating (LFV) processes. Data from future LFV

experiments (MEG II, Mu3e, Mu2e, COMET, PRISM/PRIME) will allow to probe values of |gµ2 ge2|

significantly smaller than the existing limits (Fig. 2.3). The decay of the Higgs boson into one light and one

heavy neutrino can have a rate Γ(h→ νN) as large as 8% of the total SM Higgs decay width. This decay

mode can lead to a change of the Higgs branching ratios with respect to the SM predictions. Concerning

neutrinoless double beta decay in the considered model, the contribution due to N1,2 exchange is found

to be negligible when compared to the contribution from the exchange of light Majorana neutrinos, which

is the subject of the following chapter.



Neutrinoless

Double Beta Decay 3
Observations of flavour oscillations in experiments with solar, atmospheric, reactor, and accelerator

neutrinos imply both non-trivial mixing in the leptonic sector and above-meV masses for at least two of

the light neutrinos. However, as noted, neutrino oscillations are blind to the absolute scale of neutrino

masses and to the nature – Dirac or Majorana – of massive neutrinos. The observation of neutrinoless

double beta decay would instead allow to establish lepton number violation and the Majorana nature

of neutrinos. The rate of this process in the case of 3-neutrino mixing is controlled by the neutrinoless

double beta decay effective Majorana mass |〈m〉|.

In the present chapter, following Ref. [144] and taking into account up-to-date neutrino oscillation

data (see Fig. 1.2 and Table 1.3), we give the conditions under which the effective Majorana mass in the

case of 3-neutrino mixing exceeds the millielectronvolt value. We consider both the generic case, where

Majorana and Dirac CPV phases are unconstrained, as well as a set of cases in which these phases take

particular values, motivated by predictive schemes combining generalised CP and flavour symmetries.

Our study is a natural continuation of the one performed in Ref. [145].

3.1 Description and Half-lives

In order to uncover the possible Majorana nature of neutrinos, searches for the lepton-number violating

process of neutrinoless double beta are underway (for recent reviews, see e.g. [146, 147]). This decay

corresponds to a transition between the isobars (A,Z) and (A,Z + 2), accompanied by the emission

of two electrons but – unlike usual double beta decay – without the emission of two (anti)neutrinos,

see Figure 3.1a. If observed, neutrinos are of Majorana nature as a consequence of the “black-box”

theorem [148]: whatever is the process generating (ββ)0ν-decay, it invariably contributes to the neutrino

Majorana mass matrix, see Figure 3.1b.1

A potential observation of (ββ)0ν-decay is feasible, in principle, whenever single beta decay is ener-

getically forbidden, as is the case for certain even-even nuclei. The searches for (ββ)0ν-decay have a long

history (see, e.g., [150]). The best lower limits on the half-lives T 0ν
1/2 of this decay have been obtained

for the isotopes of germanium-76, tellurium-130, and xenon-136: T 0ν
1/2(76Ge) > 8.0× 1025 yr reported by

the GERDA-II collaboration [151], T 0ν
1/2(130Te) > 1.5×1025 yr obtained from the combined results of the

Cuoricino, CUORE-0, and CUORE experiments [152], and T 0ν
1/2(136Xe) > 1.07× 1026 yr reached by the

1This four-loop diagram is not expected to be the leading contribution to neutrino masses (see, e.g., [149]).

37
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Figure 3.1: (a) Diagram of the standard light Majorana neutrino exchange contribution to (ββ)0ν-

decay, at the quark level. The process is allowed do to the neutrino (Majorana) mass inser-

tion, which allows for a chirality flip. (b) Diagrammatic illustration of the black-box theorem of

Ref. [148].

KamLAND-Zen collaboration [153], with all limits given at the 90% CL.

In the standard scenario where the exchange of three Majorana neutrinos νk (k = 1, 2, 3) with masses

mk < 10 MeV provides the dominant contribution to the decay rate, the (ββ)0ν-decay rate is proportional

to the so-called effective Majorana mass |〈m〉| (see next section). Given the present knowledge of neutrino

oscillation data, the effective Majorana mass is bounded from below in the case of a neutrino mass

spectrum with inverted ordering [154], |〈m〉|IO > 1.4× 10−2 eV. Instead, in the case of a spectrum with

normal ordering, |〈m〉| can be exceptionally small: depending on the values of the lightest neutrino mass

and of the CP violation Majorana phases we can have |〈m〉|NO � 10−3 eV (see, e.g., [25]). Recall that

recent global analyses show a preference of the data for NO spectrum over IO spectrum at the 3σ CL.

New-generation experiments seek to probe and possibly cover the IO region of parameter space, work-

ing towards the |〈m〉| ∼ 10−2 eV frontier. Such experiments include, aside from upgrades to the ones men-

tioned above (see, e.g., [146, 147]): CANDLES (48Ca), Majorana and LEGEND (76Ge), SuperNEMO

and DCBA (82Se, 150Nd), ZICOS (96Zr), AMoRE and MOON (100Mo), COBRA (116Cd,130 Te), SNO+

(130Te), and NEXT, PandaX-III and nEXO (136Xe). In case these searches produce a negative result,

the next frontier in the quest for (ββ)0ν-decay will correspond to |〈m〉| ∼ 10−3 eV.

3.2 The Effective Majorana Mass

Taking the dominant contribution to the (ββ)0ν-decay rate Γ0ν to be due to the exchange of three

Majorana neutrinos νk (mk < 10 MeV; k = 1, 2, 3), one can write the inverse of the decay half-life,

(T 0ν
1/2)−1 = Γ0ν / ln 2, as (

T 0ν
1/2

)−1
= G0ν(Q,Z)

∣∣M0ν(A,Z)
∣∣2 |〈m〉|2 , (3.1)

where G0ν denotes the phase-space factor, which depends on the Q-value of the nuclear transition, and

M0ν is the nuclear matrix element (NME) of the decay. The former can be computed with relatively
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good accuracy whereas the latter remains the predominant source of uncertainty in the extraction of

|〈m〉| from the data (see, e.g., [146,155]).

The effective Majorana mass |〈m〉| is given by (see, e.g., [136]):

|〈m〉| =

∣∣∣∣∣
3∑
k=1

(UPMNS)2
ekmk

∣∣∣∣∣ . (3.2)

The first row of UPMNS is the one relevant for (ββ)0ν-decay and reads, in the standard parametrization

(cf. Eq. (1.7)),

(UPMNS)ek =
(
c12 c13 , s12 c13 e

iα21/2 , s13 e
−iδ eiα31/2

)
k
. (3.3)

The most stringent upper limit on the effective Majorana mass was reported by the KamLAND-Zen

collaboration. Using the lower limit on the half-life of 136Xe obtained by the collaboration and quoted

in the previous section, and taking into account the estimated uncertainties in the NMEs of the relevant

process, the limit reads [153]:

|〈m〉| < (0.061− 0.165) eV . (3.4)

We will henceforth make use of the notations given in Section 1.1, and additionally define mmin ≡

m1 (m3) in the NO (IO) case. A NO or IO mass spectrum is said to be normal hierarchical (NH) or

inverted hierarchical (IH) if respectively m1 � m2,3 or m3 � m1,2. In the converse limit of relatively

large mmin, mmin ∼> 0.1 eV, the spectrum is said to be quasi-degenerate (QD) and m1 ' m2 ' m3. In

this last case, the distinction between NO and IO spectra is blurred and ∆m2
� and |∆m2

A| can usually

be neglected with respect to m2
min.

In terms of the lightest neutrino mass, CPV phases, neutrino mixing angles, and neutrino mass-squared

differences, the effective Majorana mass reads:

|〈m〉|NO =

∣∣∣∣mmin c
2
12 c

2
13 +

√
∆m2

� +m2
min s

2
12 c

2
13 e

iα21 +
√

∆m2
A +m2

min s
2
13 e

iα′31

∣∣∣∣ , (3.5)

|〈m〉|IO =

∣∣∣∣√|∆m2
A| −∆m2

� +m2
min c

2
12 c

2
13 +

√
|∆m2

A|+m2
min s

2
12 c

2
13 e

iα21 +mmin s
2
13 e

iα′31

∣∣∣∣ , (3.6)

where we have defined α′31 ≡ α31 − 2δ.

It proves useful to recast |〈m〉|NO and |〈m〉|IO given above in the form

|〈m〉| =
∣∣∣m̃1 + m̃2 e

iα21 + m̃3 e
iα′31

∣∣∣ , (3.7)

with m̃i > 0 (i = 1, 2, 3). It is then clear that the effective Majorana mass is the length of the vector sum

of three vectors in the complex plane, whose relative orientations are given by the angles α21 and α′31.

For the IO case, taking into account the 3σ ranges of ∆m2
32, ∆m2

21, sin2 θ12, and sin2 θ13 summarised

in Table 1.3, one finds that there is a hierarchy between the lengths of the three vectors, m̃3 < 0.1 m̃2

and m̃2 < 0.6 m̃1, which holds for all values of mmin. In particular, m̃3 = mmin s
2
13 can be neglected

with respect to the other terms since s2
13 � cos 2θ12.2 The above implies that extremal values of |〈m〉|IO

are obtained when the three vectors are aligned (α21 = α′31 = 0, |〈m〉|IO is maximal) or when m̃1 is

anti-aligned with m̃2,3 (α21 = α′31 = π, |〈m〉|IO is minimal). It then follows that there is a lower bound

2It follows from the current data that cos 2θ12 > 0.30 at 3σ CL.
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on |〈m〉|IO for every value of mmin [154]. This bound reads: |〈m〉|IO ∼>
√
|∆m2

A|+m2
min c

2
13 cos 2θ12 >√

|∆m2
A| c213 cos 2θ12, |〈m〉|IO > 1.4×10−2 eV, for variations of oscillation parameters in their respective 3σ

ranges. In the limit of negligible mmin (IH spectrum), m2
min � |∆m2

A|, one has |〈m〉|IO ∈ [1.4, 4.9]×10−2

eV.

3.3 The Absolute Neutrino Mass Scale

Before proceeding to the analysis of the NO case, let us comment on present constraints on the

absolute neutrino mass scale. The “conservative” upper limit of Eq. (3.4), |〈m〉|max
exp = 0.165 eV, which is

in the range of the QD spectrum, implies, as it is not difficult to show, the following upper limit on the

absolute Majorana neutrino mass scale (i.e., on the lightest neutrino mass): mmin ' m1,2,3 < 0.60 eV,

with mmin ∼< |〈m〉|max
exp /(cos 2θ12 − s2

13), taking into account the 3σ ranges of cos 2θ12 and sin2 θ13.

Measurements of the end-point electron spectrum in tritium beta decay experiments constrain the

combination mβ ≡
∑
k |Uek|2mk. The most stringent upper bounds on mβ , mβ < 2.1 eV and mβ < 2.3

eV, both at the 95% CL, are given by the Troitzk [156] and Mainz [157] collaborations, respectively. The

KATRIN experiment [158] is planned to either improve this bound by an order of magnitude, or discover

mβ > 0.35 eV. Taking into account the 3σ ranges for the relevant mixing angles and mass-squared

differences, the Troitzk bound constrains the lightest neutrino mass to be mmin < 2.1 eV.

Cosmological and astrophysical data constrain instead the sum Σ ≡
∑
kmk. Depending on the

likelihood function and data set used, the upper limit on Σ reported by the Planck collaboration [159]

varies in the interval Σ < [0.34, 0.72] eV, 95% CL. Including data on baryon acoustic oscillations lowers

this bound to Σ < 0.17 eV, 95% CL. Taking into account the 3σ ranges for the mass-squared differences,

this last bound implies mmin < 0.05 (0.04) eV in the NO (IO) case. One should note that the Planck

collaboration analysis is based on the ΛCDM cosmological model. The quoted bounds may not apply in

non-standard cosmological scenarios (see, e.g., [160]).

3.4 The Case of Normal Ordering

We henceforth restrict our discussion to the effective Majorana mass |〈m〉|NO, for which there is no

lower bound. In fact, unlike in the IO case, here the ordering of the lengths of the m̃i depends on the value

of mmin and cancellations in |〈m〉|NO are possible: one risks “falling” inside the “well of unobservability”.3

For convenience, we reproduce in Table 3.1 the nσ (n = 1, 2, 3) ranges for the oscillation parameters

relevant to (ββ)0ν-decay in the NO case, obtained in the recent global analysis of Ref. [39]. Considering

variations of oscillation parameters in the corresponding 3σ ranges, for mmin ≤ 5 × 10−2 eV there is an

upper bound |〈m〉|NO ≤ 5.1 × 10−2 eV (obtained for α21 = α′31 = 0). In the limit of negligible mmin,

m2
min � |∆m2

A|, one has |〈m〉|NO ∈ [0.9, 4.2]× 10−3 eV.

From inspection of Eqs. (3.5) and (3.7), the vector lengths explicitly read m̃1 = mmin c
2
12 c

2
13, m̃2 =√

∆m2
� +m2

min s
2
12 c

2
13, and m̃3 =

√
∆m2

A +m2
min s

2
13. In Figure 3.2, these lengths are plotted as func-

3 For the consequences of not observing (ββ)0ν -decay with |〈m〉|NO ∼> 10−3 eV, see Ref. [161].
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Parameter 1σ range 2σ range 3σ range

∆m2
21 / (10−5 eV2) 7.20− 7.51 7.05− 7.69 6.92− 7.91

∆m2
31 / (10−3 eV2) 2.46− 2.53 2.43− 2.56 2.39− 2.59

sin2 θ12 / 10−1 2.91− 3.18 2.78− 3.32 2.65− 3.46
sin2 θ13 / 10−2 2.07− 2.23 1.98− 2.31 1.90− 2.39

Table 3.1: Ranges for the relevant oscillation parameters in the case of a NO neutrino spectrum,

at the nσ (n = 1, 2, 3) CLs, taken from the 2018 global analysis of Ref. [39] (part of Table 1.3).

tions of mmin for 3σ variations of oscillation parameters.

The requirement of having the effective Majorana mass above a reference value |〈m〉|0 is geometrically

equivalent to not being able to form a quadrilateral with sides m̃1, m̃2, m̃3, and |〈m〉|0. This happens

whenever one of the lengths exceeds the sum of the other three. If however |〈m〉|0 >
∑
i m̃i, it follows

that |〈m〉| ≤
∑
i m̃i < |〈m〉|0. Thus, for values of mmin and oscillation parameters for which m̃2 >

m̃1 + m̃3 + |〈m〉|0 or m̃1 > m̃2 + m̃3 + |〈m〉|0 (see Figure 3.2) one is guaranteed to have |〈m〉|NO > |〈m〉|0
independently of the choice of CPV phases α21 and α′31. There are instead values of mmin for which the

conditions m̃2 < m̃1+m̃3+|〈m〉|0 and m̃1 < m̃2+m̃3+|〈m〉|0 hold independently of the values of oscillation

parameters within a given range. In such a case, values of α21 and α′31 such that |〈m〉|NO < |〈m〉|0 are

sure to exist.
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NH QD

Figure 3.2: Lengths m̃i of the complex vectors entering the expression of |〈m〉|NO as a function of

the lightest neutrino mass mmin, for NO spectrum. For comparison, the sums m̃1+m̃3+|〈m〉|0 and

m̃2 +m̃3 + |〈m〉|0 are also shown (see text), with |〈m〉|0 = 10−3 eV. Bands are obtained by varying

the mixing angles and mass-squared differences in their respective 3σ ranges (see Table 3.1). See

text for details.
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We summarise in Figure 3.3 the ranges of mmin for which these different conditions apply (see cap-

tion). We vary oscillation parameters in their respective nσ (n = 1, 2, 3) intervals and focus on the

millielectronvolt “threshold”, |〈m〉|0 = 10−3 eV. We find that, for 3σ variations of the sin2 θij and ∆m2
ij ,

one is guaranteed to have |〈m〉|NO > 10−3 eV if mmin > 1.10 × 10−2 eV. This corresponds to the lower

bound Σ > 0.07 eV on the sum of neutrino masses. For 2σ variations, having mmin < 2 × 10−4 eV or

mmin > 9.9× 10−3 eV is enough to ensure |〈m〉|NO > 10−3 eV.

0.4 1.0 7.6 9.1

0.2 1.4 7.0 9.9

1.8 6.5 11.0

1σ

2σ

3σ

a)

a)c)b) b)

m
min

/ (10
-3

eV)

Figure 3.3: Ranges of mmin for a NO spectrum and for oscillation parameters inside their nσ

(n = 1, 2, 3) intervals (see Table 3.1) for which: in green, a) |〈m〉|NO > |〈m〉|0 = 10−3 eV for all

values of θij , ∆m2
ij , and α

(′)
ij from the corresponding allowed or defining intervals; in grey, b) there

exist values of θij , ∆m2
ij from the 1σ, 2σ and 3σ allowed intervals and values of α

(′)
ij such that

|〈m〉|NO < |〈m〉|0 = 10−3 eV; and in red, c) for all values of θij and ∆m2
ij from the corresponding

allowed intervals there exist values of the phases α21 and α′31 for which |〈m〉|NO < |〈m〉|0 = 10−3

eV.

If one takes instead the higher value |〈m〉|0 = 5×10−3 eV and allows the relevant oscillation parameters

to vary in their respective 3σ ranges, |〈m〉|NO > |〈m〉|0 is guaranteed provided mmin > 2.3 × 10−2 eV,

which corresponds to the lower bound Σ > 0.10 eV on the sum of neutrino masses. This lower bound on

Σ practically coincides with min(Σ) in the case of IO spectrum. Thus, if Σ is found to satisfy Σ > 0.10

eV, that would imply that |〈m〉| exceeds 5 × 10−3 eV, unless there exist additional contributions to the

(ββ)0ν-decay amplitude which cancel at least partially the contribution due to the 3 light neutrinos. If

instead mmin < 1.4×10−2 eV, for all (3σ allowed) values of oscillation parameters there is a choice of α21

and α′31 such that |〈m〉|NO < |〈m〉|0 = 5× 10−3 eV. These results are shown graphically in Figure 3.4.

Let us briefly remark on the dependence of |〈m〉|NO on the CPV phases. For the present discussion,

3σ variations of oscillation parameters are considered. For all values of α′31 and ε > 0 there exist

values of α21 and mmin such that |〈m〉|NO < ε, i.e. such that |〈m〉|NO is arbitrarily small. This is a

consequence of the fact that, for any fixed oscillation parameters and α′31, there is always a point m∗min

at which |m̃1(m∗min) + m̃3(m∗min) eiα
′
31 | = m̃2(m∗min). Instead, there are values of α21 and ε > 0 for which,

independently of α′31 and mmin, one has |〈m〉|NO > ε, i.e. for which |〈m〉|NO cannot be arbitrarily small.

This conclusion may be anticipated from the graphical results of Ref. [162], where the structure of the

|〈m〉|NO “well” has been studied as a function of mmin and α21. In fact, we find that for α21 ∼< 0.81π or

α21 ∼> 1.19π, |〈m〉|NO cannot be zero at tree-level since |m̃1 + m̃2 e
iα21 | > m̃3, strictly.

In Figure 3.5 we highlight the region of the (mmin, α21) plane in which |〈m〉|NO is guaranteed to satisfy
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Figure 3.4: The same as in Figure 3.3, but for the reference value |〈m〉|0 = 5× 10−3 eV: in green,

a) |〈m〉|NO > |〈m〉|0 = 5 × 10−3 eV for all values of θij , ∆m2
ij , and α

(′)
ij from the corresponding

allowed or defining intervals; in grey, b) there exist values of θij , ∆m2
ij from the 1σ, 2σ and 3σ

allowed intervals and values of α
(′)
ij such that |〈m〉|NO < |〈m〉|0 = 5 × 10−3 eV; and in red, c) for

all values of θij and ∆m2
ij from the corresponding allowed intervals there exist values of the phases

α21 and α′31 for which |〈m〉|NO < |〈m〉|0 = 5 × 10−3 eV. In the darker grey ranges d) of mmin,

one has |〈m〉|NO < |〈m〉|0 = 5× 10−3 eV independently of the values of oscillation parameters and

CPV phases.

|〈m〉|NO > 5 × 10−3 eV, independently of α′31 and of variations of oscillation parameters inside their 3σ

ranges.

3.5 CP and Generalised CP

Given the strong dependence of |〈m〉| on α21 and α′31, some principle which determines these phases

is welcome. The requirement of CP invariance constrains the values of the CPV phases α21, α31, and

δ to integer multiples of π [163–165], meaning the relevant CP-conserving values are α21, α
′
31 = 0, π.

Non-trivial predictions for the leptonic CPV phases may instead arise from the breaking of a discrete

symmetry combined with a generalised CP symmetry. We focus on schemes with large enough residual

symmetry such that the PMNS matrix depends at most on one real parameter θ [87] and realisations

thereof where the predictions for the CPV phases are unambiguous, i.e. independent of θ. For symmetry

groups with less than 100 elements, aside from the aforementioned CP-conserving values, the non-trivial

values α21, α
′
31 = π/2, 3π/2 are possible predictions [166–172].

In what follows, we analyse the behaviour of |〈m〉|NO and |〈m〉|IO for each of 16 different (α21, α
′
31)

pairs, with the relevant phases taking gCP-compatible values: α21, α
′
31 ∈ {0, π/2, π, 3π/2}.4 As can

be seen from Eq. (3.7), some pairs are redundant as they lead to the same values of |〈m〉|. We are

left with 10 inequivalent pairs of phases: (α21, α
′
31) = (π/2, 0) ∼ (3π/2, 0), (π/2, π) ∼ (3π/2, π),

(0, π/2) ∼ (0, 3π/2), (π, π/2) ∼ (π, 3π/2), (π/2, π/2) ∼ (3π/2, 3π/2), and (π/2, 3π/2) ∼ (3π/2, π/2).

