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Chapter 1

Introduction

Molecular dynamics (MD) simulations in explicit solvent are nowadays a funda-
mental tool used to complement experimental investigations in biomolecular mod-
eling [1]. Typical molecular dynamics simulations are usually limited to the mi-
croseconds timescale, although milliseconds timescales can be achieved with ad-hoc
machines [2]. To overcome timescale limitations, over the years several enhanced
sampling techniques have been developed [3–5], allowing to sample events that
would require a much longer time in order to spontaneously happen. Simulations
length is only one of the two factors contributing to simulations accuracy. The
second important factor is the ability of the employed potential energy function,
also called force field, to correctly describe the physics of the simulated system.
The continuous refinement of enhanced sampling techniques, together with the
constant growth of computing power, made the force field the major responsi-
ble of simulations inaccuracy. It is then necessary to always validate molecular
simulations against experiments when possible. The usual procedure consists in
performing a simulation and computing some observable for which an experimen-
tal value has been already measured. If the calculated and experimental values are
compatible, the simulation can be trusted and other observables can be estimated
in order to make genuine predictions. If the discrepancy between calculated and
experimental values is significant, one is forced to make a step back and perform
a new simulation with a refined force field. For instance, current force fields still
exhibit visible limitations in the study of protein-protein interactions [6], in the
structural characterization of protein unfolded states [7], in the simulation of the
conformational dynamics of unstructured RNAs [8–10],and in the blind prediction
of RNA structural motifs [10–12]. Force fields improvement is a very challenging
task with many groups involved in this “undertaking”. In fact, many correlated
parameters should be adjusted, and modifications of one of them could easily lead
to unpredictable effects on all the others. Furthermore, it is not guaranteed that
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the employed potential energy functional form is sufficient to describe the real en-
ergy function of the system. As a consequence, an emerging strategy is to restrain
the simulations in order to enforce the agreement with experimental data. It must
be noticed that experimental knowledge is usually already encoded in the simu-
lation of complex systems (e.g., a short simulation starting from an experimental
structure will then be biased toward it). If properly combined with simulations,
experiments can be a valuable alternative to quantum chemistry based force-field
refinement. Moreover, it must be noticed that usually quantum chemistry calcu-
lations are performed on short fragments while experiments are usually performed
on much longer molecules. Particular care should be taken when interpreting bulk
experiments that measure averages over a large number of copies of the same
molecule. These experiments are valuable in the characterization of dynamical
molecules, where heterogeneous structures might be mixed and contribute with
different weights to the experimental observation. In such cases, a proper combi-
nation of them with molecular simulations can allow to construct a high-resolution
picture of molecular structure and dynamics [13–15].

This thesis describes two different methods that can be used in order to refine
available molecular dynamics force-field based on experimental data. Although the
difference will be more clear in next chapters, where both methods will be intro-
duced and discussed, we propose here a very short introduction of both together
with a summary table which will facilitate the reading of the thesis.

Both methods can be used either to just enforce experimental data or to per-
form force-field refinement based on the enforced experimental data. In both
method, the employed experimental observations, are to be considered as ensem-
ble measurements. The first method is based on the Maximum Entropy principle
(first and second column of Table 1.1). Maximum Entropy is a natural choice
when enforcing ensemble averages in molecular dynamics simulations. As we will
see in Chap. 2, the effect of the Maximum Entropy principle is to add a bias which
is a linear function of the forward model used to back-calculate the enforced con-
straints (e.g. Karplus relation in the case of 3J scalar couplings). An important
effect of this result is that when using Maximum Entropy in a force-field refine-
ment context, two important limitations subsist: the first one is that it is possible
to refine only variables (e.g. torsions, distances, etc) for which an experiment is
available while the second one is that, if we are not allowed (or we don’t want) to
modify the functional form of the force-field, we are limited to use only those ex-
perimental data having a forward model compatible with the employed force-field
(e.g. 3J scalar couplings and Karplus relations). To overcame these limitations,
we developed another method (third column of Table 1.1), which is not based
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on the maximum entropy principle and allows the refinement using arbitrary bias
functions, and experimental data (e.g. it is in principle possible to enforce a given
average for the torsion X having experimental data on the torsion Y only). While
the Maximum Entropy based methods can can be used both on-the-fly during MD
simulations (first row in Tab. 1.1) and by reweighting already performed simu-
lations, the second method (third column in Tab. 1.1) can only be used with a
reweighting procedure. This method requires in fact to compute the variance of
the enforced observables, for which is impossible to build an unbiased estimator
to be used on-the-fly.

MaxEnt Self-Consistent MaxEnt Refinement Refinement using arbitrary functions

On-the-fly
Method Sec. 2.5.3 Sec. 3.2 See Introduction

Application Sec. 4 Chap. 5 X

Reweighting
Method Subsec. 2.5.1 Sec. 5.2 Sec. 3.3

Application [16] X Sec. 6

Table 1.1: Summary of the introduced methods and their applications.

The results discussed in Chapter 4, 5 and 6 are largely based on the following
publications:

• Cesari A., Gil-Ley A. and Bussi G. Combining Simulations and Solution
Experiments as a Paradigm for RNA Force Field Refinement. Journal of
Chemical Theory and Computation. 2016, 12 (12), 6192-6200.

• Cesari A., Reißer S. and Bussi G. Using the Maximum Entropy Principle to
Combine Simulations and Solution Experiments. Computation. 2018, 6
(1).

• Cesari A., Bottaro S., Banáš P., Šponer J., Lindorff-Larsen K. and Bussi
G. Automated force-field parametrization guided by multi-system ensemble
averages. (In preparation)

Publications in collaborations with other groups:

• Rangan R., Bonomi M., Heller G. T., Cesari A., Bussi G and Vendrus-
colo M. Determination of Structural Ensembles of Proteins: Restraining vs
Reweighting. (Submitted)

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00944
http://www.mdpi.com/2079-3197/6/1/15/html


Chapter 2

The Maximum Entropy Principle

2.1 The Maximum Entropy Principle
The content of this chapter is mainly adapted from our published works [17, 18].

The maximum entropy principle was introduced for the first time in 1957 by-
Jaynes [19, 20] and it was proposed as a link between thermodynamic entropy and
information-theory entropy. Before this date, entropy was only used as a valida-
tion against laws of thermodynamics [19]. For the first time, Janes proposed to use
the entropy as a starting point to be used in building new theories. In particular,
distributions that maximize the entropy subject to some physical constraints were
postulated to be useful in order to make inference on the system under study. In
its original formulation, the maximum entropy principle postulates that, given a
set of states describing a physical system, the distribution of such states that max-
imize the Shannon’s entropy is the best probability distribution compatible with
a set of observed data. Later, the maximum entropy principle has been extended
in order to be invariant with respect to changes of coordinates and coarse-graining
[21]. The new formulation, also called maximum relative entropy, has been shown
to play an important role in multiscale problems [22]. In this thesis, the entropy
is computed relative to a given prior distribution P0(q) which, in our applications,
is the one associated to the unrefined potential energy function. For a system
described by a set of continuous variables q, the relative entropy is then defined
as

S[P ||P0] = −
∫

dq P (q) ln P (q)
P0(q) . (2.1)

This quantity should be maximized subject to constraints in order to be compatible
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with observations:


PME(q) = arg max
P (q)

S[P ||P0]∫
dq si(q)P (q) = ⟨si (q)⟩ = sexp

i ; i = 1, . . . , M∫
dq P (q) = 1

(2.2)

P0(q) encodes the knowledge available before the experimental measurement and
is thus called prior probability distribution. The first equation in the system
2.2 fixes the functional form of the refined probability distribution to be the one
maximizing the relative entropy with respect to the prior distribution P0(q). Once
the functional form has been derived, M experimental observations constrain the
ensemble average of M observables si(q) computed over the distribution P (q)
to be equal to sexp

i . The additional constraint, in the third row, ensures that
the distribution P (q) is normalized. PME(q) represents the best estimate for the
probability distribution after the experimental constraints have been enforced and
is thus called posterior probability distribution. The subscript ME stresses the
fact that this is also the distribution that maximizes the entropy.

By noticing that the relative entropy S[P ||P0] is the negative of the Kullback-
Leibler divergence DKL[P ||P0] [23], the procedure described above can be also
seen as searching the posterior distribution that is as close as possible to the
prior distribution and agrees with the given experimental observations. From the
information theory point of view, the Kullback-Leibler divergence measures how
much information is gained by replacing P0(q) with P (q). The maximization
problem formulated in Eq. 2.2 can be solved using the method of Lagrangian
multipliers, namely searching for the stationary points of the Lagrange function

L = S[P ||P0] −
M∑

i=1
λi

(∫
dq si(q)P (q) − sexp

i

)
− µ

(∫
dq (q)P (q) − 1

)
, (2.3)

where λi and µ are suitable Lagrangian multipliers which will be computed later.
The functional derivative of L with respect to P (q) is

δL
δP (q) = − ln P (q)

P0(q) − 1 −
M∑

i=1
λisi(q) − µ . (2.4)

By setting δL
δP (q) = 0 and neglecting the normalization factor, the posterior reads

PME(q) ∝ e−
∑M

i=1 λisi(q)P0(q) . (2.5)

It is now possible to compute the Lagrangian multipliers λi by enforcing the agree-
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ment with the experimental data. Several approaches on how to compute the La-
grangian multipliers will be discussed in next sections. In the following, in order
to have a more compact notation, we will drop the subscript from the Lagrangian
multipliers and write them as a vector whenever possible.

Eq. 2.5 could thus be equivalently written as

PME(q) ∝ e−λ·s(q)P0(q) . (2.6)

Notice that the vectors s and λ have dimensionality M , whereas the vector q has
dimensionality equal to the number of degrees of freedom of the analyzed system.

In short, the maximum relative entropy principle gives a recipe to obtain the
posterior distribution that is as close as possible to the prior distribution and
agrees with some experimental observation. In the following, we will drop the word
“relative” and we will refer to this principle as the maximum entropy principle.

2.2 Combining Maximum Entropy Principle and
Molecular Dynamics

In order to enforce experimental data into molecular dynamics simulations, the
maximum entropy principle should be properly formalized in the context of molec-
ular dynamics simulations (MD). When combining the maximum entropy principle
with MD simulations the prior knowledge P0(q) is represented by the probability
distribution associated to the employed potential energy, that is typically an empir-
ical force field in classical MD. In particular, given a potential energy described by
the function V0(q), the associated probability distribution P0(q) at thermal equi-
librium is the Boltzmann distribution P0(q) ∝ e−βV0(q), where β = 1

kBT
, T is the

system temperature, and kB is the Boltzmann constant. According to Eq. 2.6, the
posterior will be PME(q) ∝ e−λ·s(q)e−βV0(q) . The potential energy generating the
posterior distribution can be computed by Boltzmann inversion and is expressed
by:

VME (q) = V0 (q) + kBTλ · s (q) .2.7 (2.7)

The effect of the constraint on the ensemble average is that of adding a bias
term to the energy that is linear in the function s(q) with prefactors, proportional
to the corresponding Lagrangian multipliers, chosen in order to enforce the correct
averages. This linear term is guaranteed to make the posterior distribution closer
than the prior distribution to an ideal one that has the correct experimental av-
erages [24]. It must be noticed that the effect of such a linear term, is completely
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Figure 2.1: The effect of a linear correcting potential on a given reference potential.
P0(s) is the marginal probability distribution of some observable s(q) according to
the reference potential V0(q) and F0(s) is the corresponding free-energy profile (left
panel). Energy scale is reported in the vertical axis and is given in units of kBT .
Probability scales are not reported. Vertical lines represent the average value of the
observable s in the prior (⟨s⟩0) and in the experiment (sexp). A correcting potential
linear in s (green line) shifts the relative depths of the two free-energy minima,
leading to a new free energy profile FME(s) = F0(s) + kBTλ∗s that corresponds to
a probability distribution PME(s) (central panel). Choosing λ∗ equal to the value
that minimizes Γ(λ) (right panel) leads to an average ⟨s⟩ = sexp.

different from the ones used in constrained MD simulations, where the value of
some function of the coordinates is fixed at every step (e.g., using the SHAKE
algorithm [25]), or harmonic restraints, where a quadratic function of the observ-
able is added to the potential energy function. Notice that the words constraint
and restraint are usually employed when a quantity is exactly or softly enforced,
respectively. Strictly speaking, in the maximum entropy context, ensemble aver-
ages ⟨s(q)⟩ are constrained whereas the corresponding functions s(q) are (linearly)
restrained.

If one considers the free energy as a function of the experimental observables
(also known as potential of mean force), which is defined as

F0(s′) = −kBT ln
∫

dq δ(s(q) − s′)P0(q) , (2.8)

the effect of the corrective potential in Eq. 2.7 is just to tilt the free-energy land-
scape

FME(s) = F0 (s) + kBTλ · s + C , (2.9)

where C is an arbitrary constant. A schematic representation of this tilting is
reported in Fig. 2.1.

