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1. Introduction

According to an old adage everything in Nature is, up to certain approximation, a harmonic
oscillator. A curious person that wants to uncover some secrets of Nature, has therefore to learn
how to deal with it1. Indeed, during the past century, theoretical particle physicists succeeded
in mastering this fundamental ingredient and, building perturbation theory around it, they were
able to formulate, in the context of Quantum Field Theory (QFT), the Standard Model (SM),
which is one of the greatest scientific successes up to now because of its precise agreement
with experimental data. Nonetheless SM cannot be the end of the exploration of particle
physics, since there are some unexplained phenomena such as confinement, charge screening
and the existence of a mass gap in quantum chromodynamics (QCD), that are genuinely non-
perturbative and, despite being foundational for experimental observations, cannot be tackled
with perturbation theory. More generally, especially2 in dimension 𝑑 > 2, the strongly coupled
regime of a generic QFT, that is when the perturbation theory become unreliable, still lacks a
satisfactory treatment.

The difficulties in studying the non-perturbative aspects of a generic QFT lead theorists
to consider some special models enjoying supersymmetry (SUSY). Besides the potentially phe-
nomenological interest in fact, SUSY turned out to be a sort of powerful “theoretical laboratory”
in which one can learn many properties about strongly coupled systems and, hopefully, use the
hints taken from them to try to have a better understanding of the non-SUSY cases. The fact
that SUSY models are much easier to study than the non-SUSY ones relies on the rigid struc-
ture that this kind of symmetry impose: among all the possible couplings that a non-SUSY
theory may have, this symmetry selects the “canonical” ones3. A point of strength of SUSY the-
ories is the presence of Bogomol’nyi–Prasad–Sommerfield (BPS) operators: they accommodate
in representations of SUSY algebra that are shorter than those of non-BPS operators; therefore,
along the renormalization group flow, they do not mix with non-BPS operators. Moreover they
are highly constrained by the SUSY algebra itself and their quantum corrections are restricted;
these restrictions make feasible computations involving BPS operators. The general principle
is the following: the more supersymmetric the theory is, the more analytic control we have of
its quantities of interest. The price to pay is to restrict our study to less and less generic cases.
For instance, we know that for a 4d 𝒩 = 1 non-linear sigma model (NLSM) all the information
of our model is contained in the Kähler potential and in the superpotential. In line with [7,
8], a renowned result in the context of 𝒩 = 1 SQCD is the duality proposed by Seiberg [9].

1This is almost what S. Coleman said: http://media.physics.harvard.edu/video/?id=Sidney_Coleman_
lecture_02.

2For 2d QFT, non-perturbative results are known since [3]. More example are subject matter of textbooks
[4, 5].

3For instance in gauged sigma models every coupling is a geometrical object; the SUSY models have couplings
which are described by a canonical choice of these objects [6].
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2 1. Introduction

Increasing the amount of SUSY to 𝒩 = 2, it has been found that one just needs a holomorphic
function, called prepotential, to fully specify the NLSM. Seiberg and Witten [9, 10] were able
to determine this superpotential for low energy but for all coupling. A microscopic derivation
of such prepotential by means of instanton counting has been performed by Nekrasov [11] us-
ing equivariant localization; the semiclassical limit of Nekrasov partition function was found in
[12]. For the interested reader we recommend also [13, 14] which treat the Nekrasov partition
function from different points of view. Going further one arrives, for instance, at the celebrated
𝒩 = 4 Yang-Mills (SYM) which is believed to be superconformal and integrable and has been
extensively studied in literature. In particular, SYM on 𝑆4 [15] has been the first instance of
application of supersymmetric localization: with this technique Pestun was able to compute
partition function and expectation values of SUSY circular Wilson loops early conjectured in
[16].

Supersymmetric localization is an infinite-dimensional version of equivariant localization.
The rough idea of the latter is the following: if we have an ordinary (finite dimensional) integral
over a manifold which is acted on by a Lie group, under certain conditions, the result of the
integral receives contributions only from the fixed points of the action (the localization locus),
therefore, instead of performing the integral over all the manifold, we have just to evaluate some
function of the integrand at this points. These conditions were known by mathematicians since
80’s; the main results are theorems by Duistermaat–Heckman [17], Berline–Vergne [18, 19]
and Atiyah–Bott [20]. Successively the ideas behind these results were applied by Witten to
Path Integral (PI) of SUSY field theories, in the context of topological ones [21, 22]. This is
because, at that time, the only way to implement SUSY on a curved manifold was through
topological twist4. A good review of these techniques is [23]. After two decades, starting from
[15], localization enjoyed a revival since it was understood that a larger class of SUSY theories
can be put on curved manifold without performing the topological twist. The power of SUSY
localization relies in the fact that the PI of a SUSY theory is invariant under a certain class
of deformations of the action and this allows us to deform it in the way it is more convenient
to compute it exactly. Nonetheless, sometimes, to find the suitable deformation can require
much effort; this is perhaps why, in the common lore, localization is regarded as an “art” rather
than as a technique. Another important feature is that, once the localization locus has been
found, the expectation value of any BPS operator5 is easily obtained: we have just to evaluate
this operator on the localization locus. Further progress were made after some years when a
systematic way to build rigid SUSY on a given manifold was found [24] exploiting supergravity
(SUGRA). Modern and compact introductions to the subject are [25, 26]; a less compact review
is [27].

In all these either weakly- or strongly-coupled tales, a central rôle is played by the PI.
Actually, it is possible to use it to spot another very interesting effect that will enter on the
game: in general the space of fields configurations on which we path-integrate can have a
non-trivial topology and therefore can be divided in sectors labeled by some discrete numbers.
Thus, when one path-integrates, he has to sum over all these sectors. A very famous instance
of this circumstance dates back to the 50’s and is the Aharonov–Bohm effect. In the context
of YM theory [28], the states we are summing over are called instantons. These, together

4Compactness of the manifold is an important ingredient: it is needed, for instance, to cure infra-red diver-
gences of observables.

5Actually the SUSY charge that annihilates the inserted operator must be a subset of the localization.



1. Introduction 3

with their lower-codimensional versions and with situations in which the configuration space
has a non-trivial topology (vortices, monopoles, solitons, kinks, domain walls), are purely non-
perturbative phenomena.

Instantons and instanton counting (for good review we recommend [29]) have been an
important contact point between Physics and Mathematics: we recall the famous ADHM con-
struction [30], from the mathematical side and the interpretation in terms of arrangements of
D-brane as the physical counterpart [31–33]. Also important in this context is the work by
Donaldson [34] in which he start the study of the topology of low-dimensional manifolds using
non-linear classical field theory. Thus we see that mathematicians began to use physical ideas
to solve their problems; in this direction, the introduction of SUSY and therefore of its math-
ematical structures, makes the subject of growing interest for the mathematical community:
very soon several standard tools of QFT such as PI became of common use also among some
mathematicians and, on the other hand, physicists started to use their native techniques to
tackle mathematical problems. As a result the interplay between these two subjects became
stronger and stronger6. A basic example of this interplay is the so-called “supersymmetric
proof of the Atiyah–Singer theorem” [36]. Then Witten7 began the exploration of Topologi-
cal Quantum Field Theory using SUSY QFT to rederive Donaldson invariants. Successively,
these invariants were extended to higher dimensional manifolds [37]: they are the Donaldson–
Thomas (DT) invariants. From the string theory point of view they can be computed exploiting
a brane construction [38, 39].

Also the study of brane dynamics has revealed, over the years, to be a constant source
of delightful results both in Physics and Mathematics. It offers valuable insights into the
non-perturbative dynamics of gauge and string theories, and it displays deep connections with
enumerative geometry via BPS bound-state counting. Often brane systems provide a string
theory realization of interesting moduli spaces, and SUSY localization allows us to perform the
exact counting of BPS states in a variety of them. This philosophy has been applied successfully
in many contexts. For instance, the 𝑆2 partition functions [40, 41] of GLSMs capture geometric
properties of the moduli spaces of genus-zero pseudo-holomorphic maps to the target, and
represent a convenient way to extract Gromov–Witten invariants [42]. They show that suitable
coordinates enjoy mutations of cluster algebras [43], as physically suggested by IR dualities
[44]. Exact 𝑆2 partition functions have been exploited in the study of D1/D5 brane systems
in [45, 46] providing a direct link between quantum cohomology of Nakajima quiver varieties,
quantum integrable systems of hydrodynamical type and higher-rank equivariant DT invariants
ℙ1 × ℂ2 [47, 48]. As another example, certain equivariant K-theories of vortex moduli spaces
are conveniently captured by a twisted 3d index [49, 50]. Such an object is intimately related to
black hole entropy in AdS4 [51, 52], thus providing a sort of generalization of Gopakumar-Vafa
invariants [53].

Let us now sketch how all the ingredients we introduced go together in this thesis. We

6The possible bafflement of both kinds of scientists is well expressed in the artwork on the cover of [35] due
to Dijkgraaf.

7Once Atiyah said of Witten: “Although he is definitely a physicist (as his list of publications clearly shows)
his command of mathematics is rivaled by few mathematicians, and his ability to interpret physical ideas in
mathematical form is quite unique. Time and again he has surprised the mathematical community by a brilliant
application of physical insight leading to new and deep mathematical theorems […] He has made a profound impact
on contemporary mathematics. In his hands physics is once again providing a rich source of inspiration and
insight in mathematics.”
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start with a certain arrangement of branes, say 𝑁 D𝑞 branes and 𝑘 D𝑝 branes8 with 𝑝 < 𝑞.
Packing all the D𝑞 branes together, their worldvolume is described, at low energy, by a U(𝑁)
SYM in 𝑞 + 1 dimensions, with a certain amount of SUSY. The presence of the D𝑝 branes has
various effects: first, thanks to it, one can consider three types of strings: D𝑞-D𝑞, D𝑞-D𝑝 and
D𝑝-D𝑝; however if we take the directions of the D𝑞’s transverse to the D𝑝’s not compactified,
the D𝑞 branes are much heavier, so we can neglect the effect of the D𝑞-D𝑞 strings. Second,
it lowers the amount of SUSY dependently on 𝑞 − 𝑝, however it is possible, turning on a 𝐵-
field along the D𝑞 branes, to preserve some supercharges (see [54]). Third, scalars fields in
the theory represent the fluctuations of the D𝑝 branes in directions parallel to the D𝑞’s and
transverse to them. Correspondingly these scalars, together with their fermionic partners, fit
in multiplets of SUSY in 𝑝 dimensions in some representation of U(𝑘). From the point of view
of the D𝑝 branes, we remain with a U(𝑘) GLSM in 𝑝 + 1 dimensions which describes their
dynamics. In particular, considering the Higgs branch of the moduli space of this model (this
means that the D𝑝 branes sit on the D𝑞’s) one can recover the ADMH-like equations describing
the non-perturbative object. Moreover, a careful analysis of the worldvolume theory of the D𝑞
branes, allows us to compute quantum number of the instantonic objects under consideration.
The reader interested in brane construction of non-perturbative objects can see [31–33] for
instantons, [55] for monopoles, [56] for vortices and [57, 58]. All them are reviewed in [59].
The aforesaid GLSM, contains much geometrical information about the moduli space described
by ADHM-like equations. We will focus on situation in which 𝑝 = 1 and the two directions are
compactified. The resulting GLSM will be defined on 𝑇 2 and will have a certain amount of
SUSY. It is here that localization comes into the game: it is possible compute exactly the elliptic
genus (see below) for these theories [60, 61]. This quantity, interesting both in Mathematics
and in Physics, can be used to compute elliptic Donaldson–Thomas invariants.

Outline of the thesis. In chap. 2 we introduce two-dimensional SUSY in flat space. The first
part is devoted to the theories with four supercharges, 𝒩 = (2, 2) which are dimensional
reduction of the 𝒩 = 1 in 4d; in the second part we focus the theories with 𝒩 = (0, 2). In
both cases we use a construction in terms of the appropriate superspace. In the first part,
chiral and vector multiplet are build together with action for them (comprehending possible
interaction terms). In the second part the same is done for chiral, Fermi and vector multiplets;
moreover we also explain how it is possible to write 𝒩 = (2, 2) actions in terms of those with
𝒩 = (0, 2), which will be the main characters of the next chapter. All notation and conventions
are specified in app. A.

In chap. 3 we introduce the Elliptic Genus, starting from mathematical definition and
underlining that it can be thought as a generalization of Witten index. Then we introduce
its “physical” definition, in terms of a partition function with the insertion of some operators.
It is essentially an elliptic version of the Witten index refined with some chemical potentials
associated to some flavor symmetries (or also R-symmetry in the 𝒩 = (2, 2) case). In the
second part of the chapter, we introduce briefly supersymmetric localization and we apply this
technique to compute the elliptic genus of a theory with 𝒩 = (0, 2) SUSY with chiral, Fermi
and vector multiplet in arbitrary representation of the rank-one gauge group. This has been
done for the first time in [60] where a detailed evaluation was made for 𝒩 = (2, 2). Here we
spell out the details of the computation for the case 𝒩 = (0, 2), also using a shortcut that

8Of course if 𝑝 = 𝑞 mod 2 = 0 we are in a IIA setup while in the other case we are in the IIB.
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appeared the first time in [50]. The result is roughly that given the gauge group and matter
content of the theory one has to write a matrix model and then integrate it. This boils down
to take the residue at some poles selected by a regulator. Then we state the result for gauge
group with generic rank as appeared in [61]. The higher complexity of generic ranks reflects
in the so-called Jeffrey–Kirwan residue [62], which was originally proposed in the context of
equivariant localization for non-Abelian symplectic quotients. In our situation, we can consider
it as a generalization of the regulator we found in the rank-one analysis. This regularization
procedure has two cases: the non-degenerate or regular one, and the degenerate or singular
one: while the former is simple to apply in concrete computations, the latter is more subtle.
This is because, although an algorithm exists to treat this case, it happens to be not directly
applicable in some instances of interest. This have lead us to develop a desingularization
algorithm [2] aimed to reduce the singular cases to the regular ones, essentially engineering
some perturbations of the poles of the integrand such that the final result does not depend on
the perturbation parameters. This simplifies concrete computations very much.

In chap. 4, we introduce the 𝒩 = (2, 2) partition function on 𝑆2 [40, 41] and its Higgs
branch representation showing its factorization property: it can be written as a sum over the
(discrete) Higgs vacua of a certain product of a “vortex” and an “anti-vortex” partition function
weighted by semiclassical factors. This is a common feature even in higher dimension [63–65]:
an intriguing aspect of these constructions is that the structure of the Riemannian manifold
in patches reflects in factorization properties of the partition function in partial “blocks”. In
our case of interest is devoted to the “elliptic” vortices on ℂ × 𝑇 2: this is done by considering
the 2d quiver gauge theory describing their moduli spaces. The elliptic genus of these moduli
space is the elliptic version of vortex partition function 4d theory. We focus on two examples:
the first is a 𝒩 = 1, U(𝑁) gauge theory with fundamental and anti-fundamental matter (its
moduli space is described a 𝒩 = (0, 2) 2d model); the second is a 𝒩 = 2, U(𝑁) gauge theory
with matter in the fundamental representations (its moduli space is described a 𝒩 = (0, 2)
2d model). The results are instances of 4d “holomorphic blocks” generalizing or reproducing
(from a first-principle computation) result in literature [40, 41, 66–71]. The computation is
done following the recipe given in the previous chapter: we classify the poles of the matrix
models (which turn out to be all regular), and we compute the residues. To do that we need a
straightforward but lengthy classification of the charge matrix, which is relegated to the app. C.
It is found that each contribution to the 𝑘-vortex PI is in one to one correspondence with a
collection of 𝑁 positive integers which sum to 𝑘. For the first example it is also possible to write
a “grand-canonical” vortex partition function, summing the contributions for each 𝑘 against
a vorticity parameter 𝑣. The result is written in terms of elliptic hypergeometric functions,
defined in app. B.

In chap. 5 we analyze the a system with 𝑁 D7 branes and 𝑘 D1 branes in which the extended
dimensions of the D1’s are compactified. As already mentioned, the effective dynamics of the
D1’s is captured by a 𝒩 = (2, 2) GLSM whose classical vacua describe the moduli space of
rank-𝑁 sheaves on ℂ3. In the first part we perform the computation of the elliptic genus of the
moduli space of this GLSM for 𝑁 = 1: first of all, we classify the poles (some of which turn out
to be singular) and we prove, in app. C.3.2, that they arrange in the 3d generalization of Young
diagram, called plane partitions (which are introduced in app C.3.1). Dimensional reductions
to D0/D6 (trigonometric) and to D(−1)/D5 (rational) are also discussed: they correspond to
the refined Witten index and the equivariant volume of the same moduli space. The last two
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cases were extensively studied (for 𝑁 = 1), in view of their relation with black-hole entropy,
microstate counting [72] and the DT invariants. The latter are in turn mapped to Gromov–
Witten invariants by MNOP relation [38, 39]. These cases are of interest since it is possible
to compare the results we get with our method with the ones appearing in literature. Less is
known in the higher-rank case, except for the D(−1)/D5 system whose partition function was
conjectured to factorize as the 𝑁 th power of the Abelian one [73, 74]. The second part of this
chapter is devoted to the computation of the elliptic genus with general 𝑁 . We also provide
evidence for such a factorization conjecture, also in accordance the results of [75, 76]. On the
other hand, we find that the elliptic genus and the generalized Witten index do not factorize
and give new interesting results. In Proposition 5.1 of [77], a relation between the higher-rank
equivariant K-theoretic DT invariants on a three-fold 𝑋 and the M2-brane contribution to the
M-theory index on a 𝐴𝑁−1 surface fibration over 𝑋 was established. A conjectural plethystic
exponential9 form for the equivariant K-theoretic DT invariants in higher rank was proposed
in [73] for the case 𝑋 = ℂ3: we confirm this proposal. For rank one, the D0/D6 system on
a circle is known to compute the eleven-dimensional supergravity index, which can indeed be
expressed in an elegant plethystic exponential form [74]. We show that the same is true in the
higher-rank case. In fact, extending the construction of [78], the M-theory lift of the D0/D6
system in the presence of an Omega background is given by a TN𝑁 × ℂ3 fibration over a circle
[74], where TN𝑁 is a multi-center Taub-NUT space and whose charge 𝑁 equals the number
of D6-branes. The fibration is such that the fiber space is rotated by a 𝑈(1)3 action as we
go around the circle. The multi-center Taub-NUT space looks asymptotically as a lens space
𝑆3/ℤ𝑁 × ℝ+, precisely as the asymptotic behavior of the 𝐴𝑁−1 surface singularity ℂ2/ℤ𝑁 .
This implies the appearance in the higher-rank index of twisted sectors carrying irreducible
representations of the cyclic group, which spoils the factorization property. In the elliptic case,
describing the D1/D7 system, a novelty appears: because of anomalies in the path integral
measure, there are non-trivial constraints on the fugacities of the corresponding symmetries.
Once these constraints are taken into account, the higher-rank elliptic index takes a particularly
simple form, which can be traced back to a suitable geometric lift to F-theory [79]. In the
final part of this chapter we propose a realization of the elliptic genus as a chiral correlator
of free fields on the torus generalizing the construction of [80], with the aim of exploring the
underlying integrable structure in the spirit of BPS/CFT correspondence [81].

9We define this operation in app. C.2.



2. Supersymmetry in two dimensions

In this chapter we will introduce two dimensional supersymmetric theories on Euclidean flat
space. In particular we will review how to build the action of 𝒩 = (2, 2) and 𝒩 = (0, 2) super
Yang–Mills (SYM) with matter which be one of the main ingredients in the following. We
will begin our exposition with 𝒩 = (2, 2) supersymmetry (SUSY) and then we will switch to
𝒩 = (0, 2).

2.1 𝒩 = (2, 2) Supersymmetry

There are essentially two ways in which this kind of supersymmetry can be introduced: either
one can exploit the fact that two dimensional 𝒩 = (2, 2) is the dimensional reduction of four
dimensional 𝒩 = 1 (see for instance [82]) or it is possible to build it from scratch (as in [83]).
We will use this second approach since we want to be as self-contained as possible.

2.1.1 Superspace and Superfields

Let us take ℂ as our two dimensional space having coordinates 𝑧 and ̄𝑧. We introduce four
fermionic (anticommuting) coordinates organized in two spinors (see app. A for the conventions)

𝜃 = (𝜃+

𝜃−) , ̄𝜃 = (
̄𝜃+

̄𝜃−) . (2.1)

We will use ̃𝜃 to refer collectively to 𝜃 and ̄𝜃. Under a translation of parameters (𝜁, ̄𝜁) we have
that

𝑧 ↦ 𝑧 + 𝜁 , ̄𝑧 ↦ ̄𝑧 + ̄𝜁 , 𝜃 ↦ 𝜃 , ̄𝜃 ↦ ̄𝜃 , (2.2)

while under a U(1) rotation of parameter 𝜑

𝑧 ↦ 𝑒i𝜑𝑧 , ̄𝑧 ↦ 𝑒−i𝜑 ̄𝑧 , 𝜃 ↦ 𝑒− i
2 𝛾3𝜃 , ̄𝜃 ↦ 𝑒− i

2 𝛾3 ̄𝜃 . (2.3)

We introduce two differential operators acting on superspace:

Q𝑎 = 𝝏𝑎 − i
2(𝛾 ̄𝜃)𝑎 ⋅ 𝜕 , Q̄𝑎 = ̄𝝏𝑎 − i

2(𝛾𝜃)𝑎 ⋅ 𝜕 , (2.4)

where we denoted 𝝏𝑎 = 𝜕
𝜕𝜃𝑎 and ̄𝝏 = 𝜕

𝜕 ̄𝜃𝑎 . They close the algebra

{Q𝑎, Q𝑏} = 0 , {Q𝑎, Q̄𝑏} = −i(𝛾)𝑎𝑏 ⋅ 𝜕 , {Q̄𝑎, Q̄𝑏} = 0 , (2.5)

which is a typical SUSY algebra. A function of the superspace is called superfield: since the
fermionic variable are nilpotent, the Taylor expansion of a generic superfield in monomials of
𝜃 and ̄𝜃 is finite. The most general scalar function one can write is the following:

7



8 2. Supersymmetry in two dimensions

𝓑( ̃𝜃, 𝑧, ̄𝑧) = 𝑎 + 𝜃𝜒 + ̄𝜃𝜉 + 𝜃𝜃𝑀 + ̄𝜃 ̄𝜃𝑁 + 𝜃𝛾 ̄𝜃 ⋅ 𝑣 − i𝜃P− ̄𝜃𝜎 − i𝜃P+ ̄𝜃𝜂+
+ i

2𝜃𝜃 ̄𝜃(𝜓 + 1
2𝛾 ⋅ 𝜕𝜒) + i

2
̄𝜃 ̄𝜃𝜃(𝜆 + 1

2𝛾 ⋅ 𝜕𝜉) − i
4𝜃𝜃 ̄𝜃 ̄𝜃(𝐷 − i𝜕 ̄𝜕𝜑) , (2.6)

where every component fields depends on 𝑧 and ̄𝑧. We see that we have 8 complex bosonic
d.o.f. (𝑎, 𝑀 , 𝑁 , 𝑣, ̄𝑣 and 𝜎, 𝜂 and 𝐷) as well as 8 complex fermionic d.o.f. (𝜒, 𝜉, 𝜓 and 𝜆).
It is also possible to write a superfield carrying some spin: in general we say that a superfield
is bosonic if [ ̃𝜃, 𝓕 ] = 0 (i.e. if its bottom component is a boson) and fermionic if { ̃𝜃, 𝓕 } = 0
(i.e. if its bottom component is a fermion). An important tool concerning SUSY algebra is the
group of its outer automorphism: in the present case we have U(1)𝐿 × U(1)𝑅 (resp. left- and
right-moving R-charges). We assign the following charges

R𝑅[𝜃+] = +1 , R𝑅[𝜃−] = 0 , R𝑅[ ̄𝜃+] = −1 , R𝑅[ ̄𝜃−] = 0 ,
R𝐿[𝜃+] = 0 , R𝐿[𝜃−] = +1 , R𝐿[ ̄𝜃+] = 0 , R𝐿[ ̄𝜃−] = −1 . (2.7)

Once fixed R𝑅[𝓕 ] and R𝐿[𝓕 ] the respective charge of the components fields follows. Denoting
the generators of the R-symmetry by R𝑅 and R𝐿, from eq. (2.5) follows

[R𝑅, Q+] = −Q+ , [R𝑅, Q−] = 0 , [R𝑅, Q̄+] = −Q̄+ , [R𝑅, Q̄−] = 0 ,
[R𝐿, Q+] = 0 , [R𝐿, Q−] = +Q− , [R𝐿, Q̄+] = 0 , [R𝐿, Q̄−] = +Q̄− . (2.8)

A extensive treatment of superspace formalism in two dimensions is carried out in [84]. Now
we will discuss some class of multiplets which will be the building block of our computations
in the next chapters. Of course the list is not exhaustive: the interested reader can see [85].

2.1.2 Chiral Superfield

Let us introduce the following derivative operators:

D𝑎 = 𝝏𝑎 + i
2(𝛾 ̄𝜃)𝑎 ⋅ 𝜕 , D̄𝑎 = ̄𝝏 + i

2(𝛾𝜃)𝑎 ⋅ 𝜕 . (2.9)

They anticommute with the supercharges Q and Q̄ and satisfy the algebra

{D𝑎, D𝑏} = 0 , {D𝑎, D̄𝑏} = i(𝛾)𝑎𝑏 ⋅ 𝜕 , {D̄𝑎, D̄𝑏} = 0 . (2.10)

We define a chiral superfield with

D̄𝑎𝚽 = 0 , (2.11)

plugging the general expression for a superfield eq. (2.6) and solving for the constraint, we have
the following expansion

𝚽 = 𝜑 + 𝜃𝜓 + 1
2𝜃𝜃𝐹 + i

2𝜃𝛾 ̄𝜃 ⋅ 𝜕𝜑 + i
4𝜃𝜃 ̄𝜃𝛾 ⋅ 𝜕𝜓 − 1

4𝜃𝜃 ̄𝜃 ̄𝜃𝜕 ̄𝜕𝜑 , (2.12)

where numerical factor has been set for future convenience. Notice that we have 2 complex
bosonic d.o.f. (𝜑 and 𝐹 ) as well as 2 fermionic d.o.f. (𝜓). To get the SUSY variation of the
component fields we have just to act with 𝜹 = 𝜖Q + ̄𝜖Q̄ on 𝚽. Since1 {D̃, Q̃} = 0, 𝜹𝚽 will be
again a chiral superfield: reading its components we find

𝛿𝜑 = 𝜖𝜓 ,
1Again we use tilde sign to denote barred and unbarred operators collectively.
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𝛿𝜓𝑎 = 𝜖𝑎𝐹 + i(𝛾 ̄𝜖)𝑎 ⋅ 𝜕𝜑 ,
𝛿𝐹 = i ̄𝜖𝛾 ⋅ 𝜕𝜓 . (2.13)

The anti-chiral superfield 𝚽̄ (defined by D𝑎Φ̄ = 0) and its variation are obtained simply swap-
ping barred with unbarred terms and vice-versa. An action for the chiral superfield is

𝑆𝚽 = ∫ d𝑧d ̄𝑧d2𝜃d2 ̄𝜃𝚽̄𝚽 = ∫ d𝑧d ̄𝑧 (4 ̄𝜕𝜑̄𝜕𝜑 − i ̄𝜓𝛾 ⋅ 𝜕𝜓 + ̄𝐹𝐹 + total derivatives) . (2.14)

This action is manifestly SUSY invariant: one can verify using variations (2.13), however,
since Berezin integration is equal to a derivative, a function integrated in all ̃𝜃 variables is
automatically SUSY invariant. That kind of term is called D-term. From this action we see
that 𝐹 does not have a dynamics: for this reason it is called auxiliary field. As a general
remark we want to stress that any D-term must be uncharged under left and right moving R-
symmetries since we integrate it against both 𝜃 and ̄𝜃. If we set R+[𝚽] = 𝑟𝑅 and R𝐿[𝚽] = 𝑟𝐿,
from eqs. (2.7) and (2.12) we have the following assignment

Field R𝑅 R𝐿

𝜑 𝑟𝑅 𝑟𝐿
𝜑̄ −𝑟𝑅 −𝑟𝐿
𝜓+ 𝑟𝑅 𝑟𝐿 − 1
𝜓− 𝑟𝑅 − 1 𝑟𝐿

̄𝜓+ −𝑟𝑅 1 − 𝑟𝐿
̄𝜓− 1 − 𝑟𝑅 −𝑟𝐿

𝐹 𝑟𝑅 − 1 𝑟𝐿 − 1
̄𝐹 1 − 𝑟𝑅 1 − 𝑟𝐿

Table 2.1: R𝑅 and R𝐿 charge of component field of chiral superfield.

2.1.3 Vector Superfield

Let G be a gauge group with Lie algebra 𝔤. We can consider a 𝔤-valued superfield 𝐕 obeying
the condition

𝐕† = 𝐕 , (2.15)

where “†” is a certain antilinear operator. If we were in the Minkowski spacetime it would be
the usual complex conjugation, in Euclidean signature we can take a “Wick rotated version” of
the former: it will simply exchange barred symbols with unbarred one. We can expand such a
superfield as

𝐕 = 𝑎 + 𝜃𝜒 + ̄𝜃𝜒̄ + 𝜃𝜃𝑀 + ̄𝜃 ̄𝜃𝑀̄ + 𝜃𝛾 ̄𝜃 ⋅ 𝐴 − i𝜃P− ̄𝜃𝜎 − i𝜃P+ ̄𝜃𝜎̄+
+ i

2𝜃𝜃 ̄𝜃(𝜆̄ + 1
2𝛾 ⋅ 𝜕𝜒) + i

2
̄𝜃 ̄𝜃𝜃(𝜆 + 1

2𝛾 ⋅ 𝜕𝜒̄) − i
4𝜃𝜃 ̄𝜃 ̄𝜃(𝐷 − i𝜕 ̄𝜕𝑎) . (2.16)

We impose the super-gauge transformation of the vector superfield as

𝑒𝐕 ↦ 𝑒i𝛀̄𝑒𝐕𝑒−i𝛀 , (2.17)
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where 𝛀 is a chiral superfield of components

𝛀 = 𝜔 + 𝜃𝜉 + 1
2𝜃𝜃𝑤 + i

2𝜃𝛾 ̄𝜃 ⋅ 𝜕𝜔 + i
4𝜃𝜃 ̄𝜃𝛾 ⋅ 𝜕𝜉 − 1

4𝜃𝜃 ̄𝜃 ̄𝜃𝜕 ̄𝜕𝜔 . (2.18)

We see that eq. (2.17) is highly non-linear when G is non-abelian, in fact using BCH formula
we find that

𝐕 ↦ 𝐕 − i(𝛀 − 𝛀̄) − i
2 [𝐕, 𝛀 + 𝛀̄] − i

12 [𝐕, [𝐕, 𝛀 − 𝛀̄]] + 𝑂(𝛀2), +𝑂(𝛀̄2) + 𝑂(𝐕3) . (2.19)

However we see that at lowest order (which is the only one present if G is abelian), we can set
𝑎 = 𝜒 = 𝜒̄ = 𝑀 = 𝑀̄ = 0. This is called Wess-Zumino (WZ) gauge2:

𝐕WZ = 𝜃𝛾 ̄𝜃 ⋅ 𝐴 − i𝜃P− ̄𝜃𝜎 − i𝜃P+ ̄𝜃𝜎̄ + i
2𝜃𝜃 ̄𝜃𝜆̄ + i

2
̄𝜃 ̄𝜃𝜃𝜆 − i

4𝜃𝜃 ̄𝜃 ̄𝜃𝐷 , (2.20)

this gauge has the remarkable property that 𝐕𝑛 = 0 for 𝑛 > 2, this simplify computations very
much; for instance in eq. (2.19) we can remove 𝑂(𝐕3). For this reason we will always use WZ
gauge. A comparison with the four dimensional multiplet (in WZ gauge as well) shows us that
here 𝜎 and 𝜎̄ appear: they come from the dimensional reduction of the four vector to the two
vector. It is easy to see that a transformation governed by

𝛀WZ = 𝜔 + i
2𝜃𝛾 ̄𝜃 ⋅ 𝜕𝜔 − 1

4𝜃𝜃 ̄𝜃 ̄𝜃𝜕 ̄𝜕𝜔 , 𝜔 ∈ ℝ , (2.21)

parametrizes the residual gauge: i.e. if we 𝐕 is in WZ, after such a transformation remains in
WZ gauge. It acts infinitesimally on component field as

𝐴 ↦ 𝐴 + 𝜕𝜔 − i[𝐴, 𝜔] , 𝜆 ↦ 𝜆 − i[𝜆, 𝜔] , 𝜎 ↦ 𝜎 − i[𝜎, 𝜔] ,
̄𝐴 ↦ ̄𝐴 + ̄𝜕𝜔 − i[ ̄𝐴, 𝜔] , 𝜆̄ ↦ 𝜆̄ − i[𝜆̄, 𝜔] , 𝜎̄ ↦ 𝜎̄ − i[𝜎̄, 𝜔] . (2.22)

We see that transformations (2.22) are the transformation that we expect for the gauge field ̃𝐴
and for the bosonic and fermionic matter in the adjoint representation. Unfortunately, a SUSY
transformation breaks WZ gauge:

𝛿𝑎 = 0 ,
𝛿𝜒𝑎 = (𝛾 ̄𝜖)𝑎 ⋅ 𝐴 − i(P− ̄𝜖)𝑎𝜎 − i(P+ ̄𝜖)𝑎𝜎̄ ,
𝛿𝜒̄𝑎 = −(𝛾𝜖)𝑎 ⋅ 𝐴 − i(P+𝜖)𝑎𝜎 − i(P−𝜖)𝑎𝜎̄ ,
𝛿𝑀 = i

2 ̄𝜖𝜆̄ ,
𝛿𝑀̄ = i

2𝜖𝜆 ,
𝛿𝐴 = i

2(𝜖𝛾𝜆̄ − ̄𝜖𝛾𝜆) ,
𝛿 ̄𝐴 = i

2(𝜖 ̄𝛾𝜆̄ − ̄𝜖 ̄𝛾𝜆) ,
𝛿𝜎 = (𝜖P+𝜆̄) + ( ̄𝜖P−𝜆) ,
𝛿𝜎̄ = (𝜖P−𝜆̄) + ( ̄𝜖𝑃+𝜆) ,

𝛿𝜆𝑎 = −1
2𝜖𝑎𝜕 ⋅ 𝐴 + (𝛾3𝜖)𝑎𝐹𝑧 ̄𝑧 − 𝜖𝑎𝐷 + i

2(𝛾P+𝜖)𝑎 ⋅ 𝜕𝜎 + i
2(𝛾P−𝜖)𝑎 ⋅ 𝜕𝜎̄ ,

𝛿𝜆̄𝑎 = 1
2 ̄𝜖𝑎𝜕 ⋅ 𝐴 − (𝛾3 ̄𝜖)𝑎𝐹𝑧 ̄𝑧 − ̄𝜖𝑎𝐷 + i

2(𝛾P− ̄𝜖)𝑎 ⋅ 𝜕𝜎 + i
2(𝛾P+ ̄𝜖)𝑎 ⋅ 𝜕𝜎̄ ,

𝛿𝐷 = − i
2𝜖𝛾 ⋅ 𝜕𝜆̄ − i

2 ̄𝜖𝛾 ⋅ 𝜕𝜆 , (2.23)
2It is possible to show that, at least perturbatively, one can find 𝛀 and 𝛀̄ such that we can transform 𝐕 to

WZ gauge.
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where we used 𝐹𝑧 ̄𝑧 = 𝜕 ̄𝐴 − ̄𝜕𝐴. In order to restore WZ gauge we can perform a compensating
transformation, usually called de Witt–Freedman (dWF), parametrized by

− i𝛀dWF = −𝜃(𝛾 ̄𝜖 ⋅ 𝐴 − iP− ̄𝜖𝜎 − iP+ ̄𝜖𝜎̄) − i
2𝜃𝜃 ̄𝜖𝜆̄−

− i
4𝜃𝜃 ̄𝜃( ̄𝜖𝜕 ⋅ 𝐴 + 2(𝛾3 ̄𝜖)𝐹𝑧 ̄𝑧 − i(𝛾P− ̄𝜖) ⋅ 𝜕𝜎 − i(𝛾P+ ̄𝜖) ⋅ 𝜕𝜎̄) . (2.24)

Usually one calls the the total transformation (SUSY + dWF) dressed SUSY (which we denote
by ̃𝛿): in this case, plugging (2.24) into (2.19) we get

̃𝛿𝐴 = i
2(𝜖𝛾𝜆̄ − ̄𝜖𝛾𝜆) ,

̃𝛿 ̄𝐴 = i
2(𝜖 ̄𝛾𝜆̄ − ̄𝜖 ̄𝛾𝜆) ,

̃𝛿𝜎 = (𝜖P+𝜆̄) + ( ̄𝜖P−𝜆) ,
̃𝛿𝜎̄ = (𝜖P−𝜆̄) + ( ̄𝜖𝑃+𝜆) ,

̃𝛿𝜆𝑎 = 2(𝛾3𝜖)𝑎ℱ𝑧 ̄𝑧 − 𝜖𝑎𝐷 + i
2(P+ − P−)𝜖[𝜎, 𝜎̄] + i(𝛾P+𝜖) ⋅ 𝒟𝜎 + i(𝛾P−𝜖)𝑎 ⋅ 𝒟𝜎̄ ,

̃𝛿𝜆̄𝑎 = −2(𝛾3 ̄𝜖)𝑎ℱ𝑧 ̄𝑧 − ̄𝜖𝑎𝐷 + i
2(P+ − P−) ̄𝜖[𝜎, 𝜎̄] + i(𝛾P+ ̄𝜖) ⋅ 𝒟𝜎 + i(𝛾P− ̄𝜖) ⋅ 𝒟𝜎̄ ,

̃𝛿𝐷 = − i
2(𝜖𝛾 ⋅ 𝒟𝜆̄ + ̄𝜖𝛾 ⋅ 𝒟𝜆)+

+ i([𝜆, 𝜎̄]P+ ̄𝜖 + [𝜆, 𝜎]P− ̄𝜖 − [𝜆̄, 𝜎̄]P−𝜖 − [𝜆̄, 𝜎]P+𝜖) , (2.25)

where we used 𝒟̃ = ̃𝜕 + [ ̃𝐴, ⋅] and ℱ𝑧 ̄𝑧 = 𝜕 ̄𝐴 − ̄𝜕𝐴 − i[𝐴, ̄𝐴]. To conclude this subsection, from
eqs. (2.7) and (2.20) we write

Field R𝑅 R𝐿
̃𝐴 0 0

𝜆+ +1 0
𝜆− 0 +1
𝜆̄+ −1 0
𝜆̄− 0 −1
𝜎 −1 +1
𝜎̄ +1 −1
𝐷 0 0

Table 2.2: R𝑅 and R𝐿 assignment for vector superfield.