The 2σ-allowed values of the effective Majorana mass |〈m〉| are presented in Figure 3.6 as a function of

mmin, for both orderings. Regions corresponding to different pairs (α21, α
′
31) with CP-conserving phases,

α21, α
′
31 = 0, π, are singled out. The predictions for the remaining pairs of fixed phases, containing at

4Given our scope and the available literature, we find that if α′31 = π/2, 3π/2, then necessarily α21 = π/2, 3π/2 is
predicted. We nevertheless take all 16 pairs of phases into consideration.
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Figure 3.5: Regions in the (mmin, α21) plane where different conditions on |〈m〉|NO apply. In the

green (dark grey) region, |〈m〉|NO satisfies |〈m〉|NO > 5 × 10−3 eV (|〈m〉|NO < 5 × 10−3 eV) for

all values of θij , ∆m2
ij , and α′13 from the corresponding 3σ or defining intervals. In the red and

grey regions, conditions analogous to those described in the caption of Figure 3.3 apply and are

indicated. This figure is to be contrasted with Figure 3.4, where the dependence on α21 is not

explicit.

least one phase which is gCP-compatible but not CP-conserving, are shown in Figure 3.7 for IO and in

Figures 3.8 and 3.9 for NO (for one CP-conserving phase and for no CP-conserving phases, respectively).

Allowed values of |〈m〉| are found by constructing an approximate χ2 function from the sum of the

one-dimensional projections in Ref. [39], and varying mixing angles and mass-squared differences while

keeping χ2(θij ,∆m
2
ij) ∼< 9.72 (2σ CL, for joint estimation of 4 parameters).

From Figures 3.6 – 3.9, one sees that for each value of mmin there exist values of the effective Majorana

mass which are incompatible with CP conservation. Some of these points may nonetheless be compatible

with gCP-based predictive models. For IO, one sees there is substantial overlap between the bands

with (α21, α
′
31) = (0, 0) and (0, π), between those of (π, 0) and (π, π), and between the four bands

(π/2, k π/2), with k = 0, 1, 2, 3. In the case of NO, it is interesting to note that, for a fixed, gCP-

compatible but not CP-conserving pair (α21, α
′
31), |〈m〉|NO is bounded from below at the 2σ CL, with

the lower bound at or above the meV value, |〈m〉|NO ∼> 10−3 eV. We collect in Table 3.2 information on

the lower bound on |〈m〉|NO for each pair of phases.
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Figure 3.6: The effective Majorana mass |〈m〉| as a function of mmin, for both orderings, allowing

for variations of mixing angles and mass-squared differences at the 2σ CL (see text). The phases

α21 and α′31 = α31− 2δ are varied in the interval [0, 2π]. Blue and green bands correspond to (the

indicated, with k = 0, 1) CP-conserving values of the phases (α21, α
′
31), for IO and NO neutrino

mass spectra, respectively, while in red regions at least one of the phases takes a CP-violating

value. Blue hatching is used to locate CP-conserving bands in the case of IO spectrum whenever

IO and NO spectra regions overlap. The KamLAND-Zen bound of Eq. (3.4) is indicated. See also

Refs. [25, 145].
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Figure 3.7: The effective Majorana mass |〈m〉| as a function of mmin, for IO spectrum, allowing

for variations of mixing angles and mass-squared differences at the 2σ CL (see text). Yellow bands

correspond to (the indicated, k = 0, 1, 2, 3) gCP-compatible but not CP-conserving values of the

phases (α21, α
′
31). Blue bands correspond to CP-conserving phases (see Figure 3.6) and hatching

indicates overlap with such regions, while red regions are not gCP-compatible (for the models

under consideration, see text). The KamLAND-Zen bound of Eq. (3.4) is also indicated.

α′31

α21 0 π/2 π 3π/2

0 3.1 (3.3) 2.4 (2.4) 1.0 (1.1) ∼ (0, π/2)
π/2 2.4 (2.4) 3.1 (3.3) 2.1 (2.2) ∼ (3π/2, π/2)
π no bounda 0.91 (0.95)b no boundc ∼ (π, π/2)
3π/2 ∼ (π/2, 0) 1.0 (1.1) ∼ (π/2, π) ∼ (π/2, π/2)

a |〈m〉|NO > 1 meV if mmin > 5.8 (mmin /∈ [0.1, 5.3]) meV.
b Only bounded case where |〈m〉|NO is not strictly at or above

the meV value,for mmin ∈ [2.9, 5.9]([3.2, 5.3]) meV. |〈m〉|NO > 1
meV if e.g. sin2 θ13 > 2.04× 10−2.

c |〈m〉|NO > 1 meV if mmin /∈ [3.1, 11.5]([3.4, 10.6]) meV.

Table 3.2: Lower bounds on |〈m〉|NO given at the 3σ (2σ) CL, where applicable, for different fixed

values of the phases α21 and α′31. A tilde denotes equivalence between cases. All bounds are given

in meV.
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Figure 3.8: The effective Majorana mass |〈m〉| as a function of mmin, for NO spectrum, allowing

for variations of mixing angles and mass-squared differences at the 2σ CL (see text). Yellow

bands correspond to (the indicated) pairs (α21, α
′
31) of phases, with one CP-conserving, the other

being gCP-compatible but not CP-conserving. Green bands correspond to CP-conserving phases

(see Figure 3.6) and hatching indicates overlap with such regions, while red regions are not gCP-

compatible (for the models under consideration, see text).
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Figure 3.9: The same as in Figure 3.8, with yellow bands corresponding to pairs (α21, α
′
31) with

both phases being gCP-compatible but not CP-conserving.
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3.6 Chapter Summary

The observation of (ββ)0ν-decay would allow to establish lepton number violation and the Majorana

nature of neutrinos. In the standard scenario of three light neutrino exchange dominance, the rate of this

process is controlled by the effective Majorana mass |〈m〉|. In the case of neutrino mass spectrum with

inverted ordering (IO) the effective Majorana mass is bounded from below, |〈m〉|IO > 1.4× 10−2 eV. In

the NO case, the effective Majorana mass |〈m〉|NO, under certain conditions, can be exceedingly small,

|〈m〉|NO � 10−2 eV, suppressing the (ββ)0ν-decay rate.

Taking into account updated global-fit data, we have determined the conditions under which the

effective Majorana mass in the NO case |〈m〉|NO exceeds the 10−3 eV (5×10−3 eV) value. For variations

of θ12, θ13, ∆m2
21 and ∆m2

31 in their nσ (n = 1, 2, 3) intervals, we have determined the ranges of the

lightest neutrino mass mmin such that (see Figures 3.3 – 3.5):

a) |〈m〉|NO > 10−3 (5× 10−3) eV independently of the values of α21 and α′31; |〈m〉|NO > 5× 10−3 eV

is fulfilled when mmin > 2.3× 10−2 eV (for 3σ variations),

b) for some values of the θij and ∆m2
ij there are choices of the CPV phases α21 and α′31 such that

|〈m〉|NO < 10−3 (5× 10−3) eV,

c) for all values of the θij and ∆m2
ij there are choices of the CPV phases α21 and α′31 such that

|〈m〉|NO < 10−3 (5× 10−3) eV, and

d) |〈m〉|NO < 5× 10−3 eV independently of the values of α21 and α′31.

We have shown, in particular, that if the sum of the three neutrino masses is found to satisfy the lower

bound Σ > 0.10 eV, one has |〈m〉|NO > 5 × 10−3 eV for any values of the CPV phases α21 and α′31,

unless there exist additional contributions to the (ββ)0ν-decay amplitude which cancel at least partially

the contribution due to the 3 light neutrinos.

We have additionally studied the predictions for |〈m〉|IO and |〈m〉|NO in cases where the leptonic CPV

phases are fixed to particular values, α21, α31 − 2δ ∈ {0, π/2, π, 3π/2}, which are either CP conserving

(see Figure 3.6) or may arise in predictive schemes combining generalised CP and flavour symmetries (see

Figures 3.7 – 3.9). The quantitative lower bounds on the effective mass |〈m〉|NO for such choices of phases

are given in Table 3.2. We find that |〈m〉|NO ∼> 10−3 eV for all gCP-compatible but not CP-conserving

pairs of the relevant phases.

Searches for lepton number non-conservation are of fundamental importance – as important as the

searches for baryon number non-conservation in the form of, e.g., proton decay. Therefore if current and

next-generation (ββ)0ν-decay experiments seeking to probe the IO region of parameter space produce a

negative result, the quest for (ββ)0ν-decay should continue towards the |〈m〉| ∼ 5×10−3 eV and possibly

the |〈m〉| ∼ 10−3 eV frontier.



S4 Flavour and gCP 4
In this chapter, we consider a class of models of neutrino mixing with S4 lepton flavour symmetry

combined with a generalised CP symmetry, which are broken to residual Z2 and Z2×Hν
CP symmetries in

the charged lepton and neutrino sectors, respectively, Hν
CP being a remnant CP symmetry of the neutrino

Majorana mass term. In this setup, the neutrino mixing angles and CP violation phases of the neutrino

mixing matrix depend on three real parameters – two angles and a phase. Following Ref. [173], we classify

all phenomenologically viable mixing patterns and derive predictions for the Dirac and Majorana CPV

phases. Further, we use the results obtained on the neutrino mixing angles and leptonic CPV phases

to derive predictions for the effective Majorana mass in neutrinoless double beta decay (see previous

chapter).

4.1 Motivation and Overview

The idea of extending the Standard Model with a non-Abelian discrete flavour symmetry has been

widely exploited in attempts to make progress towards the understanding the origin of flavour (see

Section 1.3.1). Recall that in this approach one assumes the theory to possess a flavour symmetry at a

certain high-energy scale, which is broken at lower energies to residual symmetries of the charged lepton

and neutrino sectors, yielding certain predictions for the values of, and/or correlations between, the

low-energy neutrino mixing parameters. In the reference 3ν mixing scheme we consider, i) the values of

certain pairs of, or of all three, neutrino mixing angles are predicted to be correlated, and/or ii) there is

a correlation between the value of the Dirac phase δ and the values of the three neutrino mixing angles,

which includes also symmetry-dependent fixed parameters (see, e.g., [174–182] and references therein).

These correlations are referred to as “neutrino mixing sum rules” in the literature and they can be tested

experimentally [175, 179, 183–185]. Sufficiently precise experimental data on the neutrino mixing angles

and on the Dirac CPV phase can also be used to distinguish between different possible underlying flavour

symmetries leading to viable patters of neutrino mixing.

While in the discrete flavour symmetry approach at least some of the neutrino mixing angles and/or the

Dirac phase are determined (directly or indirectly) by the flavour symmetry, the Majorana CPV phases

α21 and α31 remain unconstrained. The values of the Majorana CPV phases are instead constrained

to lie in certain narrow intervals, or are predicted, in theories which in addition to a flavour symmetry

possess at a certain high-energy scale a generalised CP symmetry (see Section 1.3.2). The gCP symmetry

49
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should be implemented in a way that is consistent with the flavour symmetry. At low energies, the gCP

symmetry is broken, in general, to residual CP symmetries of the charged lepton and neutrino sectors.

In the scenarios involving a gCP symmetry which were most widely explored so far (see, e.g., [87,

90, 186–189]), a non-Abelian flavour symmetry Gf consistently combined with a gCP symmetry HCP is

broken to residual Abelian symmetries Ge = Zn, n > 2, or Zm×Zk, m, k ≥ 2, and Gν = Z2×Hν
CP of the

charged lepton and neutrino mass terms, respectively.1 The factor Hν
CP in Gν stands for a remnant gCP

symmetry of the neutrino mass term. In such a setup, Ge fixes completely the form of the unitary matrix

Ue which diagonalises the product MeM
†
e and enters into the expression of the PMNS matrix, Me being

the charged lepton mass matrix, in the conventions of Eq. (1.13). At the same time, Gν fixes the unitary

matrix Uν , diagonalising the neutrino Majorana mass matrix Mν up to a single free real parameter – a

rotation angle θν . Given the fact that the PMNS neutrino mixing matrix UPMNS is given by the product

UPMNS = U†e Uν , (4.1)

all three neutrino mixing angles are expressed in terms of this rotation angle. In this class of models, one

obtains specific correlations between the values of the three neutrino mixing angles, while the leptonic

CPV phases are typically predicted to be exactly 0 or π, or else π/2 or 3π/2 (recall the discussion in

Section 3.5).

An example of such a setup was given at the end of Section 1.3.2, which, as we have noted, predicts

a value of sin2 θ12 outside its corresponding 2σ range. Other examples of one-parametric models can be

found in the extensive study performed in Ref. [190], in which the authors have considered two different

residual symmetry patterns. The first pattern is the one described in Section 1.3.2, namely with Ge = Z3

and Gν = Z2 ×Hν
CP, while the second pattern has Ge = Z2 ×He

CP and Gν = Z2 ×Z2 ×Hν
CP as residual

symmetries in the charged lepton and neutrino sectors, respectively. The authors have performed an

exhaustive scan over discrete groups of order less than 2000, which admit faithful 3-dimensional irreducible

representations, and classified phenomenologically viable mixing patterns.

Models based on the approach to neutrino mixing that combines discrete symmetries and gCP in-

variance in which the neutrino mixing angles and the leptonic CPV phases are functions of two or three

parameters have also been considered in the literature (see, e.g., [191–194]). In these models, the residual

symmetry Ge of the charged lepton mass term is typically assumed to be a Z2 symmetry or to be fully

broken. In spite of the larger number of parameters in terms of which the neutrino mixing angles and

the leptonic CPV phases are expressed, the values of the CPV phases are still predicted to be correlated

with the values of the three neutrino mixing angles. A setup with Ge = Z2 ×He
CP and Gν = Z2 ×Hν

CP

has been considered in Ref. [194]. The resulting PMNS matrix in such a scheme depends on two free

real parameters – two angles θν and θe. The authors have obtained several phenomenologically viable

neutrino mixing patterns from Gf = S4 combined with HCP, broken to all possible residual symme-

tries of the type indicated above. Models allowing for three free parameters have been investigated in

Refs. [191–193]. In Ref. [192], the author has considered Gf = A5 combined with HCP and broken to

Ge = Z2 and Gν = Z2 ×Hν
CP. In this case, the matrix Ue depends on an angle θe and a phase δe, while

1We note that in Refs. [186,187] the residual symmetry Ge of the charged lepton mass term is augmented with a remnant
CP symmetry He

CP as well.
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the matrix Uν depends on an angle θν . In the above two scenarios the leptonic CPV phases possess

non-trivial values.

The specific correlations between the values of the three neutrino mixing angles, which characterise

the one-parameter models based on Ge = Zn, n > 2, or Zm × Zk, m, k ≥ 2, and Gν = Z2 × Hν
CP, do

not hold in the two- and three-parameter models. In addition, the Dirac CPV phase in the two- and

three-parameter models is predicted to have non-trivial values which are correlated with the values of

the three neutrino mixing angles and differ from 0, π, π/2 and 3π/2, although the deviations from, say,

3π/2 can be relatively small. The indicated differences between the predictions of the models based on

Ge = Zn, n > 2, or Zm × Zk, m, k ≥ 2, and on Ge = Z2 symmetries make it possible to distinguish

between them experimentally by improving the precision on each of the three measured neutrino mixing

angles θ12, θ23 and θ13, and by performing a sufficiently precise measurement of the Dirac phase δ. In case

the predictions based on general residual symmetry considerations are experimentally vindicated, one is

then compelled to further investigate concrete models of neutrino masses and lepton flavour realising said

symmetries.

In what follows, we investigate the possible neutrino mixing patterns generated by a Gf = S4 sym-

metry combined with an HCP symmetry when these symmetries are broken down to Ge = Z2 and

Gν = Z2 ×Hν
CP, a rather simple setup not previously explored in the literature on the subject. In the

following section, we describe a general framework for deriving the form of the PMNS matrix, dictated

by the chosen residual symmetries, which we then apply, in Section 4.3, to Gf = S4 combined with HCP

to obtain all phenomenologically viable mixing patterns.

4.2 The Framework

We start by considering a non-Abelian flavour symmetry group Gf , which admits a faithful irre-

ducible 3-dimensional representation ρ. The three generations of left-handed leptons are assigned to this

representation. Apart from that, the high-energy theory respects also the gCP symmetry HCP, which

is implemented consistently along with the flavour symmetry. At some flavour symmetry breaking scale

Gf oHCP gets broken down to residual symmetries Ge and Gν of the charged lepton and neutrino mass

terms, respectively. The residual flavour symmetries are Abelian subgroups of Gf . The symmetries Ge

and Gν significantly constrain the form of the neutrino mixing matrix UPMNS, as we demonstrate below.

4.2.1 The PMNS Matrix from Ge = Z2 and Gν = Z2×Hν
CP

We choose Ge to be a Z2 symmetry. We will denote it as Zge2 ≡ {1, ge}, g2
e = 1 being an element of

Gf of order two, generating the Zge2 subgroup. The invariance of the charged lepton mass term under Ge

implies

ρ(ge)
†MeM

†
e ρ(ge) = MeM

†
e . (4.2)

Below we show how this invariance constrains the form of the unitary matrix Ue, diagonalising MeM
†
e

through

U†eMeM
†
e Ue = diag(m2

e,m
2
µ,m

2
τ ) . (4.3)
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Let Ωe be a diagonalising unitary matrix of a given ρ(ge), such that

Ω†e ρ(ge) Ωe = ρ(ge)
d ≡ diag(1,−1,−1) . (4.4)

The form of the diagonal matrix is obtained as follows. The diagonal entries of ρ(ge)
d are constrained

to be ±1, since this matrix must still furnish a representation of Z2 and hence its square is the identity.

We have assumed that the trace of ρ(ge) is −1, for the relevant elements ge, as it is the case for the

3-dimensional representation of S4 we will consider later on.2 Note that we can take the order of the

eigenvalues of ρ(ge) as given in Eq. (4.4) without loss of generality, as will become clear later.

Expressing ρ(ge) as in Eq. (4.4) and substituting it in Eq. (4.2), we obtain

ρ(ge)
d Ω†eMeM

†
e Ωe ρ(ge)

d = Ω†eMeM
†
e Ωe . (4.5)

This equation implies that Ω†eMeM
†
e Ωe has the block-diagonal form× 0 0

0 × ×
0 × ×

 , (4.6)

and, since this matrix is hermitian, it can be diagonalised by a unitary matrix with a U(2) transformation

acting on the 2-3 block. In the general case, the U(2) transformation can be parametrised as follows:(
cos θe − sin θe e−iδ

e

sin θe eiδ
e

cos θe

) (
eiβ

e
1 0

0 eiβ
e
2

)
. (4.7)

The diagonal phase matrix is, however, unphysical, since it can be eliminated by rephasing the charged

lepton fields, and we will not keep it. Thus, we arrive to the conclusion that the matrix Ue diagonalising

MeM
†
e reads

Ue = Ωe U23(θe, δe)† PTe , (4.8)

with

U23(θe, δe) =

1 0 0

0 cos θe sin θe e−iδ
e

0 − sin θe eiδ
e

cos θe

 , (4.9)

and Pe being one of six permutation matrices, which need to be taken into account, since in the approach

under consideration the order of the charged lepton masses is unknown. The six permutation matrices

read:

P123 =

1 0 0

0 1 0

0 0 1

 , P132 =

1 0 0

0 0 1

0 1 0

 , P213 =

0 1 0

1 0 0

0 0 1

 , (4.10)

P231 =

0 1 0

0 0 1

1 0 0

 , P312 =

0 0 1

1 0 0

0 1 0

 , P321 =

0 0 1

0 1 0

1 0 0

 . (4.11)

Note that the order of indices in Pijk stands for the order of rows, i.e., when applied from the left to a

matrix, it gives the desired order, i-j-k, of the matrix rows.

2 For the other 3-dimensional irreducible representation of S4 the trace can be either−1 or +1, depending on ge. Choosing
+1 would simply imply a change of sign of ρ(ge)d, which however does not lead to new constraints. The conclusions we
reach in what follows are then independent of the choice of 3-dimensional representation.
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For the neutrino sector we consider a Gν = Z2×Hν
CP residual symmetry. We denote the Z2 symmetry

of the neutrino mass matrix as Zgν2 ≡ {1, gν}, with g2
ν = 1 being an element of Gf , generating the Zgν2

subgroup. Hν
CP = {Xν} is the set of remnant gCP unitary transformations Xν forming a residual CP

symmetry of the neutrino mass matrix. Hν
CP is contained in HCP = {X} which is the gCP symmetry of

the high-energy theory consistently defined along with the flavour symmetry Gf . It is worth to comment

here on the notation Hν
CP used. By Hν

CP = {Xν1, Xν2} we mean a set of gCP transformations (Xν1 and

Xν2) compatible with the residual flavour Zgν2 symmetry. However, when writing Gν = Zgν2 ×Hν
CP, Hν

CP

is intended to be a group generated by Xν1. Namely, following Ref. [87] (Appendix B within), Hν
CP is

isomorphic to {I,Xν1}, where I is the 6× 6 unit matrix and

Xν1 =

(
0 Xν1

X∗ν1 0

)
, (4.12)

both acting on (ϕ,ϕ∗)T . Then, Zgν2 is isomorphic to {I,Gν}, where

Gν =

(
ρ(gν) 0

0 ρ(gν)∗

)
(4.13)

acts again on (ϕ,ϕ∗)T . Finally, it is not difficult to convince oneself that the full residual symmetry group

Gν is given by a direct product Zgν2 ×Hν
CP, and there is a second gCP transformation Xν2 = ρ(gν)Xν1

contained in it. The same logic applies to the notation HCP, and, as has been shown in Ref. [87], the full

symmetry group is a semi-direct product Gf oHCP.

The invariance under Gν of the neutrino mass matrix implies that the following two equations hold:

ρ(gν)TMν ρ(gν) = Mν , (4.14)

XT
ν Mν Xν = M∗ν . (4.15)

In addition, the consistency condition between Zgν2 and Hν
CP has to be respected, namely:

Xν ρ(gν)∗X−1
ν = ρ(gν) . (4.16)

To derive the form of the unitary matrix Uν diagonalising the neutrino Majorana mass matrix Mν as

UTν Mν Uν = diag(m1,m2,m3) , (4.17)

mk > 0 being the neutrino masses, we will follow the method presented in Ref. [194].