Any experimental data that is the result of an ensemble measurement can
be used as a constraint. Typical examples for biomolecular systems are solu-
tion nuclear-magnetic-resonance (NMR) experiments such as measures of chemical
shifts [26], scalar couplings [27], or residual dipolar couplings [28], and other tech-
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niques such as small-angle X-ray scattering (SAXS) [29], double electron-electron
resonance (DEER) [30], and Förster resonance energy transfer [31]. In order to
correctly enforce the result of an ensemble experiment into MD simulations there
should exists a function, called forward model, mapping the atomic coordinates
of the system to the measured experimental quantity. The output of the forward
model can be then compared to the experimental value and restrained if necessary.
For instance, in the case of 3J scalar couplings, the forward model is given by the
so-called Karplus relations [27], that are trigonometric functions of the dihedral
angles. A more detailed introduction to Karplus relations can be found in Sub-
sec. 4.1. It must be noted that the formulas used in standard forward models are
often parameterized empirically, and one should take into account errors in these
parameters on par with experimental errors (see Sec. 2.3).

2.2.1 A Minimization Problem

In this section we show that the optimal values of λ can be found either by enforcing
the constraints of Eq. 2.2 or by minimization. It is in fact possible to recast the
problem of finding the Lagrangian multipliers in a minimization problem, allowing
the use of known minimization techniques. In particular, consider the function [32,
33]

Γ(λ) = ln
[∫

dq P0(q)e−λ·s(q)
]

+ λ · sexp. (2.10)

Notice that the first term is the logarithm of the ratio between the two partition
functions associated to the potential energy functions V (q) and V0(q), that is pro-
portional to the free-energy difference between these two potentials. The gradient
of Γ(λ) is

∂Γ
∂λi

= sexp
i −

∫
dq P0(q)e−λ·s(q)si(q)∫

dq P0(q)e−λ·s(q) = sexp
i − ⟨si(q)⟩. (2.11)

It is clear from Eq. 2.11 that minimizing the function Γ, namely searching for the
set of λ where ∂Γ

∂λi
= 0, is identical to enforcing the constraints in Eq. 2.2. This

means that the constraints in Eq. 2.2 can be enforced by searching for a stationary
point λ∗ of Γ(λ) (see Fig. 2.1). The Hessian of Γ(λ) is

∂Γ
∂λi∂λj

= ⟨si(q)sj(q)⟩ − ⟨si(q)⟩⟨sj(q)⟩ (2.12)

and is thus equal to the covariance matrix of the forward models in the posterior
distribution. It can be shown that, the Hessian is always positive definite except
when some of the enforced observables are correlated. In such case the Hessian
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is positive semi-definite [33]. The solution of Eq. 2.2 will thus correspond to a
minimum of Γ(λ) that can be searched for instance by a steepest descent procedure
or stochastic gradient. However particular care should be taken in cases where such
minimum not exist. In particular, one should pay attention to the following cases:

• When data are incompatible with the prior distribution.

• When data are mutually incompatible. As an extreme case, one can imag-
ine two different experiments that measure the same observable and report
different values.

In both cases Γ(λ) will have no stationary point. Clearly, there is a continuum
of possible intermediate situations where data are almost incompatible. In Sec.
2.4 we will see what happens when the maximum entropy principle is applied to
model systems designed in order to highlight these difficult situations.

2.2.2 Connection with Maximum Likelihood Principle

Having defined the function Γ(λ) in Eq. 2.10, it is possible to easily highlight a
connection between maximum entropy and maximum likelihood principles. Let’s
suppose that exist a set of Ns molecular structures qt generating an experimental
value sexp = 1

Ns

∑Ns
t=1 s(qt). It is possible to rewrite e−NsΓ(λ) as

e−NsΓ(λ) = e−Nsλ·sexp

[
∫

dqP0(q)e−λ·s(q)]Ns
= e−λ·

∑
t

s(qt)

[
∫

dqP0(q)e−λ·s(q)]Ns
=

=
Ns∏
t=1

e−λ·s(qt)∫
dqP0(q)e−λ·s(q) =

Ns∏
t=1

P (qt)
P0(qt)

(2.13)

The last term is the ratio between the probability of drawing the structures
qt from the posterior distribution and that of drawing the same structures from
the prior distribution. Since the minimum of Γ(λ) corresponds to the maximum
of e−NsΓ(λ), the distribution that maximizes the entropy under experimental con-
straints is identical to the one that, among an exponential family of distributions,
maximizes the likelihood of a set of structures with average value of the observables
s equal to the experimental value [34, 35]. This equivalence can be considered as
an added justification for the maximum entropy principle [34]. If the notion of se-
lecting a posterior P (q) that maximizes the entropy is not compelling enough, one
can consider that this same posterior is, among the distributions with the expo-
nential form of Eq. 2.5, the one that maximizes the likelihood of being compatible
with the experimental sample.
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2.2.3 Equivalence to the Replica Approach

Maximum Entropy is not the only possibility to enforce ensemble averages in
molecular dynamics simulations. Among the different methods developed during
the years, restrained ensemble [36–38] should be mentioned for its equivalence to
maximum entropy in some particular cases. In restrained ensembles Nrep identical
copies (replicas) of the system are simulated in parallel, each of which having its
own atomic coordinates. The set of replicas is then used to mimic the ensemble
of structure. The agreement with the M experimental data is then enforced by
adding a harmonic restraint for each observable, centered on the experimental
reference and acting on the average over all the simulated replicas. This results in
a restraining potential with the following form:

VRE

(
q1, q2, . . . , qNrep

)
=

Nrep∑
i=1

V0 (qi) + k

2

M∑
j=1

 1
Nrep

Nrep∑
i=1

sj(qi) − sexp
j

2

, (2.14)

where k is a suitably chosen force constant. It has been shown [33, 39, 40] that this
method produces the same ensemble as the maximum entropy approach in the limit
of large number of replicas (Nrep → ∞). Although this can be demonstrated in dif-
ferent ways[40], the simplest explanation proposed by Chodera[33] is the following.
The potential in Eq. 2.14 results in the same force − k

Nrep

(
1

Nrep

∑Nrep

i=1 sj(qi) − sexp
j

)
applied to the observable sj(q) in each replica. As the number of replicas grows,
the fluctuations of the average decrease and the applied force becomes constant
in time, so that the explored distribution will have the same form as Eq. 2.5 with
λ = k

NrepkBT

(
1

Nrep

∑Nrep

i=1 s(qi) − sexp
)
. If k is chosen large enough, the average be-

tween the replicas will be forced to be equal to the experimental one. In order to
enforce the desired average, it has been shown that is also necessary that k grows
faster than Nrep [40]. In practical implementations, k should be finite in order to
avoid infinite forces. A direct calculation of the entropy-loss due to the choice of
a finite Nrep has been proposed to be an useful tool in the search for the correct
number of replicas [41].

2.3 Modeling Experimental Errors
The maximum entropy method can be modified in order to account for uncertain-
ties in experimental data. This step is fundamental in order to reduce over-fitting.
In this section we will briefly consider how the error can be modeled, following
what we introduced in Ref. [17]. In our approach, errors are modeled modifying
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the experimental constraints introduced in Eq. 2.2 by introducing an auxiliary
variables ϵi for each data point. This auxiliary variable represent the discrepancy,
or equivalently the residual, between the experimental and the simulated value.
The constraints in Eq. 2.2 are then modified as follows:

⟨(s(q) + ϵ)⟩ = sexp . (2.15)

The auxiliary variable ϵ is a vector with dimensionality equal to the number of
constraints and models all the possible sources of error, including inaccuracies of
the forward models (introduced in Sec. 2.2) as well as experimental uncertainties.
The desired functional form used to model errors, can be chosen by selecting a
proper prior distribution function for the variable ϵ. A common choice is repre-
sented by a Gaussian prior with 0 mean and fixed standard deviation σi for the
ith observable

P0 (ϵ) ∝
M∏

i=1
exp

(
− ϵ2

i

2σ2
i

)
. (2.16)

The value of σi corresponds to the level of confidence in the ith data point. A value
of σi = ∞ implies to completely trust the underlying prior distribution (force-field)
and totally discard informations in the data. On the other hand, a value of σi = 0
means having complete confidence in the data, that will be fitted as best as possible
introducing all the necessary modifications in the force-field distribution. Notice
that the independence of q and ϵ implies that Eq. 2.15 can be written as:

⟨s(q)⟩ = sexp − ⟨ϵ⟩ (2.17)

where ⟨ϵ⟩ is computed in the posterior distribution P (ϵ) ∝ P0(ϵ)e−λ·ϵ. The task
of incorporating the experimental error in the maximum entropy approach is then
translated in the easy operations of enforcing a different experimental value, cor-
responding to the one in Eq. 2.17. Notice that, since the value of ⟨ϵ⟩ only depends
on its prior distribution P0(ϵ) and on λ it can be computed analytically in some
particular cases. For a Gaussian prior with standard deviation σi (Eq. 2.16) we
have:

⟨ϵi⟩ =
∫

dϵe

(
−

ϵ2
i

2σ2
i

)
ϵie

(
−
∑

j
ϵjλj

)
∫

dϵe

(
−

ϵ2
i

2σ2
i

)
e

(
−
∑

j
ϵjλj

) = −λiσ
2
i . (2.18)

Thus, as λ grows in magnitude, a larger discrepancy between simulation and ex-
periment will be accepted. In addition, it can be seen that applying the same
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constraint twice is exactly equivalent to applying a constraint with a σ2
i reduced

by a factor two. This is consistent with the fact that the confidence in the repeated
data point is increased. This relation also highlight that a Gaussian prior is not
a good choice if outliers are present in the data. In fact, since the value of λi is
unbound, in case of outliers and hence big values of ⟨ϵi⟩, the value of λi will growth
as much as necessary to fit the outlier.

Other prior functions are also possible in order to better account for outliers
and to deal with cases where the standard deviation of the residual is not known
a priori. One might consider the variance of the ith residual σ2

0,i as a variable
sampled from a given prior distribution:

P0 (ϵ) =
M∏

i=1

∫ ∞

0
dσ2

0,iP0(σ2
0,i)

1√
2πσ2

0,i

exp
(

− ϵ2
i

2σ2
0,i

)
. (2.19)

A flexible functional form for P0(σ2
0,i) can be obtained using the following Gamma

distribution

P0(σ2
0,i) ∝ (σ2

0,i)κ−1 exp
(

−
κσ2

0,i

σ2
i

)
. (2.20)

In the above equation σ2
i is the mean parameter of the Gamma function and must

be interpreted as the typical expected variance of the error on the ith data. κ,
which must satisfy κ > 0, is the shape parameter of the Gamma distribution
and expresses how much the distribution is peaked around σ2

i . In practice, it
controls how much the optimization is tolerant to large discrepancies between the
experimental data and the enforced average. Notice that in Ref. [17] a different
convention was used with a parameter α = 2κ − 1. By setting κ = ∞ a Gaussian
prior on ϵ will be recovered. Smaller values of κ will lead to a prior distribution
on ϵ with “fatter” tails and thus able to accommodate larger differences between
experiment and simulation. For instance, the case κ = 1 leads to a Laplace prior
P0(ϵ) ∝ ∏

i exp
(
−

√
2|ϵ|
σi

)
. After proper manipulation, the resulting expectation

value of ⟨ϵ⟩ can be shown to be

⟨ϵi⟩ = − λiσ
2
i

1 − λ2
i σ2

i

2κ

. (2.21)

In this case, it can be seen that applying the same constraint twice is exactly
equivalent to applying a constraint with a σ2

i reduced by a factor two and a κ

multiplied by a factor two. A detailed comparisons of both the prior P0 (σ0) and
P0 (ϵ) as function of k, is provided in Appendix A.

In terms of the minimization problem of Section 2.2.1, modeling experimental
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errors as discussed here is equivalent to adding a contribution Γerr to Eq. 2.10:

Γ(λ) = ln
∫

dq P0(q)e−λ·s(q) + λ · sexp + Γerr(λ) . (2.22)

For a Gaussian noise with preassigned variance (Eq. 2.16) the additional term is

Γerr(λ) = 1
2

M∑
i=1

λ2
i σ

2
i . (2.23)

For a prior on the error in the form of Eqs. 2.19 and 2.20 one obtains

Γerr(λ) = −κ
M∑

i=1
ln
(

1 − λ2
i σ

2
i

2κ

)
. (2.24)

In the limit of large κ, Eq. 2.24 is equivalent to Eq. 2.23. If the data points
are expected to all have the same error σ0, unknown but with a typical value σ,
Eq. 2.24 should be modified to Γerr(λ) = −κ ln

(
1 − |λ|2σ2

2κ

)
.

Equation 2.24 shows that by construction the Lagrangian multiplier λi will be
limited in the range (−

√
2κ

σi
, +

√
2κ

σi
). The effect of using a prior with κ < ∞ is thus

that of restricting the range of allowed λ in order to avoid too large modifications
of the prior distribution. In practice, values of λ chosen outside these boundaries
would lead to a posterior distribution P (ϵ) ∝ P0(ϵ)e−λ·ϵ that cannot be normal-
ized. A plot, highlighting the dependence of λi from the residual ⟨ϵi⟩ can be found
in Appendix A Fig. A.2.

Except for trivial cases (e.g., for Gaussian noise with σ = 0), the contribution
originating from error modeling has positive definite Hessian and as such it makes
Γ(λ) a strongly convex function. Thus, a suitable error treatment can make the
minimization process numerically easier.