2.1.4 Twisted Chiral Superfield and Field Strength

A novelty that we have in two dimension is the twisted chiral superfield, defined by

D̄+𝚺 = D−𝚺 = 0 , (2.26)

here we will not describe this superfield in detail (the interested reader can consult [82, 85] or
[83] for its implications in mirror symmetry), however we want to stress that it is possible to
build a gauge invariant3 field strength for the Abelian vector multiplet in the form of a twisted

3From eq. (2.10) we have that D̄+D−(𝐕 − 𝑖(𝛀 − 𝛀̄)) = D̄+D−𝐕, since in eq. (2.19) commutators drop in the
Abelian case.
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chiral

𝚺 = D̄+D−𝐕
= 𝜎̄ + i ̄𝜃−𝜆+ − i𝜃+𝜆̄− + i𝜃+ ̄𝜃−(𝐷 − 2𝐹𝑧 ̄𝑧) + 𝜃− ̄𝜃−𝜕𝜎̄ + 𝜃+ ̄𝜃+ ̄𝜕𝜎̄−

− i𝜃+𝜃− ̄𝜃−𝜕𝜆̄− + i ̄𝜃+ ̄𝜃−𝜃+ ̄𝜕𝜆+ − 𝜃+𝜃− ̄𝜃+ ̄𝜃−𝜕 ̄𝜕𝜎̄ . (2.27)

Similarly the twisted anti-chiral superfield is 𝚺̄ = D+D̄−𝐕. The action for this twisted chiral
superfield amounts to be the action for an abelian vector superfield

𝑆𝐕,ab. = ∫ d𝑧d ̄𝑧d2𝜃d2 ̄𝜃𝚺̄𝚺 = ∫ d𝑧d2 ̄𝑧(−4𝐹 2
𝑧 ̄𝑧 + 4 ̄𝜕𝜎̄𝜕𝜎 − i𝜆̄𝛾 ⋅ 𝜕𝜆 + 𝐷2 + total derivative) ;

(2.28)

for this reason 𝚺 is called field strength multiplet. It is possible to generalize field strength in
case of non-Abelian gauge group. Using notations of [86] we define

𝚺 = 𝐷̄+ (𝑒−𝑉 𝐷−𝑒𝑉 ) , 𝚺̄ = 𝐷+ (𝑒𝑉 𝐷̄−𝑒−𝑉 ) , (2.29)

which reduce to (2.27) in the case of Abelian gauge group. Under a gauge transformation (2.17)
they transform as

𝚺 ↦ 𝑒i𝛀𝚺𝑒−i𝛀 , 𝚺̄ ↦ 𝑒i𝛀̄𝚺̄𝑒−i𝛀̄ , (2.30)

so that

tr (𝑒−𝑉 𝚺̄𝑒𝑉 𝚺) (2.31)

is gauge invariant. With this we can write down the action

𝑆𝐕 = ∫ d𝑧d ̄𝑧d2𝜃d2 ̄𝜃 tr (𝑒−𝑉 𝚺̄𝑒𝑉 𝚺)

= ∫ d𝑧d ̄𝑧 tr(−4ℱ2
𝑧 ̄𝑧 + 4𝒟̄𝜎̄𝒟𝜎 − i𝜆̄𝛾 ⋅ 𝜕𝜆 + 𝐷2 + i𝐷[𝜎, 𝜎̄] − i𝜆̄P+[𝜎, 𝜆] − i𝜆̄P−[𝜎̄, 𝜆]) , (2.32)

which is invariant under (2.25). We notice again that the presence of the scalars 𝜎 and 𝜎̄ is
arguable if we think 𝑆𝐕 as a dimensional reduction of SYM in four dimensions4. Another
remarkable fact is that

( ̄𝜖Q̄)(𝜖Q) ∫ d𝑧d ̄𝑧 (1
2 𝜆̄𝜆 − 𝐷(𝜎 + 𝜎̄)) = 𝜖 ̄𝜖𝑆𝐕 , (2.33)

this will turn out to be very important in the following.

2.1.5 Gauge–Matter Coupling

Now we want to couple matter to SYM. Under a gauge transformation we have that matter
change as

𝚽 ↦ 𝑒−i𝛀𝚽 , 𝚽̄ ↦ 𝚽̄𝑒i𝛀̄ , (2.34)

4In many references the action is written with the shift 𝐷 ↦ 𝐷 − i
2 [𝜎, 𝜎̄].
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therefore we see that the term

𝚽̄𝑒−𝐕𝚽 , (2.35)

is gauge invariant and reproduces the integrand of (2.14) when the gauge coupling is set to
zero. The action therefore will be

𝑆𝚽𝐕 = ∫ d𝑧d ̄𝑧d2𝜃d2 ̄𝜃𝚽̄𝑒−𝐕𝚽 = ∫ d𝑧d ̄𝑧(4𝒟̄𝜑̄𝒟𝜑 − i ̄𝜓𝛾 ⋅ 𝒟𝜓 + ̄𝐹𝐹 + 𝜑̄(𝜎̄𝜎 + i𝐷)𝜑+

+ i ̄𝜓(P−𝜎̄ + P+𝜎)𝜓 + i ̄𝜓𝜆̄𝜑 + i𝜓𝜆𝜑̄ + total derivative) .(2.36)

Having coupled matter to the vector superfield, which we want to be in WZ gauge, we have to
remember to perform the dWF transformation after a a SUSY variation, therefore eqs. (2.13)
get modified in

̃𝛿𝜑 = 𝜖𝜓 ,
̃𝛿𝜓𝑎 = 𝜖𝑎𝐹 + i(𝛾 ̄𝜖)𝑎 ⋅ 𝒟𝜑 + i(P− ̄𝜖)𝑎𝜎𝜑 + i(P+ ̄𝜖)𝜎̄𝜑 ,
̃𝛿𝐹 = i ̄𝜖𝛾 ⋅ 𝒟𝜓 − i ̄𝜖𝜆̄𝜑 − i ̄𝜖P+𝜓𝜎 − i ̄𝜖P−𝜓𝜎̄ . (2.37)

One can easily verify that 𝑆𝚽𝐕 (2.36) is invariant under variations (2.37). Another remarkable
fact is that

( ̄𝜖Q̄)(𝜖Q) ∫ d𝑧d ̄𝑧( ̄𝜓𝜓 − i𝜑̄(𝜎 + 𝜎̄)𝜑) = 𝜖 ̄𝜖𝑆𝚽𝐕 , (2.38)

this will turn out to be very important in the following.

2.1.6 Interactions

Since now we have written D-term densities, which are to be integrated over 𝜃 and ̄𝜃 to yield
the corresponding Lagrangian density. However if we take a holomorphic function of some
chiral superfields 𝑊(𝚽𝑖), it turns out that

𝑆𝑊 = − ∫ d𝑧d ̄𝑧d2𝜃𝑊(𝚽)| ̄𝜃=0 = − ∫ d𝑧d ̄𝑧 (𝐹𝑖𝜕𝑖𝑊(𝜑) + 1
2𝜕𝑖𝜕𝑗𝑊(𝜑)𝐹𝜓𝑖𝜓𝑗) , (2.39)

is SUSY invariant as well as its hermitian conjugate, which we must add to the action as well to
keep it hermitian. Usually 𝑊 is called superpotential, and it is an instance of F-term, i.e. a term
which is integrated just in half of Grassmann variables. A fundamental difference with D-terms
is that, to keep action invariant under R-symmetries, we must have R𝑅[𝑊] = R𝐿[𝑊] = 1. We
notice that since 𝑊 is a holomorphic function of chiral superfields it satisfies itself D̄𝑎𝑊 = 0.
In its expansion as a chiral superfield there is the term 1

2𝜃𝜃𝐹𝑊 , which is the one selected by
Berezin integration: explicitly we have 𝐹 (𝑊) = 𝐹𝑖𝜕𝑖𝑊 + 1

2𝜕𝑖𝜕𝑗𝑊𝐹𝜓𝑖𝜓𝑗. Since 𝑊 is uncharged
under G, using eq. (2.13) to see that

(𝜖Q) ∫ d𝑧d ̄𝑧 ̄𝜖𝜓(𝑊) = ̄𝜖𝜖𝑆𝑊 , (2.40)

where 𝜓(𝑊) and ̄𝜓(𝑊̄) are the fermion present in the superpotential. This, again, will be
important in the following. An illustrative example of superpotential is the addition of 𝑊(𝚽) =
1
2𝑚Φ2 to the matter action

𝑆𝚽 + 𝑆𝑊 + 𝑆𝑊̄ = ∫ d𝑧d ̄𝑧 (4 ̄𝜕𝜑̄𝜕𝜑 − i ̄𝜓𝛾 ⋅ 𝜕𝜓 + ̄𝐹𝐹 − 𝑚𝐹𝜑 + 𝑚 ̄𝐹 𝜑̄ + 1
2𝑚𝜓𝜓 + 1

2𝑚 ̄𝜓 ̄𝜓) ,
(2.41)
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in which we can integrate out 𝐹 = 𝑚𝜑̄ and ̄𝐹 = 𝑚𝜑. We see that we recover a matter action in
which 𝜑, 𝜓 and ̄𝜓 acquired mass 𝑚5. As far as R-charges are concerned we see that the correct
assignment is R𝑅[𝚽] = R𝐿[𝚽] = 1

2 . Notice that this constraint arise form the presence of 𝑊 :
had not we had 𝑊 , we were free to choose any R-charge for 𝚽. In the case of G = G′ × U(1)𝑟

we can consider also some other terms. If we introduce a holomorphic function 𝑊(𝚺𝐴), with
𝐴 = 1, … 𝑟, called twisted superpotential we can add to the action the following term

𝑆𝑊 =
𝑟

∑
𝐴=1

∫ d𝑧d ̄𝑧d𝜃+d ̄𝜃−𝚺𝐴|𝜃−= ̄𝜃+=0 =

=
𝑟

∑
𝐴=1

∫ d𝑧d ̄𝑧(2i(𝐷𝐴 − 2𝐹𝐴;𝑧 ̄𝑧)𝜕𝐴𝑊(𝜎𝐴) + 2𝜆+
𝐴𝜆̄−

𝐴𝜕2
𝐴𝑊(𝜎𝐴)) , (2.42)

together with its hermitian conjugate. For 𝑊 = ∑𝑟
𝐴=1

1
4(i𝜉𝐴 + 𝜗𝐴

2𝜋 )𝚺𝐴 one recovers the usual
Fayet–Iliopulos and theta term6

𝑆𝑊 + 𝑆 ̄̃𝑊 =
𝑟

∑
𝐴=1

∫ d𝑧d ̄𝑧 (−𝜉𝐴𝐷𝐴;𝑧 ̄𝑧 − 2i𝐹𝐴;𝑧 ̄𝑧
𝜗𝐴
2𝜋 ) . (2.43)

As a concluding remark of this section we want to stress that we do not review all possible
term that can be written in a 𝒩 = (2, 2) SUSY action, but only those that will be useful for
our purposes. Even if we tried to organize every term in such a way it can be written in term
of superspace, there exist some interactions that do not fit this formalism [87] but are not
relevant for our purposes.

2.2 𝒩 = (0, 2) Supersymmetry

In two dimension it is also possible to build actions which are less supersymmetric than the
those described above, since they preserve just two supercharges. In this sense 𝒩 = (2, 2)
supersymmetry is a special case of the one we are briefly going to discuss. These actions will
be actually the building blocks for the computations of the Elliptic Genera. Interested reader
can consult [82, 88–91].

2.2.1 Superspace

The rough idea to mimic what we did in previous section is to remove half of theta variables
and to remain just with 𝜃+ and ̄𝜃+:

Q+ = 𝝏+ − ̄𝜃+ ̄𝜕 , Q̄+ = ̄𝝏+ − 𝜃+ ̄𝜕 , D+ = 𝝏+ + ̄𝜃+ ̄𝜕 , D̄+ = ̄𝝏+ + 𝜃+ ̄𝜕 , (2.44)

having non-trivial anticommutation relation

{Q+, Q̄+} = −2 ̄𝜕 , {D+, D̄+} = 2 ̄𝜕 . (2.45)

The most general bosonic superfield is simply

𝓑(0,2) = 𝜑 + 𝜃+𝜓+ + ̄𝜃+ ̄𝜓+ + 𝜃+ ̄𝜃+𝑠 , (2.46)
5Recall that massive Dirac equation is equivalent to two coupled Weyl equations.
6Recall that −2i𝐹𝑧 ̄𝑧 ∈ ℝ.
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while the most general fermionic superfield is

𝓕 (0,2) = 𝜆+ + 𝜃+𝐺 + ̄𝜃+𝐻 + 𝜃+ ̄𝜃+𝜒+ . (2.47)

More information about 𝒩 = (0, 2) superspace (also for the SUGRA point of view) can be
found in [84].

2.2.2 Chiral and Fermi Superfield

Imposing the constraint

D̄+𝚽(0,2) = 0 , (2.48)

the general solution, called chiral superfield, is

𝚽(0,2) = 𝜑 − i𝜃+𝜓+ + 𝜃+ ̄𝜃+ ̄𝜕𝜑 . (2.49)

A novelty is that is possible to introduce also a Fermi superfield, defined by

D̄+𝚲(0,2) = ℰ(𝚽𝑖) , (2.50)

where ℰ(𝚽𝑖) = ℰ(𝜑𝑖)+𝜃+𝜕𝑖ℰ(𝜑𝑖)𝜓+;𝑖 +𝜃+ ̄𝜃+ ̄𝜕ℰ(𝜑𝑖) = 𝐸 − i𝜃+𝜓(𝐸)
+ +𝜃+ ̄𝜃+ ̄𝜕𝐸 is an holomorphic

function of some chiral superfield; therefore we have

𝚲(0,2) = i𝜓− + i𝜃+𝐺 − ̄𝜃+𝐸 + i𝜃+ ̄𝜃+( ̄𝜕𝜓− − 𝜓(𝐸)
+ ) . (2.51)

SUSY variations are easily obtained by the action of the operator 𝜹 = 𝜖+Q+ + ̄𝜖+Q̄+ to the 𝚽
and 𝚲−, so that we get

𝛿𝜑 = −i𝜖+𝜓+ , 𝛿𝜓− = 𝜖−𝐺 + i ̄𝜖+𝐸 ,
𝛿𝜓+ = 2i ̄𝜖+ ̄𝜕𝜑 , 𝛿𝐺 = 2 ̄𝜖+ ̄𝜕𝜓− − ̄𝜖+𝜓(𝐸)

+ . (2.52)

It is possible to see that

𝚽(0,2) = 𝚽(2,2)|𝜃−= ̄𝜃−=0 ,
𝚲(0,2) = D−𝚽(2,2)|𝜃−= ̄𝜃−=0 with ℰ = 0 , (2.53)

with suitable definitions of component fields. The actions for the chiral and Fermi superfields
are respectively

𝑆(0,2)
𝚽 = − ∫ d𝑧d ̄𝑧d𝜃+d ̄𝜃+𝚽̄𝜕𝚽 = ∫ d𝑧d ̄𝑧(−2𝜑̄𝜕 ̄𝜕𝜑 + ̄𝜓−𝜕𝜓−) ,

𝑆(0,2)
𝚲 = − ∫ d𝑧d ̄𝑧d𝜃+d ̄𝜃+𝚲̄𝚲

= ∫ d𝑧d ̄𝑧(− ̄𝜓+ ̄𝜕𝜓+ + 1
2

̄𝐸𝐸 + 1
2

̄𝐺𝐺 + 1
2

̄𝜓+𝜓−
(𝐸) − 1

2
̄𝜓−
(𝐸)𝜓+) . (2.54)
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2.2.3 Vector Multiplet

For the vector multiplet the story is a bit more delicate. We will discuss what happen in the
Abelian case and then we will generalize our result to the non-Abelian case. In fact vector
multiplet consist of a pair of superfields 𝓐 and 𝐕(0,2). A super-gauge transformation acts in
the following way:

𝐕(0,2) ↦ 𝐕(0,2) − i
2(𝛀 − 𝛀̄) , 𝓐 ↦ 𝓐 − i

2𝜕(𝛀 + 𝛀̄) . (2.55)

Using these transformations it is possible to write fields in WZ gauge as

𝐕(0,2) = 1
2𝜃+ ̄𝜃+ ̄𝐴 , 𝓐 = 1

2(𝐴 + 𝜃+𝜆− − ̄𝜃+𝜆̄− + 𝜃+ ̄𝜃+𝐷) . (2.56)

A residual gauge is parameterized by

𝛀WZ = 𝜔 + 𝜃+ ̄𝜃+ ̄𝜕𝜔 , 𝜔 ∈ ℝ , (2.57)

under which we have that

𝐴 ↦ 𝐴 + 𝜕𝜔 , ̄𝐴 ↦ ̄𝐴 + ̄𝜕𝜔 . (2.58)

SUSY variations have to be accompanied with a compensating dWF gauge transformation
(with 𝛀 = −1

2𝜃+ ̄𝜖+ ̄𝐴) in order to remain in the WZ gague: the result is

̃𝛿𝐴 = 1
2(𝜖+𝜆+ − ̄𝜖+𝜆̄+) ,

̃𝛿 ̄𝐴 = 0 ,
̃𝛿𝜆+ = ̄𝜖+(−𝐷 + 2𝐹𝑧 ̄𝑧) ,
̃𝛿𝜆̄+ = 𝜖+(−𝐷 − 2𝐹𝑧 ̄𝑧) ,
̃𝛿𝐷 = −(𝜖+ ̄𝜕𝜆+ + ̄𝜖+𝜕𝜆̄+) . (2.59)

The gauge-invariant field strength (see [82]) is expressed with the following Fermi superfields.

𝚼 = 4[𝜕 + 𝓐, 𝑒𝐕(0,2)D̄+𝑒−𝐕(0,2) ] = −𝜆+ + ̄𝜃+(𝐷 + 2𝐹𝑧 ̄𝑧) + 𝜃+ ̄𝜃+ ̄𝜕𝜆+ .
𝚼̄ = −4[𝜕 + 𝓐, 𝑒−𝐕(0,2)D+𝑒𝐕(0,2) ] = 𝜆̄+ + 𝜃+(𝐷 − 2𝐹𝑧 ̄𝑧) + 𝜃+ ̄𝜃+ ̄𝜕𝜆̄+ . (2.60)

We can build the action as

𝑆(0,2)
𝐕,ab. = ∫ d𝑧d ̄𝑧d𝜃+d ̄𝜃+𝚼̄𝚼 = ∫ d𝑧d ̄𝑧(−4𝐹 2

𝑧 ̄𝑧 + 𝐷2 − 2𝜆̄+ ̄𝜕𝜆+) . (2.61)

It is easy to guess the generalization of eqs. (2.59) and (2.61) for a non-Abelian gauge group
since the field content is very limited: we have

̃𝛿𝐴 = 1
2(𝜖+𝜆+ − ̄𝜖+𝜆̄+) ,

̃𝛿 ̄𝐴 = 0 ,
̃𝛿𝜆+ = ̄𝜖+(−𝐷 + 2ℱ𝑧 ̄𝑧) ,
̃𝛿𝜆̄+ = 𝜖+(−𝐷 − 2ℱ𝑧 ̄𝑧) ,
̃𝛿𝐷 = −(𝜖+𝒟̄𝜆+ + ̄𝜖+𝒟𝜆̄+) , (2.62)
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and

𝑆(0,2)
𝐕 = ∫ d𝑧d ̄𝑧(−4ℱ2

𝑧 ̄𝑧 + 𝐷2 − 2𝜆̄+𝒟̄𝜆+) . (2.63)

An 𝒩 = (2, 2) vector superfield 𝐕(2,2) as in eq. (2.20) splits in a 𝑁 = (0, 2) 𝐕(0,2) vector
with associated 𝚼 as in eq. (2.60) (with ℰ = 0)7, and in a chiral multiplet in the adjoint
𝝌̄ = 𝚺|𝜃−= ̄𝜃−=0 containing component fields 𝜎̄ and 𝜆̄−. A remarkable fact concerning the action
for vector multiplet is that

Q+ ∫ d𝑧d ̄𝑧(𝜆+(𝐷 + 2ℱ𝑧 ̄𝑧)) = 𝑆𝐕 , (2.64)

we will use this property later. To conclude this subsection we want to observe that, upon
redefinition of component fields, one has

𝑆(2,2)
𝐕 = 𝑆(0,2)

𝐕 + 𝑆(0,2)
𝚽 , (2.65)

where 𝚽 is in the adjoint representation.

2.2.4 Gauge–Matter Coupling

Under gauge transformation matter change as

𝚽 ↦ 𝑒−i𝛀𝚽 , 𝚽̄ ↦ 𝚽̄𝑒i𝛀̄ , 𝚲 ↦ 𝑒−i𝛀𝚲 , 𝚲̄ ↦ 𝚽̄𝑒i𝛀̄ . (2.66)

The actions for that kind of matter interacting with SYM are

𝑆(0,2)
𝚽𝐕 = − ∫ d𝑧d ̄𝑧d𝜃+d ̄𝜃+𝚽̄𝑒− 1

2 𝐕(𝜕 + 𝓐)𝑒− 1
2 𝐕𝚽

= ∫ d𝑧d ̄𝑧(−2𝜑̄𝒟𝒟̄𝜑 − 𝑖
2 𝜑̄(2ℱ𝑧 ̄𝑧 − 𝐷)𝜑 + ̄𝜓−𝒟𝜓− − 1

2
̄𝜓−𝜆+𝜑 + 1

2 𝜑̄𝜆̄+𝜓−) ,

𝑆(0,2)
𝚲𝐕 = − ∫ d𝑧d ̄𝑧d𝜃+d ̄𝜃+𝚲̄𝑒−𝐕𝚲

= ∫ d𝑧d ̄𝑧(− ̄𝜓+𝒟̄𝜓+ + 1
2

̄𝐸𝐸 + 1
2

̄𝐺𝐺 + 1
2

̄𝜓+𝜓−
(𝐸) − 1

2
̄𝜓−
(𝐸)𝜓+) . (2.67)

Due to dWF gauge transformation, eqs. (2.52) gets modified:

𝛿𝜑 = −i𝜖+𝜓+ , 𝛿𝜓− = 𝜖−𝐺 + i ̄𝜖+𝐸 ,
𝛿𝜓+ = 2i ̄𝜖+𝒟̄𝜑 , 𝛿𝐺 = 2 ̄𝜖+𝒟̄𝜓− − ̄𝜖+𝜓(𝐸)

+ . (2.68)

Also these two actions (2.67) have the property that

(Q+ + Q̄+) ∫ d𝑧d ̄𝑧(i𝜑̄𝒟𝜓− − i
2 𝜑̄𝜆+𝜑) = 𝑆𝚽 ,

(Q+ + Q̄+) ∫ d𝑧d ̄𝑧(1
2

̄𝜓+𝐺 − i
2

̄𝐸𝜓+) = 𝑆𝚲 ; (2.69)

note that, this time, we specialized 𝜖+ = ̄𝜖+ = 1. To conclude this subsection we want to
observe that

𝑆(2,2)
𝚽𝐕 = 𝑆(0,2)

𝚽𝐕 + 𝑆(0,2)
𝚲𝐕 , (2.70)

with ℰ𝚲 = 𝝌𝚽.8

7In the non-Abelian case with the replacements 𝐹𝑧 ̄𝑧 ↦ ℱ𝑧 ̄𝑧 and ̄𝜕 ↦ 𝒟̄.
8We have that ℰ ≠ 0 because of the coupling with vector superfield, see [82] for details.
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2.2.5 Interactions

Now we want to describe more generic interactions in 𝒩 = (0, 2) theories. They can be
expressed in terms of a holomorphic function of the chiral multiplets 𝒥 (𝚽𝑎) = 𝐽 − i𝜃+𝜓(𝐽)

+ +
𝜃+ ̄𝜃+ ̄𝜕𝐽 , together with its “barred” version ̄𝒥 (𝚽̄𝑎). We can consider the term

𝑆𝒥 = −i ∑
𝑎

∫ d𝑧d ̄𝑧d𝜃+𝚲𝑎𝒥 𝑎| ̄𝜃=0 = ∑
𝑎

∫ d𝑧d ̄𝑧(𝐺𝑎𝐽𝑎 + i𝜓+
𝑎 𝜓− 𝑎

(𝐽)) , (2.71)

which are SUSY invariant (up to a total derivative) if

∑
𝑎

𝐸𝑎𝐽𝑎 = 0 , (2.72)

where 𝐸𝑎 are the bottom component of ℰ𝑎 which are used in the definition of Fermi superfield.
Another property we have is that

(Q+ + Q̄+) ∫ d𝑧d ̄𝑧 ∑
𝑎

𝜓+
𝑎 𝐽𝑎 = 𝑆𝒥 . (2.73)

In the case of a theory having 𝒩 = (2, 2) SUSY with respectively a superpotential and a
twisted superpotential we have that

𝐽𝑎(𝜑) = 𝜕𝑊
𝜕𝜑𝑎

, 𝐽𝑎(𝜎) = 𝜕𝑊
𝜕𝜎𝑎

. (2.74)



3. Elliptic Genus from Gauge Theories

In this chapter we introduce one of the main ingredient of this thesis: the Elliptic Genus. We
will give the mathematical definition and then we will see how to compute it in the context
of 𝒩 = (0, 2) SUSY gauge theories using the technique of supersymmetric localization mainly
following [60, 61].

3.1 Witten Index and Elliptic Genus

As already mentioned in the introduction, topology and SUSY gauge theories have a deep
relationship. If one consider a SUSY QM having a Riemaniann manifold 𝑀 as target space,
one can introduce an important quantity, the Witten Index (see [92])

ℐW = tr[(−1)𝐹 𝑒𝛽𝐻] , (3.1)

which turns out to compute the Euler characteristic 𝜒(𝑀) of the manifold under consideration
(see also [83]). The Euler Characteristic is computed as

𝜒(𝑀) = ∫
𝑀

𝑑ℝ

∏
𝑖

𝑥𝑖 , (3.2)

where 𝑥𝑖 are the Chern roots and 𝑑ℝ is the real dimension of 𝑀1. It is possible to generalize
genus (3.2) for a complex manifold 𝑀 to (see [60, 61, 93, 94])

ℐEG(𝑞, 𝑦) = ∫
𝑑ℝ

∏
𝑖

𝑥𝑖
𝜃1(𝜏∣ 𝑥𝑖

2𝜋i)
𝜃1(𝜏∣ 𝑥𝑖

2𝜋i − 𝑧) , (3.4)

where the 𝜃1 is defined in App. B, 𝑞 = 𝑒2𝜋i𝜏 and 𝑦 = 𝑒2𝜋i𝑧. In terms of bundles, eq. (3.4) means
that we are computing the holomorphic Euler characteristic of the formal power series of vector
bundles (see [95])

𝐸𝑞,𝑦 =
∞

⨂
𝑛=1

[⋀•
−𝑦𝑞𝑛 𝑇𝑀 ⊗ ⋀•

−𝑦−1𝑞𝑛−1 𝑇 ∗
𝑀 ⊗ Sym•

𝑞𝑛(𝑇𝑀 ⊕ 𝑇 ∗
𝑀)] , (3.5)

where 𝑇𝑋 is the holomorphic tangent bundle, and we defined the formal power series

⋀•
𝑡

𝑉 ∶=
∞

∑
𝑖=0

𝑡𝑖 ⋀𝑖 𝑉 , Sym•
𝑡 𝑉 ∶=

∞
∑
𝑖=0

𝑡𝑖 Sym𝑖 𝑉 . (3.6)

1By Hirzebruch–Riemann–Roch theorem Chern classes of 𝑀 splits as

𝑐(𝑀) =
𝑑ℝ

∏
𝑖

(1 + 𝑥𝑖) , (3.3)

which implicitly defines 𝑥𝑖’s.
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This means that

ℐEG(𝑦, 𝑞) = 𝑦
𝑑ℂ
2 ∫

𝑀
ch(𝐸𝑞,𝑦) td(𝑀) . (3.7)

Although (3.4) seems very complicate, it has some important properties. First of all it captures
many other invariants that appear in literature: in the limit of 𝑞 → 0 it reduces to the so called
𝜒𝑦 genus, while for 𝑦 = 1 we simply recover the Euler characteristic, then for 𝑦 = −1 we have
the signature, for 𝑦 = −√𝑞 the ̂𝐴 genus. Moreover, if 𝑀 is Calabi–Yau (CY), the elliptic genus
is a Jacobi form of weight 0 and index 𝑑ℂ

2 , that is, under modular transformation we have

ℐEG (𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 ∣ 𝑧

𝑐𝜏 + 𝑑) = 𝑒i𝜋 𝑐
𝑐𝜏+𝑑 𝑑ℂ𝑧2ℐEG(𝜏|𝑧) . (3.8)

In Physics, elliptic genus appeared in late 80’s, for instance [96–101] where different compu-
tations of elliptic genera were carried out. In the following years, elliptic genus for a Landau–
Ginzburg model was computed [102] using localization; then the result was extended to Gepner
models using the orbifold Landau–Ginzburg description [103–106]. The elliptic genus of a sub-
space of a Kähler quotient was studied in [107, 108]. In [60] there is a path-integral derivation
of elliptic genus for 𝒩 = (2, 2) and 𝒩 = (0, 2) SUSY gauge theory in two dimension with
rank-one gauge group; in [61] the result is extended to arbitrary rank gauge groups. If the
theory has a smooth geometric phase the formulae found in these papers reproduce the math-
ematical results of [94, 109]. The definition that is given for 𝒩 = (2, 2) theories having flavor
symmetry group K (with Cartan generators 𝐾𝑎) and left-moving R-symmetry R𝐿 (which is
discrete if the theory is not conformal)

ℐEG = trRR(−1)𝐹 𝑞𝐻𝐿 ̄𝑞𝐻𝑅𝑦𝑅𝐿 ∏
𝑎

𝜁𝐾𝑎𝑎 , (3.9)

where the trace is taken over Ramond-Ramond sector (periodic boundary condition for fermion)
and 𝐻𝐿 = 1

2(𝐻 + i𝑃) and 𝐻𝑅 = 1
2(𝐻 − i𝑃) are respectively the left- and right-moving Hamil-

tonians in Euclidean signature. In the case of an 𝒩 = (0, 2) theory we have

ℐEG = trRR(−1)𝐹 𝑞𝐻𝐿 ̄𝑞𝐻𝑅 ∏
𝑎

𝜁𝐾𝑎𝑎 . (3.10)

Notice that in the latter case we do not have any left-moving U(1) R-symmetry, but only flavor
symmetries. It is obvious that any 𝒩 = (2, 2) theory can be regarded as an 𝒩 = (0, 2) theory,
and therefore, once one finds an expression for eq. (3.10) one has also one for eq. (3.9). Of
course, left-moving R-symmetry that we have in the 𝒩 = (2, 2) case is regarded simply as a
flavor symmetry in the 𝒩 = (0, 2) case. In the following sections we will focus on this latter
case, which is, at least conceptually, more general. As a final comment, notice that the elliptic
genus seems to depend both on 𝜏 and ̄𝜏 ; we will however discover that the dependence on
̄𝜏 disappears. This is because states with 𝐻𝑅 ≠ 0 come in pairs with all equal charges but

opposite fermionic number, thus only states with 𝐻𝑅 = 0 will contribute. Moreover, since the
spin 𝐻𝑅 −𝐻𝐿 does not renormalize, the elliptic genus is a quantity that does not change under
small deformations of the theory provided that there are not states coming in and escaping to
infinity in field space (this happens whenever there are flat directions).
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3.2 Derivation via Localization

Supersymmetric localization (since [15]) is a powerful technique that allows us to compute
exactly some kind of PI including partition functions and vacuum expectation values of certain
operators. It is beyond the purposes of this thesis to explain in detail this technique: the
interested reader can see the review article [27] and reference therein (for shorter introduction
see also [25, 26]); we will limit ourselves to sketch the main idea and to apply it to the case at
hand.

