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Reduced Basis POD-Galerkin Method for Parametrized Optimal
Control Problems in Environmental Marine Sciences and

Engineering
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]mathlab, Mathematics Area, SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[National Institute of Oceanography and Experimental Geophysics, Via Beirut 2, I-34151 Trieste, Italy

Abstract

In this work we propose reduced order methods as a suitable approach to face parametrized
optimal control problems governed by partial differential equations, with applications in en-
vironmental marine sciences and engineering. Environmental parametrized optimal control
problems are usually studied for different configurations described by several physical and/or
geometrical parameters representing different phenomena and structures. The solution of
parametrized problems requires a demanding computational effort. In order to save com-
putational time, we rely on reduced basis techniques as a suitable and rapid tool to solve
parametrized problems. We introduce general parametrized linear quadratic optimal control
problems, and the saddle-point structure of their optimality system. Then, we propose a
POD-Galerkin reduction of the optimality system. We test the resulting method on two
environmental applications: a pollutant control in the Gulf of Trieste, Italy and a solution
tracking governed by quasi-geostrophic equations describing North Atlantic Ocean dynamic.
The two experiments underline how reduced order methods are a reliable and convenient tool
to manage several environmental optimal control problems, for different mathematical mod-
els, geographical scale as well as physical meaning. The quasi-geostrophic optimal control
problem is also presented in its nonlinear version.

Keywords: reduced order methods, proper orthogonal decomposition, parametrized opti-
mal control problems, PDEs state equations, environmental marine applications, quasi-geostrophic
equation.

AMS: 49J20, 76N25, 35Q35

1 Introduction

Parametrized optimal control problems (OCP(µ)s) governed by parametrized partial differen-
tial equations (PDE(µ)s) are usually complex and demanding, computationally speaking. In
this case the parameter µ ∈ P ⊂ Rd could represent physical or geometrical features. In order
to study different configurations, a rapid and suitable approach based on reduced order mod-
els could allow to face OCP(µ)s in a low dimensional framework. Computational methods for
OCP(µ)s are a quite widespread tool in many contexts and fields: in shape optimization (see
e.g. [20, 25, 35]), in flow control (see e.g. [15, 16, 38, 40]), in environmental applications (see
e.g. [18, 42, 43]). Reduced order methods are a strategy that decreases the computational costs
and simplifies the resolution of simulations governed by partial differential equations (see e.g.
[26, 44, 45, 41]). Reduction techniques has also been exploited in order to manage OCP(µµµ) in
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a faster way: reduced order methods for optimal control problems are theoretically and experi-
mentally treated in several works different for state equations, methodology and purposes (see
e.g. [1, 19, 22, 30, 32, 33, 39, 38, 43]).
In this work, we focus on reduced order modelling for optimal control problems with quadratic
cost functional constrained to linear and nonlinear PDE(µ)s dealing with applications in envi-
ronmental marine sciences. Optimal control theory fits well in these fields, as it is at the basis
of forecasting models and it could be used to make previsions on several natural phenomena
(see e.g. [23, 29, 53]). In order to describe different configurations, simulations have to be run
for several values of µ. For this reason reduced order methods are presented as an important
resource to manage these problems. The main novelty of this work deals with the use of reduced
order modelling techniques in geographically realistic experiments involved in marine sciences
with environmental purposes. Two examples will be discussed:

1. a first example dealing with a pollutant control in the Gulf of Trieste, Italy. In this case we
aimed at underlining how parametrized optimal control problems could be useful in order
to study several potential configurations describing different phenomena in this specific
geographic area. These experiments could improve the monitoring strategies (presented,
for example, in [36, 50]) of the marine environment of the Gulf of Trieste;

2. an Oceanographic solution tracking governed by quasi-geostrophic equations (see e.g. [12,
31, 47]), describing the North Atlantic Ocean dynamics. This problem could be linked to
data assimilation based forecasting models (see e.g. [5, 10, 11, 23, 29, 53]) which are used
to simulate possible scenarios and to analyse and predict climatological phenomena. The
solution tracking is presented both in the linear and in the nonlinear version.

One of the main purposes of this work is to present reduced order methods as a reliable and use-
ful tool to manage environmental simulations, both for problems characterized by large scales as
well as small ones. Indeed, the two experiments that we have analysed are different under many
aspects: equations used, scale analysis, geographical regions considered, dynamics involved. De-
spite that, they have in common a physical parametrized setting describing several configurations
and modelling different natural phenomena. Many computational resources are needed to solve
an optimal control problem in environmental sciences, most of all when parameter-dependent
simulations have to be run many times in order to study and analyse several results, representing
very different physical and natural aspects. Reduced order methods allow to recast a compu-
tational demanding problem, the “truth” problem, into a new fast and reliable low-dimensional
formulation, the reduced problem. The latter is formulated as a Galerkin projection into reduced
spaces, generated by basis functions chosen through a proper orthogonal decomposition sam-
pling algorithm, as presented in [2, 9, 13, 26].
This work will show how convenient the reduced formulation is, since it is capable to give real-
time results, while environmental simulations based on classical approximation methods may
take a very long time. The computational time saved for the reduced simulations could be
invested in the study of many scenarios in order to achieve a deeper knowledge of ecological and
climatological phenomena, that are very hard to be analyzed and understood, since they are
linked to several natural aspects, as well as anthropic features.
The paper is outlined as follows. In section 2, first of all the saddle-point structure for linear
quadratic parametrized optimal control problems and its Finite Element (FE) approximation are
briefly discussed (see [37, 21, 24]). Section 3 aims at introducing the reduced order approxima-
tion for OCP(µµµ)s (following [26, 28, 30]) and POD sampling algorithm for OCP(µ)s with a brief
mention of aggregated reduced space strategy (used in [17, 38, 39]) and affine decomposition
(see e.g. [26]). In section 4, numerical results dealing with reduced order methods applied to
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environmental marine linear quadratic OCP(µµµ)s are detailed. Finally, in section 5, the nonlinear
version of a solution tracking governed by quasi-geostrophic equation is presented. Conclusions
follow in section 6.

2 Linear Quadratic OCP(µ)s: Problem Formulation and Finite
Element Approximation

This second section aims at describing linear quadratic OCP(µ)s exploiting their saddle-point
formulation. This strategy is illustrated in many works and in many applications (see [38, 39,
46, 48]). Saddle-point formulation is advantageous, since the results about its well-posedness
are well known in literature (see [7, 8]). Then, we will briefly focus on the Finite Element (FE)
“truth” approximation of OCP(µ)

2.1 Linear Quadratic OCP(µ)s and Saddle-Point Structure

In the treatment of linear quadratic OCP(µ)s and their saddle-point structures we will essentially
follow [37, 38, 39]. Let us consider Ω ⊂ Rn an open and bounded domain with Lipschitz boundary
∂Ω. Let Y and U be Hilbert spaces for state and control, respectively. Moreover, let Z ⊃ Y be
an Hilbert space, in which the observation is taken. Furthermore, let us define a compact set
of parameters P ⊂ Rd, for d ≥ 1, where µ = (µ1, . . . , µd) is considered. We consider Y as the
adjoint Hilbert space, in other words, in our applications, the adjoint and the state spaces will
always coincide. Then, the linear constraint equation is defined by:

a(y, q; µ) = c(u, q; µ) + 〈G(µ), q〉 ∀q ∈ Y, (2.1.1)

where a : Y × Y → R represents a continuous bilinear state operator, c : U × Y → R is a
continuous bilinear form describing the role of the control in the formulation of the problem
and G ∈ Y ∗ gathers information about forcing and boundary terms. Set a constant α > 0, the
quadratic objective functional is given by:

J(y, u; µ) = 1
2m(y − yd(µ), y − yd(µ); µ) + α

2 n(u, u; µ), (2.1.2)

where yd(µ) ∈ Z, m : Z×Z → R and n : U ×U → R are continuous bilinear forms representing
the objective on the state variable and a penalization for the control variable, respectively. We
remark that in writing the bilinear forms a, c,m and n, the dependence on the parameter is
sometimes understood.
An OCP(µ) problem can be formalized as follows: given µ, solve

min
(y(µ),u(µ))∈Y×U

J(y(µ), u(µ); µ) such that (y(µ), u(µ)) ∈ Y × U satisfies (2.1.1). (2.1.3)

In order to recast the problem (2.1.3) in a saddle-point formulation, let us define X = Y × U .
Being x = (y, u) and w = (z, v) two elements of X, we can endow X with the scalar product
(x,w)X = (y, z)Y + (u, v)U and with the norm ‖·‖X =

√
(·, ·)X . Now let us consider

A : X ×X → R A(x,w; µ) = m(y, z; µ) + αn(u, v; µ) ∀x,w ∈ X,
B : X × Y → R B(w, q; µ) = a(z, q; µ)− c(v, q; µ) ∀w ∈ X, ∀q ∈ Y ,
F (µ) ∈ X∗ 〈F (µ), w〉 = m(yd(µ), z; µ) ∀w ∈ X.

Thanks to these quantities, the following functional can be defined:

J (x; µ) = 1
2A(x, x; µ)− 〈F (µ), x〉. (2.1.4)
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In [6, 39], it is shown that minimizing J (x; µ) with respect to x ∈ X is equivalent to minimize
J(y, u; µ) with respect (y, u) ∈ Y × U . So problem (2.1.3) is equivalent to

min
x∈X
J (x; µ) such that B(x, q; µ) = 〈G(µ), q〉 ∀q ∈ Y . (2.1.5)

The constrained optimization problem (2.1.5) can be recast into an unconstrained optimization
problem by defining the Lagrangian functional L : X × Y → R as

L (x, p; µ) = J (x; µ) + B(x, p; µ)− 〈G(µ), p〉, (2.1.6)

where p ∈ Y is the adjoint variable. Thanks to the continuity the forms a, c,m and n, the
operators A,B and F are bounded and then, the Lagrangian is Gâteaux derivable and the min-
imization problem (2.1.5) is equivalent to finding the saddle-point of the Lagrangian functional
(2.1.6) and this leads to the saddle-point formulation (see [6, 48] as references).
The new formulation of the problem is: given µ ∈ P, find (x(µ), p(µ)) ∈ X × Y such that{

A(x(µ), w; µ) + B(w, p(µ); µ) = 〈F (µ), w〉 ∀w ∈ X,
B(x(µ), q; µ) = 〈G(µ), q〉 ∀q ∈ Y .

(2.1.7)

The existence and the uniqueness of the solution is provided by considering the adjoint space
coinciding with the state space and, then, (see [6, 37, 39]) by the fulfillment of the hypotheses
of the Brezzi’s theorem reported in [7].

2.2 Finite Element “Truth” Approximation of OCP(µ)s

Let {T N } be a triangulation over Ω. In a Finite Element approximation Y N = Y ∩ XNr and
UN = U ∩ XNr , where

XNr = {vN ∈ C0(Ω) : vN |K ∈ Pr, ∀K ∈ T N }.

and Pr represents the space of polynomials of degree at most equal to r and K a triangle of
T N . To have Brezzi’s hypotheses guaranteed, we also assume that the discretized state and
adjoint spaces are coinciding (see [14, 37, 39]). Let us consider the discrete product space
XN = Y N × UN ⊂ X. The Galerkin Finite Element discretization of the saddle-point problem
(2.1.7) is: given µ ∈ P, find (xN (µ), pN (µ)) ∈ XN × Y N such that{

A(xN (µ), wN ; µ) + B(wN , p(µ)N ; µ) = 〈F (µ), wN 〉 ∀vN ∈ XN ,
B(xN (µ), qN ; µ) = 〈G(µ), qN 〉 ∀qN ∈ Y N .

(2.2.1)

Let us focus on the algebraic structure of the system associated to (2.2.1). The dimension of
XN and Y N are respectively indicated with NX and NY . Let us define the basis of the finite
dimensional spaces XN and Y N respectively as:

{ϕi}NX
i=1 and {ψj}NY

j=1.

We now can rewrite the solution (xN (µ), pN (µ)) ∈ XN × Y N as:(
xN (µ) =

NX∑
i=1

xµ
i ϕi, p

N (µ) =
NY∑
j=1

pµ
j ψj

)
.

Let us define A(µ) ∈ RNX×NX , B(µ) ∈ RNY ×NX ,F(µ) ∈ RNX and G(µ) ∈ RNY as follows:

Aij(µ) = A(ϕi, ϕj ; µ), Bml(µ) = B(ϕl, ψm; µ), Fk(µ) = 〈F (µ), ϕk〉, Gs(µ) = 〈G(µ), ψs〉.
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From those quantities, we can build the following linear system, with a block structure:(
A(µ) BT (µ)
B(µ) 0

)(
xµ

pµ

)
=
(

F(µ)
G(µ)

)
, (2.2.2)

where (xµ)i = xµ
i and (pµ)j = pµ

j . The approach proposed is known as optimize-then-discretize
(see [21, 24]). In all the applications presented, the linear system is solved through one-shot
method (see [49, 51]).

3 Reduced Basis Methods for Parametrized Optimal Control
Problems

In this section reduced basis methods for OCP(µ)s are described. First of all, the general idea of
reduced order approximation for OCP(µ)s is given as proposed in [18, 38, 39, 30]. Then, proper
orthogonal decomposition (POD, see [2, 9, 13, 26] as references) and the theory of aggregated
spaces will be introduced with some considerations about the efficiency of the method through
affinity assumption, as presented in [26].

3.1 Problem Formulation and Solution Manifold

In section 2.1, we have already affirmed that a linear quadratic OCP(µ)s could be formulated
as a saddle-point problem of the form (2.1.7). Let us recall that x(µ) = (y(µ), u(µ)). In several
cases, the association µ→ (x(µ), p(µ)) ∈ X×Y defines a smooth solution manifold of the form:

M = {(x(µ), p(µ)) | µ ∈ P}.

When the full order problem (2.2.1) is solved, one finds the approximated solution manifold:

MN = {(xN (µ), pN (µ)) | µ ∈ P}.

Reduced basis methods aim at building a good approximation ofMN through linear combination
of properly chosen snapshots xN (µ) and pN (µ), assuming that the approximated manifold has a
smooth dependence from µ. In other words, the reduced spaces are built with full order solutions
computed for suitable parameters in P. Let us suppose to have already built XN ⊂ XN ⊂ X
and Y N ⊂ Y N ⊂ Y as reduced product space and reduced adjoint space, respectively (the
reduced spaces will be specified in section 3.3). Than, the reduced problem is formulated as
follows: given µ ∈ P, find (xN (µ), pN (µ)) ∈ XN × Y N such that{

A(xN (µ), wN ; µ) + B(wN , pN (µ); µ) = 〈F (µ), wN 〉 ∀wN ∈ XN ,

B(xN (µ), qN ; µ) = 〈G(µ), qN 〉 ∀qN ∈ Y N .
(3.1.1)

3.2 POD Algorithm for OCP(µ)s

Let us focus our attention on POD algorithm used as sampling procedure for the construction
of the reduced bases, as treated in [2, 9, 13, 26]. The POD approach is more suitable than any
greedy algorithm for the application proposed in sections 4.2 and 5.2, where we cannot rely on
a posteriori error estimator, since the state equation may not be coercive (see footnote 6). In
order to apply the POD, a discrete and finite dimensional subset Ph ⊂ P is needed. For this
specific set of parameters, the discrete solution manifold is defined as:

MN (Ph) = {(xN (µ), pN (µ)) | µ ∈ Ph}.