It is worth mentioning that a very similar formalism can be used to include
not only errors but more generally any quantity that influences the experimental
measurement but cannot be directly obtained from the simulated structure. For
instance, in the case of residual dipolar couplings [28], the orientation of the consid-
ered molecule with respect to the external field is often unknown. The orientation
of the field can be then used as an additional vectorial variable to be sampled with
a Monte Carlo procedure, and suitable Lagrangian multipliers can be obtained in
order to enforce the agreement with experiments [42]. Notice that in this case
the orientation contributes to the ensemble average in a non additive manner so
that Eq. 2.17 cannot be used. Interestingly, thanks to the equivalence between
multi-replica simulations and maximum entropy restraints, equivalent results can
be obtained using the tensor-free method of Ref. [43].

Finally, we note that several works introduced error treatment using a Bayesian
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framework [44–47]. Bayesian ensemble refinement [45] introduces an additional
parameter (θ) that takes into account the confidence in the prior distribution.
This parameter enters as a global scaling factor in the errors σi for each data
point. Thus, the errors σi discussed above can be used to modulate both our
confidence in experimental data and our confidence in the original force field. The
equivalence between the error treatment of Ref. [45] and the one reported here is
further discussed in Appendix A.2

2.4 Exact results on model systems
In this section we illustrate the effects of adding restraints using the maximum
entropy principle on simple model systems. We build a simple system in which
the prior function consists in a sum of NG Gaussians with center sα and covariance
matrix Aα, where α = 1, . . . , NG:

P0(s) =
NG∑
α=1

wα√
2π det Aα

e− (s−sα)A−1
α (s−sα)
2 . (2.25)

The coefficients wα provide the weights of each Gaussian and are normalized
(∑α wα = 1). We here assume that the restraints are applied on the variable
s. For a general system, one should first perform a dimensional reduction in or-
der to obtain the marginal prior probability P0(s). By constraining the ensemble
averages of the variable s to an experimental value sexp the posterior becomes:

PME(s) = e−λ·s

Z(λ)
∑

α

wα√
2π det Aα

e− (s−sα)A−1
α (s−sα)
2 . (2.26)

With proper algebra it is possible to compute explicitly the normalization factor
Z(λ) = ∑

α wαe
λAαλ

2 −λ·sα . The function Γ(λ) to be minimized is thus equal to:

Γ(λ) = ln
(∑

α

wαe
λAαλ

2 −λ·sα

)
+ λ · sexp + Γerr(λ) (2.27)

and the average value of s in the posterior is

⟨s⟩ =
∑

α wαe
λAαλ

2 −λ·sα (sα − Aαλ)∑
α wαe

λAαλ
2 −λ·sα

. (2.28)

Notice that although the system is quite simple, we could not find a close formula to
compute λ∗ given sexp and Γerr. However, the solution can be found numerically
with the gradient descent procedure which is discussed later in Section 2.5 (see
Eq. 2.29).
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Figure 2.2: Effect of modeling error with a Gaussian probability distribution with
different standard deviations σ on the posterior distribution PME(s). The ex-
perimental value is here set to sexp = 5.7, which is compatible with the prior
distribution. Left and middle column: prior P0(s) and posterior PME(s) with
σ = 0, 2.5, 5.0. Right column: ensemble average ⟨s⟩ plotted as a function of σ
and Γ(λ) plotted for different values of σ. λ∗ denotes that value of λ that minimizes
Γ(λ).

2.4.1 Consistency between Prior Distribution and Exper-
imental Data

As mentioned in Sec. 2.2.1 there are particular cases in which the function Γ(λ)
is not strongly convex and hence the minimization could be difficult. Among the
great number of cases in which this problem could happen, we selected two general
cases of interest. We here show the case in which the enforced experimental data
are not compatible with the prior distribution.

To do so, we consider a one dimensional model with a prior expressed as a sum
of two Gaussians, one centered in sA = 4 with standard deviation σA = 0.5 and
one centered in sB = 8 with standard deviation σB = 0.2. The weights of the two
Gaussians are wA = 0.2 and wB = 0.8, respectively. The prior distribution is thus
P0(s) ∝ wA

σA
e−(s−sA)2/2σ2

A + wB

σB
e−(s−sB)2/2σ2

B , has an average value ⟨s⟩0 = 7.2, and is
represented in Fig. 2.2, left column top panel.

We first enforce a value sexp = 5.7, which is compatible with the prior proba-
bility. If we are absolutely sure about our experimental value and set σ = 0, the λ∗

which minimizes Γ(λ) is λ∗ ≈ 0.4 (Fig. 2.2 right column, bottom panel). In case
values of σ ̸= 0 are used, the Γ(λ) function becomes more convex and the optimal
value λ∗ is decreased. As a result, the average s in the posterior distribution is
approaching its value in the prior as the value of σ becomes larger and larger. The
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Figure 2.3: Same as Fig. 2.2, but the experimental value is here set to sexp = 2,
which is not compatible with the prior distribution.

evolution of the ensemble average ⟨s⟩σ varying σ between 0 and 10, with respect
to the initial ⟨s⟩0 and the experimental sexp, is shown in Fig. 2.2, right column
top panel. In all these cases the posterior distributions remain bimodal and the
main effect of the restraint is to change the relative population of the two peaks
(Fig. 2.2, left and middle columns). Notice that in case simple harmonic restraints
were applied, the posterior distribution would have been a Gaussian distribution
centered around the enforced sexp.

We then enforce an average value sexp = 2, which is far outside the original
probability distribution (see Figure 2.3). It is thus very unlikely that the value of
sexp has been generated by a distribution similar to the prior. The enforced value of
sexp can be then assumed to be incompatible with the prior distribution. If we are
absolutely sure about our experimental value and set σ = 0, the λ∗ which minimizes
Γ(λ) is very large, λ∗ ≈ 8 (Fig. 2.3 right column, bottom panel). Assuming zero
error on the experimental value is equivalent to having poor confidence in the
probability distribution sampled by the force field, and leads in fact to a PME(s)
completely different from P0(s). The two peaks in P0(s) are replaced by a single
peak centered around the experimental value, which is exactly met by the ensemble
average (⟨s⟩σ=0 = sexp = 2; Fig. 2.3 middle column top panel). If we instead have
more confidence in the distribution sampled by the force field and assume that
there might be an error in our experimental value, by setting σ = 2.5 we obtain a
value of λ∗ which is more than one order of magnitude lower (λ∗ ≈ 0.52) than in
the case with σ = 0. The two peaks in P0(s) are only slightly shifted towards lower
s, while their relative populations are shifted in favor of the peak centered around
4 (Fig. 2.3, left column bottom panel). In case we have very high confidence in
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the force field and very low confidence in the experimental value and set σ = 5.0,
the correction becomes very small (λ∗ ≈ 0.18) and the new ensemble average
⟨s⟩σ=5.0 ≈ 6.6, very close to the initial ⟨s⟩0 = 7.2 (Fig. 2.3, middle column bottom
panel). The evolution of the ensemble average ⟨s⟩σ with σ values between zero
and ten, with respect to the initial ⟨s⟩0 and the experimental sexp, is shown in Fig.
2.3, right column top panel.

In conclusion, when data that are not consistent with the prior distribution are
enforced, the posterior distribution could be severely distorted. Clearly, this could
happen either because the prior is completely wrong or because the experimental
values are affected by errors. By including a suitable error model in the maximum
entropy procedure, such as the one introduced in Sec.2.3, it is possible to easily
interpolate between the two extremes in which we completely trust the force field
or the experimental data.

2.4.2 Consistency between Data Points

A second case in which the function Γ(λ) is not convex is when trying to enforce
data that are inconsistent among each other. A simple example is trying to enforce
the same quantity to have two different experimental references. To show an
example of inconsistent data points we consider a two dimensional model with a
prior expressed as a sum of two Gaussians centered in sA = (0, 0) and sB = (3, 3)
with identical standard deviations σA = σB = 0.2 and weights wA = wB = 0.5.
The prior distribution is represented in Fig. 2.4.

This model is particularly instructive since, by construction, the two compo-
nents of s are highly correlated and is hence possible to see what happens when
inconsistent data are enforced. To this aim we study the two scenarios (i.e., consis-
tent and inconsistent data) using different error models (no error model, Gaussian
prior with σ = 1, and Laplace prior with σ = 1), for a total of six combinations.
In the consistent case we enforce sexp = (1, 1), whereas in the inconsistent one we
enforce sexp = (1, 0). Figure 2.4 reports the posterior distributions obtained in all
these cases.

When consistent data are enforced the posterior distribution is very similar to
the prior distribution, the only difference being a modulation in the weights of
the two peaks needed to enforce the constraints. The optimal value λ∗, marked
with a ⋆ in Figure 2.4, does not depend significantly on the adopted error model.
The main difference between including or not including error models can be seen
in the form of the Γ(λ) function. When errors are not included, Γ(λ) is almost
flat in a given direction, indicating that one of the eigenvalues of its Hessian is
very small. On the contrary, when error modeling is included, the Γ(λ) function
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Figure 2.4: Effect of different prior distributions for the error model in a two-
dimensional system. In the first (last) two columns, compatible (incompatible)
data are enforced. In first and third column, prior distributions are represented as
black contour lines and posterior distributions are shown in color scale. A black
dot and a ⋆ are used to indicate the average values of s in the prior and posterior
distributions respectively while an empty circle is used to indicate the target sexp.
In second and fourth columns, the function Γ(λ) is shown, and its minimum λ∗

is indicated with a ⋆. The first row reports results where errors are not modeled,
whereas the second and third rows report results obtained using Gaussian and
Laplace prior for the error model respectively. Notice that the a different scale
is used to represent Γ(λ) in the first row. For the Laplace prior, the region of λ
where Γ(λ) is undefined is marked as light green.

becomes clearly convex in all directions. In practical applications, the numerical
minimization of Γ(λ) would be more efficient.

When enforcing inconsistent data without taking into account experimental
error, the behavior is significantly different. Indeed, the only manner to enforce
data where the value of the two components of s are different is to significantly
displace the two peaks. On the contrary, the distortion is significantly alleviated
when taking into account experimental errors. Obviously, in this case the experi-
mental value is not exactly enforced and, with both Gaussian and Laplace prior,
we obtain ⟨s⟩ ≈ (0.7, 0.7).

By observing Γ(λ) it can be seen that the main effect of using a Laplace prior
instead of a Gaussian prior for the error is that the range of suitable values for λ

is limited. This allows one to decrease the effect of particularly wrong data points
on the posterior distribution.

In conclusion, when enforcing data that are not consistent among themselves
the posterior distribution could be severely distorted. Inconsistency between data
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could either be explicit (as in the case where constraints with different reference
values are enforced on the same observable) or more subtle. In the reported ex-
ample, the only way to know that the two components of s should have similar
values is to observe their distribution according to the original force field. In the
case of complex molecular systems and of observables that depend non-linearly on
the atomic coordinates, it is very difficult to detect inconsistencies between data
points a priori. By properly modeling experimental error it is possible to greatly
alleviate the effect of these inconsistencies on the resulting posterior. Clearly, if
the quality of the prior is very poor, correct data points might artificially appear
as inconsistent.

2.5 Strategies for the Optimization of Lagrangian
Multipliers

In order to find the optimal values of Lagrangian multipliers, one has to minimize
the function Γ (λ). The simplest possible strategy is gradient descent (GD), that
is an iterative algorithm in which Lagrangian multipliers are adjusted by following
the opposite direction of the gradient of Γ(λ). By using the gradient in Eq. 2.11
and the constraint in Eq. 2.17, the value of λ at the iteration k+1 can be obtained
from the value of λ at the iteration k as:

λ
(k+1)
i = λ

(k)
i − ηi

∂Γ
∂λi

= λ
(k)
i − ηi (sexp

i − ⟨si(q)⟩λ(k) − ⟨ϵi⟩λ(k)) , (2.29)

where η represents the step size or learning rate at each iteration and might be
different for different observables. Notice that the average ⟨si (q)⟩ should be com-
puted using the Lagrangian multipliers at the kth iteration λ(k). In order to com-
pute this average it is in principle necessary to sum over all the possible values of
q. This is possible for the simple model systems discussed in Section 2.4, where
integrals can be done analytically. However, for a real molecular system, summing
over all the conformations would be virtually impossible. Below we discuss some
possible alternatives.