3.2.1 Localization Argument

Suppose we have an action 𝑆 of a given theory and that we want to compute the VEV of a
𝒬-closed operator 𝒪

⟨𝒪⟩ = ∫[dΦ]𝑒−𝑆[Φ]𝒪[Φ] , (3.11)

where Φ denotes all the field collectively. Suppose that the theory possess a fermionic symmetry
charge (called localizing charge) 𝒬, that is 𝒬𝑆 = 0, that squares to a bosonic symmetry of the
action 𝐾. Choosing a functional 𝑉 [Φ] such that 𝐾𝑉 = 0, we can consider the following
localizing action, 𝑆loc = 𝒬𝑉 [Φ], and deform the PI2 (3.11) in the following way

⟨𝒪⟩(𝑡) = ∫[dΦ]𝑒−𝑆[Φ]−𝑡𝑆loc[Φ]𝒪[Φ] , (3.12)

which have a (fake) dependence on the parameter 𝑡, indeed since

𝜕𝑍
𝜕𝑡 = − ∫[dΦ]𝒬𝑉 [Φ]𝑒−𝑆[Φ]−𝑡𝑆loc[Φ]𝒪[Φ] = − ∫[dΦ]𝒬 (𝑉 [Φ]𝑒−𝑆[Φ]−𝑡𝑆loc[Φ]𝒪[Φ]) , (3.13)

if the measure [dΦ] is 𝒬-invariant, i.e. the fermionic symmetry is non-anomalous, we have3

𝜕⟨𝒪⟩
𝜕𝑡 = 0 ⇒ ⟨𝒪⟩(0) = lim

𝑡→∞
⟨𝒪⟩(𝑡) . (3.14)

It is important to notice the VEV of the operator is unchanged if we add to it a 𝒬-exact
term: this means that what actually counts is the cohomology class of 𝒬. Similarly, this
VEV is independent also of the coupling constants of 𝒬-exact term in the action. We can
now evaluate ⟨𝒪⟩ using eq. (3.14). Suppose that4 𝑆loc|bos ≥ 0, then in the limit 𝑡 → ∞ all
the fields configuration with 𝑆loc|bos > 0 are infinitely suppressed and we remain just with field
configurations Φ0 such that 𝑆loc[Φ0]|bos. = 0. This is called localization locus5 ℳloc. Expanding
the fields as6

Φ = Φ0 + 𝑡−1/2Φ̃ , (3.15)
2We remind that all PI in the present thesis are Euclidean PI. Consequently a filed that in Minkowski realm

we would call conjugate of another, here becomes independent of that.
3We have also to assume that there are no boundary terms at the infinity of the filed configuration space.

This may be done with a suitable choice of 𝑉 .
4Actually, it is important that this holds on the “contour” of integration. This originates from the fact that,

in Euclidean, we doubled the field content, and therefore, have to impose some “reality conditions”. These
specify the “contour”. Along this contour the PI have to be convergent.

5It is know also as BPS locus since it turns out that one localizes on some BPS configurations.
6The power of 𝑡 has been chosen such that the kinetic terms are canonically normalized.
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for large values of 𝑡 we have

𝑆[Φ] + 𝑡𝒬𝑉 [Φ] = 𝑆[Φ0] + ∬ ⎛⎜
⎝

Φ̃𝛿2𝑆loc[Φ]
𝛿Φ2 ∣

Φ=Φ0

Φ̃⎞⎟
⎠

+ 𝑂(𝑡−1/2) , (3.16)

where in the second term on RHS the integral are on the worldsheet coordinates, that we
omitted. We see that this is a standard Gaussian integral, therefore

⟨𝒪⟩(0) = lim
𝑡→∞

⟨𝒪⟩(𝑡) = ∫
ℳloc

[dΦ0]𝑒𝑆[Φ0] ⎡⎢
⎣

sdet ⎛⎜
⎝

𝛿2𝑆loc[Φ]
𝛿Φ2 ∣

Φ=Φ0

⎞⎟
⎠

⎤⎥
⎦

−1

𝒪[Φ0] , (3.17)

where sdet is the super-determinant. Some comments are in order: first, when ℳloc degenerates
to constant field configurations, we end up with a finite dimensional integral: we reduced the
original PI to a so-called matrix model. Second, the computation of sdet, that is the fermions
one-loop functional determinants over that ones for bosons, can be made easy, or feasible,
thanks to SUSY: several cancellations occur and sometimes is possible to compute it even if
the boson and fermion one-loop determinants unknown [25, 110]. Third, there is a caveat in
computing sdet: there can appear zero-modes both for bosons and fermions. In this case, the
sdet has to be computed without these zero-modes, and the integration over these has to be
carried out separately. Finally we remark that formula (3.17) is exact.

3.2.2 Application to the Elliptic Genus

Let us now apply this technique to the computation of elliptic genera. Consider a 𝒩 = (0, 2)
theory with gauge group G with some matter in certain representation ℜ. The effect of the
insertion of 𝜁𝐾𝑎𝑎 in the path integral amounts to switch on a flat background connection for the
flavor symmetry:

𝜉𝑎 = ∮
𝑎-cycle

𝐴flav.
𝑎 − 𝜏 ∮

𝑏-cycle
𝐴flav.

𝑎 , (3.18)

this is equivalent to specifying non-trivial boundary condition twisted by flavor symmetry. The
effect of this flat connection is to covariantize the derivatives w.r.t. the flavor group K. Then
the elliptic genus reads

ℐEG = ∫
PBC

[dΦ]𝑒−𝑆[Φ,𝜉] , (3.19)

where “PBC” means periodic boundary conditions7, with 𝑆 = 𝑆𝐕 + 𝑆𝚽𝐕 + 𝑆𝚲𝚽 + 𝑆𝒥 and [dΦ]
we denote the functional measure of all fields collectively. At this point we have to choose a
localizing charge: we set 𝒬 = Q+ + Q̄+. Clearly 𝑆 is 𝒬-closed, that is 𝒬𝑆 = 0, but, thanks to
eqs. (2.64), (2.69) and (2.73), we discover that 𝑆 is also 𝒬-exact, that is 𝑆 = 𝒬𝑉 , for a certain
𝑉 . In particular, we can take 𝑒−2𝑆𝐕 + 𝑔−2(𝑆𝚽𝐕 + 𝑆𝚲𝐕) as localizing actions: this means that
the quantity

∫
PBC

[d𝐴][d ̄𝐴][d𝜆+][d𝜆̄+][d𝐷][d𝜑][d𝜑̄][d𝜓−][d ̄𝜓−][d𝐺][d ̄𝐺]𝑒−𝑒−2𝑆𝐕−𝑔−2(𝑆𝚽𝐕+𝑆𝚲𝐕)−𝑆𝒥 , (3.20)

7In particular, the “RR” subscript regards spatial periodicity (for both right- and left-movers), while the
insertion of (−1)𝐹 specify that also time boundary conditions should be periodic (for both right- and left-
movers).



3.2. Derivation via Localization 23

does not depend on 𝑒 and 𝑔, since its derivative w.r.t. these parameters is 𝒬-exact. We say
that the path integral localizes on zeroes of 𝑆𝐕, 𝑆𝚽𝐕 and 𝑆𝚲𝐕 in the limit 𝑒, 𝑔 → 0. In order
to determine the localization locus ℳloc we have to impose some reality conditions. We choose

𝐴† = ̄𝐴 , (𝜆+)† = 𝜆̄+ , 𝐷† = 𝐷 , 𝜑† = 𝜑̄ , (𝜓−)† = ̄𝜓− 𝐺† = ̄𝐺 . (3.21)

We see from eq. (2.63) that the localization locus for the vector superfield consists of flat
connections of ℱ𝑧 ̄𝑧 = 0 (modulo gauge transformation) which, if G has connected and simply-
connected non-Abelian part, turns out to be

ℳloc = 𝔐/𝑊 , 𝔐 = 𝔥/(Γ𝔥 + 𝜏Γ𝔥) ≃ 𝑇 2𝑟 , (3.22)

where 𝑟 is the rank of G, 𝔥 is the Cartan subalgebra, Γ𝔥 is the coroot lattice and 𝑊 is the
Weyl group. We parameterize this flat connections along Cartan generators with 𝑢𝑎. As far as
the gaugino is concerned, every component along the Cartan has a fermionic zero-mode since
is not charged under anything. Then, to attain the zero of 𝑆𝐕 we must have also 𝐷 = 0. The
matter actions eqs. (2.67) attain zero value when all the fields are vanishing. In order to go on
with the computation let us analyze the rank-one case which is simpler and then we will state
the result for arbitrary rank.

3.2.3 Rank one case

A generic field 𝜙 with PBC on 𝑇 2 can be decomposed into its Fourier modes [111]

𝜙(𝑧, ̄𝑧) = 𝜙0 + ∑
{𝑛,𝑚}≠{0,0}

𝑐𝑛,𝑚𝜙𝑛,𝑚(𝑧, ̄𝑧) , 𝜙𝑛,𝑚(𝑧, ̄𝑧) = exp { 𝜋
𝜏2

(𝑛(𝑧 − ̄𝑧) + 𝑚(𝜏 ̄𝑧 − ̄𝜏𝑧))} ,

(3.23)

where 𝜙0 is the constant zero-mode. Then it is convenient to split the field in the following
way

𝐴 = 𝑢̄ + 𝑒𝑎 , ̄𝐴 = 𝑢 + 𝑒 ̄𝑎 , 𝜆̃+ = 𝜆̃+
0 + 𝑒 ̃𝜆̂+ , 𝐷 = 𝐷0 + 𝑒𝐷̂ . (3.24)

Then the elliptic genus amounts to

ℐEG = 1
|𝑊| ∫

𝔐
d𝑢d𝑢̄d𝜆+

0 d𝜆̄+
0 ∫

ℝ
d𝐷0𝒵(𝑢, 𝑢̄, 𝜆+

0 , 𝜆̄+
0 , 𝐷0) , (3.25)

where 𝒵 is

𝒵(𝑢, 𝑢̄, 𝜆+
0 , 𝜆̄+

0 , 𝐷0) =

∫
PBC

[d𝑎][d ̄𝑎][d𝜆̂+][d ̄𝜆̂+][d𝐷̂][d𝜑][d𝜑̄][d𝜓−][d ̄𝜓−][d𝐺][d ̄𝐺]𝑒−𝑒−2𝑆𝐕−𝑔−2(𝑆𝚽𝐕+𝑆𝚲𝐕)−𝑆𝒥 . (3.26)

Notice that switching off the interactions, that is performing the limit 𝑒, 𝑔 → 0, the expression
𝒵(𝑢, 𝑢̄, 0, 0, 𝐷0) reduces to a products of one-loop determinants8 with zero-mode removed and
possibly regulated by 𝐷0:

lim
𝑒,𝑔→0

𝒵(𝑢, 𝑢̄, 0, 0, 𝐷0) = 𝑍vec
1−loop(𝑢) ∏

𝜌∈ℜc

𝑍chiral
1−loop(𝜌; 𝑢, 𝑢̄, 𝐷0) ∏

𝜌∈ℜf

𝑍Fermi
1−loop(𝜌; 𝑢) , (3.27)

8The contribution from the classical action is absent since all the action is 𝒬-exact.
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where 𝜌 are the weights of representations ℜc and ℜf of the group G × K. For the latter we
have introduced the fugacities along the Cartan 𝜁𝑎 = 𝑒2𝜋i𝜉𝑎 , as in eq. (3.18). Using expansion
(3.23) it is easy to compute that functional determinants. Notice that, as far as the vector
multiplet is concerned, we have to perform a gauge fixing: we take9

(𝜕 ̄𝑎)2 + ( ̄𝜕𝑎)2 = 0 . (3.29)

We have also to include the ghost action10

𝑆ghost = 4 ∫ d𝑧d ̄𝑧 ( ̄𝑐𝒟𝒟̄𝑐) . (3.30)

The contribution from the vector field cancels against that from ghost and we remain with

𝑍vec
1−loop(𝑢) = ∏′

𝑛,𝑚
(𝑛 − 𝜏𝑚) × ∏

𝛼∈ℛG

∏
𝑛,𝑚

(𝑛 − 𝜏𝑚 + 𝛼(𝑢)) (3.31)

= −2𝜋i𝜂2(𝜏) ∏
𝛼∈ℛ

i𝜃1(𝜏|𝛼(𝑢))
𝜂(𝜏) , (3.32)

where the prime means that we have excluded {𝑛, 𝑚} = {0, 0} from the product and we denoted
the roots of G as ℛG. Using the 𝜁-regularization (see [111, 112]), and Dedekind 𝜂, defined in
B, the contribution form the chiral multiplet reads

𝑍chiral
1−loop(𝜌; 𝑢, 𝑢̄, 𝐷0) = ∏

𝑚,𝑛

𝑛 + ̄𝜏𝑚 + 𝜌(𝑢̄, ̄𝜉)
|𝑛 + 𝜏𝑚 + 𝜌(𝑢, 𝜉)|2 + i𝜌(𝐷0) , (3.33)

which, for 𝐷0 = 0 simplifies to

𝑍chiral
1−loop(𝜌; 𝑢, 𝑢̄, 0) = i 𝜂(𝜏)

𝜃1(𝜏|𝜌(𝑢, 𝜉)) ; (3.34)

notice that the dependence on 𝑢̄ disappears. The one-loop determinant for a Fermi multiplet
is

𝑍Fermi
1−loop(𝜌; 𝑢) = ∏

𝑛,𝑚
(𝑛 − 𝜏𝑚 + 𝜌(𝑢, 𝜉)) (3.35)

= i𝜃1(𝜏|𝜌(𝑢, 𝜉))
𝜂(𝜏) , (3.36)

We used the shorthand 𝜌(𝑢, 𝜉) = 𝜌G(𝑢) + 𝜌K(𝑧), where 𝜌G(𝑢) is the weight of gauge representa-
tion while 𝜌K(𝑧) is the weight of flavor one. We observe that the “roots part” of determinant
for vector multiplet (3.31) equals that of a Fermi multiplet (3.35); this is because in two dimen-
sions the gauge field is not dynamical and thus vector a Fermi multiplet have the same degrees
of freedom. We observe that the one-loop determinant for the chiral multiplet, when 𝐷0 = 0,
(3.34), develops some poles on the hyperplane

𝐻𝑖 = {𝑄𝑖𝑢 + 𝜌K(𝜉) = 0 mod ℤ + 𝜏ℤ} , (3.37)
9The reader is certainly familiar with this condition enforced by the gauge fixing Lagrangian

1
2𝜅(𝒟𝜇𝑎𝜇) , (3.28)

written with Lorentz indices.
10Even if in the Abelian case ghosts do not interact with other field, we have to take in account of them when

computing functional determinants.
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where 𝑄𝑖 = 𝜌G(⋅). Let us define in 𝔐 the set

𝔐sing. = ⋃
𝑖

𝐻𝑖 . (3.38)

We are now ready to compute the elliptic genus using eq. (3.25): we have already observed that
it is independent of 𝑒 and 𝑔 and moreover we have explicitly computed one-loop determinants
in the limit 𝑒, 𝑔 → 0, so we will take this limit to evaluate ℐEG. The limit 𝑔 → 0 can be
brought inside the integral while we saw that for 𝑢∗ ∈ 𝔐sing. we encounter some poles which
appears in the limit 𝑒 → 0. A careful analysis (see [60, 113]) shows that, for finite values of
𝑒, the integrand is convergent and it is bounded by a function of 𝑒; so we can remove a small
𝜀-neighborhood of 𝑢∗ which we call Δ𝜀 and take a scaling limit 𝜀, 𝑒 → 0 in which 𝜀 goes to zero
fast enough11, since the integral inside the region Δ𝜀 gives a vanishing contribution. Thus we
have from eq. (3.25)

ℐEG = 1
|𝑊| lim

𝑒,𝜀→0
∫

𝔐∖∆𝜀

d𝑢d𝑢̄ ∫
ℝ+i𝜂

d𝐷0 ∫ d𝜆+
0 d𝜆̄+

0 𝒵(𝑢, 𝑢̄, 𝜆+
0 , 𝜆̄+

0 )∣𝑔=0 . (3.39)

Notice that we shifted the contour of integration on 𝐷0 by i𝜂 (with 𝜂 ∈ ℝ) since for 𝑢 ∉ Δ𝜀
the function 𝒵 is holomorphic around the origin. To proceed we notice that zero-modes can
be arranged12 into off-shell supermultiplet:

Q+𝑢 = 0 , Q+𝑢̄ = 1
2 𝜆̄+

0 , Q+𝜆+
0 = 0 , Q+𝜆̄+

0 = −𝐷0 , Q+𝐷0 = 0 , (3.40)
Q̄+𝑢 = 0 Q̄+𝑢̄ = −1

2𝜆+
0 , Q̄+𝜆+

0 = −𝐷0 , Q̄+𝜆̄+
0 = 0 , Q̄+𝐷0 = 0 , (3.41)

therefore, since Q̄+𝒵 = 0 we have

𝜕2𝒵
𝜕𝜆+

0 𝜕𝜆̄+
0

= 1
2𝐷0

𝜕𝑍
𝜕𝑢̄ ∣

𝜆+
0 =𝜆̄+

0 =0
. (3.42)

We can plug this relation into eq. (3.39) and using Stokes theorem we have

ℐEG = 1
|𝑊| lim

𝑒,𝜀→0
∫

𝜕∆𝜀

d𝑢 ∫
ℝ+i𝜂

d𝐷0
𝐷0

𝒵(𝑢, 𝑢̄, 0, 0, 𝐷0)∣𝑔=0 . (3.43)

From the chiral one-loop determinant (3.33) we see that for every 𝜌 and the corresponding 𝑄𝑖
the contribution giving singularities for 𝜀 → 0 is of the form

1
𝜀2 + i𝑄𝑖𝐷0

, (3.44)

since we have excised the region Δ𝜀 and therefore |𝜌(𝑢, 𝑧)| ∼ 𝜀 on 𝜕Δ𝜀. Therefore, in the
integrand of eq. (3.43) we will have product of functions such as (3.44). Under the technical
assumption that all the charges 𝑄𝑖 have the same sign13 we see that the poles of that integrand
occur at

𝐷0 = 0 , 𝐷0 = i 𝜀2

𝑄𝑖
. (3.45)

11We must have 𝜀2𝑒−𝑀 → 0 being 𝑀 the number of quasi-zero modes, that is the zero-modes that we have
for finite 𝑒.

12This was first noted in [50] in the context of SUSY 3d theories, see [113] for the 2d case.
13We see that in the case of just one charge, this assumption is automatically met. More generally, as will

be explained, the case in which the number of singular hyperplanes that met at certain 𝑢∗ equals the rank 𝑟 is
called regular, otherwise singular. We will deal with singular case, for general 𝑟 in the following sections.
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If 𝜂 > 0 and 𝑄𝑖 < 0 the poles lies all above the contour of integration (they collapse towards
𝐷0 = 0 as 𝜀 → 0) therefore we can close the contour in the upper half plane and see that the
integral vanishes. If 𝜂 > 0 and 𝑄𝑖 > 0 instead we can close the contour from below14 and we
get for each 𝑢∗

1
|𝑊| lim

𝑒,𝜀→0
∫

𝜕∆𝜀

d𝑢𝒵(𝑢, 𝑢̄, 0, 0, 0) = 1
|𝑊| Res

𝑢=𝑢∗
𝑍1−loop(𝑢) , (3.46)

where, from eq. (3.27) we set

𝑍1−loop(𝑢) = 𝑍vec
1−loop(𝑢, 𝑢̄) ∏

𝜌∈ℜc

𝑍chiral
1−loop(𝜌; 𝑢, 𝑢̄, 0) ∏

𝜌∈ℜf

𝑍Fermi
1−loop(𝜌; 𝑢) . (3.47)

Notice that 𝑍1−loop is a meromorphic function of 𝑢 on 𝑇 2. Then, summing over all the poles
with 𝑄𝑖 > 0 we have

ℐEG = 1
|𝑊| ∑

𝑢∗∈𝔐+
sing.

Res
𝑢=𝑢∗

𝑍1−loop(𝑢) . (3.48)

We called 𝔐+
sing. the subset of 𝔐sing. for which all 𝑄𝑖 > 0. Of course we could have done the

same reasoning starting with 𝜂 < 0 then, keeping in account the orientation of integration we
would have get

ℐEG = − 1
|𝑊| ∑

𝑢∗∈𝔐−
sing.

Res
𝑢=𝑢∗

𝑍1−loop(𝑢) , (3.49)

with obvious definition 𝔐−
sing. the subset of 𝔐sing. for which all 𝑄𝑖 < 0. Notice that eqs. (3.48)

and (3.49) are consistent since 𝔐sing. = 𝔐+
sing. ⊔ 𝔐−

sing. and the sum of poles of a meromorphic
function on 𝑇 2 vanishes. We see therefore that the final result does not depend on the choice
of 𝜂. We conclude this subsection by mentioning [114] in which the authors compute the 2d
superconformal index of 𝒩 = (2, 2) gauge theory. They get the same 𝑍1−loop however the
origin of the JK prescription is not straightforward.

3.2.4 Higher Rank: Jeffrey–Kirwan residue

The result presented in the previous subsection can be generalized for arbitrary 𝑟: while physical
ideas are the same, the derivation become technically more involved because of the richer
topology of 𝔐 and its singular subset 𝔐sing.. The original generalization was carried out in [61]
while the strategy of derivation was a bit simplified in [50] in the context of three dimensional
theories. As before we have to compute one-loop determinants: the only modification with
respect to the rank-one case is the vector determinant that becomes

𝑍vec
1−loop(𝑢) = [ ∏′

𝑛,𝑚
(𝑛 − 𝜏𝑚)]

𝑟

× ∏
𝛼∈ℛG

∏
𝑛,𝑚

(𝑛 − 𝜏𝑚 + 𝛼(𝑢)) (3.50)

= [−2𝜋i𝜂2(𝜏)]𝑟 ∏
𝛼∈roots

i𝜃1(𝜏|𝛼(𝑢))
𝜂(𝜏) , (3.51)

14Remember that the 𝜀 limit is outside the integral, therefore we have to perform the integral with a fixed
(finite) value of 𝜀.
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the exponent 𝑟 is due to the fact that the Cartan subalgebra is now 𝑟-dimensional. As before
we have to integrate over the moduli space 𝔐 ∼ 𝑇 2𝑟, roughly

ℐEG = 1
|𝑊| ∫

𝔐
d𝑟𝑢d𝑟𝑢̄d𝑟𝜆+

0 d𝑟𝜆̄+
0 ∫

ℝ𝑟
d𝑟𝐷0𝒵(𝑢, 𝑢̄, 𝜆+

0 , 𝜆̄+
0 , 𝐷0) , (3.52)

where again 𝒵 is the result of path-integration over all massive modes. The difference is
that this time our integrals are multi-dimensional. As before we define singular hyperplanes15

𝐻𝑖 ⊂ 𝔐

𝐻𝑖 = {𝑄𝑖(𝑢) + 𝜌K(𝜉) = 0 mod ℤ + 𝜏ℤ} , (3.53)

this time 𝑄𝑖 ∈ 𝔥∗. Then in 𝔐sing. = ⋃𝑖 𝐻𝑖 we define

𝔐∗
sing. = {𝑢∗ ∈ 𝔐sing.| at least 𝑟 linearly independent 𝐻𝑖’s meet at 𝑢∗} . (3.54)

We will denote by 𝑄 the set of all charge covectors and by 𝑄(𝑢∗) = {𝑄T
𝑖 }𝑙

𝑖=1 the set of charge
of the hyperplanes meeting at 𝑢∗. We will call it the charge matrix at 𝑢∗. The dimensions of
that matrix are 𝑟 × 𝑙 where 𝑙 is the number of hyperplanes meeting at 𝑢∗. The case in which
𝑙 = 𝑟 is called regular16 while, the case in which 𝑙 > 𝑟 is called singular.17. We will explain
in the next section that, it is possible, in some cases, to reduce the singular case to regular
ones; therefore we will be mainly interested in the latter. A technical hypothesis that is needed
to proceed [115] is that for any 𝑢∗ ∈ 𝔐∗

sing. the set 𝑄(𝑢∗) is contained in a half-space of 𝔥∗;
such arrangement of plane is called projective. This hypothesis is automatically fulfilled in
the regular cases. Furthermore let us introduce Conesing.(𝑄) ⊂ 𝔥∗ as the union of all cones
generated by all subset of 𝑄 with 𝑟−1 elements. Each connected component of 𝔥∗ ∖Conesing.(𝑄)
is called a chamber. Then we have to choose a 𝜂 ∈ 𝔥∗ which is generic, i.e. 𝜂 ∉ Conesing.(𝑄):
such 𝜂 identifies a chamber in 𝔥∗. This parameter is actually a generalization of the 𝜂 we
encountered before, since its rôle is to specify the integration contour, i.e. to specify which are
the poles we have to take the residue at. Under the genericity assumption the elliptic genus is
computed by

ℐEG = 1
|𝑊| ∑

𝑢∗∈𝔐∗
sing.

JK-Res
𝑢=𝑢∗

(𝑄(𝑢∗), 𝜂)𝑍1−loop(𝑢)
𝑟

∏
𝑖=1

d𝑢𝑖 , (3.55)

where JK-Res is the so called Jeffrey–Kirwan residue [62] (see also [116] for the conjecture
from which it originates) which will be explained in the following. Differently from the usual
(iterated) residue, this operation depends on the charge matrix 𝑄(𝑢∗), which is an external
data18, and also on 𝜂. Actually it is a locally constant function of 𝜂: it can jump as 𝜂 corsses
form one chamber to another; however the sum of all the contributions is independent of 𝜂. The
Jeffrey-Kirwan residue operation is a linear functional on the space of meromorphic 𝑟-forms
(this is the reason why in eq. (3.55) we included the differentials) that are holomorphic in
the complement of the singular hyperplanes arrangement 𝔐sing.. In the regular case, for 𝑈 a

15We want to stress that while 𝐻𝑖 are defined in the complex space ℂ𝑟, the coefficients determining them
𝑄𝑖 ∈ ℝ.

16Intuitively the regular case is when the “order of singularity”, that is 𝑙 equals the number of integrals 𝑟 we
are performing.

17The case in which 𝑙 < 𝑟 is not interesting since the result trivially vanishes.
18This means that it is not contained in 𝑍1−loop.
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neighborhood of a pole 𝑢∗, the homology group 𝐻𝑟(𝑈 ∖ 𝔐sing., ℤ) = ℤ, so that, its generator is
defined up to a sign. This means that we can define the residue at 𝑢∗ by its integral over ∏𝑟

𝑖=1 𝒞𝑖,
where 𝒞𝑖 is a small circle around 𝐻𝑖. In a singular case instead, the homology group has more
than one generator and therefore one must specify unambiguously the contour; however, as
already said, we will not need to do that, since we will subsume the singular case to the regular
one. For a projective arrangement the JK residue is defined by19

JK-Res
𝑢=𝑢∗

(𝑄(𝑢∗), 𝜂) d𝑢1 ∧ ⋯ ∧ d𝑢𝑟
𝑄𝑗1

(𝑢 − 𝑢∗) … 𝑄𝑗𝑟
(𝑢 − 𝑢∗)

= {| det(𝑄𝑗1
, … , 𝑄𝑗𝑟

)|−1 if 𝜂 ∈ Cone(𝑄𝑗1
, … , 𝑄𝑗𝑟

)
0 otherwise

. (3.56)

A constructive definition of JK residue as a sum of iterated residues has been given in [115]
and reviewed in [61]. Let us now specialize 𝑟 = 1 in eq. (3.56): we have a single charge 𝑄 so
that

JK-Res
𝑢=0

(𝑄, 𝜂) d𝑢
𝑄𝑢 = {|𝑄|−1 if 𝑄𝜂 > 0

0 if 𝑄𝜂 < 0
, (3.57)

which implies that

JK-Res
𝑢=0

(𝑄, 𝜂)d𝑢
𝑢 = {sign 𝑄 if 𝑄𝜂 > 0

0 if 𝑄𝜂 < 0
. (3.58)

From this expression we see that first of all eq. (3.55) for rank one gauge group coincides with
eqs. (3.48) (setting 𝜂 = 1) and (3.49) (setting 𝜂 = −1). Moreover, as anticipated, we see that
the operation of taking JK residue does depend also on data which are not inside the function
we are taking residue of.

The reader interested in explicit examples of application of the technique of JK residue can
consult [61]. Another renowned example in which JK residues are used, albeit surreptitiously,
is the computation of [11], as has been explained in [118].

3.2.5 Explicit formulae for 𝒩 = (0, 2) and 𝒩 = (2, 2) theories

Here we recap formulae that we derived or explained below and we will also extend them to
𝒩 = (2, 2) theories. It is convenient to absorb the differentials of eq. (3.55) inside the vector
one-loop determinant. Therefore we have

𝑍(0,2)
𝐕,G (𝜏|𝑢) = (−2𝜋i𝜂2(𝜏))𝑟 ∏

𝛼∈ℛG

i𝜃1(𝜏|𝛼(𝑢))
𝜂(𝜏)

𝑟
∏
𝑖=1

d𝑢𝑖 , (3.59)

𝑍(0,2)
𝚽,ℜ (𝜏|𝑢, 𝜉) = ∏

𝜌∈ℜ
i 𝜂(𝜏)
𝜃1(𝜏|𝜌(𝑢, 𝜉)) (3.60)

𝑍(0,2)
𝚲,ℜ (𝜏|𝑢, 𝜉) = ∏

𝜌∈ℜ
i𝜃1(𝜏|𝜌(𝑢, 𝜉))

𝜂(𝜏) . (3.61)

19See [117] for details regarding consistency of the definition.
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Then we collect all these contributions

𝑍(0,2)
1−loop(𝜏|𝑢, 𝜉) = 𝑍𝐕,G(𝜏|𝑢) ∏

𝑐
𝑍𝚽𝑐,ℜ𝑐

(𝜏|𝑢, 𝜉) ∏
𝑓

𝑍𝚲𝑓,ℜ𝑓
(𝜏|𝑢, 𝜉) ; (3.62)

therefore

ℐ(0,2)
EG (𝜉) = 1

|𝑊| ∑
𝑢∗∈𝔐∗

sing.

JK-Res
𝑢=𝑢∗

(𝑄(𝑢∗), 𝜂)𝑍(0,2)
1−loop(𝜏|𝑢, 𝜉) , (3.63)

From the point of view of a 𝒩 = (0, 2) theory, the left-moving ℛ-charge of a 𝒩 = (2, 2) one,
is simply a flavor symmetry. Therefore we will consider the “effective” flavor group U(1)𝐿 × K
to subsume eq. (3.9) to eq. (3.10). In particular, from our analysis in chap. 2, we have the
following decomposition

R𝐿[𝐕(2,2)] = 0 ⇒ R𝐿[𝐕(0,2)] = 0 , R𝐿[𝝌(0,2)] = −1 , (3.64)
R𝐿[𝚽(2,2)] = 𝑟𝐿 ⇒ R𝐿[𝚽(0,2)] = 𝑟𝐿 , R𝐿[𝚲(0,2)] = 𝑟𝐿 − 1 . (3.65)

Setting 𝑦 = 𝑒2𝜋i𝜖 it follows that

𝑍(2,2)
𝐕,G (𝜏|𝑢, 𝜖) = [ 2𝜋𝜂3(𝜏)

𝜃1(𝜏|−𝜖)]
𝑟

∏
𝛼∈ℛG

[− 𝜃1(𝜏|𝛼(𝑢))
𝜃1(𝜏|𝛼(𝑢) − 𝜖)]

𝑟
∏
𝑖=1

d𝑢𝑖 , (3.66)

𝑍(2,2)
𝚽,ℜ,𝑟𝐿

(𝜏|𝑢, 𝜉, 𝜖) = ∏
𝜌∈ℜ

𝜃1(𝜏|𝜌(𝑢, 𝜉) + (𝑟𝐿 − 1)𝜖)
𝜃1(𝜏|𝛼(𝑢, 𝜉) + 𝑟𝐿𝜖) . (3.67)

Then

𝑍(2,2)
1−loop(𝜏|𝑢, 𝜉, 𝜖) = 𝑍(2,2)

𝐕,G (𝜏|𝑢, 𝜖) ∏
𝑐

𝑍(2,2)
𝚽𝑐,ℜ𝑐,𝑟−,𝑐

(𝜏|𝑢, 𝜉, 𝜖) . (3.68)

We observe that the 𝑞-expansion of eq. (3.62) can start with some non-trivial powers 𝑞𝐸, and
we can interpret 𝐸 as the Casimir energy of the multiplet; the expansion of eq. (3.68), on the
other hand, has always 𝐸 = 0. We also notice that in the standard literature [61, 113], 𝑍(2,2)

𝐕,G
has an irrelevant minus sing in the product over the roots of the group. We will also drop this
sign in the following computations, not to deviate from common usage. Finally the elliptic
genus is obtained by

ℐ(2,2)
EG (𝜉, 𝜖) = 1

|𝑊| ∑
𝑢∗∈𝔐∗

sing.

JK-Res
𝑢=𝑢∗

(𝑄(𝑢∗), 𝜂)𝑍(2,2)
1−loop(𝜏|𝑢, 𝜉, 𝜖) , (3.69)

where we restored the dependence on 𝜉 and 𝜖.
In both 𝒩 = (0, 2) and 𝒩 = (2, 2) cases, to compute the elliptic genus the following

procedure has to be followed:

1. Write down the matter content of the theory specifying representations of every multiplet
(in the 𝒩 = (2, 2) fix also the left-moving R-symmetry);

2. With this information write 𝑍1−loop;

3. Classify the poles of 𝑍1−loop that arise from the intersection of at least 𝑟 singular hyper-
planes; in particular for every pole 𝑢∗ specify 𝑄(𝑢∗);
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4. Choose a suitable 𝜂; this choice will select some poles and discard some others;

5. Compute the JK residues at the selected poles.

While point 1, 2 and 4 are straightforward and can be carried out painlessly, point 3 and 5
require much attention. Classify the poles of the one-loop determinant can be much lengthy
in a generic situation. First of all one should list all the singular hyperplane (whose number
we call 𝐴) then one should check how many all the (𝐴

𝑟) intersections of these hyperlanes give
rise to a singularity point 𝑢∗ ∈ 𝔐∗

sing.. In fact one has to check (𝐴
𝑟) system of 𝑟 equation that

can or cannot have solution. We will see that in our explicit computations it is possible to
find an argument which allows us to classify all the poles at once. Another delicate point in
the procedure is that, for each 𝑢∗ one has to check on how many singular hyperplanes it sits.
Of course this number, 𝑙, will be 𝑙 ≥ 𝑟 since we explicitly solved system of linear equation
requiring 𝑢∗ to be at least on 𝑟 hyperplanes. As stated above this number 𝑙 discriminates
between regular and singular cases. For the regular case the computation of the residue is
straightforward, while for the singular case extra work must be done. In the following section
we will describe a useful method to reduce singular cases to regular one [2]. This method will
be applied in our computations of elliptic genus.

