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Abstract

In Reduced Basis (RB) method, the Galerkin projection on the reduced space does not
guarantee the inf-sup approximation stability even if the stable Taylor-Hood Finite El-
ement pair is chosen. Therefore in this PhD thesis we aim to build a stabilized RB
method suitable for the approximation of parametrized viscous flows. Starting from the
state of the art we study the residual based stabilization techniques for parametrized
viscous flows in a RB setting. We are interested in the approximation of the velocity
and pressure. Offline-online computational splitting is implemented and offiine-only
stabilization, and offline-online stabilization are compared (as well as without a stabi-
lization approach). Different test cases are illustrated and several classical stabilization
approaches like Brezzi-Pitkaranta, Franca-Hughes, streamline upwind Petrov-Galerkin,
Galerkin Least Square are recast into a parametric reduced order setting. The RB
method is introduced as a Galerkin projection into reduced spaces, generated by basis
functions chosen through a greedy (steady cases) and POD-greedy (unsteady cases) al-
gorithms. This approach is then compared with the supremizer options to guarantee the
approximation stability by increasing the corresponding parametric inf-sup condition.
We also implement a rectification method to correct the consistency of offline-only sta-
bilization approach. Several numerical results for both steady and unsteady problems
are presented and compared. The goal is two-fold: to guarantee the RB inf-sup stability
and to guarantee online computational savings by reducing the dimension of the online
reduced basis system.
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Outline

This PhD thesis is divided into five chapters. Here we give the outline of the organization
of this thesis by giving a summary of each chapter:

Chapter 1

We start with a brief review of the historical development in residual based stabilization
techniques for Finite Element (FE) method. For notation purposes, we give a brief in-
troduction of Reduced Basis method (RB) for elliptic case and a review of algorithms
(Greedy, POD and POD-greedy) required in the construction of RB spaces in the follow-
ing chapters. We also introduce the notion of geometrical parametrization and finally
we give the objective and motivation of this thesis.

Chapter 2

We study the stabilization of steady and unsteady Stokes problem in parametric reduced
order setting. The goal is to give a stable and computationally less expensive RB solu-
tion for velocity and pressure. In the first part we construct a stabilized RB method for
steady Stokes problem using classical stabilization techniques (Franca-Hughes in partic-
ular) for FE and, then, projecting on RB. Additional stabilization terms allows us to
consider the FE pair Py /Py; k = 1,2, instead of the classical Taylor-Hood FE pair Py /P;.
We apply this method to a cavity flow problem with geometrical parametrization and
compare our results with supremizer enrichment approach. We present the comparison
of computational performances of different possible cases. In the second part we discuss
the stabilized RB formulation of unsteady Stokes problem. Similar to steady case we
apply this method to a cavity flow problem and numerical results for different possible
stabilization options are discussed.

Chapter 3

This chapter extends the analysis carried out in Chapter 2 to the nonlinear problems in
parametric reduced order settings. We divide this Chapter into two parts: In the first
part we present the stabilized RB method for the approximation of steady Navier-Stokes
problem. We apply this method to a cavity flow problem taking into consideration both
physical and geometrical parametrization. Numerical results are presented for different
options and computational performances of several cases are compared through tables.
We also give a comparison with supremizer enrichment option. In the second part we
extend the first part to the unsteady Navier-Stokes problem and repeat the same nu-
merical tests for the physical and geometrical parametrization.
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Chapter 4

In this chapter, we present the new online intrinsic stabilization strategy for the RB ap-
proximation of parametrized steady Stokes problem based on rectification method. The
main goal of this chapter is to give a post processing technique based on rectification
method that helps in correcting the consistency of offline-only stabilization approach.
We consider the same cavity flow problem with geometrical parameter. In this chapter
we also give a test case with more than one geometrical parameter (T-shape) to proof
the validity of rectification method in more complex problems.

Chapter 5

This Chapter summarizes all the important findings of the thesis. We address future
plans and perspectives in continuation of this work. We also discuss the impact and
connection of this work with different topics, for instance, Fluid Structure Interaction
(FSI) problems, optimal control problems and the problems involving high Reynolds
number.

Parametrized problem

inf-sup condition for the Galerkin-FE formulation Advection dominated

approximation stability |~ (to get smapshots) [ stabilization (High Reynolds)
Galerkin-RB formulation J Advection dominated formulations
(to get reduced solution) | (not considered in this thesis)

P, /P;_, with supremizer RE inf-sup stability option? | Stabilization with Py /Py k = 1,2
Rozza and Veroy [132] optionl (discussed in this thesis) (BP, FH, SUPG, GALS)

Offline-only stabilization
with supremizer
(not consistent)

without supremizer
(not consistent)

with supremizer
(consistent )

Offtine-only smbﬂizat“ion]

Offtine-online stabilization ‘

Offline-online stabilization
without supremizer
(consistent)

With reetification With rectification
(to correct consistency) (to correct consistency)

Figure 1: Scheme of thesis.
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Chapter 1

Introduction and Motivation

In this chapter we start giving a brief literature review about the classical stabilization
techniques for the Finite Element methods (FE) implemented to Advection-diffusion
problem, Stokes problem and Navier-Stokes problem. The main goal of this thesis is to
properly extend such stabilization techniques into the Reduced Basis (RB) method [63].

We have organized this chapter as follows: in section 1.1, we present a brief historical
literature review on classical stabilization techniques for FE methods. In section 1.2, we
introduce the RB method, followed by the definition of solution manifold and the RB
approximation of a parametric PDE in subsection 1.2.1. We present the offline-online
decomposition for RB method in subsection 1.2.2. In subsection 1.2.3 and 1.2.4, we
discuss the greedy and POD algorithms, respectively while in section 1.2.6, we present the
POD-greedy algorithm involved in the construction of RB space for time-dependent RB
problems. A posteriori error estimation and error bounds for RB method are described
in subsection 1.2.5. A brief review about the geometrical parametrization for the scalar
case is presented in section 1.3. Finally, the objective and the final goal of this thesis is
presented in section 1.4 with the focus on the inf-sup stability condition for RB method.

1.1 Brief excurses literature on historical development of
stabilization

In the FE computations of incompressible flows, using a standard Galerkin formulation
there are two possible sources of instabilities. One reason could be due to the presence
of the convection term which for high Reynolds number creates instability in numer-
ical solution. Other source of instability could be due to the inappropriate choice of
interpolating functions for velocity and pressure.

In 1970s, many researchers [39, 60, 61, 120] proposed stable schemes to overcome the
instabilities caused by increasing Reynolds number. Later on, Hughes [71] introduced
a different scheme for one-dimension steady state advection diffusion problem but his
scheme was only first order accurate and would not give a consistent formulation when
extended to unsteady cases. Hughes and Brooks [29, 30, 66] proposed to add artificial
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diffusion term acting only in the streamline direction and named this type of formulation
as streamline upwind/ Petrov-Galerkin (SUPG) formulation. An extension of SUPG
formulation is given by Hughes et al. [69] and is named as Galerkin Least Square (GLS)
formulation. Later on Franca et al. [44] introduced a change of sign in GLS formulation.

In order to overcome the instability caused by the inappropriate choice of velocity
and pressure interpolating functions, Taylor and Hood [138] employed equal-order veloc-
ity pressure interpolation not satisfying inf-sup condition [25] and noticed that velocity
is good but the pressure approximation is very poor. Penalty method in which pressure
is eliminated by penalizing the continuity equation, and then retained in boundary con-
dition was introduced by Hughes et al. [70]. Penalty method is also studied by Chacén
et al. [34]. Hughes et al. [68] used equal order interpolation for velocity and pressure
by perturbing the pressure test function with a gradient term to achieve the stability. A
symmetric version of this method was proposed by Hughes and Franca [67]. The SUPG
method, first applied by Brooks and Hughes [30] to solve numerically the incompressible
Navier-Stokes equations with high Reynolds number was later on extended by several
researchers [44, 49, 139]. An additional term called pressure stabilizing Petrov-Galerkin
(PSPQG) is created by Johnson and Saranen [81]. The streamline upwind /pressure stabi-
lizing Petrov-Galerkin (SUPG/PSPG) method is also studied in the references [40, 142].
An extension of the SUPG/PSPG stabilization to the Oseen and the Navier-Stokes prob-
lem was independently analyzed by Hansbo et al. [58], Franca et al. [48] and Tobiska et
al. [141]. They have introduced an additional stabilization of the divergence constraint
and named it as grad-div stabilization.

Another stabilization method called Streamline Diffusion method (SD) for convection-
dominated convection-diffusion problems was introduced by Hughes and Brooks [72]
and then Johnson [81] extended this method to time-dependent two-dimensional Navier-
Stokes equations for an incompressible Newtonian fluid in the case of high Reynolds num-
ber. Stabilization techniques used to stabilize advection-diffusion problem and Stokes
problem are also proposed for the Navier-Stokes equations by Behr et al. [14]. Stream
function-vorticity formulation of Navier-Stokes equations has been used in flow compu-
tation, also combined with stabilization techniques [140].

In the SUPG and GLS stabilizations the stabilizating terms added involves the resid-
ual of momentum equation as a factor. Consequently, when an exact solution is sub-
stituted into the stabilized formulation, these added terms vanishes and as a result the
stabilized formulation is satisfied by the exact solution in the same way as the Galerkin
formulation is satisfied [117].

1.2 Reduced Basis Methods

In this section we introduce the Reduced Basis (RB) method as a cheaper method
(in terms of CPU time) to perform numerical simulations of (stabilized) parametrized
problems. The RB method does not replace the stabilized FE method, but rather builds
upon it. For this reason, sometimes we will call the FE method as truth or high fidelity
method. Indeed, RB method is based on a two stage procedure, comprising an offiine
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and an online stage. During the potentially very costly offline stage, one empirically
explores the solution manifold by querying the FE solver to construct a RB that will
approximates the whole solution manifold. The online stage consists of a Galerkin
projection onto the space spanned by the RB. During this stage, one can explore the
parameter space at a substantially reduced cost owing to the small size N of the RB,
which is assumed to be much less than the number N of degree of freedom of truth
discretization.

This offline-online separation is very useful in all those scenarios which are charac-
terized by repeated queries for several different parameter values, where a direct and
repeated evaluation of truth solution would be extremely costly. This is the case for in-
stance in areas of optimization, design, uncertainty quantification. Moreover, the online
procedure can be embedded in a computer environment that has only limited compu-
tational power and memory to allow rapid online query of the response of a complex
system for control, optimization and analysis using a deployed device.

In the next subsection we start with an introduction to the concept of solution
manifold and RB approximation. In this chapter we deal with the RB method only for
elliptic problems to introduce the concepts and notations etc, while in the remaining
part of the thesis we deal with Stokes and Navier-Stokes problems..

1.2.1 The solution manifold and RB approximation

We first introduce a physical domain Q C R¢ with boundary 02, where d = 1,2, or 3
is the spatial dimension since in this chapter we are dealing with elliptic problems. We
define the scalar space V = H}(Q) = {v € HY(Q) : v|p, = 0}, with ['p is the part of
0 where we impose the Dirichlet boundary condition. Let P be the parameter domain,
a subset of RP. We introduce the parametrized bilinear form a : V x V x P — R,
where the bilinearity is with respect to first two variables; and the parametrized linear
form f:V x P — R, where the linearity is with respect to the first variable [63, 115].
Moreover, for a selected value of p € P, the bilinear form af(.,.; i) enjoy the continuity
and coercivity property, whereas the linear form f(.; u) is a continuous linear operator
[129].

Let us now define the problem of interest as: for any p € P, find u(u) € V such that

a(u(p),vip) = f(v;p), Vvey, (1.1)

where P C R” is a compact parameter domain. We shall refer to u(u) as exact solution.
The energy inner product and energy norm are defined as:

((w,v)), = a(w,v;p), Yw,v eV,

1.2
llwll,, = ((w,w),*, vYweV, 42

where we assume that a(.,.; p) is symmetric [63]. Next, we also define the inner product
and the norm that are not parameter dependent. Thus for a given it € P and real 7 > 0,

(w7v)V = ((w7v))ﬂ + T(wav)L2(Q)7 Vw,v €V,

1/2

(1.3)
[wlly = (w,w)y~, VweV,
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where (w,v) 12(Q) = fQ wv. The coercivity and continuity constants are defined as:

Jag s.t. ap < alp) = inf w, VpelP (1.4)
wev w3
and
+ 00 > y(p) = sup sup alw, w; p) Vp e P. (1.5)

wev vev [[wllvlvllv’
Now we make an important assumption that has important role in offline-online com-
putational decoupling in RB. This assumption is called the affine dependence of a(., .; )
on the parameter p [63]. With this assumption we mean that the bilinear form af(.,.; )
can be written as:

Qa
a(w,v;p) =Y O (p)al(w,v), VpeP. (1.6)
q=1

where ©d(pn) : P — R, ¢ = 1,...,Qq, are smooth functions, and a? : V x V — R, are
p-independent continuous bilinear forms. Similarly, we assume that the linear functional
f(; i) also depends affinely on the parameter, i.e.

Qy
flosp) =) 0% fv), VueP, (1.7)
q=1

where @;(u) :P =R, ¢g=1,..,Qy, are smooth functions, while f¢:V xV — R, are
p-independent linear functionals.

Let us introduce the notion of solution manifold comprising of all solutions of the
parametric problem under the variation of parameter, i.e.,

M =A{u(p)|p ePtCV.

We assume that, under suitable regularity assumptions on the data [63], the solution
manifold M is smooth.

In many cases of interest, we are not able to find the exact solution in an analytic
manner. Therefore for any p € P, we seek an approximate solution wup (@) € V4 such
that

a(up(p),vn; ) = f(on; ), Vo € Vi, (1.8)

where up,(p) referred to as truth solution and Vj, is FE space (e.g. Lagrange basis in this
case).

Here Vj, C V is a sequence of conforming FE approximation spaces. Therefore it
follows from assumptions on a and f that (1.8) admits a unique solution [112]. Also
the conditions (1.4) and (1.5) for members of V}, are fulfilled by restriction. The FE
coercivity constant can be defined as

on(p) = inf a(wp, wp; @)

. VpeP 1.9
P T (19)

where, by restriction
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a(p) < op(p), VpeP.

Similarly we define the FE continuity constant as

+ 00> y,(pn) = sup sup M Vup e P, (1.10)
wieVi vneVi, 1wnllv [lvnllv

and it follows that

Y() > yn(p). VpeP.

As the main goal of the thesis is to investigate the RB method (and not the FE one),
in the subsequent discussion we assume that for any given parameter value g € P, the
quantity ||u(p)—un(p)||v can be made arbitrarily small. This state that a computational
model is available to solve the truth problem and hence approximate the exact solution
at any required accuracy. Unfortunately, this accuracy requirement also implies that the
computational cost (e.g. in terms of CPU time) of evaluating the truth model may be
very high and depend directly on N'=dim(V},).

Following the definition for the continuous problem, we also define the discrete version
of the solution manifold [63, 115]

My ={up(p) | p € P} C V.

The main idea of the RB method is to take advantage of the smoothness of Mj, to provide
a computationally efficient RB method. A central assumption in the development of any
reduced model is that the solution manifold is of low dimension, i.e., that the span of low
number of approximately chosen basis functions represents the solution manifold with a
small error [63].

Intuitively, we can represent the approximation of the truth manifold by mean of
the Lagrangian RB method as sketched in Figure 1.1, when we are dealing with one
dimensional parameter p. The black line is the truth manifold in the N -dimensional
space Vp. The black dots represent the snapshot solutions, which act like Lagrangian
interpolation nodes. Finally, the red dashed “interpolant” is our RB approximation,
that is built by linear combination of snapshot solutions.
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Figure 1.1: Solution Manifold

Let us introduce an integer Np,.. < N, a sequence of at most N,,q; subspaces of
V.. Let us suppose that {Vi }A"% be a N-dimensional hierarchical subspace [129] of V,
such that:

VicVocCc..CVyC...CVn

mazx *

(1.11)

In general it is not necessary to choose these subspaces hierarchical. Nevertheless, it is
very useful because it allows a better exploitation of the memory during the computation
and consequently, the efficiency of the method is improved. In this thesis we will focus
on Lagrange RB spaces. In order to define these spaces, we introduce a set of Nyaz
parameter values:

== {ut, ... pNme}, (1.12)

We shall call these basis functions as RB approximation space and it will allow us
to represent the truth solution, up(p) based on an N-dimensional subspace Vi of V.
Let us assume that an N-dimensional RB, denoted as {§n}g:1 is available, then the
associated RB space is given by:

VN = span{§, = up(u™)|1 <n < N} C Vp, (1.13)

for N =1, ..., Njgz- The assumption of the low dimensionality of the solution manifold
implies that N < N. The main idea of this particular definition is to approximate the
truth manifold (1.8) with corresponding parameter values belonging to Z.