5



The cardinality of MN (Ph) is M = |Ph|. Naturally it holds MN (Ph) ⊂ MN since Ph ⊂ P.
If Ph is fine enough, MN (Ph) is a good approximation of the discrete manifold MN . From
now on, we will refer to the set of the linear combinations of elements of MN (Ph) as M. The
algorithm of POD is based on two processes:

1. sampling the parameter space Ph in order to compute the full order solutions at selected
parameters,

2. a compression phase, where one discards the redundant information, respectively for state,
control and adjoint variables.

The N -spaces resulting from the POD algorithm minimize the following quantities, respectively:√√√√ 1
M

∑
µ∈Ph

min
zN∈YN

‖yN (µ)− zN‖2Y ,
√√√√ 1
M

∑
µ∈Ph

min
vN∈UN

‖uN (µ)− vN‖2U ,
√√√√ 1
M

∑
µ∈Ph

min
qN∈Y N

‖pN (µ)− qN‖2Y .

(3.2.1)
Let us introduce an ordering on the parameters µ1, . . . ,µM ∈ Ph. This induces an ordering on
the full order solutions yN (µ1), . . . , yN (µM ), uN (µ1), . . . , uN (µM ) and pN (µ1), . . . , pN (µM ).
In order to build the POD-spaces, we define the symmetric and linear operators:

Cy : M→M Cy(zN ) = 1
M

M∑
m=1

(zN , yN (µm))yN (µm), zN ∈M,

Cu : M→M Cu(vN ) = 1
M

M∑
m=1

(vN , uN (µm))uN (µm), vN ∈M,

Cp : M→M Cp(qN ) = 1
M

M∑
m=1

(qN , pN (µm))pN (µm), qN ∈M.

Let us consider their eigenvalues λyn, λun, λpn ∈ R and the corresponding eigenfunctions ξyn, ξun, ξpn ∈
M, with ‖ξyn‖Y = ‖ξun‖U = ‖ξpn‖Y = 1, verifying:

(Cy(ξyn), yN (µm)) = λyn(ξyn, yN (µm)), 1 ≤ m ≤M,

(Cu(ξun), uN (µm)) = λun(ξun, uN (µm)), 1 ≤ m ≤M,

(Cp(ξpn), pN (µm)) = λpn(ξpn, pN (µm)), 1 ≤ m ≤M.

Let us assume that the eigenvalues satisfy λi1 ≥ λi2 ≥ · · · ≥ λiM ≥ 0, for i = y, u, q. The
orthogonal POD basis functions are given by ξy1 , . . . , ξ

y
M , ξu1 , . . . , ξuM and ξp1 , . . . , ξ

p
M and they

span M. We can take into consideration the first N ≤M eigenfunctions for the sake of reduction,
respectively for state, control and adjoint space: the reduced spaces YN and UN will be defined
by them.

Remark 3.2.1 The POD algorithm can be also seen under an algebraic point of view. For
example, let us consider the control variables1 uN (µm) for m = 1, . . . ,M . Let Cu ∈ RM×M be
the correlation matrix of the control snapshots, that is:

Cu
mq = 1

M
(uN (µm), uN (µq))U , 1 ≤ m, q ≤M.

1The concept proposed is easily extended to state and adjoint variables, analogously.
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Then, the N -largest eigenvalue-eigenvector pairs (λun, vn) solve the problem

Cuvn = λnvn, 1 ≤ n ≤ N,

with ‖vn‖ = 1. Giving a descending order to the eigenvalues λu1 ≥ λu2 ≥ · · · ≥ λuN , the orthogonal
basis functions {ξu1 , . . . , ξuN} satisfy UN = span {ξu1 , . . . , ξuN}. The basis is given by:

ξun = 1√
M

M∑
m=1

(vn)muN (µm), 1 ≤ n ≤ N,

where (vn)m is m-th component of the control eigenvector vn ∈ RM .

3.3 Aggregated Reduced Spaces and Affinity Assumption

We now focus on the conditions needed to guarantee stability and efficiency of the proposed
reduced order method. In order to prove the well-posedness of the problem (3.1.1), the reduced
inf-sup condition of the bilinear form B(·, ·; µ) must be fulfilled, in other words, it must exist a
positive constant βN0 such that

βN (µ) = inf
qN∈Y N

sup
wN∈XN

B(wN , qN ; µ)
‖wN‖X‖qN‖Y

> βN0 ∀µ ∈ P. (3.3.1)

Again, the state and the adjoint space are assumed to be the same in order to ensure the hypoth-
esis (3.3.1). As underlined in [39], simply building the reduced spaces as linear combinations of
snapshots may not lead to the fulfillment of the reduced inf-sup condition. Then, we adopted
the solution of aggregated spaces, used in [38, 39], already presented in [17]. This technique is
based on the definition of an enriched space

ZN = span {yN (µn), pN (µn), n = 1, . . . , N}.

Now, let us define the reduced spaces YN = ZN and XN = ZN × UN , where

UN = span {uN (µn), n = 1, . . . , N}.

Thanks to this choice, the hypothesis of coincidence of the state and the adjoint spaces is
recovered and so the saddle-point problem (3.1.1) verifies the reduced inf-sup condition.
Let us briefly introduce the affinity assumption2 that guarantees efficiency of reduced order
methods. The problem (2.1.7) admits affine decomposition if we can rewrite the bilinear forms
and the functionals involved as:

A(x,w; µ) =
QA∑
q=1

Θq
A(µ)Aq(x,w), B(w, p; µ) =

QB∑
q=1

Θq
B(µ)Bq(w, p),

〈G(µ), s〉 =
QG∑
q=1

Θq
G(µ)〈Gq, s〉, 〈F (µ), w〉 =

QF∑
q=1

Θq
F (µ)〈F q, w〉,

(3.3.2)

for some finite QA, QB, QG, QF , where Θq
A,Θ

q
B,Θ

q
G,Θ

q
F are µ−dependent smooth functions,

whereas Aq,Bq,
Gq, F q are µ−independent bilinear forms and functionals. This hypothesis allows us to divide
the resolution of the reduced order approximation of (2.1.7) in two stages:

2If the problem does not fulfill the affinity assumption, it can be recovered thanks to the empirical interpolation
method (see e.g. [4] and [26, Chapter 5]).
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1. offline: in this stage the reduced spaces are built and all the µ−independent quantities
are assembled. It is performed only once and it may be very costly;

2. online: in this phase the µ−dependent quantities are assembled and the reduced system
is solved. This stage is performed every time we want the model to be simulated at a new
value of µ, representing a new configuration for our system.

4 Applications in Environmental Marine Sciences and Engineer-
ing

This section aims at applying the proposed reduced order method (ROM) to parametrized
optimal control problems involved in environmental marine sciences and engineering problems.
One of the purpose is to show the computational savings enabled by the use of a ROM in place
of the usual FE approximation strategies. Two specific examples are proposed:

1. A Pollutant Control on the Gulf of Trieste
This first example involves an advection-diffusion pollutant control problem set in the Gulf
of Trieste, Italy. The latter is a physical basin particularly windy and it has very peculiar
flora and fauna population (as underlined in [36, 50]). Moreover its analysis is important
from a social point of view since it has a great impact on the local community: the city of
Trieste overlooks the sea and depends on the Gulf and on its structures from harbours as
well as from tourist infrastructures. For these reasons it needs to be monitored and kept
under control.