Let Ων1 be a diagonalising unitary matrix of ρ(gν), such that

Ω†ν1 ρ(gν) Ων1 = ρ(gν)d ≡ diag(1,−1,−1) . (4.18)

Expressing ρ(gν) from this equation and substituting it in the consistency condition, Eq. (4.16), we find

ρ(gν)d Ω†ν1Xν Ω∗ν1 ρ(gν)d = Ω†ν1Xν Ω∗ν1 , (4.19)

meaning that Ω†ν1Xν Ω∗ν1 is a block-diagonal matrix, having the form of Eq. (4.6). Moreover, this matrix

is symmetric, since the gCP transformations Xν have to be symmetric in order for all the three neutrino
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masses to be different [87,90], as is required by the data (see, e.g., Ref. [195] for an explicit proof). Being

a complex (unitary) symmetric matrix, it is diagonalised by a unitary matrix Ων2 via the transformation:

Ω†ν2 (Ω†ν1Xν Ω∗ν1) Ω∗ν2 = (Ω†ν1Xν Ω∗ν1)d . (4.20)

The matrix (Ω†ν1Xν Ω∗ν1)d is, in general, a diagonal phase matrix. However, we can choose (Ω†ν1Xν Ω∗ν1)d =

1, as the phases of (Ω†ν1Xν Ω∗ν1)d can be moved to the matrix Ων2. With this choice we obtain the Takagi

factorisation of the Xν (valid for unitary symmetric matrices):

Xν = Ων ΩTν , (4.21)

with Ων = Ων1 Ων2.

Since, as we have noted earlier, Ω†ν1Xν Ω∗ν1 has the form of Eq. (4.6), the matrix Ων2 can be chosen

without loss of generality to have the same form with a unitary 2×2 matrix in the 2-3 block. This implies

that the matrix Ων = Ων1 Ων2 also diagonalises ρ(gν). Indeed,

Ω†ν ρ(gν) Ων = Ω†ν2 ρ(gν)d Ων2 = ρ(gν)d , (4.22)

where we have used Eq. (4.18).

We substitute next Xν from Eq. (4.21) in the gCP invariance condition of the neutrino mass matrix,

Eq. (4.15), and find that the matrix ΩTν Mν Ων is real. Furthermore, this is a symmetric matrix, since

the neutrino Majorana mass matrix Mν is symmetric. A real symmetric matrix can be diagonalised by

a real orthogonal transformation. Employing Eqs. (4.22) and (4.14), we have

ρ(gν)d
(
ΩTν Mν Ων

)
ρ(gν)d = ΩTν Mν Ων , (4.23)

implying that ΩTν Mν Ων is a block-diagonal matrix as in Eq. (4.6). Thus, the required orthogonal

transformation is a rotation in the 2-3 plane by an angle θν :

R23(θν) =

1 0 0

0 cos θν sin θν

0 − sin θν cos θν

 . (4.24)

Finally, the matrix Uν diagonalising Mν reads

Uν = Ων R23(θν)Pν Qν , (4.25)

where Pν is one of the six permutation matrices, which accounts for different order of the mk, and the

matrix Qν renders them positive. Without loss of generality Qν can be parametrised as follows:

Qν = diag(1, ik1 , ik2) , with k1,2 = 0, 1 . (4.26)

Assembling together the results for Ue and Uν , Eqs. (4.8) and (4.25), we obtain for the form of the

PMNS matrix:

UPMNS = Pe U23(θe, δe) Ω†e Ων R23(θν)Pν Qν . (4.27)
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Thus, in the approach we are following the PMNS matrix depends on three free real parameters –

the two angles θe and θν and the phase δe.3 One of the elements of the PMNS matrix is fixed to be a

constant by the residual symmetries. We note finally that, since R23(θν + π) = R23(θν) diag(1,−1,−1),

where the diagonal matrix can be absorbed into Qν , and U23(θe + π, δe) = diag(1,−1,−1)U23(θe, δe),

where the diagonal matrix contributes to unphysical charged lepton phases, it is sufficient to consider θe

and θν in the interval [0, π).

4.2.2 Conjugate Residual Symmetries

In this subsection we briefly recall why the residual symmetries G′e and G′ν conjugate to Ge and Gν ,

respectively, under the same element of the flavour symmetry group Gf lead to the same PMNS matrix

(see, e.g., [87, 186]). Two pairs of residual symmetries {Zge2 , Zgν2 } and {Zg
′
e

2 , Z
g′ν
2 } are conjugate to each

other under h ∈ Gf if

h ge h
−1 = g′e and h gν h

−1 = g′ν . (4.28)

At the representation level this means

ρ(h) ρ(ge) ρ(h)† = ρ(g′e) and ρ(h) ρ(gν) ρ(h)† = ρ(g′ν) . (4.29)

Substituting ρ(ge) and ρ(gν) from these equalities to Eqs. (4.2) and (4.14), respectively, one obtains

ρ(g′e)
†M ′eM

′†
e ρ(g′e) = M ′eM

′†
e and ρ(g′ν)TM ′ν ρ(g′ν) = M ′ν , (4.30)

where the primed mass matrices are related to the original ones as

M ′eM
′†
e = ρ(h)MeM

†
e ρ(h)† and M ′ν = ρ(h)∗Mν ρ(h)† . (4.31)

As can be understood from Eq. (4.15) (or Eq. (4.16)), the matrix M ′ν will respect a remnant CP symmetry

X ′ν , which is related to Xν as follows:

X ′ν = ρ(h)Xν ρ(h)T . (4.32)

The unitary transformations U ′e and U ′ν diagonalising the primed mass matrices are given by

U ′e = ρ(h)Ue and U ′ν = ρ(h)Uν , (4.33)

thus yielding, as promised,

U ′PMNS = U ′†e U
′
ν = U†e Uν = UPMNS . (4.34)

4.2.3 Phenomenologically Non-Viable Cases

Here we show that at least two types of residual symmetries {Ge, Gν} = {Zge2 , Zgν2 ×Hν
CP}, charac-

terised by certain elements ge and gν , cannot lead to phenomenologically viable form of the PMNS matrix.

3 The matrix Ων2 in Eq. (4.20) with (Ω†ν1Xν Ω∗ν1)d = 1, and thus the matrix Ων = Ων1 Ων2 in Eq. (4.21), is determined
up to multiplication by an orthogonal matrix O on the right. The matrix Ων2O must be unitary since it diagonalises a
complex symmetric matrix, which implies that O must be unitary in addition of being orthogonal, and therefore must be a
real matrix. Eq. (4.22) restricts further this real orthogonal matrix O to have the form of a real rotation in the 2-3 plane,
which can be “absorbed” in the R23(θν) matrix in Eq. (4.27).



56 CHAPTER 4. S4 FLAVOUR AND GCP

• Type I: ge = gν . In this case, we can choose Ωe = Ων P , with P123 or P132. Then, Eq. (4.27)

yields

UPMNS = Pe U23(θe, δe)P R23(θν)Pν Qν . (4.35)

This means that up to permutations of the rows and columns UPMNS has the form of Eq. (4.6), i.e., it

contains four zero entries, which are ruled out by neutrino oscillation data.

• Type II: ge, gν ∈ Z2 × Z2 ⊂ Gf . Now we consider two different order two elements ge 6= gν ,

which belong to the same Klein subgroup of Gf , Z2 × Z2 = {1, ge, gν , ge gν}. In this case, since ge

and gν commute, there exists a unitary matrix simultaneously diagonalising both ρ(ge) and ρ(gν). Note,

however, that the order of eigenvalues in the resulting diagonal matrices must be different, since the

elements differ. Namely, let Ων1 be a diagonalising matrix of ρ(gν) and ρ(ge), and let Ων1 diagonalise

ρ(gν) as in Eq. (4.18). Then, Ω†ν1 ρ(ge) Ων1 can yield either diag(−1, 1,−1) or diag(−1,−1, 1), but not

diag(1,−1,−1). Hence, Ωe diagonalising ρ(ge) as in Eq. (4.4), must read

Ωe = Ων1 P , with P = P213 or P312 if Ω†ν1 ρ(ge) Ων1 = diag(−1, 1,−1) , (4.36)

and P = P231 or P321 if Ω†ν1 ρ(ge) Ων1 = diag(−1,−1, 1) . (4.37)

Taking into account that Ων = Ων1 Ων2, with Ων2 of the block-diagonal form given in Eq. (4.6), we obtain

UPMNS = Pe U23(θe, δe)PT Ων2R23(θν)Pν Qν , (4.38)

where PT Ων2, depending on P , can take one of the following forms:0 × ×
× 0 0

0 × ×

 or

0 × ×
0 × ×
× 0 0

 . (4.39)

As a consequence, up to permutations of the rows and columns, UPMNS has the form0 × ×
× × ×
× × ×

 , (4.40)

containing one zero element, which is ruled out by data.

4.3 Mixing Patterns from S4 ooo HCP Broken to Ge = Z2 and

Gν = Z2×Hν
CP

4.3.1 S4 Group and Residual Symmetries

S4 is the symmetric group of permutations of four objects. This group is isomorphic to the group

of rotational symmetries of the cube. S4 can be defined in terms of three generators S, T and U ,

satisfying [196] (see also Appendix A):

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 . (4.41)
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Out of the 24 group elements, there are nine elements of order two which belong to two of five conjugacy

classes of S4 (see, e.g., [90]):

3 C2 : {S , TST 2 , T 2ST} , (4.42)

6 C′2 : {U , TU , SU , T 2U , STSU , ST 2SU} . (4.43)

Each of these nine elements generates a corresponding Z2 subgroup of S4. Each subgroup can furnish

the residual symmetry of MeM
†
e , and, combined with compatible CP transformations, yield the residual

symmetry of Mν . Hence, we have 81 possible pairs of residual flavour symmetries. Many of them,

however, being conjugate to each other, will lead to the same form of the PMNS matrix, as explained in

Section 4.2.2. Thus, we first identify the pairs of elements {ge, gν}, which are not related by the similarity

transformation given in Eq. (4.28). We find nine distinct cases for which {ge, gν} can be chosen as

{S, S} , {U,U} , {T 2ST, S} , {S,U} , {U, S} , {SU,U} , (4.44)

{S, TU} , {TU, S} , {TU,U} . (4.45)

The pair {S, S} is clearly conjugate to {TST 2, TST 2} and {T 2ST, T 2ST}, while {U,U} is conjugate to

{ge, gν} with ge = gν being one of the remaining 5 elements from conjugacy class 6 C′2 given in Eq. (4.43).

The pairs {T 2ST, S}, {S,U}, {U, S} and {SU,U} are conjugate to 5 pairs each, and {S, TU} and {TU, S}

to 11 pairs each. Finally, {TU,U} is conjugate to 23 pairs. The complete lists of pairs of elements which

are conjugate to each of these nine pairs are given in Appendix A.3.

The cases in Eq. (4.44) do not lead to phenomenologically viable results. The first two of them belong

to the cases of Type I (see Section 4.2.3). The remaining four belong to Type II, since S4 contains

ZS2 × ZTST
2

2 = {1, S, TST 2 , T 2ST} and ZS2 × ZU2 = {1, S, U , SU} subgroups (see, e.g., [197]). Thus,

we are left with three cases in Eq. (4.45).

We have chosen gν in such a way that it is S, U or TU for all the cases in Eq. (4.45). Now one needs

to identify the remnant CP transformations Xν compatible with each of these three elements. It is known

that a gCP symmetry X compatible with Gf = S4 is of the same form of Gf itself [88], i.e.,

X = ρ(g), g ∈ S4 . (4.46)

Thus, to find Xν compatible with the gν of interest, we need to select those Xν = ρ(g), which i) satisfy

the consistency condition in Eq. (4.16) and ii) are symmetric in order to avoid a partially degenerate

neutrino mass spectrum, as previously noted. The result reads:4

Xν = 1 , (S) , U , (SU) , TST 2U , (T 2STU) for gν = S ; (4.47)

Xν = 1 , (U) , S , (SU) for gν = U ; (4.48)

Xν = U , (T ) , STS , (T 2STU) for gν = TU . (4.49)

Here, a gCP transformation in parentheses arises automatically as a remnant CP symmetry of Mν if the

Xν preceding it is a remnant CP symmetry. This is a consequence of Eqs. (4.14) and (4.15), which imply

that if Xν is a residual CP symmetry of Mν , then ρ(gν)Xν is a residual CP symmetry as well. Therefore,

4For notational simplicity, the representation symbol ρ is omitted.
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there are three sets of remnant CP transformations compatible with ZS2 , namely Hν
CP = {1, S}, {U, SU},

and {TST 2U, T 2STU}, two sets compatible with ZU2 , which are Hν
CP = {1, U} and {S, SU}, and two

sets consistent with ZTU2 , which read Hν
CP = {U, T} and {STS, T 2STU}.

To summarise, there are 7 possible triplets (ge, gν , Xν), with {ge, gν} as in Eq. (4.45). In what follows,

we will consider them one by one and classify the phenomenologically viable mixing patterns they lead

to. Before starting, however, let us point out that the study to which the present chapter pertains, unless

otherwise noted, makes use of the results of the global analysis of Ref. [38]. Adopting these results, the

3σ ranges of the absolute values of the PMNS matrix elements read:

|UPMNS|3σ =

0.796→ 0.855 0.497→ 0.587 0.140→ 0.153

0.245→ 0.513 0.543→ 0.709 0.614→ 0.768

0.244→ 0.510 0.456→ 0.642 0.624→ 0.776

 (4.50)

for a neutrino mass spectrum with normal ordering, and

|UPMNS|3σ =

0.796→ 0.855 0.497→ 0.587 0.140→ 0.153

0.223→ 0.503 0.452→ 0.703 0.614→ 0.783

0.257→ 0.526 0.464→ 0.712 0.605→ 0.775

 (4.51)

for a neutrino mass spectrum with inverted ordering.

4.3.2 Explicit Forms of the PMNS Matrix

First, we present an explicit example of constructing the PMNS matrix in the case of ge = S, gν = TU

and Hν
CP = {U, T}. We work in the basis for S4 from Ref. [198], in which the matrices for the generators

S, T and U in the 3-dimensional representation read (cf. Eq. (1.21)):

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T =

1 0 0

0 ω2 0

0 0 ω

 and U = −

1 0 0

0 0 1

0 1 0

 , (4.52)

where ω = e2πi/3, and for simplicity we use the same notation for generators and their 3-dimensional

representation matrices. A matrix Ωe diagonalising ρ(ge) = S (see Eq. (4.4)) is given by

Ωe =
1√
6


√

2 −
√

3 −1√
2 0 2√
2
√

3 −1

 . (4.53)

The matrix Ων , such that Ων ΩTν = Xν = U (see Eq. (4.21)), reads

Ων =
1√
2

 0 0
√

2i

e
2πi
3 −e iπ6 0

e
iπ
3 e−

iπ
6 0

 . (4.54)

Using the master formula in Eq. (4.27) one obtains that, up to permutations of the rows and columns,

UPMNS has the form 
i√
2
× ×

× × ×
× × ×

 , (4.55)

where “×” entries are functions of the free parameters θν , θe and δe. Taking into account Eqs. (4.50)

and (4.51), the fixed element with the absolute value of 1/
√

2 ' 0.707 can be (UPMNS)µ2, (UPMNS)µ3,
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(UPMNS)τ2 or (UPMNS)τ3. Note that |(UPMNS)τ2| = 0.707 is outside the 3σ range in the case of the NO

neutrino mass spectrum, while |(UPMNS)µ2| = 0.707 is at the border of the 3σ allowed ranges for both

the NO and IO spectra.

Let us consider as an example the first possibility, i.e., Pe = Pν = P213, leading to |(UPMNS)µ2| =

1/
√

2. In this case the mixing angles are related to the free parameters θν , θe and δe as follows:

sin2 θ13 = |(UPMNS)e3|2 =
1

24

[
cos 2θν

(
sin 2θe

(
3 sin δe + 4

√
3 cos δe

)
+ 4 cos 2θe − 1

)
+
√

2 sin 2θν
(

sin 2θe
(√

3 cos δe − 6 sin δe
)

+ cos 2θe + 2
)
− 3 sin δe sin 2θe + 9

]
, (4.56)

sin2 θ23 =
|(UPMNS)µ3|2

1− |(UPMNS)e3|2
=

3− 2
√

2 sin 2θν + cos 2θν

12 cos2 θ13
, (4.57)

sin2 θ12 =
|(UPMNS)e2|2

1− |(UPMNS)e3|2
=

1 + sin δe sin 2θe

4 cos2 θ13
. (4.58)

Moreover, from |(UPMNS)µ2| = 1/
√

2 we obtain a “sum rule” for cos δ:

cos δ =
2 cos2 θ12 cos2 θ23 + 2 sin2 θ12 sin2 θ23 sin2 θ13 − 1

sin 2θ12 sin 2θ23 sin θ13
. (4.59)

Once one of the elements of the PMNS matrix is fixed, there are still 4 possible configurations,

namely, a permutation of the two remaining columns, a permutation of the two remaining rows and a

joint permutation of both. For instance, in the case considered above, aside from Pe = Pν = P213, we can

have a fixed (UPMNS)µ2 with (Pe, Pν) = (P213, P231), (P312, P213) and (P312, P231). These combinations

of the permutation matrices will not lead, however, to different mixing patterns by virtue of the following

relations:

R23 (θν)P231 = R23 (θν + π/2)P213 diag (−1, 1, 1) , (4.60)

P312 U23 (θe, δe) = diag
(
eiδ

e

, 1,−e−iδ
e
)
P213 U23 (θe + π/2, δe) . (4.61)

Indeed, e.g., in the case of (Pe, Pν) = (P312, P231), defining θ̂ν = θν + π/2, θ̂e = θe + π/2 and absorbing

the matrix diag (−1, 1, 1) in the matrix Qν , we obtain the same PMNS matrix as in the case of (Pe, Pν) =

(P213, P213):

UPMNS = P213 U23(θ̂e, δe) Ω†e Ων R23(θ̂ν)P213Qν . (4.62)

The phases in the matrix diag
(
eiδ

e

, 1,−e−iδe
)

in Eq. (4.61) are unphysical and are not shown.

We list in Table 4.1 the matrices Ωe and Ων for all 7 phenomenologically viable pairs of residual

symmetries {Ge, Gν} = {Zge2 , Zgν2 × Hν
CP}. It turns out, however, that 4 of these 7 pairs, namely,

{Ge, Gν} = {ZS2 , ZTU2 ×Hν
CP} withHν

CP = {U, T} and {STS, T 2STU}, and {Ge, Gν} = {ZTU2 , ZS2 ×Hν
CP}

with Hν
CP = {U, SU} and {TST 2U, T 2STU}, lead to the same predictions for the mixing parameters.

We demonstrate this in Appendix B.1.

4.3.3 Extracting Mixing Parameters and Statistical Analysis

In this subsection we perform a statistical analysis of the predictions for the neutrino mixing angles

and CPV phases for each of the 4 distinctive sets of the residual flavour and CP symmetries, which are:
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ge, Ωe gν Hν
CP Ων

ge = S

1√
6

√2 −
√

3 −1√
2 0 2√
2
√

3 −1

 TU

{U, T}
1√
2

 0 0
√

2i

e
2πi
3 −e iπ6 0

e
iπ
3 e−

iπ
6 0



{STS, T 2STU}
1√
6

 0 2i
√

2√
3e

iπ
6 e

iπ
6 −

√
2e−

iπ
3√

3e−
iπ
6 −e− iπ6 −

√
2e

iπ
3



ge = TU

1√
2

 0 0
√

2

e
iπ
3 e−

2πi
3 0

1 1 0



S

{1, S}
1√
6

√2 −
√

3 −1√
2 0 2√
2
√

3 −1



{U,SU}
i√
6

√2 −2 0√
2 1 −

√
3i√

2 1
√

3i



{TST 2U, T 2STU}
1√
3

1 i 1

1 e−
iπ
6 −e− iπ3

1 −e iπ6 −e iπ3



U

{1,U}
1√
2

 0 0
√

2
−1 1 0
1 1 0



{S,SU} − i√
6

 0
√

2i −2√
3
√

2i 1

−
√

3
√

2i 1



Table 4.1: The matrices Ωe and Ων dictated by the residual symmetries Ge = Zge2 and Gν = Zgν2 ×

Hν
CP for all seven phenomenologically viable pairs of Ge and Gν . For each pair Hν

CP = {Xν1, Xν2}

of remnant gCP transformations, the given matrix Ων provides the Takagi factorisation of the first

element, i.e., Xν1 = Ων ΩTν .5 The 4 inequivalent groups of cases considered in our analysis are

indicated in bold.

• Group A of cases: {Ge, Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {1, S},

• Group B of cases: {Ge, Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {U, SU},

• Group C of cases: {Ge, Gν} = {ZTU2 , ZU2 ×Hν
CP} with Hν

CP = {1, U},

• Group D of cases: {Ge, Gν} = {ZTU2 , ZU2 ×Hν
CP} with Hν

CP = {S, SU}.

An individual case is specified by the choice of a pair of residual symmetries and of the permutation

matrices Pe and Pν . For each case, one has expressions for sin2 θij in terms of θν , θe and δe of the
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type of Eqs. (4.56) – (4.58). Moreover, exploiting sum rules for cos δ analogous to that in Eq. (4.59) and

computing the rephasing invariant (cf. Eq. (1.8))

JCP = Im
{

(UPMNS)∗e1 (UPMNS)∗µ3 (UPMNS)e3 (UPMNS)µ1

}
, (4.63)

which determines the magnitude of CPV effects in neutrino oscillations and which in the standard

parametrisation of the PMNS matrix is proportional to sin δ,

JCP =
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ , (4.64)

we know the value of δ for any θν , θe and δe. Similarly, making use of the two charged lepton rephasing

invariants,6 associated with the Majorana phases [199–202],

I1 = Im {(UPMNS)∗e1 (UPMNS)e2} and I2 = Im {(UPMNS)∗e1 (UPMNS)e3} , (4.65)

and the corresponding real parts

R1 = Re {(UPMNS)∗e1 (UPMNS)e2} and R2 = Re {(UPMNS)∗e1 (UPMNS)e3} , (4.66)

which in the standard parametrisation of the PMNS matrix read:

I1 = sin θ12 cos θ12 cos2 θ13 sin (α21/2) , I2 = cos θ12 sin θ13 cos θ13 sin (α31/2− δ) , (4.67)

R1 = sin θ12 cos θ12 cos2 θ13 cos (α21/2) , R2 = cos θ12 sin θ13 cos θ13 cos (α31/2− δ) , (4.68)

we also obtain the values of α21 and α31 for any θν , θe and δe.