Notice that although this thesis focuses mainly on equality restraints, in the
form of Eq. 2.2, the methods discussed here can be applied to inequality restraints
as well as discussed in Sec. 2.5.3.
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2.5.1 Ensemble Reweighting

If a trajectory has been already produced using the prior force field V0(q), samples
from this trajectory might be used to compute the function Γ(λ). In particular,
the integral in Eq. 2.10 can be replaced by an average over Ns snapshots qt sampled
from P0(q):

Γ̃(λ) = ln
(

1
Ns

Ns∑
t=1

e−λ·s(qt)
)

+ λ · sexp + Γerr(λ) . (2.30)

A gradient descent on Γ̃ results in a procedure equivalent to Eq. 2.29 where the
ensemble average ⟨s(q)⟩λ(k) is computed as a weighted average on the available
frames:

λ
(k+1)
i = λ

(k)
i − ηi

∂Γ̃
∂λi

= λ
(k)
i − ηi

sexp
i −

∑Ns
t=1 s(qt)e−λ(k)·s(qt)∑Ns

t=1 e−λ(k)·s(qt) − ⟨ϵi⟩λ(k)

 . (2.31)

It is also possible to use conjugated gradient or more advanced minimization meth-
ods. Once the multipliers λ∗ have been found one can compute any other expecta-
tion value by just assigning a weight wt = e−λ∗·s(qt)/

∑Ns
t′=1 e−λ∗·s(qt′ ) to the snapshot

qt.
A reweighting procedure related to this one is at the core of the ensemble-

reweighting-of-SAXS method [48], that has been used to construct structural en-
sembles of proteins compatible with SAXS data [48, 49]. Similar reweighting proce-
dures were used to enforce average data on a variety of systems [44, 45, 47, 50–54].
These procedures are very practical since they allow incorporating experimental
constraints a posteriori without the need to repeat the MD simulation. For in-
stance, in Ref. [53] it was possible to test different combinations of experimental
restraints in order to evaluate their consistency. However, reweighting approaches
must be used with care since they are effective only when the posterior and the
prior distributions are similar enough [55]. In case this is not true, the reweighted
ensembles will be dominated by a few snapshots with very high weight, leading
to a large statistical error. The effective number of snapshots with a significant
weight can be estimated using the Kish’s effective sample size [56]. A deep analysis
of reweighting performance, together with a critical comparison between reweight-
ing and restraining methods (both MaxEnt and Replica averaging) on non-trivial
systems, has been the subject of a recent collaboration with the group of Prof.
Michele Vendruscolo. The results of this collaboration are in publication in a work
by Ramya Rangan [16].
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2.5.2 Iterative Simulations

In order to decrease the statistical error, it is convenient to use the modified
potential V (q) = V0(q) + kBTλ · s(q) to run a new simulation, in an iterative
manner. For instance, in the iterative Boltzmann method, pairwise potentials are
modified and new simulations are performed until the radial distribution function
of the simulated particles does match the desired one [57].

It is also possible to make a full optimization of Γ(λ) using a reweighting
procedure like the one illustrated before in Sec. 2.5.1 at each iteration. Particular
care should be taken if the posterior and the prior distributions are expected to be
quite different from each other. In this case a single iteration reweighting would
lead to a very low statistical efficiency. One would first perform a simulation using
the original force field and, based on samples taken from that simulation, find the
optimal λ with a gradient descent procedure. Only at that point a new simulation
would be required using a modified potential that includes the extra kBTλ · s(q)
contribution. This whole procedure should be then repeated until the value of λ

stops changing. This approach was used in Ref. [58] in order to adjust a force field
to reproduce ensembles of disordered proteins. The same scheme was later used
in a maximum entropy context to enforce average contact maps in the simulation
of chromosomes [59, 60]. A similar iterative approach was used in Refs. [61, 62].

In principle, iterative procedures are supposed to converge to the correct values
of λ. However, this happens only if the simulations used at each iteration are
statistically converged. For systems that exhibit multiple metastable states and
are thus difficult to sample it might be difficult to tune the length of each iteration
so as to obtain good estimators of the Γ(λ) gradients.

2.5.3 On-the-fly Optimization with Stochastic Gradient De-
scent

Instead of trying to converge the calculation of the gradient at each individual
iteration and, only at that point, modify the potential in order to run a new
simulation, one might try to change the potential on-the-fly so as to force the
system to sample the posterior distribution:

V (q, t) = V0(q) + kBTλ(t) · s(q) . (2.32)

The simplest choice in order to minimize the Γ(λ) function is to use a stochastic
gradient descent (SGD) procedure, where an unbiased estimator of the gradient
is used to update λ. In particular, the instantaneous value of the forward model
computed at time t, s(q(t)), can be used to this aim. The update rule for λ can
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thus be rewritten as a differential equation:

λ̇i(t) = −ηi (t)
(
sexp

i − si(q(t)) − ⟨ϵi⟩λi(t)
)

. (2.33)

Notice that now the learning rate η depends on the simulation time t. This
choice is motivated by the fact that approximating the true gradient with its
unbiased estimator introduces a noise into its estimate. In order to decrease the
effect of such noise, a common choice when using SGD is to reduce the learning rate
as the minimization (learning) process progresses with a typical schedule η(t) ∝ 1/t

for large times. In our work [17] we adopted a learning rate from the class search
then converge [63], which prescribes to choose ηi (t) = ki

(
1 + t

τi

)−1
. Here ki

represents the initial learning rate and τi represents its damping time. In this
manner, the learning rate is large at the beginning of the simulation and decreases
proportionally to 1/t for large simulation times. The parameters ki and τi are
application specific and must be tuned by a trial and error procedure. In particular,
a very small value of τ will cause the learning rate to decrease very fast, increasing
the probability to get stuck in a suboptimal minimum. On the other hand, a very
large value of τ will prevent step-size shrinking and thus will hinder convergence.
Analogous reasoning also applies to k. Also notice that the ki’s are measured in
units of the inverse of the observable squared multiplied by an inverse time and
could thus in principle be assigned to different values in case of heterogeneous
observables. It appears reasonable to choose them inversely proportional to the
observable variance in the prior, in order to make the result invariant with respect
to a linear transformation of the observables. On the other hand, the τi parameter
should probably be independent of i in order to avoid different λi’s to converge on
different timescales.

The update procedure for λ proceeds can be schematized as follow. In the
algorithm scheme below, we also report the case in which inequalities restraints
are applied.

All the Lagrangian multipliers λi are first initialized to zero. Then, at each
MD step:

1. For each value of i

(a) si(q) and ⟨ϵi⟩ are computed.

(b) λi is updated using:

λi(t + ∆t) = λ(t) + ki
si(q) + ⟨ϵi⟩ − sexp

i

1 + t
τ

∆t (2.34)
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(c) In case of inequality restraint with ⟨si(q)⟩ ≤ sexp
i , if λ < 0 the correcting

potential is ignored.

(d) In case of inequality restraint with ⟨si(q)⟩ ≥ sexp
i , if λ > 0 the correcting

potential is ignored.

2. Positions and velocities are propagated using a bias potential V (x) = ∑M
i λisi(q)

The update of λ keeps the system out of equilibrium. The work performed updat-
ing λ can be computed by accumulating at each step the value of

M∑
i

(λi(t + ∆t) − λ(t)) si(q) (2.35)

The out of equilibrium effects become less and less important as the simulation
proceed and the learning rate decreases.

Once Lagrangian multipliers are converged or, at least, stably fluctuating
around a given value, the optimal value λ∗ can be estimated by taking a time
average of λ over a suitable time window [tmin, tmax]. We will call “learning phase”
the initial part of the simulation (t < tmax), “averaging phase” the portion of the
learning phase where λ is averaged (tmin < t < tmax), and “production phase” the
later part of the simulation (t > tmax), where λ is kept equal to the computed
average λ∗.

At this point, a new simulation could be performed using a static potential
V ∗(q) = V0(q)+kBTλ∗·s(q), either from a different molecular structure or starting
from the structure obtained at the end of the averaging phase. Such a simulation
done with a static potential can be used to rigorously validate the obtained λ∗.
Notice that, if errors have been included in the model, such validation should be
made by checking that ⟨s⟩ ≈ sexp − ⟨ϵ⟩. Even if the resulting λ∗ are suboptimal,
it is plausible that such a simulation could be further reweighted (Sec. 2.5.1) more
easily than the one performed with the original force field. When modeling errors, if
an already restrained trajectory is reweighted one should be aware that restraints
will be overcounted resulting in an effectively decreased experimental error (see
Section 2.3).

As an alternative, one can directly analyze the learning simulation. Whereas
strictly speaking this simulation is performed out of equilibrium, this approach has
the advantage that it allows the learning phase to be prolonged until the agreement
with experiment is satisfactory.

The optimization procedure discussed in this section was used in order to en-
force NMR data on RNA nucleosides and dinucleotides (see Sec. 4), where it was
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further extended in order to simultaneously constrain multiple systems by keeping
their force fields chemically consistent (see Sec. 5).

2.5.4 Other On-the-fly Optimization Strategies

Other optimization strategies have been proposed in the literature. Target meta-
dynamics ([64, 65]) provides a framework to enforce experimental data, and was
applied to enforce reference distributions obtained from more accurate simulation
methods [64], from DEER experiments [65], or from conformations collected over
structural databases [66]. It is however not clear if it can be extended to enforce
individual averages.

Also the VES method [67] is designed to enforce full distributions. However, in
its practical implementation, the correcting potential is expanded on a basis set and
the average values of the basis functions are actually constrained, resulting thus
numerically equivalent to the other methods discussed here. In VES, a function
equivalent to Γ(λ) is optimized using the algorithm by Bach and Moulines [68] that
is optimally suitable for non-strongly-convex functions. This algorithm requires to
estimate not only the gradient but also the Hessian of the function Γ(λ). We recall
that Γ(λ) can be made strongly convex by suitable treatment of experimental
errors (see Section 2.3). However, there might be situations where the Bach-
Moulines algorithm outperforms the SGD.

The experiment-directed simulation (EDS) approach [69] instead does not take
advantage of the function Γ(λ) but rather minimizes with a gradient-based method
[70] the square deviation between the experimental values and the time-average
of the simulated ones. A later paper tested a number of related minimization
strategies [71]. In order to compute the gradient of the ensemble averages ⟨si⟩λ with
respect to λ it is necessary to compute the variance of the observables si in addition
to their average. Average and variance are computed on short simulation segments.
It is worth observing that obtaining an unbiased estimator for the variance is not
trivial if the simulation segment is too short. Errors in the estimate of the variance
would anyway only affect the effective learning rate of the Lagrangian multipliers.
In the applications performed so far, a few tens of MD time steps were shown to be
sufficient to this aim, but the estimates might be system dependent. A comparison
of the approaches used in Refs. [69, 71] with the SGD proposed here (reported from
Ref. [17]) in practical applications would be useful to better understand the pros
and the cons of the two algorithms. EDS was used to enforce the gyration radius
of a 16-bead polymer to match the one of a reference system [69]. Interestingly,
the restrained polymer was reported to have not only the average gyration radius
in agreement with the reference one, but also its distribution. This is a clear
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case where a maximum entropy (linear) restraint and a harmonic restraint give
completely different results. The EDS algorithm was recently applied to a variety
of systems (see, e.g., Refs. [24, 71, 72]).



Chapter 3

Force-Field Refinement using
experimental data

3.1 RNA Force Fields
In the context of all-atom molecular dynamics simulation, a force field refers to
the functional form and parameter sets used to calculate the potential energy of
a system of atoms. In general, force fields can have different functional forms
and parameters. Different parameters are usually derived in order to reproduce
experimental data or quantum chemistry calculations. In all-atom force fields
each type of atom, including hydrogens, have a different set of parameters. In
atomistic force fields, the basic functional form of the potential energy function
comprises a bonded part, that characterizes interactions of atoms linked by covalent
bonds, and a nonbonded part that describe the long-range electrostatic and van
der Waals forces. The general form of the total energy can be then expressed,
as the sum of both contributions, by V = Vbonded + Vnonbonded where Vbonded =
Vbond + Vangle + Vdihedral and Vnonbonded = Velectrostatics + Vvan der W aals. A pictorial
representation of each single interaction is shown in Fig. 3.1.

The bond and angle terms are modeled as harmonic potentials disallowing bond
breaking. Dihedral angles are modeled as a series of cosine functions with different
multiplicities. Electrostatic interactions are modeled by a Coulomb potential while
other intermolecular interactions are modeled by a van der Waals potential. Notice
that all the methods described in this thesis were applied to the refinement of the
torsional component, although the application of some of them is not limited to
torsions only.
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Figure 3.1: Pictorial representation of the different terms composing the potential
energy function of a typical atomistic force field. For each term a sketch of the
associated functional form is also shown.

3.2 Force-Field Refinement using self-consistent
MaxEnt

Once the set of {λ∗} satisfying the constraints in 2.15 are determined using one
of the methods described in Sec. 2.5, the potential energy used in the MaxEnt
framework (2.7) is equivalent to the original force field plus a correction linear
in the experimental observables. We here propose a strategy in order to derive
corrections which are potentially transferable to systems different to the ones used
in the fitting procedure. The strategy proposed here is only applicable when the
forward model used to fit experimental data can be expressed in any of the func-
tional form composing the force field and reported in Fig. 3.1. This is particularly
appealing in the case of 3J couplings, where the functional form of the correction
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is comparable to the standard torsional terms that are present in biomolecular
force fields. We propose to transfer the parameters directly during the learning
phase. If experimental data are available for a number of similar systems, one
should simulate all the systems in parallel. Each of the simulated systems will be
affected both by the corrections arising from the experiments performed on the
same system and by some of the correcting potentials determined by the other
simulated systems. This procedure allows to fit force-field corrections in a self-
consistent way that restrains some of the terms to be equivalent to each other,
applying the same corrections to all of them. The group of variables to be consid-
ered as equivalent, which will then feel the same corrections, can be in principle
arbitrarily decided or based on physical-chemistry considerations. In the case of
corrections derived by 3J couplings, it is possible to enforce the same correction on
dihedrals that are chemically equivalent to each other. For instance, the torsional
potential around the glycosidic bond ( χ angle) in an adenine is expected to be
the same irrespectively of its position in the sequence.