2. A Solution Tracking of the Large Scale Ocean Circulation Model
The Solution tracking is an optimal control problem that aims at making a solution the
most similar to a given observation. As a second application, we propose a solution track-
ing problem of the large scale Ocean circulation model, governed by quasi-geostrophic
equations. This OCP(µ) example fits in the framework of a data assimilation technique
(see [5, 10, 11, 23] as references) that allows the model to be modified adding informa-
tion from experimental data. The importance of studying Ocean Circulations Models lies
in forecasting analysis of future meteorological and climatological scenarios in order to
prevent catastrophic events, as described in [54].

Both the presented applications are characterized by several physical parameters, and so reduced
order methods could be an useful tool to decrease the time required by numerical simulations.
In order to reach more realistic results, we have used meshes derived from satellite images
representing the geographic area to be studied, as shown in Figure 4.0.1. Figure 4.0.2 gives
an idea about the work needed in order to build realistic meshes: some details of the meshes
overlapped to the satellite images are shown. For our analysis, having these specific meshes was
very important to give physical meaning to our problems and to their formulations, in order to
achieve reliable results that could be potentially compared to real experimental data, which are
strictly linked to the geographical area where they are collected.
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(a) (b) (c)

Figure 4.0.1: Satellite images. (a) North Atlantic Ocean, West coast; (b) North Atlantic Ocean, East
coast; (c) Gulf of Trieste, Italy.

(a) (b) (c)

Figure 4.0.2: Meshes overlapping satellite images. (a) North Atlantic Ocean, particular of the Florida
peninsula; (b) North Atlantic Ocean, particular of Portugal and North Africa; (c) Gulf of Trieste, par-
ticular of the city of Trieste.

The simulations have been run using FEniCS [34] for the full order solutions and RBniCS for
the reduced order ones [26, 3]. The machine used for the simulations has a processor AMD
A8-6410 APU with 8 GB of RAM.

4.1 Reduced Basis Applied to a Pollutant Control on the Gulf of Trieste

The proposed problem aims at limiting the impact of a pollutant tracer on touristic and natural
areas of the Gulf of Trieste. The OCP(µ) is governed by advection-diffusion state equation (see
[18, 42, 43]). Let Ω be an open, bounded and regular domain representing the Gulf of Trieste
(see Figure 4.1.1 (b)), with boundary ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅, where homogeneous
Dirichlet and Neumann boundary conditions are imposed on ΓD and ΓN , respectively. The
coasts are considered in ΓD, while the open sea represents ΓN (see Figure 4.1.1 (c)).
Let us define the state and the control spaces as Y = H1

ΓD
(Ω) = {y ∈ H1(Ω) : y|ΓD

= 0}, and
U = R, respectively. We remark that the adjoint space is equal to the state space.
The non-dimensional OCP(µ) reads: given µ ∈ P, find (y(µ), u(µ)) ∈ Y × U such that:

min
(y,u)∈Y×U

J(y, u) = min
(y,u)∈Y×U

1
2

∫
ΩOBS

(y − yd)2 dΩOBS +α

2

∫
Ωu

u2 dΩu

such that a(y, q; µ) = c(u, q), ∀q ∈ Y .

(4.1.1)
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where the state y is the pollutant concentration and yd = 0.2 ∈ R represents the safety threshold
of the pollutant tracer.

(a) (b) (c) Boundaries: light blue: open sea;
brown: coasts. Subdomains: red: mon-
itored natural area; green: source of the
pollutant tracer.

Figure 4.1.1: Mesh and subdomains. (a) mesh of the North Atlantic Ocean; (b) mesh of the Gulf of
Trieste; (c) subdomains of the Gulf of Trieste.

The bilinear forms a : Y × Y → R and c : U × Y → R are defined as:

a(y, q,µ) =
∫

Ω
(ν(µ)∇y · ∇q + β(µ) · ∇yq) dΩ, c(u, q) = L u

∫
Ωu

q dΩu.

where ν(µ) ≡ µ1 represents the diffusivity action of the state equation, while β(µ) = [β1(µ2), β2(µ3)]
is the transport field acting on the Gulf. Then, the parameter µ = [µ1, µ2, µ3] influences the
circulation of the current in the Gulf. In this case G ∈ Y ∗ is G ≡ 0. In this experiment, the
control represents the concentration of the pollutant tracer released in the green area of the
Gulf (see Figure 4.1.1 (c)) The constant L = 103 makes the system non-dimensional. For the
transport field we decided to take into consideration in proximity of the observation domain3

β1(µ2) ≡ µ2, β2(µ3) ≡ µ3.

The parameter space considered is P = [0.5, 1]× [−1, 1]× [−1, 1]. The plot of the Figure 4.1.1 (c)
shows the considered subdomains: in green Ωu, where the pollutant loss is, in red ΩOBS , where
we want to monitor the pollutant concentration: it represents the swimming touristic area of
the city and Miramare natural area (red subdomain in Figure 4.1.1). Two argumentations drove
us in the choice of ΩOBS (as underlined in [36]):

1. its unique ecological flora and fauna marine population,

2. it is an area crowded by Trieste citizens and by many tourists.

The parameter µ is a physical parameter that describes the dynamic of the currents deriving
from the specific winds blowing on this geographical area (the winds acting on the Gulf will be
introduced later). Varying the parameter, it is possible to simulate several configurations in order
to study how the wind could affect the diffusion of a dangerous pollutant in the natural area of
Miramare. Thanks to reduced order modelling, many scenarios could be analysed, with a great
saving of computational time resources. Several possible results must be taken into consideration
in this context and, then, a deeper analysis can be made in order to better understand possible

3Constant transport field will be sufficient to simulate the most interesting configurations for the circulation
dynamic of the Gulf of Trieste.
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scenarios. The monitoring of the diffusion of a pollutant is necessary in order to preserve natural
areas or to safeguard an ecological polluted habitat in case of ecological accident, and an accurate
and fast model is helpful in planning a program of action.
In order to recast the problem in the framework (2.1.7), let X = Y ×U be the product space of
state and control spaces. Let x = (y, u) and w = (z, v) be elements of X, whereas q an element
of Y . Moreover, we define the bilinear forms m : Y × Y → R and n : U × U → R as follows:

m(y, z) =
∫

ΩOBS

yz dΩOBS and n(u, v) =
∫

Ωu

uv dΩu.

Furthermore, we define the forms A,B and F as follows:

A : X ×X → R A(x,w) = m(y, z) + αn(u, v),
B : X × Y → R B(w, q; µ) = a(z, q; µ)− c(v, q),

F : X → R 〈F,w〉 = yd

∫
ΩOBS

z dΩOBS .

To build the aggregated reduced spaces for state and adjoint we used the POD-Galerkin algo-
rithm introduced in section 3. In this specific example the reduced space for the control does
not need to be reduced and thus we set UN = R. For this problem the affinity assumption is
guaranteed: with QA = 1, QB = 4 and QF = 1 the affine decomposition of the problem is given
by

Θ1
A = 1 A1(x,w) = A(x,w),

Θ1
B = µ1 B1(x, q) =

∫
Ω
∇y · ∇q dΩ,

Θ2
B = µ2 B2(x, q) =

∫
Ω

∂y

∂x1
q dΩ,

Θ3
B = µ3 B3(x, q) =

∫
Ω

∂y

∂x2
q dΩ,

Θ4
B = −L B4(x, q) =

∫
Ωu

uq dΩ,

Θ1
F = 1 〈F 1, w〉 = 〈F,w〉.