Let us introduce the Galerkin projection on N dimensional RB space V. The RB
approximation is sought as: for any given p € P, find uy () € Vy s.t.

a(UN(H)aUN%N) = f(UN;H), Vun € Vn, (114)

where un () represents the RB solution. We emphasize that in order to find the RB
solution we only need to solve N x N linear system, instead of solving N' x N system of
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FE method. In order to proceed with the offline-online decoupling, first we apply the
Gram-Schmidt orthogonalization process [63] to the snapshots u(pu™),n = 1, ..., Nmaz,
spanning the RB space V. The obtained mutually orthonormal basis functions are
denoted by &1, &9, ..., &N, therefore un(p) is represented by

ZUNn §n, (115)

where {unn(p)}Y_; denote the coefficients of the RB approximation. Rewriting (1.14)
we arrive at following N x N linear system [115]

Za En i ) UNR (1) = F(&ms ). (1.16)
n=1

1.2.2 Offline-online computational decoupling

A key assumption necessary for an efficient RB is the capability to decouple the offline
of the RB space from the online stage, called the offline-online decomposition. We now
define the affine decomposition of the system (1.16) to construct an efficient offline-
online procedure, thanks to the assumptions (1.6) and (1.7). The system (1.16) can be
rewritten as

N [ Qa
> | 22 Oa(m)a(§ns&m) | wn(m Z@q )f7 (€m) (1.17)
n=1 \g=1 q=1

for m =1,..., N. Above system can be expressed in matrix form as:

Qr
Z@q )AL | un(p) =Y OF(w)FY, (1.18)
q=1
where
(un () = unn(B), (AR )mn = a®En&n)s (Fim = 7 (Em). (1.19)

for m,n =1, ..., N. The matrices A% and FK,’ do not depend on parameter 1 and hence
can be computed once and stored during the offline stage. Recall that &, belongs to V},
for n = 1,.., N, therefore in order to compute the matrices A% and F X,/ we proceed as:

N
Em = Zémasi, 1<m<N, (1.20)

where A is the truth space dimension with basis {¢; }Y,. Let Z denote the A" x N matrix
whose columns are the coordinates of &1, ..., &x with respect to {¢z}z:1a we have

AL =2TALZ, 1<q< Q.

, , (1.21)
F]%:ZTF/(\]/H 1§q/§QF,
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where
(A%)ij = a¥(¢j, 1), (FL)i = Fln). (1.22)

The computation and storage of all the quantities which are g—independent is done
once in the offline stage. In this stage we compute and store:

e FE stiffness matrices AJZ\/, for ¢ = 1,..., Njyao, and FE right-hand side terms F/‘f;
for ¢ =1,..., Npaz;

Nmax .

e snapshots solutions and the corresponding orthonormal basis {&,},,™9";

e RB matrices A%, for ¢ = 1,..., N and RB right hand side terms F;{,/, for ¢ =
1,...,N.

One of the main feature of RB method is to obtain a fast approximation of wup(u) by
giving a new parameter value u € P. We need to evaluate the coefficients ©f(u) and
O©%(p) in order to assemble the N x N system in (1.18). Once this system has been
solved, the RB solution is obtained through the relation (1.16). The operations done to
perform the evaluation uy(p) is called the online stage.

Let us analyze the computational cost of the online stage. We start with the system
(1.18), to assemble the matrix and the right hand side we need the cost of O(Q,N?) +
O(QFN), whereas we need O(N?3) to solve this system using a direct method. Finally
we need O(N x N) operations for the product in (1.15) to get the RB solution.

1.2.3 Greedy basis generation

In this section, we discuss the greedy algorithm for the construction of the RB space
(1.13). This algorithm was introduced in early 1970s [45] for optimization problems. The
greedy algorithm has been successfully employed by various researchers [95, 96, 113] to
construct the RB space. Algebraic and exponential convergence of the greedy algorithm
is studied by Binev et al. [19] and Buffa et al. [31], respectively.

We consider a training set Z4.qip, as a finite subset of P, with cardinality |Zqin| = M.
The cardinality M is assumed to be large enough so that =4, is a good approximation
of the parameter space P. The greedy procedure requires a sharp and computationally
inexpensive a posteriori error estimator up — An(p), i.e,

llun(p) —un(p)ll,, < An(p) Ve eP, 1< N < Npg (1.23)

We will discuss this error estimator in more detail during the section 1.2.5. Here we will
briefly explain the greedy algorithm which is summarized in Algorithm 1.

For the initialization of greedy algorithm, we need some initial steps to setup the
initial reduced basis space (line 1-5), then each step of greedy algorithm is based on two
sub-steps: first, find the value p”Y € Z4pqin for which the estimator A ~N(p) is maximized
(line 8), then compute the truth solution wup (/) (line 10) and add it to the Lagrange
basis (line 11). Continuing in this way, at the (N + 1) — th (line 7) iteration, we are
adding to the already chosen N-basis the solution that is worst approximated by the
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Galerkin projection onto Viy. The algorithm stops when the maximum estimated error
is less then a prescribed tolerance tol (line 6). We also introduce a secondary stopping
criteria by setting Np.. as the maximum number of basis we are interested in. If the
tolerance has been obtained with a number of basis N which is less than Ny, (line 6),
we set Npqe = N. Implementation of greedy algorithm is as it follows:
Data: tol, u', Nppao
Result: RB space Vi
N=1;
S1=A{u'};
compute up(p');
Vi = span{un(p')};
compute Aj(p');
while Ay () >tol and N < Nyqp do
7. N =N+ 1; compute Ax(p) V € Eprging
8. pu = arg maxpez,,,., Av_1(p);
9. Sy =Sy_1 U {[J,N};
10. compute up (u™);
11. Vv = Viv—1 & {un (™)}
end

AN ol ol

Algorithm 1: Greedy Algorithm

1.2.4 Proper orthogonal decomposition (POD)

In this section, we introduce the Proper Orthogonal Decomposition (POD) technique
for the construction of reduced spaces of problem (1.13). The POD is an explore-and-
compress strategy in which one samples the parameter space, compute the corresponding
truth solutions at all sample points and, following compression, retains only the essential
information.

POD was successfully applied in a variety of fields including fluid dynamics and
coherent structures [17, 33, 65, 84, 133, 145], control theory [4, 12, 83, 118].

With the POD algorithm, we obtain the N —dimensional POD space that minimizes
the quantity

uN€EVN

1 .
\/M S il ) — un(w) (124)
NEEtrain

over all N—dimensional subspaces Vi of the span Vaj=span{up ()|t € Eirain} of the
elements of manifold Mp={up(p)|p € Etrain}-

For the construction of POD reduced space, we introduce an ordering of parame-
ter values p', ..., uM in Zy4in, hence including an ordering wy(p'), ..., un(u™) of the
elements of M,,.

To construct the POD-space, we define the correlation matrix,

Cij = 57 (wn(W)un(w))y . 1<i,j <M, (1.25)
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and we consider eigenvalue-eigenfunction pairs (\,,v,) € R x RM corresponding to the
correlation matrix (1.25) satisfying

Cv,, = \,v,, 1<n<M. (1.26)

We assume that the positive real eigenvalues are sorted in descending order A\; > Ay >

. > Ay > 0. The orthogonal POD basis functions are given by the eigenfunctions
&1, ...,& and they span V. If we truncate the basis and only consider the first N
functions &1, ...,En, N < M, we define the POD modes that gives us the reduced POD
space Vy=span{{i, ..., {x} which satisfies the optimality condition (1.24). The orthogo-
nal POD basis functions (POD modes) are defined as

M
&n = \/1M n;(vn)muh(um), 1<n<N, (1.27)

where (v;,), denotes the m-th coefficient of the eigenvector v,, € RM. We fix a tolerance
and then the value of IV is chosen according to the the relation

et Am

where the tolerance epop indicates that the energy carried by the last M — N eigen-
modes is less or equal than epop.

1.2.5 A posterior: error estimates

A posteriori error estimation is one of the most important feature of the RB method.
Indeed, in section (1.2.3) we have seen that the error estimators Ay, N =1, ..., Npaz,
play a crucial role in the construction of the RB space. A good a posteriori error
estimator have to fulfill the following characteristics:

e It has to be a rigorous, in the sense that the inequality

lln () = un ()l < An(pe)

must hold for all parameter values g € P. It is the fundamental requirement to
ensure reliability for the RB method.

e It has to be sharp. An overly conservative error bound can yield inefficient ap-
proximations (N too large).

e It has to be computationally efficient. The online operation count and storage to
compute the RB error bounds - the marginal average cost - must be independent
of N (and commensurate with the cost associated with the RB output prediction)
[122]
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Some preliminaries

Before defining the error bounds, we first review some notations. Let us consider a
posteriori error bounds [129] for the field variable uy(p) in (1.14). We introduce two
basic ingredients of our error bounds: the error residual relationship and the coercivity
lower bounds. We observe that the error! e(p) := up () — un(p) € Vj, satisfies for all
vp €V,

ale(), oni 1) = alun(p) — un () ) = Fons ) — alun()oni ), (1.20)
therefore we can define the RB residual r(vp; ) € (V)" (dual space to V3)
r(vp; ) = F(op; ) — alun (), vp; ) Yo € Vi, (1.30)

We know that r(vp; p) is a continuous linear functional over the space V}, therefore we
can apply the Riesz representation theorem to get #(u) € Vj, such that:

r(vn; p) = (F(p),vn)v, Yop € Vi, (1.31)

and

1)y = (s )iy = sup ~CiE) (1.32)

oneVi  |lvnll

Now, let us define the error between the FE solution and the RB solution. As we know
that

lle(lI2 = a(e(u),e()s 1) > onlle(@) i He(u)ﬂvs'”e%”‘“, (1.33)

and

e 12, = ale(m), e(w); 1) = r(e(w) < 17 v le(es)lv < W|||e<u>|||u, (1.34)

from which we arrive at the first estimator

()l s
ah(ﬂ)' (35
LB

Now we introduce a positive parametric lower bound function ay” () for the coercivity
constant «p, such that:

el <

0<ofB(p) < on(p) YpeP, (1.36)

where the online computational time to evaluate g — k() is independent of V. An

efficient algorithm for the computation of aﬁB (p) is given by the well-known Successive
Constraint Method (SCM), widely analyzed in [73, 76, 129]. Moreover, the SCM algo-
rithm which is based on the successive solution of suitable linear optimization problems
has been developed for the special requirements of the RB method; it thus features an
efficient offline-online strategy, making the online calculation complexity independent

of V.
'e(p) depends on both AN and N
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Error bounds

Now we are ready to define our a posteriori error estimator. The estimator for the energy
norm of the error is:

An(p) == il (1.37)
apB(p)

In order to quantify the sharpness of this error estimator, we introduce the associated
effectivity as:
An(p)

7mmw=mﬂmm. (1.38)

We can now prove the following result [63, 129].

Proposition 1.2.1. For any N =1, ..., Npmaz and for any p € P, the effectivity satisfies

1< n(p) < agg&)_

(1.39)

Proof: The inequality given by (1.35) which corresponds to ny(p) > 1 states that
our estimator is rigorous. We recall (1.30) and the continuity assumption to show that

~

7 ()17, = a(@ (), #(w); ) < AP = v(p)ale(p), 7(p); @)
<

) (1.40)
Yl M7 )l

now we use this result together with the definition of error estimator (1.37) and Cauchy-
Schwarz inequality to get

A2 ale(p), F(p); el 7l MeCe)llZ ()
R = g = S e S5 ap 0 04
from which we get finally
_ An(p) 7 (1)
W) = e, =\ aFP e 142

1.2.6 POD-greedy sampling

In this section, we discuss the POD-greedy sampling that will be used in Chapter 2 and
Chapter 3 for the construction of RB spaces in time dependent problems.

The POD-greedy strategy was proposed in [56] and has been used [103, 104] to
construct the RB spaces for the time-dependent problems. This sampling technique is the
combination of proper orthogonal decomposition (POD) in time with greedy approach
in parameter space [46, 56]. Convergence results for the greedy algorithm [19, 31] are
extended to the POD-greedy algorithm by Haasdonk [55].
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We first summarize the basic POD optimality property, applied to a time trajectory:
given K elements uf(u) € V,1 < k < K, the procedure POD ({u}, (), ..., ufs (u)}, M),
with M < K, returns M V-orthonormal functions {&,,,1 < m < M} for which the POD
space Vy=span{&,,1 < m < M} is optimal in the sense that following holds:

. 1= oy ok )
Visag ol (K > it e vuv> . (143)
where Vj; denotes a M-dimensional linear subspace of V.

In order to initiate the POD-greedy sampling algorithm, we specify the train sample
set Zirain, a tolerance tol, and initial sample point pu!. The algorithm depends on two
suitable integers N7 and Ns, chosen in such a way that N7y > Ny and N; satisfy an
internal POD error criterion based on the usual sum of eigenvalues and the tol. This
method is based on successive greedy cycles, so that at each iteration the new information
will always be retained and redundant information rejected.

In POD-greedy algorithm, the greedy algorithm provides the outer algorithm where,
for each new selected parameter p", the first Ny principal components of the time trajec-
tory uj(pu"), ..., ul (u™) are recovered (line 1). Then this time trajectory is compressed
using a POD and to retain the relevant modes (line 2). In a subsequent step, the exist-
ing N-dimensional RB space is enriched with those components to build a new N + Ny
dimensional basis (line 3 and 4). The a posteriori error estimator is used to define
a new sample point that minimizes the estimated error over the training set =;.qin.
We assume that n(t*; i) provides a sharp and inexpensive a posteriori error bound for
|k () —uk; (p)]]y. We exit the POD-greedy sampling procedure at N = Nyq, for which
a prescribed tolerance (line 6 and 7)

maX/"'eEtrainn(tk; IJ’) < t0l7

is satisfied. The reduced spaces V,1 < N < Ny generated by POD-greedy are
always hierarchical and consequently computationally advantageous. The POD-greedy
algorithm is summarized as follows:

Data: tol, u', Ny and Ny, Z =0.

Result: A RB space Vy.

1. Compute {u ("), ..., uf (1™)};

2. Compress this time trajectory using a POD and retain the relevant modes:
{€1, . &n, } = POD({uj, ("), .., upy (")}, N1);

2 {2 AG, - b

Set N <— N + Ny and compute &1, ..., &y = POD(Z, N);

VN = span{&,....En };

pH =arg max pes,, .0t p);

If n(tF; u) > tol, then set n := n + 1 and go to 1., otherwise terminate.

NS oUW

Algorithm 2: POD-greedy algorithm
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1.3 Geometrical parametrization

An important feature of the RB method is that, we can use it to solve the problems
involving ”geometrical” parameters. For instance, RB method is applied to heat and
mass transfer problems [43, 50, 128, 131], potential flows [126], micro-fluid dynamics
[127], material sciences and linear elasticity [74, 75, 101, 105]. In most of these problems,
the geometric parameters are considered in addition to other physical parameters [86,
99, 100, 130].

We define the original problem with notation o in the subscript, posed over the
parameter-dependent physical domain Q, = Q,(p) C R% We denote by V, (), a suitable
Hilbert space defined on parameter-dependent domain Q,(p) and define the problem:
find u,(p) € V,(p) such that

ao(uo(pt), v; ) = folvip), Vv € Vo(p), (1.44)

where a,(.,.; ) and f,(.,.; ) are respectively the bilinear and linear forms on V,(u).
Let us choose a particular parameter value i € P and a reference (p-independent)
domain 2 which is the requirement of RB framework to compare and combine discrete
solutions. We set the 2 = Q,(fz) as reference domain. We define a suitable parametric
mapping 7T'(.; u) to relate the reference domain 2 with the original domain ,(u) such
that Q,(p) = T(; ) and T'(.; 1) becomes the identity.

We now focus on a particular class of admissible geometries [63, 115, 129]. To build
a parametric mapping related to geometrical properties, we introduce a domain decom-
position of Q,(f) such that

L
o=, (1.45)
=1

where Q! = Q! (@), for [ = 1,..., L are mutually nonoverlapping open subdomains of €.
The geometric input parameters, e.g. thicknesses,lengths, angles or diameters, orienta-
tions, allows for the definition of parametric mappings to be done in intuitive way.

We now suppose that the original and the reference subdomains are linked via a
mapping T'(., p) : Q' — QL (u), 1 <1< L, as

Oh(p) =T p),  1<I<L.

Moreover we assume that for each p € PP, these maps are collectively continuous and
bijective, such that T'(z;p) = TV (z;p),Ve € QAN QY for 1 <1 < I' < L. We also
assume that the maps T'(.,u) are affine [129]. Therefore, each local map T' can be
expressed as

Th(z; p) = G'(p)x + ¢ (p),

where ¢ : P — R?, G' : P — R%9 are translation vectors and linear transformation
matrices, respectively. The linear transformation matrices can enable rotation, scaling
and must be invertible. The associated Jacobians of transformations are defined as
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JHp) = |det (G'(w)) [, 1 <1< L.

Under these assumptions for many cases the problem (1.44) can easily be formulated in
the form (1.1).

Let us now introduce the geometric parametrization in the operators [63]. Consider
the bilinear forms

Ao (Uo, Vo; Z / w) K (1) D(v), (1.46)

ov ov T

where D(v) : Q — R is defined by D(v) = [ Vo| ,and KL : P —

0x o T 0% 0q
R(@+Dx(d+1) 1 < | < L, are prescribed coefficients. Here, K! is a given symmetric
positive definite matrix, ensuring the coercivity of bilinear form.

In a similar way, we require that f,(.) expressed as

L
o(Vo; 1) = Fl(p)v,, 1.47
ol =3 /Q e (1.47)

where F! : P — R is prescribed coefficient. By identifying u(p) = uo(pe) o T(.,; 1) and
tracing (1.46) back to the reference domain €2 by the mapping 7'(.,; i), we can define a
transformed bilinear form a(.,.; p) as

alu, v; ) Z/Ql (u)T K' () D(v), (1.48)

where K : P — RUA+D*x(d+1) 1 < | < [ is a parametrized tensor defined as

K'(p) = J' (1) G (1) Ko (1)) (G ()"

and Gt : P — RE@+DX(d+D) g given by

Similarly the transformed linear form can be expressed as

L
flusp) = Fl(p)v, (1.49)
m ;/ﬂl p

where F!: P — R is defined as F! = J'(u)Fl(p), for 1 <1 < L. Now in this setting, the
problem on original domain €2, has been recast on the reference domain 2, which give
us a parametrized problem where the parametrized transformation tensors expresses the
effect of geometry variation. With all above definitions, we can now define the following
problem which is equivalent to (1.44). Find u(p) € V = V(1) such that

a(u(p),vip) = f(v;p), VveW (1.50)
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There are many ways through which the given assumptions can be relaxed and we can
treat an even broader class problems. For instance, we may consider curved triangular
subdomains [129].

We mention here that for notation purposes, in this chapter we have only introduced
the RB for elliptic case. For the Stokes and Navier-Stokes problem, RB will be introduced
in Chapter 2 and Chapter 3, respectively.