We aim at finding a unique set of Lagrangian multipliers which will improve the
agreement with experimental values of all the considered systems. The procedure
we used to self-consistently fit different systems can be schematized as follows
where, for simplicity, we consider to have only two systems A and B. The following
list of actions is performed at each time step during the MD simulation:

1. Lagrangian multipliers are updated according to (2.34) so as to satisfy ex-
perimental constraints on system A;

2. At the same time, Lagrangian multipliers are updated so as to satisfy exper-
imental constraints on system B;

3. Lagrangian multipliers estimated on system A are communicated to system
B which will evolve feeling the sum of the potentials estimated on the two
systems.

4. Lagrangian multipliers estimated on system B are communicated to system
A which will evolve feeling the sum of the potentials estimated on the two
systems.

At convergence this procedure will provide a set of Lagrangian multipliers where
each of the consistent observables on system A will feel the same correction of
its equivalent counterpart on system B. This guarantees that the corrected force
field have chemically consistent corrections. However, the interplay between the
two potentials does not guarantee that experimental constraints will be satisfied
for both systems. For this reason, the self-consistent force-field fitting requires
experimental errors to be explicitly modeled.
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3.3 Force-Field refinement using arbitrary func-
tional forms

In the previous section, we proposed a method to derive portable force-field correc-
tions based on the fit of experimental data using the maximum entropy principle.
The advantage of using the maximum entropy principle is that we are not using
any extra information beside the one contained in the enforced constraints. On
the other side the main limitation is, as far as concern the application to force field
refinement, the availability of experimental data expressible with a forward model
compatible with the functional form of the employed potential energy function.
To overcome this limitation, we here propose a method which allow to enforce
arbitrary ensemble averages using arbitrary correcting functional form. Since the
correcting functional form is arbitrary, it can be also chosen to be compatible with
the force field, allowing then the derived corrections to be incorporated in the force
field itself and then transferred to other systems. Also in this case, the portability
is enhanced by fitting multiple data on multiple different system at the same time.
Of course in such case it is not guaranteed that extra information has not been
injected in the system. Indeed the chosen functional forms contain extra infor-
mation which is independent from the enforced constraints. Thus, the use of one
approach with respect to the other strongly depends on the available experimental
data and corresponding forward models.

Let P0(x) be the Boltzmann probability (p.d.f.) associated to the original force
field with potential energy V0 (q) in Eq. 2.7. Our aim is to construct a refined
probability distribution of the form P (x, {λ}) ∝ P0 (x) exp

(
−β

∑N
i fi(x)λi

)
. The

correcting potential is thus expanded on a set of N basis functions f (dihedral
angles or non-bonded interactions). To each of the N basis functions is associated
a weight λi that is proportional to the strength of the correction and must be found
in order to simultaneously reproduce M experimental observables. Notice the
difference w.r.t Maximum Entropy based methods discussed in Chap. 2 in which
the basis functions are by construction identical to the forward-model used to back-
calculate the experimental observables, and thus the number N of parameters is
equal to the number of the enforced experiments. In our approach the number
of experimental observables M is in general different from N , usually being much
larger (M ≫ N). Notice that experimental observables are defined as averages
over the refined ensemble. In order to find the optimal weights λi(i = 1 . . . , N),
we define an error function E encoding the overall discrepancy between observable
averages in the refined ensemble and the relative experimental values. The error
function is built such that E = 0 if all observables are correctly reproduced. Given
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a set of M experimental observables denoted by Oj(j = 1, . . . , M), it is possible
to enforce both equalities (i.e. ⟨Oj⟩ = Oexp

j ) or inequalities (i.e.
(
⟨Oj⟩ < Oexp

j

)
∨(

⟨Oj⟩ > Oexp
j

)
). The averages are meant to be taken in the refined probability

distribution P (x, {λ}). We will here compute such averages by reweighting the
unrefined ensemble. The accuracy of the procedure will then depend on how close
the refined ensemble is to the unrefined one. The error function, which depend
on the observables averages, will indirectly depend on λ. We introduce a general
expression of the error function E such as:

E (⟨O1⟩ (λ) , . . . , ⟨OM⟩ (λ)) + α|λ|2 (3.1)

which must be minimized to in order to enforce the M ensemble averages. We
will denote with λ⋆ the set of parameters which minimize 3.1. Notice that the
dimensionality of the minimization is given by the size of the vector λ and is
equal to N . The second term in 3.1 is a l2 regularization term needed to avoid
over-fitting. The strength of the regularization can be tuned with the parameter
α, choosing a value in the range 0 ≤ α < ∞. Practically, this term avoids the
values of λ to become too large. Setting α = 0 will maximally fit the data at the
cost of a very large correcting bias potential. This will lead to a new ensemble
which will be potentially very different from the unrefined one, generating poor
reweighting performance. In the opposite case of α = ∞ the data will not be
fitted. The optimal value of α must be then chosen carefully. A common strategy
to find the optimal value of α, is represented by the cross-validation method which
is explained in subsec. 3.3.1. In order to minimize the error function (Eq. 3.1) in
the parameters space of λ, we compute the gradient of E as function of λ:

∂E

∂λj

=
M∑

i=1

∂E

∂⟨Oi⟩
∂⟨Oi⟩
∂λj

=

=
M∑

i=1

∂E

∂⟨Oi⟩
(⟨fj⟩⟨Oi⟩ − ⟨fjOi⟩) + 2αλj

(3.2)

where j = 1, . . . , N . The still unknown term ∂E
∂⟨Oi⟩ depends on the functional

form of the chosen error function E and is then application specific. Knowing the
value of E and its derivatives allow then to minimize the function itself by using
a proper gradient based minimizer. In our applications we will use the limited
memory version of the Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS).
Once the optimal λ⋆ are found, the final estimation of the observable averages can
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be found by reweighting the unrefined ensemble:

⟨Oi⟩ =
∑Nframes

t=1 Oi (t) e
∑N

d=1 fd(t)λd∑Nframes

t=1 e
∑N

d=1 fd(t)λd

(3.3)

where t denotes the tth frame of the unrefined ensemble.
The described methodology has been implemented in a C++ program.

#load observables for system A (sytemA0, systemA1,…,systemA[NumObservablesToFit-1] 
 add_system systemA PathToBasisFunctionsFile NumObservablesToFit 
 
#load observables for system B (sytemB0, systemB1,…,systemA[NumObservablesToFit-1] 
 add_system systemB PathToBasisFunctionsFile NumObservablesToFit 
 
# stop criterion for minimization 
 epsilon 1e-3  
 
#maximum minimization iterations 
 maxiter 400   
 
#regularization parameter 
 alpha 1500.0  
	
#start from a given set of weights 
 lambda 		𝜆"	𝜆$…	𝜆&			
	
#equality restraint: 〈systemA0〉 = 𝑟𝑒𝑓0 on observable 0 of system A 
 function 𝜔"*(systemA0-ref0)^2  
 
#equality restraint: 	〈systemA1〉 = 𝑟𝑒𝑓1 on observable 1 of system A 
 function 𝜔"*(systemA1-ref1)^2        
   
#inequality restraint: 𝑟𝑒𝑓2 ≤ 𝑠𝑦𝑠𝑡𝑒𝑚𝐵0 ≤ 𝑟𝑒𝑓3 on observable 0 of system B 
 function 𝜔$*max(ref2-systemB0,0)^2     
 function 𝜔$*max(systemB0-ref3,0)^2 
 
#print any function of the observables (at each minimization step) 
 print OutFileName systemA0+systemA1+systemB1  
 
#save optimal parameters on file  
 lambdafile OutFileName 
 

Figure 3.2: Sample input file for the code written to perform force-field refinement
using arbitrary functional forms

The program reads the basis functions stored in external files and can either
fit data on a single system or perform a multi-system fit like in the force-field
refinement application (see Sec. 6). See a sample input file in Fig. 3.2. By using
the Lepton library to perform symbolic differentiation, custom error functions can
be defined in the minimization procedure (see Fig. 3.2). This is particularly usefull
when using inequality restraints. In such case, as shown in Sec. 6, the max and
min functions can be used.
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3.3.1 Cross Validation

As we anticipated the efficiency of the reweighting procedure is inversely related
to the distance between the refined and unrefined ensembles. Such distance can
be kept relatively small by using a proper regularization parameter α in Eq. 3.1.
The optimal value of α, to which we will refer as α⋆, can be found via cross
validation strategies. We will here use the k-fold cross validation method. In k-
fold cross validation, the data set is split in k blocks. For each trial value of α,
k minimizations are performed. During the ith minimization, with i = 1, . . . , k,
the ith block is left out as validation set while the remaining k − 1 blocks are used
as training set. After the optimal λ⋆ are found, the error function E is evaluated
on the validation set. When evaluating the error on the validation set the un-
regularized error function must be used (setting α = 0). At the end of the kth

minimization, a final cross validation error Ecv, for the given α, is computed as
the average of the validation errors on each of the k blocks. The optimal value of
α will then be the one minimizing the cross validation error Ecv. The rationale
behind is that in this way we will choose the more conservative value of α which
will generalize better than other values of α to data that were not seen in the
training set. In the present contest, the optimal α is thus expected to result in
force field corrections that will be better transferable to systems not considered in
the fitting procedure. As a practical example we show later the application of the
method to the refinement of RNA force-field torsions. As training data we use 6
different RNA systems, 4 RNA tetranucleotides and 2 RNA tetraloops.



Chapter 4

Enforcing experimental data on
nucleosides using MaxEnt

In this chapter we will show the application of the MaxEnt restraining procedure
to the fit of 3J scalar couplings NMR data on RNA nucleosides. Results reported
here are for Adenosine only. Results of the fitting procedure on the remaining
nucleosides are reported in Appendix B. Most of the content of this chapter is
reported and adapted from Sec. 3.1 of our published work [17].

4.1 RNA structure and 3J scalar coupling
RNA (Ribonucleic acid) is a polymeric molecule formed by a combination of 4
different nucleotides [73–76]. Each nucleotide contains a ribose sugar ring com-
posed by 5 carbons numbered 1′ through 5′, an aromatic base attached to the 1′

carbon, and a phosphate group. The nucleotides are linked to one another in a
linear manner, by phosphodiester bonds between the sugar of one nucleotide and
the phosphate group of the adjacent nucleotide. The phosphate group of adjacent
nucleotides is attached to the 3′ carbon from one side and to the 5′ carbon on the
other side. The most common nucleobase types are: adenine (A), cytosine (C),
guanine (G), and uracil (U). Cytosine and uracil are derivatives of the pyrimidine
(Py) ring, while adenine and guanine have a purine (Pu) scaffold, a pyrimidine
ring fused to an imidazole ring. Each phosphate group have a negative charge.
The structures of a nucleoside (nucleotide without the phosphate group) and a
dinucleotide, together with relevant RNA torsions (torsion angles α , β , γ , δ, ϵ and
ζ) are shown in Fig. 4.2.

Experimental informations about RNA torsion angles can be obtained by NMR
experiments measuring 3J scalar couplings. 3J scalar couplings belong to the
general family of nJ scalar couplings, where n = 1, . . . , 5 indicates the number of
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bonds separating the nuclei A and X between which the magnetic interaction is
measured.

In general, the scalar coupling J is a through-bond interaction, in which the
spin of one nucleus perturbs (polarizes) the spins of the intervening electrons,
and the energy levels of neighboring magnetic nuclei are in turn perturbed by
the polarized electrons. This leads to a lowering of the energy of the neighboring
nucleus when the perturbing nucleus has one spin, and a raising of the energy
when it has the other spin. The J coupling (always reported in Hz) is field-
independent (i.e. J is constant at different external magnetic field strength), and
is mutual (i.e. JAX = JXA). Because the effect is usually transmitted through the
bonding electrons, the magnitude of J falls off rapidly as the number of intervening
bonds increases. Coupling over one (1J), two (2J) and three (3J) bonds usually
dominates the fine structure of NMR spectra, but coupling across four and five
(4J , 5J) bonds is often seen, especially through π bonds (double and triple bonds,
aromatic carbons). 3J scalar coupling are always positive. The forward model used
to back-calculate 3J from molecular dynamics structures is given by the Karplus
equations [27]. The equation gives an approximate value for 3JHH as a function
of dihedral angle between the protons. The Karplus equation is based on the
observation, supported by theoretical considerations, that vicinal H-H couplings
will be maximal with protons with 180◦ and 0◦ dihedral angles (anti or eclipsed
relationship results in optimal orbital overlap) and that coupling will be minimal
(near 0) for protons that are 90◦ from each other. The general functional form of
the Karplus equation is the following:

3JHH (θ) = A cos2 (θ + ϕk)+B cos (θ + ϕk)+C sin (θ + ϕk) cos (θ + ϕk)+D (4.1)

which is plotted in Fig. 4.1 using an example set of parameters.
The estimation of Karplus equation parameters it’s not an easy task and several

groups [8, 77–83] have developed different parameters A, B, C and D by fitting
the Karplus curves with the ones obtained by experiments or quantum chemistry
calculations. To have and idea of the variability among different parametrizations
see Tab. B.3b. The impact of different Karplus parameters on a real application is
discussed in Subsec. 4.4. Notice that the error treatment procedure introduced in
previous chapters should also alleviate the effect of wrong forward model functional
forms, although we would not expect this to happen in the investigated cases.
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Figure 4.1: General functional form of Karplus equation (shown as plot title) and
plot for an example set of Karplus parameters. In this plot A = 8.313, B =
−0.99, C = 0.27, D = 1.373.