3.3 Desingularization Procedure

Let us now consider a theory with some gauge group G and some flavor group K. For the sake of
clarity let us restrict ourselves to the case of matter in fundamental and adjoint representation
only20. Keeping just the dependence on gauge fugacities, the one-loop determinant can be
written as21

𝑍(𝑢) =
𝑘

∏
𝑖=1

𝑍𝑖(𝑢1, … , 𝑢𝑖) , 𝑍𝑖(𝑢1, … , 𝑢𝑖) =
∏𝐶𝑖(𝑢∗)

𝑐𝑖=1 𝜃1(𝜏∣𝑢𝑖 − 𝑢𝛾𝑖,𝑐𝑖
+ 𝑠𝑖,𝑐𝑖

)

∏𝐴𝑖(𝑢∗)
𝑎𝑖=1 𝜃1(𝜏∣𝑢𝑖 − 𝑢𝛼𝑖,𝑎𝑖

+ 𝑟𝑖,𝑐𝑖
)

𝑓𝑖(𝑢1, … , 𝑢𝑖) ,

(3.70)

where 𝑓 contains all the factors which are both regular and non-zero for22 {𝑢𝑖 → 𝑢∗
𝑖}𝑟

𝑖=1,
while in the fraction we put all the others. Thus for {𝑢𝑖 → 𝑢∗

𝑖}𝑟
𝑖=1 there will be 𝐴(𝑢∗) ∶=

∑𝑟
𝑖=1 𝐴𝑖(𝑢∗) singular hyperplanes and 𝐶(𝑢∗) ∶= ∑𝑟

𝑖=1 𝐶𝑖(𝑢∗) hyperplanes in on which our one-
loop determinant vanishes: we will call these zero hyperplanes. As stated before, the interesting
case is when 𝐴 ≥ 𝑟, since in tho other cases, the residue is trivially vanishing. Then 𝛼• and 𝛾•
are sequences such that 0 ≤ 𝛼𝑖,𝑎𝑖

≤ 𝑖 and 0 ≤ 𝛾𝑖,𝑐𝑖
≤ 𝑖. In this way every 𝑍𝑖 depends only on 𝑢𝑗

with 𝑗 ≤ 𝑖. We allowed also to have 𝑢0 ∶= 0 in order to subsume the contribution coming from
the fundamental representation. Coefficients 𝑟𝑖,𝑎𝑖

and 𝑠𝑖,𝑐𝑖
are combination of flavor fugacities,

which we do not need to specify. If 𝐴 = 𝑟 we are in the regular case of JK procedure and we
can compute recursively

lim
{𝑢𝑖→𝑢∗

𝑖}𝑟
𝑖=1

𝑍(𝑢)
ℳ𝑟 ∏𝑟

𝑖=1(𝑢𝑖 − 𝑢∗
𝑖)

= ℳ−𝑟
𝑟

∏
𝑖=1

lim
𝑢𝑖→𝑢∗

𝑖

𝑍𝑖(𝑢1, … , 𝑢𝑖−1, 𝑢𝑖)
(𝑢𝑖 − 𝑢∗

𝑖)
, (3.71)

20Every contribution coming from the fundamental representation will contain a single 𝑢𝑖 while the ones
coming from the adjoint will depend on the differences 𝑢𝑖 − 𝑢𝑗, as the weights of these two representations
suggest us.

21This is nothing but an ordering of the factor of the one-loop determinant.
22Here we will explicitly write the components of the 𝑟-vector 𝑢 = (𝑢1, … , 𝑢𝑟).
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where the normalization is ℳ = −2𝜋i𝜂2(𝜏) for 𝒩 = (0, 2) theories and ℳ = 2𝜋𝜂3(𝜏) for
𝒩 = (2, 2) ones. When 𝐴 > 𝑘 we perturb singularities appearing in eq. (3.70) introducing
some parameters 𝛽

𝑍𝑖(𝑢1, … , 𝑢𝑖) ↦ ̃𝑍𝑖(𝑢1, … , 𝑢𝑖) ∶=

∶= 1
𝜃1(𝜏∣𝑢𝑖 − 𝑢𝛼𝑖,1 + 𝑟𝑖,1)

×
∏𝐴𝑖(𝑢∗)−1

𝑐𝑖=1 𝜃1(𝜏∣𝑢𝑖 − 𝑢𝛾𝑖,𝑐𝑖
+ 𝑠𝑖,𝑐𝑖

+ 𝛽𝑖,𝑐𝑖
)

∏𝐴𝑖(𝑢∗)
𝑎𝑖=2 𝜃1(𝜏∣𝑢𝑖 − 𝑢𝛼𝑖,𝑎𝑖

+ 𝑟𝑖,𝑎𝑖
+ 𝛽𝑖,𝑎𝑖−1)

×

×
𝐶𝑖(𝑢∗)
∏

𝑐𝑖=𝐴𝑖

𝜃1(𝜏∣𝑢𝑖 − 𝑢𝛾𝑖,𝑐𝑖
+ 𝑠𝑖,𝑐𝑖

) × 𝑓𝑖(𝑢1, … , 𝑢𝑖) . (3.72)

We observe that the second factor has neither poles nor zeroes since numerator and denominator
vanish simultaneously, by construction. This kind of desingularization amounts to “explode”
our pole into (𝐴(𝑢∗)

𝑟 ) non-singular23 poles, as we see in fig. 3.1.

(a) A degenerate pole.

↦
(b) Three non-degenerate poles.

Figure 3.1: An example with 𝑘 = 2 and 𝐴 = 3.

We can number all these poles with a 𝑟-ple (𝑡, 𝑝) ∶= ((𝑡1, 𝑝1), … , (𝑡𝑟, 𝑝𝑟)), where 𝑡𝑖 = 1, … , 𝑟,
𝑝𝑖 = 1, … , 𝐴𝑖(𝑢∗) and no duplicates (𝑡𝑖, 𝑝𝑖) are possible. The new poles occur at24 𝑢 = 𝑢∗

(𝑡,𝑝)
where 𝑢∗

(𝑡,𝑝),𝑖 solves the linear system of equations

{𝑢∗
(𝑡,𝑝),𝑡𝑖

− 𝑢∗
(𝑡,𝑝),𝛼𝑡𝑖,𝑝𝑖

+ 𝑟𝑡𝑖,𝑝𝑖
+ 𝛽𝑡𝑖,𝑝𝑖

= 0}
𝑟

𝑖=1
, (3.73)

whose solution, when it exists is of the form

𝑢∗
(𝑡,𝑝),𝑖 = 𝑢∗

𝑖 +
𝑟

∑
𝑖=1

ℓ(𝑡,𝑝),𝑖𝛽𝑡𝑖,𝑝𝑖
, (3.74)

for certain coefficients ℓ(𝑡,𝑝),𝑖. Now it is easy to compute residue

Res
{𝑢𝑖=𝑢∗

(𝑡,𝑝),𝑖}𝑟
𝑖=1

̃𝑍(𝑢) = ℳ−𝑟 lim
𝑢𝑖→𝑢∗

(𝑡,𝑝),𝑖

𝑟
∏
𝑖=1

̃𝑍𝑖(𝑢1, … , 𝑢𝑖)
(𝑢𝑖 − 𝑢∗

(𝑡,𝑝),𝑖)
, (3.75)

in the following cases (which will be cases of interest in the following of this thesis):

• if (𝑡𝑖, 𝑝𝑖) = (𝑖, 1) for25 𝑖 = 1, … , 𝑟 and 𝐴𝑖(𝑢∗) = 𝐶𝑖(𝑢∗) + 1 for all 𝑖 = 1, … , 𝑟 we have:

Res
{𝑢𝑖=𝑢∗

(𝑡,𝑝),𝑖}𝑡
𝑖=1

̃𝑍(𝑢) = ℳ−𝑟
𝑟

∏
𝑖=1

𝑓𝑖(𝑢∗
1, … , 𝑢∗

𝑖) ; (3.76)

23The new poles are non-singular for generic values of 𝛽’s.
24The (𝑡𝑖, 𝑝𝑖) means that we are using the 𝑝𝑖

th singular hyperplane of 𝑍𝑡𝑖 , to determine the intersection point.
25This is actually the “unshifted pole” at 𝑢 = 𝑢∗.
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• if (𝑡𝑖, 𝑝𝑖) ≠ (𝑖, 1) and 𝐴𝑖(𝑢∗) = 𝐶𝑖(𝑢∗) + 1 for at least one 𝑖 = 1, … , 𝑟 we have

Res
{𝑢𝑖=𝑢∗

(𝑡,𝑝),𝑖}𝑟
𝑖=1

̃𝑍(𝑢) = 0 ; (3.77)

• if 𝐴𝑖(𝑢∗) < 𝐶𝑖(𝑢∗) + 1 for at least one 𝑖 = 1, … , 𝑟, for every pole we have

Res
{𝑢𝑖=𝑢∗

(𝑡,𝑝),𝑖}𝑟
𝑖=1

̃𝑍(𝑢) = 0 . (3.78)

This is because in eq. (3.72) the numerator and the denominator in the second factor take the
same value for 𝑢𝑖 = 𝑢∗

(𝑡,𝑝),𝑖, by construction, and because if 𝐶𝑖(𝑢∗) > 𝐴𝑖(𝑢∗) − 1 for some 𝑖,
the last factor sets the whole expression to zero. The condition 𝐴𝑖(𝑢∗) = 𝐶𝑖(𝑢∗) + 1 for every
𝑖 means that the order of singularity of 𝑍 is 1 for every 𝑢𝑖. If this condition is satisfied, we
saw that, after desingularization procedure, only the “unshifted pole” (i.e. 𝑢𝑖 = 𝑢∗

𝑖) gives non-
zero contribution and this contribution is independent of the desingularization parameters 𝛽’s.
This means that once the pole is selected by JK condition, no matter if it lies in the regular
or singular case, after the (possibly required) desingularization procedure, it yields one and
just one contribution. Moreover eq. (3.76) suggests also a very simple way to evaluate residues
provided 𝐴𝑖(𝑢∗) = 𝐶𝑖(𝑢∗) + 1 for all 𝑖 = 1, … , 𝑟: it implies that we have to evaluate ℳ−𝑟𝑍(𝑢)
at 𝑢 = 𝑢∗ simply dropping form it all factors (in the numerator as well as in the denominator)
that vanish at this point. We call this way of evaluating the residue regular representation of
the product. In this way the result is both finite and non-zero.



4. Holomorphic Blocks from Elliptic Genus

In this chapter we will compute in detail the elliptic genera of two moduli spaces: we will see
all the procedure described in the previous chapter at work. We will learn how it is possible to
classify poles of the one-loop determinant when this has a certain form. While the problem that
we solve here is interesting per se, the analysis we are going to carry out will be paradigmatic
for more involved computations, as the one in the next chapter. We will follow [1].

4.1 Elliptic Vortices and Holomorphic Blocks

In the previous chapter we see how it has been possible to apply localization to a SUSY GLSM
on 𝑇 2, that is a flat manifold. However, as already mentioned, several exact computations have
been done in curved space as well. Of course, the first step in this direction is to implement
rigid SUSY in curved space; this can be done systematically [24]. Roughly1, one has to couple
the theory with off-shell SUGRA: this amounts to introduce a pairing between the 𝒮-multiplet
of the SUSY theory and the gravity multiplet. Then one decouples the gravitational dynamics
in a given SUSY vacuum: this amounts to take the rigid limit 𝐺𝐷 → 0 keeping fixed the
background for the metric and for the auxiliary fields; successively, one has to get rid of fields
in gravity multiplet without imposing equations of motions nor integrating out auxiliary fields.
The vanishing of gravitino variation does not contain matter fields and leads to the generalized
Killing spinor equation (KSE). The solutions of this equation2 tell us how to generalize the
constant 𝜖 that we had in the flat case.

Exploiting this construction, the partition function of 𝒩 = (2, 2) gauge theories on 𝑆2 was
found [40, 41]. A very interesting point is that one can get the same result using localization
in two different ways: that is choosing two different 𝑆loc. The first closely follows what we did
in flat space3 and it known as Coulomb branch localization

𝑍𝑆2 = 1
|𝑊| ∑

𝔪∈ℤ𝑟
∫

ℝ𝑟
(

𝑟
∏
𝑖=1

d𝜎𝑖) 𝑒−𝑆FI(𝜎,𝔪)𝑍vec
1−loop(𝜎, 𝔪) ∏

𝜌∈ℜ
𝑍1−loopchiral(𝜌; 𝜎, 𝔪) , (4.1)

where integers over which we sum, 𝔪 = (𝔪1, … , 𝔪𝑟), are numbered by the flux 𝔪 = −2𝜋−1 ∫𝑆2 ℱ𝑧 ̄𝑧.
It is possible to find another representation of 𝑍𝑆2 choosing another localization action depend-
ing on a size regulator 𝜒: this is dubbed Higgs branch localization. In this case one integrates
out the auxiliary field 𝐷 and then looks for localization locus. It can be divided into three cate-
gories: the Higgs branch, the deformed Coulomb branch (which gives a vanishing contribution

1We suggest [26, 119].
2The interested reader can consult [85].
3We use 𝜎 instead of 𝑢 as the integration variable since, in this case ℳloc can be parametrized by the scalars

in the vector multiplet.

33
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in the limit 𝜒 → ±∞) and the point-like vortices/anti-vortices, defined in the neighborhood
of the poles. Therefore, to get the partition function, we have to sum over the Higgs branches
𝑝 ∈ ℳ̃Higgs and in each Higgs branch we have to integrate over the moduli space of vortices/anti-
vortices. The total moduli space is therefore

ℳHiggs = ⨆
𝑝∈ℳ̃Higgs

[(
∞
⋃
𝑘=0

ℳvortex
𝑝,𝑘 ) ⊕ (

∞
⋃
𝑘=0

ℳanti−vortex
𝑝,𝑘 )] , 𝑘 = −2𝜋−1 ∫

𝑆2
tr ℱ . (4.2)

The partition function turns out to be

𝑍𝑆2 = ∑
𝑝∈ℳ̃

𝑒−𝑆FI(𝑝)𝑍′
1−loop(𝑝)𝑍vortex(𝑣, 𝑝)𝑍anti−vortex( ̄𝑣, 𝑝) , (4.3)

where 𝑍′
1−loop is the one-loop determinant of all fields with vanishing VEV on the Higgs branch.

One has to be careful to evaluate these determinants on the vortex/anti-vortex background;
this can be done by using a cohomolocal argument [40, 41, 110]. The vortex/anti-vortex
contributions are the equivariant volumes of the respective moduli spaces

𝑍vortex(𝑣, 𝑝) = ∫
ℳvortex

𝑝,𝑘

𝑒𝜔 , 𝑍anti−vortex( ̄𝑣, 𝑝) = ∫
ℳanti−vortex

𝑝,𝑘

𝑒𝜔 , (4.4)

here 𝜔 is U(1)-equivariantly closed4. The upshot is that we found a representation of the
partition function which is the sum over a finite number of points; for each point the PI gets
contribution from point-like vortices at the North pole and anti-vortices at the South pole [66–
68, 120]. This kind of phenomenon has been observed also in higher dimensions [63–65] where
the factorization of supersymmetric partition function on squashed three-spheres and on their
products with circles has been noticed to happen in terms of 3d and 4d “holomorphic blocks”.
Such factorization has also been derived using Higgs branch localization in [121, 122]. Further
examples of this phenomenon in 4d can be found in [123, 124]: the former were identified
with vortex particles blocks on ℂ × 𝑆1 and the latter await a first principle computation as
elliptic vortices on ℂ × 𝑇 2; their description in terms of elliptic hypergeometric functions
[125] is given by holomorphic factorization. In what follows we provide such a first principle
evaluation, when specified to the appropriate case. This is done computing the SUSY gauge
theory partition function on ℂ × 𝑇 2 by resumming its expansion in rotational modes on the
complex plane (elliptic vortices), each term being the elliptic genus of the corresponding moduli
space: this is a generalization of eqs. (4.4) to the elliptic genus. This reproduces the results
of [64]. Another motivation for this computation is to understand the algebraic structure of
BPS vacua of such theories. Indeed, it is by now well known that Virasoro algebra and its
generalization of 𝑊 -algebrae acts on the moduli space of instantons of four dimensions [126–
129]. Vortices are the two-dimensional analogue of instantons and indeed their moduli space
can be obtained as special Lagrangian submanifolds of the instanton moduli space [66, 130]. It
is thus interesting to investigate and unveil the algebrae acting on their equivariant cohomology
spaces. A specialization of the vortex partition function we analyze in this paper can be also
obtained from a six-dimensional gauge theory on ℝ4 × 𝑇 2 in presence of a codimension two
defect along ℝ2 ×𝑇 2 [71, 130]. Indeed, this gives rise to a coupled 6d/4d system which reduces
to the elliptic genus computation in the decoupling limit of the 6d dynamics.

4This is nothing but the computation on ℝ2 but with Ω-background [11, 12, 67].
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4.2 𝒩 = (0, 2) theories

In this section we study the elliptic genus of moduli space of 𝑘 vortices in a four-dimensional
𝒩 = 1 theory with U(𝑁) gauge group, 𝑁F fundamental chirals and ̃𝑁F anti-fundamental
chirals, [56]. This moduli space is described by 2d 𝒩 = (0, 2) quiver gauge theory depicted in
fig. 4.1.

𝑁

𝑁F − 𝑁

̃𝑁F

𝑘

𝐼
𝐽

𝜓

𝐵

Figure 4.1: 𝒩 = (0, 2) quiver gauge theory: it has5U(𝑘) vector multiplet, 𝐼 , 𝐽 and 𝐵 chiral
multiplets and 𝜓 Fermi multiplet. It describes the moduli space of vortices of 4d, 𝒩 = 1, U(𝑁)
gauge theory with 𝑁F fundamental chirals and ̃𝑁F anti-fundamental chirals.

In order to compute the elliptic genus we consider the flavor group S(U(𝑁) × U(𝑁F − 𝑁) ×
U( ̃𝑁F)). Notice that we have excluded the global U(1) phase from the flavor group since it is
gauged. We also allow a U(1) holonomy for the chiral multiplet in the adjoint 𝐵.

Group 𝐼 𝐽 𝜓 𝐵 Chemical Potential

U(𝑘) □ □ □ 𝐀𝐝𝐣 𝑢𝑖
U(𝑁) □ • • • 𝑧𝛼
U(𝑁F − 𝑁) • □ • • 𝜇𝐴
U( ̃𝑁F) • • □ • 𝜈𝐼
U(1)𝐵 0 0 0 1 −ℓ

Table 4.1: Groups representations and related chemical potentials. □ is the fundamental
representation □ is the anti-fundamental, • is the trivial and 𝐀𝐝𝐣 is the adjoint.

The chemical potentials, listed in tab. 4.1, are subject to the constraint

𝑁
∑
𝛼=1

𝑧𝛼 +
𝑁F−𝑁
∑
𝐴=1

𝜇𝐴 −
𝑁̃F

∑
𝐼=1

𝜈𝐼 = 0 . (4.5)

The one-loop determinants are easily found

𝑍(0,2)
𝐕 (𝜏|𝑢) = 1

𝑘!(−2𝜋i𝜂2(𝜏))𝑘
𝑘

∏
𝑖,𝑗=1
𝑖≠𝑗

i
𝜃1(𝜏∣𝑢𝑖𝑗)

𝜂(𝜏)
𝑘

∏
𝑖=1

d𝑢𝑖 , (4.6)

𝑍(0,2)
𝐼 (𝜏|𝑢, 𝑧) =

𝑘
∏
𝑖=1

𝑁
∏
𝛼=1

i 𝜂(𝜏)
𝜃1(𝜏|𝑢𝑖 − 𝑧𝛼) , (4.7)

5All the multiplets here are 𝒩 = (0, 2) multiplets.
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𝑍(0,2)
𝐽 (𝜏|𝑢, 𝜇) =

𝑘
∏
𝑖=1

𝑁F−𝑁
∏
𝐴=1

i 𝜂(𝜏)
𝜃1(𝜏|−𝑢𝑖 + 𝜇𝐴) , (4.8)

𝑍(0,2)
𝜓 (𝜏|𝑢, 𝜈) =

𝑘
∏
𝑖=1

𝑁̃F

∏
𝐼=1

i𝜃1(𝜏|𝑢𝑖 − 𝜈𝐼)
𝜂(𝜏) , (4.9)

𝑍(0,2)
𝐵 (𝜏|𝑢, ℓ) =

𝑘
∏

𝑖,𝑗=1
i 𝜂(𝜏)
𝜃1(𝜏∣𝑢𝑖𝑗 − ℓ) , (4.10)

where we used the shorthand 𝑢𝑖𝑗 ∶= 𝑢𝑖 − 𝑢𝑗. Therefore

ℐ(0,2)
𝑘,𝑁,𝑁F,𝑁̃F

(𝜏|𝑧, 𝜇, 𝜈, ℓ) = ∫
JK

𝑍(0,2)
𝐕 (𝜏|𝑢)𝑍(0,2)

𝐼 (𝜏|𝑢, 𝑧)𝑍(0,2)
𝐽 (𝜏|𝑢, 𝜇)𝑍(0,2)

𝜓 (𝜏|𝑢, 𝜈)𝑍(0,2)
𝐵 (𝜏|𝑢, ℓ) ,

(4.11)

where “JK” subscript of the integral means that we are going to take JK resiude, as explained
in the preceding chapter.

4.2.1 Anomaly Cancellation

Since our 2d theory is manifestly chiral, we have to find out under which conditions gauge
anomalies cancel. A very instructive way to find such conditions is to impose the double
periodicity of the integrand of the partition function eq. (4.11). Such property is not trivially
enjoyed since eq. (B.7) shows us that 𝜃1 is just quasiperiodic under a shift which is an integer
times the modulus of the torus. Let us study the behaviour of the integrand in eq. (4.11) under
the shift: 𝑢𝑖 ↦ 𝑢𝑖 + 𝑎 + 𝑏𝜏 (𝑎, 𝑏 ∈ ℤ):

• 𝑍(0,2)
𝐕 and 𝑍(0,2)

𝐵 are left unchanged;

• 𝑍(0,2)
𝐼 ↦ (−1)𝑘𝑁(𝑎+𝑏)𝑒𝑖𝜋𝑘𝑁𝑏2𝜏𝑒2𝜋i𝑁𝑏 ∑𝑘

𝑗=1 𝑢𝑗𝑒−2𝜋i𝑘𝑏 ∑𝑁
𝛼=1 𝑧𝛼𝑍(0,2)

𝐼 ;

• 𝑍(0,2)
𝐽 ↦ (−1)𝑘(𝑁F−𝑁)(𝑎+𝑏)𝑒i𝜋𝑘(𝑁F−𝑁)𝑏2𝜏𝑒2𝜋i(𝑁F−𝑁)𝑏 ∑𝑘

𝑗=1 𝑢𝑗𝑒−2𝜋i𝑘𝑏 ∑𝑁F−𝑁
𝐴=1 𝜇𝐴𝑍(0,2)

𝐽 ;

• 𝑍(0,2)
𝜓 ↦ (−1)−𝑘𝑁̃F(𝑎+𝑏)𝑒−i𝜋𝑘𝑁̃F𝑏2𝜏𝑒−2𝜋i𝑁̃F𝑏 ∑𝑘

𝑗=1 𝑢𝑖𝑒2𝜋i𝑘𝑏 ∑𝑁̃F
𝐼=1 𝜈𝐼𝑍(0,2)

𝜓 .

Combining all these contributions together and imposing shift invariance we get:

(−1)𝑘(𝑁F−𝑁̃F)(𝑎+𝑏)𝑒i𝜋𝑘(𝑁F−𝑁̃F)𝑏2𝜏𝑒2𝜋i(𝑁F−𝑁̃F)𝑏 ∑𝑘
𝑗=1 𝑢𝑗×

× 𝑒−2𝜋i𝑘𝑏(∑𝑁
𝛼=1 𝑧𝛼+∑𝑁F−𝑁

𝐴=1 𝜇𝐴−∑𝑁̃F
𝐼=1 𝜈𝐼) = 1 . (4.12)

The last exponential is one thanks to eq. (4.5), thus the anomaly cancels iff:

𝑁F = ̃𝑁F , (4.13)

This condition also ensure the anomaly cancellation in the “parent” 4d theory.
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4.2.2 Polology

There are three sources of poles: the chiral multiplets. The singular hyperplanes are

𝐻𝐵;𝑖,𝑗 = {𝑢𝑖𝑗 − ℓ = 0} , 𝐻𝐼;𝑖,𝛼 = {𝑢𝑖 = 𝑧𝛼} , 𝐻𝐽;𝑖,𝐴 = {𝑢𝑖 = 𝜇𝐴} , (4.14)

whose (gauge) charges are

ℎ⃗𝐵;𝑖,𝑗 = (0, … , 1⏟
𝑖

, … , − 1⏟
𝑗

, … , 0) , ℎ⃗𝐼;𝑖,𝛼 = (0, … , 1⏟
𝑖

, … , 0) , ℎ⃗𝐽;𝑖,𝐴 = (0, … , − 1⏟
𝑖

, … , 0) .

(4.15)

We now have to find the intersection points 𝑢∗ of 𝑘 hyperplanes described by eqs. (4.14) that
is we have to select all the possible groups of 𝑘 equations among (4.14) that have a unique
solution. This corresponds to look for a solution of the following system of linear equations

𝑄T(𝑢∗) ⎛⎜⎜
⎝

𝑢∗
1
⋮

𝑢∗
𝑘

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑑1
⋮

𝑑𝑘

⎞⎟⎟
⎠

; (4.16)

here the components of 𝑄(𝑢∗) = (𝑄1, … , 𝑄𝑘) are chosen among charges (4.15) corresponding to
a given sets of hyperplanes: 𝑄𝑖 = ℎ⃗ for certain6 ℎ⃗. Then 𝑑𝑖 = ℓ if the corresponding hyperplane
is of the type 𝐻𝐵; 𝑑𝑖 = 𝑧𝛼 for some 𝛼, if the corresponding hyperplane is of the type 𝐻𝐼 ; and
𝑑𝑖 = −𝜇𝐴, for some 𝐴, if the corresponding hyperplane is of the type 𝐻𝐽 . However, as explained
in the previous chapter, not all these 𝑢∗’s will contribute to the computation of JK residue.
When exactly 𝑘 hyperplanes meet at 𝑢∗ and they are linearly independent the contribution is
selected by JK procedure if 𝜂 ∈ Cone(𝑄1, … 𝑄𝑘); namely if

𝑄(𝑢∗) ⎛⎜⎜
⎝

𝜍1
⋮

𝜍𝑘

⎞⎟⎟
⎠

= 𝜂T for all 𝜍𝑖 > 0. (4.17)

The problem of finding the general form for such a matrix 𝑄(𝑢∗) is solved in app. C.1: first
of eq. (C.14) tells us that hyperplanes of type 𝐻𝐽;𝑖 and 𝐻𝐵;𝑖,𝑗 with 𝑖 < 𝑗 are excluded since
their charge covectors are related to those appearing in eq. (C.14) by a sign flip. This would
lead to a flip in the corresponding 𝜍 which would become negative. Therefore we remain with
hyperplanes of type 𝐻𝐼;𝑖 and of type 𝐻𝐵∶𝑖,𝑗 with 𝑖 > 𝑗. The first hyperplane of each block
𝑄𝑞(𝑢∗) is of type 𝐻𝐼 , the next ones in the same block are of type 𝐻𝐵. The first coordinate of a
pole can therefore be taken 𝑢∗

1 = 𝑧𝛼 and each coordinates differ by one of the previous ones by
ℓ. Therefore the poles will be labeled by a the chemical potential index 𝛼 and another index
𝑟𝛼:

𝑢∗
𝛼,𝑟𝛼

= 𝑧𝛼 + (𝑟𝛼 − 1)ℓ , (4.18)

with 𝑟𝛼 = 1, … , 𝑘𝛼 and ∑𝛼 𝑘𝛼 = 𝑘. These poles can be represented as a collection of “colored”
stripes of boxes: each color represent a different 𝛼, as in fig. 4.2.

Then we see that for every pole we are in the regular case of JK procedure and we do
not need desingularization procedure 3.3. We remark that all the 𝑢∗’s have to be different,
otherwise the residue would vanish because of the presence of the 𝜃1(𝜏∣𝑢𝑖𝑗) in the numerator.
Of course, given a set of 𝑘 poles that contribute to the elliptic genus, any of its 𝑘! permutation
will contribute as well; this multiplicity factor cancels the order of the Weyl group in eq. (4.6).

6We omit the vector sign over 𝑄𝑖, as already done.
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{ , , , }

Figure 4.2: An example of “colored strip”. In this case we have 𝑘 = 14 divided in 4 colors
𝑘1 = 5, 𝑘2 = 2, 𝑘3 = 4, 𝑘4 = 4

4.2.3 Computation

Now we have to compute residues at the poles found in the preceding paragraph: this is pretty
simple since we are dealing with simple poles. We have just to use eq. (B.8) with 𝑎 = 𝑏 = 1
for the 𝜃1 giving the pole, and to evaluate the other non singular factors at that point. Since
we labelled poles with two indices (eq. (4.18)) it will be convenient to rearrange products as
∏𝑘

𝑖=1 = ∏𝑁
𝛼=1 ∏𝑘𝛼

𝑟𝛼=1. In this way it’s easy to write the contribution of every multiplet:

𝑍(0,2)
𝐕 = (−2𝜋i𝜂2(𝑞))𝑘 𝑁

∏
𝛼,𝛽=1
𝛼≠𝛽

𝑘𝛼

∏
𝑟𝛼=1

𝑘𝛽

∏
𝑠𝛽=1

i
𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽)ℓ)

𝜂(𝑞) ×

×
𝑁

∏
𝛼=1

𝑘𝛼

∏
𝑟𝛼,𝑠𝛼=1
𝑟𝛼≠𝑠𝛼

i𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛼)ℓ)
𝜂(𝑞) , (4.19)

𝑍(0,2)
𝐼 =

𝑁
∏

𝛼,𝛽=1
𝛼≠𝛽

𝑘𝛼

∏
𝑟𝛼=1

i 𝜂(𝑞)
𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 1)ℓ) ×

𝑁
∏
𝛼=1

( i𝜂(𝑞)
2𝜋𝜂3(𝑞))

𝑘𝛼

∏
𝑟𝛼=2

i 𝜂(𝑞)
𝜃1(𝜏|(𝑟𝛼 − 1)ℓ) , (4.20)

𝑍(0,2)
𝐽 =

𝑁
∏
𝛼=1

𝑁F−𝑁
∏
𝐴=1

𝑘𝛼

∏
𝑟𝛼=1

i 𝜂(𝑞)
𝜃1(𝜏|𝜇𝐴 − 𝑧𝛼 − (𝑟𝛼 − 1)ℓ) , (4.21)

𝑍(0,2)
𝜓 =

𝑁
∏
𝛼=1

𝑁F

∏
𝐼=1

𝑘𝛼

∏
𝑟𝛼=1

i𝜃1(𝜏|𝑧𝛼 − 𝜈𝐼 + (𝑟𝛼 − 1)ℓ)
𝜂(𝑞) , (4.22)

𝑍(0,2)
𝐵 =

𝑁
∏

𝛼,𝛽=1
𝛼≠𝛽

𝑘𝛼

∏
𝑟𝛼=1

𝑘𝛽

∏
𝑠𝛽=1

i 𝜂(𝑞)
𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽 − 1)ℓ)×

×
𝑁

∏
𝛼=1

( i𝜂(𝑞)
2𝜋𝜂3(𝑞))

𝑘𝛼−1 𝑘𝛼

∏
𝑟𝛼,𝑠𝛼=1
𝑟𝛼≠𝑠𝛼+1

𝑖 𝜂(𝑞)
𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛼 − 1)ℓ) , (4.23)

(4.24)

where 𝑧𝛼𝛽 = 𝑧𝛼 −𝑧𝛽. Now it is simply a matter of collecting and rearranging factors. According
to:

∏𝑘𝛼
𝑖𝛼,𝑠𝛼=1
𝑟𝛼≠𝑠𝛼

𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛼)ℓ)

∏𝑘𝛼
𝑟𝛼,𝑠𝛼=1
𝑟𝛼≠𝑠𝛼+1

𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛼 − 1)ℓ) × ∏𝑘𝛼
𝑟𝛼=2 𝜃1(𝜏|(𝑟𝛼 − 1)ℓ)

= 1
∏𝑘𝛼

𝑟𝛼=1 𝜃1(𝜏| − 𝑟𝛼ℓ)
, (4.25)

and:
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∏𝑘𝛼
𝑟𝛼=1 ∏𝑘𝛽

𝑠𝛽=1 𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽)ℓ)
∏𝑘𝛼

𝑟𝛼=1 ∏𝑘𝛽
𝑠𝛽=1 𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽 − 1)ℓ) × ∏𝑘𝛼

𝑟𝛼=1 𝜃1(𝜏|𝑧𝛼𝛽 + (𝑠𝛼 − 1)ℓ)
=

= 1
∏𝑘𝛼

𝑟𝛼=1 𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑘𝛽 − 1)ℓ)
, (4.26)

we can write:

ℐ(0,2)
𝑘⃗,𝑁,𝑁F

(𝜏|𝑧, 𝜇, 𝜈, ℓ) =

(−1)𝑘(𝑁+1)
𝑁

∏
𝛼=1

∏𝑁F
𝐼=1 Θ1(𝜏, ℓ|𝑧𝛼 − 𝜈𝐼)𝑘𝛼

Θ1(𝜏, ℓ|ℓ)𝑘𝛼
∏𝑁

𝛽=1
𝛽≠𝛼

Θ1(𝜏, ℓ|𝑧𝛼𝛽 − 𝑘𝛽ℓ)𝑘𝛼
× ∏𝑁F−𝑁

𝐴=1 Θ1(𝜏, ℓ|𝑧𝛼 − 𝜇𝐴)𝑘𝛼

, (4.27)

where the Θ1 function is a generalization of Pochhammer symbols and it is defined and studied
in app. B.2. This result is an elliptic generalization of 𝑘-vortex partition functions found in [40,
41, 66–70]. If we now define de grand-canonical partition function summing over all 𝑁 -colored
partitions of 𝑘, as:

ℐ(0,2)
𝑁,𝑁F

(𝜏|𝑧, 𝜇, 𝜈, ℓ) =
∞

∑
𝑘1=1

…
∞

∑
𝑘𝑁=1

ℐ(0,2)
𝑘⃗,𝑁,𝑁F

(𝜏|𝑧, 𝜇, 𝜈, ℓ) [− (−𝑒i𝜋ℓ)𝑁 𝑧]
|𝑘⃗|

, (4.28)

where |𝑘⃗| = ∑𝛼 𝑘𝛼. Applying eq. (B.13) to eq. (4.27), and then rewriting the prefactor as a
differential operator, making use of eqs. (B.14) and (4.5), we can write:

ℐ(0,2)
𝑁,𝑁F

(𝜏|𝑧, 𝜇, 𝜈, ℓ) = 𝒟(0,2)
𝑁

𝑁
∏
𝛼=1

𝐸𝑁F 𝑁F−1 (
⃗𝐴𝛼

𝐵⃗𝛼, ⃗𝐶𝛼
∣𝜏 , ℓ∣𝑧𝛼) (4.29)

in which we set:

⃗𝐴𝛼 = (𝑧𝛼 − 𝜈1, … , 𝑧𝛼 − 𝜈𝑁F
) ; (4.30)

𝐵⃗𝛼 = (𝑧𝛼 − 𝑧1, … , ̂𝑧𝛼 − 𝑧𝛼, … , 𝑧𝛼 − 𝑧𝑁) ; (4.31)
⃗𝐶𝛼 = (𝑧𝛼 − 𝜇𝐴, … , 𝑧𝛼 − 𝜇𝑁F−𝑁) ; (4.32)

𝒟(0,2)
𝑁 = ∏

1≤𝛼<𝛽≤𝑁
𝑒−i𝜋ℓ(𝑧𝛼𝜕𝑧𝛼 −𝑧𝛽𝜕𝑧𝛽 ) 𝜃(𝜏|𝑧𝛼𝛽 + ℓ(𝑧𝛼𝜕𝑧𝛼

− 𝑧𝛽𝜕𝑧𝛽
))

𝜃(𝜏|𝑧𝛼𝛽) , (4.33)

where the wide hat means omission. We notice also that, using eq. (B.16) is possible to write
the grand-partition function (4.29) as a finite combination of elliptic hypergeometric functions.
Notice that in the case of 𝑁 = 1, the differential operator is not there and we recover the result
of [64].