1.4 Motivation and objective of the thesis

In this section we present briefly the motivation and the final goal of the thesis. From
theory of FE [117], we know that the Galerkin FE for the Stokes and the Navier-Stokes
problems is subject to the fulfillment of the discrete inf-sup condition. For a successful
method, the discrete spaces for the velocity and pressure should be chosen properly.
The discrete inf-sup constant (will be introduced in Chapter 2) is independent of mesh
properties, such as the size and shape of the elements.

Similarly the RB method for the Stokes [89] and Navier-Stokes [88] problems also
requires the fulfillment of discrete inf-sup condition for reduced velocity and pressure
spaces, respectively. For this reason Rovas [121] in his PhD thesis introduced a suprem-
izer enrichment approach to fulfill the inf-sup condition for RB spaces. Rozza et al.
[123, 132] also studied the supremizer enrichment approach. This approach consist in
the introduction of the inner pressure supremizer for the velocity-pressure stability of the
RB spaces. Several works on RB method for Stokes problem [102, 127] were developed us-
ing the pressure stabilization via the inner pressure supremizer operator. This approach
was then extended to the incompressible Navier-Stokes problems [8, 41, 43, 98, 144],
taking into consideration the Brezzi-Rappaz-Raviart (BRR) a posteriori error theory
[28]. Further detail about the supremizer stabilization approach will be discuss in the
Chapter 2.

However, in the supremizer enrichment approach, the RB velocity approximation
space is enriched with the solutions of supremizer problem which is expensive in the sense
that it increases the computational time in the online phase and, hence, the speedup.
Therefore, the main motivation of this PhD thesis is to look for an alternative approach
which is computationally less expensive in order to guarantee the stable RB solution.

The stabilization approach developed in this thesis is an alternative approach in
which the residual based classical stabilization techniques [30, 68] already known for
FE methods are implemented in a reduced order setting [2]. We compare and combine
this approach with the existing supremizer approach. The idea of this particular stabi-
lization approach follows the work of Pacciarini and Rozza [107] and Torlo et al. [143]
for advection-dominated problem, where they introduced the concept of offline-online
stabilization and the offline-only stabilization

The offline-online stabilization method is based on performing the Galerkin projec-
tions in both offline and online stage with respect to the consistent stabilized formu-
lations. On the other hand, offline-only stabilization consists in using the stabilized
formulations only during the offline stage and then projecting with respect to the stan-
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dard formulation during the online stage.

In this thesis we aim to build a stable RB method [2] suitable for the approximation
of parametrized viscous flows. We also guarantee the online computational savings by
reducing the dimension of the online RB system, i.e, we show that with this approach it
is possible to get the stable RB solution without the supremizer enrichment into velocity
space. We extend the idea of offline-online stabilization [107] to the parametric Stokes
and Navier-Stokes problems by introducing a generalize inf-sup condition (see Chapter
2) and we compare our approach with supremizer approach [132].

We point out that in thesis we are not dealing with the instabilities of RB solutions
caused by the dominating transport field. For these kind of instabilities we refer to some
recent works by the authors in [5, 7, 52, 147].

Further detailed implementation of this stabilization approach to steady [2] and
unsteady [3] problems, and its comparison with the supremizer enrichment [132] will be
discussed with numerical experiments in Chapter 2 and 3, respectively, for parametric
Stokes and Navier-Stokes problems.






Chapter 2

Reduced Basis Stabilization of
Parametrized Stokes Problem

We know that when dealing with Stokes [89] or Navier-Stokes [88] problems, the Galerkin
projection on reduced basis (RB) space does not guarantee the fulfillment of discrete
inf-sup condition for reduced velocity and pressure spaces. Therefore, our goal in this
chapter is to develop and discuss the reduced basis methods which ensure a stable RB
solution. In particular, we apply the residual based stabilization methods using equal
order (Py/Py) velocity/pressure interpolation, first in the high order level and then
project onto reduced spaces. By stabilizing the offline stage we are able to get the
stable bases functions to construct the reduced basis space, but this does not guarantee
a stable RB solution. Therefore we also properly stabilize the online stage. The process
of stabilizing both the offline and online stages is named as offline-online stabilization
[107], while when we stabilize only the offline stage, it is called offline-only stabilization.
We compare the offline-online stabilization approach with the supremizer enrichment
approach [132] through several numerical experiments. We want to show if the RB
stabilization that we propose in this thesis is enough to guarantee the stable RB solution
or we need also a supremizer enrichment for RB velocity spaces.

This chapter is divided into two parts. In the first part (section 2.1), we solve
numerically the steady Stokes problem [2] in a parametrized domain. First we start
defining the finite element (FE) formulation followed by the stabilized FE formulation,
and then, by selecting the snapshots using greedy algorithm [63], we obtain the RB spaces
for velocity and pressure. For these low-dimensional spaces we define the RB model and
then, the stabilized RB model. Finally in section 2.2 we show some numerical solutions
and error analysis to compare different stabilization options.

In the second part of the chapter (section 2.3) we present the stabilized reduced basis
method for unsteady parametrized Stokes problem [3]. We repeat the same procedure
as we did for the steady case. In this case we use POD-Greedy algorithm [63] to select
the snapshots for the construction of RB spaces for velocity and pressure. Again we
compare the offline-online stabilization approach with the the supremizer enrichment
approach through numerical results in section 2.4. We also present a test case for the

18
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lowest order (P;/Py) element and the sensitivity analysis on the time step A¢. Finally
we summarize the main findings of this chapter in section 2.5.

2.1 Parametrized steady Stokes problem

The steady Stokes problem in a two-dimensional parametrized domain Qq(p) C R? read
as: find (u,,p,) € V' x @ such that

—vAu,+Vp, = f in QO(N):
divu, =0 in Q,(p), (2.1)
Uy =g on 0f),,

where u, is the unknown velocity and p, is the unknown pressure, f is a given forcing
function and v is the viscosity of fluid, pu € P (parameter domain) denotes a parameter
which may be physical or geometrical. For the sake of simplicity we take f = 0. The
boundary 9€2, is divided into two parts in such a way that 92, = I'p, Ul'p,, where I'p,
is the Dirichlet boundary with non-homogeneous data and I'p, denotes the Dirichlet
boundary with zero data.

In order to write the weak formulation of problem (2.1), we introduce a reference do-
main, i.e. a pg-independent configuration {2 by assuming that each parametrized domain
Q, () can be obtained as the image of p-independent domain €2 through a parametrized
map T(.; ) : R2 = R? ie. Q,(u) = T (% p).

Now the weak formulation of (2.1) can be obtained by multiplying with the velocity,
pressure test functions and using integration by parts; then by tracing everything back
onto the reference domain €2, we have the following parametrized weak formulation of
problem (2.1):

FindueV,pe@:
a(u,v; ) +b(v,p;p) = F(o;p) YveV, (2.2)
b(u,q; ) = G(q; p) Vg eQ,

where V = {v € H'(Q)? : v =0o0onT'p, andv =gonTp,} and Q = LE(Q) = {q €
L*(Q) : [, q = 0}. Bilinear forms related to diffusion and pressure-divergence operators
are defined as:

ou ov ov;

a(u,v;p) = Q%w(w;u)@dw, b(v,q; ) = _/QQXij($§N)8xZ

de.  (2.3)

The transformation tensors for bilinear viscous and pressure divergence terms in (2.3)
are defined as follows:

w(w; ) = v(p) (Jp (s )~ (I (e p) " | J0(X5 ),
x(@; ) = (Jr(a; )~ HJIr(X; ),

where |Jr| is the determinant of the Jacobian matrix Jr € R?*2 of the map T(.; u). F
and G are terms due to non-homogeneous Dirichlet boundary condition on the boundary

(2.4)
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are defined as:

F(v;p) = —a(l(p), v p),

Gl 1) = —b(A(1) . q: o). (25)

where we denote by I(p) a parametrized lifting function such that I(p)|r,, = gp.

2.1.1 Finite Element formulation

For a given parameter g € P, the Galerkin-FE approximation of the parametrized Stokes
problem (2.2) reads as follows:

Find up(p) € Vi, pr(p) € Qn -
a(up(p), vp; ) + b(vp, pr(p); p) = F(op;p) Vop € Vi, (2.6)
b(un(p), qn; 1) = G(qn; 1) Van € Qn,

where V', and @), are finite dimensional subspaces of V' and @ of dimension N,, and N,
respectively with A related to the computational mesh size, (@) in (2.1) is discretized
by the FE interpolant.

Let q.’)lh and 1/;? be the basis functions of V', and @, respectively. We introduce the
matrices A(p) € RV«*Nu and B(p) € RN»*Nu whose entries are

(A(p);; = al@}, @), (B(p)gs = b(p) i ), for 1<, j <Ny 1 <k <N,

(2.7)
and the algebraic form of discrete problem (2.6) problem reads
Alpw) B"(w) | [U@W) ] _ [ f(w)

{ B(p) 0 } [ P(p) ] - [ g(u) } (28)

for the vectors U = (ugl), ...,u,(lN“))T,P = (pgll), ...,p,(lN”))T, where for 1 < ¢ < N, and
1<k < Np: ~
(F(1)i = —alln, @5 p),  (G(1))k = —b(ln, Pii; ), (2.9)

with Iy, = U5 (p).
For a stable solution the finite element spaces V'j, and @)y have to fulfill the following
parametrized version of the stability condition (LBB) [117].

b .
360 > 0: Bp(p) = inf sup M > By Vuel. (2.10)
1 €Qn v,ev,, [vallv,llanllQ,

This relation holds if, e.g., the Taylor-Hood (IPy/P;) FE spaces are chosen. Condition
(2.10) do not holds in case of equal order FE spaces (Pr/Py), k > 1 and for lowest order
element (P1/Pp).
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2.1.2 Stabilized Finite Element formulation

When the finite dimensional spaces V', and @}, do not satisfy the inf-sup stability condi-
tion (2.10), then in order to avoid possible spurious pressure modes we use a stabilization
procedure to stabilize the discrete solution. Therefore (2.6) is modified as

Find up(p) € Vi, pr(p) € Qn -
a(up(p), vp; p) + b(vp, pp(p); ) = F(opp) + sp(vpsp) Yo, € Vi, (2.11)
b(un (), gn; ) = Glan; ) + 57 (qn; 1) Van € Qn,

where sj (vp; p) and s} (qp; p) are the stabilization terms [117]. Dependence of these
stabilization terms on parameter p is motivated by the fact that we are dealing with the
parametrized system (2.8). These stabilization terms are defined as follows

sp(vp; p) == 52 h3. /K(—VAuh + Vpn — f, —prAwvy), (2.12)
K

and
shgnip) =0y i /K(—VAuh + Vpr — £, Van), (2.13)
K

where K is an element of triangulation 7, of the domain €2, hx is the diameter of element
K, ¢ is the stabilization coefficient such that 0 < § < C' (C is suitable constant). For
p=0,1,—1, the method (2.12) is respectively known as the pressure-poisson stabilized
Galerkin (Franca-Hughes) [68], Galerkin-least-square (GALS) [67], Douglas-Wang (DW)
[44]. For simplicity we take f = 0. In case of linear interpolation for velocity and
pressure (P;/P;) the Laplacian term —vrAwy, inside the stabilization vanishes and all
above choices reduce to Brezzi-Pitkaranta stabilization [27] and is written as

si(qn; ) = 5Zh§</KVph -Vap. (2.14)
K

For a detail study about the possible stabilization options, we refer to [117, chapter 9]
and the references therein.

In this thesis, we prefer to chose the stabilization option corresponding to p = 0
(Franca-Hughes) [68]. Which means that (2.12) vanishes and we are left with the sta-
bilization term (2.13) only. Further investigations regarding the coercivity of bilinear
forms in [68] and the error estimates are given by Brezzi and Douglas [26]. Another
modification of [68] was done by Hughes and Franca [67].

The motivation to choose a residual method is, it improve the stability of Galerkin
FE method without compromising the consistency. This choice also allows us to fulfill
the LBB condition (2.10) with a supplementary terms.

In practice, the stabilization coefficient § has to be chosen properly. It cannot be too
small otherwise the stabilization will be poor and spurious modes will not be eliminated.
On the other hand, a large value of parameter § could results a poor approximation for
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the pressure field near to the boundary. For possible choices of stabilization coefficient
for different stabilization methods we refer to [80] and references therein.
When we use the stabilization method we have to fulfill a generalized inf-sup condi-
tion
b(vn, gn; 1)
sup —————

+ 57 (qn; ) > Bollanll > 0,Van € Qn, 2.15
onev, Vo nl ) lan] (2.15)

where the term s} (gx; p) is the additional stabilization term (2.14). This condition is the
crucial part of thesis and will be discussed in detail at reduced order level in subsection
2.14.

After adding the stabilization effects into the system (2.8), the stabilized algebraic

ormson TR ) B [ UG ][ Fw
[éw —S(u)HPm)}:{gm)]’

where S;; = 5%(1/}?, ) and B(u) contains the effects of stabilization terms.

(2.16)

2.1.3 Reduced Basis formulation

In this section we present the reduced basis formulation of steady Stokes problem. We
take the parameter sample sy = {ul, v MN}, where p™ € P and we solve the Stokes
problem N times using standard Galerkin-Finite element method to obtain snapshots
for velocity and pressure ((wp(p'), pr(pet)), ..., (wp (™), pn(u?))). These snapshots are
selected in a proper way using the greedy algorithm [127].
We define the reduced basis velocity space Vx5 C V', and pressure space Qn C Qp,
respectively as:
Vn =span{{, = up(p”),1 <n < N,}, (2.17)

and

Qn =span{& = pp(n"),1 <n < N,}, (2.18)
where N, and NN, are the dimensions of RB velocity space V xy and RB pressure space
Qn, respectively. {fﬁ}fy;l and {fﬁ}gil are mutually orthonormal basis functions for
RB velocity and pressure, respectively obtained by applying the Gram-Schmidt orthog-
onalization process [63]. In order to guarantee the inf-sup of the RB approximation, we
enrich the RB velocity space with supremizer solutions [132]. Thus, we introduce the
supremizer operator T* : ), — V', defined as follows:

(THq,vp)v = b(vn, gn; ), Yo € Vi, (2.19)

Solution of the reduced system is subject to the fulfillment of an equivalent inf-sup
condition (2.10) for reduced velocity and pressure spaces V y and @Qp, respectively.
Induced inf-sup condition for reduced order problem is:

~ b .

> By VueP. (2.20)
INEQN yNEV N HUNHVN HqNHQN
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It is important to point out that, even though the velocity basis functions are obtained
through a stable full order model, a Galerkin projection over the reduced spaces does
not guarantee the fulfillment of the reduced inf-sup condition (2.20).

In order to fulfill the reduced order inf-sup condition we solve a supremizer problem
(2.19) to enrich the RB velocity space with additional velocities. Since our focus is not
the supremizer enrichment option, therefore we skip the details about supremizer and
refer the readers to [121, 123, 132] for different supremizer options.

When the RB velocity space is enriched with the supremizer solutions (2.19), we
denote in this case the RB velocity space by V n with dimension N, + N, and is defined
as:

Vi =span{€4,1 <n < Ny; THE, 1 < n < N,}, (2.21)

where N, denotes the dimension of supremizer space. In order to keep the notations
simple, we take N, = Ny = N, = N. Now the RB formulation corresponding to FE
formulation (2.6) can be written as:

Find (UN<[,I,),pN([1,)) S VN X QN :

a(un(p), vn; ) + b(vn,pr(p) = Flon;p) Yoy € Va, (2.22)
b(un(p), qn; 1) = G(gn; i) Van € Qn.

The solution (ux (@), py(p)) € Vi x Qn of (2.22) can be expressed as a linear combi-
nation of the basis functions:

2N N
un(p) =Y una(w)&h,  pn(p) = pin(p)él, (2.23)
n=1 n=1

where {un, ()}, and {pyy, (1) 2[21 denotes the coefficients of the reduced basis ap-

proximation for velocity and pressure. Finally, we write the system in compact form

An(p) Bi(w) | [ Un(w) ] _ [ Fn(w)
o 0 || oan 1= L | 224)
where the RB matrices are computed as
An(B) = 24 A) Zus, By(B) = Zy B(1) Zu,s, (2.25)

Fn(w) =2Z f(w), gn(p) =2 g(p),

2.1.4 Stabilized Reduced Basis formulation

In this section we present the stabilized Reduced Basis (RB) model derived from the
stabilized FE problem (2.11). The computation of the reduced spaces is done through
the Greedy algorithm (see algorithm 1.1). The stabilized RB problem reads

Find (un(p),pn(p) € VN x QN :
a(un(p),vn; p) +b(vn, py(p)) = F(on; p) + s (vn;u) Yoy € Vi,  (2.26)
blun(p), qn; ) = Glan; p) + siy(av; p) Van € Qn,
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where s% (vn; p) and s% (gn; p) are the reduced order counterparts of the stabilization
terms defined in (2.12) and (2.13), respectively.
We also define the reduced order version of generalized inf-sup condition (2.15) as:

b(vn,qn; @)
sup ———

+ 5% (anv; ) > Bollan]| > 0,Vgn € Qn, (2.27)
onevy  IVon||

where 5% (gn; p) is due to the addition of stabilization terms in RB consistent formula-
tion.
For simplicity and discussion purpose, we denote

b(vn, gn;
6inf—sup = sup w and  Bspap = S?V(QN; “)7 (228)
wnevy  IVon]
so that (2.27) becomes
5inffsup + Bstab > BOHQNH > 07VQN € QN; (229)

The results presented in this thesis are based on following possible options on (2.27):

e the first option is to increase the “Binf_qup” by enriching the RB velocity space
with supremizer solutions and also add “Bsqp” in both offline and online stage,
which could be computationally expensive; we call this option as offfine-online
stabilization with supremizer

e as a second option, we do not enrich the RB velocity space with supremizer solu-
tions but instead we add only the “stab” in both offline and online stage; we call
this option offline-online stabilization without supremizer

e the third option is to increase “Bint —up” by enriching the RB velocity space with
supremizer solutions and not adding the “Sgq” in online stage; which we call
offline-only stabilization with supremizer

e a fourth option could be to completely avoid the supremizer enrichment in order
to increase “Bint—sup  as well as skip “Bgqp” in online stage but add “Bgqp” in
offline stage; we call this option as offline-only stabilization without supremizer.