Further, we scan randomly over θν ∈ [0, π), θe ∈ [0, π) and δe ∈ [0, 2π) and calculate the values

of sin2 θij and the CPV phases. We require the sin2 θij to lie in the corresponding 3σ ranges given in

Table 1.2.7 The obtained values of sin2 θij and δ can be characterised by a certain value of a χ2 function,

constructed as follows:

χ2 (~x) =

4∑
i=1

χ2
i (xi) , (4.69)

where ~x = {xi} = {sin2 θ12, sin
2 θ13, sin

2 θ23, δ} and χ2
i are one-dimensional projections for NO and IO

taken from Ref. [38] (see also Fig. 1.1). We take here a conservative approach and treat both orderings on

an equal footing. To see the restrictions on the mixing parameters imposed by flavour and CP symmetries

we consider all 15 different pairs of the mixing parameters. For each pair we divide the plane into bins

and find a minimum of the χ2 function in each bin. We present results in terms of heat maps with

colour denoting the minimal value of χ2. The results obtained in each case are discussed in the following

subsection.

5Xν2 is instead factorised as Xν2 = Ω̃ν Ω̃Tν , with Ω̃ν = Ων diag(1, i, i), as follows from Xν2 = ρ(gν)Xν1 =

Ων Ω†ν ρ(gν) Ων ΩTν = Ων ρ(gν)d ΩTν , with ρ(gν)d defined in Eq. (4.18).
6In their general form, when one keeps explicit the unphysical phases ξj in the Majorana condition C νj

T = ξj νj ,
j = 1, 2, 3, the rephasing invariants related to the Majorana phases involve ξj and are invariant under phase transformations
of both the charged lepton and neutrino fields (see, for example, Eqs. (22) – (28) in Ref. [199]). We have set ξj = 1.

7 These ranges are overall wider than those in Table 1.3, meaning points found are unchanged up to the χ2 landscape.
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4.3.4 Results and Discussion

We now systematically go through all different potentially viable cases and summarise their particular

features. In each case we concentrate on results for the ordering for which a better compatibility with

the global data is attained. Note that results for NO and IO differ only i) due to the fact that the 3σ

ranges of sin2 θ13 and sin2 θ23 depend slightly on the ordering and ii) in the respective χ2 landscapes.

Moreover, we present numerical and graphical results for the Majorana phases obtained for k1 = k2 = 0,

where k1 and k2 are defined in Eq. (4.26). However, one should keep in mind that all four (k1, k2) pairs,

where ki = 0, 1, are allowed, meaning Majorana phases are constrained mod π. Whenever k1(2) = 1,

the predicted range for α21(31) shifts by π. The values of the ki are important for the predictions of the

neutrinoless double beta decay effective Majorana mass, which we present in Section 4.4.

Group A: {Ge,Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {1, S}. Using the corresponding matrices

Ωe and Ων from Table 4.1 and the master formula of Eq. (4.27), we find the following form of the PMNS

matrix (up to permutations of rows and columns and the phases in the matrix Qν):

UA
PMNS =

1

2
√

3


√

6 e−
iπ
6

√
3 eiθ

ν √
3 e−iθ

ν

√
2 cee

iπ
3 + 2 see−iδ

e

a1 (θν , θe, δe) a2 (θν , θe, δe)

2 ce −
√

2 see
iπ
3 eiδ

e

a3 (θν , θe, δe) a4 (θν , θe, δe)

 , (4.70)

with ce ≡ cos θe, se ≡ sin θe, cν ≡ cos θν , sν ≡ sin θν and

a1 (θν , θe, δe) =
[√

3cν +
(

2− i
√

3
)
sν
]
ce +

√
2
(
sν −

√
3 cν

)
see−iδ

e

, (4.71)

a2 (θν , θe, δe) =
[√

3sν −
(

2− i
√

3
)
cν
]
ce −

√
2
(
cν +

√
3 sν

)
see−iδ

e

, (4.72)

a3 (θν , θe, δe) =
√

2
(
sν −

√
3 cν

)
ce −

[√
3cν +

(
2− i

√
3
)
sν
]
seeiδ

e

, (4.73)

a4 (θν , θe, δe) = −
√

2
(
cν +

√
3 sν

)
ce −

[√
3 sν −

(
2− i

√
3
)
cν
]
seeiδ

e

. (4.74)

From Eq. (4.70), we see that the absolute values of the elements of the first row are fixed. Namely, the

modulus of the first element is equal to 1/
√

2, while the moduli of the second and third elements equal

1/2. Taking into account Eqs. (4.50) and (4.51), this implies that there are only two potentially viable

cases: i) with |(UPMNS)µ1| = |(UPMNS)µ2| = 1/2 and |(UPMNS)µ3| = 1/
√

2, and ii) with |(UPMNS)τ1| =

|(UPMNS)τ2| = 1/2 and |(UPMNS)τ3| = 1/
√

2.

• Case A1: |(UPMNS)µ1| = |(UPMNS)µ2| = 1/2, |(UPMNS)µ3| = 1/
√
2 (Pe = P213, Pν =

P321). In this case we obtain

sin2 θ23 =
1

2
(
1− sin2 θ13

) =
1

2

(
1 + sin2 θ13

)
+O

(
sin4 θ13

)
. (4.75)

This means that only a narrow interval sin2 θ23 ∈ [0.510, 0.512] is allowed using the 3σ region for sin2 θ13.

From the equality |(UPMNS)µ1| = 1/2, which we find to hold in this case, it follows that cos δ satisfies the

following sum rule:

cos δ =
1− 4 sin2 θ12 cos2 θ23 − 4 cos2 θ12 sin2 θ23 sin2 θ13

2 sin 2θ12 sin 2θ23 sin θ13
, (4.76)
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where the mixing angles in addition are correlated among themselves. We find that sin2 θ13 is constrained

to lie in the interval (0.0213, 0.0240(2)] for NO (IO) and, hence, sin2 θ23 in [0.5109, 0.5123(4)]. This range

of values of sin2 θ23 is not compatible with its 2σ range. Moreover, sin2 θ12 is found to be between

approximately 0.345 and 0.354, which is outside its 2σ range as well. In what concerns the CPV phases,

the predicted values of δ are distributed around 0, namely, δ ∈ [−0.11π, 0.11π], while α21 ∈ (0.93π, 1.07π)

mod π, and the values of α31 fill the whole range, i.e., α31 ∈ [0, 2π). These numbers, presented for the

NO spectrum, remain practically unchanged for the IO spectrum. However, the global minimum χ2
min of

the χ2 function, defined in Eq. (4.69), yields approximately 22 (19) for NO (IO), which implies that this

case is strongly disfavoured by the global data.

• Case A2: |(UPMNS)τ1| = |(UPMNS)τ2| = 1/2, |(UPMNS)τ3| = 1/
√
2 (Pe = Pν = P321).

This case shares the predicted ranges for sin2 θ12, sin2 θ13, α21 and α31 with case A1, but differs in the

predictions for sin2 θ23 and δ. Again, there is a correlation between sin2 θ13 and sin2 θ23:

sin2 θ23 =
1− 2 sin2 θ13

2
(
1− sin2 θ13

) =
1

2

(
1− sin2 θ13

)
+O

(
sin4 θ13

)
, (4.77)

which, in particular, implies that sin2 θ23 ∈ [0.4877(6), 0.4891], which is not compatible with its 2σ range.

We also find that |(UPMNS)τ1| = 1/2. This equality leads to the following sum rule:

cos δ =
4 sin2 θ12 sin2 θ23 + 4 cos2 θ12 cos2 θ23 sin2 θ13 − 1

2 sin 2θ12 sin 2θ23 sin θ13
. (4.78)

It is worth noting that we should always keep in mind the correlations between the mixing angles in

expressions of this type. The values of δ in this case lie around π, in the interval [0.89π, 1.11π]. As in

the previous case, the global minimum of χ2 is somewhat large, χ2
min ' 18.5 (15) for NO (IO), meaning

that this case is also strongly disfavoured.

Group B: {Ge,Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {U,SU}. For this choice of the residual

symmetries, the PMNS matrix reads (up to permutations of rows and columns and the phases in the

matrix Qν):

UB
PMNS =

1

2
√

3


√

6 e
iπ
3

√
3 (cν + sν) e

iπ
3

√
3 (sν − cν) e

iπ
3

−
√

2 cee−
iπ
6 + 2 i see−iδ

e

b1 (θν , θe, δe) b2 (θν , θe, δe)

2 i ce +
√

2 see−
iπ
6 eiδ

e

b3 (θν , θe, δe) b4 (θν , θe, δe)

 , (4.79)

with

b1 (θν , θe, δe) = (3sν − cν) cee−
iπ
6 − 2

√
2 i cνsee−iδ

e

, (4.80)

b2 (θν , θe, δe) = − (3cν + sν) cee−
iπ
6 − 2

√
2 i sνsee−iδ

e

, (4.81)

b3 (θν , θe, δe) = −2
√

2 i cνce − (3sν − cν) see−
iπ
6 eiδ

e

, (4.82)

b4 (θν , θe, δe) = −2
√

2 i sνce + (3cν + sν) see−
iπ
6 eiδ

e

. (4.83)

Equation (4.79) implies that the absolute value of one element of the PMNS matrix is predicted to be

1/
√

2. Thus, we have four potentially viable cases.
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• Case B1: |(UPMNS)µ2| = 1/
√
2 (Pe = Pν = P213). Note that from Eqs. (4.50) and (4.51) it

follows that this magnitude of the fixed element is inside its 3σ range for NO, but slightly outside the

corresponding range for IO. Hence, we will focus on the results for NO. The characteristic feature of this

case is the following sum rule for cos δ:

cos δ =
2 cos2 θ12 cos2 θ23 + 2 sin2 θ12 sin2 θ23 sin2 θ13 − 1

sin 2θ12 sin 2θ23 sin θ13
, (4.84)

which arises from the equality of |(UPMNS)µ2| to 1/
√

2. The pair correlations between the mixing param-

eters in this case are summarised in Fig. 4.1. The colour palette corresponds to values of χ2 for NO. As

can be seen, while all values of sin2 θ13 in its 3σ range are allowed, the parameters sin2 θ12 and sin2 θ23

are found to lie in [0.250, 0.308] and [0.381, 0.425) intervals, respectively. The predicted values of δ span

the range [0.68π, 1.32π]. Thus, CPV effects in neutrino oscillations due to the phase δ can be suppressed.

The Majorana phases instead are distributed in relatively narrow regions, namely α21 ∈ [−0.16π, 0.16π]

and α31 ∈ (−0.13π, 0.13π) mod π. In addition, δ is strongly correlated with α21 and α31, which in turn

exhibit a strong correlation between themselves. Finally, χ2
min ' 7 for both NO and IO, i.e., this case is

compatible with the global data.8

• Case B2: |(UPMNS)τ2| = 1/
√
2 (Pe = P321, Pν = P213). Note that this value of |(UPMNS)τ2|

is compatible at 3σ with the global data in the case of IO spectrum, but not in the case of NO spectrum,

as can be seen from Eqs. (4.50) and (4.51). Thus, below we present results for the IO spectrum only. As

in case B1, the whole 3σ range for sin2 θ13 is allowed. The obtained ranges of values of α21 and α31 are

the same of the preceding case. The range for sin2 θ12 differs somewhat from that obtained in case B1,

and it reads sin2 θ12 ∈ [0.250, 0.328].9 The predictions for sin2 θ23 and δ are different. Now the following

sum rule, derived from |(UPMNS)τ2| = 1/
√

2, holds:

cos δ =
1− 2 cos2 θ12 sin2 θ23 − 2 sin2 θ12 cos2 θ23 sin2 θ13

sin 2θ12 sin 2θ23 sin θ13
. (4.85)

The values of δ are concentrated in [−0.38π, 0.38π]. For sin2 θ23 we find the range (0.575, 0.636]. The

correlations between the phases are of the same type as in case B1. We summarise the results in Fig. 4.2.

Finally, χ2
min ' 6 in the case of IO and χ2

min ' 12.5 for NO, which reflects incompatibility of this case

at more than 3σ for the NO spectrum. This occurs mainly due to the predicted values of sin2 θ23, which

are outside its 2σ range for NO.

• Case B3: |(UPMNS)µ3| = 1/
√
2 (Pe = P213, Pν = P321). Since |(UPMNS)µ3| = 1/

√
2,

the angles θ13 and θ23 are correlated as in case A1, i.e., according to Eq. (4.75). For IO this leads to

sin2 θ23 ∈ [0.5097, 0.5124] due to the fact that the whole 3σ range of sin2 θ13 is found to be allowed, as

can be seen from Fig. 4.3. Note that this range is outside the 2σ range of sin2 θ23. In addition, we find

that the whole 3σ range of the values of sin2 θ12 can be reproduced. In contrast to case A1, |(UPMNS)µ1|
8 The apparent contradiction between the obtained value of χ2

min ' 7, which suggests compatibility also for IO, and the
expectation of χ2

min ∼> 9, according to Eq. (4.51), arises from the way we construct the χ2 function (see Eq. (4.69)), which
does not explicitly include covariances between the oscillation parameters.

9This difference is related to the fact that the 3σ range of sin2 θ23 for IO, which reads [0.384, 0.636], is not symmetric
with respect to 0.5. The asymmetry of 0.02 translates to increase of the allowed range of sin2 θ12 by approximately 0.02.
This can be better understood from the top right plots in Figs. 4.1 and 4.2.
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does not equal 1/2, but depends on θν in the following way:

|(UPMNS)µ1|2 =
1− sin 2θν

4
. (4.86)

From this equation we find

cos δ =
1− 4 sin2 θ12 cos2 θ23 − 4 cos2 θ12 sin2 θ23 sin2 θ13 − sin 2θν

2 sin 2θ12 sin 2θ23 sin θ13
, (4.87)

i.e., cos δ depends on θν explicitly (not only via θ12, θ23 and θ13). Any value of δ between 0 and 2π turns

out to be allowed (see Fig. 4.3). The Majorana phases, however, are constrained to lie in the following

intervals: α21 ∈ [−0.23π, 0.23π] and α31 ∈ (−0.18π, 0.18π), mod π. Moreover, both phases α21 and α31

are correlated in one and the same peculiar way with the phase δ. The correlation between α21 and α31

is similar to those in cases B1 and B2 (cf. Figs. 4.1 and 4.2). Due to the predicted values of sin2 θ23,

which belong to the upper octant, IO is preferred over NO in this analysis, the corresponding χ2
min being

approximately 5 and 8.5.

• Case B4: |(UPMNS)τ3| = 1/
√
2 (Pe = Pν = P321). The predicted ranges of all the mixing

parameters are the same of case B3, except for sin2 θ23, which respects the relation in Eq. (4.77), and

thus belongs to [0.4876, 0.4903] in the case of IO spectrum. As in the previous case, this interval falls

outside the 2σ range of sin2 θ23. The results obtained in this case for the IO spectrum are presented in

Fig. 4.4. Similarly to the preceding case, we find

|(UPMNS)τ1|2 =
1− sin 2θν

4
, (4.88)

which leads to

cos δ =
sin 2θν + 4 sin2 θ12 sin2 θ23 + 4 cos2 θ12 cos2 θ23 sin2 θ13 − 1

2 sin 2θ12 sin 2θ23 sin θ13
. (4.89)

The correlation between the Majorana phases is similar to that in the previous case. Also in this case,

χ2
min ' 4.5 for IO is lower than that of approximately 6.5 for NO, the reason being again the predicted

range of sin2 θ23.

Group C: {Ge,Gν} = {ZTU2 , ZU2 ×Hν
CP} with Hν

CP = {1,U}. Using the corresponding matrices

Ωe and Ων given in Table 4.1 and Eq. (4.27), we obtain the following form of the PMNS matrix (up to

permutations of rows and columns and the phases in the matrix Qν):

UC
PMNS =

1

2


ei
π
3

√
3 cνe−

iπ
6

√
3 sνe−

iπ
6

√
3 cee−

iπ
6 cνcee

iπ
3 − 2 sνsee−iδ

e

sνcee
iπ
3 + 2 cνsee−iδ

e

−
√

3 see−
iπ
6 eiδ

e −2 sνce − cνsee iπ3 eiδe 2 cνce − sνsee iπ3 eiδe

 . (4.90)

Thus, this pair of residual symmetries leads the absolute value of the fixed element to be 1/2. Taking

into account the uncertainties in the values of the neutrino mixing parameters, Eqs. (4.50) and (4.51),

we have to consider five potentially viable cases corresponding to (UPMNS)e2, (UPMNS)µ1, (UPMNS)τ1,

(UPMNS)µ2 or (UPMNS)τ2 being the fixed element.
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Figure 4.1: Correlations between the neutrino mixing parameters in case B1, for a mass spectrum

with NO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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Figure 4.2: Correlations between the neutrino mixing parameters in case B2, for a mass spectrum

with IO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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Figure 4.3: Correlations between the neutrino mixing parameters in case B3, for a mass spectrum

with IO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.

Note that this case is not compatible with the 2σ range of sin2 θ23.
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Figure 4.4: Correlations between the neutrino mixing parameters in case B4, for a mass spectrum

with IO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.

Note that this case is not compatible with the 2σ range of sin2 θ23.
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• Case C1: |(UPMNS)e2| = 1/2 (Pe = P123, Pν = P213). Fixing (UPMNS)e2 leads to the

following relation between sin2 θ13 and sin2 θ12:

sin2 θ12 =
1

4
(
1− sin2 θ13

) =
1

4

(
1 + sin2 θ13

)
+O

(
sin4 θ13

)
. (4.91)

Since this case allows for the whole 3σ range of sin2 θ13 (see Fig. 4.5), we find sin2 θ12 ∈ (0.2548, 0.2562).

Note that this narrow interval is outside the 2σ range of sin2 θ12. At the same time, this case reproduces

the whole 3σ range of the values of sin2 θ23. From

|(UPMNS)µ2|2 =
3 cos2 θe

4
, (4.92)

we obtain

cos δ =
4 cos2 θ12 cos2 θ23 + 4 sin2 θ12 sin2 θ23 sin2 θ13 − 3 cos2 θe

2 sin 2θ12 sin 2θ23 sin θ13
, (4.93)

i.e., cos δ explicitly depends on θe, and eventually δ is not constrained. Instead the Majorana phase α21

is predicted to be exactly π (exactly 0) for k1 = 0 (k1 = 1). While the second Majorana phase α31 itself

remains unconstrained, the difference α31 − 2δ = 0 (π) for k2 = 0 (k2 = 1), i.e., we have a strong linear

correlation between δ and α31 (see Fig. 4.5). The reason for these values of α21 and α31 − 2δ is the

following. In the standard parametrisation of the PMNS matrix, α21 and the combination (α31−2δ) may

be extracted from the phases of the first row of the PMNS matrix, as can be seen from Eqs. (4.65) – (4.68).

In case C1, none of the phases of the first row elements of the PMNS matrix depend (mod π) on the

free parameters θν , θe and δe. Namely, the phases of (UPMNS)e1, (UPMNS)e2 and (UPMNS)e3 are fixed

(mod π and up to a global phase) to be −π/6, π/3 and −π/6, respectively. Notice that only in groups

B and C the relative phases of the first row can be predicted (mod π) to be independent of θν , θe and

δe. Furthermore, case C1 stands out since it is, out of these relevant cases, the only one which survives

the constraints on the magnitudes of the PMNS matrix elements given in Eqs. (4.50) and (4.51). Finally,

χ2
min ' 7 for both mass orderings.

• Case C2: |(UPMNS)µ1| = 1/2 (Pe = P213, Pν = P123). The correlations between the mixing

parameters obtained in this case for NO are summarised in Fig. 4.6 (the results for IO are very similar).

This case accounts for the whole 3σ range of sin2 θ13, but constrains the values of the two other angles.

Namely, we find sin2 θ12 ∈ [0.285, 0.354] and sin2 θ23 ∈ [0.381, 0.524]. For this case, Eq. (4.76) is valid,

since |(UPMNS)µ1| = 1/2 as in case A1. As a consequence, we find δ to be constrained: δ ∈ (−0.38π, 0.38π).

Both Majorana phases are distributed in relatively narrow intervals: α21 ∈ (0.85π, 1.15π) and α31 ∈

[0.91π, 1.09π], mod π. The phase δ is correlated with each of the two Majorana phases in a similar way.

The latter in turn are correlated linearly between themselves. Overall, NO is slightly preferred over IO

in this case. The corresponding values of χ2
min read 4.5 and 5.5, respectively.

•Case C3: |(UPMNS)τ1| = 1/2 (Pe = P321, Pν = P123). This case shares some of the predictions

of case C2. Namely, the whole 3σ range of sin2 θ13 is allowed, and the ranges of α21 and α31 are the

same as in the preceding case, as can be seen from Fig. 4.7, in which we present the results for the IO

neutrino mass spectrum. The interval of values of sin2 θ12 differs somewhat from that of case C2 and reads

sin2 θ12 ∈ [0.279, 0.354]. The predictions for sin2 θ23 and δ, however, are very different from those of case
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C2. The allowed values of sin2 θ23 are concentrated mostly in the upper octant, sin2 θ23 ∈ [0.475, 0.636].

The sum rule for cos δ in Eq. (4.78) is valid in this case, since |(UPMNS)τ1| = 1/2, and we find the values

of δ to be symmetrically distributed around π in the interval [0.60π, 1.40π]. The pairwise correlations

between the CPV phases are of the same type as in case C2 (taking into account an approximate shift of

δ by π, as suggested by Figs. 4.6 and 4.7). Due to the predicted range of sin2 θ23, this case is favoured

by the data for IO, for which χ2
min ' 1.5, while for NO we find χ2

min ' 8.5.

• Case C4: |(UPMNS)µ2| = 1/2 (Pe = Pν = P213). From Eqs. (4.50) and (4.51) it follows that

the value of |(UPMNS)µ2| = 1/2 is allowed at 3σ only for IO. Thus, below we present results obtained

in the IO case. In the case under consideration there are no constraints on the ranges of sin2 θ12 and

sin2 θ13. The atmospheric angle is, in turn, found to lie in the upper octant, sin2 θ23 ∈ (0.505, 0.636]. As

can be seen in Fig. 4.8, δ ∈ [−0.54π, 0.54π], which is a consequence of the following correlation between

cos δ and the mixing angles:

cos δ =
4 cos2 θ12 cos2 θ23 + 4 sin2 θ12 sin2 θ23 sin2 θ13 − 1

2 sin 2θ12 sin 2θ23 sin θ13
, (4.94)

obtained from |(UPMNS)µ2| = 1/2. There is also a peculiar correlation between sin2 θ23 and δ. The phases

α21 ∈ [0.73π, 1.27π] and α31 ∈ [−0.18π, 0.18π] mod π. The values of all the three phases are highly

correlated among themselves. The predicted values of sin2 θ23 in the upper octant lead to χ2
min ' 8.5 for

NO (see footnote 8), while χ2
min ' 2 for IO.