4.3 𝒩 = (2, 2) theories

In this section we discuss the elliptic genus of moduli space of 𝑘 vortices in a four-dimensional
𝒩 = 2 theory with U(𝑁) gauge group with 𝑁F hypermultiplets in the fundamental [56]. This
moduli space is described by 2d 𝒩 = (2, 2) quiver gauge theory depicted in fig. 4.3.

7All the multiplets here are 𝒩 = (2, 2) multiplets.
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𝑁

𝑁F − 𝑁
𝑘

𝐼

𝐽
Φ

Figure 4.3: 𝒩 = (2, 2) quiver gauge theory: it has7U(𝑘) vector multiplet, 𝐼 , 𝐽 and Φ chiral
multiplets and vanishing superpotential. It describes the moduli space of vortices of 4d, 𝒩 = 2,
U(𝑁) gauge theory with 𝑁F fundamental chirals; it becomes superconformal if 𝑁F = 2𝑁 .

In order to compute the elliptic genus we consider the flavor group S(U(𝑁) × U(𝑁F − 𝑁))
together with a U(1) holonomy for Φ; in this case we have also an extra holonomy for the
left-moving 𝑅-charge. Since the theory does not have superpotential, we are free to choose the
left-moving R-charge of each multiplet: we will take all them as zero8.

Group 𝐼 𝐽 Φ Chemical Potential

U(𝑘) □ □ 𝐀𝐝𝐣 𝑢𝑖
U(𝑁) □ • • 𝑧𝛼
U(𝑁F − 𝑁) • □ • 𝜇𝐴
U(1)Φ 0 0 1 −ℓ
U(1)𝐿 0 0 0 𝜖

Table 4.2: Groups representations and related chemical potentials. □ is the fundamental
representation □ is the anti-fundamental, • is the trivial and 𝐀𝐝𝐣 is the adjoint.

As before, these chemical potentials, listed in tab. 4.2, are not independent:

𝑁
∑
𝛼=1

𝑧𝛼 +
𝑁F−𝑁
∑
𝐴=1

𝜇𝐴 = 0 . (4.34)

The one-loop determinants read

𝑍(2,2)
𝐕 (𝜏|𝑢, 𝜖) = 1

𝑘! (−2𝜋𝜂(𝜏)
𝜃1(𝜏|ℓ))

𝑘 𝑘
∏

𝑖,𝑗=1
𝑖≠𝑗

𝜃1(𝜏∣𝑢𝑖𝑗)
𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖)

𝑘
∏
𝑖=1

d𝑢𝑖 , (4.35)

𝑍(2,2)
𝐼 (𝜏|𝑢, 𝑧, 𝜖) =

𝑁
∏
𝛼=1

𝑘
∏
𝑖=1

𝜃1(𝜏|𝑢𝑖 − 𝜖 − 𝑧𝛼)
𝜃1(𝜏|𝑢𝑖 − 𝑧𝛼) , (4.36)

𝑍(2,2)
𝐽 (𝜏|𝑢, 𝜇, 𝜖) =

𝑁F−𝑁
∏
𝐴=1

𝑘
∏
𝑖=1

𝜃1(𝜏|−𝑢𝑖 − 𝜖 + 𝜇𝐴)
𝜃1(𝜏|−𝑢𝑖 + 𝜇𝐴) , (4.37)

𝑍(2,2)
Φ (𝜏|𝑢, ℓ, 𝜖) =

𝑘
∏

𝑖,𝑗=1

𝜃1(𝜏∣𝑢𝑖𝑗 − ℓ − 𝜖)
𝜃1(𝜏∣𝑢𝑖𝑗 − ℓ) . (4.38)

Notice that a different left-moving R-charge assignment would lead to the same partition func-
tion provided we reabsorb various 𝜖 factors in a subgroup of the flavor group. As before we

8In general, when a theory is superconformal, the superconformal R-charges can be computed with 𝑐-
extremization [131, 132].
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see that the theory is anomaly-free at the superconformal point 𝑁F = 2𝑁 . The elliptic genus
is therefore

ℐ(2,2)
𝑘,𝑁 (𝜏|𝑧, 𝜇, ℓ, 𝜖) = ∫

JK
𝑍(2,2)

𝐕 (𝜏|𝑢, ℓ)𝑍(2,2)
𝐼 (𝜏|𝑢, 𝑧, 𝜖)𝑍(2,2)

𝐽 (𝜏|𝑢, 𝜇, 𝜖)𝑍(2,2)
Φ (𝜏|𝑢, ℓ, 𝜖) . (4.39)

4.3.1 Polology

The pole classification in the present case is very similar to the preceding one. The singular
hyperplane are

𝐻𝐕;𝑖,𝑗 = {𝑢𝑖𝑗 − 𝜖 = 0} , 𝐻Φ;𝑖,𝑗 = {𝑢𝑖𝑗 − ℓ = 0} , (4.40)
𝐻𝐼;𝑖,𝛼 = {𝑢𝑟 = 𝑧𝛼} , 𝐻𝐽;𝑖,𝐴 = {𝑢𝑟 = 𝜇𝐴} , (4.41)

the respective charge

ℎ⃗𝐕;𝑖,𝑗 = ℎ⃗Φ;𝑖,𝑗 = (0, … , 1⏟
𝑖

, … , − 1⏟
𝑗

, … , 0) , (4.42)

ℎ⃗𝐼;𝑖,𝛼 = (0, … , 1⏟
𝑖

, … , 0) , ℎ⃗𝐽;𝑖,𝐴 = (0, … , − 1⏟
𝑖

, … , 0) . (4.43)

As before poles coming from 𝐻𝐽 are discarded by JK procedure. We will organize the contribu-
tions as before: fixing a color we have that the first pole occurs at 𝑢∗

𝛼,1 = 𝑧𝛼. To compute the
second pole of that color, we can use either 𝐻𝐕 or 𝐻Φ; in the first case we have 𝑢∗

𝛼,2 = 𝑧𝛼 + 𝜖.
This value of 𝑢 indeed, set the numerator of eq. (4.36) to zero and so we drop this case; the
remaining choice is to take 𝑢∗

𝛼,2 = 𝑧𝛼 + ℓ. Then we proceed to the third pole of the same color:
as before, we can have either 𝑢∗

𝛼,3 = 𝑧𝛼 + ℓ + 𝜖 or 𝑧𝛼,3 = 𝑧𝛼 + 2ℓ. Again, in the first case we
encounter a zero in the numerator of eq. (4.38). The iteration of this argument shows that the
poles are of the form:

𝑢∗
𝛼,𝑟𝛼

= 𝑧𝛼 + (𝑟𝛼 − 1)ℓ , (4.44)

with 𝑟𝛼 = 1, … , 𝑘𝛼 and ∑𝛼 𝑘𝛼 = 𝑘. We conclude that the structure of the poles is the same as
in the preceding case.

4.3.2 Computation

As in the previous case, we have just to plug the poles (4.44) into the expression of one loop
determinants of the multiplets and to use eq. (B.8):

𝑍(2,2)
𝐕 = ( 2𝜋𝜂3(𝑞)

𝜃1(𝜏| − 𝜖))
𝑘 𝑁

∏
𝛼,𝛽=1
𝛼≠𝛽

𝑘𝛼

∏
𝑟𝛼=1

𝑘𝛽

∏
𝑠𝛽=1

𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽)ℓ)
𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽)ℓ − 𝜖)×

×
𝑁

∏
𝛼=1

𝑘𝛼

∏
𝑟𝛼,𝑠𝛼=1
𝑟𝛼≠𝑠𝛼

𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛽)ℓ)
𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛽)ℓ − 𝜖) , (4.45)

𝑍(2,2)
𝐼 =

𝑁
∏

𝛼,𝛽=1
𝛼≠𝛽

𝑘𝛼

∏
𝑟𝛼=1

𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 1)ℓ − 𝜖)
𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 1)ℓ) ×

𝑁
∏
𝛼=1

(𝜃1(𝜏| − 𝜖)
2𝜋𝜂3(𝑞) )

𝑘𝛼

∏
𝑟𝛼=2

𝜃1(𝜏|(𝑟𝛼 − 1)ℓ − 𝜖)
𝜃1(𝜏|(𝑟𝛼 − 1)ℓ) ,

(4.46)
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𝑍(2,2)
𝐽 =

𝑁
∏

𝛼,𝛽=1

𝑘𝛼

∏
𝑟𝛼=1

𝜃1(𝜏|𝜇𝛼 − 𝑧𝛽 − (𝑟𝛼 − 1)ℓ − 𝜖)
𝜃1(𝜏|𝜇𝛼 − 𝑧𝛽 − (𝑟𝛼 − 1)ℓ) , (4.47)

𝑍(2,2)
Φ =

𝑁
∏

𝛼,𝛽=1
𝛼≠𝛽

𝑘𝛼

∏
𝑟𝛼=1

𝑘𝛽

∏
𝑠𝛽=1

𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽 − 1)ℓ − 𝜖)
𝜃1(𝜏|𝑧𝛼𝛽 + (𝑟𝛼 − 𝑠𝛽 − 1)ℓ) ×

×
𝑁

∏
𝛼=1

(𝜃1(𝜏| − ℓ)
2𝜋𝜂3(𝑞) )

𝑘𝛼−1 𝑘𝛼

∏
𝑟𝛼,𝑠𝛼=1
𝑟𝛼≠𝑠𝛼+1

𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛽 − 1)ℓ − 𝜖)
𝜃1(𝜏|(𝑟𝛼 − 𝑠𝛽 − 1)ℓ) . (4.48)

Using again eqs. (4.25) and (4.26) both for numerators and denominators, and collecting all
the factors, it is possible to write the result as:

ℐ(2,2)
𝑘⃗,𝑁 (𝜏|𝑧, 𝜇, ℓ, 𝜖) =

𝑁
∏

𝛼,𝛽=1

Θ1(𝜏, ℓ|𝑧𝛼𝛽 − 𝑘𝛽ℓ − 𝜖)𝑘𝛼

Θ1(𝜏, ℓ|𝑧𝛼𝛽 − 𝑘𝛽ℓ)𝑘𝛼

Θ1(𝜏, ℓ|𝑧𝛽 − 𝜇𝛼 + ℓ)𝑘𝛼

Θ1(𝜏, ℓ|𝑧𝛽 − 𝜇𝛼)𝑘𝛼

. (4.49)

which, unfortunately, has not a simple resummation in terms of elliptic hypergeometric equa-
tion, due to the presence of the shift −𝜖 in the numerator of the first factor. This result
reproduces holomorphic 4d blocks and free-field correlators of elliptic Virasoro algebrae [71].
Eq. (4.49) can be used to generalize the result for the topological vertex presented in [66] to its
elliptic version [133], in which rotational modes are resummed. Following [66] we define the
“elliptic-lift” of the amplitude of the open topological string as a double copy of our original
system with opposite 𝜖:

𝒜ell.
𝑁 (𝜏|𝑧, 𝜇, ℓ, 𝜖) =

∞
∑
𝑘1=1

…
∞

∑
𝑘𝑁=1

ℐ(2,2),𝑁
𝑘⃗ (𝜏|𝑧, 𝜇, ℓ, 𝜖)ℐ(2,2),𝑁

𝑘⃗ (𝜏|𝑧, 𝜇, ℓ, −𝜖)𝑧|𝑘⃗|. (4.50)

Now we can apply, as before, eq. (B.13) in the denominator as well as in the numerator of
(4.50). Using our bag of tricks as before the result reads:

𝒜ell.
𝑁 (𝜏|𝑧, 𝜇, ℓ, 𝜖) = 𝒟(2,2)

𝑁

𝑁
∏
𝛼=1

𝐸4𝑁 4𝑁−1 (
⃗𝐴+
𝛼, ⃗𝐴−

𝛼, 𝐵⃗+
𝛼 , 𝐵⃗−

𝛼
ℓ, ⃗𝐶𝛼, ⃗𝐶𝛼, 𝐷⃗𝛼, 𝐷⃗𝛼

∣𝜏 , ℓ∣𝑧𝛼) , (4.51)

where we set:

⃗𝐴±
𝛼 = (𝑧𝛼 − 𝑧1 ± ℓ + ℓ, … , 𝑧𝛼 − 𝑧𝑁 ± 𝜖 + ℓ) ; (4.52)

𝐵⃗±
𝛼 = (𝑧1 − 𝜇𝛼 ± 𝜖, … , 𝑧𝑁 − 𝜇𝛼 ± 𝜖) ; (4.53)
⃗𝐶𝛼 = (𝑧𝛼 − 𝑧1, … , ̂𝑧𝛼 − 𝑧𝛼, … , 𝑧𝛼 − 𝑧𝑁) ; (4.54)

𝐷⃗𝛼 = (𝑧1 − 𝜇𝛼, … , 𝑧𝑁 − 𝜇𝛼) ; (4.55)

𝒟(2,2)
𝑁 = ∏

1≤𝛼<𝛽≤𝑁
𝑒i𝜋ℓ(𝑧𝛼𝜕𝑧𝛼 −𝑧𝛽𝜕𝑧𝛽 ) 𝜃(𝜏|𝑧𝛼𝛽 − 𝜖)𝜃(𝜏|𝑧𝛼𝛽 + 𝜖)

𝜃2(𝜏|𝑧𝛼𝛽) ×

×
𝜃2(𝜏|𝑧𝛼𝛽 + ℓ(𝑧𝛼𝜕𝑧𝛼

− 𝑧𝛽𝜕𝑧𝛽
))

𝜃(𝜏|𝑧𝛼𝛽 + 𝜖 + ℓ(𝑧𝛼𝜕𝑧𝛼
− 𝑧𝛽𝜕𝑧𝛽

))𝜃(𝜏|𝑧𝛼𝛽 − 𝜖 + ℓ(𝑧𝛼𝜕𝑧𝛼
− 𝑧𝛽𝜕𝑧𝛽

)) . (4.56)

This result is the elliptic analogue of the 𝒩 = 2 vortex partition presented in [66].



5. Elliptic Genus of D1/D7 brane system

In this chapter we will compute in detail the elliptic genus of D1/D7 brane system, using the
same technique employed in the preceding chapter. This time, however, the computation is
more involved and we will use the desingularization procedure described in sec. 3.3. We will
follow [2].

5.1 Elliptic non-Abelian Donaldson–Thomas Invariants of ℂ3

To study (equivariant) Donaldson–Thomas invariants [37] of a three-fold 𝑋, one can employ
a string theory brane construction [38, 39]. In particular, in order to study the so called
“Hilbert scheme of points” on1 𝑋, we place a single Euclidean D5 brane on the threefold, and
some number 𝑘 of D(−1) branes on its worldvolume. Then, SUSY is preserved if we set a
𝐵-field along the D5 brane [54]. The resulting SUSY field theory from the point of view of the
D(−1) branes, which in this case is 0d, that is, a matrix model, contains information about the
sought-after invariants. Much information can be extracted with supersymmetric field theory
techniques. Actually, we can similarly study K-theoretic generalization of the DT invariants
by adding one direction to the brane setup. Specifically, we can study D6 brane wrapped on 𝑋
and 𝑘 D0 branes on its worldvolume: the quantum mechanics on the D0 branes captures the
K-theoretic DT invariants of 𝑋 [135]. Furtherly we can add one more direction and study a
D7 brane wrapped on 𝑋 and 𝑘 D1 branes on its worldvolume: the two dimensional theory on
the D1 branes allows us to define the elliptic DT invariants of 𝑋. Mathematically speaking we
define them as the elliptic genera of the Hilbert scheme of 𝑘 points on 𝑋. Physically they are
the elliptic genera of the theories living on those D1 brane. One can generalize the construction
under discussion using 𝑁 D5, D6 or D7 branes instead of a single one. We call these higher
rank DT invariants elliptic non-Abelian DT invariants. Here we are interested in the simplest
three-fold, that is 𝑋 = ℂ3.

Let us consider a type IIB superstring theory with both D7 and D1 brane arranged as in
tab. 5.1.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10
D1 − − • • • • • • • •
D7 − − − − − − − − • •⏟

𝑇 2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℂ3

Table 5.1: Arrangement of the D1/D7 brane system.

1The Hilbert Scheme of 𝑛 points on 𝑋 is usually denoted as 𝑋[𝑛]. It is an algebraic desingularization of the
space Sym𝑛 𝑋. We recommend [134].
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In this situation we see that the D7 brane are wrapped on ℂ3. The 2d theory living on
𝑘 D1-branes probing 𝑁 D7-branes is a 𝒩 = (2, 2) GLSM and it is described by the quiver
depicted in 5.1.

𝑁 𝑘
𝑄

𝐵1

𝐵3

𝐵2

Figure 5.1: 𝒩 = (2, 2) quiver gauge theory: it has2U(𝑘) vector multiplet; 𝑄 is a chiral multiplet
in the fundamental representation of the gauge group and in the anti-fundamental representa-
tion of the SU(𝑁) flavor group. 𝐵1, 𝐵2 and 𝐵3 are chiral multiplets in the adjoint representation
of the gauge group. The superpotential 𝑊 = tr(𝐵1[𝐵2, 𝐵3]).

It has a superpotential

𝑊 = tr(𝐵1[𝐵2, 𝐵3]) . (5.1)

The field content has the following interpretation from the string theory point of view: there
are three (complex) chiral multiplet 𝐵1, 𝐵2 and 𝐵3 parametrizing the fluctuation of the D1
brane along the D7 (namely in the directions 3, …, 8), the two scalars in the vector multiplet
𝜎 and 𝜎̄ parametrize the fluctuation in the directions 9 and 10, there is a chiral multiplet 𝑄
originating from the open string stretched between the D1 and D7.

On general grounds, from chap. 2, such GLSM has a scalar potential

𝑉 ∼ 1
2𝑔2 𝐷2 + ∑

𝑖
|𝐹𝑖|2 + 2𝜎𝐴𝜎̄𝐵𝜑̄𝑇𝐴𝑇𝐵𝜑 , (5.2)

where 𝑇 ’s belongs to the Lie algebra of the gauge group and the D- and F-terms read

𝐹𝑖 = 𝜕𝑊
𝜕𝜑𝑖

, 𝐷𝐴 = − i
2 ([𝜎, 𝜎̄]𝐴 + 𝑔𝜑̄𝑇𝐴𝜑 + 𝑔𝜉𝐴) , (5.3)

In the Higgs branch, 𝜎 = 𝜎̄ = 0, SUSY solutions 𝑉 = 0 for our matter content give us
ADHM-like equations3

[𝐵𝑎, 𝐵𝑏] = 0 ,
3

∑
𝑖=1

[𝐵𝑎, 𝐵†
𝑏 ] + 𝑄𝑄† = 𝜉𝐈 , (5.4)

which describe the moduli space. Dimensional reduction to D0/D6 and D(−1)/D5, in the
string theoretic setup can be obtained by means of a 𝑇 -duality along direction 1 and 2. In
these cases the number of direction transverse to both branes increase, correspondingly the
same happens with the number of scalars in the vector multiplet (which have to be set to zero
to parametrize the Higgs branch).

2All the multiplets are 𝒩 = (2, 2) multiplets.
3We switch from “bar” to “dagger” sign to conform ourselves to the literature. Undaggered fields have

the index of the fundamental representation of the gauge group, daggered field have the anti-fundamental
representation of the gauge group
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Besides the gauge symmetry, the theory has SU(N) flavor symmetry acting on the chiral
multiplet 𝑄 and a U(1)2 flavor symmetry acting on 𝐵𝑎=1,2,3. There is also a U(1)𝐿 of the
left-moving R-symmetry4.

Group 𝑄 𝐵1 𝐵2 𝐵3 Chemical Potential

U(𝑘) □ 𝐀𝐝𝐣 𝐀𝐝𝐣 𝐀𝐝𝐣 𝑢𝑖
SU(𝑁) □ • • • −𝑧𝛼
U(1)1 0 1 −1 0 𝜁1
U(1)2 0 0 1 −1 𝜁2
U(1)𝐿 0 1

3
1
3

1
3 𝜖

Table 5.2: Groups representations and related chemical potentials.

The chemical potential, listed in tab. 5.2, are constrained

𝑁
∑
𝛼=1

𝑧𝛼 = 0 . (5.5)

For future convenience we define the following variables

𝜖1 = 1
3𝜖 + 𝜁1 , 𝜖2 = 1

3𝜖 + 𝜁2 − 𝜁1 , 𝜖3 = 1
3𝜖 − 𝜁2 (5.6)

that satisfy the relation

𝜖1 + 𝜖2 + 𝜖3 = 𝜖 . (5.7)

In the following section we will compute the elliptic genus for 𝑁 = 1 and then we will generalize
the result for generic 𝑁 .

5.2 The Abelian Case

In this section we focus on the Abelian case 𝑁 = 1 which contains more subtleties with respect
to the above computations. Putting together the one-loop determinant one has

ℐ𝑘,1(𝜏| ⃗𝜖) = 1
𝑘! [2𝜋𝜂(𝜏)3 𝜃1(𝜏|𝜖12) 𝜃1(𝜏|𝜖13) 𝜃1(𝜏|𝜖23)

𝜃1(𝜏|𝜖1) 𝜃1(𝜏|𝜖2) 𝜃1(𝜏|𝜖3) 𝜃1(𝜏|𝜖) ]
𝑘

∫
JK

𝑘
∏
𝑖=1

d𝑢𝑖
𝑘

∏
𝑖=1

𝜃1(𝜏|𝑢𝑖 − 𝜖)
𝜃1(𝜏|𝑢𝑖)

×

×
𝑘

∏
𝑖,𝑗=1
𝑖≠𝑗

𝜃1(𝜏∣𝑢𝑖𝑗) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖12) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖13) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖23)
𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖1) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖2) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖3) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖) ; (5.8)

where we used the shorthand 𝜖𝑎𝑏 ∶= 𝜖𝑎 + 𝜖𝑏. Two comments are in order. First, we have to
check for anomaly cancellation: this is done as before, requiring that the integrand of (5.8)
is invariant under 𝑢𝑖 ↦ 𝑢𝑖 + 𝑎 + 𝑏𝜏 (with 𝑎, 𝑏 ∈ ℤ). The net effect of this shift comes from
the one-loop determinant for 𝑄 (as was expected since all other contribution originates from

4Actually, at the classical level there is the full R-symmetry group U(1)𝐿 × U(1)𝑅, however in the quantum
theory the anomaly breaks the anti-diagonal axial part to a discrete group (ℤ𝑁 in the case at hand). This is
relate to the fact that the theory is not conformal, rather it is gapped with a dynamically generated scale.
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matter in the adjoint representation): it pick up a phase 𝑒2𝜋i𝑏𝜖, as a consequence R-symmetry
parameter is quantized 𝜖 ∈ ℤ. This is how anomaly manifests itself in the localized path-
integral formulation. There is also a ’t Hooft anomaly for the left moving R-symmetry: under
the shift 𝜖 ↦ 𝜖 + 1, 𝜁1 ↦ 𝜁1 − 1

3 and 𝜁2 ↦ 𝜁2 − 2
3 we have

ℐ𝑘,1(𝜏|(𝜖1, 𝜖2, 𝜖3 + 1)) = (−1)𝑘ℐ𝑘,1(𝜏|(𝜖1, 𝜖2, 𝜖3)) ; (5.9)

Exactly the same sign is picked up if we shift one of the other 𝜖𝑎’s. Second, the prefactor
outside the integral in (5.8) is ill-defined for 𝜖 ∈ ℤ because 𝜃1(𝜏|𝜖) = 0. To solve this conflict,
we proceed as in [60, 61]. We introduce an extra chiral multiplet 𝑃 in the det−1 representation5

of U(𝑘). In the new theory, the continuous R-symmetry is non-anomalous and we can take
generic values of 𝜖. In particular, the limit 𝜖 → 0 is well-defined and finite. Of course, the
theory with 𝑃 is different from the one we are interested in. However, at 𝜖 = 0 we can introduce
a real mass for 𝑃 and remove it from the low-energy spectrum6. Therefore the elliptic genus
of the theory without 𝑃 at 𝜖 = 0 is equal to the 𝜖 → 0 limit of the elliptic genus of the theory
with 𝑃 . Notice that the one-loop determinant of 𝑃 satisfies lim𝜖→0 𝑍𝑃 (𝑢𝑖) = 1. With a suitable
choice of the parameter 𝜂 in the JK residue, i.e. with a suitable choice of contour, the poles of
𝑍𝑃 at 𝜖 ≠ 0 do not contribute to the integral. Thus, with this particular choice, the multiplet
𝑃 can be completely ignored: one computes the integral (5.8) for generic 𝜖 and then takes the
𝜖 → 0 limit. More details and examples can be found in [60, 61].

5.2.1 Evaluation

In order to evaluate the Jeffrey-Kirwan residue integral in (5.8) we follow similar what we have
done before. We first identify the hyperplanes where the integrand has pole singularities:

𝐻𝑄;𝑖 = {𝑢𝑖 = 0} , 𝐻𝐕;𝑖,𝑗 = {𝑢𝑖𝑗 − 𝜖 = 0} , 𝐻𝑎
𝐵;𝑖,𝑗 = {𝑢𝑖𝑗 + 𝜖𝑎 = 0} 𝑎 = 1, 2, 3 . (5.12)

The singular hyperplanes 𝐻𝑄 are due to the one-loop determinant of the chiral multiplet 𝑄,
the hyperplanes 𝐻𝐵 are due to 𝐵𝑎 while the hyperplanes 𝐻𝐕 are due to vector multiplets
associated to the roots of U(𝑘). The associated charge vectors, which are the charge vectors of
the chiral or vector multiplets responsible for the singularities, are:

ℎ⃗𝐹;𝑖 = (0, … , 1⏟
𝑖

, … , 0) , ℎ⃗𝐕;𝑖,𝑗 = ℎ⃗𝐵;𝑖𝑗 = (0, … , 1⏟
𝑖

, … , − 1⏟
𝑗

, … , 0) . (5.13)

First, we have to find poles 𝑢∗:

𝑄T(𝑢∗) ⎛⎜⎜
⎝

𝑢∗
1
⋮

𝑢∗
𝑘

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑑1
⋮

𝑑𝑘

⎞⎟⎟
⎠

, (5.14)

5Its one-loop determinant is

𝑍𝑃 (𝜏|𝑢, 𝜖) =
𝜃1(𝜏∣− ∑𝑘

𝑖=1 𝑢𝑖 − 𝜖)
𝜃1(𝜏∣− ∑𝑘

𝑖=1 𝑢𝑖)
, (5.10)

that compensates the anomaly. Its charge vector is

ℎ⃗𝑃 = (−1, … , −1) . (5.11)

6A real mass has R-charge 2, therefore it is compatible with the elliptic genus computation only at 𝜖 = 0.
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where the components of 𝑄(𝑢∗) = (𝑄1, … , 𝑄𝑘) are chosen among charges (5.13) corresponding
to a given sets of hyperplanes: 𝑄𝑖 = ℎ⃗ for certain ℎ⃗. Then 𝑑𝑖 = 0 if the corresponding
hyperplane is of type 𝐻𝑄, 𝑑𝑖 = 𝜖 if the corresponding hyperplane is of type 𝐻𝐕, and 𝑑𝑖 = −𝜖𝑎
if the corresponding hyperplane is of type 𝐻𝑎

𝐵. Moreover, according JK procedure, we choose
𝜂, as before, and a certain 𝑢∗ will give contribution iff

𝑄(𝑢∗) ⎛⎜⎜
⎝

𝜍1
⋮

𝜍𝑘

⎞⎟⎟
⎠

= 𝜂T for all 𝜍𝑖 > 0. (5.15)

We remark that, in general, the sum of JK residue on the 𝑢-torus 𝑇 2𝑘 does not depend on
the choice of 𝜂; in our case, this would be true if we kept the multiplet 𝑃 throughout the
computation. If, instead, we want to neglect 𝑃 , we should make a special choice of 𝜂 such
that the would-be poles from 𝑃 would not be picked up. From eq. (5.11) one argues that
𝜂 = (1, … , 1) is such a good choice. The general form of 𝑄(𝑢∗) is again the one we have in
eq. (C.14). From this we can read off that the firs hyperplane in each block 𝑄𝑞(𝑢∗) is of type
𝐻𝑄, while the other ones in the same block are either of type 𝐻𝐕;𝑖,𝑗 or of type 𝐻𝐵;𝑖,𝑗 with
𝑖 > 𝑗. It follows that a poles 𝑢∗ will have 𝑢∗

1 = 0, and then each coordinate differs from one of
the previous one by either 𝜖 or −𝜖𝑎. Thus we argue that the coordinates of a singular point 𝑢∗

take values on a 3d lattice

𝑢∗
(𝑙,𝑚,𝑛) = (1 − 𝑙)𝜖1 + (1 − 𝑚)𝜖2 + (1 − 𝑛)𝜖3 . (5.16)

The main difference with respect to subsec. 4.2.2 is that there there the difference of two
coordinates could be just 𝜖, here we have four different choices 𝜖 and −𝜖𝑎. This complicates
the analysis of the location of poles. There is a one-to-one correspondence between a singular
(modulo Weyl permutations) point and some arrangement of boxes

𝑢∗ = {𝑢∗
(𝑙,𝑚,𝑛)} ↔ U𝑘 = {𝑈(𝑙,𝑚,𝑛)} (5.17)

where 𝑈(𝑙,𝑚,𝑛) is the box that sit at position (𝑙, 𝑚, 𝑛) in the lattice. We will use 𝑢̂∗ = U𝑘 to
implement this correspondence even between coordinates of 𝑢∗ and boxes of U𝑘, i.e. 𝑢̂∗

𝑙,𝑚,𝑛 =
𝑈(𝑙,𝑚,𝑛). It is possible to prove, as we do in subsec. C.3.2, that the only poles that give
contributions are in those represented by certain U𝑘 that are plane partitions, defined in C.3.1.
We denote the set of all plane partition with 𝑘 box as 𝒫𝑘.

The elliptic genus (5.8) reduces to a sum o residues at those singular points that are picked
up the JK contour prescription

ℐ𝑘,1 = ∑
𝑢̂∗∈𝒫𝑘

ℐ𝑢∗,1 , (5.18)

where the sum is over 𝑢∗ corresponding to plane partitions with 𝑘 boxes. As we have already
said, each plane partition encodes the position of a pole. For fixed plane partition, each box at
position ⃗𝑙 = (𝑙, 𝑚, 𝑛) specifies the values of the coordinates 𝑢∗

𝑖 = 𝑢∗
(𝑙,𝑚,𝑛) according to (5.16), and

the order of coordinates is not important because of the residual Weyl permutation symmetry.
The summands in (5.18) are

ℐ𝑢∗,1 = 𝜃1(𝜏|𝜖) [− 𝜃1(𝜏|𝜖12) 𝜃1(𝜏|𝜖13) 𝜃1(𝜏|𝜖23)
𝜃1(𝜏|𝜖1) 𝜃1(𝜏|𝜖2) 𝜃1(𝜏|𝜖3) 𝜃1(𝜏|𝜖)]

𝑘
∏

𝑢∗
⃗𝑙 ∈ 𝑢∗∖𝑢∗

(1,1,1)

𝜃1(𝜏∣𝑢∗
⃗𝑙 − 𝜖)

𝜃1(𝜏∣𝑢∗
⃗𝑙 )

×
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× ∏′

𝑢∗
⃗𝑙 , 𝑢∗

⃗𝑙′ ∈ 𝑢∗

𝑢∗
⃗𝑙 ≠ 𝑢∗

⃗𝑙′

𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′ − 𝜖12) 𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′ − 𝜖13) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′ − 𝜖23)

𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′ + 𝜖1) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′ + 𝜖2) 𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′ + 𝜖3) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′ − 𝜖)
. (5.19)

where 𝑢∗
⃗𝑙, ⃗𝑙′ ∶= 𝑢∗

⃗𝑙 − 𝑢∗
⃗𝑙′ . The first product is over all coordinates of 𝑢∗ corresponding to boxes

of the plane partition 𝑢̂∗, but the one located at the origin (1, 1, 1). The second product is
over all ordered pairs of coordinates of 𝑢∗ corresponding to boxes in the plane partition; prime
means that vanishing factors, both in the numerator and denominator, are excluded from the
product (as explained in sec. 3.3, it is an instance of regular product representation). Many
cancellations occur and the product can be recast in the form

ℐ𝑢∗,1 = (−1)𝑘 𝑁𝑢∗,1
𝐷𝑢∗,1

, (5.20)

where

𝑁𝑢∗,1 = ∏
𝑢∗

(𝑙,𝑚,𝑛) ∈ 𝑢∗
{𝜃1(𝜏∣𝑙𝜖1 + 𝑚𝜖2 + (𝑛 − ℎ𝑥𝑦

1,1)𝜖3) ×

×
ℎ𝑥𝑦

1,1

∏
𝑛′=1

[𝜃1(𝜏∣(𝑙 − ℎ𝑦𝑧
𝑚,𝑛′)𝜖1 + (1 + ℎ𝑥𝑧

𝑙,𝑛 − 𝑠)𝜖2 + (1 + 𝑛 − 𝑛′)𝜖3) ×

× 𝜃1(𝜏∣(1 + ℎ𝑦𝑧
𝑚,𝑛′ − 𝑙)𝜖1 + (𝑚 − ℎ𝑥𝑧

𝑙,𝑛)𝜖2 + (1 + 𝑛′ − 𝑛)𝜖3) ]} (5.21)

and

𝐷𝑢∗,1 = ∏
𝑢∗

(𝑙,𝑚,𝑛) ∈ 𝑢∗
{𝜃1(𝜏∣(1 − 𝑙)𝜖1 + (1 − 𝑚)𝜖2 + (1 + ℎ𝑥𝑦

1,1 − 𝑛)𝜖3) ×

×
ℎ𝑥𝑦

1,1

∏
𝑛′=1

[𝜃1(𝜏∣(𝑙 − ℎ𝑦𝑧
𝑚,𝑛′)𝜖1 + (1 + ℎ𝑥𝑧

𝑙,𝑛 − 𝑚)𝜖2 + (𝑛 − 𝑛′)𝜖3) ×

× 𝜃1(𝜏∣(1 + ℎ𝑦𝑧
𝑚,𝑛′ − 𝑙)𝜖1 + (𝑚 − ℎ𝑥𝑧

𝑙,𝑛)𝜖2 + (𝑛′ − 𝑛)𝜖3) ]} . (5.22)

Each product is (with a slight abuse of notation7) over the ⃗𝑙 parametrizing the coordinates of
𝑢∗ corresponding to boxes of the plane partition 𝑢̂∗. Then ℎ𝑥𝑦

𝑙,𝑚 is the depth of the pile of boxes
laying at (𝑙, 𝑚, ∗); ℎ𝑥𝑧

𝑙,𝑛 is the height of the column of boxes at (𝑙, ∗, 𝑛); and ℎ𝑦𝑧
𝑚,𝑛 is the length

of the row of boxes laying at (∗, 𝑚, 𝑛). In fact, (5.20)–(5.22) are the elliptic Abelian version of
similar equations in Section 4.1 of [76].