We study all these options for equal order FE spaces (Py/Px),k > 1. In this thesis we
only consider the first three options and we have done several test cases to compare the
three options. Fourth option is the worst option because of its lack of stability and is not
reported in numerical results presented in this thesis. A further option (and comparison)
will be provided in Chapter 4 with rectification approach.

After adding the stabilization effects into the system (2.24), the RB stabilized alge-
braic system (2.26) in compact form reads

Av(w) Bi(w) 1[U~x(w) ] _ [ Fx()
By () —é\z[v(li) ] [ Py(p) ] = [ gx(u) ] ) (2.30)
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where By (p) includes the effects of stabilization in the mass equation on the divergence
term.

The main motivation behind this work is the combination of the supremizer approach
by Rozza et al. [132] for inf-sup stability of Stokes problem and the stabilization approach
by Pacciarini et al. [107], in which the offline-online stabilization method and offline-
only stabilization method for advection-diffusion problem has been developed.

For the offline-online stabilization we have to perform the whole RB standard method
solving the stabilized algebraic system (2.16) in the offline stage and (2.30) during the
online stage. The offline-only stabilized approach consists in solving the system (2.16)
during the offline stage, in order to obtain stable reduced basis, and to perform the
online Galerkin projection with respect to the non-stabilized RB system (2.24).

2.2 Numerical results and discussion

In this section, we present some numerical results for stabilized reduced order model
for steady Stokes problem developed in section 2.1 and subsections therein. Numerical
simulations are carried out in FreeFem++ [59], and also with RBniCS [10] for compari-
son. In subsection 2.2.1 we present some numerical results for unstable FE pairs Py /P,
and Py /Py using classical stabilization method (2.13). In subsection 2.2.2 we show some
results for lowest order unstable FE element Py /Py with stabilization. We also show
results for stable FE pair Py /P in subsection 2.2.3.

As a test case we consider the parametrized cavity flow problem. We set the
parametrized domain Q,(u) = (0,1 + pe) x (0,1), where we define g = (1, p2) such
that u; is physical parameter (kinematic viscosity of fluid) and ug is geometrical param-
eter (length of domain). Main goal is to see the effect of geometrical parameter on the
velocity and pressure. Problem is defined as follows: Find u € V, and p € Q, :

—mAu+Vp=0 in Q,(u2),

divu =0 in Q,(u2) (2.31)
u=0 on I'p, (u2) .
u = (1’ 0) on FD

where u and p are unknowns velocity and pressure, respectively. We consider a partition
of domain 092, = I'p, Ul'p, where we have the homogeneous Dirichlet condition on I'p,
and non-homogeneous Dirichlet condition on I'p. We define the spaces V, = Hg(Q,)?
and Q, = L?(Q,).

We omit here the details of writing weak formulations, stabilized formulations and
building reduced basis formulations for this particular problem. We refer to section
2.2 for parametrized formulation, subsection 2.1.1 for FE formulation, subsection 2.1.2
for stabilized FE formulation. Similarly, for the development of RB method, we refer
to subsection 2.1.3 for the RB formulation and 2.1.4 for stabilized RB formulation.
Parametrized domain is shown in Fig. 2.1.
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(0,1) ), 1
Ip, (12,1)
I'p, Q I'p,
r
(0.0) Do (p2,0)

Figure 2.1: Parametrized domain

2.2.1 Numerical results for P /P, for k = 1,2

In Fig. 2.2 we show a comparison between the FE velocity solution and the RB solu-
tions obtained for three different options; (i) offline-online stabilization with supremizer;
(ii) offline-online stabilization without supremizer; (iii) offline-only stabilization with
supremizer, for a chosen parameters value online (u1,u2) = (0.6,2). The range of pa-
rameters in the offline stage is p; € [0.25,0.75], ua € [1,3], and we use the Py /Py FE
pair to plot these solutions.

From Fig. 2.2, we see that the RB velocity and pressure solutions obtained by using
the offline-online stabilization with/without supremizer looks similar to the FE solution.
However, the RB solutions obtained by the offline-only stabilization is poor, in particular
pressure solution is highly oscillatory. Results are similar if we chose P; /Py FE pair for
velocity and pressure, therefore we do not report here.

In order to see the comparison between the offline-online stabilization with/without
supremizer and offline-only stabilization with supremizer we have done an error analysis.
Figures 2.3 and 2.4 shows the error comparison for velocity and pressure, respectively
using Brezzi-Pitkaranta stabilization. In these plots we have used P;/P; FE pair for
which we mentioned earlier that all other stabilization terms in (2.12) and (2.13) vanishes
and we are left with Brezzi-Pitkaranta stabilization (2.14). Parameter values are same
as in Fig. 2.2. These results show that offline-online stabilization is the best way to
stabilize and offline-only stabilization is inaccurate. We also see that the enrichment
of supremizer together with offline-online stabilization is improving the error in case of
pressure, however supremizer does not improve the velocity error.

Figures 2.5 and 2.6 are plotted to see the error comparison for velocity and pressure,
respectivley using Franca-Hughes stabilization (2.13) for Py /Py FE pair and by varying
the stabilization coefficient §. If we compare these results with previous results obtained
by Brezzi-Pitkaranta stabilization, we see that Franca-Hughes stabilization is able to
perform better in case of offline-online stabilization without supremizer. Therefore, we
conclude that when we use Franca-Hughes stabilization with Py/Py FE pair, there is
no need to enrich the RB velocity space with supremizer solutions. In this way we
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can reduce also the online computational cost by decreasing the dimension of reduced

velocity space.
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Figure 2.2: Comparison between the FE solution and RB solutions for velocity and
pressure obtained by three possible options, respectively.
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Figure 2.3: Brezzi-Pitkaranta stabilization on cavity flow: Velocity error comparison
between the offline-online stabilization with/without supremizer and offline-only sta-
bilization with supremizer using Py /Pq; stabilization coefficient § = 0.05; N,, = N, =
N, = 20.
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Figure 2.4: Brezzi-Pitkaranta stabilization on cavity flow: Pressure error comparison
between the offline-online stabilization with/without supremizer and offline-only sta-
bilization with supremizer using [P /Pq; stabilization coefficient § = 0.05; N,, = N, =
Ng = 20.
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Figure 2.5: Franca-Hughes stabilization on cavity flow: Velocity error comparison
between the offline-online stabilization with/without supremizer and offline-only stabi-
lization with supremizer using Py /P; stabilization coefficient 6 = 0.05,0.5; N,, = N, =

Ng = 20.
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Figure 2.6: Franca-Hughes stabilization on cavity flow: Pressure error comparison
between the offline-online stabilization with/without supremizer and offline-only stabi-
lization with supremizer using Py /P; stabilization coefficient 6 = 0.05,0.5; N,, = N, =
Ng = 20.

Keeping in mind the earlier comments on the choice of stabilization parameter § in
subsection 2.1.2, the reason here to vary this J is to see if the properties of this coefficient
in FE problem are preserved by RB problem or not. The answer is affirmative, as we
can see in Figs. 2.5 and 2.6 that a suitable variation in § does not give a significant
change in the error between FE and RB solutions.
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2.2.2 Numerical results for P, /P,

In this section we discuss the solution of steady parametrized Stokes problem using
the lowest order finite element pair Py /Py. The choice of stabilization term ¢y (gp) in
equation (2.11) for lowest order element is as follows [117]:

shani ) =8 3 b [ lonl, oo, (2.32)
oel’y, g
where I'}, is the set of all edges o of the triangulation except for those belonging to the
boundary OS2, h, is the length of o and [g4], denotes its jump across o.

In Fig. 2.7 we show some snapshots for velocity and pressure fields using stabilized
FE method and stabilized RB method. From these solution plots we conclude that we
are able to recover a good qualitative approximation of FE solution at reduced order
level using the offline-online stabilization, whereas the offline-only stabilization is not
enough to recover FE approximation.
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Figure 2.7: Comparison between the FE solution and RB solutions for velocity
and pressure obtained by three possible options: (i) offline-online stabilization with
supremizer; (ii) offline-online stabilization without supremizer; (iii) offline-only stabi-
lization with supremizer. Parameters range: offline u1 € [0.25,0.75], u2 € [1,3]; online
(g1, p2) = (0.6,2); Ny, = N, = 20.
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In Figs. 2.8 and 2.9 we plot the comparison between offline-online stabilization
with/without supremizer and offline-only stabilization with supremizer for velocity and
pressure, respectively for P; /Py. These comparison shows that the offline-online stabi-
lization is the best way to stabilize and the addition of supremizer to velocity space is not
necessary. Indeed, we are getting a good approximation of velocity without the suprem-
izer. However in case of pressure, supremizer is improving the offline-online stabilization
upto one order of magnitude.
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Figure 2.8: Stabilization with IP; /Py on cavity flow: Velocity error between FE solution
and RB solution for different possible options.
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Figure 2.9: Stabilization with IP; /Py on cavity flow: Pressure error between FE solution
and RB solution for different possible options.

2.2.3 Numerical results for stable Py/IP;

Here we plot a comparison between the FE solution and RB solution for velocity and
pressure in Figs. 2.10 and 2.11, respectively using stable FE pair Py/P; [132]. We
compare results with and without supremizer and conclude that supremizer is necessary
to enrich the RB velocity space. In this case we are not using any stabilization method,
therefore we need supremizer to fulfill reduced inf-sup condition.
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Figure 2.10: Cavity flow: Error between FE and RB solutions for velocity with /without
supremizer.
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Figure 2.11: Cavity flow: Error between FE and RB solutions for velocity with/without
supremizer.
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2.3 Unsteady parametrized Stokes problem

In this section we extend the stabilization method introduced in section 2.1 to the case
of time-dependent Stokes problem in a parametrized domain shown in Fig. 2.1. We
introduce a stabilization term to the bilinear form, first in FE formulation and then, we
project onto reduced order space in order to guarantee the reduced basis stability.

Let Q C R2, be a reference configuration, and we assume that current configuration
(1) can be obtained as the image of map T(.;u) : R?2 — R? ie. Q,(u) = T(Q; p).
The unsteady parametrized Stokes problem in current configuration reads as follows:
find u,(t; ) € V and p,(t; ) € Q such that

Hrlo ~ vAu, +Vp, = f in Qo(p) x (0,7),

divu, =0 in Q,(p) x (0,7), (2.33)
U, =g on 90 x (0,7,

Uplt=0 = Uo in Q,(w),

where (0,7") with 7' > 0 is the time interval of interest, f is the forcing function: f €
L2(0,T; HY(2)), up € L*() and v is the viscosity of fluid. We multiply (2.3) by velocity
and pressure test functions v and ¢, respectively then integrating by parts, and tracing
everything back onto the reference domain €2, we obtain the following parametrized
formulation:

for a given p € P, find u(t; u) € V and p(t; pu)) € @ such that

0
m(-w, v; p) + a(u,v; p) +b(v,p; ) = F(o;p) Vo e V,t>0,

ot
b(u,q; p) = G(g; p) VgeQ,t>0, (2.34)
ult=o = uo.

We define the sobolev spaces; V' = L?(R*; [H(2)]?) NCO(RT; [L?(22)]?) for velocity and
Q = L*(RT; L3(2)) for pressure on reference domain. These spaces are equipped with
H!'—seminorm and L?—norm respectively. Bilinear forms in (2.34) are

ou ov

a(u,v; p) = ; %Hij(iﬁ;u)%dm,
0v;
b(v,q; ) = /quz-j(:v;u)axj,dm, (2.35)

m(u,v;u):/w(a:,u)uividw.
Q

As in steady case, assume for simplicity that f = 0, so that the right hand sides in
(2.34) vanishes. The tensors k and x are defined bby (2.4). Th scalar 7 encoding both
physical and geometrical parametrization as follows

m(x; ) = [Jr(X; p)l, (2.36)

where Jr € R?*2 is the Jacobian matrix of the map T(.;u), and |Jp| denotes the
determinant.
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2.3.1 Semi-discrete Finite Element formulation
The mixed Galerkin finite element semi-discretization [53, 54] of (2.34) is defined as
follows:

for a given p € P, find up(t; u) € Vi, CV and pi(t; ) € Qn C @ such that

0
(at’u’havfu “) + a(ufhvhu IJ‘) + b(’vhapha IJ‘) = F(’Uh; IJ‘) \V/’Uh S tht > 07
VQh € tht > Oa

b(wh, qn; 1) = G(qn; p)

(2.37)

Up|t=0 = Ug -
We consider a partition of the interval [0,7] into K sub-intervals of equal length

At = T/K and t* = kAt,0 < k < K. Applying the implicit Euler time discretization we
obtain the following time discrete problem:
b (W), find wf(t;p) € Vi, and pj(tp) € Qn

for a given pu € P, and (u "), pf
such that
v m(ui, Vp; u) + a(UZ, vpy ) + b(vp, pis p) = Fop; p)
b(uh7Qh, u) = G(qn; p) Van € Qn,

u% = UQ,h-
Similar to what we did for steady Stokes problem in 2.1.1, we provide the algebraic
formulation of the semi-discrete problem (2.37). The resulting ODE system is as follows:

M(p) 0] [ Ult;p) Ap) BT(w) [ U | _ [ flw)

o e | st T R | = s | e
for the vectors U = (ug), ...,ugNu))T,P = (p(l), ,pgN )) , where for 1 <, < N, and
1<k<N,:

(M(p))ij = m(#y, ¢ p),  (A(n));; = ale], ¢l ),
F()i = F(¢]; ), (2.40)

(B(H’))k:i = b(d)?,qu; m), (
(@) = G(i; ),

A key assumption for an efficient ROM evaluation is the capability to decouple the
construction stage of the reduced order space (offline) from evaluation stage (online).

We require that the matrices and vectors appearing in (2.40) can be written as

Qu
=Y OumAY,  B(u)=) O)(uB
! (2.41)

Qa

S SCHMIE
q=1 q=1
Qy Qg

=Y elwf, gp=> 65uwg"
q=1 q=1
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After applying the time discretization with implicit Euler scheme, the resulting algebraic
formulation of (2.38) is

M(p)

4+ Ap) BT(w) | [Uw) | _ [ Fw)
AtB(u) 0 [ P(t"; ) } [ 9(n) ] 01
M) o ] T (e |
* Aot 0 [ P(t" 15 ) ]

Non-homogeneous Dirichlet boundary conditions are imposed by introducing a suitable
lifting function, in a similar way as in steady Stokes case in 2.1.1.

2.3.2 Stabilized Finite Element formulation

Similar to what we discussed for steady Stokes problem, the uniqueness of the system
(2.42) is subject to the fulfillment of parametrized inf — sup condition (2.10).

There are many combinations of finite element spaces (V4, Q) for which inf-sup con-
dition (2.10) holds. However, it is well known that when we choose piecewise polynomial
velocity and pressure of same degree defined w.r.t same grid, then this choice do not
obey the inf-sup condition (2.10). For this reason the theory of stabilized finite element
is developed. Let us modify equation (2.37) by adding the stabilization terms. We read
the modified formulation as follows:

for a given p € P, find wp(t; ) € Vi, and pp(t; n)) € Qp such that

0
m(auhﬂ)h;ﬂ) + a(un, vp; p) + b(Vn, pr; ) = F(opsp) Yop € Vi, t >0,

b(un, qn; p) = Gan; 1) + énlan; ) Van € Qnt >0, (2:43)

Up =0 = UQ -

where ¢p,(qn; i) is the stabilization term. We have already discussed the stabilization
options in subsection 2.1.2 in detail. For unsteady Stokes problem, the stabilization term
defined in (2.13) is modified as:

0
onlaniin) =63 W [ (5un — viw, + Ty~ £.5a) (24
K K

Therefore, the stabilized algebraic system for unsteady Stokes problem can be written
as:

[Mm g} {U(t;m%[fl(m BT(M)HU(t;u)]:[g(“)] (2.45)

P(t; p) B(p) —S(p)

where M (p1), B(p) and —S(p) contains the stabilization effects [68].
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After applying the time discretization with implicit Euler scheme, the system (2.45)
becomes

M
L+ Al B () [ Ut ) } _ [ Fn) ]
At (2.46)
M(p) U1
At g
T M) 0 [P(t’“;u) ]

At

2.3.3 Reduced Basis formulation

We present a RB method for solving parametrized unsteady Stokes problem. Similar
to what we discussed in steady Stokes case, in this section we present the reduced
basis formulation of the unsteady Stokes problem formulated in section 2.3.1. Let us
define the parameter sample sy = {ul, T }, where u” € P. The reduced basis
approximation is based on an N-dimensional reduced basis spaces V i and @y generated
by a sampling procedure which combines spatial snapshots in time and parameter space
in an optimal way. In particular, in our case we have used the POD-Greedy algorithm
1.2.6 for snapshots selection to generate the reduced spaces. Reduced basis velocity and
pressure spaces are

Vy = span {POD(uh(tk;u”)), 1<k<K<1<n< Nu} , (2.47)

QN = span {POD(ph(tk;pn)), 1<k<K,1<n< Np} . (2.48)

When the velocity space is enriched with the supremizer solutions at each time step, the
velocity space in this case is defined as:

Vy = span {POD(uh(tk; p")),1<n < Ny THES 1 <n < NS} . (2.49)

Now the reduced basis formulation corresponding to semi-discrete FE formulation (2.37)
can be written as: find uy € Vy and py € @y such that

0
m(a“Nﬂ’N%H) +a(uy,vn;p) +b(vy,py; ) = Foy;u) Yoy € Vi,

b(un, qn; 1) = G(gn; 1) Van € Qn,
UN|i=0 = Uo,N,

(2.50)
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In the online stage, the algebraic formulation of resulting reduced order approximation
for any p € P is given by

M) | Ay BE(w) { Un(t*; u) } _ { Fv () }
By (i) 0 Prittse) ain) (2.51)

+ At

My () -1,
]L“ g [Uw(t’“ l,u)}’

where the reduced order matrices are defined as:

My (t; p) = Zy M (1) Zus,  AN(B) = Zy A() Zuss, By (1) = Zy B(p) Zu,s,

Fnw) =2 f(w), gn(p) =2 g(p),
(2.52)

with Z, s being the velocity snapshot matrix including the supremizer solutions, Z,
denotes the pressure snapshot matrix. Moreover, thanks to the affine parametric depen-
dence (2.41), we need to store only the matrices and vectors

AY =2 A%, By =ZIBZ,. fyv=2f g&=2g" (2.53)

The store data structures do not depend explicitly on time because the temporal de-
pendence is stored in the multiplicative factors ©(t; ). Therefore, A9, BY, f* g9 are
independent of both p and t.