•Case C5: |(UPMNS)τ2| = 1/2 (Pe = P321, Pν = P213). The last case of this group, analogously

to case C4, does not constrain the ranges of sin2 θ12 and sin2 θ13. Moreover, it leads to almost the same

allowed ranges of α21 and α31 as in the previous case, α21 ∈ (0.74π, 1.26π) and α31 ∈ [−0.16π, 0.16π],

mod π. The differences are in predictions for sin2 θ23 and δ. Now the atmospheric angle lies in the lower

octant, namely, for NO we find sin2 θ23 ∈ [0.381, 0.494]. The condition |(UPMNS)τ2| = 1/2 gives rise to

the following sum rule:

cos δ =
1− 4 cos2 θ12 sin2 θ23 − 4 sin2 θ12 cos2 θ23 sin2 θ13

2 sin 2θ12 sin 2θ23 sin θ13
. (4.95)

The allowed values of δ span the range [0.51π, 1.49π]. The correlations between the mixing parameters

in this case are summarised in Fig. 4.9 for NO. Finally, we have χ2
min ' 0.5 for both orderings.

Group D: {Ge,Gν} = {ZTU2 , ZU2 ×Hν
CP} with Hν

CP = {S,SU}. For this last group of cases, we

find that the PMNS matrix takes the following form (up to permutations of rows and columns and the

phases in the matrix Qν):

UD
PMNS =

1

2
√

3


−
√

3 e−
iπ
6

√
3
(√

2 cν + i sν
)
e−

iπ
6

√
3
(√

2 sν − i cν
)
e−

iπ
6

3 cee
iπ
3 d1 (θν , θe, δe) d2 (θν , θe, δe)

−3 see
iπ
3 eiδ

e

d3 (θν , θe, δe) d4 (θν , θe, δe)

 , (4.96)

where

d1 (θν , θe, δe) =
(√

2 cν + i sν
)
cee

iπ
3 + 2

(
cν − i

√
2 sν

)
see−iδ

e

, (4.97)
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Figure 4.5: Correlations between the neutrino mixing parameters in case C1, for a mass spectrum

with NO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.

Note that this case is not compatible with the 2σ range of sin2 θ12.
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Figure 4.6: Correlations between the neutrino mixing parameters in case C2, for a mass spectrum

with NO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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Figure 4.7: Correlations between the neutrino mixing parameters in case C3, for a mass spectrum

with IO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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Figure 4.8: Correlations between the neutrino mixing parameters in case C4, for a mass spectrum

with IO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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Figure 4.9: Correlations between the neutrino mixing parameters in case C5, for a mass spectrum

with NO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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)
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d3 (θν , θe, δe) = 2
(
cν − i

√
2 sν

)
ce −

(√
2 cν + i sν

)
see

iπ
3 eiδ

e

, (4.99)

d4 (θν , θe, δe) = 2
(
sν + i

√
2 cν

)
ce −

(√
2 sν − i cν

)
see

iπ
3 eiδ

e

. (4.100)

Therefore, the absolute value of the fixed element of the neutrino mixing matrix yields 1/2. Thus, we

have again five potentially viable cases.

• Case D1: |(UPMNS)e2| = 1/2 (Pe = P123, Pν = P213). In this case we find

sin2 θ13 =
3− cos 2θν

8
, (4.101)

which implies that sin2 θ13 can have values between 1/4 and 1/2. Thus, this case is ruled out.

• Case D2: |(UPMNS)µ1| = 1/2 (Pe = P213, Pν = P123). This case allows for the whole 3σ range

of sin2 θ13 and, in the case of NO, for the following ranges of sin2 θ12 and sin2 θ23: sin2 θ12 ∈ [0.284, 0.354]

and sin2 θ23 ∈ [0.381, 0.512]. The sum rule for cos δ in Eq. (4.76) holds, since |(UPMNS)µ1| = 1/2. We

find δ ∈ [−0.37π, 0.37π]. In what concerns the Majorana phases, α21 spans a relatively broad interval

[0.25π, 1.75π], while α31 ∈ [−0.48π, 0.48π] (both mod π). There are very particular correlations between

α21(31) and all the other mixing parameters in this case, as can be seen in Fig. 4.10, in which we summarise

the results for NO. Finally, χ2
min ' 4.5 for NO, and χ2

min ' 5.5 for IO.

• Case D3: |(UPMNS)τ1| = 1/2 (Pe = P321, Pν = P123). As in the previous case, the whole 3σ

range of sin2 θ13 is reproduced. The allowed ranges of sin2 θ12, α21 and α31 are very similar to those of

case D2. Namely, in the case of IO spectrum we have sin2 θ12 ∈ [0.279, 0.354], while α21 ∈ [0.21π, 1.79π]

and α31 ∈ (−0.53π, 0.53π) mod π. Instead, the values of sin2 θ23 occupy mostly the upper octant,

sin2 θ23 ∈ [0.488, 0.636]. The sum rule in Eq. (4.78), which holds in this case since |(UPMNS)τ1| = 1/2,

leads to the values of δ distributed around π in a rather broad range, δ ∈ (0.59π, 1.41π). The correlations

between the Majorana phases and δ are as in the previous case, but again with an approximate shift of

δ by π (see Fig. 4.11). The minimal value χ2
min ' 1.5 in the IO case, while for the NO spectrum we get

approximately 8.5. This difference is due to the allowed values of sin2 θ23.

• Case D4: |(UPMNS)µ2| = 1/2 (Pe = Pν = P213). This case can account only for a part of

the 3σ range of sin2 θ13, namely, sin2 θ13 ∈ [0.0214, 0.0240(2)] for NO (IO) spectrum. The constraints

on two other angles are more severe. We find that only a narrow region of the values of sin2 θ23, which

falls outside its 2σ range, is allowed, namely, sin2 θ23 ∈ [0.505, 0.512]. For the solar mixing angle we have

sin2 θ12 ∈ [0.345, 0.354], which is also outside the 2σ range of this parameter. The sum rule in Eq. (4.94),

which is also valid in this case, constrains δ to lie in a narrow interval around 0: δ ∈ [−0.11π, 0.11π].

The Majorana phases are also distributed in narrow intervals, namely α21 ∈ (0.83π, 1.17π) and α31 ∈

[0.92π, 1.08π] mod π. However, the global minimum of χ2 is somewhat large in this case for both NO

and IO orderings. Namely, we find χ2
min ' 22 (19) for NO (IO), i.e., this case is strongly disfavoured by

global data.
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• Case D5: |(UPMNS)τ2| = 1/2 (Pe = P321, Pν = P213). This last case shares the predicted

ranges for sin2 θ12, sin2 θ13, α21 and α31 with case D4. Therefore, this case is also not compatible

with the 2σ range of sin2 θ12. For sin2 θ23 instead we find the narrow interval in the lower octant,

sin2 θ23 ∈ [0.488, 0.495], which lies outside the 2σ range of sin2 θ23. We find cos δ to satisfy the sum rule

in Eq. (4.95), which in this case gives us the values of δ in a narrow interval around π, δ ∈ [0.89π, 1.11π].

Finally, we find χ2
min ' 18.5 (15) for NO (IO), which implies that this case is also strongly disfavoured.

The PMNS matrix in case A2 is related with that in case A1 by the permutation matrix P312 as

UA2
PMNS = P312 U

A1
PMNS. Given that P312 = P132P321, one can see that these matrices are related by µ− τ

interchange, after an unphysical exchange of the first and third rows of UA1
PMNS has been performed (which

amounts to a redefinition of the free parameter θe, as shown in Eq. (4.61)). The same also holds for the

following pairs of cases: (B1, B2), (B3, B4), (C2, C3), (C4, C5), (D2, D3) and (D4, D5). As can be seen

from the discussion above and Figs. 4.1 – 4.4 and 4.6 – 4.11, cases inside a pair share some qualitative

features. Namely, i) the predicted ranges of sin2 θ12, sin2 θ13, α21 and α31 are approximately the same;

ii) the predicted range of sin2 θ23 gets approximately reflected around 1/2, i.e., sin2 θ23 → 1 − sin2 θ23;

iii) the predicted range of the CPV phase δ experiences an approximate shift by π, i.e., δ → δ + π.

In Tables 4.2 and 4.3 we summarise the predicted ranges of the mixing parameters obtained in all the

phenomenologically viable cases discussed above. The corresponding best-fit values together with χ2
min

are presented in Tables 4.4 and 4.5. Finally, in Table 4.6 we show whether the cases compatible with the

3σ ranges of the three mixing angles are also compatible with their corresponding 2σ ranges.

The results shown in Tables 4.2 – 4.5 allow to assess the possibilities to critically test the predictions

of the viable cases of the model and to distinguish between them. The current global-fit 1σ uncertainties

on the measured values of sin2 θ12, sin2 θ13 and sin2 θ23 are 4.4%, 3.8% and 5.2%, respectively [39].

These uncertainties are foreseen to be further reduced by the currently active and/or future planned

experiments. The Daya Bay collaboration plans to determine sin2 θ13 with 1σ uncertainty of 3% [203].

The uncertainties on sin2 θ12 and sin2 θ23 are planned to be reduced significantly. The parameter sin2 θ12

is foreseen to be measured with 1σ relative error of 0.7% in the JUNO experiment [204, 205]. In the

proposed upgrade of the (currently taking data) T2K experiment [206,207], for example, θ23 is estimated

to be determined with a 1σ error of 1.7◦, 0.5◦ or 0.7◦ if the best-fit value of sin2 θ23 = 0.50, 0.43 or

0.60, respectively. This implies that for these three values of sin2 θ23 the 1σ error would be 5% for

sin2 θ23 = 0.50, and 2% for sin2 θ23 = 0.43 or 0.60. This error on sin2 θ23 will be further reduced in

the future planned T2HK [208] and DUNE [209] experiments. If δ = 3π/2, the CP-conserving case of

sin δ = 0 would be disfavoured for the NO mass spectrum in the same experiment at least at 3σ CL.

Higher precision measurements of δ are planned to be performed in the T2HK and DUNE experiments.

We turn now to the possibilities to discriminate experimentally between the different cases listed in

Tables 4.2 – 4.5 using the prospective data on sin2 θ12, sin2 θ13, sin2 θ23 and δ. One starts by noting that

the predicted ranges for sin2 θ12, sin2 θ13, sin2 θ23 and δ in cases A1 and A2 practically coincide with

the predictions respectively in cases D4 and D5. However, cases A1, D4 and cases A2, D5 are strongly

disfavoured by data: for a NO (IO) neutrino mass spectrum, A1 and D4 present χ2
min = 22.0 (19.0),
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Figure 4.10: Correlations between the neutrino mixing parameters in case D2, for a mass spectrum

with NO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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Figure 4.11: Correlations between the neutrino mixing parameters in case D3, for a mass spectrum

with IO. The values of all the three mixing angles are required to lie in their respective 3σ ranges.
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while for A2 and D5 χ2
min = 18.5 (15.0). In all these cases, sin2 θ12 in particular is predicted to lie in the

interval (0.345,0.354) compatible with its 3σ range and, given the best-fit value of sin2 θ12 and prospective

JUNO precision on sin2 θ12, it is very probable that future more precise data on sin2 θ12 will rule out

these scenarios.

It follows also from Tables 4.4 and 4.5 that the combined results on the best-fit values of sin2 θ12,

sin2 θ23 and δ we have obtained in the different viable cases (excluding A1, A2, D4 and D5) differ

significantly. Assuming, for example, that the experimentally determined best-fit values of sin2 θ12 and

sin2 θ23 will coincide with those found by us for a given viable case, it is not difficult to convince oneself

inspecting Tables 4.4 and 4.5 that the cited prospective 1σ errors on sin2 θ12 and sin2 θ23 will allow to

discriminate between the different viable cases identified in our study. More specifically, considering as

an example only the case of NO neutrino mass spectrum, the prospective high precision measurement

of sin2 θ12 will allow to discriminate between case C1 and all other cases B1 – B4, C2 – C5, D2 and D3.

The same measurement will make it possible to distinguish i) between case B1 and all the other cases

except B2, ii) between case B2 and all the other cases except B1, B3 and B4, and similarly iii) between

case B3 and all the other cases except B2, B4, C4 and C5. However, the differences between the best-fit

values of sin2 θ23 in cases B1, B2 and B3 (or B4) are sufficiently large, which would permit to distinguish

between these three cases if sin2 θ23 were measured with the prospective precision. It follows from Table

4.4, however, that it would be very challenging to discriminate between cases B3 and B4: it will require

extremely high precision measurement of sin2 θ23. These two cases would be ruled out, however, if the

experimentally determined best-fit value of sin2 θ23 differs significantly from the results for sin2 θ23 we

have obtained in the B3 and B4 cases, namely 0.511 and 0.489, respectively.

In the remaining cases C2 – C5 and D2 – D3, the results we have obtained for sin2 θ12, as Table 4.5

shows, are very similar. However, the predictions for the pair sin2 θ23 and δ differ significantly in cases

C2 or D2, and C3 or D3. The cases within each pair would be ruled out if the experimentally determined

values of sin2 θ23 and δ differ significantly from the predicted best-fit values.

The planned future high-precision measurements of sin2 θ12 and sin2 θ23, together with more precise

data on the Dirac phase δ, will make it possible to critically test the predictions of the cases listed in

Tables 4.2 – 4.5. We schematically summarise in Fig. 4.12 the predicted 3σ allowed regions in the plane

(sin2 θ23, sin
2 θ12) for all viable cases from Figs. 4.1 – 4.11. In this figure we also present the best-fit point

in each case used in the preceding discussion. When future more precise data on sin2 θ23 and sin2 θ12

become available, the experimentally allowed region in the (sin2 θ23, sin
2 θ12) plane will shrink, and only

a limited number of cases, if any, will remain viable. A comprehensive analysis of the possibilities to

distinguish between the different viable cases found in our work in the considered S4 model can only be

done when more precise data first of all on sin2 θ12 and sin2 θ23, and then on δ, will be available.



Hν
CP

Case sin2 θ12

10−1

sin2 θ13

10−2

sin2 θ23

10−1
δ/π

α21/π α31/π

(p.f.e.) (mod 1) (mod 1)

{1, S}

A1 3.45− 3.54 2.13− 2.40 5.11− 5.12 [0, 0.11] ∪ [1.89, 2] [0, 0.07] ∪ [0.93, 1] 0− 1

(µ3) 3.44− 3.54 2.13− 2.42 5.11− 5.12 [0, 0.12] ∪ [1.88, 2] [0, 0.07] ∪ [0.93, 1] 0− 1

A2 3.45− 3.54 2.13− 2.40 4.88− 4.89 0.89− 1.11 [0, 0.07] ∪ [0.93, 1] 0− 1

(τ3) 3.44− 3.54 2.13− 2.42 4.88− 4.89 0.88− 1.12 [0, 0.07] ∪ [0.93, 1] 0− 1

{U, SU}

B1 2.50− 3.08 Full 3σ 3.81− 4.25 0.68− 1.32 [0, 0.16] ∪ [0.84, 1] [0, 0.13] ∪ [0.88, 1]

(µ2) 2.50− 3.06 Full 3σ 3.84− 4.25 0.69− 1.31 [0, 0.16] ∪ [0.84, 1] [0, 0.12] ∪ [0.88, 1]

B2 2.50− 3.03 Full 3σ 5.76− 6.15 [0, 0.30] ∪ [1.70, 2] [0, 0.16] ∪ [0.84, 1] [0, 0.12] ∪ [0.88, 1]

(τ2) 2.50− 3.28 Full 3σ 5.76− 6.36 [0, 0.38] ∪ [1.61, 2] [0, 0.17] ∪ [0.83, 1] [0, 0.13] ∪ [0.87, 1]

B3 Full 3σ Full 3σ 5.10− 5.12 0− 2 [0, 0.23] ∪ [0.77, 1] [0, 0.18] ∪ [0.83, 1]

(µ3) Full 3σ Full 3σ 5.10− 5.12 0− 2 [0, 0.23] ∪ [0.77, 1] [0, 0.18] ∪ [0.82, 1]

B4 Full 3σ Full 3σ 4.88− 4.90 0− 2 [0, 0.23] ∪ [0.77, 1] [0, 0.17] ∪ [0.83, 1]

(τ3) Full 3σ Full 3σ 4.88− 4.90 0− 2 [0, 0.23] ∪ [0.77, 1] [0, 0.18] ∪ [0.82, 1]

Table 4.2: Ranges of the mixing parameters for the viable cases, i.e., those cases for which the predicted values of all the three mixing angles lie inside their

respective 3σ allowed ranges. The cases presented here correspond to Ge = Zge2 and Gν = Zgν2 ×Hν
CP with {ge, gν} = {TU, S}, for which the magnitude

of the fixed element is 1/
√

2 (p.f.e. denotes the position of the fixed element in UPMNS). Within each case, the upper and lower rows refer to NO and IO,

respectively.



Hν
CP

Case sin2 θ12

10−1

sin2 θ13

10−2

sin2 θ23

10−1
δ/π

α21/π α31/π

(p.f.e.) (mod 1) (mod 1)

{1, U}

C1 2.55− 2.56 Full 3σ Full 3σ 0− 2 0 (exactly) 0− 1

(e2) 2.55− 2.56 Full 3σ Full 3σ 0− 2 0 (exactly) 0− 1

C2 2.85− 3.54 Full 3σ 3.81− 5.24 [0, 0.38] ∪ [1.62, 2] [0, 0.15] ∪ [0.85, 1] [0, 0.09] ∪ [0.91, 1]

(µ1) 2.86− 3.54 Full 3σ 3.84− 5.25 [0, 0.37] ∪ [1.63, 2] [0, 0.15] ∪ [0.85, 1] [0, 0.09] ∪ [0.91, 1]

C3 2.87− 3.54 Full 3σ 4.75− 6.15 0.63− 1.37 [0, 0.15] ∪ [0.86, 1] [0, 0.09] ∪ [0.91, 1]

(τ1) 2.79− 3.54 Full 3σ 4.75− 6.36 0.60− 1.40 [0, 0.15] ∪ [0.85, 1] [0, 0.09] ∪ [0.91, 1]

C4 Full 3σ Full 3σ 5.06− 6.15 [0, 0.48] ∪ [1.52, 2] [0, 0.25] ∪ [0.75, 1] [0, 0.16] ∪ [0.84, 1]

(µ2) Full 3σ Full 3σ 5.05− 6.36 [0, 0.54] ∪ [1.45, 2] [0, 0.27] ∪ [0.73, 1] [0, 0.18] ∪ [0.82, 1]

C5 Full 3σ Full 3σ 3.81− 4.94 0.51− 1.49 [0, 0.26] ∪ [0.74, 1] [0, 0.17] ∪ [0.84, 1]

(τ2) Full 3σ Full 3σ 3.84− 4.94 0.52− 1.48 [0, 0.25] ∪ [0.74, 1] [0, 0.16] ∪ [0.84, 1]

{S, SU}

D2 2.84− 3.54 Full 3σ 3.81− 5.12 [0, 0.38] ∪ [1.63, 2] 0− 1 [0, 0.48] ∪ [0.52, 1]

(µ1) 2.85− 3.54 Full 3σ 3.84− 5.12 [0, 0.37] ∪ [1.63, 2] 0− 1 [0, 0.48] ∪ [0.52, 1]

D3 2.87− 3.54 Full 3σ 4.88− 6.15 0.63− 1.37 0− 1 [0, 0.47] ∪ [0.52, 1]

(τ1) 2.79− 3.54 Full 3σ 4.88− 6.36 0.59− 1.41 0− 1 0− 1

D4 3.45− 3.54 2.14− 2.40 5.05− 5.12 [0, 0.11] ∪ [1.89, 2] [0, 0.16] ∪ [0.83, 1] [0, 0.08] ∪ [0.92, 1]

(µ2) 3.45− 3.54 2.14− 2.42 5.05− 5.12 [0, 0.11] ∪ [1.89, 2] [0, 0.17] ∪ [0.83, 1] [0, 0.08] ∪ [0.91, 1]

D5 3.45− 3.54 2.13− 2.40 4.88− 4.95 0.89− 1.11 [0, 0.16] ∪ [0.83, 1] [0, 0.08] ∪ [0.92, 1]

(τ2) 3.45− 3.54 2.13− 2.42 4.88− 4.95 0.88− 1.11 [0, 0.17] ∪ [0.83, 1] [0, 0.09] ∪ [0.91, 1]

Table 4.3: The same as in Table 4.2, but for Ge = Zge2 and Gν = Zgν2 ×Hν
CP with {ge, gν} = {TU,U}. In this case the magnitude of the fixed element is

1/2.
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Hν
CP

Case sin2 θ12

10−1

sin2 θ13

10−2

sin2 θ23

10−1
δ/π

α21/π α31/π
χ2

min
(p.f.e.) (mod 1) (mod 1)

{1, S}

A1 3.54 2.18 5.11 1.96 0.97 0.43 22.0

(µ3) 3.53 2.19 5.11 1.95 0.97 0.89 19.0

A2 3.54 2.18 4.89 1.05 0.03 0.01 18.5

(τ3) 3.53 2.20 4.89 1.04 0.02 0.67 15.0

{U, SU}

B1 2.74 2.17 3.99 1.09 0.94 0.96 7.0

(µ2) 2.75 2.18 4.01 1.07 0.96 0.97 7.0

B2 2.83 2.17 6.09 1.89 0.07 0.05 12.5

(τ2) 2.83 2.17 6.09 1.89 0.07 0.05 6.0

B3 2.95 2.15 5.11 1.36 0.80 0.85 8.5

(µ3) 2.95 2.15 5.11 1.36 0.80 0.85 5.0

B4 2.93 2.16 4.89 1.38 0.19 0.13 6.5

(τ3) 2.97 2.16 4.89 1.31 0.16 0.11 4.5

Table 4.4: Best-fit values of the mixing parameters and the corresponding value of the χ2 function,

χ2
min, for the viable cases, i.e., those cases for which the predicted values of all the three mixing

angles lie inside their respective 3σ allowed ranges. The cases presented here correspond to Ge =

Zge2 and Gν = Zgν2 ×Hν
CP with {ge, gν} = {TU, S}, for which the magnitude of the fixed element

is 1/
√

2 (p.f.e. denotes the position of the fixed element in UPMNS). Within each case, the upper

and lower rows refer to NO and IO, respectively.
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Hν
CP

Case sin2 θ12

10−1

sin2 θ13

10−2

sin2 θ23

10−1
δ/π

α21/π α31/π
χ2

min
(p.f.e.) (mod 1) (mod 1)

{1, U}

C1 2.56 2.16 4.25 1.32 0 0.64 7.0

(e2) 2.56 2.16 5.85 1.36 0 0.73 7.0

C2 3.15 2.16 4.19 1.86 0.93 0.96 4.5

(µ1) 3.14 2.16 4.24 1.88 0.94 0.96 5.5

C3 3.11 2.16 5.92 1.15 0.07 0.05 8.5

(τ1) 3.08 2.17 5.93 1.13 0.06 0.04 1.5

C4 3.00 2.14 5.95 1.69 0.81 0.88 8.5

(µ2) 3.00 2.14 5.95 1.69 0.81 0.88 2.0

C5 3.01 2.15 4.21 1.25 0.15 0.10 0.5

(τ2) 2.99 2.17 4.26 1.22 0.13 0.09 0.5

{S, SU}

D2 3.13 2.15 4.20 1.88 0.43 0.65 4.5

(µ1) 3.15 2.17 4.23 1.87 0.43 0.66 5.5

D3 3.11 2.17 5.91 1.14 0.61 0.38 8.5

(τ1) 3.06 2.16 5.96 1.12 0.50 0.69 1.5

D4 3.54 2.18 5.11 1.96 0.97 0.98 22.0

(µ2) 3.53 2.20 5.11 1.95 0.97 0.98 19.0

D5 3.54 2.19 4.89 1.05 0.03 0.02 18.5

(τ2) 3.53 2.19 4.89 1.04 0.03 0.01 15.0

Table 4.5: The same as in Table 4.4, but for Ge = Zge2 and Gν = Zgν2 × Hν
CP with {ge, gν} =

{TU,U}. In this case the magnitude of the fixed element is 1/2.