4.2 Molecular dynamics parameters
We performed molecular dynamics on all RNA nucleosides (A, C, G, U). Molec-
ular dynamics simulations were performed using the GROMACS software pack-
age [84] in combination with a modified version of the PLUMED plugin [85].
RNA, explicit water, and ions were modeled using the most recent parametriza-
tions within the Amber force field [86–91] (ff99bsc0 + χOL3). Parameters are
available at http://github.com/srnas/ff. Bonds were constrained using the LINCS
algorithm[92], allowing for a time-step of 2 fs. The particle-mesh Ewald algorithm
[93] was used for long-range electrostatic interactions with a cut-off distance of 1
nm. Simulations were performed at temperature T = 300 K and pressure P = 1
bar [94, 95]. To allow for a fast convergence of the simulated ensembles, sampling
was enhanced using replica-exchange with collective-variable tempering (RECT)
[96] on selected collective variables. Biased variables are the torsional angles χ,
γ, and the puckering variables Zx and Zy [97]. Four replicas were used for each
system, with bias factors ranging from 1 to 5.

4.3 MaxEnt algorithm parameters
The minimization strategy adopted is the stochastic gradient descent described
in Sec. 2.5.3 using the update rule in Eq. 2.33. We performed 200 ns MD per
replica using the first 100 ns as learning phase. Lagrangian multipliers were av-
eraged from tmin = 50 ns to tmax = 100 ns and these averages were used in the

http://github.com/srnas/ff
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production phase for the last 100 ns. The parameters for the learning phase were
chosen as k = 0.001 Hz−2ps−1, τ = 3 ps, σ = 2.0 Hz. A Laplace prior for the
error was used. The biased replicas were simulated using Lagrangian multipliers
estimated on the fly from the reference replica, so as to maximize the accep-
tance rate for the replica-exchange procedure. Each system was simulated with
4 RECT replicas. PLUMED input files are provided in D.1. The modifications
to PLUMED required to perform this simulations are implemented in PLUMED
since version 2.4 and can be activated with the keyword MAXENT. User manual
for the MAXENT keyword can be found at https://plumed.github.io/doc-v2.4/user-
doc/html/_m_a_x_e_n_t.html

4.4 Results
We here report and discuss results for Adenosine only. Results for other nucleosides
(uridine, cytidine, and guanosine) are similar and are summarized in Appendix B
(Tab. B.1). For this system, M = 7 experimental 3J scalar couplings are available
[98], involving dihedral angles both on the backbone and on the nucleobase (see
Figure 4.2 on page 36a).
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Figure 4.2: Torsional angles associated to the available experimental 3J scalar
couplings for the Adenosine (panel a) and the ApC dinucleoside (panel b). Atoms
associated to each torsion are: ν1 = H1’-C1’-C2’-H2’, ν2 = H2’-C2’-C3’-H3’, ν3 =
H3’-C3’-C4’-H4’, δ=C5’-C4’-C3’-O3’, γ=O5’-C5’-C4’-C3’, γ’ = H4’-C4’-C5’-H5’,
γ” = H4’-C4’-C5’-H5”, ϵ1 = C4’-C3’-03’-P, ζ1 = C3’-03’-P-05’, α2 = 03’-P-05’-
C5’, β2 = P-05’-C5’-C4’, χA = 04’-C1’-N9-C4, χ′

A = H1’-C1’-N9-C8+60°, χC =
O4’-C1’N1-C2, χ′

C = H1’-C1’-N1-C6+60°

We assess the deviation between simulation and experiments by computing the

https://plumed.github.io/doc-v2.4/user-doc/html/_m_a_x_e_n_t.html
https://plumed.github.io/doc-v2.4/user-doc/html/_m_a_x_e_n_t.html
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RMSE of the back calculated data from their experimental values, defined as:

RMSE =

√√√√ 1
M

M∑
i=1

(3Ji,simulated −3 Ji,exp)2. (4.2)

The RMSE has the same units of the analyzed quantities which in this case are
Hz. We first computed the scalar couplings using the standard Amber force field
(see Tab. 4.1) obtaining a value of 1.3 Hz. This number is significantly larger
than the expected experimental error on such data. However, it is important to
consider also errors in the parametrization of the Karplus equations.

The robustness against the choice of Karplus parameters can be assessed by
computing the standard deviation of each coupling, when the same is back calcu-
lated using different sets of Karplus parameters. Assuming we have M torsions
and Ki;i=1,...,M different sets of Karplus parameters for the torsion i we denote with
Ji(n) (n = 1, . . . , Ki) the 3J scalar coupling, associated to torsion i, back calculated
using the nth set of Karplus parameters. We can hence compute, for each torsion
i, the standard deviation among all the sets Ki as σi =

√
1

Ki−1
∑Ki

n=1(Ji(n) − ⟨Ji⟩).
The standard deviation among all the couplings Σ =

√
1

M

∑M
i=1 σ2

i is then computed
as a measure of the overall variance of Karplus parameters. In Tab. B.3a we re-
port the values of the couplings obtained using different sets of Karplus parameters
which are reported in Tab. B.3b.

The above mentioned test was carried out on a trajectory corresponding to the
ApC dinucleoside monophosphate, since more torsions are available on dinucleo-
sides (see Fig. 4.2 panel b). The obtained standard deviation Σ is 0.6 Hz, which is
significantly smaller than the RMSE observed for the Amber force field. This test
also sets a lower bound for the RMSE indicating that enforcing an RMSE between
simulation and experiment lower than 0.6 could lead to results dependent on the
choice of the Karplus equation parameters.

Additionally, we estimated the ability of random conformations to reproduce
the experimental 3J scalar couplings. To this aim, we computed the RMSE between
simulation and experiments assuming a flat distribution on all the torsions used in
the 3J coupling calculation. The torsions considered were, again, the ones available
for the ApC dinucleoside with the same set of Karplus parameters which was used
to produce all the results in this section. The resulting RMSE is approximately
2.9 Hz, indicating that random conformations do not reproduce experimental data
with the accuracy of MD ensembles.

We then use the proposed iterative procedure to determine the correcting po-
tentials. Although we use a Laplace prior for the error, we notice that since the
correcting potential has as many degrees of freedom as experimental data, one
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cannot expect to detect inconsistencies in the dataset. In the next chapters we
will see that when less parameters than experimental datapoints are used such in-
consistencies are implicitly taken into account. A crucial parameter in the fitting
procedure is σ, which controls the width of the prior distribution for the deviation
between experiment and theory, and encodes the confidence that we have in the
force field. Results for σ = 2.0 Hz are shown in Tab. 4.1.

3J coupling (Hz)
torsion Exp.[98] Amber AmberMaxEnt

ν1 6.0 8.5 6.9
ν2 5.0 5.1 5.1
ν3 3.4 3.5 4.2
γ’ 3.0 3.2 3.1
γ” 3.4 1.5 2.6
χ 3.6 4.7 4.1
χ

′ 3.9 3.6 3.5
RMSE (Hz)

0.0 1.3 0.6

Table 4.1: 3J scalar coupling for the Adenosine nucleoside. Experimental values
and back calculated values are shown, both using the Amber force field and the
MaxEnt corrections. Angle χ′ for the Adenosine nucleoside is defined as the H1′ −
C1′ − N9 − C8 torsion along with a shift of 60◦. Statistical errors on the values
obtained from MD as well as on the calculated RMSE are less than 0.1Hz.

As it can be seen, the RMSE is greatly reduced compared to the original Amber
force field. Final Lagrangian multipliers are shown in Tab. B.2. We recall that the
greater the value of σ the higher the confidence in the force field and the lower the
correcting MaxEnt potential. To have an idea of the influence of the σ parameter
on overall RMSE, a plot of RMSE vs σ is provided in Fig. 4.3.
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Figure 4.3: RMSE as functions of σ for the Adenosine with a Laplace prior on the
error.

We notice that in this case an arbitrary small RMSE can be obtained by choos-
ing a negligible value of σ however this is often not a good practice. We recall
that enforcing a RMSE smaller than the typical RMSE between different set of
parameters in Karplus relations (≈ 0.6 Hz) is in fact not meaningful as explained
before. Moreover, this would introduce much larger corrections to the force field
(see Fig. B.1) that could lead to uncontrolled artifacts. For instance, in some
of the simulations using σ = 0 we obtained stereoisomerizations of the C2’ atom
of the sugar (data not shown). With the adopted value of σ = 2 the effect of
the corrections on the one-dimensional free-energy profiles of the refined dihedral
angles is ≤ 2 KbT . Free-energy profiles for a set of representative torsional angles
are shown in Fig. 4.4.
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Figure 4.4: One-dimensional free-energy profiles for a representative group of the
corrected dihedral angles obtained with Amber and with the refined AmberMaxEnt

force fields. Zx variable [97] is related to sugar conformations C3’-endo (Zx > 0)
and C2’-endo (Zx < 0).



Chapter 5

RNA Force-Field Refinement
using self-consistent MaxEnt

5.1 On-the-fly refinement
We use the procedure introduced and explained in Sec. 3.2, to perform a self-
consistent force-field refinement, on-the-fly, on a set of different RNA nucleosides
and dinucleosides mono-phosphate. To this aim we performed molecular dynamics
on RNA nucleosides (A and C) and dinucleosides mono-phosphate (ApA, ApC,
CpA, and CpC). In Fig. 4.2b the ApC dinucleoside is shown in order to highlight
the torsions considered in the refinement procedure. As explained in Sec. 3.2 one
has first to identify which torsions must be considered chemically equivalent. Such
torsions will then feel the same correcting potential. In this application chemically
equivalent torsions are those highlighted in blue in Fig. 4.2b.

5.1.1 Molecular dynamics parameters

Molecular dynamics simulations were performed with the same setup and force-
field introduced in 4.2. For the dinucleosides mono-phosphate we additionally
included, among the variables biased for the RECT method, torsional angles α, β,
ϵ, and ζ as well as the distance between the two nucleobases. Four replicas were
used for each system, with bias factors ranging from 1 to 5 both for the nucleosides
and dinucleosides mono-phosphate.

5.1.2 MaxEnt algorithm parameters

The MaxEnt algorithm parameters k,τ and σ are the same to the one used in
Sec. 4.3 where RNA nucleosides only were simulated. For the dinucleosides mono-
phosphate we performed 600 ns using first 300 ns as learning phase and averaging
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Lagrangian multipliers between tmin = 150 ns and tmax = 300 ns. In both cases
a Laplace prior for the error was used. The biased replicas were simulated using
Lagrangian multipliers estimated on the fly from the reference replica, so as to
maximize the acceptance rate for the replica-exchange procedure. To implement
the self-consistent force-field fitting described above, we simultaneously simulated
six systems (A, C, ApA, ApC, CpA, and CpC). The replica exchange framework of
GROMACS was used, disallowing unphysical exchanges between replicas simulat-
ing different systems. Each system was simulated with 4 RECT replicas, resulting
in a total of 24 replicas. Lagrangian multipliers were adjusted to fit experimental
data available for each of the systems and transmitted on the fly to the other
replicas so as to be applied on all the equivalent dihedrals. Input files are provided
in Appendix (see D.2, D.3, D.4, D.5). The modifications to PLUMED required to
perform this simulations are implemented in PLUMED since version 2.4 and can
be activated with the keyword MAXENT.

5.1.3 Enforcing 3J scalar couplings

The obtained Lagrangian multipliers for each torsional angle are summarized in
Table 5.1 on page 43. When fitting systems involving different nucleobases (e.g A
and C), torsions around the glycosidic bond were considered as base dependent,
together with the ν3 torsion, which controls the balance between C2’-endo and
C3’-endo sugar conformations and we empirically observed to be the sugar torsion
that is most correlated with the base/sugar relative orientation. Such torsions
will feel a different correcting potential depending on whether they belong to and
Adenosine or Cytosine. Base dependent torsions are highlighted in red in Figure
4.2 on page 36b. In case of a duplicated term in a single simulation (e.g., the χ

angle in an adenine which appears twice in the ApA dinucleoside monophosphate),
we do not enforce their individual values but the sum of the two scalar couplings
to match the sum of the corresponding experimental values. This implicitly makes
sure that both torsional angles feel the same correction.

RMSEs for each system are shown in Figure 5.1 on page 43. Here it can be
appreciated that all the resulting RMSEs are below 1 Hz. We notice that in this
case the number of non-equivalent dihedrals (16) is significantly lower than the
number of experimental data (78). This means that data are redundant and the
procedure can detect potential inconsistencies between experimental data.