2.3.4 Stabilized Reduced Basis formulation

In this section we present the stabilized Reduced Basis (RB) model for unsteady Stokes
problem derived from the stabilized FE problem (2.43). The computation of the reduced
spaces is done through the POD-Greedy algorithm (see algorithm 1.3). The stabilized
RB approximation of velocity and pressure field obtained by means of Galerkin projection
on reduced spaces reads:

for any p € P, find un(t; ) € Vy and py(t; ) € @Qn such that

0
m(aUNfUN#L) +a(uy,vn;p) +b(vy,py; ) = F(oy; ) Yoy € Vi,

b(un,qn; ) = G(gn; ) + on(gn; ) Van € Qn,
UN|t=0 = Uo,N,

(2.54)

where ¢ (gn; p) is the reduced order counterpart of the stabilization term (2.44).
Finally, we write the reduced order stabilized formulation of unsteady FE stabilized
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Stokes problem (2.46) in compact form as:

M
X(t’”“f‘fv(“) Bl (w) [UN<tk;u> ] _ [ wa)]
BN(H)+M —Sn(p) Py (t"; ) gn(p)
& (2.55)
My(p) S
_AL N 7}
- M (p) 0 [ Py(t*1 ) ]

Similar to steady Stokes case, we discuss and compare the following options using un-
stable FE pair Py /Py :

e for offline-online stabilization with supremizer we solve the stabilized system (2.46)
in the offline stage and stabilized RB system (2.55) in the online stage; and the
velocity space in this case is enriched with supremizer solutions, given by (2.49);

e for offline-online stabilization without supremizer we solve the stabilized system
(2.46) in the offline stage and stabilized RB system (2.55) in the online stage; but
the velocity space in this case is given by (2.47);

e for offline-only stabilization with supremizer we solve the stabilized system (2.46)
in the offline stage and non-stabilized RB system (2.51) in the online stage; and
the velocity space in this case is enriched with supremizer solutions, given by (2.49);

2.4 Numerical results and discussion

In this section, we present several numerical results for stabilized reduced order model for
unsteady Stokes problem developed in section 2.3 and subsections therein. In subsection
2.4.1 we show some numerical solutions and error analysis using unstable FE pair Py /P9
for Franca-Hughes stabilization [68]. In subsection 2.4.2 we plot error comparison using
lowest order unstable element P /Py with stabilization term (2.32). Finally in subsection
2.4.3 we show the variation of time step At on error between FE and RB solutions.

We consider the same test case as we did for the steady case on parametrized domain
in Fig. 2.1. For unsteady Stokes case, the problem is defined as:

%—1; —mAu+Vp=0 in Q,(u2) x (0,7,

dive = 0 in Q,(u2) x (0,77,

u=0 on I'p, (p2) x (0,7), (2.56)
u=(1,0) on I'p x (0,7,

uly—o =0 in €.
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2.4.1 Numerical results for P, /P, for k =2

The aim of present subsection is to show and discuss some numerical results for un-
steady parametrized Stokes problem (2.4) using Franca-Hughes stabilization [68]. This
subsection is the extension of subsection 2.2.1 to unsteady problem.

In Table 2.1 we show the details of parameter ranges in offline, online stages; and
other information about the offline stage.

In Fig. 2.12 we show the RB solutions for velocity and pressure at different time
steps using the offline-online stabilization without supremizer. We observe that as the
time increases, both velocity and pressure fields are converging to steady state solutions.
We have similar results with offline-online stabilization with supremizer that we do not
show here.

Figure 2.13 shows the error between FE and RB velocity, whereas Fig. 2.14 plots
the error between FE and RB pressure. From these plots we observe that the offline-
online stabilization with and without supremizer have the same order of convergence
in case of velocity but in case of pressure, supremizer is improving the offline-online
stabilization upto one order of magnitude. THis property will be much important in
case of coupling conditions in multi-physics involving pressure, for example, since we
may guarantee a better accuracy. The offline-only stabilization with supremizer option
has poor performance as it was in steady case.
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Number of Parameters

2: py(viscosity), pe(domain’s length)

w1 range offline [0.25,0.75]
o range offline [1,2]
w1 value online 0.57
w2 value online 1.78
Final time 0.2
Time step At 0.02
Ntrain 25
Nmaz 25
Stabilization coefficient & 0.05

FE degrees of freedom

6222 (P1/Py)
18300 (Py/P3)

RB dimension

N,=N,=N, =30

Computation time (P2/P)

1780s (offline), 300s (online) with supremizer

Offline time (Py/Py)

1046s (offline-online stabilization with supremizer)
738s (offline-online stabilization without supremizer)
980 (offline-only stabilization with supremizer)

Offtine time (IPy/P2)

2260s (offline-online stabilization with supremizer)
1945ss (offline-online stabilization without supremizer)
17300s (offline-only stabilization with supremizer)

Online time (P /P;)

103s (with supremizer)
82s (without supremizer)
81s (offline-only stabilization)

Online time (Py/Ps)

242s (with supremizer)
180s (without supremizer)
90s (offline-only stabilization)

Table 2.1: Computational details of unsteady Stokes problem (2.4).




2.4. NUMERICAL RESULTS AND DISCUSSION

0.0e+00

lul_RB

EW .0e+00

Z075

0.5
0.25
0.0e+00

lul_RB

EW .0e+00

~0.75

)
S} o

0.5
0.25

0.0e+00

lul_RB

EW .0e+00

0.0e+00

lul_RB

EW .0e+00

=075

0.5

0.25

0.0e+00

W
w

p_RB
1.0e+01

o

o

-5

-1.0e+01

o
o
@

1.0e+01

@

o

-5

-1.0e+01

p_RB
1.0e+01

-5

-1.0e+01

p_RB
1.0e+01

o

=}

-5

-1.0e+01

RB

EW .0e+01

o

o

-5

-1.0e+01

Figure 2.12: Franca-Hughes stabilization with Py /Py FE pair: RB solutions for Ve-
locity field (left) and Pressure field (right) at different time step from top to bottom;

t = 0.02,0.04,0.06,0.1,0.12, N, = N,, = 30.
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Figure 2.13: Franca-Hughes stabilization with Py /Py on cavity flow: Velocity L?-error
in time for stabilization coefficient § = 0.05 and At = 0.02.
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Figure 2.14: Franca-Hughes stabilization with Py /Py on cavity flow: Pressure L2-error
in time for stabilization coefficient § = 0.05 and At = 0.02.
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2.4.2 Numerical results for P, /P,

Similar to subsection 2.2.2 for steady Stokes case, in this subsection we show some results
for the error comparison between the different stabilization options using the lowest order
FE pair Py /Py.

The motivation in doing this case is to support the offline-online stabilization, i.e,
we want to show, by doing different numerical experiments that the offiine-online sta-
bilization is the best way to stabilize whatever the stabilization we chose. For instance,
in subsection 2.4.1 we chose the Franca-Hughes stabilization, which has different stabi-
lization terms as compared to this subsection.

We plot the L?— error in time for velocity and pressure in Figs. 2.15 and 2.16,
respectively. The stabilization term in this case is defined in (2.32). Computational
detail for this case is also given in Table 2.1. We have similar conclusion as before in
subsection 2.4.1.

—&— offline-online stabilization with supremizer
102 3 = @ = offline-online stabilization no supremizer [
offline-only stabilization with supremizer
¥
10°

llu, (au Gl
3
%]

-
=
S

-
=
&

Figure 2.15: Cavity flow: Velocity L?-error in time for stabilization coefficient § = 0.05
and At = 0.02. using P; /PPy.
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Figure 2.16: Cavity flow: Pressure L?-error in time for stabilization coefficient § = 0.05
and At = 0.02. using P; /PPy

2.4.3 Sensitivity on At

Consistently stabilized FE methods have complications while working with small time
steps. These complications are reported in [20, 22] and references therein. The analysis
found in [22] established that

At > 5h?

is a sufficient condition to avoid instabilities. Later on a detailed study and series of
numerical experiments are performed in [21] and it is established that the fully discrete
problem (2.43) is conditionally stable with the condition

At/Sh* > 6, (2.57)

where At is the time step, ¢ is the stabilization coefficient independent of the spatial
grid size h.

In this subsection we present some numerical results to see the variation of At on
the error between FE and RB solutions. We use the offline-online stabilization without
supremizer to plot the velocity error between FE and RB solution in Fig. 2.17 and
pressure error between FE and RB solution in Fig. 2.18, respectively. We fix the value
of stabilization coefficient § = 0.05

From these error plots, we observe that At = 0.02 (in this case, not generally) is the
best value. If we decrease the value of At, keeping § and h fixed, i.e, we are decreasing
the left hand side of (2.57), which increases the error.
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Figure 2.17: Franca-Hughes stabilization: L2-error in time for Velocity using Pa/Po
and 6 = 0.05, At = 0.02,0.002,0.0002. offline-online stabilization without supremizer.
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Figure 2.18: Franca-Hughes stabilization: L2-error in time for Pressure using Po /P
and § = 0.05, At = 0.02,0.002,0.0002. offline-online stabilization without supremizer.
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2.5

Concluding remarks and perspectives

In this chapter we have used the classical residual based stabilization method given by
Franca and Hughes [68] to develop the stabilized reduced basis method for parametrized
steady and unsteady Stokes problem. We have compared the offline-online stabilization
approach with the supremizer enrichment approach through a series of test cases for
the steady and unsteady problems. To support our idea of offline-online stabilization
we have also experimented other stabilization techniques like Brezzi-Pitkaranta [27] and
also using lowest order stabilized element P; /Py. We summarized the main outcome as:

all the numerical results carried out in this chapter shows that the offline-online
stabilization is the most appropriate way to perform reduced basis stabilization of
parametrized Stokes problem rather than offline-only stabilization;

in case of velocity for both steady and unsteady problems, offline-online stabiliza-
tion method allows us to avoid the addition of supremizer enrichment to fulfill the
reduced order inf-sup condition which reduces the dimension and therefore we can
reduce the computational cost;

in case of pressure for unsteady problem, offline-online stabilization with suprem-
izer has better performance in terms of error as compare to offline-online stabi-
lization without supremizer, however supremizer enrichment does not improve so
much the pressure in steady problem:;

the lack of consistency is causing larger errors if we use stabilized bilinear forms
during the offline stage and non-stabilized bilinear forms during the online stage,
i.e if we use offline-only stabilized method;

construction of stable reduced basis functions in the offline stage does not guar-
antee the stable RB solution in the online stage (see Fig. 2.2).






Chapter 3

Reduced Basis Stabilization of
Parametrized Navier-Stokes
Problem

This chapter extends the stabilized RB method developed in Chapter 2 to parametric
Navier-Stokes problem [41, 108]. We study the RB stabilization of steady and unsteady
Navier-Stokes problems with physical and geometrical parametrization [8]. As already
mentioned, our focus in this thesis is to deal only with inf-sup stability, that is, the
instability of RB solution caused by the improper choice of velocity-pressure FE pair
and not the instability due to dominating advection field [23, 117]. We compare the
numerical results carried out using offline-online stabilization approach [2, 3, 64] with
the existing supremizer approach [121, 132].

Similar to what we have already done in Chapter 2, we divide this chapter into two
main parts, with the focus on steady Navier-Stokes problem in the first part (section:
3.1) and unsteady Navier-Stokes problem in the second part (section: 3.3), respectively,
both in parametric settings.

Further detailed organization of this chapter is as follows: in section 3.1 we define
the steady Navier-Stokes problem and weak formulation in parametrized domain. We
introduce the stabilization terms (see for instance, [29, 44, 69, 148]) into the weak formu-
lation. The construction of RB spaces for velocity and pressure, respectively is defined
by using Greedy algorithm (section 1.2.3). In section 3.2 we show some numerical results
with two examples.

In section 3.3 we define the unsteady Navier-Stokes problem in parametric setting.
We define the semi-discrete FE formulation and stabilized FE formulation, respectively.
In this case we use POD-Greedy algorithm [63] to select the snapshots for the con-
struction of RB spaces. We present the RB formulation and stabilized RB formulation,
respectively for the unsteady Navier-Stokes problem. In section 3.4 we present some
numerical results for both physical and geometrical parametrization. Finally in section
3.5 we summarize and organize the main findings of this chapter.

49
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3.1 Parametrized steady Navier-Stokes problem

Let us consider the steady incompressible Navier-Stokes equations in a parametrized
domain Q,(p) C R2. The continuous parametrized formulation read as follows:

— VAU, + (Uy - V) Uy + Vpo = F  in Q(u) C R?,

div(u,) =0 in Q,(p), (3.1)
uo = gp(p) on I'p,
u, =0, on I'y(p),

where u, is the unknown velocity, p is the unknown pressure, v = v(u) is the kinematic
viscosity representing the physical properties of our system, f is the body force, gp
is Dirichlet data, I'p is the Dirichlet boundary with non-homogeneous data and I',
denotes the Dirichlet boundary with zero data. For the sake of simplicity, we consider
the case f = 0. We denote by p € P a parameter which may be physical or geometrical
parameter. In the numerical test cases that are presented in this chapter, our geometrical
parameter is the length of domain and physical parameter is Reynolds number defined
as Re = L|ul|/v, being L a characteristic length of domain, |u| a typical flow velocity
and v the kinematic viscosity.

In order to write the weak formulation of problem (3.1), we introduce a reference do-
main, i.e. a pu-independent configuration {2 by assuming that each parametrized domain
Q, () can be obtained as the image of p-independent domain €2 through a parametrized
map T(.;p) : RT = R? ie. Q,(u) = T(; ). We denote by V', @ the solution spaces
for velocity and pressure, respectively, defined over Q such that V' = H}(Q2), Q = L3(Q).

Now the weak formulation of (3.1) can be obtained by multiplying with the velocity,
pressure test functions v and ¢ and using integration by parts; then by tracing everything
back onto the reference domain €2, we have the following parametrized weak formulation
of problem (3.1): find (u,p) € V' x @ such that

a(u,v; p) + b(v,p; p) + c(u, w,v; p) + d(u,v;p) = F(osp) VveV, (3.2)
b(u,q; p) = G(g; p) VqeQ,
where F'; G are the terms due to non-homogeneous Dirichlet boundary conditions, and
ou ov v,
a(u,v; p) = ; o, i (% u)aijdw, b(v,q;p) = — /Q qxij (x; u)afa;dw, (3.3)

are the bilinear forms related to diffusion and pressure-divergence operators, respectively
[8], whereas the trilinear form related to the convective term is defined as:

ov

clwv,win) = [ wigilos )G e (3.4
Q Lj

Here, we have adopted the convention of summation over repeated indices. We denote

k(s ) = v(p) (Jr (s )~ (Jr (s )~ | Jr(X; ),

o (3.5)
x(w; ) = (Jp(z; )~ |7 (X5 ),
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the tensors encoding the parametrization in Navier-Stokes operators; |Jr| is the deter-
minant of the Jacobian matrix Jr € R4 of the map T'(.; u).

Other terms appearing due to the lifting of Dirichlet boundary conditions are defined
as: we denote by I(p) a parametrized lifting function such that I(p@)|r, = 0,1(p)|r, =

gp(p), and

d(u,v; p) = c(l(p), w, v; p) + c(u, l(p), v; p),
F(v;p) = —a(l(p), v, u) — c(l(p), L(p),v; p), (3.6)
G(g;p) = —b(L(K), q; ).

3.1.1 Finite Element formulation

In order to write the Galerkin-FE formulation for (3.2), we first need to introduce two
finite-dimensional subspaces V, C V, Q) C Q of dimension N, and N, respectively,
being h related to the computational mesh size. The Galerkin-FE approximation of the
parametrized problem (3.2) reads as follows: for a given parameter pu € P, we look for
the full order solution (wp(p),pr(p)) € Vi, X Qp such that

a(un(p), vn; p) + b(vn, pr(p); p) + clun(p), wn(p), va; 1)
+d(up(p), vp; p) = Fvp; p) Yoy € Vi, (3.7)
b(un(p), qn; ) = G(qn; 1) Van € Qn,

where

d(up(p), v ) = c(lp(p), wn, vi; p) + c(up, (@), va; ),
F(op;p) = —a(lp(p), vn, p) — c(lp(p), (1), vns ), (3.8)
G(qn; ) = =b(ln (1), an; p)-

To solve the system of nonlinear equations (3.7) arising from the space discretization
of (3.2) we use the quadratically convergent Newton method [116], which involves the
linearization of nonlinear convective term.