A1 A2 B1 B2 B3 B4 C1 C2 C3 C4 C5 D2 D3 D4 D5

2σ
NO 7 7 3 7 7 7 7 3 7 7 3 3 7 7 7

IO 7 7 3 3 7 7 7 3 3 3 3 3 3 7 7

Table 4.6: Compatibility of the cases under consideration with the 2σ experimentally allowed

ranges of the three neutrino mixing angles for both types of the neutrino mass spectrum.
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Figure 4.12: Summary of the predicted allowed regions in the (sin2 θ23, sin
2 θ12) plane and the

corresponding best-fit points in cases B1 – B4, C1 – C5, D2 and D3 for the NO neutrino mass

spectrum. The values of all the three mixing angles are required to lie in their respective 3σ

ranges.

Finally, we note that the sum rules for sin2 θ23 (sin2 θ12 in case C1) and cos δ obtained here can be

obtained from those derived in Ref. [176] for certain values of the parameters sin2 θ◦ij (defined within).

In Ref. [176] only flavour symmetry, without gCP symmetry, has been considered. As we have seen

in Section 4.2.1, a gCP symmetry does not allow for a free phase δν coming from the neutrino sector,

which is present otherwise. This, in turn, leads to the fact that in certain cases the free parameter

sin θ̂νij of Ref. [176] (see Eq. (213) within) gets fixed by the gCP symmetry. Thus, we find additional

correlations between the θij and between the θij and cos δ in these cases. The correspondence between

the phenomenologically viable cases of the present study and the cases considered in Ref. [176] can be

found in Appendix B.2.

4.4 Neutrinoless Double Beta Decay

As we have seen, in the class of models investigated in the present chapter, the Dirac and Majorana

CPV phases, δ and α21, α31, are (statistically) predicted to lie in specific, in most cases relatively narrow,

intervals and their values are strongly correlated. The only exception is case C1, in which the exact

predictions α21 = 0 or π and (α31 − 2δ) = 0 or π hold. These results make it possible to derive

predictions for the absolute value of the neutrinoless double beta decay effective Majorana mass 〈m〉,

as a function of the lightest neutrino mass, in the scenario where the exchange of three light Majorana

neutrinos provides the dominant contribution to the decay rate (see preceding chapter).
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In what follows, we obtain predictions for |〈m〉| using the phenomenologically viable neutrino mixing

patterns found in Section 4.3.4. In Figs. 4.13 – 4.16 we present |〈m〉| as a function of the lightest neutrino

mass mmin in cases B1 – B4, C1 – C3, C4 and C5, and D2 and D3. The solid and dashed lines limit the

found allowed regions of |〈m〉| calculated using the predicted ranges for θ12, θ13, α21, (α31 − 2δ). In the

left panels we require the predicted values of sin2 θ12, sin2 θ13 and sin2 θ23 to lie in their corresponding

experimentally-allowed 3σ intervals, while in the right panels we require them to be inside the corre-

sponding 2σ ranges. The mass-squared differences ∆m2
21 and ∆m2

31(23) in the case of NO (IO) spectrum

are varied in the ranges given in Table 1.2. Here, the light-blue (light-red) areas in the left and right

panels are obtained by varying the neutrino oscillation parameters θ12, θ13, ∆m2
21 and ∆m2

31(23) in their

full 3σ and 2σ NO (IO) ranges, respectively, and varying the phases α21 and (α31 − 2δ) in the interval

[0, 2π). The horizontal brown and grey bands indicate the upper limits on |〈m〉| set by KamLAND-Zen

and GERDA Phase II, respectively.10 The vertical grey line represents the prospective upper limit on

mmin ∼< 0.2 eV from the KATRIN experiment [158].

Several comments are in order. Firstly, for given values of (k1, k2) and a given ordering we find

|〈m〉| to be inside of a band, which occupies a certain part of the allowed parameter space. Secondly,

we note that most cases are compatible with both 3σ and 2σ ranges of all the mixing angles for both

neutrino mass orderings (see Table 4.6). There are several exceptions. Namely, cases B2, C3, C4 and

D3, in which, due to the correlations imposed by the employed symmetry, the predictions for sin2 θ23

for the NO spectrum are not compatible with its 2σ allowed range (see Tables 4.2 and 4.3). Moreover,

there is incompatibility for both orderings of cases B3 and B4 with the allowed 2σ ranges of sin2 θ23 (see

Table 4.2), and of case C1 with the 2σ range of sin2 θ12 (see Table 4.3). Thirdly, the predictions for |〈m〉|

compatible with the 3σ ranges of all the mixing angles are almost the same for the following pairs of

cases: (B1, B2), (B3, B4), (C2, C3), (C4, C5) and (D2, D3). As discussed at the end of Section 4.3.4, the

cases in each pair share some qualitative features, in particular, the allowed ranges of θ12, θ13, α21 and

(α31 − 2δ) are approximately equal. We note also that case C1 stands out by having relatively narrow

bands for |〈m〉| due to the predicted values of α21 = k1 π and (α31−2δ) = k2 π. Finally, the results shown

in Figs. 4.13 – 4.16 and derived using the predictions for the CPV phases and the mixing angles θ12 and

θ13 in the case when the predicted values of all three mixing angles are compatible with their respective

3σ ranges, can be obtained analytically in the limiting cases of normal hierarchical, inverted hierarchical

and quasi-degenerate spectra. This can be done by using the approximate expressions [25,211]

|〈m〉| '
∣∣∣∣√∆m2

21 sin2 θ12 cos2 θ13 e
iα21 +

√
∆m2

31 sin2 θ13 e
i(α31−2δ)

∣∣∣∣ (NH) , (4.102)

|〈m〉| '
√

∆m2
23 cos2 θ13

∣∣cos2 θ12 + sin2 θ12 e
iα21
∣∣ (IH), (4.103)

|〈m〉| ' mmin

∣∣cos2 θ12 + sin2 θ12 e
iα21
∣∣ (QD) , (4.104)

the values of ∆m2
21 and ∆m2

31(23) quoted in Table 1.2 and the results on sin2 θ12, sin2 θ13, δ, α21 and α31

given in Tables 4.2 and 4.3.

10The KamLAND-Zen limit considered is the one given in Eq. (3.4) while the GERDA Phase II limit plotted corresponds
to |〈m〉| < (0.15− 0.33) eV [210]. A more recent limit, |〈m〉| < (0.12− 0.26) eV [151] exists. For our purposes, it does not
differ significantly from the one used here.
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Figure 4.13: The magnitude of the effective Majorana mass versus the lightest neutrino mass.

Lines limit the allowed regions of |〈m〉|, calculated using the predictions of cases B1 – B4 and

compatible with the 3σ (left panels) and 2σ (right panels) ranges of all mixing angles. Cases B3

and B4 are compatible with the 3σ ranges of the mixing angles, but not with their 2σ ranges.
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Figure 4.14: The same as in Fig. 4.13, but for cases C1 – C3. Case C1 is compatible with the 3σ

ranges of the mixing angles, but not with their 2σ ranges.
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Figure 4.15: The same as in Fig. 4.13, but for cases C4 and C5.
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Figure 4.16: The same as in Fig. 4.13, but for cases D2 and D3.
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4.5 Chapter Summary

In the present chapter we have derived predictions for neutrino mixing and CPV phases in a class of

models based on S4 lepton flavour symmetry combined with a generalised CP symmetry HCP, which are

broken to residual Zge2 and Zgν2 ×Hν
CP symmetries in the charged lepton and neutrino sectors, respectively.

We have shown that in this class of models the three neutrino mixing angles, θ12, θ23 and θ13, the Dirac

and the two Majorana CP violation (CPV) phases, δ and α21, α31, are functions of altogether three

parameters – two mixing angles and a phase, θe, θν and δe.

We have found that effectively there are 4 distinct groups of cases to be considered. In all four

groups of cases the PMNS matrix is predicted to contain one constant element which does not depend

on the free parameters θe, θν and δe. The magnitude of this element is equal to 1/
√

2 in the “Group A”

cases of {Ge, Gν} = {ZTU2 , ZS2 ×Hν
CP} with Hν

CP = {1, S}, and in the “Group B” cases of {Ge, Gν} =

{ZTU2 , ZS2 × Hν
CP} with Hν

CP = {U, SU}; and it is equal to 1/2 in the “Group C” cases of {Ge, Gν} =

{ZTU2 , ZU2 × Hν
CP} with Hν

CP = {1, U}, and in the “Group D” cases of {Ge, Gν} = {ZTU2 , ZU2 × Hν
CP}

with Hν
CP = {S, SU}. In the approach employed, the PMNS matrix is determined up to permutations of

columns and rows. Taking into account neutrino oscillation data, only 4 elements can have an absolute

value equal to 1/
√

2 ' 0.707, and only 5 elements can have an absolute value equal to 1/2. These

potential 18 cases are reduced to 15 due to further constraints in the A and D groups. From these, 4 are

strongly disfavoured by data and one is left with 11 viable cases. The results of the statistical analysis

for such cases are presented graphically in Figs. 4.1 – 4.11. The predicted ranges of the neutrino mixing

parameters and the their corresponding best-fit values are summarised in Tables 4.2 – 4.5.

As a consequence of the fact that, in the class of models we consider, the six PMNS matrix parameters,

θ12, θ23, θ13, δ, α21 and α31, are fitted with the three parameters, θe, θν and δe, it is not surprising

that there are strong correlations i) between the values of the Dirac phase δ and the values of the two

Majorana phases α21 and α31, which in turn are correlated between themselves (Figs. 4.1, 4.2, 4.6 – 4.9),

and depending on the case ii) either between the values of θ12 and θ13 (Fig. 4.5), or between the values

of θ23 and θ13 (Figs. 4.3 and 4.4) or else between the values of θ12 and θ23 (Figs. 4.1, 4.2, 4.6 – 4.11). In

certain cases our results showed strong correlations between the predicted values of θ23 and the Dirac

phase δ and/or the Majorana phases α21,31 (Figs. 4.8 – 4.11).

In the cases of i) Group B with |(UPMNS)µ2| = 1/
√

2, or |(UPMNS)τ2| = 1/
√

2, ii) Group C with

|(UPMNS)µ1| = 1/2, or |(UPMNS)τ1| = 1/2, or |(UPMNS)µ2| = 1/2, or |(UPMNS)τ2| = 1/2, and iii) Group

D with |(UPMNS)µ1| = 1/2, or |(UPMNS)τ1| = 1/2, the cosine of the Dirac phase δ satisfies a sum rule by

which it is expressed in terms of the three neutrino mixing angles θ12, θ23 and θ13. Taking into account

the ranges and correlations of the predicted values of the three neutrino mixing angles, δ is predicted to

lie in certain, in most of the discussed cases rather narrow, intervals (Section 4.3.4).

We have derived also predictions for the Majorana CPV phases α21 and α31 in all viable cases. With

one exception – the case of |(UPMNS)e2| = 1/2 of Group C – the values of α21 and α31, as we have indicated

earlier, are strongly correlated between themselves. In case C1 there is a strong linear correlation between

α31 and δ. Using the predictions for the Dirac and Majorana CPV phases allowed us to derive predictions
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for the magnitude of the neutrinoless double beta decay effective Majorana mass, |〈m〉|, as a function of

the lightest neutrino mass for all the viable cases belonging to Groups B, C and D. They are presented

graphically in Figs. 4.13 – 4.16.

All viable cases in the class of S4 models here investigated have distinct predictions for the set of

observables sin2 θ12, sin2 θ23, sin2 θ13, the Dirac phase δ and the absolute value of one element of the

PMNS neutrino mixing matrix. Using future more precise data on sin2 θ12, sin2 θ23, sin2 θ13 and the

Dirac phase δ, which will allow also to determine the absolute values of the elements of the PMNS matrix

with a better precision, will make it possible to test and discriminate symmetry breaking predictions.





Modular Invariance 5
As we have seen, a popular approach to explaining the observed mixing patterns consists in assuming

the presence of a spontaneously broken discrete flavour symmetry. However, in concrete models, such

breaking typically requires the introduction of a plethora of scalar fields (flavons) with a set of particularly

aligned vacuum expectation values. Arranging for such an alignment usually calls for the construction

of rather “baroque” scalar potentials. In the modular symmetry approach, the VEV of the modulus τ

may be the only source of symmetry breaking, bypassing the need for many flavon fields. Leading-order

predictions may be derived by treating τ as a spurion.

In the present chapter we follow Ref. [93] and investigate the consequences of the presence of modular

invariance in the lepton sector. We focus on the action of the finite modular group Γ4, which is isomorphic

to the group of permutations of four objects S4. After reviewing the necessary formalism, we explicitly

construct the generators of modular forms of level N = 4. We then investigate two minimal models where

neutrino masses arise from the dimension 5 Weinberg operator and where no flavons are introduced.

5.1 The Framework

As in Ref. [91], we consider the infinite groups Γ(N),

Γ(N) ≡

{
γ =

(
a b

c d

)∣∣∣∣∣ a, b, c, d ∈ Z ∧ det γ = 1 ∧ γ =

(
1 0

0 1

)
(mod N)

}
, (5.1)

where N is a positive integer. The group Γ(1) ' SL(2,Z) is the modular group and Γ(N > 1) are

normal subgroups of Γ(1). Taking the quotient of Γ(1) and Γ(2) by {1,−1} we obtain the groups of

linear fractional transformations, Γ(N) ≡ Γ(N)/{1,−1} for N = 1, 2, and Γ(N > 2) ≡ Γ(N). Elements

of Γ(N) act on a complex variable τ as:

τ → γτ =
aτ + b

cτ + d
, with γ =

(
a b

c d

)
∈ Γ(N) , (5.2)

and it can be shown that the upper half-plane {τ ∈ C | Im(τ) > 0} is mapped to itself under this action.

The complex variable τ is henceforth restricted to have positive imaginary part.

We are interested in studying physical actions which are invariant under transformations of the finite

modular groups ΓN . These discrete groups are obtained from the quotient of two of the aforementioned

infinite groups, namely ΓN ≡ Γ(1)/Γ(N). The group Γ(1) is generated by two elements S and T acting

95
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on τ as

S : τ → −1/τ , S =

(
0 1

−1 0

)
, (5.3)

T : τ → τ + 1 , T =

(
1 1

0 1

)
, (5.4)

and satisfying

S2 = (ST )3 = 1 . (5.5)

The presentation of the groups ΓN can be obtained from that of Γ(1) by extending it with the condition

TN = 1, see Eq. (5.1). Thus, the generators S and T of ΓN obey

S2 = (ST )3 = TN = 1 . (5.6)

We consider modular-invariant N = 1 global supersymmetric (SUSY) actions [212,213],

S =

∫
d4x d2θ d2θ K(χi, χi; τ, τ) +

∫
d4x d2θ W (χi; τ) + h.c. , (5.7)

where χi denotes the set of matter chiral superfields of the theory.1 The physical action S is required to be

invariant under the action of ΓN . Under an element of this group, one has the following transformations

of τ and of the fields χi:
τ → γτ =

aτ + b

cτ + d

χi → (cτ + d)
−ki ρi(γ)χi

, with γ =

(
a b

c d

)
∈ ΓN , (5.8)

where ρi are unitary representation matrices and the ki are integers. The fields χi are said to carry weigth

−ki. We require that the superpotential W remains invariant under ΓN and that the Kähler potential is

changed at most by a Kähler transformation. To satisfy this last condition, we work with the Kähler:

K(χi, χi; τ, τ) = −hΛ2
0 log(−i(τ − τ)) +

∑
i

|χi|2

(−i(τ − τ))ki
, (5.9)

with h > 0 and Λ0 a mass parameter. After τ develops a VEV, it gives rise to kinetic terms for the

matter fields,

L ⊃
∑
i

∂µχi ∂
µχi

(2 Im〈τ〉)ki
. (5.10)

These terms can be made canonical by rescaling the fields χi, which in practice amounts to a redefinition

of superpotential parameters. The superpotential reads

W (χi; τ) =
∑
n

∑
{i1, ..., in}

(
Y{i1, ..., in}(τ) χi1 . . . χin

)
1
, (5.11)

and should remain unchanged under ΓN .

1Following Ref. [91], we turn off gauge interactions and treat τ as a dimensionless spurion.
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Given the field transformations in Eq. (5.8), the functions Y{i1, ..., in}(τ) in (5.11) must transform

under ΓN as (we omit the indices i1, . . . , in):
τ → γτ =

aτ + b

cτ + d

Y (τ) → Y (γτ) = (cτ + d)
2kY ρY (γ)Y (τ)

, with γ =

(
a b

c d

)
∈ ΓN , (5.12)

where the unitary matrix ρY (γ) and the non-negative integer kY , as will shortly be shown, must satisfy

specific conditions.

Holomorphic functions f(τ) satisfying f(γτ) = (cτ + d)2kf(τ) with γ ∈ Γ(N) and k ∈ N0 are said to

be modular forms of weight 2k and level N . For k = 0, the modular forms are constant functions, while

for k < 0 modular forms do not exist. Modular forms are important objects in the present construction

since, under ΓN , modular forms of weight 2kY and level N transform in the way we require Y (τ) in

Eq. (5.12) to transform. The requirement of invariance of the superpotential then implies that the

functions Y (τ) are modular forms of level N . Their weights must cancel those of the fields in Eq. (5.11),

2kY − ki1 − . . . − kin = 0. Additionally, the tensor product ρY ⊗ ρi1 ⊗ . . . ⊗ ρi1 should contain at least

one singlet. The subscript 1 in Eq. (5.11) indicates a sum (with independent coefficients) of all possible

singlets one can extract from this product.

The effects of invariance under ΓN for N = 2 and N = 3 have been studied in Refs. [91, 92]. The

group Γ2 is isomorphic to S3 while Γ3 ' A4 (see also [214, 215]). In what follows we consider invariance

under the group Γ4 ' S4, whose generators satisfy the following presentation rules:

S2 = (ST )3 = T 4 = 1 . (5.13)

For a generic value of 〈τ〉, Γ4 will be fully broken. It is important to remark that the leading-order results

obtained with this approach are susceptible to corrections from a small number of sources, namely from

SUSY breaking and corrections to the Kähler potential. In generalisations of our approach where flavons

are introduced, additional corrections are expected from vacuum (mis)alignment.

5.1.1 Generators of Modular Forms of Level N = 4

The functions Y (τ) are modular forms of level N = 4 and weight 2kY . The dimension of the space

of modular forms of level 4 and weight 2k is 4k + 1. Thus, the space of (level 4) forms which carry the

lowest non-trivial weight, 2k = 2, has dimension 4k + 1 = 5. It proves useful to explicitly find a basis

{Y1(τ), . . . , Y5(τ)} of this lowest weight space, since modular forms of higher weights can be constructed

from homogeneous polynomials in these five modular forms Yi (i = 1, . . . , 5).

A starting point in this search is the recognition of certain properties of the Dedekind eta function

η(z ∈ C), defined as:

η(z) ≡ q1/24
∞∏
k=1

(1− qk) , with q = e2πi z . (5.14)
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The η function satisfies η(z + 1) = eiπ/12 η(z) and η(−1/z) =
√
−iz η(z), as well as the identity (see,

e.g., [216]):

η

(
z +

1

2

)
= eiπ/24 η3(2z)

η(z)η(4z)
. (5.15)

One sees that the set

{ηi} =

{
η

(
τ +

1

2

)
, η (4τ) , η

(τ
4

)
, η

(
τ + 1

4

)
, η

(
τ + 2

4

)
, η

(
τ + 3

4

)}
(5.16)

respects a certain notion of closure under the action of Γ4 generators S and T , since under their action

one has:

S :



η

(
τ +

1

2

)
→ 1√

2

√
−iτ η

(
τ + 2

4

)
η (4τ) → 1

2

√
−iτ η

(τ
4

)
η
(τ

4

)
→ 2

√
−iτ η (4τ)

η

(
τ + 1

4

)
→ e−iπ/6

√
−iτ η

(
τ + 3

4

)
η

(
τ + 2

4

)
→
√

2
√
−iτ η

(
τ +

1

2

)
η

(
τ + 3

4

)
→ eiπ/6

√
−iτ η

(
τ + 1

4

)

(5.17)

and

T :



η

(
τ +

1

2

)
→ eiπ/12 η

(
τ +

1

2

)
η (4τ) → eiπ/3 η (4τ)

η
(τ

4

)
→ η

(
τ + 1

4

)
η

(
τ + 1

4

)
→ η

(
τ + 2

4

)
η

(
τ + 2

4

)
→ η

(
τ + 3

4

)
η

(
τ + 3

4

)
→ eiπ/12 η

(τ
4

)
.