Back calculated 3J couplings for each torsion and Karplus parameters are pro-
vided in Appendix C (see Tab. C.1, C.2 and Tab. C.3). The effect of the correc-
tions on the one-dimensional free-energy profiles associated with all the dihedral
angles is shown in Appendix C (Fig. C.1and Fig. C.2)
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Figure 5.1: 3J RMSE for each system with the Amber force-field and the
AmberMaxEnt force-field obtained with the self consistent refinement.

Coupling Torsion θ Base
Lagrangian
multiplier
(Hz−1)

3JH1′H2′ ν1 A,C 0.4393
3JH2′H3′ ν2 A,C 0.0570
3JH3′H4′ ν3

A 0.4009
C 0.3316

3JH4′H5′ γ′ A,C 0.3643
3JH4′H5′′ γ′′ A,C -0.2077

3JH3′P ϵ1 A,C -0.2358
3JH5′P β2 A,C -0.0237
3JH5′′P β2 A,C -0.0700
3JC2′P ϵ1 A,C 0.2015
3JC4′P

ϵ1 A,C 0.2010
β2 A,C 0.1923

3JH1′C4
χ

A 0.1758
3JH1′C2 C 0.4270
3JH1′C8

χ′
A -0.4068

3JH1′C6 C -0.7401

Table 5.1: Lagrangian multipliers associated to each torsional angle used in the
self consistent procedure together with the associated Karplus parameters used to
back calculate 3J scalar couplings. The third column specifies to which system
the corrections have to be applied. Karplus relations used are in the form 3J(θ) =
A cos2(θ + φ) + B cos(θ + φ) + C sin(θ + φ) cos(θ + φ) + D. χ′ is defined as
H1′ − C1′ − N1/N9 − C6/C8 along with a phase shift of 60◦.
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5.1.4 Validation on RNA Tetranucleotides

The derived corrections are then validated on two RNA tetranucleotides, AAAA
and CCCC. In a previous work [66] it has been shown that on such systems a
significant improvement of the agreement with NMR solution experiments can be
obtained penalizing structures with α(g+)/ζ(g+) conformations. These conforma-
tions are associated to intercalated structures [8, 66] that are incompatible with
solution experiments. We call here Amberαζ a potential obtained adding to Amber
a two dimensional Gaussian potential centered on the α(g+)/ζ(g+) conformation
with a standard deviation of 0.7 rad and height 8 kJ

mol
. The Lagrangian multipliers

discussed above were obtained as corrections to be applied on the Amber force
field. We here perform a new self-consistent fit with identical simulation param-
eters using as prior distribution the Amberαζ potential and call AmberαζMaxEnt

the resulting force field. We also define the Amberαζ+MaxEnt force field as the one
obtained by adding the corrections obtained in the previous section on top of the
Amberαζ force-field, without repeating the self-consistent refinement. In order to
asses the performance of Amber, Amberαζ , Amberαζ+MaxEnt and AmberαζMaxEnt

we performed the same analysis as in refs [8, 66] on AAAA and CCCC. This anal-
ysis is made by reweighting the trajectories described in Ref. [66]. For each force
field, we evaluate the RMSE associated to scalar coupling as well as the number of
violations and false positives in contacts predicted by nuclear Overhauser exper-
iments (NOEs). NOEs are particularly important in tetranucleotides since they
are sensitive to intercalated structures erroneously obtained using the Amber force
field that have been previously reported [8, 9, 66, 99]. We notice that NOEs might
not be visible for many reasons other than the distance is too large. This often
happens with large RNAs and proteins and can be due to (1) one or both of the in-
volved resonances are broader than others due to local conformational flexibility at
an intermediate rate (microsecond to millisecond), or (2) chemical exchange with
solvent protons. All the observed signals in these small systems have similar line
widths (i.e. no intermediate conformational exchange) and only non-exchangeable
protons are analyzed. Additionally, for a similar tetranucleotide (GACC) it was
shown that intercalated structures would lead to peaks that would be easy to de-
tect because they would appear in unique and uncrowded regions of the spectra
[100]. Comparison of MD with NMR for the tetranucleotides is reported in Fig.
5.2. As it can be seen, the MaxEnt corrections improve the agreement with exper-
imental scalar couplings for AAAA and CCCC with respect to both Amber and
Amberαζ force fields. When considering the NOEs, it can be appreciated that the
largest improvement with respect to Amber originates from the αζ correction, as
previously suggested. Interestingly, the MaxEnt corrections further decrease the
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number of false positives in CCCC and the number of violations in AAAA. We
summarize the agreement with experimental NOEs using the NMR score defined in
Ref. [8]. When comparing AmberαζMaxEnt with Amberαζ+MaxEnt it can be noticed
that performing a new self-consistent fit starting from Amberαζ represent a better
choice since it improves both the RMSE and the total NMR agreement. We re-
mark that this is a completely independent validation since experimental data for
AAAA and CCCC were not considered in the self-consistent force-field refinement
procedure. Moreover, we stress that the validation is made on systems that are
different from those used in the fitting procedure. This suggests the corrections
to be portable to larger RNA molecules. We finally notice that if the magnitude
of the correcting potential is larger than a few kBT the reweighting procedure can
lead to very poor sampling [16, 55, 101]. To assess the confidence in the reweight-
ing we computed both the Kish’s effective sample size [56] and the statistical error
on the RMSE. The Kish’s effective sample sizes are respectively 10 (CCCC) and 29
(AAAA) for the AmberαζMaxEnt potential, to be compared to 4000 frames in the
unbiased trajectories. Despite these numbers might seem low, the impact of the
reweighting procedure on the estimated RMSE is better described by its statisti-
cal error. Although the statistical error is significantly increased in the reweighted
ensemble (see Figure 5.2 on page 46), its value is still small enough to allow for a
proper comparison between the RMSEs. The structural ensembles obtained with
Amber, Amberαζ and AmberαζMaxEnt are also shown in Figure 5.3 on page 46.
It can be appreciated that in both AAAA and CCCC the effect of the MaxEnt
corrections is to penalize structures with high value of root-mean-square deviation
(RMSD) after optimal superposition from the ideal A-form conformation, which
are related to wrongly predicted intercalated conformations.
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Figure 5.2: Agreement with the NMR solution experiments for Amber, Amberαζ

and AmberαζMaxEnt. The number of distance false positives represent the MD
predicted NOEs not observed in the experiments.

Figure 5.3: Structural ensembles obtained with Amber, Amberαζ and
AmberαζMaxEnt. Ensembles are represented by showing the histogram of the
RMSD from the ideal A-form conformation. Both Amberαζ and AmberαζMaxEnt

show a significant decrease in the population of the high RMSD structures which
are associated to intercalated conformations.

5.2 Self-Consistent MaxEnt refinement by reweight-
ing

The procedure explained in previous section can be slightly modified in order to
perform a self-consistent MaxEnt refinement by reweighting MD simulations previ-
ously produced. In such case, it is not needed anymore to use a stochastic gradient
descent since the gradient can be now exactly estimated when all the trajectory
has been scanned. Notice that in this framework, a single step of the minimization
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procedure consists in scanning all the trajectories for all the considered systems in
order to compute the reweighted averages and then the gradient. The update rule
is reported in Subsec. 2.5.1. Interestingly, this procedure can be used exploiting
the same PLUMED input files used when performing the refinement on-the-fly
(with the addition of the REWEIGHT BIAS option), but using the PLUMED DRIVER
combined with the --multi option, which instruct the software to analyze previous
performed trajectories in a multi replica approach. However, when trying to use
this procedure to repeat the same refinement done in previous section, we were not
able to obtain satisfactory results. We believe that the main limitation is again
to be searched in the exhaustiveness of the sampling of the available trajectories.
The effect is clearly enhanced when the posterior distribution is very different from
the prior one. In the worse case it could be even impossible to find the correct
Lagrangian multipliers by reweighting. In general, when multiple systems are in-
volved, it might be necessary to perform several iterations. Notice that the time
to perform an iteration depends on the number of systems involved and on the
number of frames present in each trajectory. It is then possible that in some cases
it would be more time-convenient to perform a self consistent refinement on-the-fly
rather then by reweighting.

5.3 Mapping 3J scalar couplings MaxEnt correc-
tions to Gromacs force-field

As already discussed in the thesis, 3J scalar couplings are particularly appealing to
be used in a force-field refinement context. This is due to the fact that the forward
model used to back-calculate 3J scalar couplings from molecular simulations is very
similar to the functional form used to model dihedral angles in standard Amber
force-field (See Fig. 3.1). We here show how to implement the maximum entropy
corrections obtained before in Sec. 5.1.3 into a Gromacs compatible force-field.

In Chapter 2 we showed that the effect of a maximum entropy correction is to
add a linear bias to the underlying potential energy function. The total potential
energy is then the one derived in Eq. 2.7 which we report here:

VME (q) = V0 (q) + kBTλ · s (q) . (5.1)

In the particular case of 3J scalar couplings, the forward model s (q) is given
by the Karplus formula in Eq. 4.1 which we report here with some notation
changes needed to simplify the notation. In particular we will: call the forward
model J (θ) to remind that we are referring to 3J scalar couplings, rename the
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parameters A, B, C and D to k1, k2, K3 and k4 and drop the dependence on q

from the dihedral angle θ. The simplified forward model is then:

J(θ) = k1 cos2(θ + ϕθ) + k2 cos(θ + ϕθ) + k3 cos(θ + ϕθ) sin(θ + ϕθ) + k4 . (5.2)

Notice that Eq. 5.2 is not anymore written in vectorial formalism, and hence
is referred to just one of the modified dihedral angles. The potential in Eq. 5.2,
multiplied by the corresponding Lagrangian multiplier, must be then summed to
the potential energy of Gromacs, which is parametrized as:

V0(θ) =
∑

n

kF F
θ

(
1 + cos(nx − ϕF F

θ )
)

, n = 1, 2, 3 (5.3)

where n represent the multiplicity of the cosine function. We used the apex FF

to emphasize that those parameters are the ones used in the un-refined force-field.
In order the two function to be summed, we need to first write Eq. 5.2 as a series
of cosine function only with proper multiplicity and then sum all the terms with
same multiplicity. To this aim, the following trigonometric equalities have been
used:

cos2 (x) = cos (2x) + 1
2 (5.4)

2 sin (x) cos (x) = sin (2x) = cos
(

2x − π

2

)
(5.5)


A cos (x + ϕA) + B cos (x + ϕB) = Knorm cos (x + ϕB + t)
Knorm =

√
A2 + B2 + 2AB cos(ϕA − ϕB)

t = atan2
(

A sin(ϕA−ϕB)
Knorm

, A cos(ϕA−ϕB)+B
Knorm

) (5.6)

where atan2 is the “2-argument arctangent” and is defined as the angle in the
Euclidean plane, given in radians, between the positive x-axis and the ray to the
point (x, y) ̸= (0, 0). The atan2 function is already implemented in most of the
common programming languages. Using these equalities we can rewrite Eq. 5.2
as:

J(θ) = k2 cos(θ +ϕθ)+ 1
2

√
k2

1 + k2
3 cos

2θ + 2ϕθ − atan2
 k3√

k2
1 + k2

3

,
k1√

k2
1 + k2

3


(5.7)

where terms with multiplicity n = 1 and n = 2 are now clearly separated.



5.4 Discussions | 49

From this equation is also clear, if needed, that Karplus equations in the form of
Eq. 5.2 give additional contribution up to multiplicity n = 2. Eq. 5.3 and Eq.
5.7 can now be summed “multiplicity-wise”. We report here, as an example, the
summation for n = 1.

The force-field term with n = 1 in Eq. 5.3 is kF F
θ cos

(
θ + ϕF F

θ

)
and must be

summed with the n = 1 term of Eq. 5.7 which is k2 cos (θ + ϕθ). Using Eq. 5.6 we
obtain:

kF F
θ cos

(
θ + ϕF F

θ

)
+ k2 cos (θ + ϕθ) = K1

norm cos
(
θ + ϕF F

θ + h
)

, where

K1
norm =

√
k2

2 + (kF F
θ )2 + 2 cos(ϕθ − ϕF F

θ )k2kF F
θ

h = atan2
(

k2 sin(ϕθ−ϕF F
θ )

K1
norm

,
k2 cos(ϕF F

θ −ϕF F )+kF F
θ

K1
norm

)
.

(5.8)
At this point, it is possible to modify the Gromacs force-field by using K1

norm

in place of kF F
θ and ϕF F

θ + h in place of ϕF F
θ . Terms with n = 2 can be treated

in a similar way. A practical example, can be found on SRNAS group Github page
([https://github.com/srnas/ff/blob/nmr-corrections/amber_na.ff/ffbonded.itp||Github]),
where we used this procedure to implement the Maximum Entropy corrections into
the Gromacs RNA force field.