In the following, some numerical results linked to two different configurations are shown: the
data of the experiments are reported in Table 1. As Figure 4.1.3 shows, the choice of a training
set of 100 snapshots was sufficient in order to achieve a good reduced approximation: the
errors4 between FE and ROM variables have the same behaviour of the solution generated by
a training set of 500 truth approximations. We analysed how the wind action could influence
pollutant diffusion. We simulated the net water transport due to Bora, a wind blowing from
East to North-West, described by (µ2, µ3) = (−1, 1), and Scirocco, a wind blowing from South-
East, corresponding to (µ2, µ3) = (1,−1). From the lower value of the cost functional reported
in Table 2, one can deduce that Bora makes the polluted water removed from ΩOBS , while
Scirocco acts is the opposite way, pushing it towards the coast. Furthermore, Table 2 shows
the differences between FE and ROM performances, in terms of dimension of the systems, time
of resolution and cost functional. In Table 3 the speed up index behaviour with respect to
the increasing of the basis numbers is presented. The speed up index represents the number of

4 The errors considered for state, control and adjoint are, respectively:

‖yN (µ)− y‖H1
0
, |uN (µ)− uN (µ)|, ‖pN (µ)− pN (µ)‖H1

0
.
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reduced problems solved in the time needed for a full order simulation. With the terminology
basis number we refer to as the number N such that Ny = Np = 2N (and Nu = 1, being
U = R), where Ny, Nu, Np are the number of online degrees of freedom for state, control and
adjoint variable, respectively. In other words if the basis number is N , we are solving a system
of dimension (4N + 1)× (4N + 1).
The first left plot in Figure 4.1.2 shows an “uncontrolled” Bora configuration (corresponding to
µ = (1,−1, 1), resulting from the simulation of the state equation (only) with a value u = 1 as a
forcing term. Then, in the same Figure 4.1.2, the optimal control problem solution is presented
with FE discretization and ROM, respectively. As one can see, the FE approximation and the
ROM one match. Another proof of the reliability of reduced basis POD-Galerkin method is the
pointwise error shown in the last plot of Figure 4.1.2: the maximum value reached is 1.373·10−10

with basis number N = 20.

Figure 4.1.2: Gulf of Trieste (Bora configuration): results.

Table 1: Data of the numerical experiment: Gulf of Trieste.

Data Bora Values Scirocco Values

µ1 1 1
(µ2, µ3) (−1, 1) (1,−1)

yd 0.2 0.2

POD Training Set Dimension 100 100

Basis Number N 20 20

Sampling Distribution uniform uniform

Table 2: ROM vs FE: Gulf of Trieste (Bora configuration).

Bora Configuration FE ROM

System Dimension 5939× 5939 201× 201
Optimal Cost Functional 4.9167 · 10−5 4.9167 · 10−5

Time of Resolution 2.79s 2.41 · 10−2s

Scirocco Configuration FE ROM

System Dimension 5939× 5939 201× 201
Optimal Cost Functional 5.3417 · 10−5 5.3417 · 10−5

Time of Resolution 3.12s 3.41 · 10−2s
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Table 3: Speed up analysis: Gulf of Trieste (Bora configuration).

Basis Number N 1 5 10 5 20
Speed up 361 364 350 317 296

Figure 4.1.3: Gulf of Trieste (Bora configuration): errors and training set comparison. The plots are
almost coincident.

Figure 4.1.4: Gulf of Trieste (Bora configuration): errors.

In Figure 4.1.3 errors between FE solution and ROM solution with respect to the basis number
N over a random testing set of 100 are presented. The obtained results show that the ROM
allows to get fast and accurate simulations, since very few basis functions are required to have
very small errors.
The plot in Figure 4.1.4 illustrates a comparison between the POD approach presented in section
3 (labeled as partitioned) and a different reduction in which only one POD is carried out for
the variables (y, u, p) at the same time on the space X × Y (labeled as monolithic). The results
show that it is preferable to use a partitioned POD approach rather than a monolithic POD
algorithm. The improvement is significant, since the latter approach gave an error of the order
of 10−4 with N = 20, while, for the same value of N and with the partitioned option, the sum of
the state, control and adjoint errors reaches the value of 10−8. Since the partitioned approach
gave better values of the errors, we decided to exploit it for the Oceanographic application which
we will present in the next section.

4.2 Reduced Basis Applied to an Ocean Circulation Solution Tracking

The general Ocean circulation model describes large scale flow dynamics. It is strictly linked to
wind action: it can be considered as a coupled system of Ocean and Atmosphere. The theory
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associated to this topic is deeply analysed in [12, Chapter 3]. The model is governed by the
following non-dimensional PDE(µ), known as quasi-geostrophic equation:

µ3F(ψ,∆ψ) + ∂ψ

∂x
= f − µ1∆ψ + µ2∆2ψ, (4.2.1)

where, given a suitable spaces V , the nonlinearity of the expression is given by F : V × V → R
defined as:

F(ψ, q) = ∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
. (4.2.2)

The parameter µ3 represents how much the nonlinear term affects the flow dynamics, while µ1
and µ2 stand for diffusive action, respectively.
The parameter µ describes the North Atlantic Ocean dynamics completely, since it gives in-
formation about how the large scale Ocean circulation is affected by different phenomena, such
as location (typically described by µ3) and intensity variations of the gyres and the currents in
the Ocean. Let us recall that Ocean dynamic is strongly linked to wind stress and atmospheric
behaviour. Then, the parameter µ describes the dynamic of a very complex physical system,
taking into account several natural factors and phenomena. It is very important to run many
simulations for different values of the parameter µ, in order to achieve a full knowledge of this
system describing Oceanic and Atmospheric dynamics, linked to climatological forecasting is-
sues.
As specified in [12, Section 3.2], the forcing term f depends on wind stress τ by the following
relation:

f = k̂ · rot τ ,

where k̂ is the third reference spatial unit vector. In our application we considered a bounded
and regular bi-dimensional domain5 Ω ⊂ R2 representing the North Atlantic Ocean (see Figure
4.1.1 (a)). Furthermore, in this section, we focused on the linear version of the quasi-geostrophic
equation (µ3 = 0). The nonlinear OCP (µµµ) governed the oceanographic model will be treated in
section 5.2. The solution tracking problem constrained to this particular state equation is:

min
(ψ,u)∈V×U

J(ψ, u) = min
(ψ,u)∈V×U

1
2

∫
Ω

(ψ − ψd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that


∂ψ

∂x
= u− µ1∆ψ + µ2∆2ψ in Ω,

ψ = 0 on ∂Ω,
∆ψ = 0 on ∂Ω,

(4.2.3)

where ψ ∈ V is our state variable, u ∈ U is the forcing term to be controlled, where V and
U are two suitable functions spaces and α is the penalization term. The physical parameter
µ = (µ1, µ2) is considered in the parametrized space P = [10−4, 1]× [10−4, 1]. In this example,
the control variable represents the wind action. We stress that the quasi–geostrophic model
describes how Ocean and Atmosphere interact. The problem aims at making the solution ψ
the most similar to ψd, representing the desired Ocean dynamics, thanks to the action of to the
wind stress expressed by u, as mentioned above.