(5.18)

The transformations under S of the elements η(τ + 1/2) and η((τ + 2)/4) can be derived by making use

of the relation (5.15). Up to multiplicative factors, this set is closed under S and T . Furthermore, each

element is taken into itself (up to a factor) by the (left-)actions of S2, (ST )3 and T 4. The above suggests

that the desired k = 1 modular forms can be written as linear combinations of the logarithmic derivatives

of the elements of the set {ηi}. We define:

Y (a1, . . . , a6|τ) ≡ d

dτ

(
6∑
i=1

ai log ηi(τ)

)

= a1
η′(τ + 1/2)

η(τ + 1/2)
+ 4 a2

η′(4τ)

η(4τ)
+

1

4

[
a3
η′(τ/4)

η(τ/4)
(5.19)

+ a4
η′((τ + 1)/4)

η((τ + 1)/4)
+ a5

η′((τ + 2)/4)

η((τ + 2)/4)
+ a6

η′((τ + 3)/4)

η((τ + 3)/4)

]
.
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The use of logarithmic derivatives allows one to eliminate the multiplicative factors in the transformations

(5.17) and (5.18) by requiring
∑
i ai = 0. We are thus left with five independent linear combinations of

the η′i/ηi, as expected. Under the action of the generators S and T this function transforms as:

S : Y (a1, . . . , a6|τ) → Y (a1, a2, a3, a4, a5, a6|−1/τ) = τ2 Y (a5, a3, a2, a6, a1, a4|τ) , (5.20)

T : Y (a1, . . . , a6|τ) → Y (a1, a2, a3, a4, a5, a6|τ + 1) = Y (a1, a2, a6, a3, a4, a5|τ) . (5.21)

We find a basis for lowest weight modular forms,

Y1(τ)≡Y (1, 1, ω, ω2, ω, ω2|τ) ,

Y2(τ)≡Y (1, 1, ω2, ω, ω2, ω|τ) ,

Y3(τ)≡Y (1,−1,−1,−1, 1, 1|τ) ,

Y4(τ)≡Y (1,−1,−ω2,−ω, ω2, ω|τ) ,

Y5(τ)≡Y (1,−1,−ω,−ω2, ω, ω2|τ) ,

(5.22)

where ω ≡ e2πi/3. These five linearly independent forms Yi(τ) arrange themselves into two irreducible

representations of Γ4 ' S4, a doublet 2 and a triplet 3′,

Y2(τ) ≡

(
Y1(τ)

Y2(τ)

)
, Y3′(τ) ≡

Y3(τ)

Y4(τ)

Y5(τ)

 . (5.23)

The multiplets Y2 and Y3′ transform under Γ4 as indicated in Eq. (5.12). In Appendix A.1 we specify

our basis choice for the representation matrices ρ(γ) of S4 and we list the Clebsch-Gordan coefficients

for this basis in Appendix A.2. In Appendix C.1 we give the q-expansions of (combinations of) the five

functions defined in Eq. (5.22).

Multiplets transforming in the other representations of S4 can be obtained from tensor products of

Y2 and Y3′ . The representations 1 and 3 arise at weight 2k = 4, while the 1′ representation first arises

at weight 6. Since we can form 15 combinations YiYj , one may expect 15 independent (level 4) forms

at weight 2k = 4. However, the dimension of the space of these forms is 4k + 1 = 9. In fact, we find

6 constraints between the several YiYj , which we list in Appendix C.2. These constraints reduce the 15

potentially independent combinations to 9 truly independent ones, which are organised in the following

representations of S4:

Y
(4)
1 = Y1Y2 ∼ 1 ,

Y
(4)
2 = (Y 2

2 , Y
2
1 )T ∼ 2 ,

Y
(4)
3 = (Y1Y4 − Y2Y5, Y1Y5 − Y2Y3, Y1Y3 − Y2Y4)T ∼ 3 ,

Y
(4)
3′ = (Y1Y4 + Y2Y5, Y1Y5 + Y2Y3, Y1Y3 + Y2Y4)T ∼ 3′ .

(5.24)

5.2 Phenomenology

To understand how invariance under the subgroup Γ4 of the modular group may play a role in

determining lepton masses and mixing, one needs to specify the S4 representations ρi and the modular
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Hu Hd L Ec1,2,3

SU(2)L ×U(1)Y (2, 1/2) (2,−1/2) (2,−1/2) (1, 1)

Γ4

{
ρi ρd ρu ρL ρ1,2,3

ki ku kd kL k1,2,3

Table 5.1: Transformation properties of the relevant MSSM chiral superfields under the gauge

group and under the Γ4 discrete modular symmetry. The ρi denote the representations of the

fields transforming under S4 and the ki correspond to (minus) their modular weights.

weights −ki of the relevant fields χi, which transform as indicated in Eq. (5.8). In what follows, we search

for choices of representations and weights which are in line with a certain notion of minimality.

In a minimal approach, the superpotential W includes only the Yukawa interactions of the Minimal

Supersymmetric Standard Model (MSSM) and the SUSY Weinberg operator as the origin of (Majorana)

neutrino masses:

W = α
(
Êc L̂ Ĥd fE(Y2, Y3′)

)
1

+
g

Λ

(
L̂ Ĥu L̂ Ĥu fW (Y2, Y3′)

)
1
, (5.25)

where, as mentioned before, different coefficients are implied for different singlet combinations (we drop

hats denoting superfields in what follows). No flavons are present in the above superpotential. Recall

also that the functions Y2 = Y2(τ) and Y3′ = Y3′(τ) have definite transformation properties under Γ4.

After the breaking of modular symmetry we obtain:

W → λij E
c
i (Lj Hd) + cij (LiHu) (Lj Hu) , (5.26)

which leads to the Lagrangian terms (cf. Eq. (1.13))

L ⊃ −1

2

(
Mν

)
ij
νCiR νjL −

(
Me

)
ij
`iL `jR + h.c. , (5.27)

written in terms of four-spinors, where Me ≡ vd λ
† and Mν ≡ 2 c v2

u, with 〈Hu〉 = (0, vu)T and 〈Hd〉 =

(vd, 0)T .2

The generic assignments of representations and weights to the MSSM fields present in Eq. (5.25) are

defined in Table 5.1. We will keep the Higgs sector assignments trivial for simplicity. We will also take

lepton doublets (singlets) to transform as three (one) dimensional representations of S4, as is customary.

Minimal models are then built by adhering to the following guidelines:

• No flavons are introduced,

• Neutrino masses arise from the dimension 5 Weinberg operator,

• Higgs multiplets transform trivially ρu,d ∼ 1 under Γ4, with ku,d = 0,

• Lepton SU(2)L doublets transform as a triplet ρL ∼ 3 or 3′ under Γ4,

• Lepton SU(2)L singlets transform as singlets ρ1,2,3 ∼ 1 or 1′ under Γ4, and

2In the decoupling limit of the MSSM (e.g. when the heavier Higgs scalar states have masses exceeding ∼ 1 TeV), the
lightest Higgs boson couplings to charged leptons (and, for that matter, also to quarks) differ insignificantly from those of
the Standard Model Higgs.
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• Lowest possible weights are chosen such that a rank 3 charged-lepton mass matrix Me is possible

without imposing additional “shaping” symmetries.

Given the above conditions, we further expand the superpotential as:

W =
∑
i

αi
(
Eci LHd Y

ai
2 Y bi3′

)
1

+
g

Λ

(
LHu LHu Y

c
2 Y

d
3′
)
1
, (5.28)

where the integer, non-negative exponents of the modular forms satisfy 2(ai+bi) = kL+ki+kd = kL+ki

and 2(c+d) = 2(kL+ku) = 2kL. In order to obtain some non-trivial structure in the Weinberg operator,

we assume that kL > 0. We explore in what follows two minimal choices of weights and representations,

corresponding to kL = 1 (model I) and kL = 2 (model II).

5.2.1 Model I (kL = 1)

The choices kL = 1 and ku = 0 along with the fact that ρL ∼ 3 or ρL ∼ 3′ are enough to determine

the structure of the Weinberg operator and hence of the neutrino mass matrix Mν .

On the charged lepton side, the cancellation-of-weights condition 2(ai + bi) = 1 + ki implies that the

ki are odd, ki ∈ {−1, 1, 3, . . .}. To avoid having rank(λ) < 3, one must make sure that different singlets

can be extracted from each term in W . If two lepton singlet superfields share the same weight and

representation under Γ4, the rank of the charged-lepton mass matrix is lower than its possible maximum.

If some ki = −1, then ai = bi = 0 and no singlet can be formed for that generation. If instead ki = 1, a

singlet can only be formed if ρi ∼ 1′ (1) when ρL ∼ 3 (3′). We summarise in Table 5.2 the weight and

representation assignments of the minimal model allowing for rank(λ) = 3.

Hu Hd L Ec1 Ec2 Ec3

ρi 1 1
3 1′ 1 1′

3′ 1 1′ 1

ki 0 0 1 1 3 3

Table 5.2: Transformation properties of chiral superfields under Γ4, for the minimal model with

kL = 1 (model I). Both lines of lepton assignments lead to the same results.

With the weight assignments of Table 5.2, the superpotential reads:

W I = α1

(
Ec1 LY2

)
1
Hd + α2

(
Ec1 LY3′

)
1
Hd

+ β1

(
Ec2 LY

2
2

)
1
Hd + β2

(
Ec2 LY2 Y3′

)
1
Hd + β3

(
Ec2 LY

2
3′
)
1
Hd

+ γ1

(
Ec3 LY

2
2

)
1
Hd + γ2

(
Ec3 LY2 Y3′

)
1
Hd + γ3

(
Ec3 LY

2
3′
)
1
Hd

+
g1

Λ

(
L2 Y2

)
1
H2
u +

g2

Λ

(
L2 Y3′

)
1
H2
u .

(5.29)

Making use of the Clebsch-Gordan coefficients given in Appendix A.2 and of the Γ4 ' S4 representation

choices in Table 5.2 we find that only some terms in Eq. (5.29) contain non-zero singlets. We are left

with

W I = α
(
Ec1 LY3′

)
1
Hd + β

(
Ec2 LY

2
3′
)
1
Hd + γ

(
Ec3 LY2 Y3′

)
1
Hd +

g1

Λ

(
L2 Y2

)
1
H2
u , (5.30)
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where α ≡ α2, β ≡ β2+β3 and γ ≡ γ2. It is interesting to note that the constraints listed in Appendix C.2

imply that the singlets of the β2 and β3 terms coincide. This superpotential gives rise to the mass matrices:

M I
ν =

2g1v
2
u

Λ

 0 Y1 Y2

Y1 Y2 0

Y2 0 Y1

 , (5.31)

and

M I
e = vd

 αY3 αY5 αY4

β (Y1Y4 − Y2Y5) β (Y1Y3 − Y2Y4) β (Y1Y5 − Y2Y3)

γ (Y1Y4 + Y2Y5) γ (Y1Y3 + Y2Y4) γ (Y1Y5 + Y2Y3)


†

. (5.32)

Specifying values for the parameters α, β, γ, and τ determines both mass matrices up to global factors,3

and hence determines mass ratios as well as lepton mixing.

After performing a numerical search, it seems this minimal model does not allow to reproduce known

data. As a benchmark, we find the point α = 0.1, β = 1, γ = 2 × 10−4, and τ = 0.1 + 0.985i, which

accommodates a neutrino mass spectrum with inverted ordering, but does not provide an acceptable

value for sin2 θ12. For this point, we have

me

mµ
' 0.0045 , sin2 θ12 ' 0.497 , δ ' 1.47π ,

mµ

mτ
' 0.0522 , sin2 θ13 ' 0.021 , α21 ' 1.00π ,

r ' 0.0308 , sin2 θ23 ' 0.496 , α31 ' 0.53π .

(5.33)

The obtained predictions are to be compared with neutrino oscillation data and information on charged-

lepton mass ratios, which we collect for convenience in Table 5.3 (see also Table 1.3).

5.2.2 Model II (kL = 2)

As before, the choices kL = 2 and ku = 0 along with the fact that ρL ∼ 3 or ρL ∼ 3′ are enough to

determine the structure of Mν .

On the charged lepton side, the cancellation-of-weights condition 2(ai + bi) = 2 + ki implies that the

ki are even, ki ∈ {−2, 0, 2, . . .}. If some ki = −2, then again ai = bi = 0 and no singlet can be formed

for that generation. If instead ki = 0, a singlet can only be formed if ρi ∼ 1′ (1) when ρL ∼ 3 (3′).

We summarise in Table 5.4 the weight and representation assignments of the minimal model allowing for

rank(λ) = 3.

With the weight assignments of Table 5.4, the charged-lepton Yukawa part of the superpotential

matches that of the case kL = 1, leading to the same charged-lepton mass matrix as the one given in

Eq. (5.32), i.e. M II
e = M I

e.

The Weinberg operator part of the superpotential reads instead:

W II ⊃ g1

Λ

(
L2 Y 2

2

)
1
H2
u +

g2

Λ

(
L2 Y2 Y3′

)
1
H2
u +

g3

Λ

(
L2 Y 2

3′
)
1
H2
u . (5.34)

3 The parameters α, β and γ can be made real through the rephasing of the singlet fields Eci . One of them may be taken

outside of the matrix M I
e as a global factor. It is assumed that the correct charged-lepton mass scale is reproduced by an

appropriate choice of this global factor, after vd has been specified.
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Parameter Best-fit value and 1σ range

me/mµ 0.0048± 0.0002

mµ/mτ 0.0565± 0.0045

NO IO

δm2/(10−5 eV) 7.34+0.17
−0.14

|∆m2|/(10−3 eV) 2.455+0.035
−0.032 2.441+0.033

−0.035

r ≡ δm2/|∆m2| 0.0299± 0.0008 0.0301± 0.0008

sin2 θ12 0.304+0.014
−0.013 0.303+0.014

−0.013

sin2 θ13 0.0214+0.0009
−0.0007 0.0218+0.0008

−0.0007

sin2 θ23 0.551+0.019
−0.070 0.557+0.017

−0.024

δ/π 1.32+0.23
−0.18 1.52+0.14

−0.15

Table 5.3: Best-fit values and 1σ ranges for neutrino oscillation parameters, obtained from the

2018 global analysis of Ref. [39], and for charged-lepton mass ratios, given at the scale 2 × 1016

GeV with the tanβ averaging described in Ref. [91], obtained from Ref. [217]. The parameters

entering the definition of r are δm2 ≡ m2
2−m2

1 and ∆m2 ≡ m2
3− (m2

1 +m2
2)/2. The best-fit value

and 1σ range of δ did not drive the numerical searches here reported.

Hu Hd L Ec1 Ec2 Ec3

ρi 1 1
3 1′ 1 1′

3′ 1 1′ 1

ki 0 0 2 0 2 2

Table 5.4: Transformation properties of chiral superfields under Γ4, for the minimal model with

kL = 2 (model II). Both lines of lepton assignments lead to the same results.

The first term in Eq. (5.34) contributes with two different non-zero singlets, since L2 ∼ 1 ⊕ 2 ⊕ 3 ⊕ 3′

with vanishing antisymmetric 3′, Y 2
2 ∼ 1⊕ 1′ ⊕ 2 with vanishing antisymmetric 1′, and singlets may be

obtained from both the 1 ⊗ 1 and the 2 ⊗ 2 combinations. The second term contributes with a third

singlet, as Y2Y3′ ∼ 3 ⊕ 3′ and thus a singlet is obtained from the 3 ⊗ 3 combination. The third term

contains all the three singlets: 1 ⊗ 1, 2 ⊗ 2, and 3 ⊗ 3. Due to the constraints in Appendix C.2, there

are only three independent singlets which enter the Weinberg operator part of W II. Explicitly, using the

Clebsch-Gordan coefficients of Appendix A.2:

W II ⊃ 1

Λ

[
g Y1Y2(L2

1 + 2L2L3)

+ g′
(
Y 2

1 (L2
2 + 2L1L3) + Y 2

2 (L2
3 + 2L2L3)

)
+ g′′

(
(Y1Y4 − Y2Y5)(L2

1 − L2L3) + (Y1Y5 − Y2Y3)(L2
2 − L1L3)

+ (Y1Y3 − Y2Y4)(L2
3 − L1L2)

)]
H2
u ,

(5.35)
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which gives rise to the mass matrix:

M II
ν =

2g′v2
u

Λ

[(g/g′)Y1Y2 Y 2
2 Y 2

1

Y 2
2 Y 2

1 (g/g′)Y1Y2

Y 2
1 (g/g′)Y1Y2 Y 2

2


+

1

2

g′′

g′

2(Y1Y4 − Y2Y5) −(Y1Y3 − Y2Y4) −(Y1Y5 − Y2Y3)

−(Y1Y3 − Y2Y4) 2(Y1Y5 − Y2Y3) −(Y1Y4 − Y2Y5)

−(Y1Y5 − Y2Y3) −(Y1Y4 − Y2Y5) 2(Y1Y3 − Y2Y4)

] .
(5.36)

Specifying values for the parameters α, β, γ, g/g′, g′′/g′ and τ determines both mass matrices up to

global factors,4 and hence determines mass ratios as well as lepton mixing.

Through numerical search, we find that this minimal model is successful in accommodating the data.

We find a first benchmark, α = 0.1, β = 1, γ = 2.3 × 10−4, g/g′ = −0.99 − 0.52i, g′′/g′ = 0.15 − 0.06i,

and τ = 0.04 + 1.11i, which admits a neutrino mass spectrum with normal ordering, with

me

mµ
' 0.0048 , sin2 θ12 ' 0.288 , δ ' 0.88π ,

mµ

mτ
' 0.0593 , sin2 θ13 ' 0.021 , α21 ' 1.46π ,

r ' 0.0299 , sin2 θ23 ' 0.553 , α31 ' 1.09π .

(5.37)

These results are in good agreement with the values of Table 5.3, except in what regards the experimental

hint of δ ∼ 3π/2.

We find a second benchmark, α = 0.11, β = 1, γ = 2.3×10−4, g/g′ = −6.2−1.5i, g′′/g′ = −0.03+0.03i,

and τ = −0.09 + 0.96i, also admitting a neutrino mass spectrum with normal ordering, for which the

values of δ and of other measured parameters are less than 2σ away from the best-fit values of Table 5.3:

me

mµ
' 0.0048 , sin2 θ12 ' 0.292 , δ ' 1.64π ,

mµ

mτ
' 0.0560 , sin2 θ13 ' 0.021 , α21 ' 0.10π ,

r ' 0.0298 , sin2 θ23 ' 0.493 , α31 ' 1.10π .

(5.38)

For this second benchmark, in order to fit the individual mass-squared differences δm2 and ∆m2, we set

the global factor 2g′v2
u/Λ ' 0.0037 eV. In this case, the neutrino masses read m1 ' 0.042 eV, m2 ' 0.043

eV, and m3 ' 0.066 eV. A distinctive feature of this framework is the prediction of the Dirac and

Majorana CPV phases. One is then in a position to extract a prediction for the effective Majorana mass

|〈m〉| which controls the rate of neutrinoless double beta decay (see Chapter 3). Using the values in (5.38)

we find |〈m〉| ' 0.042 eV. This value can be probed by new-generation experiments which are working

towards the |〈m〉| ∼ 10−2 eV frontier.

In this setup, the correlations between pairs of mixing angles, phases and mass ratios are non-trivial, as

is suggested, in particular, by comparing the predictions for sin2 θ23 and δ in Eqs. (5.37) and (5.38). The

existence and the success of the above benchmark warrants further exploration of the present framework.

4As before, α, β and γ can be made real and one of them may be taken outside of M II
e = M I

e as a global factor.
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5.3 Chapter Summary

In this chapter we have explored the consequences of the presence of modular invariance in the lepton

sector via the action of the finite modular group Γ4 ' S4 which is a subgroup of SL(2,Z). Fields

carrying a non-trivial modular weight transform with a scale factor in addition to the usual unitary

rotation. To build an invariant action, modular forms are introduced to provide compensating factors.

For a fixed scaling (modular) weight, these forms make up a finite-dimensional space. In section 5.1.1,

we have detailed the construction of a basis {Y1, . . . , Y5} for the lowest weight modular forms of level 4

(corresponding to Γ4 ' S4), necessary to the generation of higher weight forms. We have additionally

shown how the weight 2 and 4 forms organise themselves into different multiplets of S4, and that they

satisfy non-trivial constraints which guarantee the correct dimensionality of higher-weight spaces (see

Appendix C.2).

We have then studied supersymmetric models of lepton masses and mixing based on the breaking of

the Γ4 ' S4 modular invariance. Focusing on minimality as a guiding principle, we considered models

where neutrino Majorana masses have their origin in the Weinberg operator and where no flavons are

introduced. The expectation value of the modulus τ is the only source of symmetry breaking. We describe

two minimal models, differing in the weight −kL of the lepton doublet under modular transformations.

While the first model (model I, kL = 1) does not seem to be able to reproduce the data, the second

model (model II, kL = 2) successfully accommodates charged-lepton masses and neutrino oscillation

data. Deviations of individual parameters from best-fit values are found to be below the 2σ level for the

benchmark of Eq. (5.38). Since in the present scheme the mass matrices are fully determined by the VEV

〈τ〉 and by superpotential parameters – see Eqs. (5.31), (5.32) and (5.36) – the values of the Dirac and

Majorana CPV phases can be predicted. For the benchmark of Eq. (5.38), which corresponds to a neutrino

mass spectrum with normal ordering, a prediction for the effective Majorana mass |〈m〉| ' 0.042 eV is

possible. This value can be probed by new-generation experiments working towards the |〈m〉| ∼ 10−2 eV

frontier.

In closing, a systematic exploration of this predictive paradigm is desirable. Such a future analysis

is expected to include, in particular, a description of the origin of neutrino masses via, e.g., the seesaw

mechanism.





Summary and Conclusions 6
Symmetries are a powerful tool to build and constrain physical theories. In particular, symmetry

principles may be behind the smallness of neutrino masses and the peculiarities of the pattern of neutrino

mixing. To understand whether this is the case, one invariably needs precise experimental input.