We denote by qb? and 't,b;’, the basis functions of V' and @} respectively. We intro-
duce the matrices A(p) € RV«*Nu C(u(p); p) € RV*Ne and B(p) € RM»*Nu whose
entries are

(A(p)y; = ald}, @it ) + d(@), b1 1), (B(p))gs = b(oF, 935 ),

Nu
(3.9)
(C(u( Zu P plip),  for 1 <ij <Ny, 1<k <A,

and therefore the nonlinear algebraic system is:

[ Ap) +Bc($<u>;u> BTO(M) ] [ U(p) ] _ [ §<u> } , (3.10)
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for the vectors of coefficients U = (u,(Ll),...,ugN“))T,P = (pgl),...,pglN”))T, where for

1<i<N,and 1<k <N

(F()i = —alln, 5 1) — U, U, 5 1), (G(12))k = —b(n, it 1), (3.11)

with I, = I, (p), the FE interpolant of lifting function.
For an efficient RB method, we need to ensure the assumption of affine parametric
dependence on operators (3.9) and (3.11), i.e, these operators can be written as:

Qa Qc Qb
Alp) =D 05w A%, C(ip) = 65(mCI(),  B(p)=)_ 6)uB,
q=1 qg=1 q=1
] o ] o (3.12)
Fy =S ofwf.  gw=> 0luwg"
q=1 qg=1

3.1.2 Stabilized Finite Element formulation

In this section we introduce the stabilization terms into the FE formulation of (3.7).
The stabilized FE formulation of (3.7) read as: find (wp, (@), pr(pr)) € Vi x Qp such that

a(up(p), vn; p) + b(vn, pr(p); p) + c(un(p), wn(p), vu; p)
+d(up(p), vn; p) = F(vp; p) + Ep(vn; p) Vo, e Vy,  (3.13)
b(un(p), qn; 1) = G(qn; 1) + énlqn; p) Y an € Qn,

where &, (vp; 1) and ¢p(gp; ) are the stabilization terms defined as:

En(vnip) =0 h%{/ (—vAup + up - Vup, + Vpy, —vyAvy + uyp, - Vo),
K
K (3.14)
Sngn; ) =0 h%(/ (—vAuy, + up, - Vup, + Vi, Van),
% K

where ¢ is the stabilization coefficient needs to be chosen properly [24, 91, 92]. For
~v = 0,1, the stabilization (3.14) is respectively known as Streamline Upwind Petrov
Galerkin (SUPG) [30], Galerkin least-squares (GLS) [69]. The case v = —1 was studied
by Franca and Frey [48]. Several other works on these kind of stabilization techniques
can be found in [90, 93, 142, 148] and references therein. In addition one can also use
the additional grad-div stabilization term

Yk p(V-u,V-v),

added to the momentum equation (3.13). Where p is a suitable stabilization coefficient,
studied in several works, for instance see [106] and references therein. The grad-div
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stabilization term is based on the residual of continuity equation and its role is to improve
the discrete mass conservation.

In this chapter we discuss only the SUPG stabilization. Therefore, after adding the
SUPG stabilization terms, the stabilized version of nonlinear system reads as (3.10):

A(p) + Clu(p)ip) BT(p) | [U@W) | _ [ Fw
B(u) Sw(w) [P(u)]_[‘ } (3.15)

g(p)
where B, BT and €' contains the SUPG stabilization matrices [47]. For the detail about
the inf-sup condition for equal order FE interpolation we refer to subsection 2.1.2 of
Chapter 2. We follow the same pattern here for Navier-Stokes case.

3.1.3 Reduced Basis formulation

In this subsection we present the RB formulation of parametrized Navier-Stokes problem
(3.1) [88, 114] in a similar way as we did for the Stokes case (see Chapter 2, subsection
2.1.3). We define the RB velocity space Vxy C Vj and pressure space Qn C Qp,
respectively as:

V iy =span{, = up(p”),1 <n < N,}, (3.16)

and

QN = span {fﬁ = ph(p‘n)v 1<n< Np}v (317)
where IV, and N, are the dimensions of RB velocity space V' ;v and RB pressure space
QnN, respectively. {571;},]:[;1 and {&} T]y ?, are mutually orthonormal basis functions for RB
velocity and pressure, respectively obtained by applying the Gram-Schmidt orthogonal-
ization process [63].

In order to fulfill the reduced order inf-sup condition (2.20), we need to solve the
supremizer problem (2.19) to enrich the RB velocity space with the solutions of suprem-
izer problem. In this we denote the RB velocity space by v ~ with dimension N, + Nj
and is defined as:

Vi =span{(,,1 <n < N,;THE 1T <n < Ngt. (3.18)

Once, we have built the RB for velocity and pressure fields during the offiine stage,
the RB formulation corresponding to FE formulation (3.7) reads as: for any parameter
p € P, we look for (un(p),pn(p)) € Vi x @ such that

a(un(p), vn; ) +b(vn, py(p); p) + clun (@), un(p), vN; 1) ~
+d(un(p), vn;p) = F(on;p) Yoy € Vi, (3.19)
bun(p), qn; p) = G(qn; ) Van € Qn.

The solution (un(p), pn (1)) € VN x Qn of (3.19) can be expressed as a linear combi-
nation of the basis functions:

2N N
un(p) =Y una(W)é,  pn(k) =Y pnn(p)éh, (3.20)
n=1 n=1
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where {wnn ()}, and {pyn () 7]:]21 denote the coefficients of the RB approximation

for velocity and pressure. Finally, (3.19) can be written in compact form as following
nonlinear reduced system

An(pu) + Cn(u(p);p) Bi(p) | [ Un(p) ] _ [ Fn(w)
M ) S It g 0 [l R CED

where the reduced order matrices are defined as:
An(n) = Zy A()Zu,  By(p) = Zy B() Zus  On(5p) = Zy C( 1) Zus
Fv(w)=2Z f(w), gn(n) =2, g(w),

with Z, s, the velocity snapshot matrix and Z, denotes the pressure snapshot matrix.

The offline-online decomposition is made possible, thanks to the affine parametric de-
pendence (3.12).

(3.22)

3.1.4 Stabilized Reduced Basis formulation

In this section, we present the stabilized RB method for the model problem (3.1). We
also refer to some related works in recent past on the stabilization of reduced-order
models, see for instance Baiges et al. [5, 6], Caiazzo et al. [32], Lgvgren et al. [42] and
Lassila et al. [85], Weller et al. [146] and Bergmann et al. [16].

The stabilized RB formulation corresponding to stabilized FE formulation (3.13)
reads as:

a(un(p),vn; ) +b(on, pn(p); p) + clun(p), un (1), v p)
+d(un(p), vn;p) = F(on; p) +Env(vn; 1) Voy € Vi, (3.23)
blun(p), qn; ) = Glan; p) + on(gn; ) Van € Qn,

where &n(vn; p) and ¢n(gn; ) are the reduced order stabilization terms corresponding
to (3.14).

We skip here the discussion about reduced order generalized inf-sup condition for
Navier-Stokes problem with the stabilization options and we refer to subsection 2.1.4 of
Chapter 2 for a detail presentation.

Finally, we write the matrix formulation of stabilized RB formulation (3.23) as:

S)-lg) o

where By, BT ~ and Cy contain the SUPG stabilization matrices [47].

3.2 Numerical results and discussion

In this section we present some numerical results for the RB approximation of steady
parametrized Navier-Stokes problem developed in section 3.1 and subsections therein.
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Numerical simulations are carried out using FreeFem++ [59]. We compare three possible
options (7) offline-online stabilization with supremizer, (ii) offline-online stabilization
without supremizer, (iii) offline-only stabilization with supremizer, whereas option (iv)
offline-only stabilization without supremizer is not working.

3.2.1 Results for physical parametrization

In this test case, we apply the stabilized RB model for Navier-Stokes problem to the lid
driven-cavity problem with only one physical parameter p denotes the Reynolds number.
The computational domain is shown in Fig. 3.1 and the boundary conditions are

uy = 1l,us =0 on I'p, and u =0 on I'p, (3.25)
(0,1) (1,1)
I'p,
I'p, 0 I'p,
I'p

(0,0) 2 (1,0)

Figure 3.1: Domain 2 with boundaries marked.
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Figure 3.2: FE solution (top) and RB solution (below) at Re = 200 with P;/P; for
velocity and pressure, respectively.

The mesh of this problem is non-uniform with 3794 triangles and 1978 nodes, whereas
the minimum and maximum size elements are h,;, = 0.0193145 and A4, = 0.0420876,
respectively.

Figure 3.2 plots the comparison by visualization of the fields between FE solutions
(top) and RB solutions (below) for parameter value p = 200. These solutions are
obtained by using the offline-online stabilization with § = 1.0 and P /P; FE pair. From
these plots we see that both the FE and RB solutions for velocity and pressure are same.
We have similar results for Po/Py that do not show here.
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(a) RB Pressure at § = 0.1 (b) RB Pressure at 6 = 0.01

Figure 3.3: RB pressure for varying § using P; /P; FE pair.

Figure 3.3 plots the variation of 6 on RB pressure. We found that for P; /P; FE pair
the pressure solution becomes highly oscillatory for small values (§ < 0.1) while for the
values (§ > 1) no oscillations were present as shown in Fig. 3.2. Similarly for Py/Po
FE pair the pressure solution is oscillatory for the values (6 < 0.01) and no oscillations
appear for the values (6 > 0.1). This variation on § has similar effects on FE pressure
[91].

In Figs. 3.4 and 3.5 we plot the comparison between the offline-online stabilization
with/without supremizer and offline-only stabilization for the error between FE and
RB velocity using 1 /P; and P2 /P, respectively. From these results we point out that
velocity is “polluted” upto one order of magnitude by the enrichment of supremizer
solutions.

Similarly in Figs. 3.6 and 3.7 the comparison between the above mentioned three
options is made for the error between FE and RB pressure using P;/P; and Py /Py, re-
spectively. In this case we see that the pressure is improved upto two order of magnitude
for P; /P; and one order of magnitude for Py /Py, by the addition of the supremizers. In
both the velocity and pressure results, offline-only stabilization method has very poor
result as compare to offline-online stabilization, i.e, the offline-only stabilization is not
consistent.

The computation details of the problem considered in this section is given in Table
3.1. From this table we can see that the offline-online stabilization without supremizer
is less expensive than the offline-online stabilization with supremizer. Therefore, from
all the results presented in this section, we conclude that the offline-online stabilization
is good enough to give a stable RB solution and we do not need supremizer enrichment.
Because when we deal witht unstable FE pair since the added offline-online stabilization
is sufficient in operating on the iy — qup condition. Consequently, the computation cost
can be reduced as shown in Table 3.1. We have not used the Empirical Interpolation
Method (EIM) to approximate the nonlinear term. This will be the object of a future
extension of the work to improve further computational performance.
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Figure 3.4: SUPG stabilization with physical parameterization on cavity flow: Com-
parison between FE and RB solution for velocity using Py /P;.
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Figure 3.5: SUPG stabilization with physical parameterization on cavity flow: Com-
parison between FE and RB solution for velocity using Pa/Ps.
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Physical parameter 1 (Reynolds number)
Range of i [100,500]
Online 1 (example) 200

13218 (P /P;)
52143 (Py/P)
RB dimension Ny,=Ng=N,=7

) . 1182s (offline-online stabilization with supremizer
Full offfine time (P1/P1) 842s ( (()ﬁﬁlme-online stabilization without supremiz)er)
2387s (offline-online stabilization with supremizer)
2121s (offline-online stabilization without supremizer)

FE degrees of freedom

Full offline time (P2/P2)

2103s (with supremizer, no stabilization)
1823s (without supremizer, no stabilization)
74s (with supremizer)

65s (without supremizer)

Full Offtine time (P /P)

Online time (P /P;)

131s (with supremizer)

108s (without supremizer)

120s (with supremizer, no stabilization)
99s (without supremizer, no stabilization)
Ntrain 25

Nimax 25

Online time (Py/Ps)

Online time (Py/P;)

Table 3.1: Physical parameter only: Computational details of steady Navier-Stokes
problem without EIM method.

Results for Taylor-Hood P3/P;: no stabilization

In this section we present a cavity flow test using inf-sup stable [132] FE pair Py/P;
for high Reynolds number. The goal of this section is give some numerical results for
non-stabilized method with Py /P; and compare these results, particularly computational
cost with stabilized RB.

The range of physical parameter (Reynolds number) during the offline stage is [2500,
3500]. Figure 3.8 plots the comparison of FE and RB solutions for velocity and pressure,
respectively. In these results the RB solution is obtained by enriching the RB velocity
space with supremizer solutions. We see that the FE and RB solutions are similar.

Figures 3.9 and 3.10 plots the error between FE and RB solutions for velocity and
pressure, respectively using Py /Py with/without supremizer. From these Figures we con-
clude that in order to get a stable RB solution we need to enrich the velocity space with
supremizer solutions. Because in this case we do not have any additional stabilization
terms which guarantees the inf-sup stability. Therefore, supremizer is necessary in this
case.
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Figure 3.8: FE solution (top) and RB solution (bottom) for velocity and pressure at
Re=2880 using Py /IP; with supremizer, respectively.
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Figure 3.9: Cavity flow problem: Error between FE and RB solutions for velocity
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Figure 3.10: Cavity flow problem: Error between FE and RB solutions for pressure
with/without supremizer using Py /P;.
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3.2.2 Results for physical and geometrical parameterization

In this example, we apply the stabilized RB model for Navier-Stokes to the parametrized
lid driven-cavity flow problem. In this case we have two parameters; p; denotes the
physical parameter (Reynolds number) and puo represents the geometrical parameter
(horizontal length of domain) and is shown in Fig. 3.11.

(0,1) . 1
o, (Ko, 1)
'p, 0 I'p,
r
(0,0) D (12, 0)

Figure 3.11: Parametrized domain {2 with boundaries marked.

We consider the same boundary conditions defined in (3.25). Also the same mesh
size is same as in previous example. Further detail of computations are summarized in
Table 3.2.

In Fig. 3.12, we show the FE solution (top) for velocity and pressure; RB solution for
velocity and pressure using the offline-online stabilization without supremizer (center)
and the offline-only stabilization with supremizer (bottom). These results are carried
out using Py /Py FE pair (results are similar for Py /Py). From these results, we see that
the FE solution and RB solution obtained by offline-online stabilization are same. But
the RB pressure obtained by offline-only stabilization is not stable. We have tested
various values of § but the oscillations in pressure cannot be controlled for offline-only
stabilization. The reason is that we are stabilizing only offiine phase and not the online.
In these snapshots we have chosen § = 1.0

Table 3.2 illustrates the computation details and the cost of stabilization options
using both Py /Py and Py /Py FE pairs. We also compare the computational cost of stable
Py /Py [132]. We see that offline-only stabilization method is less costly but on the other
hand this option does not give a stable RB pressure (Fig. 3.12 (f)). Therefore, we rely
on the other two options from which the offline-online stabilization without supremizer
has less computation time than the offline-online stabilization with supremizer.

Figures 3.13 and 3.14 plots the error between FE and RB velocity obtained by three
possible stabilization options using P /P; and Py /Py FE pair, respectively. From these
results we conclude that the offline-online stabilization without supremizer has better
performance as compared to other two options and is the most consistent stabilization
option. Similarly we plot the error between FE and RB pressure in Figs. 3.15 and
3.16. We conclude that offline-online stabilization is necessary for RB pressure stability.
Similar to one parameter case, the error for pressure decreases with the enrichment of
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supremizer.
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Figure 3.12: SUPG stabilization: From top to bottom; FE solution (top), RB solution
using offline-online stabilization (center), RB solution using offline-only stabilization

(bottom) for (u1,p2) = (120, 2).
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Figure 3.13: SUPG stabilization with geometrical and physical parametrization on
cavity flow: Error between FE and RB solution for velocity using P;/P;.
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Figure 3.14: SUPG stabilization with geometrical and physical parametrization on
cavity flow: Error between FE and RB solution for velocity using Pa/Ps.
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Figure 3.15: SUPG stabilization with geometrical and physical parametrization on
cavity flow: Error between FE and RB solution for pressure using P /P;.
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Figure 3.16: SUPG stabilization with geometrical and physical parametrization on
cavity flow: Error between FE and RB solution for pressure using Py /Po.
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Physical parameter

w1 (Reynolds number)

Geometrical parameter

w2 (horizontal length of domain)

Range of 11 [100,200]
Range of po [1.5,3]
w1 online 120

e online 2

FE degrees of freedom

11160 (P, /P;)
44091 (Py/Ps)

RB dimension

N,=N,=N, =16

Computation time (P2/P;)

3909s (offline), 195s (online) with supremizer

Offtine time (P /Py)

2034s (offline-online stabilization with supremizer)
1920s (offline-online stabilization without supremizer)
649 (offline-only stabilization with supremizer)

Offtine time (IPy/P3)

48855 (offline-online stabilization with supremizer)
4387ss (offline-online stabilization without supremizer)
1650s (offline-only stabilization with supremizer)

Online time (P /Py)

110s (with supremizer)
87s (without supremizer)
35s (offline-only stabilization)

Online time (Py/P)

242s (with supremizer)
180s (without supremizer)

90s (offline-only stabilization)

Table 3.2: Computational details for physical and geometrical parameters.

3.3 Parametrized unsteady Navier-Stokes problem

In this section, we develop a stabilized RB method using SUPG stabilization method for
the approximation of unsteady Navier-Stokes problem in reduced order parametric set-
ting. Let Q C R?, be a reference configuration, and we assume that current configuration
Q, (1) can be obtained as the image of map T(.; ) : R?2 — R? ie. Q,(u) = T(Q; p).
First we define the unsteady Navier-Stokes problem on a domain ,(p) in R?. We con-
sider the fluid flow in a region Q,(u), bounded by walls and driven by a body force
f(p). The fluid velocity and pressure are the functions ue(t; p) for p € P,0 <t < T

and p,(t; p) for 0 < t < T, respectively which satisfies

Ouo

; — VAU, + up - Ve + Vp, = f(1)
divu, =0

Uo =g

Uolt=0 = Ug

in Q(p) x (0,7,
in Qo(p) x (0,7,
on 09 x (0,7,
in Q,(w).