Surprisingly, we observe that for 𝜖 ∈ ℤ the expression ℐ𝑢∗,1 in (5.20) simplifies: as a matter
of fact we find

ℐ𝑢∗,1 = (−1)𝑘𝜖 . (5.23)

The dependence on 𝜖 is dictated by the ’t Hooft anomaly (5.9). There is no other dependence on
𝜖𝑎 nor on 𝜏 . This implies that, up to a sign, ℐ𝑘,1 equals the integer number of plane partitions

7One in principle should multiply over (𝑙, 𝑚, 𝑛) such that 𝑢∗
(𝑙,𝑚,𝑛) ∈ 𝑢∗.
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with 𝑘 boxes. It is then convenient to define a “grand canonical” elliptic genus, function of a
new fugacity 𝑣, by resumming all contributions from the sectors at fixed 𝑘:

ℐ1 ∶= 1 +
∞

∑
𝑘=1

ℐ𝑘,1𝑣𝑘 . (5.24)

Up to a sign, this is the generating function of the number of plane partitions, namely the
MacMahon function:

ℐ1(𝑣) = Φ((−1)𝜖 𝑣) , (5.25)

where
Φ(𝑣) ∶=

∞
∏
𝑘=1

1
(1 − 𝑣𝑘)𝑘 = PE𝑣 [ 𝑣

(1 − 𝑣)2 ] (5.26)

is the MacMahon function and PE is the plethystic exponential operator (see sec. C.2).

5.2.2 Dimensional Reductions

We can consider dimensional reductions of the system. Reducing on a circle, we obtain the
Witten index of an 𝒩 = 4 SUSY quantum mechanics. This case, known as trigonometric or
motivic, has been studied in [74]. It can be obtained from the elliptic case in the limit 𝑞 → 0,
where 𝑞 = 𝑒2𝜋𝑖𝜏 . By a further reduction on a second circle, we obtain a SUSY matrix integral
with 4 supercharges. This case, known as rational, has been studied in [76]. It can be obtained
from the trigonometric case in the limit 𝛼 → 0, where 𝛼 is the radius of the circle used to
compute the Witten index in the path integral formulation.

It is important to notice that in the trigonometric and rational cases, corresponding to field
theories in 1d and 0d respectively, there is no anomaly constraint and one can take generic
real values for the parameter descending from 𝜖. This means that, in order to have access to
all values of the parameters, we should apply the two limits to the integrand in (5.8) and then
recompute the contour integral.

Given a quantity 𝑋 in the elliptic case, we use the notation 𝑋 for the corresponding quantity
in the trigonometric case and 𝑋 in the rational case. We also use

•𝑋 to refer to the three cases
at the same time.

Trigonometric Limit. To obtain the trigonometric limit, we use that 𝜃1(𝜏|𝑧) → 2𝑞1/8 sin(𝜋𝑧)
as 𝑞 → 0. We express the result in terms of new variables

𝑝𝑎 = 𝑒2𝜋𝑖𝜖𝑎 , 𝑝 = 𝑒2𝜋𝑖𝜖 , 𝑥𝑖 = 𝑒2𝜋𝑖𝑢𝑖 , (5.27)

with 𝑞1𝑞2𝑞3 = 𝑞. We find the integral expression for the Witten index of the 𝒩 = 4 SUSY
quantum mechanics corresponding to the quiver in fig 5.1:

̃ℐ𝑘,1(𝑞, ⃗𝑝) = 1
𝑘! [−𝑝 1

2
(1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3)(1 − 𝑝)]

𝑘
∫

JK

𝑘
∏
𝑖=1

d𝑥𝑖
𝑥𝑖

𝑘
∏
𝑖=1

1 − 𝑝−1𝑥𝑖
1 − 𝑥𝑖

×

×
𝑘

∏
𝑖,𝑗=1
𝑖≠𝑗

𝑝(1 − 𝑥𝑖𝑗)(1 − 𝑝−1
1 𝑝−1

2 𝑥𝑖𝑗)(1 − 𝑝−1
1 𝑝−1

3 𝑥𝑖𝑗)(1 − 𝑝−1
2 𝑝−1

3 𝑥𝑖𝑗)
(1 − 𝑝1𝑥𝑖𝑗)(1 − 𝑝2𝑥𝑖𝑗)(1 − 𝑝3𝑥𝑖𝑗)(1 − 𝑝−1𝑥𝑖𝑗)

. (5.28)
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Since there are no anomalies this time, the value of 𝜖 is unconstrained. The Witten index
of SUSY quantum mechanics can jump when flat directions open up at infinity in field space.
From the point of view of the 7D theory on the D6-brane, or DT invariants of ℂ3, this is the wall
crossing phenomenon. In the quantum mechanics, the parameter we vary is the Fayet-Iliopoulos
(FI) term and it corresponds to the stability parameter in DT theory. The integral in (5.28) is a
contour integral in (ℂ∗)𝑘, and in general it includes boundary components. However, choosing
the auxiliary parameter ⃗𝜂 parallel to the FI parameter guarantees that the JK contour has no
boundary components [118, 136, 137] (see also [50, 138]). The chamber with non-trivial DT
invariants corresponds to ⃗𝜂 = (1, … , 1).

The result can be expressed as before:

̃ℐ𝑘,1 = ∑
𝑢̂∗∈𝒫𝑘

̃ℐ𝑢∗,1 , ̃ℐ𝑢∗,1 = (−1)𝑘 𝑁𝑢∗,1
𝐷̃𝑢∗,1

, (5.29)

where

𝑁𝑢∗,1 = ∏
𝑢∗

(𝑙,𝑚,𝑛) ∈ 𝑢∗
{ ̂𝑎 (𝑝𝑙

1 𝑝𝑚
2 𝑝𝑛−ℎ𝑥𝑦

1,1
3 ) ×

×
ℎ𝑥𝑦

1,1

∏
𝑛′=1

[ ̂𝑎 (𝑝𝑟−ℎ𝑦𝑧
𝑙,𝑛′

1 𝑝1+ℎ𝑥𝑧
𝑙,𝑛−𝑚

2 𝑝1+𝑛−𝑛′
3 ) ̂𝑎 (𝑝1+ℎ𝑦𝑧

𝑚,𝑛′ −𝑙
1 𝑝𝑚−ℎ𝑥𝑧

𝑙,𝑛
2 𝑝1+𝑛′−𝑛

3 ) ]} (5.30)

and

𝐷̃𝑢∗,1 = ∏
𝑢∗

(𝑙,𝑚,𝑛) ∈ 𝑢∗
{ ̂𝑎 (𝑝1−𝑙

1 𝑝(1−𝑚)
2 𝑝(1+ℎ𝑥𝑦

1,1−𝑛
3 ) ×

×
ℎ𝑥𝑦

1,1

∏
𝑛′=1

[ ̂𝑎 (𝑝𝑙−ℎ𝑦𝑧
𝑚,𝑛′

1 𝑝1+ℎ𝑥𝑧
𝑙,𝑛−𝑚

2 𝑝𝑛−𝑛′
3 ) ̂𝑎 (𝑝1+ℎ𝑦𝑧

𝑚,𝑛′ −𝑙
1 𝑝𝑚−ℎ𝑥𝑧

𝑙,𝑛
2 𝑝𝑛′−𝑛

3 ) ]} . (5.31)

The notation is the same as in (5.21) and (5.22). We defined the function

̂𝑎 (𝑥) = 𝑥 1
2 − 𝑥− 1

2 , (5.32)

in other words ̂𝑎 (𝑒2𝜋𝑖𝑧) = 2𝑖 sin(𝜋𝑧). Notice that (5.30) and (5.31) are simply obtained from
(5.21) and (5.22) by substituting 𝜃1(𝜏|𝑧) ↦ sin(𝜋𝑧), because the extra powers of 𝑞 cancel out.

Rational Limit. To obtain the rational limit, we place the SUSY quantum mechanics on a circle
of radius 𝛼 and shrink it. This can be done, starting from (5.27) and (5.28), by substituting
𝜖𝑎 ↦ 𝛼𝜖𝑎 and 𝑢𝑖 ↦ 𝛼𝑢𝑖, then taking a 𝛼 → 0 limit. The result is

ℐ𝑘,1( ⃗𝜖) = 1
𝑘![

𝜖12𝜖13𝜖23
𝜖1𝜖2𝜖3𝜖 ]

𝑘
∫

JK

𝑘
∏
𝑖=1

d𝑢𝑖
𝑘

∏
𝑖=1

𝑢𝑖 − 𝜖
𝑢𝑖

×

× ∏
𝑖,𝑗=1
𝑖≠𝑗

𝑢𝑖𝑗(𝑢𝑖𝑗 − 𝜖12)(𝑢𝑖𝑗 − 𝜖13)(𝑢𝑖𝑗 − 𝜖23)
(𝑢𝑖𝑗 + 𝜖1)(𝑢𝑖𝑗 + 𝜖2)(𝑢𝑖𝑗 + 𝜖3)(𝑢𝑖𝑗 − 𝜖) . (5.33)
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This expression can be cast in the same form as in previous cases:

ℐ𝑘,1 = ∑
𝑢̂∗∈𝒫𝑘

ℐ𝑢∗,1 , ℐ𝑢∗,1 = (−1)𝑘 𝑁𝑢∗,1
𝐷𝑢∗,1

, (5.34)

with

𝑁𝑢∗,1 = ∏
𝑢(𝑙,𝑚,𝑛) ∈ 𝑢∗

{(𝑙𝜖1 + 𝑚𝜖2 + (𝑛 − ℎ𝑥𝑦
1,1)𝜖3) ×

×
ℎ𝑥𝑦

1,1

∏
𝑛′=1

[( (𝑙 − ℎ𝑦𝑧
𝑚,𝑛′) 𝜖1 + (1 + ℎ𝑥𝑧

𝑙,𝑛 − 𝑚) 𝜖2 + (1 + 𝑛 − 𝑛′)𝜖3) ×

× ( (1 + ℎ𝑦𝑧
𝑚,𝑛′ − 𝑙) 𝜖1 + (𝑚 − ℎ𝑥𝑧

𝑙,𝑛) 𝜖2 + (1 + 𝑛′ − 𝑛)𝜖3)]} (5.35)

and

𝐷𝑢∗,1 = ∏
𝑢∗

(𝑙,𝑚,𝑛) ∈ 𝑢∗
{((1 − 𝑙)𝜖1 + (1 − 𝑚)𝜖2 + (1 + ℎ𝑥𝑦

1,1 − 𝑛) 𝜖3) ×

×
ℎ𝑥𝑦

1,1

∏
𝑛′=1

[( (𝑙 − ℎ𝑦𝑧
𝑚,𝑛′) 𝜖1 + (1 + ℎ𝑥𝑧

𝑙,𝑛 − 𝑚) 𝜖2 + (𝑛 − 𝑛′)𝜖3) ×

× ( (1 + ℎ𝑦𝑧
𝑚,𝑛′ − 𝑙) 𝜖1 + (𝑚 − ℎ𝑥𝑧

𝑙,𝑛) 𝜖2 + (𝑛′ − 𝑛)𝜖3)]} . (5.36)

Once again, (5.35) and (5.36) are obtained from (5.21) and (5.22) by substituting 𝜃1(𝜏|𝑧) → 𝑧.

5.2.3 The Plethystic Ansätze

As we observed in (5.23)–(5.25), the elliptic Abelian DT invariants are very simple and count
the number of plane partitions. This is because the dependence of the elliptic genera on 𝜖 ∈ ℤ
is fixed by the anomaly, and there is no dependence on 𝜏 . The latter is a general property of
gapped systems (see e.g. [61] for other examples) due to the fact that the elliptic genus of a
gapped vacuum does not depend on 𝜏 .

By dimensional reduction, this implies that also the trigonometric and rational DT invari-
ants, evaluated at 𝜖 = 0, are captured by MacMahon’s function. Defining a grand canonical
partition function

•
ℐ1(𝑣) ∶= 1 +

∞
∑
𝑘=1

•
ℐ𝑘,1 𝑣𝑘 (5.37)

both in the elliptic, trigonometric and rational case, we find that they are all equal to the
MacMahon function:

ℐ1(𝑣)∣𝜖=0 = ̃ℐ1(𝑣)∣𝜖=0 = ℐ1(𝑣)∣𝜖=0 = Φ(𝑣) . (5.38)

In the trigonometric and rational case, it is natural to ask whether a similar plethystic expres-
sion holds also when 𝜖 ≠ 0 (since there is no constraint on 𝜖). It is clear that such an expression
cannot be derived from the elliptic case.
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It has been proved in [38, 39] that in the rational case the grand canonical partition function
is simply

ℐ1 = Φ(𝑣)− 𝜖12𝜖13𝜖23
𝜖1𝜖2𝜖3 = PE𝑣 [−𝜖12𝜖13𝜖23

𝜖1𝜖2𝜖3

𝑣
(1 − 𝑣)2 ] . (5.39)

Notice that in this formula the plethystic variable is just 𝑣 (not 𝜖𝑎). In the trigonometric case,
the following plethystic expression was conjectured by Nekrasov [74]:

𝑍1 = PE𝑣;𝑝⃗ [−(1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3)

𝑣
𝑞 1

2 (1 − 𝑣𝑝− 1
2 )(1 − 𝑣𝑝 1

2 )
] . (5.40)

We have verified that this expression reproduces (5.29) up to 𝑘 = 12.

5.3 The non-Abelian Case

In this section we generalize the result of the preceding section for a generic 𝑁 : eq. (5.8)
becomes

ℐ𝑘,𝑁(𝜏| ⃗𝜖, 𝑧) = 1
𝑘! [2𝜋𝜂3(𝜏) 𝜃1(𝜏|𝜖12) 𝜃1(𝜏|𝜖13) 𝜃1(𝜏|𝜖23)

𝜃1(𝜏|𝜖1) 𝜃1(𝜏|𝜖2) 𝜃1(𝜏|𝜖3) 𝜃1(𝜏|𝜖) ]
𝑘

∫
JK

𝑘
∏
𝑖=1

d𝑢𝑖 ×

×
𝑘

∏
𝑖=1

𝑁
∏
𝛼=1

𝜃1(𝜏|𝑢𝑖 + 𝑧𝛼 − 𝜖)
𝜃1(𝜏|𝑢𝑖 + 𝑧𝛼)

𝑘
∏

𝑖,𝑗=1
𝑖≠𝑗

𝜃1(𝜏∣𝑢𝑖𝑗) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖12) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖13) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖23)
𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖1) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖2) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖3) 𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖) ,

(5.41)

we see that, respect to the 𝑁 = 1 case, the flavor fugacities along the Cartan on SU(𝑁)
appears, with the constraint (5.5). Again, in order to find the condition under which the R-
symmetry anomaly cancels we have to impose that the integrand is doubly periodic: under a
shift 𝑢𝑖 ↦ 𝑢𝑖 + 𝑎 + 𝑏𝜏 (with 𝑎, 𝑏 ∈ ℤ) it pick up a phase 𝑒2𝜋i𝑁𝑏𝜖 that tells us that 𝜖 ∈ ℤ/𝑁 .
Besides, the R-symmetry ’t Hooft anomaly dictates

ℐ𝑘,𝑁(𝜏|(𝜖1, 𝜖2, 𝜖3 + 1)) = (−1)𝑘𝑁ℐ𝑘,𝑁(𝜏|(𝜖1, 𝜖2, 𝜖3)) , (5.42)

and similarly for other 𝜖𝑎’s. The evaluation of the contour integral proceeds in the same way
we did in the preceding section, but keeping into account the fugacities for the flavor group.
When 𝑁 > 1 the charge matrix 𝑄(𝑢∗) is block diagonal (C.14): we have one block for each
flavor. The poles live in the union of 𝑁 different lattices, eq. (5.16) becomes

𝑢∗
𝛼,(𝑙,𝑚,𝑛) = −𝑧𝛼 + (1 − 𝑙)𝜖1 + (1 − 𝑚)𝜖2 + (1 − 𝑛)𝜖3 . (5.43)

Representing poles by arrangement of boxes on collection of lattices, it turns out that the poles
contributing to the JK residue are those represented by 𝑁 distinct plane partition labelled by
𝛼. This is because for each block of the charge matrix we can apply what we discover in the
previous section. Such type of arrangement is known as colored plane partition (see sec. C.3.1).
We denote a pole corresponding to ha colored plane partition as 𝑢⃗∗ = (𝑢∗

1, … 𝑢∗
𝑁) and by 𝒫𝑘,𝑁

the set of 𝑁 -colored plane partitions with 𝑘 boxes. The partition function is the sum of residues

ℐ𝑘,𝑁 = ∑
̂𝑢⃗∗∈𝒫𝑘,𝑁

ℐ𝑢⃗∗,𝑁 . (5.44)
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In order to compute the residue at the pole represented by a colored plane partition, we
observe that there are no factor in the denominator involving more the one 𝑧𝛼. It follows that
the residue can be written as

ℐ𝑢⃗∗,𝑁 = ∏
𝑢∗∈𝑢⃗∗

ℐ𝑢∗,1 × ∏
𝑢∗

𝛼,𝑢∗
𝛽∈ 𝑢⃗∗

𝛼≠𝛽

[ ∏
𝑢∗

⃗𝑙∈𝑢∗𝛼

𝜃1(𝜏∣𝑢∗
⃗𝑙 − 𝑧𝛼𝛽 − 𝜖)

𝜃1(𝜏∣𝑢∗
⃗𝑙 − 𝑧𝛼𝛽)

×

× ∏
𝑢∗

⃗𝑙∈𝑢∗
𝛼

𝑢∗
⃗𝑙′ ∈𝑢∗

𝛽

𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽−𝜖12) 𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽−𝜖13) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽−𝜖23)

𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽+𝜖1) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽+𝜖2) 𝜃1(𝜏∣𝑢∗
⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽+𝜖3) 𝜃1(𝜏∣𝑢∗

⃗𝑙, ⃗𝑙′−𝑧𝛼𝛽−𝜖)
] ,

(5.45)

we remark that here 𝑢∗
𝛼 is a component of the pole 𝑢⃗∗, and 𝑢∗

⃗𝑙 ∈ 𝑢∗
𝛼 indicates a coordinate of

such component: 𝑢∗
⃗𝑙 = (1−𝑙1)𝜖1 +(1−𝑙2)𝜖2 +(1−𝑙3)𝜖3. In (5.45), ℐ𝑢∗,1 is the expression (5.19)

from the Abelian case, while 𝑧𝛼𝛽 ∶= 𝑧𝛼 − 𝑧𝛽 and again 𝑢∗
⃗𝑙, ⃗𝑙′ = 𝑢∗

⃗𝑙 − 𝑢∗
⃗𝑙′ . We stress that 𝑢∗

⃗𝑙 does
not depend on 𝑧𝛼, as this is different from 𝑢∗

𝛼, ⃗𝑙. Also in this case, several cancellations occur in
evaluating (5.45) and it is possible to recast the result in a form similar to (5.20)–(5.22). We
find:

ℐ𝑢⃗∗,𝑁 = (−1)𝑘𝑁
𝑁

∏
𝛼,𝛽=1

𝑁𝑢⃗∗,𝑁;𝛼𝛽(𝑧𝛼𝛽)
𝐷𝑢⃗∗,𝑁∶𝛼𝛽(𝑧𝛼𝛽) , (5.46)

with:

𝑁𝑢⃗∗,𝑁;𝛼𝛽(𝑧) = ∏
𝑢∗

(𝑙,𝑚,𝑛)∈𝑢∗𝛼

{𝜃1(𝜏∣𝑧 + 𝑙𝜖1 + 𝑚𝜖2 + (𝑛 − ℎ𝑥𝑦;𝛽
1,1 )𝜖3) ×

×
ℎ𝑥𝑦;𝛽

1,1

∏
𝑛′=1

[𝜃1(𝜏∣𝑧 + (𝑙 − ℎ𝑦𝑧;𝛽
𝑚,𝑛′)𝜖1 + (1 + ℎ𝑥𝑧;𝛼

𝑙,𝑛 − 𝑚)𝜖2 + (1 + 𝑛 − 𝑛′)𝜖3) ×

× 𝜃1(𝜏∣−𝑧 + (1 + ℎ𝑦𝑧;𝛽
𝑚,𝑛′ − 𝑙)𝜖1 + (𝑚 − ℎ𝑥𝑧;𝛼

𝑙,𝑛 )𝜖2 + (1 + 𝑛′ − 𝑛)𝜖3) ]} , (5.47)

and

𝐷𝑢⃗∗,𝑁;𝛼𝛽(𝑧) = ∏
𝑢∗

(𝑙,𝑚,𝑛)∈𝑢∗𝛼

{𝜃1(𝜏∣−𝑧 + (1 − 𝑙)𝜖1 + (1 − 𝑚)𝜖2 + (1 + ℎ𝑥𝑦;𝛽
1,1 − 𝑛)𝜖3) ×

×
ℎ𝑥𝑦;𝛽

1,1

∏
𝑛′=1

[𝜃1(𝜏∣𝑧 + (𝑙 − ℎ𝑦𝑧;𝛽
𝑚,𝑛′)𝜖1 + (1 + ℎ𝑥𝑧;𝛼

𝑙,𝑛 − 𝑚)𝜖2 + (𝑛 − 𝑛′)𝜖3) ×

× 𝜃1(𝜏∣−𝑧 + (1 + ℎ𝑦𝑧;𝛽
𝑙,𝑛′ − 𝑚)𝜖1 + (𝑚 − ℎ𝑥𝑧;𝛼

𝑙,𝑛 )𝜖2 + (𝑛′ − 𝑛)𝜖3) ]} . (5.48)

Notice that now the function ℎ has an index 𝛼 that clarifies which plane partition in the colored
set it refers to. These expressions are the elliptic version of similar equations in [76], where
the rational case was analyzed.

The dimensional reduction of these formulae to the trigonometric case is the following:

̃ℐ𝑢⃗∗,𝑁 = (−1)𝑘𝑁
𝑁

∏
𝛼,𝛽=1

𝑁𝑢⃗∗,𝑁;𝛼𝛽(𝑎𝛼𝛽)
𝐷̃𝑢⃗∗,𝑁;𝛼𝛽(𝑎𝛼𝛽)

, (5.49)
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where we set 𝑎𝛼 = 𝑒2𝜋𝑖𝑧𝛼 , 𝑎𝛼𝛽 = 𝑎𝛼/𝑎𝛽 and

𝑁𝑢⃗∗,𝑁;𝛼𝛽(𝑎) = ∏
𝑢∗

(𝑙,𝑚,𝑛)∈𝑢∗𝛼

{ ̂𝑎 (𝑎 𝑝𝑙
1 𝑝𝑚

2 𝑝𝑛−ℎ𝑥𝑦;𝛽
1,1

3 ) ×

×
ℎ𝑥𝑦;𝛽

1,1

∏
𝑛′=1

[ ̂𝑎 (𝑎 𝑝𝑙−ℎ𝑦𝑧;𝛽
𝑚,𝑛′

1 𝑝1+ℎ𝑥𝑧;𝛼
𝑙,𝑛 −𝑚

2 𝑝1+𝑛−𝑛′
3 ) ̂𝑎 (𝑎−1 𝑝1+ℎ𝑦𝑧;𝛽

𝑚,𝑛′ −𝑙
1 𝑝𝑚−ℎ𝑥𝑧;𝛼

𝑙,𝑛
2 𝑝1+𝑛′−𝑛

3 ) ]} , (5.50)

𝐷̃𝑢⃗∗,𝑁;𝛼𝛽(𝑎) = ∏
𝑢∗

(𝑙,𝑚,𝑛)∈𝑢∗𝛼

{ ̂𝑎 (𝑎−1 𝑝1−𝑙
1 𝑝(1−𝑚)

2 𝑝(1+ℎ𝑥𝑦;𝛽
1,1 −𝑛

3 ) ×

×
ℎ𝑥𝑦;𝛽

1,1

∏
𝑛′=1

[ ̂𝑎 (𝑎 𝑝𝑙−ℎ𝑦𝑧;𝛽
𝑚,𝑛′

1 𝑝1+ℎ𝑥𝑧;𝛼
𝑙,𝑛 −𝑚

2 𝑝𝑛−𝑛′
3 ) ̂𝑎 (𝑎−1 𝑝1+ℎ𝑦𝑧;𝛽

𝑚,𝑛′ −𝑙
1 𝑝𝑚−ℎ𝑥𝑧;𝛼

𝑙,𝑛
2 𝑞𝑛′−𝑛

3 ) ]} . (5.51)

The reduction to the rational case gives the following:

ℐ𝑢⃗∗,𝑁 = (−1)𝑘𝑁
𝑁

∏
𝛼,𝛽=1

𝑁 𝑢⃗∗,𝑁;𝛼𝛽(𝑧𝛼𝛽)
𝐷𝑢⃗∗,𝑁;𝛼𝛽(𝑧𝛼𝛽) , (5.52)

with

𝑁 𝑢⃗∗,𝑁;𝛼𝛽(𝑧) = ∏
𝑢∗

(𝑙,𝑚,𝑛)∈𝑢∗𝛼

{(𝑧 + 𝑙𝜖1 + 𝑚𝜖2 + (𝑛 − ℎ𝑥𝑦;𝛽
1,1 ) 𝜖3)×

×
ℎ𝑥𝑦;𝛽

1,1

∏
𝑛′=1

[(𝑧 + (𝑙 − ℎ𝑦𝑧;𝛽
𝑚,𝑛′) 𝜖1 + (1 + ℎ𝑥𝑧;𝛼

𝑙,𝑛 − 𝑠) 𝜖2 + (1 + 𝑛 − 𝑛′)𝜖3)×

× ( − 𝑧 + (1 + ℎ𝑦𝑧;𝛽
𝑚,𝑛′ − 𝑙) 𝜖1 + (𝑚 − ℎ𝑥𝑧;𝛼

𝑙,𝑛 ) 𝜖2 + (1 + 𝑛′ − 𝑛)𝜖3)]} , (5.53)

and

𝐷𝑢⃗∗,𝑁;𝛼𝛽(𝑧) = ∏
𝑢∗

(𝑙,𝑚,𝑛)∈𝑢∗𝛼

{( − 𝑧 + (1 − 𝑙)𝜖1 + (1 − 𝑚)𝜖2 + (1 + ℎ𝑥𝑦;𝛽
1,1 − 𝑛) 𝜖3)×

×
ℎ𝑥𝑦;𝛽

1,1

∏
𝑛′=1

[(𝑧 + (𝑙 − ℎ𝑦𝑧;𝛽
𝑚,𝑛′) 𝜖1 + (1 + ℎ𝑥𝑧;𝛼

𝑙,𝑛 − 𝑚) 𝜖2 + (𝑛 − 𝑛′)𝜖3)×

× ( − 𝑧 + (1 + ℎ𝑦𝑧;𝛽
𝑚,𝑛′ − 𝑙) 𝜖1 + (𝑚 − ℎ𝑥𝑧;𝛼

𝑙,𝑛 ) 𝜖2 + (𝑛′ − 𝑛)𝜖3)]} . (5.54)

This reproduces the expressions in Section 4 of [76].

5.3.1 Resummation Conjectures and Factorization

We are interested in the generating functions of non-Abelian Donaldson-Thomas invariants,
namely in the “grand canonical” partition functions

•
ℐ𝑁(𝑣) = 1 +

∞
∑
𝑘=1

•
ℐ𝑘,𝑁 𝑣𝑘 , (5.55)
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in the three cases: elliptic, trigonometric and rational.
As in the Abelian case, we observe that (5.46), (5.49) and (5.52) drastically simplify when

we set 𝜖 = 0:

ℐ𝑢⃗∗,𝑁 ∣𝜖=0 = ̃ℐ𝑢⃗∗,𝑁 ∣𝜖=0 = ℐ𝑢⃗∗,𝑁 ∣𝜖=0 = 1 . (5.56)

This implies that the grand canonical partition function reduces to the 𝑁 th power of MacMa-
hon’s function,

ℐ𝑁 ∣𝜖=0 = ̃ℐ𝑁 ∣𝜖=0 = ℐ𝑁 ∣𝜖=0 = Φ(𝑣)𝑁 , (5.57)

with no dependence on the flavor fugacities, nor on 𝜏 in the elliptic case.
Next, we observe that in all cases the dependence on the flavor fugacities cancels out in

•
ℐ𝑘,𝑁 , after summing the various contributions from colored plane partitions. We have verified
this claim up to a certain order in 𝑘. Assuming that the cancellation persists to all orders, our
task of identifying the grand canonical partition functions simplifies.

Let us start with the elliptic DT invariants. As opposed to the Abelian case, for 𝑁 > 1
(5.56) and the anomalous quasi-periodicity (5.42) are not enough to fix the partition function,
since now 𝜖 = 𝓃/𝑁 with 𝑛 ∈ ℤ. Nevertheless, inspecting the result for various values of 𝑁
and 𝑘, we were able to propose the following formula:

ℐ𝑘,𝑁 ∣
𝜖= 𝓃

𝑁

=
⎧{
⎨{⎩

(−1)𝓃𝑘 Φ( gcd(𝑛,𝑁))
𝑘
𝑁 gcd(𝓃,𝑁) if 𝑁

gcd(𝓃,𝑁) |𝑘 ,

0 otherwise .
(5.58)

Here the coefficients Φ(𝑁)
𝑘 , defined in subsec. C.3.1, are those of the series expansion of Φ(𝑣)𝑁 .

Moreover recall that gcd(0, 𝑁) = 𝑁 . The proposal (5.58) satisfies the anomalous quasi-
periodicity (5.42). It is then easy to resum the series:

ℐ𝑁 ∣𝜖= 𝓃
𝑁

(𝑣) = Φ ((−1)𝓃𝑁 𝑣 𝑁
gcd(𝓃,𝑁) )

gcd(𝓃,𝑁)
. (5.59)

We provide a string theory derivation of this formula in subsec. 5.3.2. As in the Abelian case,
we should expect no dependence on 𝜏 because the two-dimensional theory is gapped. The lack
of dependence on the flavor fugacities is also observed in other gapped models, for instance the
Grassmannians (see e.g. [61]).

In the trigonometric case, the following expression was proposed in [73]:8

̃ℐ𝑁 = PE𝑣,𝑝⃗ [−(1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) 𝑞− 𝑁

2
1 − 𝑝𝑁

1 − 𝑝
𝑣

(1 − 𝑣𝑝− 𝑁
2 )(1 − 𝑣𝑝 𝑁

2 )
] . (5.60)

This reproduces Nekrasov’s ansatz (5.40) for 𝑁 = 1. We provide an M-theory derivation of
this formula in subsec 5.3.3. It is possible to show that

̃ℐ𝑁 ∣𝜖= 𝓃
𝑁

= ℐ𝑁 ∣𝜖= 𝓃
𝑁

. (5.61)

In order to evaluate the left-hand-side some care is needed: if we set 𝑝 = 𝑒2𝜋𝑖 𝓃
𝑁 we find a

vanishing argument in the plethystic exponential. Applying the definition (C.19), though, we
8We have verified it up to 𝑘 = 5 and 𝑁 = 5.
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see that the terms that survive in the expansion are those for which 𝑘𝑛
𝑁 ∈ ℤ, namely such

that 𝑁
gcd(𝑛,𝑁) |𝑘. We can compute those terms by substituting 𝑛 ↦ 𝜇𝑛 and the taking the limit

𝜇 → 1.
Finally, for the rational case a conjecture was already put forward in [74–76]:

ℐ𝑁(𝑣) = (𝑍1(𝑣))𝑁 = Φ(𝑣)−𝑁 𝜖12𝜖13𝜖23
𝜖1𝜖2𝜖3 . (5.62)

We have verified this conjecture up to 𝑘 = 8 and 𝑁 = 8. As a check, the trigonometric
expression (5.60) reduces to (5.62) in the rational limit. It is particularly simple to see that
the trigonometric expression has a well-defined 𝑞 → 1 limit yielding Φ(𝑣)𝑁 .

5.3.2 F-theoretic Interpretation of Elliptic DT Counting

We can give an interpretation of the elliptic non-Abelian DT invariants (5.58) from their real-
ization in type IIB string theory, or F-theory, in terms of the D1/D7 brane system.

The setup consists of 𝑁 D7-branes wrapping 𝑇 2 × ℂ3, as well as 𝑘 D1-branes on the
worldvolume of the D7’s and wrapping 𝑇 2. There is a further complex plane ℂ orthogonal
to all branes. We can introduce a complex coordinate 𝑤 on 𝑇 2, complex coordinates 𝑥1,2,3
on ℂ3 and 𝑢 on ℂ. The Ω-background is geometrically implemented by fibering ℂ3 × ℂ
on 𝑇 2 in a non-trivial way, controlled by four complex parameters 𝜖1,2,3,4. The fibering of
complex structure that corresponds to the scheme we chose in field theory is such that each
of the complex factors in the fiber is rotated by a complexified phase 𝑒2𝜋𝑖𝜖𝑎 for 𝑎 = 1, 2, 3, 4,
respectively, when we go around the 𝑏-cycle of 𝑇 2, while they are not rotated when we go
around the 𝑎-cycle. Supersymmetry requires to impose a Calabi-Yau condition to the total
geometry, ∑4

𝑎=1 𝜖𝑎 = 0. This means that we can identify 𝜖4 = −𝜖 = − ∑3
𝑎=1 𝜖𝑎.