We are entering, at present, a precision era for neutrino physics. It is not unreasonable to expect

that future data will resolve the neutrino mass spectrum ordering, pinpoint the absolute neutrino mass

scale, and disentangle the nature of massive neutrinos. It is also hoped that more and more precise data

will help clarify the origins of the observed neutrino mixing pattern and allow for a glimpse into the

mechanism behind neutrino mass generation.

In the present thesis, we have explored possible roles of different symmetries in connection to the

flavour puzzle, namely: lepton number symmetry, Froggatt-Nielsen symmetry, non-Abelian discrete

flavour symmetries combined with generalised CP symmetries, and modular symmetry.

We have found that a Froggatt-Nielsen construction may mimic approximate lepton number conser-

vation. In the minimal case where only two right-handed neutrino fields are present, the Froggatt-Nielsen

charge assignments are able to constrain CP violation phases (see Figs. 2.2 and 2.1). Furthermore, in

such a symmetry-protected scenario, mass terms of right-handed neutrinos need not involve high scales

and interesting phenomenology is possible, such as lepton flavour violating signals (see Fig. 2.3) or direct

production of the new pseudo-Dirac particle at colliders.

Still in connection with lepton number symmetry, we have considered the process of neutrinoless

double beta decay in the standard 3ν-exchange scenario. We have determined conditions on the lightest

neutrino mass, taking into account updated confidence intervals for neutrino oscillation parameters, such

that the effective Majorana mass exceeds the 5× 10−3 eV and 10−3 eV values (see Fig. 3.3 and Figs. 3.4

and 3.5, respectively). Further, we have looked into specific values of Majorana phases which are not

CP conserving but are instead in line with very predictive models of lepton flavour (see Figs. 3.7, 3.8

and 3.9). For such pairs of Majorana phases and in the case of normal ordering, the effective mass is

found to be bounded from below with the lower bound at or above the meV value.

The aforementioned predictive scenarios consistently combine non-Abelian discrete symmetries with

so-called generalised CP symmetries. Different breaking patterns of the assumed high-scale symmetry

lead to different predictions for lepton mixing and CPV phases. Some degree of flexibility is required

to accommodate the best-fit values of neutrino mixing angles. We have explored a scenario based on
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the group S4 which predicts testable correlations between oscillation parameters (see Figs. 4.1 – 4.11 and

Fig. 4.12), having identified all phenomenologically viable cases following from the considered flavour and

generalised CP breaking pattern. In this setup, predictions for the effective Majorana mass governing

neutrinoless double beta decay have also been obtained (see Figs. 4.13 – 4.16).

Finally, a new type of symmetry – modular symmetry – which may shape lepton mass matrices and

thus neutrino masses and mixing has been discussed. Working in a supersymmetric context, it can be

seen as a generalisation of flavour symmetries when modular weights of superfields are non-vanishing. In

a bottom-up approach, we have described minimal models based on the finite modular group Γ4 ' S4.

For this group, we have explicitly constructed the generators of modular forms of lowest level, and next-

to-lowest level, and seen how they arrange into multiplets (see Eqs. 5.22 – 5.24). We have also provided

a benchmark successfully accommodating the current data (see Eq. 5.38). Future exploration of this

approach to models of lepton flavour with invariance under either Γ4 or other finite modular groups ΓN

is warranted. Such an analysis is expected to include a description of the origin of neutrino masses, as

well as a systematic analysis of possible weight assignments and mass matrix structures.

Borrowing the words of Wigner, the appropriateness of gauge symmetry for the description of funda-

mental interactions may be seen as a wonderful gift from Nature. Perhaps we are also gifted with a new

symmetry principle, suitable for the description of the flavour sector. The question of whether or not we

deserve it remains unanswered.



S4 Group Theory A
A.1 Presentation and Basis

As indicated in Section 4.3.1, S4 is the symmetric group of permutations of four objects. It contains

4! = 24 elements and admits five irreducible representations 1, 1′, 2, 3 and 3′ (see also [72]). Throughout

Section 1.3 and Chapter 4, the following presentation of this finite group in terms of three generators S,

T , and U has been considered (cf. (4.41)):

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 . (A.1)

Notice that this presentation reduces to that of the group A4 ⊂ S4 of even permutations of four objects

if one drops the U generator. The representation basis for this presentation has been given in Eq. (1.21).

While the above group presentation is common, it proves convenient for the discussion of modular

symmetry (see Chapter 5) to consider also a presentation given in terms of two generators S and T

(cf. Eq. (5.13)),

S2 = (ST )3 = T 4 = 1 . (A.2)

Here, and in the next subsection of this appendix, the S and T generators will refer to those defined

through this equation, and not to the ones in Eq. (A.1).

We will use the group theoretical results of Ref. [218]. The two S4 generators therein, which we

denote here with primes, satisfy S′4 = T ′3 = (S′T ′2)2 = 1. We define S ≡ S′T ′2, T ≡ S′, which imply

the inverse relations S′ = T and T ′ = ST . Then, S and T furnish the presentation (A.2) of S4, useful to

the discussion of modular invariance. Making use of this identification and of the results in Appendix A

of Ref. [218], we find an explicit basis for the irreducible representations of S4, which we employ in our

discussion:

1 : ρ(S) = 1, ρ(T ) = 1 , (A.3)

1′ : ρ(S) = −1, ρ(T ) = −1 , (A.4)

2 : ρ(S) =

(
0 ω

ω2 0

)
, ρ(T ) =

(
0 1

1 0

)
, (A.5)

3 : ρ(S) =
1

3

−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

 , ρ(T ) =
1

3

−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

 , (A.6)
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3′ : ρ(S) = −1

3

−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

 , ρ(T ) = −1

3

−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

 , (A.7)

where as usual ω = e2πi/3.

A.2 Clebsch-Gordan Coefficients

After establishing a dictionary between S4 presentations with two generators S and T in the previous

section, we can directly use the Clebsch-Gordan coefficients from Ref. [218], since no change of basis on

the representation matrices has been performed. We reproduce the coefficients here for completeness.

Entries of each multiplet entering the tensor product are denoted by αi and βi.

1 ⊗ r = r ∼ αβi

1′ ⊗ 1′ = 1 ∼ αβ

1′ ⊗ 2 = 2 ∼

(
αβ1

−αβ2

)

1′ ⊗ 3 = 3′ ∼

αβ1

αβ2

αβ3


1′ ⊗ 3′ = 3 ∼

αβ1

αβ2

αβ3



(A.8)

2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2



1 ∼ α1β2 + α2β1

1′ ∼ α1β2 − α2β1

2 ∼

(
α2 β2

α1 β1

)

2 ⊗ 3 = 3 ⊕ 3′



3 ∼

α1 β2 + α2 β3

α1 β3 + α2 β1

α1 β1 + α2 β2


3′ ∼

α1 β2 − α2 β3

α1 β3 − α2 β1

α1 β1 − α2 β2



2 ⊗ 3′ = 3 ⊕ 3′



3 ∼

α1 β2 − α2 β3

α1 β3 − α2 β1

α1 β1 − α2 β2


3′ ∼

α1 β2 + α2 β3

α1 β3 + α2 β1

α1 β1 + α2 β2



(A.9)
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3 ⊗ 3 = 3′ ⊗ 3′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′



1 ∼ α1β1 + α2β3 + α3β2

2 ∼

(
α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1

)

3 ∼

2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1


3′ ∼

α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3



(A.10)

3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′



1′ ∼ α1β1 + α2β3 + α3β2

2 ∼

(
α2β2 + α1β3 + α3β1

−α3β3 − α1β2 − α2β1

)

3 ∼

α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3


3′ ∼

2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1



(A.11)

A.3 Conjugate Pairs of S4 Elements

As detailed in Section 4.2.2, residual flavour symmetries Zge2 and Zgν2 which are conjugate to each

other lead to the same form of the PMNS matrix. For Gf = S4, there are nine group elements of order

two, given in Eqs. (4.42) and (4.43), which generate Z2 subgroups. The resulting 81 pairs of elements

{ge, gν} can themselves be partitioned, under the conjugacy relation of Eq. (4.28), into nine equivalence

classes. Using the generators in the presentation of Eq. (A.1), employed throughout Chapter 4, these

classes explicitly read:

• {S,S}, {TST 2, TST 2}, {T 2ST, T 2ST};

• {U,U}, {SU, SU}, {T 2U, T 2U}, {TU, TU}, {ST 2SU, ST 2SU}, {STSU, STSU};

• {T 2ST,S}, {TST 2, S}, {T 2ST, TST 2}, {S, T 2ST}, {S, TST 2}, {TST 2, T 2ST};

• {S,U}, {S, SU}, {TST 2, T 2U}, {T 2ST, TU}, {TST 2, ST 2SU}, {T 2ST, STSU};

• {U,S}, {SU, S}, {T 2U, TST 2}, {TU, T 2ST}, {ST 2SU, TST 2}, {STSU, T 2ST};

• {SU,U}, {U, SU}, {ST 2SU, T 2U}, {STSU, TU}, {T 2U, ST 2SU}, {TU, STSU};

• {S,TU}, {S, STSU}, {S, T 2U}, {TST 2, TU}, {S, ST 2SU}, {T 2ST,U}, {T 2ST, SU}, {TST 2, U},

{T 2ST, T 2U}, {TST 2, SU}, {T 2ST, ST 2SU}, {TST 2, STSU};

• {TU,S}, {STSU, S}, {T 2U, S}, {TU, TST 2}, {ST 2SU, S}, {U, T 2ST}, {SU, T 2ST}, {U, TST 2},

{T 2U, T 2ST}, {SU, TST 2}, {ST 2SU, T 2ST}, {STSU, TST 2};
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• {TU,U}, {STSU,U}, {STSU, SU}, {TU, SU}, {T 2U,U}, {TU, T 2U}, {ST 2SU,U}, {U, TU},

{TU, ST 2SU}, {SU, STSU}, {U, T 2U}, {T 2U, TU}, {U, ST 2SU}, {SU, T 2U}, {SU, ST 2SU},

{T 2U, STSU}, {ST 2SU, STSU}, {ST 2SU, TU}, {STSU, ST 2SU}, {STSU, T 2U}, {SU, TU},

{ST 2SU, SU}, {T 2U, SU}, {U, STSU};

where in boldface we have identified a representative pair of elements for each class, matching the choice

made in Eqs. (4.44) and (4.45).



S4 Flavour and gCP B
B.1 Equivalent Cases

Following the discussion in Section 4.3.2, we note that a necessary condition for two matrices UPMNS

and U ′PMNS to be equivalent is for them to have the same magnitude of the fixed element. Indeed, for

the 4 cases under consideration in said section the absolute value of one element is 1/
√

2.

Generically, for Pe = P ′e and Pν = P ′ν , two matrices UPMNS and U ′PMNS are equivalent if the products

Ω†e Ων and Ω′†e Ω′ν can be related in the following way:

Ω†e Ων = diag(eiφ1 , eiφ2 , eiφ3)U23(θe◦, δ
e
◦) Ω′†e Ω′ν R23(θν◦) diag(1, ik, ik) , (B.1)

with φi, δ
e
◦ and θe◦, θ

ν
◦ some fixed phases and angles, respectively, and k = 0, 1, 2, 3. If this relation holds,

from Eq. (4.27) we have

UPMNS = Pe U23(θe, δe) diag(eiφ1 , eiφ2 , eiφ3)U23(θe◦, δ
e
◦) Ω′†e Ω′ν R23(θν◦) diag(1, ik, ik)R23(θν)Pν Qν

= Pe diag(eiφ1 , eiφ2 , eiφ3)U23(θe, δ̃e)U23(θe◦, δ
e
◦) Ω′†e Ω′ν R23(θ̂ν)Pν Q̂ν , (B.2)

with

δ̃e = δe + φ2 − φ3 , θ̂ν = θν◦ + θν and Q̂ν = PTν diag(1, ik, ik)Pν Qν . (B.3)

Now, using

U23(θe, δ̃e)U23(θe◦, δ
e
◦) = diag(1, eiα, e−iα)U23(θ̂e, δ̂e) , (B.4)

where (see for instance Ref. [176], Appendix B)

α = arg
{

cos θe cos θe◦ − sin θe sin θe◦ e
i(δe◦−δ̃

e)
}
, (B.5)

β = arg
{

sin θe cos θe◦ e
−iδ̃e + cos θe sin θe◦ e

−iδe◦
}
, (B.6)

cos θ̂e =
∣∣∣cos θe cos θe◦ − sin θe sin θe◦ e

i(δe◦−δ̃
e)
∣∣∣ , (B.7)

sin θ̂e =
∣∣∣sin θe cos θe◦ e

−iδ̃e + cos θe sin θe◦ e
−iδe◦

∣∣∣ , (B.8)

δ̂e = α− β , (B.9)

we obtain

UPMNS = Qe Pe U23(θ̂e, δ̂e) Ω′†e Ω′ν R23(θ̂ν)Pν Q̂ν , (B.10)

with Qe = Pe diag
(
eiφ1 , ei(φ2+α), ei(φ3−α)

)
PTe being a matrix of unphysical phases. Thus, up to this

matrix, UPMNS and U ′PMNS are the same.
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We now return to the specific case under analysis in Section 4.3.2. Taking {Ge, Gν} = {ZTU2 , ZS2 ×

Hν
CP} with Hν

CP = {U, SU} as a reference case, denoting the corresponding diagonalising matrices as Ω′e

and Ω′ν and taking Ωe and Ων to be the diagonalising matrices in one of the three remaining cases under

consideration, we summarise the values of φi, δ
e
◦, θ

e
◦, θ

ν
◦ and k for which Eq. (B.1) holds in Table B.1.

(ge, gν , H
ν
CP) (S, TU, {U, T}) (S, TU, {STS, T 2STU}) (TU, S, {TST 2U, T 2STU})

φ1 π/6 −π/3 −π/2

φ2 − arctan
√

1 + 2
√

2/3 − arctan
(√

2 +
√

3
)

arccot (2)

φ3 arctan
(
3
√

3 + 2
√

6
)

arccot
(
2
√

2 +
√

3
)

arctan (2)

δe◦ arccot
(
5/
√

3
)

π/3 arctan
((

5
√

3− 6
)
/13
)

θe◦ arctan
√(

11− 6
√

2
)
/7 arctan

(√
2 +
√

3
)

π − arctan
(
2/
√

5
)

θν◦ π − arctan
(
3− 2

√
2
)

π/4 π/4

k 0 1 3

Table B.1: The values of the parameters φi, δ
e
◦, θ

e
◦, θ

ν
◦ and k for which Eq. (B.1) holds, proving

the equivalence of the PMNS matrix in a given case to the PMNS matrix in the reference case of

(ge, gν , H
ν
CP) = (TU, S, {U, SU}).

B.2 Correspondence with Earlier Results

The sum rules found for cos δ or sin2 θ23 (sin2 θ12 in case C1) can be formally obtained from sum rules

derived in Ref. [176]. In certain cases, this requires an additional input which is provided by the residual

gCP symmetry Hν
CP considered in Chapter 4. We describe this correspondence below.

i) Cases B1, C4 and D4 of the present study correspond to case C8 in [176], since for all these cases

(UPMNS)µ2 is fixed. The sum rule for cos δ in case B1, Eq. (4.84), follows from that of case C8 in [176]

(see Table 4 therein) for sin2 θ◦23 = 1/2, while the sum rule in Eq. (4.94), valid in cases C4 and D4,

can be obtained from the same sum rule found in [176], but for sin2 θ◦23 = 3/4. As should be, these

two values of sin2 θ◦23 follow from Gf = S4, when it is broken to two different non-equivalent specific

pairs of residual {Zge2 , Zgν2 } flavour symmetries (see Table 10 in [176]).

ii) Cases B2, C5 and D5 correspond to case C1 in [176], since for all of them (UPMNS)τ2 is fixed. The

sum rule for cos δ in case B2, Eq. (4.85), follows from that of case C1 in [176] (see Table 4 therein)

for sin2 θ◦23 = 1/2, while the sum rule in Eq. (4.95), valid in cases C5 and D5, can be obtained from

the same rule found in [176], but for sin2 θ◦23 = 1/4. Again, these values of sin2 θ◦23 are fixed uniquely

by Gf = S4 and the specific choice of the residual symmetries here considered.

iii) Cases A1 and B3 of the present study correspond to case C2 in [176], since for these cases (UPMNS)µ3

is fixed. The expression for sin2 θ23 in Eq. (4.75) follows from the corresponding expression for case

C2 in Table 6 of [176] with sin2 θ◦23 = 1/2. This value is in agreement with Table 10 of [176].

Moreover, the sum rule for cos δ in Eq. (4.76) in case A1 can be obtained from the sum rule for case
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C2 in Table 4 of [176] with sin2 θ◦23 = 1/2 and sin2 θ̂ν12 = 1/2.1 The value of sin2 θ̂ν12, which was

an arbitrary free parameter in [176], is fixed by the gCP symmetry employed in the present study.

Finally, we note that the expression for cos δ in Eq. (4.87) valid in case B3 can formally be obtained

from the corresponding expression in case C2 of Table 4 in [176] by setting θ̂ν12 = θν − π/4.

iv) Analogously, cases A2 and B4 correspond to case C7 in [176]. Equation (4.77) can be obtained

from the corresponding formula in Table 6 of [176] for sin2 θ◦23 = 1/2, which agrees with the result

in Table 10 therein. The sum rule in Eq. (4.78) follows from that in case C7 in Table 4 of [176] with

sin2 θ◦23 = 1/2 and sin2 θ̂ν12 = 1/2, where again the value of sin2 θ̂ν12, which in [176] is a free parameter,

here is fixed by the gCP symmetry. Similarly to the previous clause, Eq. (4.89) can formally be

derived from the corresponding expression in case C7 of Table 4 in [176] setting θ̂ν12 = θν − π/4.

v) Case C1 corresponds to case C5 in [176], in which all possible residual flavour symmetries Ge = Z2

and Gν = Z2 have been considered. The expression for sin2 θ12 in Eq. (4.91) follows from that of

case C5 in Table 6 in [176] with sin2 θ◦12 = 1/4. This value of sin2 θ◦12 is found for Gf = S4 and

the specific choice of the residual symmetries (see Table 10 in [176]). Moreover, Eq. (4.93) for cos δ

can formally be obtained from the corresponding formula in case C5 of Table 4 in [176] by setting

sin2 θ̂e23 = sin2 θe.

vi) Cases C2 and D2 correspond to case C4 of [176]. The sum rule for cos δ in Eq. (4.76), valid in cases

C2 and D2, follows from that of case C4 in [176] (see Table 4 therein) for sin2 θ◦12 = 1/4, which is in

agreement with Table 10 in [176].

vii) Cases C3 and D3 correspond to case C3 in [176]. Equation (4.78) for cos δ, which holds in these

cases, can be obtained from the corresponding sum rule for case C3 from Table 4 in [176] with

sin2 θ◦13 = 1/4, a value which can be found in Table 10 of the same reference.

1In Eq. (85) of Ref. [176], cos2 θ◦23 should read cos θ◦23. This typo does not affect the corresponding sum rule for cos δ in
Eq. (86) and in Table 4 of [176].





Modular Forms C
C.1 q-expansions of Lowest Weight N = 4 Modular Forms

The five linearly independent modular forms in Eq. (5.22) admit the expansions:

− 8i

3π
Y1(τ) = 1− 24y − 72y2 + 288y3 + 216y4 + . . . , (C.1)

− 8i

3π
Y2(τ) = 1 + 24y − 72y2 − 288y3 + 216y4 + . . . , (C.2)

4i

π
Y3(τ) = 1− 8z + 64z3 + 32z4 + 192z5 − 512z7 + 384z8 + . . . , (C.3)

2i

π
[Y4(τ) + Y5(τ)] = 1 + 4z − 32z3 + 32z4 − 96z5 + 256z7 + 384z8 + . . . , (C.4)

i

π
[Y4(τ)− Y5(τ)] = 2

√
3 z
(
1 + 8z2 − 24z4 − 64z6 + . . .

)
, (C.5)

where y ≡ i
√
q/3, z ≡ eiπ/4(q/4)1/4, and as usual q = e2πi τ .

C.2 Forms of Higher Weight and Constraints

Through tensor products of Y2 and Y3′ , one can find the multiplets:

Y
(4)
1 = Y1Y2 ∼ 1 ,

Y
(4)
1

′
= Y 2

3 + 2Y4Y5 ∼ 1 ,

Y
(4)
2 = (Y 2

2 , Y
2
1 )T ∼ 2 ,

Y
(4)
2

′
= (Y 2

4 + 2Y3Y5, Y
2
5 + 2Y3Y4)T ∼ 2 ,

Y
(4)
3 = (Y1Y4 − Y2Y5, Y1Y5 − Y2Y3, Y1Y3 − Y2Y4)T ∼ 3 ,

Y
(4)
3

′
= (Y 2

3 − Y4Y5, Y
2
5 − Y3Y4, Y

2
4 − Y3Y5)T ∼ 3 ,

Y
(4)
3′ = (Y1Y4 + Y2Y5, Y1Y5 + Y2Y3, Y1Y3 + Y2Y4)T ∼ 3′ .

(C.6)
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Not all of these multiplets are expected to be independent. Indeed, from the q-expansions of the Yi(τ)

given in Appendix C.1 we find 6 constraints between the 15 different Yi(τ)Yj(τ) products:

1

3

(
Y 2

3 + 2Y4Y5

)
= Y1Y2 , − 1√

3

(
Y 2

3 − Y4Y5

)
= Y1Y4 − Y2Y5 ,

1

3

(
Y 2

4 + 2Y3Y5

)
= Y 2

2 , − 1√
3

(
Y 2

5 − Y3Y4

)
= Y1Y5 − Y2Y3 ,

1

3

(
Y 2

5 + 2Y3Y4

)
= Y 2

1 , − 1√
3

(
Y 2

4 − Y3Y5

)
= Y1Y3 − Y2Y4 .

(C.7)

These constraints imply that Y
(4)
1 and Y

(4)
1

′
, Y

(4)
2 and Y

(4)
2

′
, and Y

(4)
3 and Y

(4)
3

′
in Eq. (C.6) denote the

same multiplets, and only one of each pair is kept in our discussion, cf. Eq. (5.24).

In Ref. [91] it is argued that the presence of a covariant constraint similar to the ones given in Eq. (C.7)

signals the non-linear realisation of the discrete symmetry.
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