(3.26)
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Now we define the following notions to be used later

Q: L) = {a(o) € I(): [ gla)do =0} (3.27)
T
L0, T; H} (Q)) = {v(x,t) : [0,T] — H}(Q) : / ||V |2dt < oo, (3.28)
0
L>®(0,T; L*(Q)) = {v(x,t) : [0,T] — L*() : ess OiltlfT |v]| < oo, (3.29)
and .
L*(0,T; L3(9) = {q(x,) : [0, T) — L§(Q) : /0 la(®)|[*dt < oo (3.30)

By multiplying (3.26) with velocity and pressure test functions v and ¢, respectively,
integrating by parts, and tracing everything back onto the reference domain €2, we obtain
the following parametrized weak formulation of (3.26):

for a given p € P, find u(t; u) € V and p(t; pu)) € @ such that

0
(S v ) + a5 ) + el u,vi ) + bo,pip) = F(oip) Yo e Vit >0,
b(u,q;p) = G(g; 1) VgeQ,t>0,
’u”t:O = Uo,
(3.31)
where the bilinear forms and trilinear form are defined as:
ou ov ov;
a(u,vip) = | S—rij(z; p) 5 —dz, b(v,q;p) = —/ qxij (z; p) 5> de,
q 0x; 0z Q 0x;
. (3.32)
miu,vip) = [ wlespuvids, cluowi) = [ wien) G

The tensors k and x are given by (3.5). The scalar m encoding both physical and
geometrical parametrization are defined as:

(@, p) = [J7(X; ), (3.33)

where Jr € R?*2 is the Jacobian matrix of the map T(.;u), and |Jr| denotes the
determinant.

3.3.1 Discrete Finite Element formulation

As in the previous chapter for unsteady Stokes problem, let us now discretize problem
(3.31). Consider {1}, }1>0 be the triangulations and h denotes a discretization parameter.
Let V', and @y, be two finite dimensional spaces such that V;, € H'(Q) and Q, C LZ(9).
We use implicit Euler scheme for time derivative term. We consider a partition of the
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interval [0, 7] into K sub-intervals of equal length At = T/K and t* = kAt,0 < k < K.
We approximate the time derivative in the (k) — th time layer as
dup(th)  uk —up

T (3.34)

where At is a constant time step. We define the semi discrete FE approximation problem
of (3.31) while using (3.34) in (3.31) we get as follows:
for a given p € P, and (u} ' (p), p} (1)), find uf(t; u) € V7, and pk(t; p) € Qp, such
that

ﬁm(uia Vh; IJ’) + a(uﬁa Vh; /J') + C(ufw uzv Vh; H)

+b(vn, pfs ) = F(vp p) + mm(uf ", vp p) Vo € Vi, (3.35)
b(uf, qn; ) = Gqn; 1) Y qn € Qn,
ug = UQ,h-

Similar to what we did in steady Navier-Stokes in subsection 3.1.1, the algebraic formu-
lation of (3.35) can be written as:

MU | ) + Clulth; i) BT () [ Uit
m

At
B(p) 0

where the matrices and vectors are defined as:

(M(w))ij = m(ef, ¢lsp),  (Alw)y; = a(¢], ¢ w),
N

(B())g = b(@ i), (Clultp)ip)y = Y wit(t w)e(ph, ¢, ol 1), (3.37)
m=1

(F(w)i =F(@}sp), (@) = Gi: ),

where (;b? and ¢§L, are the basis functions of V', and @y respectively. As in previous
cases, we impose the affine parametric dependence on these matrices and vectors and
we skip the detail here.

3.3.2 Stabilized Finite Element formulation

In this section we give the stabilized formulation of time-dependent Navier-Stokes equa-
tions defined in previous section. We use the same SUPG stabilization method defined
in subsection 3.1.2. We skip the detail and directly write the stabilized algebraic formu-
lation of (3.36).
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MA(Q*) + A(p) + C(uw(th; p); ) B () [ U (t5; ) ] [ F(n) }
~ Y k - g
(u) ]\ﬁﬁ) —S(/,I,) P(t ) u) g(“) (3 38)
) |
W U tk*l’“
M LD | i |
At

where B, BT, M and C, are the sum of original matrices in formulation (3.36) and the

SUPG stabilization matrices. Similarly f and g are vectors on right hand side which
are sum of original vectors in formulation (3.36) and SUPG stabilization terms [47].

3.3.3 Reduced Basis formulation

Similar to subsection 2.3.3 in Chapter 2 for unsteady Stokes problem, a reduced order
approximation of velocity and pressure field is obtained by means of Galerkin projection
on the RB spaces Vi, Qn and V y, defined in (2.47), (2.48) and (2.49), respectively.

In the online stage, the resulting reduced order approximation of (3.36) for any p € P
is as follows:

M) | Aa) + Ol (s m)en) - B (1) o =] vl ]
BN(M) 0 PN(t ;H) gN(p')
M () 0 Un(t" 1 p)

+ Aot 0 [ Py(t* Y p) ] ’

where, similar to what we did in previous chapter, the reduced order matrices are defined
as:

My(p) = Zp M(p)us, An(p) = Zy A(p) Zus, Bn() = Z} B(p)Zu,
Cn(sp) =ZoClim)Zu, Fn(w)=ZLF(), gn(p) =Zg(w).

3.3.4 Stabilized Reduced Basis formulation

In this section we define the stabilized formulation of (3.39). We skip the detail and write
directly the stabilized algebraic formulation for RB problem derived from the stabilized
FE formulation (3.38) for any p € P as follows:
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Mﬁ“) + An () + On(un(tsp)im) - BY (1) [ Un(t"; p) } _ [ () }
By (p) + Miiu) “sy(uy | LN L L
MXE“) Uyt
) MXSE“) 0 [ Py ("t p) } ’
(3.41)

where By, B%, My and Cy are RB stabilized matrices, and can be obtained similarly
as (3.40).

We follow the same pattern as we did for Stokes problem in Chapter 2 and steady
Navier-Stokes problem in this chapter, i.e, we discuss and compare the different stabi-
lization options using unstable FE pair Py, /Py.

3.4 Numerical results and discussion

In this section we apply the stabilized RB model for unsteady Navier-Stokes problem
presented in section 3.3 and subsections therein to lid-driven cavity flow problem. Similar
to what we did in section 3.2, we first show some numerical results for only physical
parameterization in subsection 3.4.1 and then we show numerical results for both physical
and geometrical parametrization in subsection 3.4.2.In both cases we discuss the three
options (¢) offline-online stabilization with supremizer, (ii) offline-online stabilization
without supremizer, (iii) offline-only stabilization with supremizer.

3.4.1 Results for physical parameter case only

In this example, we show some numerical results of stabilized RB model applied to
unsteady Navier-Stokes problem. The parameter in this case is only the physical param-
eter, i.e, the Reynolds number and is denoted by p. Computational domain is shown in
Fig. 3.1. The details of computation is summarized in Table 3.3.
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Physical parameter 1 (Reynolds number)
Range of x4 [100,200]
Online p (example) 130
FE degrees of freedom | 5934 (Py/P;)
RB dimension Ny, = Ng =N, =30
. . 40612s (offline-online stabilization with supremizer
Offtine time (P1/P1) 38781s Eo%z’ne—onlme stabilization Withoutpsupremi)zer)
4640s (with supremizer)
4040s (without supremizer)
Time step 0.02
Final time 0.5

Online time (Py/Py)

Table 3.3: Physical parameter only: Computational details of unsteady Navier-Stokes
problem without Empirical Interpolation.

Figures 3.17 and 3.18 plots the L2-error in time for velocity using Py /P; and Py /Py FE
pair, respectively. Similarly in Figs. 3.19 and 3.20 we show the L?-error in time for
pressure. In all numerical results presented in this section, we observe that the offline-
online stabilization without supremizer has better performance for velocity in terms of
error. However, in case of pressure, our results show that supremizer is still improving
the error but on the other hand addition of supremizer is computationally expensive.
The offline-only stabilization is not accurate also in this case.

2
10 T
=l pffline-online stabiization with supremizer
= @ = offline-online stabilization no supremizer
o offline-only stabilization with supremizer
107 F 3
E> 102 |
3
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3
= o104
=
=
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Figure 3.17: SUPG stabilization with physical parametrization on cavity flow: Error
between FE and RB solution for velocity using Py /PP;.
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Figure 3.18: SUPG stabilization with physical parametrization on cavity flow: Error
between FE and RB solution for velocity using Py /Ps.
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Figure 3.19: SUPG stabilization with physical parametrization on cavity flow: Error
between FE and RB solution for pressure using Py /P;.
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Figure 3.20: SUPG stabilization with physical parametrization on cavity flow: Error
between FE and RB solution for pressure using Py /Ps.

3.4.2 Results for physical and geometrical parameters

In this section we present some numerical results for unsteady Navier Stokes problem
with physical and geometrical parameters. Parametrized domain is shown in Fig. 3.11
and the computation details are presented in Table 3.4. We recall that we are not using
any “hyper-reducton” technique to improve online performance at the moment. Our
interest at the moment is accuracy and stability.

Figure 3.21 illustrates the error between FE and RB solution for velocity. We ob-
serve that the error between two solutions, obtained by using offline-online stabilization
with/without supremizer is negligible. Similarly in Fig. 3.22 we show the error between
FE and RB solutions for pressure.
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Figure 3.21: SUPG stabilization
parameters on cavity flow.
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Figure 3.22: SUPG stabilization
parameters on cavity flow.
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Physical parameter 11 (Reynolds number)
Geometrical parameter | pa (horizontal length of domain)
Range of jq [100,200]

Range of po [1.5,3]

u1 online (example) 130

o online (example) 2

FE degrees of freedom | 6222 (P /P;)

RB dimension Ny, = Ns = N, =30

44693s (offline-online stabilization with supremizer)
40153s (offline-online stabilization without supremizer)
5169s (with supremizer)

4724s (without supremizer)

Time step 0.02

Final time 0.5

Offtine time (P1/Py)

Online time (P /P)

Table 3.4: Computational details for unsteady Navier-Stokes problem with physical
and geometrical parameters: stabilization and computational reduction.

3.5 Concluding remarks

In this chapter we have developed the stabilized RB method for the approximation of
parametrized Navier-Stokes problem. We have considered both steady and unsteady
cases as we did in previous chapter for the parametrized Stokes problem. The RB
formulation is build, using the classical residual based stabilization technique SUPG in
full order during the offline stage and, then, projecting on the RB space. We have
compared our approach [2] with the existing approaches based on supremizers [132]
through a series of numerical experiments. For instance, the comparison between offline-
online stabilization with/without supremizer and offline-only stabilization for steady and
unsteady Navier-Stokes problems is presented. Our results in this chapter are consistent
with those of the Stokes case presented in Chapter 2. On the basis of numerical results
the main observations are as follows:

o offline-online stabilization is the most appropriate way to perform RB stabilization
(if needed) for both steady and unsteady Navier-Stokes problems;

e in case of both steady and unsteady Navier-Stokes problems using SUPG stabiliza-
tion, velocity is still better using offline-online stabilization (without supremizer)
even if pressure is improved by the supremizer enrichment;

e offline-only stabilization is not consistent, i.e, we loss the consistency of problem if
we solve the stabilized system during the offline stage and non-stabilized system
during the online stage;
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e we can still improve the computational performances by using the Empirical In-
terpolation Method (EIM) [13];

e in terms of CPU time, the Taylor-Hood FE pair (P2/P1) is more expensive than
(P1/IP1) stabilized but less expensive than (Ps/P9) stabilized (see Table 3.1);

e all the results presented in this chapter are consistent with results of Chapter 2 for
all stabilization options, in terms of stability and also in terms of computational
performances using Py /Py.






Chapter 4

An Online Stabilization Method
for Parametrized Stokes Problems

In this chapter we propose a new online stabilization strategy for RB approximation of
parametrized Stokes problem. In this strategy, online solution is improved by a post
processing based on rectification method [37]. Moreover, this stabilization strategy is
different from residual based stabilization, discussed in previous chapters. We compare
this approach with offline-online stabilization approach [2]. We extend the rectification
method presented in [37, 62, 94] to the Stokes problem. All the numerical simulations
in this chapter are carried out using RBniCS [10, 63|, an open-source reduced order
modelling library, built on top of FEniCS [87].

This chapter is organized as follows: in section 4.1, first we define advection-diffusion
problem and overview of SUPG stabilization method for advection dominated case. Then
we review the vanishing viscosity method [94] and we give a brief overview of rectification
method applied to advection dominated problem. Finally we present some numerical
results and discussions.

In section 4.2 we present the rectification method for Stokes problem, for which we
also recall the formulation of Stokes problem from Chapter 2. After the formulation we
present some numerical tests on a parametrized cavity to check the validity of rectifica-
tion method. Finally, in section 4.3 we conclude the main findings of this chapter.

4.1 Rectification method for advection-diffusion problem

In this section we give a brief review of the paper by Maday et al. [94] to recall the
concepts of vanishing viscosity and rectification for the case of scalar advection-diffusion
problem, before we move to the Stokes problem. We start with the definition of scalar
advection-diffusion problem as:

{L(,u)u =—pAu+b-Vu=f in Q= (0, 1)27 (4.1)

u=>0 on 0,

78
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where p € [1076 1] denotes the diffusion coefficient! and b = (1,1)7, the constant
transport field. The SUPG-stabilization method in the offline stage to get the basis
matrix Z is implemented. The weak form of problem (4.1) is: for any u € P, find
u(p) € V such that

a(u(p),v;p) = flv) Vo eV, (4.2)

where V = H} () and

a(u(p),vip) = u/

; Vu - Vudx + / b - Vuvdz, fv) = /vad:c (4.3)

Q

a continuous and coercive bilinear form, and a linear and continuous functional, re-
spectively. Introducing a high-fidelity space V}, C V of dimension N. The high-fidelity
solution to problem (4.3) obtained by Galerkin-FE method reads: for any p € P, find
up(p) € Vi such that

a(up(p),vp; ) = f(on) Yoy, € V. (4.4)
When dealing with advection-dominated, i.e, for bl « 1, solution to (4.4) yields numer-
ical oscillations unless a suitable stabilization technique is introduced. Therefore, in this
case SUPG [29] is applied. The stabilized formulation of (4.4) reads:

astab(un (), vns 1) = fotan(vn)  Vop € Vi, (4.5)

where agqp(-, ;1) and fsqp(.) are bilinear and linear forms including the stabilization
terms defined as:

astab(“h(#)» Uh M) = a(uh(:u’)v Uhs :U’) + S(Uh(ﬂ)» Uh M)a

4.6
Foa() = Flon) + Fulon), (10
being
s(un(p),on; ) = > (L(u)un, 0k Lssvn) r2(xc).
Kery,
(4.7)
fs(on) = > (f, 0k Lssvn) r2(x),
Ker,

where Lgsgu = b - Vu is skew symmetric part of operator L and dx > 0 a suitable
stabilization coefficient. Algebraic formulation of (4.6) can be written as:

Astab(ﬂ)uh(“) = Flstab, (48)

where

AStab(/’L) = A(:U’) + S(,U')7 Fstap = F + F, (49)

!t is the only parameter we have, therefore we drop the bold symbol
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being wp (1) € RV the vectors whose components are the degrees of freedom of wy, ()
and for i,5 =1,....N

(A(p))ij = a(9j, dis ), (S(w)ij = s(¢5, b3 1),

(F)i = f(di),  (Fo)i = foldn), (4.10)

where {¢}¥, denote the set of (Lagrange) basis functions on V.

Now introducing a low dimensional subspace Vy of dimension N, where N < N
and Vy is built from a set of high-fidelity solutions (snapshots) computed for properly
selected parameter values [63, 113], i.e,

Vi = span{up ()|l <n < N} C Vp, (4.11)

The RB is obtained by Galerkin-projection onto V and reads as follows: for any p € P
find un(p) € Vi such that

a(uN(u),vN;u) = f(UN) Yoy € V. (4.12)

For advection-dominated case offline-only stabilization is not stable and shows spurious
oscillations.

On the other hand, performing a Galerkin projection of the stabilized problem (4.5)
onto Vy using a stabilized RB formulation yields stable RB approximation and it reads:
for any p € P find un(p) € V such that

astap(UN (1), vN; 1) = fstab(VN) Yoy € V. (4.13)

Algebraically, the RB approximation for SUPG case is the solution of following system:

AN (w)un(p) = FF, (4.14)
where
AR () = An () + ARV (), FJ® = Fy + FRVPC (4.15)

These RB matrices are obtained as:

Av(w) = 242, ASPO () = 27 ATUPC () 2,

Fy=2TF, FSUPG _ 7T pSUPG, (4.16)

where Z € RV*N is the basis matrix, such that Z = [¢1]...|€n].