The D7-branes source a non-trivial holomorphic profile for the axio-dilaton 𝜏IIB along the
ℂ fiber:

𝜏IIB(𝑧) = 1
2𝜋𝑖

𝑁
∑
𝛼=1

log(𝑢 − 𝑢𝛼) , (5.63)

where 𝑢𝛼 are the positions of the D7-branes on ℂ. Such parameters are controlled by real
masses associated to the SU(𝑁) flavor symmetry in field theory. Going around the 𝑏-cycle,
the fiber is rotated as 𝑢 → 𝑒−2𝜋𝑖𝜖𝑢. Considering the case 𝑢𝛼 = 0, the condition that the
axio-dilaton be periodic up to SL(2, ℤ) transformations imposes the constraint

𝑁𝜖 ∈ ℤ . (5.64)

This reproduces the anomaly constraint 𝜖 ∈ ℤ/𝑁 in field theory, and forces us to set 𝜖 = 𝓃/𝑁
with 𝑛 ∈ ℤ.

Next, we turn on the mass parameters 𝑢𝛼 in a way compatible with the twisted geometry.
For 𝜖 ≠ 0 mod 1, periodicity around the 𝑏-cycle of 𝑇 2 imposes constraints on 𝑢𝛼. The simplest
allowed choice is

𝑢𝛼 = 𝑒2𝜋𝑖𝛼/𝑁𝑢(0) for 𝛼 = 1, … , 𝑁 (5.65)

and generic 𝑢(0) ∈ ℂ. This is a configuration where the branes homogeneously distribute on
a circle around the origin. See fig. 5.2 for a pictorial representation of the various cases when
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(a) Case 𝓃 = 0: gcd(𝓃, 𝑁) = 6 different branes. (b) Case 𝓃 = 1: just gcd(𝓃, 𝑁) = 1 brane.

(c) Case 𝓃 = 2: gcd(𝓃, 𝑁) = 2 different branes. (d) Case 𝓃 = 3: gcd(𝓃, 𝑁) = 3 different branes.

(e) Case 𝓃 = 4: gcd(𝓃, 𝑁) = 2 different branes. (f) Case 𝓃 = 5: just gcd(𝓃, 𝑁) = 1 brane.

Figure 5.2: The case with 𝑁 = 6.

𝑁 = 6. From the field theory point of view, twisted masses are in general not compatible with
the SUSY background that gives rise to the elliptic genus, because they are charged under
the (left-moving) R-symmetry for which we turn on a background flat connection. However
the special choice (5.65) is invariant under a combination of R-symmetry rotation and Weyl
transformation within SU(𝑁).

The elliptic genus does not depend on the twisted masses, therefore we can safely evaluate it
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for 𝑢𝛼 as in (5.65). Because of the twist, the 𝑁 segments of D7-branes organize themselves into
gcd(𝓃, 𝑁) disconnected branes, each made of 𝑁/ gcd(𝓃, 𝑁) segments (see fig. 5.2). Notice that
these numbers are correct even in the case of no twist, 𝑛 = 0, in which the 𝑁 D7’s are simply
taken apart. The twisted geometry has a ℤ𝑁/ gcd(𝓃,𝑁) symmetry, therefore if the number 𝑘 of
D1-branes is not a multiple of that, they cannot be moved from the origin to the worldvolumes
of the D7’s. This reproduces the condition in (5.58).

Finally, taking into account that each D7-brane is made of 𝑁/ gcd(𝓃, 𝑁) segments and so
its worldvolume should be rescaled, we are left with a system of gcd(𝓃, 𝑁) decoupled D7-branes,
with a total of 𝑘 gcd(𝓃, 𝑁)/𝑁 D1-branes per segment to be distributed among the D7’s. This
is precisely the content of (5.58), or its generating function 5.59, up to the sign which is fixed
by the R-symmetry anomaly. The extreme cases 𝑛 = 0 and 𝑛 = 1 are easier to understand.

5.3.3 M-theory Graviton Index: an Exercise on “Membranes and Sheaves”

We can give a geometric interpretation to the expression (5.60) in the realm of M-theory. This
can be done as an exercise on [77].

Let us study our D-brane system from the viewpoint of M-theory. A bound state of 𝑁 D6-
branes and 𝑘 D0-branes on 𝑆1 can be lifted to an 11-dimensional bound state of 𝑘 gravitons on
𝑆1 × ℂ3 × TN𝑁 , where TN𝑁 is the 𝑁 -center Taub-NUT space [139, 140]. The Ω-deformation
of this lift is a twisted equivariant fibration, which has been considered in [77]. Essentially, the
toric space ℂ3 × TN𝑁 is rotated by an action of U(1)5 as we circle around 𝑆1, with a BPS
constraint that the diagonal element does not act.

In the special case 𝑁 = 1 [74], the 11-dimensional lift contains a single-center Taub-NUT
space whose topology is the same as ℂ2. Upon Ω-deformation, the BPS graviton states localize
towards the center of TN1 and become insensitive to the fact that its metric is different from
that of ℂ2. Therefore, one can compute the BPS index of gravitons on the Ω-deformed space
by looking at the near-core geometry ℂ3 ×ℂ2 ≅ ℂ5. The index of BPS single-particle graviton
states (plus anti-BPS states) turns out to be [74, 77]

𝐹 (11)
1 (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5) = ∑5

𝑖=1 𝑝𝑖

∏5
𝑖=1(1 − 𝑝𝑖)

+ ∑5
𝑖=1 𝑝−1

𝑖

∏5
𝑖=1(1 − 𝑝−1

𝑖 )
. (5.66)

For ∏5
𝑖=1 𝑝𝑖 = 1, it can be decomposed as

𝐹 (11)
1 (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5) = 𝐹 (6)(𝑝1, 𝑝2, 𝑝3) + 𝐹 (6)(𝑝−1

1 , 𝑝−1
2 , 𝑝−1

3 ) + ℱ1(𝑝1, 𝑝2, 𝑝3; 𝑣) , (5.67)

where

𝐹 (6)(𝑝1, 𝑝2, 𝑝3) = 𝑝
∏3

𝑖=1(1 − 𝑝𝑖)
, (5.68)

ℱ1(𝑝1, 𝑝2, 𝑝3; 𝑣) = ∏3
𝑖=1(1 − 𝑝/𝑝𝑖)

∏3
𝑖=1(1 − 𝑝𝑖)

× 1
(1 − 𝑝1/2𝑣)(1 − 𝑝1/2𝑣−1) , (5.69)

we set 𝑝 = 𝑝1𝑝2𝑝3 and solved 𝑝4 = 𝑣𝑝−1/2 and 𝑝5 = 𝑣−1𝑝−1/2. One can interpret 𝐹 (6) as the
perturbative contribution to the free energy of the 7-dimensional theory on the D6-brane on
𝑆1 × ℂ3, and ℱ1 as the instanton part. In fact, ℱ1 is precisely the single-particle seed of the
plethystic exponential in 5.40.
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We can extend the computation of the BPS single-particle graviton index to the case 𝑁 >
1. As we said, the 11-dimensional lift of the D0/D6 system is a bound state of gravitons
on 𝑆1 × ℂ3 × TN𝑁 , and after Ω-deformation this becomes a fibration of ℂ3 × TN𝑁 on 𝑆1.
Because the Ω-deformation localizes the graviton states around the origin of TN𝑁 , we can
safely substitute TN𝑁 by its near-core geometry, the orbifold space ℂ2/ℤ𝑁 .

The index of BPS single-particle graviton states (plus anti-BPS states) on ℂ3 × [ℂ2/ℤ𝑁 ]
is easily obtained by projecting to the ℤ𝑁 -invariant sector:

𝐹 (11)
𝑁 (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5) = 1

𝑁
𝑁

∑
𝑎=1

𝐹 (11)
1 (𝑝1, 𝑝2, 𝑝3, 𝑝(𝑎)

4 , 𝑝(𝑎)
5 ) , (5.70)

where the fugacities along the orbifold directions are

𝑝(𝑎)
4 = 𝜔(𝑎)𝑣1/𝑁𝑝−1/2 , 𝑝(𝑎)

5 = 𝜔(−𝑎)𝑣−1/𝑁𝑝−1/2 , (5.71)

and 𝜔(𝑎) = 𝑒2𝜋𝑖𝑎/𝑁 . To isolate the instanton counting factor, we subtract from the free energy
the 7-dimensional perturbative contribution, and notice that 𝐹 (6) is invariant under the ℤ𝑁
action. Setting

𝐹 (11)
𝑁 (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5) = 𝐹 (6)(𝑝1, 𝑝2, 𝑝3) + 𝐹 (6) (𝑝−1

1 , 𝑝−1
2 , 𝑝−1

3 ) + ℱ𝑁(𝑝1, 𝑝2, 𝑝3; 𝑣) , (5.72)

we obtain

ℱ𝑁(𝑞1, 𝑞2, 𝑞3; 𝑣) = ∏3
𝑖=1(1 − 𝑝/𝑝𝑖)

∏3
𝑖=1(1 − 𝑝𝑖)

× 1
𝑁

𝑁
∑
𝑎=1

1
(1 − 𝜔(𝑎)𝑝1/2𝑣1/𝑁)(1 − 𝜔(−𝑎)𝑝1/2𝑣−1/𝑁) . (5.73)

After resumming the last factor,9 we obtain

ℱ𝑁(𝑞1, 𝑞2, 𝑞3; 𝑣) = ∏3
𝑖=1(1 − 𝑝/𝑝𝑖)

∏3
𝑖=1(1 − 𝑝𝑖)

× 𝑝𝑁 − 1
𝑝 − 1 × 1

(1 − 𝑝𝑁/2𝑣)(1 − 𝑝𝑁/2𝑣−1) . (5.75)

This is precisely the single-particle seed of the plethystic exponential in (5.60).

5.4 Free Field Representation of Matrix Integral

In this section we give a representation of the elliptic genus partition function in terms of
chiral free bosons on the torus. The very existence of such a representation indicates that the
elliptic vertex algebra, i.e. the algebra of chiral vertex operators on the torus, might act on the
cohomology of the moduli spaces that we have been studying so far and offer the language to
detect a link to integrable systems in the spirit of the BPS/CFT correspondence [81].

The rational case in dimension 0 has a well-known free field representation in terms of chi-
ral free bosons on the plane [80, 141]. In the following we will represent the grand canonical
partition function for the elliptic genera as a combination of two factors: the torus (chiral)

9A convenient way to perform the sum is the following. Consider the function

𝑓(𝑧) = 1
𝑧𝑁 − 𝑣 ⋅ 1

𝑧 ⋅ 1
(1 − 𝑝1/2𝑧)(1 − 𝑝1/2𝑧−1) , (5.74)

which has 𝑁 + 2 poles: at 𝑧 = 𝑣1/𝑁𝜔(𝑎), 𝑧 = 𝑝1/2 and 𝑧 = 𝑝−1/2. Computing the residues and using that their
sum is zero, one obtains the desired formula.
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correlator of an exponentiated integrated vertex (whose power expansion reproduces the con-
tributions from multiplets in the adjoint representation), and a linear source (that reproduces
the contributions from multiplets in the fundamental representation).

It is well known that an off-shell formulation of the chiral boson is difficult, therefore we will
define it on-shell in the following way. Consider the usual free massless scalar boson two-point
function

⟨𝜙(𝑢, 𝑢̄) 𝜙(𝑤, 𝑤̄)⟩𝑇 2 = log 𝐺(𝑢, 𝑢̄; 𝑤, 𝑤̄) (5.76)

where

𝐺(𝑢, 𝑢̄; 𝑤, 𝑤̄) = 𝑒− 2𝜋
𝜏2

(ℑ(𝑢−𝑤))2
∣𝜃1(𝜏|𝑢 − 𝑤)

2𝜋𝜂(𝜏)3 ∣
2

. (5.77)

Here 𝜏2 = ℑ𝜏 . Using this propagator, one computes the elliptic vertex algebra and the cor-
relation functions of vertex fields of the usual type ∶𝑒𝜆𝜙 ∶. A generic higher-point correlation
function is the product of three factors: a holomorphic (in 𝑢 and 𝑤) contribution proportional
to a product of functions 𝜃1, an anti-holomorphic contribution proportional to ̄𝜃1’s, and a mixed
contribution proportional to a product of exponentials. If the last term cancels out, then we
can define, up to a pure 𝑐-number phase, the chiral projection of the correlation function by
picking the holomorphic contribution.

Let us consider the following vertex operator:

𝒱 ⃗𝜖(𝑢) =
7

∏
𝑖=1

∶𝑒𝜆𝑖𝜙𝑖(𝑢+𝑖) ∶ ∶𝑒−𝜆𝑖𝜙𝑖(𝑢−𝑖) ∶ , (5.78)

where 𝜆⃗ = (i, i, i, i, 1, 1, 1) and

𝑢±𝑖 = 𝑢 ± ̃𝜖𝑖
2 , ̃𝜖1 = 𝜖1 , ̃𝜖2 = 𝜖2 , ̃𝜖3 = 𝜖3 ,

̃𝜖4 = 𝜖 , ̃𝜖5 = 𝜖12 , ̃𝜖6 = 𝜖13 , ̃𝜖7 = 𝜖23 , (5.79)

are the vertices of two cubes with sides ±𝜖𝑖/2 as shown in fig. 5.3.
At each vertex we placed one of 7 non-interacting scalar fields on the torus with normalized

two-point function

⟨𝜙𝑖(𝑢, 𝑢̄) 𝜙𝑗(𝑤, 𝑤̄)⟩𝑇 2 = 𝛿𝑖𝑗 log 𝐺(𝑢, 𝑢̄; 𝑤, 𝑤̄) . (5.80)

Using Wick’s theorem it is straightforward to find

𝒱 ⃗𝜖(𝑢) =
7

∏
𝑖=1

[𝐺(𝑢+𝑖, 𝑢̄+𝑖; 𝑢−𝑖, 𝑢̄−𝑖)]
𝜆2

𝑖 ∶𝒱 ⃗𝜖(𝑢) ∶ (5.81)

= ∣2𝜋𝜂3(𝜏) 𝜃1(𝜏|𝜖12) 𝜃1(𝜏|𝜖13) 𝜃1(𝜏|𝜖23)
𝜃1(𝜏|𝜖1) 𝜃1(𝜏|𝜖2) 𝜃1(𝜏|𝜖3) 𝜃1(𝜏|𝜖) ∣

2
∶𝒱 ⃗𝜖(𝑢) ∶ , (5.82)

where, in the second line, the exponent of the imaginary parts squared cancels since

∑7
𝑖=1

𝜆2
𝑖 (ℑ( ̃𝜖𝑖))

2 = 0 . (5.83)
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𝑢 𝑢+1

𝑢+2 𝑢+5

𝑢+3 𝑢+6

𝑢+7 𝑢+4

𝑢−1

𝑢−2𝑢−5

𝑢−3𝑢−6

𝑢−7𝑢−4

Figure 5.3: Representation of the multi-local vertex operator 𝒱 ⃗𝜖. Red vertices are those for
which 𝜆 = i while blue ones are those for with 𝜆 = 1.

Again, using Wick’s theorem, we find:

∶𝑒𝜆𝑖𝜙𝑖(𝑢+𝑖)𝑒−𝜆𝑖𝜙𝑖(𝑢−𝑖) ∶∶𝑒𝜆𝑗𝜙𝑗(𝑢+𝑗)𝑒−𝜆𝑗𝜙𝑗(𝑢−𝑗) ∶ =

= [𝐺 (𝑢+𝑖, 𝑢̄+𝑖; 𝑢−𝑗, 𝑢̄−𝑗) 𝐺 (𝑢−𝑖, 𝑢̄−𝑖; 𝑢+𝑗, 𝑢̄+𝑗)
𝐺 (𝑢+𝑖, 𝑢̄+𝑖; 𝑢+𝑗, 𝑢̄+𝑗) 𝐺 (𝑢−𝑖, 𝑢̄−𝑖; 𝑢−𝑗; 𝑢̄−𝑗)

]
𝛿𝑖𝑗𝜆𝑖𝜆𝑗

×

× ∶𝑒𝜆𝑖𝜙𝑖(𝑢+𝑖)𝑒−𝜆𝑖𝜙𝑖(𝑢−𝑖)𝑒𝜆𝑗𝜙𝑗(𝑢+𝑗)𝑒−𝜆𝑗𝜙𝑗(𝑢−𝑗) ∶ . (5.84)

The factor in square brackets, when, 𝑖 = 𝑗 is

∣𝜃1(𝜏|𝑢 − 𝑣 + ̃𝜖𝑖) 𝜃1(𝜏|𝑢 − 𝑣 − ̃𝜖𝑖)
𝜃2

1(𝜏|𝑢 − 𝑣) ∣
𝜆2

𝑖

𝑒− 4𝜋
𝜏2

𝜆2
𝑖 (ℑ( ̃𝜖𝑖))2

. (5.85)

by which it follows that

⟨∶𝒱 ⃗𝜖(𝑢) ∶∶𝒱 ⃗𝜖(𝑤)∶⟩ = ∣ 𝜃2
1(𝜏|𝑢 − 𝑤)𝜃1(𝜏|𝑧 − 𝑤 + 𝜖12) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖13) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖23)

𝜃1(𝜏|𝑢 − 𝑤 + 𝜖1) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖2) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖3) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖) ×

× 𝜃1(𝜏|𝑢 − 𝑤 − 𝜖12) 𝜃1(𝜏|𝑢 − 𝑤 − 𝜖13) 𝜃1(𝜏|𝑢 − 𝑤 − 𝜖23)
𝜃1(𝜏|𝑢 − 𝑤 + 𝜖1) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖2) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖3) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖)∣

2
. (5.86)

Notice that again because of eq. (5.83) the exponent of the imaginary part squared cancels in
eq. (5.86) and we can define its holomorphic projection as:

⟨∶𝒱 ⃗𝜖(𝑢) ∶∶𝒱 ⃗𝜖(𝑤)∶⟩hol. = 𝜃2
1(𝜏|𝑢 − 𝑤)𝜃1(𝜏|𝑧 − 𝑤 + 𝜖12) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖13) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖23)

𝜃1(𝜏|𝑢 − 𝑤 + 𝜖1) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖2) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖3) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖)×

× 𝜃1(𝜏|𝑢 − 𝑤 − 𝜖12) 𝜃1(𝜏|𝑢 − 𝑤 − 𝜖13) 𝜃1(𝜏|𝑢 − 𝑤 − 𝜖23)
𝜃1(𝜏|𝑢 − 𝑤 + 𝜖1) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖2) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖3) 𝜃1(𝜏|𝑢 − 𝑤 + 𝜖). (5.87)

which is the contribution of single modes in the adjoint.
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The other term that we need to give a free-boson representation of our matrix model is the
following source operator:

𝐻 = 1
2𝜋i ∮

Γ
𝜕𝜙4(𝑤)𝜔(𝑤)d𝑤, (5.88)

where 𝜔 is a locally analytic function in the inner region bounded by the contour Γ. The
contour Γ is chosen to be a closed path around 𝑤 = 0 encircling all 𝑢±𝑖 for 𝑖 = 1, … , 7 where
𝑢 = 0. Then we can compute10:

𝑒𝐻 ∶𝑒𝜆𝑗𝜙𝑗(𝑢+𝑗)𝑒−𝜆𝑗𝜙𝑗(𝑢−𝑗) ∶ = 𝑒𝑊 ∶𝑒𝐻𝑒𝜆𝑗𝜙𝑗(𝑢+𝑗)𝑒−𝜆𝑗𝜙𝑗(𝑢−𝑗) ∶ , (5.94)

where

𝑊 = 𝛿4𝑗𝜆𝑗
1

2𝜋i ∮
Γ

d𝑤𝜔(𝑤) [𝜕𝑤⟨𝜙4(𝑤)𝜙𝑗(𝑢+𝑗)⟩ − 𝜕𝑤⟨𝜙4(𝑤)𝜙𝑗(𝑢−𝑗)⟩] (5.95)

= 𝛿𝑗4𝜆𝑗 [ 1
2𝜋i ∮

Γ
d𝑤𝜔(𝑤)[𝜁W(𝑤 − 𝑢+𝑗) − 𝜁W(𝑤 − 𝑢−𝑗)] − 2𝑖

𝜏2
∮

Γ
d𝑤𝜔(𝑤)ℑ( ̃𝜖𝑗)] , (5.96)

where we introduced the Weierstrass-𝜁 function: 𝜁W(𝑢) = 𝜕 log 𝜃1(𝜏|𝑢) which has a simple pole
around the origin:

𝜁W(𝑢) = 1
𝑢 + holomorphic in 𝑢. (5.97)

The second term in the last line of eq. (5.95) is zero since 𝜔 is holomorphic inside Γ. It follows
that:

⟨𝑒𝐻 ∶𝒱 ⃗𝜖(𝑢) ∶⟩ = 𝑒 1
2𝜋 ∮Γ[(𝑤−𝑢+4)−1−(𝑤−𝑢−4)−1]𝜔(𝑤)d𝑤 = 𝑒i𝜔(𝑢+𝜖/2)−i𝜔(𝑢−𝜖/2) , (5.98)

Choosing (up to an irrelevant additive constant)

𝜔(𝑢) = i
𝑁

∑
𝛼=1

log 𝜃1(𝜏∣𝑢 + 𝑧𝛼 − 𝜖
2) , (5.99)

which is holomorphic inside Γ for generic values11 of the Cartan parameters {𝑧𝛼}, eq. (5.98)
reads

⟨𝑒𝐻 ∶𝒱 ⃗𝜖(𝑢) ∶⟩hol. =
𝑁

∏
𝛼=1

𝜃1(𝜏|𝑢 + 𝑧𝛼 − 𝜖)
𝜃1(𝜏|𝑢 + 𝑧𝛼) . (5.100)

10In the following formula we can trade 𝑒𝐻 as ∶𝑒𝐻 ∶ since 𝜔 is holomorphic inside Γ. Indeed we have that

∶𝑒𝐻 ∶= 𝑒𝔑𝑒𝐻 , (5.89)

where the normal ordering operator is defined

𝔑 = ∫ d2𝑧d2𝑤⟨𝜙(𝑧, ̄𝑧)𝜙(𝑤, 𝑤̄)⟩ 𝛿
𝛿𝜙(𝑧, ̄𝑧)

𝛿
𝛿𝜙(𝑤, 𝑤̄) . (5.90)

We consider now:

𝔑𝑒𝐻 = ( 1
2𝜋i)

2
∮

Γ
d𝑢𝜔(𝑢) ∮

Γ
d𝑢′𝜔(𝑢′)𝜕𝑢𝜕𝑢′ ⟨𝜙(𝑢, 𝑢̄)𝜙(𝑢′, 𝑢̄′)⟩𝑒𝐻 (5.91)

= − ∮
Γ

d𝑢𝜔(𝑢)𝜕𝜔(𝑢)𝑒𝐻 (5.92)

= 0 . (5.93)

This implies our claim.
11The branch-cuts of the logarithms generically extend outside the contour.
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Moreover notice that, since only the chiral part of the scalar boson enters eq. (5.88), eq. (5.100)
is already holomorphic, so we add the subscript “hol.” without further ado. Now using
eqs. (5.87) and (5.100) we can expand

⟨𝑒𝐻𝑒𝑣 ∮𝒞 𝒱 ⃗𝜖(𝑢)d𝑢⟩hol. =
∞

∑
𝑘=0

𝑣𝑘

𝑘! [2𝜋𝜂3(𝜏)𝜃1(𝜏|𝜖12) 𝜃1(𝜏|𝜖13) 𝜃1(𝜏|𝜖23)
𝜃1(𝜏|𝜖1) 𝜃1(𝜏|𝜖2) 𝜃1(𝜏|𝜖3) 𝜃1(𝜏|𝜖) ]

𝑘
×

× ∮
𝒞

d𝑢1 … ∮
𝒞

d𝑢𝑘
𝑘

∏
𝑖=1

𝑁
∏
𝛼=1

𝜃1(𝜏|𝑢𝑖 + 𝑧𝛼 − 𝜖)
𝜃1(𝜏|𝑢𝑖 + 𝑧𝛼) ×

×
𝑘

∏
𝑖,𝑗=1
𝑖≠𝑗

𝜃1(𝜏∣𝑢𝑖𝑗) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖12) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖13) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖23)
𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖1) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖2) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖3) 𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖) . (5.101)

Notice that the prefactor in the first line arises from the fact that in the l.h.s. 𝒱 ⃗𝜖 is present
without normal ordering (see the holomorphic part of eq. (5.82)). Comparing eqs. (5.24) and
(5.101) we realize that

ℐ(𝑁)(𝑣) = ⟨𝑒𝐻𝑒𝑣 ∮𝒞 𝒱 ⃗𝜖(𝑢)d𝑢⟩hol. (5.102)

provided the contour 𝒞 to be the one specified by JK prescription. Let’s remark that the
function defined trough 𝐻 can be lifted to 𝑇 2 in the cases for which the R-symmetry is not
anomalous, that is 𝜖 ∈ ℤ/𝑁 .





6. Conclusions and Outlook

In the present thesis we reviewed some features of elliptic genus for 2d GLSM, and we explored
some new aspects about its computation and its application to brane systems. The main results
are can be summarized as follows:

• we gave a prescription to treat degenerate cases of JK procedure and to reconduct them
as the non-degenerate ones;

• we explored the moduli space of D1/D3 system and we gave a first principle computation
of the elliptic vortex partition function;

• we explored the moduli space of D1/D7 and discussed its factorization properties as
well as those of its dimensional reductions D0/D6 and D(−1)/D5. Moreover we gave
a representation of the elliptic genus of that moduli space in terms of free bosons on a
torus.

There are certain directions in which our analysis can be extended. As far a the desingular-
ization algorithm is concerned we expect that it can be generalized also for some situations in
which 𝐴𝑖(𝑢∗) > 𝐶𝑖(𝑢∗) + 1, providing a regular product representation also for these cases that
can be of some interest in most generic situations.

In would be interesting to change target manifold in our computations, for instance one
can study the D1/D7 system on more general toric geometries, such as the conifold, where a
wall crossing phenomenon among different geometric phases of the moduli space is expected
to arise, see [142] for a review. On such geometries, bound states including D2-branes be-
come important, and a description of D2/D6 systems in terms of 3d Chern–Simons–matter
theories [143–145] might turn useful. In our approach, the different phases should be related
to different choices of the integration contour. Moreover, it would be interesting to investi-
gate whether the factorization property of the matrix model limit is spoiled on more general
geometries. It would be also interesting to investigate along these lines the supersymmetric
partition function on compact toric three-folds, as for example ℙ3 or ℙ1 × ℙ2, in order to com-
pute topological invariants of higher-rank stable sheaves on them. Analogous computations in
two complex dimensions have been performed in [146–148], while some results for three-folds
already appeared in the mathematical literature [149]. The free field representation of the
elliptic genus seems to signal the existence of an elliptic vertex algebra acting on the associated
moduli space of sheaves, see [150] for recent progress in this direction. We also expect this
result to prompt a constructive connection with integrable hierarchies, which would be very
interesting to investigate.

To conclude, it would be interesting to apply our technique to the case of D0/D8 brane
system as recently suggested in [151].
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A. Conventions

Here we discuss the conventions used in the present thesis.

A.1 Coordinates

We consider a two dimensional Euclidean spacetime. We use small Greek indices (𝜇, 𝜈 and so
on) to label coordinates. We will also use complex coordinates

𝑧 = 𝑥1 + i𝑥2 ,
𝑤̄ = 𝑥1 − i𝑥2 , (A.1)

and

𝜕 = 1
2(𝜕1 − i𝜕2) ,

̄𝜕 = 1
2(𝜕1 + i𝜕2) . (A.2)

Also for general one-form

𝐴 = 1
2(𝐴1 − i𝐴2) ,

̄𝐴 = 1
2(𝐴1 + i𝐴2) . (A.3)

A.2 Spinors

We introduce Dirac spinors

𝜓𝑎 = (𝜓+

𝜓−) . (A.4)

The Clifford algebra generated by Gamma matrices

(𝛾1)𝑎
𝑏 = (0 1

1 0) , (𝛾2)𝑎
𝑏 = (0 −i

i 0 ) , (A.5)

The chirality matrix is

(𝛾3)𝑎
𝑏 = 1

2i [𝛾1, 𝛾2]𝑎𝑏 = (1 0
0 −1) . (A.6)

We have that

(𝛾𝜇𝛾𝜈)𝑎
𝑏 = 𝛿𝜇𝜈𝛿𝑎

𝑏 + i𝜖𝜇𝜈(𝛾3)𝑎
𝑏 . (A.7)
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The charge conjugation matrix

𝒞𝑎𝑏 = (𝛾2)𝑎
𝑏 , (A.8)

defines the invariant Majorana product

𝜓𝜒 = 𝜓t𝒞𝜒 , (A.9)

which can be expressed in index notation as

𝜓𝜒 = 𝜓𝑎𝜒𝑎 = 𝜓𝑎𝒞𝑎𝑏𝜒𝑏 . (A.10)

𝜓+ = −i𝜓− , 𝜓− = i𝜓+ . (A.11)

and

𝜓𝜒 = 𝜓+𝜒+ + 𝜓−𝜒− = −i𝜓+𝜒− + i𝜓−𝜒+ . (A.12)

One can, as usually, introduce the 𝑛-form1

𝜓𝛾𝜇1⋯𝜇𝑛
𝜒 = 𝜓t𝒞𝛾𝜇1⋯𝜇𝑛

𝜒 = 𝜓𝑎𝒞𝑎𝑏(𝛾𝜇1⋯𝜇𝑛
)𝑏

𝑐𝜒𝑐 , (A.13)

where

𝛾𝜇1⋯𝜇𝑛
= 𝛾[𝜇1

…𝛾𝜇𝑛] . (A.14)

One can also introduce gamma matrices with lowered indices

(𝛾𝜇1⋯𝜇𝑛
)𝑎𝑐 = 𝒞𝑎𝑏(𝛾𝜇1⋯𝜇𝑛

)𝑏
𝑐 (A.15)

so that

𝜓𝛾𝜇1⋯𝜇𝑛
𝜒 = 𝜓𝑎(𝛾𝜇1⋯𝜇𝑛

)𝑎𝑏𝜒𝑏 . (A.16)

In particular,

(𝛾1)𝑎𝑏 = (−i 0
0 i) , (𝛾2)𝑎𝑏 = (1 0

0 1) , (𝛾3)𝑎
𝑏 = (0 i

i 0) . (A.17)

Now, since

𝛾2𝛾t
𝜇𝛾2 = −𝛾𝜇 , (A.18)

it follows that, for anticommuting spinors

𝜓𝛾𝜇1
… 𝛾𝜇𝑛

𝜒 = (−1)𝑛𝜒𝛾𝜇𝑛
… 𝛾𝜇1

𝜓 , (A.19)

while for commuting ones

𝜓𝛾𝜇1
… 𝛾𝜇𝑛

𝜒 = (−1)𝑛+1𝜒𝛾𝜇𝑛
… 𝛾𝜇1

𝜓 , (A.20)
1include the pseudo-tensors built with the chirality matrix
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where the 𝜇’s run from 1 to 3, and the result holds for the boundary case of 𝑛 = 0 as well. We
also define chiral projectors

P± = 1
2(𝐈 ± 𝛾3) , (A.21)

explicitly

(P+)𝑎𝑏 = (0 0
i 0) , (P−)𝑎𝑏 = (0 −i

0 0 ) . (A.22)

We will also use Gamma matrices in complex basis

𝛾 = 𝛾1 + i𝛾2 , ̄𝛾 = 𝛾1 − i𝛾2 . (A.23)

It holds

(𝛾𝜇𝜕𝜇)𝑎𝑏 = (𝛾𝜕)𝑎𝑏 + ( ̄𝛾 ̄𝜕)𝑎𝑏 = (−2i𝜕𝑤 0
0 2i𝜕𝑤̄

) . (A.24)

It is also useful to denote

𝛾 ⋅ 𝜕 = 𝛾𝜇𝜕𝜇 = 𝛾𝜕 + ̄𝛾 ̄𝜕 . (A.25)

A.2.1 Useful Identities

Starting from Fierz master formula2

𝜓𝑎𝜒𝑏 = −1
2𝜓𝜒𝐈𝑎𝑏 + 1

2𝜓𝛾𝜇𝜒(𝛾𝜇)𝑎𝑏 + 1
2𝜓𝛾3𝜒(𝛾3)𝑎𝑏 , (A.26)

we get

𝜃𝜓 𝜃𝜒 = −1
2𝜃𝜃 𝜓𝜒 ,

𝜃𝛾𝜇𝜓 𝜃𝛾𝜈𝜒 = 1
2𝜃𝜃(𝛿𝜇𝜈𝜓𝜒 + i𝜖𝜇𝜈𝜓𝛾3𝜒) ,

𝜃𝛾𝜇 ̄𝜃 𝜃𝛾𝜈 ̄𝜃 = 1
2𝛿𝜇𝜈𝜃𝜃 ̄𝜃 ̄𝜃 ,

𝜆𝜂 𝜒𝜓 = 1
2(𝜆𝛾𝜇𝜒)(𝜂𝛾𝜇𝜓) − (𝜆𝑃−𝜒)(𝜂𝑃+𝜓) − (𝜆𝑃+𝜒)(𝜂𝑃−𝜓) ,

𝜃P− ̄𝜃 𝜃P+ ̄𝜃 = −1
4𝜃𝜃 ̄𝜃 ̄𝜃 . (A.27)

2Recall that indices are raised by 𝒞





B. Special Functions

Here we list the special function that have been used in our discussion with some of their useful
properties.