5Experiments showed that the analysis of the underwater depth did not affect the dynamics of the equation,
so we decided to exploit a simpler bi-dimensional model. Although, adding the bathimetric effect is quite simple:
let us suppose that the ocean floor is described by a smooth function h : Ω→ R, then one can consider

µ3F(ψ,∆ψ + h) + ∂ψ

∂x
= f − µ1∆ψ + µ2∆2ψ,

in order to treat a more complete model. As one can see, the bathimetry affects only the nonlinear term.
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In some applications ψd can represent experimental data. In this sense, our experiment could
be seen as a prototype of a data assimilation model with forecasting purposes (see [5, 10, 11,
23, 29, 53] as references). This particular technique changes the model in order to achieve a
solution comparable with real experimental data. Data assimilation techniques are very costly,
and reduced order methods fit very well in this context. The proposed experiment helps to
understand how reduced order techniques could be exploited in order to simulate several clima-
tological scenarios in a low dimensional and accurate framework. The opportunity of running
the reduced model many times allow us to have a deeper comprehension of the Ocean dynamic,
and of atmospheric phenomena and climatological scenarios.
In order to manage a handier problem6, we rewrite the previous system as it follows:

min
((ψ,q),u)∈Y×U

J((ψ, q), u) = min
((ψ,q),u)∈Y×U

1
2

∫
Ω

(ψ − ψd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that



q = ∆ψ in Ω,
∂ψ

∂x
= +u− µ1q + µ2∆q in Ω,

ψ = 0 on ∂Ω,
q = 0 on ∂Ω,

(4.2.4)

where the spaces are defined as Y = H1
0 (Ω) × H1

0 (Ω) and U = L2(Ω). The weak formulation
reads as:

a((ψ, q), (φ, r); µ) = c(u, (φ, r)) ∀φ, r ∈ H1
0 (Ω), (4.2.5)

where a : Y × Y → R and c : U × Y → R are given by:

a((ψ, q), (φ, r); µ) =
∫

Ω

∂ψ

∂x
r dΩ + µ2

∫
Ω
∇q · ∇r dΩ + µ1

∫
Ω
qr dΩ +

∫
Ω
qφ dΩ +

∫
Ω
∇ψ · ∇φ dΩ,

(4.2.6)

c(u, (φ, r)) =
∫

Ω
ur dΩ. (4.2.7)

In this case G ∈ Y ∗ is G ≡ 0.

Since we are facing a linear quadratic optimal control problem, it can be recast in saddle-point
formulation (2.1.7). Let us define the product space X = Y × U and let x = ((ψ, q), u) and
w = ((χ, t), v) be two elements of X, whereas let s = (φ, r) be an element of the adjoint space.
Furthermore, one has to specify:

A : X ×X → R A(x,w) = m((ψ, q), (χ, t)) + αn(u, v),
B : X × Y → R B(w, s; µ) = a((χ, t), (φ, r),µ)− c(v, (φ, r)),

F : X → R 〈F,w〉 =
∫

Ω
ψdχ dΩ,

where m : Y × Y → R and n : U × U → R are defined as

m((ψ, q), (χ, t)) =
∫

Ω
ψχ dΩ, n(u, v) =

∫
Ω
uv dΩ.

In order to build the aggregated reduced spaces of the type proposed in section 3.3 a POD-
Galerkin algorithm has been exploited. As we underlined in section 3.3, the affinity assumption

6 This version of the problem does not ensure the coercivity of the state equation, that is proved in [31] for
the state equation of the system (4.2.3)
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must be guaranteed for the efficiency of the reduced problem. Indeed, with QA = 1, QB = 3
and QF = 1 the affine decomposition of the problem is given by

Θ1
A = 1 A1(x,w) = A(x,w),

Θ1
B = µ1 B1(x, s) =

∫
Ω
qr dΩ,

Θ2
B = µ2 B2(x, s) =

∫
Ω
∇q · ∇r dΩ,

Θ3
B = 1 B3(x, s) =

∫
Ω

∂ψ

∂x
r dΩ +

∫
Ω
qφ dΩ +

∫
Ω
∇ψ · ∇φ dΩ−

∫
Ω
ur dΩ,

Θ1
F = 1 〈F 1, w〉 = 〈F,w〉.

Table 4: Data of the numerical experiment: North Atlantic Ocean linear solution tracking.

Data Values

(µ1, µ2, α) (10−4, 0.073, 10−5)

FE solution of
ψd quasi-geostrophic equation

with f = − sin(πy)
and µµµ = (10−4, 0.073)

POD Training Set Dimension 100

Basis Number N 25

Sampling Distribution log-uniform

In Table 4 the data of the experiment are shown: choosing a training set of 100 generating
elements gives comparable results with respect the one achieved with a training set generated
by 500 snapshots, as presented in the errors7 plotted in Figure 4.2.2. In Figure 4.2.1 the desired
ψd value to be reached is presented with the FE and ROM solutions. The approximated solutions
match. The last plot of the Figure 4.2.1 shows the pointwise error: the maximum value reached
is 1.8 · 10−8 with basis number N = 25.

Figure 4.2.1: North Atlantic Ocean linear solution tracking: results.

The following tables represent the comparison between ROM and FE performances, in terms
of: system dimension, cost functional optimal value, time of resolution (Table 5) and speed

7The errors considered for state, control and adjoint are, respectively:

‖ψN (µ)−ψN (µ)‖H1
0
, ‖qN (µ)−qN (µ)‖H1

0
, ‖uN (µ)−uN (µ)‖L2 , ‖χN (µ)−χN (µ)‖H1

0
, ‖tN (µ)−tN (µ)‖H1

0
.
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up index with respect to the basis number N such that 2N = Nψ = Nq = Nχ = Nt and
N = Nu (Table 6), which results in a solution of a 9N × 9N linear system. We can deduce
how the ROM method is a suitable and convenient approach to study large scale phenomena in
oceanography, a field dealing with parametrized simulations that require days of CPU times for
complex configurations.

Table 5: ROM vs FE: North Atlantic Ocean linear solution tracking.

FE ROM

System Dimension 6490× 6490 450× 450
Optimal Cost Functional 1.520 · 10−6 1.520 · 10−6

Time of Resolution 6.07s 2.03 · 10−1s

Table 6: Speed up analysis: North Atlantic Ocean linear solution tracking.

Basis Number N 1 5 10 15 20 25
Speed up 1049 395 192 207 199 33

Figure 4.2.2: North Atlantic Ocean linear solution tracking: errors and training set comparison. The
plots are coincident.

In Figure 4.2.2 the error norm between the FE approximation and the ROM discretization over
a random testing set of 100 is shown for all the variables, state ψ and q, control u, and adjoint
χ and t, respectively.

5 Nonlinear version of the Ocean Circulation Solution Tracking

This section aims at introducing a nonlinear version of the Oceanographic solution tracking
proposed in section 4.2. First of all, the problem will be presented in a general theoretical
formulation, then the OCP (µµµ) will be specified to the nonlinear quasi-geostrophic equations.
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As we did for the linear case, some numerical results will be presented, in order to sustain the
idea of the great versatility of the ROMs in these kind of applications.

5.1 Nonlinear reduced OCP(µµµ)s: a brief introduction

In the following section we want to briefly describe nonlinear OCP(µµµ)s, in order to make the
reader acquainted with the nonlinear numerical example presented. Let us introduce all the
quantities needed, following the structure already exploited in section 2.1. We remark that, as
in the linear case, in the different definitions, the dependence from the parameter µµµ is sometimes
understood.
Let Ω ⊂ Rn be an open regular domain of boundary ∂Ω. Let us introduce the Hilbert spaces
Y , U and Z ⊇ Y , where Y is used both for the state and for the adjoint space, U is the control
space and Z is the observation space. With a totally analogous procedure with respect the one
exploited in (2.1.1), we can define the nonlinear constraint equation:

anl(y, q; µ) = c(u, q; µ) + 〈G(µ), q〉 ∀q ∈ Y, (5.1.1)

where anl : Y × Y → R represents a continuous nonlinear state operator, c : U × Y → R is the
usual continuous bilinear form linked to the control variable and G ∈ Y ∗ gives us information
about forcing and boundary terms. The subscript “nl” highlights the nonlinearity of the govern-
ing state equation. Set a constant α > 0, we can consider again the linear quadratic objective
functional (2.1.2) where the roles of yd(µ) ∈ Z, m : Z × Z → R and n : U × U → R remain the
same of the linear case in section 2.1. The OCP(µµµ) reads as the problem (2.1.3), with the only
difference that the constraint is nonlinear.
Let us define the product space X = Y × U , endowed with the same scalar product and the
same norm introduced in section 2.1. Taking x = (y, u) and w = (z, v) as two elements of X,
we can define the following quantities:

A : X ×X → R A(x,w; µ) = m(y, z; µ) + αn(u, v; µ) ∀x,w ∈ X,
Bnl : X × Y → R Bnl(w, q; µ) = anl(z, q; µ)− c(v, q; µ) ∀w ∈ X, ∀q ∈ Y,
F (µ) ∈ X∗ 〈F (µ), w〉 = m(yd(µ), z; µ) ∀w ∈ X.