4.1.1 Online vanishing viscosity stabilization method

The vanishing viscosity method proposed by Maday et al. [97] is used to stabilize the RB
problem independently of the stabilization procedure operated on the FE approximation,
provided a set of stable RB functions has been computed offline. This method adds a
suitable diffusion term on the RB problem, that depends on N and vanishes on the lower
modes; i.e, higher the mode, the stronger is the added stabilization. Also the RB space
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is now constructed by rotating the orthonormal reduced basis Z by the matrix W of
the eigenvectors of the reduced diffusion operator: Let Ky, My € RV*N denotes the
reduced stiffness and mass operators, respectively, i.e.,

(Kxmn = [ Veu Vénde, (My)on = [ &nbnde, mon=1.N, (@17
Q Q
obtained from full order matrices as Ky = ZTK,Z, My = ZT M, Z, where

(Kh)ij = / V(% . ngzda:, (Mh)ij = / ¢i¢jd$, i,j = 1, ,N (4.18)
Q Q
Solving the following generalized eigenvalue problem:
KNWj = )\jMNWja j = 1, ..,N, (419)

to get the matrix of eigenvectors W = [w1|...[wy] € R¥*¥ . Then we rotate the columns
of basis matrix Z by W to get the transformed basis Z = ZW. Finally the new RB space
denoted by Vy is obtained as the span of new basis functions, i.e., Vy=span{&, ...,Ex}

Consider now the following RB vanishing viscosity (RB-VV) approximation: find
tin(p) € Vi such that

a(an (p),vn; i) +dy(an(p),vn) = Fuy) Yoy € Vy, (4.20)

where dy(.,.) is an additional viscosity term, whose action on each pair of basis functions
(Ems&n), myn =1,..., N is such that

dxEmrEn) = FOW) /Q VE, - Véndz, (4.21)

with f()\,) to be properly defined [94]. In the simpler case f()\,) = ¢ € Rt where
c= ﬁ (ratio between desired added viscosity v and the largest eigenvalue A\y) i.e., a
viscosity contribution is added at each mode. Algebraic formulation of (4.20) can be

written as: B -
(An (1) + Sn)un(p) = Fy, (4.22)

where Ay = ZTALZ, Fy = ZTFh,ianol Sy € RVXN jg o diagonal matrix whose generic
element is given by (SN )mn = dn(&m,&n)-
4.1.2 Rectification method

After solving the problem (4.20), a further post-processing based on a rectification
method [36-38, 62] is applied to improve the accuracy of solution. In other words, this
rectification method is used to correct the consistency error of RB-VV approximation

an () = Yrs ()

i.e., the fact that
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un(p') # up(pt) Yu' e Sy ={u', ... pN}.

In order to cure this issue, an alternative linear combination of the reduced basis func-
tions has been chosen.

We start by computing the RB Galerkin approximations for all values g = p';
i =1,..., N which gives the coefficients iy (u') = Z]kvzl o (puh)€,. We define the matrix
Bpr with coefficients a};, ie.,

ar(pt) . a(p)

Ry = : : . (4.23)
on(pd) . . . an(pM)

We also express the IV snapshots over the reduced basis which gives the coefficients
up(p') = Z;VZI Bj(p')€;, from which we define the matrix B of coefficients B, ie.,

Bilpt) ... Bu(p?)

R— : | . (4.24)

Bu(u) . . B(uY)

We set S = RRJ_\,1 done in the offline stage and the matrix is stored.
Finally, the rectified solution @'y (p) for any p € P is computed online by using the
new coefficients au,ey = Sa, i.e.,

N
uy(p) = Z anew,j(u)gj- (4.25)
j=1

4.1.3 Numerical results and discussion

Combining the SUPG method with vanishing viscosity and rectification method, one
can discuss the following options to do the numerical tests:

e offline-online stabilization with/without vanishing viscosity with/without rectifi-
cation;

e offline-only stabilization with/without vanishing viscosity with/without rectifica-
tion.

First option above is consistent for any case (with/without vanishing viscosity and rec-
tification). We focus here on second option, because from previous chapters we know
that offline-only stabilization is not consistent and we are interested here to correct the
consistency by using vanishing viscosity and rectification method.
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Figure 4.1 plots the RB solutions obtained by offline-online stabilization (top left);
online vanishing viscosity with post-processing based on rectification (top right); online
rectification only without online vanishing viscosity (below left) and online vanishing
viscosity without rectification (bottom right).

lul

EQ‘S&OW

—0.69611

—0.69611
046407 0.46407
0.23204 023204
0.0e+00 0.0e+00
(a) Online stabilization (b) Vanishing viscosity with rectification

lul

EW .7e+00

—0.66914 —1.2479
0.44609 0.83194
0.22305 0.41597
0.0e+00 0.0e+00
(¢) Rectification only (d) Vanishing viscosity only

Figure 4.1: RB solutions at g = 1076 obtained by different options
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Figure 4.2: Error comparison between different stabilization options for N = 20 and
p =107,

Figure 4.2 plots the error between FE and RB solutions obtained for various sta-
bilization options. In all cases the offline stage is stabilized with SUPG-stabilization
method but online stage is obtained for different options.

We point out that the online rectification (without vanishing viscosity) option was
not reported by Maday et al. [94]. From these results we see that if we perform a
post-processing (online rectification) on offline-only stabilization (without vanishing vis-
cosity), we are able to improve the error upto 3 order of magnitude when compared to
offline-only stabilization.

4.2 Rectification method for Stokes problem

In this section we propose the online rectification method for Stokes problem introduced
in section 4.1.2. In order to proceed with the rectification process, first we recall the
steady Stokes problem in parametrized domain (defined in Chapter 2). The stabilized
FE formulation (2.11) is:

Find uh(u) eVy, ph(u) ceQp:
a(un(p), vh; p) + (v, pr(p)i p) = F(vps p) + sp(vps ) Vop € Vi, (4.26)
b(un (), an; 1) = Glan; ) + s, (an; 1) Van € Qn,

where s} (vp; ) and s} (qn; p) are the stabilization terms (residual based) with possible

choices given by (2.12) and (2.13). We stabilize the offline stage by one of the above
possible stabilization option to get stable basis functions and then, we project on RB
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without taking into consideration the stabilization terms for online solve. Therefore, the
RB formulation is given by

Find (un(p),pn(p) € VN X Qn -
a(un(p),vn; ) +b(vn, py(p) = F(oy;u) Yoy € Vi, (4.27)
b(un(p), qn; p) = G(an; ) Van € Qn.

where the RB spaces V y and @y for velocity and pressure, respectively are defined in
subsection 2.1.3 of Chapter 2. For comparison purpose, we also consider the supremizer
enrichment, and in this case the velocity space will be V i defined in subsection 2.1.3 of
Chapter 2.

We recall that solving the stabilized FE formulation (4.26) in the offline stage and
non-stabilized formulation (4.27) in the online stage is called offfine-only stabilization.
This option has been discussed in previous two chapters but we saw that in all cases
this choice is not consistent and we were not able to get a stable RB solution (see, for
instance Chapter 2, section 2.1).

In this section we try to recover the consistency of RB solution obtained by offline-
only stabilization using the the idea of post-processing based on rectification method
[37, 62, 94]. We know that in case of offline-only stabilization, the solutions from which
RB is constructed are actually not the solutions of the problem (4.27) for u = u’, i.e,

uy(p') #un(p'),  py(p') #pu(p'), Vu'e Sy ={p', ... u"}.

In other words, we are interested in correcting the consistency error of the RB approxi-
mation for velocity and pressure, respectively:

2N N
un(p) = of(wéy  and  py(p) =D of(w)E}, (4.28)
k=1 k=1

where {&}Y_, and {¢/}Y | are mutually orthonormal basis functions for RB velocity
and pressure, respectively while o () and of (p) denotes the coefficients of the reduced
basis approximation for velocity and pressure, respectively. The method of rectification
basically replaces these reduced basis coefficients with alternate ones.

In order to calculate the alternate coefficients, first we express the N snapshots for
velocity and pressure, respectively over the RB as:

N N
wp(p') = ap(phgl and  pa(p’) =) af(w)el (4.29)
k=1 k=1

from which we obtain the matrices R" (for velocity) and RP (for pressure) with columns
equal to the coordinates of wy, (u?) and py(p?) in the reduced basis £ and &r , respectively,
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i.e. the coefficient matrices

af(u') . .. ot () af (u') oy (u)
RY = . . , RP =
af(p') afe () afy(p') oy (k)
(4.30)
We compute the offfine-only approximation of (4.27) for p = u%;i=1,...,N., i.e,
un(p') = Br(p)e  and  py(p)) = BH(p')EL, (4.31)
k=1 k=1

which gives us the coefficient matrices RY (for velocity) and RY (for pressure) with
entries B} and 7, respectively, i.e.,

Br(wh) . .. BHEY) e 075 I (TR

Ry =| . . . R, =
Bl - Br(e™) Bty o BRe™)
(4.32)
Finally, we set J* = R*(R%)~! and J? = RP(RY,)~!. The computation of J* and J? is
done once in the offline stage and matrices are stored.
In the online stage, we compute the rectified solutions 'y (p) and p\(p) to problem
(4.27) for any p € P as

N N
un(p) =Y Bi(pek  and  py(p) = BL(wE, (4.33)

k=1 k=1

where 8" = J*B% and 8" = JPBP are the coordinates for velocity and pressure, re-
spectively. Now, combining three approaches; the supremizer enrichment [132], the
offline-online stabilization [2] and the rectification approach, one can have the following
possible options in the online stage:

e offline-online stabilization with/without supremizer with/without rectification

e offline-only stabilization with/without supremizer with/without rectification
In this chapter we are only interested in the following options:

e offline-only stabilization with supremizer with rectification

o offline-only stabilization without supremizer with rectification
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4.2.1 Numerical results and discussion

In this section we present some numerical solutions for the new stabilization strategy
presented in section 4.2. We consider the following two test cases with increasing com-
plexity as we move from test case one to test case two.

Cavity test case

As a first example we consider the same parametrized cavity domain (Fig. 2.1) as in
previous chapters. Figure 4.3 shows the RB solutions for velocity (left) and pressure
(right), respectively. These solutions are obtained for online stabilization (top) and
online rectification (below). Recall that in both cases the offline stage is stabilized. From
these plots, we see that the solutions obtained by two different stabilization approaches
are same.

Figure 4.4 illustrates the absolute error between FE and RB solutions for velocity,
using different stabilization options. We see that the error for rectification method is
1075 which is almost zero. However offline-online stabilization method is still better (as
was in previous chapters).

Similarly in Fig. 4.5 we plot the absolute error between FE and RB solution for
pressure. In this case the rectification method is able to reduce the error down to
10~°, apart from some peaks at different values of N. These peaks are due to the poor
conditioning of the matrix RY;, which, in this case is controlled by the enrichment of RB
velocity space with supremizer solutions and the error is decreased to 1077,
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Figure 4.3: Comparison between the RB solutions for velocity (left) and pressure
(right), respectively obtained by online stabilization (top) and online rectification (bot-
tom).



4.2. RECTIFICATION METHOD FOR STOKES PROBLEM 88

0 —8—gnline stabilization (with supremizer)
10 —&#—online stabilization (no supremizer)
—8—pnline rectification (with supremizer)
==&—=gnline rectification (no supremizer)
= 10_2 F
=z
7
= 10
=
=
10-6 L
10-8 |
2 4 6 ) 10 12
N

Figure 4.4: Cavity problem: Velocity error between FE solution and RB solution for
different possible options with N, = N, = 13.
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Figure 4.5: Cavity problem: Pressure error between FE solution and RB solution for
different possible options with N, = N, = 13.
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T-bypass test

In order to see the validity of rectification method in more challenging problems, for
instance, in this example we consider the problem with many parameters. We take
the example of “T-bypass” configuration from Rozza and Veroy [132]. Parametrized
domain is shown in Fig. 4.6 with vector of parameters p = [¢t,D, L, S, H, 6] labeled.
The parameter ranges in the offline stage are t = D = L = S = H € [0.5,1.5] and
0 € [0,7/6]. The online parameter values are t = D =L =S =H = 1.0 and § = /6.

S QQ
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3 0
H
L Q4
|
I1out
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Figure 4.6: Parametrized domain for T-bypass example.

In Figures 4.7 and 4.8 we show the absolute error between FE and RB solutions for
velocity and pressure, respectively for different stabilization options. From these results
we see that in the online rectification there are some peaks at different values of N. Some
of these peaks are controlled by the enrichment of supremizer in RB velocity spaces. But
in case of pressure these peaks are not completely controlled by supremizer enrichment.
In such cases one can use the POD orthonormalization [36] which can help to reduce the
condition number of rectification matrix R]]Dv.
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Figure 4.7: T-bypass example: Velocity error between FE solution and RB solution
for different possible options with N, = N, = 50.
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Figure 4.8: T-bypass example: Pressure error between FE solution and RB solution
for different possible options with N, = N, = 50.
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4.3 Concluding remarks

In this chapter we have introduced the rectification method for parametrized Stokes
problem. We have reviewed the paper by Maday et al. [94] for the advection-diffusion
problem from which we extended the idea of post processing to get the rectified solution
of reduced parametric viscous problem. More specifically the rectification method is
used to improve the offline-only stabilization option. The main outcomes of this chapter
based on numerical experiments are as follows:

e we point out that in case of advection-dominated problem, even if we do not
consider the vanishing viscosity, we are able to get a stable RB solution with the
post processing (rectification) only, see for instance Fig 4.2 (blue line). This case
was not reported previously in [94];

e In case of Stokes problem we are able to get a stable RB solution for velocity and
pressure while doing the rectification on offline-only stabilized RB solution;

e We have also compared rectification method with offline-online stabilization ap-
proach and conclude that offiine-online stabilization is best way to stabilize;

e supremizers play the same role in cavity flow case as in previous chapters, it im-
proves the pressure approximation and do not effect the velocity. However in more
complex problem (T-shape), the role of supremizer for both velocity and pressure
is more important.



Chapter 5

Conclusion and Perspectives

5.1 Summary

The focus of this thesis has been the development of a RB method which gives a inf-sup
stable solution for parametrized Stokes and Navier-Stokes problem. We have developed
the stabilized RB method using the classical stabilization techniques [27, 30, 68, 69] in the
high-fidelity and, then, projecting on RB. This approach [2] has been combined with the
supremizer enrichment approach [132] to get few options; (i) offline-online stabilization
with supremizer, (ii) offline-online stabilization without supremizer, (iii) offline-only
stabilization with supremizer and (iv) offline-only stabilization without supremizer. The
first three options have been studied in this thesis and results are compared through
numerical tests and using equal order velocity-pressure interpolation (Py/Px;k = 1,2).
The last option is not sufficient to guarantee stability. We have considered both the
steady and unsteady problems in parametric settings. The numerical simulations have
been carried out in FreeFem++ [59] and then in RBniCS [10].

In Chapter 2, the classical residual based stabilization method given by Franca and
Hughes [68] has been used to develop the stabilized RB method for parametrized steady
and unsteady Stokes problem. We have compared the offline-online stabilization ap-
proach [2, 3] with the supremizer enrichment approach [132], through numerical results.
In order to support the offline-online stabilization we have also experimented the stabi-
lization techniques by Brezzi and Pitkaranta [27] and also lowest order stabilized element
P1/Py. The effect of varying stabilization coefficient 6 on RB velocity and pressure has
been presented. We have also incorporated the sensitivity analysis on time step At in
order to verify the stability condition on At in reduced order. The computational costs
of stabilized method using (Py/P; k = 1,2) has been compared with the stable Taylor-
Hood FE (P2/Py). All the numerical tests have been performed on a parametrized cavity
flow, where the parameters are physical (viscosity) and geometrical, acting on the length
of the flow cavity.

In Chapter 3, the stabilized RB method for the approximation of parametrized steady
and unsteady Navier-Stokes problem have been developed. The RB formulation is build,
using the classical residual based stabilization technique SUPG [30] in the full order
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method during the offiine stage and, then, projecting on the RB space. We have only
addressed the RB inf-sup stability and not the instability caused by dominating ad-
vection field, since we are dealing with low to moderate Reynolds number. We have
compared our approach [2] with the existing approaches [132] through a series of nu-
merical experiments. For instance, the comparison between offline-online stabilization
with/without supremizer and offline-only stabilization for steady and unsteady Navier-
Stokes problems is presented. Similar to Chapter 2, the proposed method has been
tested on a parametrized cavity problem.

In Chapter 4, a new online stabilization strategy has been presented for the approxi-
mation of parametrized Stokes problem. We have performed a post processing based on
rectification method to correct the consistency of the offline-only stabilization approach.
This approach has been compared with residual based stabilization approach presented
in Chapter 2. We summarize the main findings of this thesis as follows:

e from all the numerical results carried out in this thesis, we conclude that the
offline-online stabilization is the most appropriate way to perform reduced basis
stabilization of parametrized Stokes and Navier-Stokes problem;

e in case of velocity, offline-online stabilization method allows us to avoid the ad-
dition of supremizer enrichment to fulfill the reduced order parametric inf-sup
condition by reducing the dimension of reduced velocity space and therefore it can
reduce the computational cost of online stage;

e in case of pressure, offline-online stabilization with supremizer has better perfor-
mance in terms of error as compare to offline-online stabilization without suprem-
izer;

e the lack of consistency is causing larger errors if we use stabilized bilinear forms
during the offline stage and non-stabilized bilinear forms during the online stage,
i.e if we use offline-only stabilized method;

e construction of stable reduced basis functions in the offline stage does not guaran-
tee the stable RB solution in the online stage, therefore, we also need stabilization
in online stage;

e a post processing based on rectification is helpful to improve the consistency error
in the offline-only stabilization even if this approach is still less accurate than the
consistent offline-online stabilization but it can be useful and less expensive;

e in terms of CPU time, the Taylor-Hood FE pair (Py/P;) is more expensive than
(P1/P;) stabilized but less expensive than (P2 /P9) stabilized.

5.2 Perspectives for future work

After summarizing the work carried out in this thesis, we still have some open questions
and suggestions to improve this work in future, in order to make this approach applicable
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to more and more complex problems. We conclude this work by giving some plans,
connections and suggestions for future work:

in order to develop a certified stabilized RB method, an a posteriori error analysis
[63, 144] is needed for residual based stabilization in a reduced order setting, for
which we suggest to have a look into the error analysis of stabilized FE methods
(82, 136];

the computational cost of stabilized RB method in case of nonlinear problems can
be decreased by using the Empirical Interpolation method (EIM) [13];

one can extend this work to develop a Variational MultiScale (VMS) method for
turbulent flows with moderate-higher Reynolds number [134];

this work is applicable to optimal control problems, see for instance environmental
applications in marine sciences [137];

this work can be extended to the fluid structure interaction (FSI) problems in
convection dominated regime where the solutions (in particular the pressure of
fluid) are traveling waves [9]:

further application of this work could be the development of efficient stabilized RB
methods to simulate conjugate heat transfer for multi-components systems, which
appear in several engineering applications [57].
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