B.1 𝑞-Pochhammer, 𝜂 and 𝜃

First of all we define the modular parameter to be 𝑞 = 𝑒2𝜋𝑖𝜏 , with ℑ(𝜏) > 0. The 𝑞-Pochhammer
is defined:

(𝑦, 𝑞)∞ ∶=
∞
∏
𝑘=0

(1 − 𝑦𝑞𝑘) . (B.1)

In term of this function is possible to define the Dedekind eta:

𝜂(𝑞) ∶= 𝑞 1
24 (𝑞; 𝑞)∞ . (B.2)

and the “core” of Jacobi theta functions:

𝜃(𝜏|𝑧) ∶= (𝑦; 𝑞)∞(𝑞𝑦−1; 𝑞)∞ , (B.3)

where we set for convenience 𝑦 = 𝑒2𝜋𝑖𝑧. The most ubiquitous function in this paper is the
Jacobi theta of first kind:

𝜃1(𝜏|𝑧) ∶= 𝑖𝑞 1
8 𝑦− 1

2 (𝑞; 𝑞)∞𝜃(𝜏|𝑧) (B.4)
= −𝑖𝑞 1

8 𝑦 1
2 (𝑞; 𝑞)∞𝜃(𝜏| − 𝑧) . (B.5)

From its definition is possible to see that Jacobi function is odd:

𝜃1(𝜏| − 𝑧) = −𝜃1(𝜏|𝑧) . (B.6)

Moreover, under shift of the argument 𝑧 ↦ 𝑧 + 𝑎 + 𝑏𝜏 (𝑎, 𝑏 ∈ ℤ), the function transforms as:

𝜃1(𝜏|𝑧 + 𝑎 + 𝑏𝜏) = (−1)𝑎+𝑏𝑒−2𝜋𝑖𝑏𝑧𝑒−𝑖𝜋𝑏2𝜏𝜃1(𝜏|𝑧) . (B.7)

So we see that it is 1-periodic and 𝜏 -quasiperiodic. Then we can reduce to study its behaviour
in a “fundamental domain” of the lattice ℤ+𝜏ℤ. The function 𝜃1(𝜏|𝑧) has no poles and simple
zeroes occur at 𝑧 = ℤ + 𝜏ℤ. The residues of its inverse are

1
2𝜋𝑖 ∮

𝑧=𝑎+𝑏𝜏

d𝑧
𝜃1(𝜏|𝑧) = (−1)𝑎+𝑏𝑒𝑖𝜋𝑏2𝜏

2𝜋𝜂3(𝑞) ; (B.8)

and for small values of 𝑞 and 𝑧 we have:

𝜃1(𝜏|𝑧)
𝑞→0
−−→ 2𝑞 1

8 sin(𝜋𝑧) 𝑧→0−−→ 2𝜋𝑞 1
8 𝑧 . (B.9)
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B.2 Θ and Elliptic Hypergeometric Functions

We give the following definitions which is suitable for our results:

Θ•(𝜏, 𝜎|𝑎)𝑛 ∶=

⎧{{{
⎨{{{⎩

𝑛−1
∏
𝑘=0

𝜃•(𝜏|𝑎 + 𝑘𝜎) 𝑛 ∈ ℤ≥ ,

⎡⎢
⎣

|𝑛|−1
∏
𝑘=0

𝜃•(𝜏|𝑎 − (𝑘 + 1)𝜎)⎤⎥
⎦

−1

𝑛 ∈ ℤ< ;
(B.10)

where 𝜃• can be just 𝜃 or 𝜃1, and the same for Θ•. This function enjoys the key property of
Pochhammer symbol:

Θ•(𝜏, 𝜎|𝑎)𝑚 = Θ•(𝜏, 𝜎|𝑎)𝑛Θ•(𝜏, 𝜎|𝑎 + 𝑛𝜎)𝑚−𝑛. (B.11)

Using eq. (B.9), indeed, it is possible to show that for small values of its arguments:

Θ(𝜏, 𝜎|𝑎)
𝑞→0

−−−−−→
𝑎+𝑛𝜎→0

[−2𝜋𝑖𝜎]𝑛 ( 𝑎
𝜎)

𝑛
; Θ1(𝜏, 𝜎|𝑎)

𝑞→0
−−−−−→
𝑎+𝑛𝜎→0

[2𝜋𝑞 1
8 𝜎]𝑛 ( 𝑎

𝜎)
𝑛

. (B.12)

Another identity which will be useful is the following which holds1 just for Θ1:

Θ1(𝜏, 𝜎|𝑎 − 𝑙𝜎)Θ1(𝜏, 𝜎| − 𝑎 − 𝑚𝜎) = 𝜃1(𝜏|𝑎)
𝜃1(𝜏|𝑎 + (𝑚 − 𝑙)𝜎)Θ1(𝜏, 𝜎|𝑎 + 𝜎)𝑚Θ1(𝜏, 𝜎| − 𝑎 + 𝜎)𝑙 .

(B.13)

We shall use Θ to write products of Θ1. In the present cases we have the following situation:

∏𝑀
𝑖=1 Θ1(𝜏, 𝜖|𝑧𝑖)𝑛

∏𝑀
𝑖=1 Θ1(𝜏, 𝜖|𝑎𝑖)𝑛

= 𝑒𝑖𝜋𝑛(∑𝑀
𝑖=1 𝑎𝑖−∑𝑀

𝑖 𝑧𝑖) ∏𝑀
𝑖=1 Θ(𝜏, 𝜎|𝑧𝑖)𝑛

∏𝑀
𝑖=1 Θ(𝜏, 𝜎|𝑎𝑖)𝑛

. (B.14)

Elliptic hypergeometric series [125] are defined as follows:

𝐸𝑟 𝑠 (𝑡0, … , 𝑡𝑟−1
𝑤1, … , 𝑤𝑠

∣𝜏 , 𝜎∣𝑧) ∶=
∞

∑
𝑘=0

∏𝑟−1
𝑖=0 Θ(𝜏, 𝜎|𝑡𝑖)𝑘

Θ(𝜏, 𝜎|𝜎)𝑘 ∏𝑠
𝑗=1 Θ(𝜏, 𝜎|𝑤𝑗)𝑘

𝑧𝑘 . (B.15)

A remarkable property is the following2:

𝜃(𝜏|𝑏 + 𝑧𝜕𝑧) 𝐸𝑟 𝑠 (𝑡0, … , 𝑡𝑟−1
𝑤1, … , 𝑤𝑠

∣𝜏 , 𝜎∣𝑧) = 𝜃(𝜏|𝑏) 𝐸𝑟+1 𝑠+1 (𝑡0, … , 𝑡𝑟−1, 𝑏 + 𝜎
𝑤1, … , 𝑤𝑠, 𝑏 ∣𝜏 , 𝜎∣𝑧) . (B.16)

In the case of 𝑏 = 0, eq. (B.16) reduces to:

𝜃(𝜏|𝑧𝜕𝑧) 𝐸𝑟 𝑠 (𝑡0, … , 𝑡𝑟−1
𝑤1, … , 𝑤𝑠

∣𝜏 , 𝜎∣𝑧) = ∏𝑟−1
𝑖=0 𝜃(𝜏|𝑡𝑖)

∏𝑠
𝑗=1 𝜃(𝜎|𝑤𝑖)

𝐸𝑟 𝑠 (𝑡0 + 𝜎, … , 𝑡𝑟−1 + 𝜎
𝑤1 + 𝜎, … , 𝑤𝑠 + 𝜎 ∣𝜏, 𝜎∣𝑧) ; (B.17)

which resembles the usual relation between 𝐹𝑟 𝑠 and its derivatives.

1This is actually a property that 𝜃1 and its products share with all odd functions.
2Similar operators appear in [152].



C. Technical Details

In this appendix we collect some technical details that we omitted in the main text for the sake
of readability.

C.1 Canonical Form of Charge Matrix

In this section we want to determine what is the most general form of a 𝑟 × 𝑟 charge matrix

𝑄(𝑢∗) = (𝑄T
1 , … , 𝑄T

𝑟 ) , (C.1)

whose charge covector can be either of “fundamental” type that is

𝑄F;𝑖 = (0, … , 1⏟
𝑖

, … , 0) , (C.2)

whose number will be denoted by 𝑓 , or of “adjoint” type, namely

𝑄A;𝑖,𝑗 = (0, … , 1⏟
𝑖

, … , − 1⏟
𝑗

, … , 0) . (C.3)

Moreover we want

𝑄(𝑢∗)T ⎛⎜⎜
⎝

𝑢∗
1
⋮

𝑢∗
𝑟

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑑1
⋮

𝑑𝑟

⎞⎟⎟
⎠

, (C.4)

to have isolated solution for 𝑢∗ for generic values of 𝑑𝑖’s and that

𝑄(𝑢∗) ⎛⎜⎜
⎝

𝜍1
⋮

𝜍𝑟

⎞⎟⎟
⎠

= 𝜂T for all 𝜍𝑖 > 0. (C.5)

with 𝜂 = (1, … , 1). The quest for isolated solution is possible if 𝑓 > 0, otherwise det 𝑄(𝑢∗) = 0.
In order to find a canonical form of 𝑄(𝑢∗) we will use two moves:

• swap columns: this is equivalent to relabeling the 𝜍’s;

• swap rows: this is equivalent to a Weyl transformation, i.e. to a permutation of 𝑢’s.

The algorithm to reach the canonical form goes as follows:

Step 1: Choose 𝑣1, a vector of type 𝑄F among 𝑄T
𝑖 with 𝑖 = 1, … , 𝑟. Shuffle rows so that the

only non-vanishing entry of 𝑣1 sits at the first row. Shuffle the columns so that 𝑣1 is 𝑄T
1 .
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Step 2: Choose 𝑣2 among 𝑄T
𝑖 with 𝑖 = 2, … , 𝑟 such that its first entry is non-vanishing. If

there is no such a vector, go to Intermezzo. The vector 𝑣2 will have another non-zero
entry to maintain det 𝑄(𝑢∗) ≠ 0: shuffle the rows after the first so that the first two
entries of 𝑣2 are non-zero while the other vanish. Shuffle the columns after the first so
that 𝑣2 is 𝑄T

2 .

Step 𝑝: Choose 𝑣𝑝 among 𝑄T
𝑖 with 𝑖 = 𝑝, … , 𝑟 such that its first 𝑝 entry are not all vanishing. If

there is no such a vector go to Intermezzo. The vector 𝑣𝑝 will have another non-vanishing
component after the (𝑝 − 1)th entry, otherwise 𝑄1, … , 𝑄𝑝 would be linear dependent and
det 𝑄(𝑢∗) = 0. Shuffle the rows after the (𝑝 − 1)th so that this non-vanishing value sits
in the 𝑝th entry. Shuffle the columns after the (𝑝 − 1)th so that 𝑣𝑝 is 𝑄T

𝑝 .

Intermezzo: After having chosen 𝑟1 vectors 𝑣1, … , 𝑣𝑟1
(since they are in finite number) we are

in the situation in which there are no more vectors 𝑄T
𝑖 with 𝑖 = 𝑟1 + 1, … , 𝑟 having the

first 𝑟1 entries not all vanishing. At this step the charge matrix looks like

𝑄(𝑢∗) =

1 ̃∗ ̃∗ … ̃∗ 0 … 0
0 ±1 ̃∗ … ̃∗ 0 … 0
0 0 ±1 … ̃∗ 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 0 … ±1 0 … 0
0 0 0 … 0 ̃∗ … ̃∗
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 0 0 0 ̃∗ … ̃∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎧{{{{⎨{{{{⎩ 𝑟1 ⎧{⎨{⎩ 𝑟 − 𝑟1

⎫}}}}
⎬}}}}⎭

𝑟1

⎫}
⎬}⎭

𝑟 − 𝑟1

. (C.6)

Every ̃∗ represent a value that can be either 0 or ±1 so that every column is a charge
vector like 𝑄F or 𝑄A.

Steps from 𝑟1 + 1 to 𝑟2: Repeat Steps above on the right-bottom block with 𝑓 − 1 vectors
𝑄T

𝑖 of type 𝑄F.

Steps from 𝑟2 + 1 to 𝑟𝑓: Repeat Steps above until there are no more vectors in the right-
bottom block:

𝑓
∑
𝑞=1

𝑟𝑞 = 𝑟 . (C.7)

Coda: At the end of this procedure the charge matrix is block diagonal

𝑄(𝑢∗) = diag(𝑄1(𝑢∗), … , 𝑄𝑓(𝑢∗)) , with 𝑄𝑞(𝑢∗) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ̃∗ ̃∗ … ̃∗
0 ±1 ̃∗ … ̃∗
0 0 ±1 … ̃∗
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … ±1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (C.8)
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for 𝑞 = 1, … , 𝑓 . Until here we did not use the condition 𝜍𝑗 > 0 as in (C.5). Since we have
proven that 𝑄(𝑢∗) is block diagonal we can impose block by block the condition of positivity
of 𝜍’s:

𝑄𝑞(𝑢∗)𝜍𝑞 = 𝜂𝑞 , 𝑞 = 1, … , 𝑓 , with 𝜍𝑞 = ⎛⎜⎜
⎝

𝜍𝑞,1
⋮

𝜍𝑞,𝑟𝑞

⎞⎟⎟
⎠

, (C.9)

where 𝜍𝑞 is the part of 𝜍 corresponding to the 𝑞th block. The same is for 𝜂𝑞. Comparing eq. (C.9)
with eq. (C.8) we see that the solution for positive 𝜍𝑞,𝑘𝑞

is

𝜍𝑞,𝑘𝑞
= 1 , 𝑄𝑞(𝑢∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ̃∗ ̃∗ … ∗
0 ±1 ̃∗ … ∗
0 0 ±1 … ∗
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … +1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (C.10)

that is, we have restricted the values of the last columns of 𝑄(𝑢∗): the values of ∗ can be just
either 0 or −1. We can go ahead with this procedure: in order to do so we introduce the
following notation: 𝑄(𝑖)

𝑞 (𝑢∗) indicates the matrix 𝑄𝑞(𝑢∗) with the last 𝑖 rows and 𝑖 columns
removed; while 𝑣(𝑖) denotes the vector 𝑣 with the last 𝑖 entries removed. From eq. (C.9) follows

𝑄(1)
𝑞 (𝑢∗)𝜍(1)

𝑞 = 𝜂(1)
𝑞 − 𝜍𝑞,𝑘𝑞

q(1)
𝑞,𝑘𝑞

, (C.11)

where we introduced q𝑞,𝑖 as the 𝑖th column vector of 𝑄𝑞(𝑢∗). We see that on the r.h.s. we have
a vector which is made of all 1 except an entry, which is 2. From this fact, we can infer as
above that

𝜍𝑞,𝑟𝑞−1 ≥ 1 , 𝑄(𝑖)
𝑞 (𝑢∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ̃∗ ̃∗ … ∗
0 ±1 ̃∗ … ∗
0 0 ±1 … ∗
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … +1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (C.12)

The argument above can be easily iterated:

𝑄(𝑖)
𝑞 (𝑢∗)𝜍(𝑖)

𝑞 = 𝜂(𝑖)
𝑞 −

𝑖−1
∑
𝑗=0

𝜍𝑞,𝑟𝑞−𝑗q
(𝑖)
𝑞,𝑟𝑞−𝑗 , (C.13)

at every step we discover that 𝜍𝑞,𝑟𝑞−𝑗 ≥ 𝜍𝑞,𝑟𝑞−𝑗+1. Therefore we have that

𝑄(𝑢∗) = diag(𝑄1(𝑢∗), … , 𝑄𝑓(𝑢∗)) , with 𝑄𝑞(𝑢∗) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 ∗ … ∗
0 +1 ∗ … ∗
0 0 +1 … ∗
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … +1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (C.14)

for 𝑞 = 1, … , 𝑓 , and
𝑟𝑞 = 𝜍𝑞,𝑟𝑞

≤ 𝜍𝑞,𝑟𝑞−1 ≤ ⋯ ≤ 𝜍𝑞,2 ≤ 𝜍𝑞,1 = 1 . (C.15)

The fact that 𝜍𝑞,𝑘𝑞
= 𝑘𝑞 can be argued summing all the rows in eq. (C.9) and plugging the

result (C.14).
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With this new information we can write eq. (C.4) block by block

𝑄T
𝑞 (𝑢∗)𝑢⃗𝑞 = ⃗𝑑𝑞 , with1𝑢⃗𝑞 = ⎛⎜⎜

⎝

𝑢𝑞,1
⋮

𝑢𝑞,𝑘𝑞

⎞⎟⎟
⎠

, and ⃗𝑑𝑞 = ⎛⎜⎜
⎝

𝑑𝑞,1
⋮

𝑑𝑞,𝑘𝑞

⎞⎟⎟
⎠

. (C.16)

We conclude this section with a comment on the disungularization procedure 3.3 in presence
of a charge matrix satisfying (C.4) and (C.5). Of all the (𝐴(𝑢∗)

𝑟 ) regular poles into which the
singular pole have been “exploded”, only ∏𝑟

𝑖=1 𝐴𝑖(𝑢∗) respect the JK condition. They are the
ones 𝑢∗

(𝑡,𝑝) with all different 𝑡𝑖’s. In fact if 𝑡𝑖 = 𝑡𝑗 the charge matrix will look like

∗ ⋯ ∗
⋮ ⋱ ⋮
∗ ⋯ ∗

⋯ 1 ⋯ 1 ⋯
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠}

𝑖

}

𝑗

. (C.18)

It is clear that such a matrix cannot be but in the form (C.14): none of our to moves can
separate the 1’s that are in the same row.

C.2 Plethystic Exponential

Let us define the plethystic exponential, following [153, 154]. Given a function 𝑓(𝑥1, … , 𝑥𝑛)
of 𝑛 variables, such that it vanishes at the origin, 𝑓(0, … , 0) = 0, we set

PE𝑥1,…,𝑥𝑛
[𝑓(𝑥1, … , 𝑥𝑛)] ≡ exp {

∞
∑
𝑟=1

𝑓(𝑥𝑟
1, … , 𝑥𝑟

𝑛)
𝑟 } . (C.19)

If 𝑓 is 𝐶𝜔 with expansion

𝑓(𝑥1, … , 𝑥𝑛) =
∞

∑
𝑚1,…,𝑚𝑛=1

𝑓𝑚1,…,𝑚𝑛
𝑥𝑚1

1 ⋯ 𝑥𝑚𝑛𝑛 , (C.20)

then (C.19) can be rewritten as

PE𝑥1,…,𝑥𝑛
[𝑓(𝑥1, … , 𝑥𝑛)] =

∞
∏

𝑚1,…,𝑚𝑛

(1 − 𝑥𝑚1
1 ⋯ 𝑥𝑚𝑛𝑛 )−𝑓𝑚1,…,𝑚𝑛 . (C.21)

1We are relabeling components of 𝑢 and 𝑑:

𝑢𝑞,𝑖 = 𝑢𝑖+∑𝑞−1
𝑠=1 𝑟𝑠

, 𝑑𝑞,𝑖 = 𝑑𝑖+∑𝑞−1
𝑠=1 𝑟𝑠

. (C.17)
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C.3 Plane Partition

C.3.1 Definition

A set of boxes arranged in a 3d lattice labeled by (𝑙, 𝑚, 𝑛) is called plane partition iff:

• each box sits at a different lattice point;

• only points with 𝑙, 𝑚, 𝑛 ≥ 1 can be occupied;

• the point (𝑙, 𝑚, 𝑛) can be occupied only if all point (𝑙′, 𝑚, 𝑛) with 1 ≤ 𝑙′ < 𝑙, all point
(𝑙, 𝑚′, 𝑛) with 1 ≤ 𝑚′ < 𝑚 and all points (𝑙, 𝑚, 𝑛′) with 1 ≤ 𝑛′ < 𝑛 are also occupied.

In fact, these are 3d version of Young diagram, and can be built in terms of these, as we do
below.

(a) (b) (c)

Figure C.1: Plane partitions of the case 𝑘 = 2.

A list of integers 𝜋(1) = {𝑎1, … , 𝑎𝑘} such that 𝑎𝑖 ≥ 𝑎𝑖+1 and whose sum is a given integer 𝑘,
is called a partition of 𝑘. We define |𝜋(1)| = 𝑘. Partitions of 𝑘 are in one-to-one correspondence
with Young diagrams with 𝑘 boxes. We call 𝜙𝑘 the number of partitions of 𝑘, and their
generating function is

𝜙(𝑣) ≡
∞

∑
𝑘=0

𝜙𝑘 𝑣𝑘 =
∞
∏
𝑘=1

1
1 − 𝑣𝑘 = PE𝑣 [ 𝑣

1 − 𝑣] . (C.22)

We can introduce a partial order relation ⪰ among partitions: we say that 𝜋(1)
1 ⪰ 𝜋(1)

2 if
the Young diagram representing 𝜋(1)

1 “covers” the one representing 𝜋(1)
2 . We can then iterate

the process. We define a plane partition of 𝑘 as a collection of Young diagrams

𝜋(2) = {𝜋(1)
1 , … , 𝜋(1)

ℓ } such that 𝜋(1)
𝑖 ⪰ 𝜋(1)

𝑖+1 and |𝜋(2)| ≡
ℓ

∑
𝑟=1

|𝜋(1)
𝑟 | = 𝑘 . (C.23)

We can imagine 𝜋(2) as a pile of ℓ Young diagrams placed one on top of the other. We call Φ𝑘
the number of plane partitions of 𝑘. Their generating function Φ was found by MacMahon to
be

Φ(𝑣) ≡
∞

∑
𝑘=0

Φ𝑘 𝑣𝑘 =
∞
∏
𝑘=1

1
(1 − 𝑣𝑘)𝑘 = PE𝑣 [ 𝑣

(1 − 𝑣)2 ] . (C.24)

In this paper we denote a plane partition simply by 𝜋 without any superscript.
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A colored plane partition is a collection of 𝑁 plane partitions. The generating function of
the numbers Φ(𝑁)

𝑘 of colored plane partitions of 𝑘 is simply the 𝑁 -th power of the generating
function of uncolored plane partitions:

∞
∑
𝑘=0

Φ(𝑁)
𝑘 𝑣𝑘 = Φ(𝑣)𝑁 . (C.25)

For instance:

Φ(𝑁)
0 = 1 , Φ(1)

1 = 𝑁 , Φ(𝑁)
2 = 3𝑁 + (𝑁

2 ) , Φ(𝑁)
3 = 6𝑁 + 6(𝑁

2 ) + (𝑁
3 ) . (C.26)

C.3.2 Construction

In this subsection we prove that the only arrangements of boxes U𝑘 corresponding to poles
(through eq. (5.17)) which give a non-vanishing residue for (5.8), are plane partitions. We start
assigning to every factor in the integrand (5.8) an order of singularity according tab. C.1.

Factor Hyperplane Order of singularity

𝜃1(𝜏|𝑢𝑖) 𝐻𝑄: 𝑢𝑖 = 0 +1
𝜃1(𝜏∣𝑢𝑖𝑗 + 𝜖𝑎) 𝐻(𝑎)

𝐵 : 𝑢𝑖 = 𝑢𝑗 − 𝜖𝑎 +1
𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖) 𝐻𝐕: 𝑢𝑖 = 𝑢𝑗 + 𝜖 +1
𝜃1(𝜏|𝑢𝑖 − 𝜖) 𝑍𝑄: 𝑢𝑖 = 𝜖 −1
𝜃1(𝜏∣𝑢𝑖𝑗) 𝑍𝐕: 𝑢𝑖 = 𝑢𝑗 −1
𝜃1(𝜏∣𝑢𝑖𝑗 − 𝜖𝑎𝑏) 𝑍(𝑎𝑏)

𝐵 : 𝑢𝑖 = 𝑢𝑗 + 𝜖𝑎𝑏 −1

Table C.1: Contributions to the order of singularity from the integrand in (5.8).

Each singular hyperplane through the point contributes +1 to the singularity order, while
each vanishing hyperplane through the point, coming from a zero of a function 𝜃1 in the
numerator, contributes −1. Fixed 𝑘, the total order of singularity at 𝑢∗ is denoted by 𝒮𝑘(𝑢∗).
A necessary condition such that a singular 𝑢∗ has a non-vanishing JK residue is that 𝒮𝑘(𝑢∗) ≥ 𝑘.
This is trivial if we are in the regular case, since the JK residue is simply the iterated residue,
otherwise it follows from the desingularization procedure 3.3. Defining, in a general situation
𝒮𝑘(𝑢∗) = 𝐶(𝑢∗) − 𝐴(𝑢∗), here we will prove that the non-vanishing contributions to the JK
residue come from pole 𝑢∗ satisfying 𝒮𝑘(𝑢∗) = 𝑘, and that the U𝑘 corresponding to these 𝑢∗ are
plane partitions. Notice that in this case we can compute residue easily thanks to eq. (3.76).
We proceed in the proof by induction on 𝑘. The case 𝑘 = 1 is trivial: the only pole we have is at
𝑢∗ = 0 and the only box representing it is 𝑈(1,1,1); clearly, it is a plane partition and, according
to the definition, it is the only plane partition we can form with just one box; in addition we
have 𝐶(𝑢∗) = 1 and 𝐴(𝑢∗) = 0. Then we suppose that we have already built a plane partition
of order 𝑘, U𝑘 ≡ {𝑈(𝑙,𝑚,𝑛)} and see what happens when we “add a box”, 𝑈(𝑙′,𝑚′,𝑛′) so that
we have the new arrangement U′

𝑘+1 = U𝑘 ∪ 𝑈(𝑙′,𝑚′,𝑛′). “Adding a box” means, at the level of
integral (5.8), that we are spotting the poles of the integrand of ℐ𝑘+1,1 once we have already
classified the poles of the integrand of ℐ𝑘,1. Our claim is that 𝒮𝑘+1(𝑢′∗) = 𝒮𝑘(𝑢∗) + 1 if U′

𝑘+1
is again a plane partition while, if the new arrangement is not a plane partition, its residue is
trivially zero. Once this claim is proved we have the correspondence stated above by induction
on 𝑘.
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(a) Adding a box along an edge. (b) Adding a box to a face.

(c) Adding a box to the bulk. (d) Adding a box such that the new arrangement
is not a plane partition.

Figure C.2: Several ways to add the (𝑘 + 1)th box (the red one) given an arrangement of 𝑘
boxes. At the same time we add an integral over 𝑢𝑘+1. We colored in green those boxes whose
position differs, from that of the red one, by 𝜖𝑎; in blue those boxes whose position differs by
𝜖𝑎𝑏. From Table C.1 we see that a green box increases the singularity order of the integrand
by 1, while a blue box decreases it by 1. In case (a) we increase the order by 1, therefore the
pole contributes. In case (b) we increase the order by 2 − 1 = 1, therefore the pole contributes.
In case (c) we increase the order by 3 + 1 − 3 = 1, therefore the pole contributes. In case (d)
there is no change in the order of the singularity, therefore the pole does not contribute.

Let us prove the claim. We distinguish two main cases to organize the proof. Consider
the case in which 𝑈(𝑙′,𝑚′,𝑛′) ∉ U𝑘, which in terms of boxes means that 𝑈(𝑙′,𝑚′,𝑛′), the new box,
does not coincide with another box in U𝑘. In order to increase the singularity, we see from
Tab. C.1 there are four possibilities: either (𝑙′, 𝑚′, 𝑛′) = (𝑎+1, 𝑏, 𝑐) or (𝑙′, 𝑚′, 𝑛′) = (𝑎, 𝑏+1, 𝑐),
or (𝑙′, 𝑚′, 𝑛′) = (𝑎, 𝑏, 𝑐 + 1) or (𝑙′, 𝑚′, 𝑛′) = (𝑎 − 1, 𝑏 − 1, 𝑐 − 1), where 𝑈(𝑎,𝑏,𝑐) ∈ U𝑘. We treat
the first three possibilities together as a first case and the last possibility as a second case. Let
us now introduce some useful terminology and notation: for practical reason it is convenient
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to denote 𝑙′1 ≡ 𝑙′, 𝑙′2 ≡ 𝑚′ and 𝑙′3 ≡ 𝑛′, moreover we define2 ⃗𝑒𝑖 (𝑖 = 1, 2, 3) directions, as
the direction along which the plane partition increases, corresponding to 𝜖𝑖. We will call the
“direction (and orientation) of a face” of the boxes, the direction (and orientation) of the unit
vector normal to this face, pointing outward the box. Thus, every box in the plane partition
has three external faces (EFs), which are the ones whose orientation is aligned3 with one of the

⃗𝑒𝑖, and three internal faces (IFs), which are the ones whose orientation is anti-aligned3 with
one of the ⃗𝑒𝑖. We will say that a face is free if it is not in common with any other boxes (there
is no boxes attached there). Let’s start the proof in the first case. The box 𝑈(𝑙′,𝑚′,𝑛′) can have
either 0, 1, 2 o 3 free IFs:

• If there are 3 free IFs this mean that the box sits in the origin and we have already
considered that case 𝑘 = 1;

• If there are 2 free IFs, let us suppose4 that they have direction − ⃗𝑒1 and − ⃗𝑒2 while the
face which is not free have direction − ⃗𝑒3. Since, by inductive hypothesis, we have the box
𝑈(𝑙1,𝑙2,𝑙3−1) in the plane partition, there is one poles arising from a singular hyperplane of
type5 𝐻(3)

𝐵 . Then we can make the following distinction:

– if 𝑙′1 = 𝑙′2 = 1 the new arrangement is by definition a plane partition. There are
neither source of zeroes nor other sources of poles. So Δ𝒮 ∶= 𝒮𝑘+1(𝑢′∗)−𝒮𝑘(𝑢∗) = 1;

– if 𝑙′1 = 1 but 𝑙′2 ≠ 1 we do not have a plane partition. In this case there is a zero
from 𝑍(23)

𝐵 since the box 𝑈(𝑙′,𝑚′−1,𝑛′−1) is present. There are no other source of poles.
We have therefore Δ𝒮 ≤ 0;

– if 𝑙′1 ≠ 1 and 𝑙′2 ≠ 1 the new arrangement is not a plane partition. In this cases the
following boxes are present: 𝑈(𝑙′,𝑚′−1,𝑛′−1), 𝑈(𝑙′−1,𝑚′,𝑛′−1) from which we get two
zeroes (𝑍(23)

𝐵 and 𝑍(13)
𝐵 ) and 𝑈(𝑙′−1,𝑚′−1,𝑛′−1) from which we get a pole thanks to

𝐻𝑉 . There are not any other source of poles. So we have Δ𝒮 ≤ 0.

• If there is 1 free IF, let us suppose that it has direction − ⃗𝑒1 and that the direction of non-
free IF are − ⃗𝑒2 and − ⃗𝑒3. Then we have the following boxes: 𝑈(𝑙′,𝑚′−1,𝑛′) and 𝑈(𝑙′,𝑚′,𝑛′−1),
which give us two poles (from 𝐻(2)

𝐵 and 𝐻(3)
𝐵 ) and 𝑈(𝑙′,𝑚′−1,𝑛′−1) which gives a zero (from

𝑍(23)
𝐵 ). Then we can distinguish the following subcases:

– if 𝑙′1 = 1 the new arrangement is a plane partition. There are neither sources of
poles nor sources of zeroes; then Δ𝒮 = 1;

– if 𝑙′1 ≠ 1 we have several boxes to consider: from 𝑈(𝑙′−1,𝑚′−1,𝑛′−1) we have a pole
(from 𝐻𝐕), while from 𝑈(𝑙′−1,𝑚′−1,𝑛−), 𝑈(𝑙′−1,𝑚′,𝑛′−1) and 𝑈(𝑙′,𝑚′−1,𝑛′−1) we have
zeroes (from 𝐻(12)

𝐵 , 𝐻(13)
𝐵 and 𝐻(23)

𝐵 ). There are no more source of poles. Then
Δ𝒮 ≤ 0.

• If there are not free IFs, this means that we have several boxes: 𝑈(𝑙′−1,𝑚′,𝑛′), 𝑈(𝑙′,𝑚′−1,𝑛′),
𝑈(𝑙′,𝑚′,𝑛′−1) from which we get three poles (from 𝐻(1)

𝐵 , 𝐻(2)
𝐵 and 𝐻(3)

𝐵 ), another pole from
2Explicitly ⃗𝑒1 = (1, 0, 0), ⃗𝑒2 = (0, 1, 0) and ⃗𝑒3 = (0, 0, 1).
3For aligned we mean same direction and same orientation while for antialigned we mean same direction but

different orientation.
4The other cases are easily obtained by permuting 1, 2 and 3.
5We recall that the name of singular and zero hyperplane are listed in Tab. C.1.



C.3. Plane Partition 81

𝑈(𝑙′−1,𝑚′−1,𝑛′−1) (from 𝐻𝐕), while from 𝑈(𝑙′−1,𝑚′−1,𝑛), 𝑈(𝑙′−1,𝑚′,𝑛′−1) and 𝑈(𝑙′,𝑚′−1,𝑛′−1)
we have zeroes (from 𝐻(12)

𝐵 , 𝐻(13)
𝐵 and 𝐻(23)

𝐵 ). Then Δ𝒮 = 1.

We have now to consider the second case in which (𝑙′, 𝑚′, 𝑛′) = (𝑎 − 1, 𝑏 − 1, 𝑐 − 1) for some
𝑈(𝑎,𝑏,𝑐) ∈ U𝑘. Since we want 𝑈(𝑙′,𝑚′,𝑛′) ∉ U𝑘, at least one among 𝑎 or 𝑏 or 𝑐 must be equal to 1.
The hyperplane 𝐻𝐕 provide us a pole, then:

• if 𝑙′1 = 𝑙′2 = 𝑙′3 = 1, there is a zero from 𝑍𝑄, so Δ𝒮 = 0;

• if, suppose, 𝑙1 ≠ 1 then we have the box 𝑈(𝑙′−1,𝑚′,𝑛′) that gives a zero by 𝑍(23)
𝐵 . So

Δ𝒮 = 0.

This exhausts the way one can add 𝑈(𝑙′,𝑚′,𝑛′) ∉ U𝑘 to U𝑘. Until now we proved that if U𝑘+1
is a plane partition Δ𝒮 = 1 and so the residue computed in this case is not zero. In fig. C.2
we depict some of the situations mentioned in the text.

We have finally to examine what happens if we add a box 𝑈 ′
(𝑙′,𝑚′,𝑛′) which coincides with

another box 𝑈(𝑙′,𝑚′,𝑛′) of U𝑘.
Using the notation of the section 3.3 6, if one takes some 𝑢′∗

𝑖′ = 𝑢′∗
𝑖, the ordering (3.70)

will be of the form

𝐼(𝑢⃗) = 𝐼1(𝑢1)⋅ … ⋅𝐼𝑖(𝑢1, … , 𝑢𝑖)×
× 𝐼𝑖′(𝑢1, … , 𝑢𝑖, 𝑢𝑖′)𝐼𝑖+1(𝑢1, … , 𝑢𝑖, 𝑢𝑖′ , 𝑢𝑖+1)⋅ … ⋅𝐼𝑘(𝑢1, … , 𝑢𝑘) . (C.27)

Now we can desingularize 𝐼(𝑢⃗) and get ̃𝐼(𝑢⃗). Now let us examine the following product7

̃𝐼1(𝑢1)⋅ … ⋅ ̃𝐼𝑖(𝑢1, … , 𝑢𝑖) ̃𝐼𝑖′(𝑢1, … , 𝑢𝑖, 𝑢𝑖′) , (C.28)

we will have that 𝐴𝑗(𝑢∗) = 𝐶𝑗(𝑢∗) + 1 for 𝑗 = 1, … , 𝑖 and also for 𝑗 = 𝑖′. Then, from the
integrand (5.8) we have that ̃𝐼𝑖′ contains a term which is 𝜃2

1(𝜏|𝑢𝑖 − 𝑢𝑖′), and therefore vanishes
when one take the residue w.r.t. the “unshifted pole” 𝑢𝑖 = 𝑢𝑖′ = 𝑢∗

𝑖 = 𝑢∗
𝑖′ . From this we

conclude that an arrangement of boxes in which two of them occupy the same place do not
give contribution.

This proves that, for 𝑁 = 1, the number of the fundamentals charge vector in 𝑄(𝑢∗) can
just be 𝑓 = 1 and so there is only one block.

6It is always possible to order boxes 𝑈(𝑙′,𝑚′,𝑛′) first by 𝑙′ then by 𝑚′ and lastly by 𝑛′. In this way one finds
the corresponding 𝑢∗

𝑖.
7We just need to do this because of the last comment of sec. C.1.
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