Thanks to these definitions and taking into consideration the adjoint variable p ∈ Y , we
can define, as in the linear case, the functional (2.1.4) and the new Lagrangian functional
L nl : Y × U × Y → R as

L nl(y, u, p; µ) = J ((y, u); µ) + Bnl((y, u), p; µ)− 〈G(µ), p〉. (5.1.2)

In literature (see e.g. [27]) it is well known that solve the nonlinear minimisation problem (2.1.3)
is equivalent to solving the following system: given µ ∈ P, find (x(µ), p(µ)) ∈ X × Y , where
x(µµµ) = (y(µµµ), u(µµµ)), such that

DyL nl(y, u, p;µµµ)[z] = 0 ∀z ∈ Y,
DuL nl(y, u, p;µµµ)[v] = 0 ∀v ∈ U,
DpL nl(y, u, p;µµµ)[q] = 0 ∀q ∈ Y.

(5.1.3)

DyL nl(y, u, p;µµµ), DuL nl(y, u, p;µµµ) and DpL nl(y, u, p;µµµ) represent the differentiation of the La-
grangian functional (5.1.2) with respect to the state, the control ad the adjoint variable, respec-
tively.
Following the analogous argument proposed in section 2.2, we consider Y N and UN as the Finite
Element discretization for Y and U , respectively. Also in this case, we define the discrete product
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space XN = Y N ×UN ⊂ X and the Galerkin Finite Element discretized version of the problem
(5.1.3) as: given µ ∈ P, find (xN (µ), pN (µ)) ∈ XN ×Y N , where xN (µµµ) = (yN (µµµ), uN (µµµ)), such
that 

DyN L nl(yN , uN , pN ;µµµ)[zN ] = 0 ∀zN ∈ Y N ,
DuN L nl(yN , uN , pN ;µµµ)[vN ] = 0 ∀vN ∈ UN ,
DpN L nl(yN , uN , pN ;µµµ)[qN ] = 0 ∀qN ∈ Y N ,

(5.1.4)

where the discrete Lagrangian functional have been differentiated with respect to the discrete
variables. Numerically, the discrete OCP(µµµ) problem (5.1.4) has been solved through Newton’s
methods. Since we are able to solve truth problems, we can consider the construction of reduced
basis functions exploiting the POD-Galerkin procedure illustrated in section 3.2. Thanks to the
POD-Galerkin algorithm we can reduce the Finite Element spaces Y N and UN and consider
YN and UN , respectively. Then we can consider the space XN = YN × UN and the reduced
nonlinear OCP(µµµ) to be solved is defined as: given µ ∈ P, find (xN (µ), pN (µ)) ∈ XN × YN ,
where xN (µµµ) = (yN (µµµ), uN (µµµ)), such that

DyN L nl(yN , uN , pN ;µµµ)[zN ] = 0 ∀zN ∈ YN ,
DuN L nl(yN , uN , pN ;µµµ)[vN ] = 0 ∀vN ∈ UN ,
DpN L nl(yN , uN , pN ;µµµ)[qN ] = 0 ∀qN ∈ YN ,

(5.1.5)

We recall that the affinity assumption must be verified in order to guarantee good performances
of the ROM methods. Since the case of interest contains only quadratically nonlinear terms,
the affinity assumption can be guaranteed by storing the appropriate nonlinear terms in third
order tensors. In more general cases one can resort e.g. to empirical interpolation [4] and later
variants. We exploited the Newton’s method to solve the reduced problem (5.1.5), as we did for
the did for the discretized version (5.1.4).

5.2 Reduced Basis Applied to a Nonlinear Ocean Circulation Solution Track-
ing

We recall that the general Ocean circulation model governing large scale flow dynamics presented
in [12, Chapter 3] is described by the nonlinear equation (4.2.1). The nonlinearity of the model is
given by the expression (4.2.2). In this experiment, the physical parameter µ = (µ1, µ2, µ3) takes
values in the parameter space P = [0.073, 1]× [10−4, 1]× [10−4, 0.0452]. As in section 4.2, µ1 and
µ2 represent the diffusive action of the Ocean, while µ3 is the parameter linked to its nonlinear
dynamic. The range for the parameters ensures stability to the problem and allow us to treat a
moderate nonlinear OCP(µµµ) governed by quasi-geostrophic equations: in this work we will only
deal with this specific case and we will not treat highly nonlinear problems, corresponding to
lower values of µ1, µ2 and/or higher values of µ3. We underline that the steady quasi-geostrophic
model is a very complex physical system: in order to have a complete description of the meaning
of the model and of the role of all its components the reader is referred to section 4.2 and to
[12, Chapter 3]. The solution tracking problem constrained to the nonlinear quasi-geostrophic
equation is:

min
(ψ,u)∈V×U

J(ψ, u) = min
(ψ,u)∈V×U

1
2

∫
Ω

(ψ − ψd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that


∂ψ

∂x
= u− µ1∆ψ + µ2∆2ψ − µ3F(ψ,∆ψ) in Ω,

ψ = 0 on ∂Ω,
∆ψ = 0 on ∂Ω,

(5.2.1)
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where V and U are suitable functional spaces, ψ ∈ V is the state variable, u ∈ U is the unknown
wind action to be controlled and α is a penalization term. The aim of the OCP(µµµ) presented
is the same of its linear version (4.2.3): make our state solution the most similar to an already
known desired state profile. As in the linear case, we rewrite problem (5.2.1) as:

min
((ψ,q),u)∈Y×U

J((ψ, q), u) = min
((ψ,q),u)∈Y×U

1
2

∫
Ω

(ψ − ψd)2 dΩ + α

2

∫
Ω
u2 dΩ

such that



q = ∆ψ in Ω,
∂ψ

∂x
= u− µ1q + µ2∆q − µ3F(ψ, q) in Ω,

ψ = 0 on ∂Ω,
q = 0 on ∂Ω,

(5.2.2)

where the spaces are defined as Y = H1
0 (Ω)×H1

0 (Ω) and U = L2(Ω). The weak formulation of
the nonlinear state equation is represented as:

anl((ψ, q), (φ, r); µ) = c(u, (φ, r)) ∀φ, r ∈ H1
0 (Ω), (5.2.3)

where c : U × Y → R is (4.2.7) and anl : Y × Y → R is given by:

anl((ψ, q), (φ, r); µ) = a((ψ, q), (φ, r); µ)− µ3

∫
Ω
ψ
(∂q
∂y

∂r

∂x
− ∂q

∂x

∂r

∂y

)
dΩ, (5.2.4)

where a((ψ, q), (φ, r); µ) is defined in (4.2.6), and G ∈ Y ∗ is G ≡ 0.

In the following, we aim at recasting the problem (5.2.2) in the framework proposed in (5.1.3).
Let us define the product space X = Y × U and let x = ((ψ, q), u) and w = ((χ, t), v) be two
elements of X. Let us consider s = (φ, r) ∈ Y as our adjoint variable . Let us describe the
following quantities:

A : X ×X → R A(x,w) = m((ψ, q), (χ, t)) + αn(u, v),
Bnl : X × Y → R Bnl(w, s; µ) = anl((χ, t), (φ, r),µ)− c(v, (φ, r)),

F : X → R 〈F,w〉 =
∫

Ω
ψdχ dΩ.

As in the linear version, the bilinear forms m : Y × Y → R and n : U × U → R are

m((ψ, q), (χ, t)) =
∫

Ω
ψχ dΩ and n(u, v) =

∫
Ω
uv dΩ.

In order to solve the OCP(µµµ) governed by (5.2.2), we define the Lagrangian functional (5.1.2)
and we recall that x = ((ψ, q), u), w = ((χ, t), v). We also define a test function in the adjoint
space Y as η = (ξ, σ). Then we solve the system (5.1.3) where:
D(ψ,q)L

nl((ψ, q), u, (φ, r);µµµ)[(χ, t)] = m((ψ, q), (χ, t))−
∫

Ω

∂r

∂x
χ dΩ + µ2

∫
Ω
∇t · ∇r dΩ +

+ µ1

∫
Ω
tr dΩ +

∫
Ω
tφ dΩ +

∫
Ω
∇χ · ∇φ dΩ +

− µ3

∫
Ω
χ
(∂q
∂y

∂r

∂x
− ∂q

∂x

∂r

∂y

)
dΩ + (5.2.5)

− µ3

∫
Ω
t
(∂ψ
∂y

∂r

∂y
− ∂r

∂x

∂ψ

∂y

)
dΩ−

∫
Ω
uχ− 〈F,w〉,

DuL
nl((ψ, q), u, (φ, r);µµµ)[v] = αn(u, v)−

∫
Ω
vr dΩ,

D(φ,r)L
nl((ψ, q), u, (φ, r);µµµ)[(ξ, σ)] = B(x, η;µµµ).
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We built the aggregated reduced spaces exploiting the partitioned POD-Galerkin algorithm for
the five variables ψ, q, u, χ, t as proposed in section 3.2, separately. As we did for the other
numerical simulations, we underline that the affinity assumption is guaranteed. Indeed, with
QA = 1, QBnl = 4 and QF = 1 the affine decomposition of the problem is given by

Θ1
A = 1 A1(x,w) = A(x,w),

Θ1
Bnl = µ1 B1

nl(x, s) =
∫

Ω
qr dΩ,

Θ2
Bnl = µ2 B2

nl(x, s) =
∫

Ω
∇q · ∇r dΩ,

Θ3
Bnl = 1 B3

nl(x, s) =
∫

Ω

∂ψ

∂x
r dΩ +

∫
Ω
qφ dΩ +

∫
Ω
∇ψ · ∇φ dΩ−

∫
Ω
ur dΩ,

Θ4
Bnl = −µ3 B4

nl(x, s) =
∫

Ω
ψ
(∂q
∂y

∂r

∂x
− ∂q

∂x

∂r

∂y

)
dΩ,

Θ1
F = 1 〈F 1, w〉 = 〈F,w〉.

Table 7: Data of the numerical experiment: North Atlantic Ocean nonlinear solution tracking.

Data Values

(µ1, µ2, µ3, α) (10−4, 0.073, 0.0452, 10−5)

FE solution of
ψd nonlinear quasi-geostrophic equation

with f = − sin(πy)
and µµµ = (10−4, 0.073, 0.072, 10−5)

POD Training Set Dimension 100

Basis Number N 25

Sampling Distribution log-equispaced

Table 7 shows all the features of this experiment. In Figure 5.2.1 the desired solution profile
ψd is presented. Then the truth and the reduced solutions are plotted. It can be seen that the
approximated solutions match. In the last plot of Figure 5.2.1, the pointwise error is shown:
the maximum value reached is 9.6 · 10−7 with basis number N = 25. We recall that 2N = Nψ =
Nq = Nχ = Nt and N = Nu. We also analysed the ROM and the FE performances, in terms of:
system dimension, cost functional optimal value, time of resolution (Table 8). Table 9 presents
the speed up index with respect to the basis number N . The results presented remark how
the ROM approach could be a very suitable tool in order to solve quasi-geostrophic equations,
most of all in their nonlinear version that describes more complicated, but more realistic, Ocean
dynamics, like the movement of the flow stream towards North (Gulf Stream circulation). Figure
5.2.2 shows the error norm between FE and reduced variables as already indicated in footnote
7 over a random testing set of 50, obtaining a similar behavior with respect to the linear case.
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Table 8: ROM vs FE: North Atlantic Ocean nonlinear solution tracking.

FE ROM

System Dimension 6490× 6490 450× 450
Optimal Cost Functional 2.04347 · 106 2.04346 · 106

Time of Resolution 7.21s 5.11 · 10−1s

Figure 5.2.1: North Atlantic Ocean nonlinear solution tracking: results.

Figure 5.2.2: North Atlantic Ocean nonlinear solution tracking: errors.

Table 9: Speed up analysis: North Atlantic Ocean nonlinear solution tracking.

Basis Number N 1 5 10 15 20 25
Speed up 10 8 7 6 5 5

6 Conclusions and Perspectives

In this work we have exploited reduced order methods in environmental parametrized optimal
control problems dealing with marine sciences and engineering. We proposed two specific exam-
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ples: one representing the ecological issue of pollutant control in a specific naturalist area, the
Gulf of Trieste, Italy, the other one consisting in a large scale solution tracking OCP(µ) governed
by quasi-geostrophic equations. We showed how reduced order methods could be a very useful
tool in environmental sciences, like oceanography and ecology, where parametrized simulations
are usually very demanding and costly. Reduced order methods are a suitable approach to face
these issues. We have used a POD-Galerkin method for sampling and for the projection, by
exploiting an aggregated space strategy. Reduced order methods performances have been com-
pared to FE approximation, classically used to study these phenomena, in order to prove how
convenient the reduced order approach could be in this particular field of applications: in the
linear version of the North Atlantic problem, the reduced time of resolution decreases of one
order of magnitude with respect to the full order one, and the error of the state variable ψ is
negligible. To the best of our knowledge, the main novelty of this work is in the POD-Galerkin
reduction of a solution tracking optimal control problem governed by quasi-geostrophic equa-
tions in its linear and nonlinear version.
Let us expose some improvements of this work, focusing on the optimal control problem gov-
erned by quasi-geostrophic equation. A possible development would involve a time dependent
optimal control problem considering also the highly nonlinear case. This kind of formulation
is of the utmost importance in climatological applications, in order to forecast and predict pos-
sible scenarios in a reliable way. This complete model will make the problems more and more
realistic and suited to actual ecological and climatological challenges, as well as more and more
computational demanding. In this sense, reduced order modelling appears, again, to be a suit-
able and versatile approach to be used. Time dependent nonlinear optimal control problems
insert themselves in the framework of data assimilation techniques, that, as briefly introduced in
section 4.2, allow to modify the model in order to reach more reliable results in the forecasting
applications, thanks to a solution tracking where the solution desired to be reached represents
real experimental data.
For all the examples presented, a further step could be the development of three-dimensional
marine model that could take into consideration bathimetry effect. Finally, the problems could
be inserted in a reduced order uncertainty quantification context (see e.g. [52]), when it is not
possible to assign specific values for the parameters by classical statistical methods.
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