5.4 Discussions
In chapter 2 we introduced a framework to enforce on the fly noisy data from bulk
experiments on molecular dynamics simulations. In the first part (see Sec. 2.2)
we discussed the case of experiments without noisy tolerance. This procedure is
completely equivalent to the MaxEnt procedure discussed by Chodera and Pitera
[33] and share many similarities with the experimentally directed simulation (EDS)
introduced by White and Voth [69]. In particular, the only difference between the
implementation of the MaxEnt procedure used in this thesis and EDS is that we
here used a different optimization procedure to find the Lagrangian multipliers (see
2.5.3). In section 2.3 we extend the previous approach so as to take into account
experimental uncertainties. Several Bayesian approaches have been discussed to
model experimental errors in similar contexts (see e.g. [45–47, 102, 103]). Methods
have been described to reweight a pre-computed ensemble of structures so as to
match experimental averages [44, 45, 47]. In the proposed formulation, we applied
the MaxEnt procedure on an extended system where fictitious variables are intro-
duced that take into account the discrepancy between theory and experiment. A
suitably chosen prior distribution for these variables allows one to control the ac-

https://github.com/srnas/ff/blob/nmr-corrections/amber_na.ff/ffbonded.itp
https://github.com/srnas/ff/blob/nmr-corrections/amber_na.ff/ffbonded.itp
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curacy of the fitting and to embed in the calculation the confidence in the original
force field.

The procedure is iterative and is completely encoded in the update rule stated
in Eq. 2.34. It is important to notice that a similar equation could be obtained
using theoretical approaches different from the one introduced in this thesis in Sec.
2. For instance, one could decide to maximize the posterior as a function of the
residuals ϵ as it is done in Ref. [45], instead of computing their average value.
More comments on this analogy can be found in Appendix A.2.

We notice that other methods have been proposed in the past to model noisy
data within the MaxEnt framework. For instance, Chen and Rosenfeld [35] have
proposed to introduce a Gaussian prior on the Lagrangian multipliers which will
essentially constraints Lagrangian multipliers to be bounded. The Laplace prior
on the additional variables used here has a similar effect, and allows the range of
values for the Lagrangian multipliers to be explicitly controlled.

An alternative formulation of the MaxEnt procedure discussed here can be
obtained by replacing the time averages with averages performed on an ensemble
of molecular dynamics simulations [37, 38]. Replica averaging only converges to
MaxEnt when an infinite number of replicas is simulated [39, 40] and implies an
intrinsic statistical error in the averages when used with a finite number of replicas.
Replica formalism has been extended so as to take into account experimental errors
[45, 46]. In this context, we preferred to use an iterative procedure since it allows
Lagrangian multipliers to be estimated on the fly. The statistical error that in
our procedure arises from the finite length of the simulation can be assessed by
standard blocking analysis.

The tests that we performed on model systems (see section 2.4) allow to easily
understand the effects of the chosen parameters on the resulting ensembles. In
particular, the variance of the prior distribution used for the additional variables
can be used to tune the relative weight of the original model and of the enforced
experimental data. A Laplace prior for these variables allows for outliers to be
tolerated.

We then applied the method to an important open problem, that is the refine-
ment of a force field in order to reproduce available NMR data for RNA oligomers.
At first we use our method to enforce all the 3J scalar couplings available for the
four RNA nucleosides. Since the free-energy landscape of nucleosides have signifi-
cant barriers, we combined the approach with an enhanced-sampling method based
on multiple replicas. This can be straightforwardly done in our formulation since
Lagrangian multipliers can be estimated on-the-fly in the unbiased replica and
instantaneously transferred to the biased ones. The results display a significantly
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reduced RMSE with respect to experimental data when compared to the original
Amber force field. This is expected, since the validation is made against the same
dataset used for the training. However, this confirms that the methodology con-
verges to the correct result also in a non trivial model system. We also observe
that the employed couplings are unevenly distributed along the RNA backbone. If
desired, one could associate a lower value of σ to the individual couplings that are
considered more relevant so as to increase their weight in the fitting procedure.

The method is then applied to the self-consistent force-field fitting for two RNA
nucleotides (A and C), employing a variety of data measured for several systems
(A and C nucleosides, as well as ApA, ApC, CpA, and CpC dinucleosides mono-
phosphate). Also here, the procedure takes implicitly advantage of the on-the-fly
transferability of the Lagrangian multipliers. Our approach reminds the spirit be-
hind the restrained ESP charge model [104], where equivalent atoms are restrained
to have equivalent charges. This is translated here in having same correcting po-
tentials on chemically equivalents dihedrals independently of their position in the
sequence. Notice that using a self-consistent procedure where several terms are
restrained to be identical, effectively reduces the flexibility of the resulting force
field and implicitly decreases its capability to match the experimental data. For
instance, in the case of a duplicated term in a single simulation (e.g., the χ angle
in an adenine which appears twice in the ApA dinucleoside monophosphate), our
approach is only controlling the sum of the two scalar couplings and not their indi-
vidual values. In our specific application, the number of independent parameters
in the force field is 16, which should be compared with 78 independent experi-
mental data. In this respect, it is important to notice that in this application
the calculation of the RMSE, which depends also on the non-explicitly controlled
observables, allows for a rigorous cross validation of the method.

The functional form of the corrections derived here, which is proportional to the
Karplus equations, is compatible with the one of dihedral potentials. This suggests
the use of scalar coupling data as an alternative to quantum chemistry calculations
for force-field parametrization or as a refinement tool on top of quantum-chemistry
derived torsions. One might be concerned about the fact that corrections devel-
oped to match experimental data on small systems are not necessarily portable
to larger systems. However, it must be observed that the standard procedure
used in the Amber force field is to refine dihedral potentials based on quantum
chemistry calculations performed on small fragments, whose typical size is often
below the size of the systems considered in this work [91, 105]. As a valida-
tion, we performed a reweighting of previously published trajectories for two RNA
tetranucleotides (AAAA and CCCC). In spite of their apparent simplicity these
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unstructured oligomers are not described properly by any of the current versions
of the Amber force field [9]. Our results show that the corrections are portable
and significantly improve the description of these tetranucleotides. The resulting
RMSEs are below 1 Hz, which is the typical difference between alternate Karplus
equations. The development of a force field that consistently describes all nu-
cleotides and dinucleosides, as well as its validation on tetranucleotides and larger
systems, is left as a subject for a future investigation.

In conclusion, we introduced a novel procedure that allows experimental errors
to be explicitly modeled in a MaxEnt framework. The method is applied to the self-
consistent force-field fitting on RNA systems. Results indicate that the obtained
force-field corrections are portable and suggest a new paradigm for empirical force-
field refinement.



Chapter 6

RNA Force-Field refinement
using arbitrary functional forms

We show here an application of the reweighting procedure introduced in Section
3.3 to the refinement of the standard Amber force-field. In order to enhance the
transferability of the corrections, we included multiple systems and used different
types of experimental data. We devised our procedure to only re-parametrize
torsional parameters, although it could be used to optimize other terms. To this
aim we choose the basis functions to be of the same functional type of those used
in Amber force field. In particular, our correcting potential looks like:

Vcorr =
∑

t∈{torsions}

Nt∑
i=1

3∑
n=1

λ1tn cos (nϕti) + λ2tn sin (nϕtti) , (6.1)

where torsions = {α, β, γ, δ, ϵ, ζ, χP ur, χP yr} is the set of torsion types
feeling the correcting potential, Nt is the number of nucleotides involved in the
refinement, λ1tn(λ2tn) is the weight associated to the cosine (sine) with multiplicity
n relative to the torsion type t and ϕtiis the torsion of type t in the nucleotide i.
The systems considered in our refinement procedure were 4 RNA tetranucleotides
(AAAA, CCCC, UUUU and GACC) and 2 RNA tetraloops (GAGA and UUCG).
Tetranucleotides simulation data were taken from Ref. [106] while tetraloops sim-
ulation from Ref. [12]. All systems were simulated using the ff99bsc0 + χOL3

Amber force field with corrections to van der Waals oxygen radii ([107]) and using
the OPC water model ([108]). We will simply refer to this force field as Amber.
Data for tetranucleotides involve both NOE and scalar couplings NMR measure-
ments. For tetraloops we require the native state to be the most populated one.
Native configurations were arbitrarily chosen as those with eRMSD ([109])<0.8 from
the X-ray reference structure (figure 6.5 first line). Forward models and the ap-
plied constraints for all systems are summarized in Tab. 6.1. Parameters ω1, ω2, ω3
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represent the weights of each system in the error function used in the fitting pro-
cedure and should have units corresponding to inverse variances. Following the
introduced interpretation we heuristically choose these values in order to reproduce
the expected experimental error of a given experiment type.

System Forward Model Constraint Error Function

NOE

AAAA
CCCC
UUUU
GACC

⟨Oi⟩ = ⟨ 1
d6

i
⟩− 1

6 dexp
i,min ≤ ⟨Oi⟩ ≤ dexp

i,max

ω1 max
(

⟨ 1
d6

i
⟩−1/6 − dexp

i,max, 0
)2

+

+ω1 max
(

dexp
i,min − ⟨ 1

d6
i
⟩−1/6, 0

)2

3J Couplings

⟨Oi⟩ = A cos (2x) + B cos (x) + C = ⟨3Ji⟩ ⟨Oi⟩ = Oexp
i = ⟨3Jexp⟩ ω2 (⟨3Ji⟩ −3 Jexp

i )2

Native Fraction

ccGAGAgg
ccUUCGgg

⟨Oi⟩ = ⟨pi
f (t)⟩ ;

pi
f (t) =

1 eRMSD ≤ 0.8
0 otherwise

⟨pi
f (t)⟩ ≥ 0.5 ω3 max

(
0, log (0.5) − log

(
⟨pi

f (t)⟩
))2

Table 6.1: Systems composing the training set in the the force-field refinement
procedure. Employed data type for each system are reported (e.g. NOE) with
the relative forward model used to back-calculate them from simulations data. In
the case of NOE data, index i runs over the proton pairs for which NOE data
are available. NOE and 3J couplings experimental data were taken from Refs.
[8, 53, 110]. In the case of 3J couplings, the index i runs over all torsions for
which scalar couplings are available. In the case of tetraloops, index i refers to the
system for which the folded fraction is computed (i.e. ccGAGAgg or ccUUCGgg)

The error functions reported in Tab. 6.1 are relative to a single experimental
data point. In order to fit all the experimental data, the single error functions
must be summed over all the available data. The resulting total error function can
be then written as:

E = ω1

NNOE∑
i=1

max
(

⟨ 1
d6

i

⟩−1/6 − dmax
i , 0

)2

+ max
(

dmin
i − ⟨ 1

d6
i

⟩−1/6, 0
)2
+

+ ω2

Ncouplings∑
i=1

(
⟨3Ji⟩ −3 Jexp

i

)2
+

+ ω3

[
max

(
0, log (0.5) − log (⟨pf⟩)GAGA

)2
+ max

(
0, log (0.5) − log (⟨pf⟩)UUCG

)2
]

+

+ αλ2

(6.2)
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The last term, as explained in 3.3.1, is a regularization term needed to prevent
overfitting. In order to find the best estimate of the parameter α in Eq. 6.2,
we used the k-fold cross validation procedure, explained in Subsec. 3.3.1, with
k = 3. We divided the training set in 3 blocks, each of which containing data from
different experiment type. In Tab. 6.2 we summarize how the dataset was divided.

Block n. Data Type
1 3J Couplings
2 NOE
3 Native Fraction

Table 6.2: Training set splitting scheme. The training set is divided in 3 blocks.
Each block contains data resulting from different experiments. Block 1 contains
experiments about 3J Couplings only. Block 2 contains data coming from NOE
experiments. Block 3 contains data relative to the stability of the tetraloops folded
structure.

By performing a grid search on α we performed several minimizations, following
the k-fold method prescription. For each trial value of alpha the error function
is computed on the cross-validation set. Results for all the tested α values are
reported in Fig. 6.1
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Figure 6.1: Cross-validation procedure. The error functions is evaluated on the
validation set for different trial values of α following the procedure introduced in
Subsec. 3.3.1.

In Fig. 6.1, we can see that the cross-validation error function has a minimum
for a value of α⋆ = 1500. This means that for the given dataset, 1500 represent the
optimal value of α giving the best balance between overfitting and predictiveness
on different data and, presumably, systems not seen in the training set. The
optimal value α⋆ = 1500 can be then used to train a potential with which one can
perform new simulations on systems different from those used in the training set.
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Notice that since we are enforcing different data on multiple systems, mutual
compatibility is not a priori guaranteed. In other words, minimizing the error
function does not guarantee that the enforced constraints are satisfied on all sys-
tems. Constraints on individual systems must be then checked after the final
reweight procedure. We first checked the enforced constraints on the systems in
the training set. We will call AmberRW the ensemble obtained by reweighting, with-
out resampling, the reference Amber force-field using the optimal weights obtained
by re-fitting all the training set (without leaving out any data) using the optimal
value of α⋆ = 1500. In the case of tetranucleotides we computed the value of the
enforced 3J scalar couplings and NOE distances. Similarly to the analysis made
in Subsec. 5.1.4, we validate the estimated corrections by computing the RMSE

and the percentage of violations for 3J couplings and NOE respectively. Results are
summarized in Fig. 6.2.
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Figure 6.2: 3J scalar coupling RMSE and NOE violations for RNA tetranu-
cleotides. For both RMSE and percentage of violations, the lower the better.

Fig. 6.2 shows that in the case of 3J couplings, the reweighted ensemble (green
bars in Fig. 6.2) better reproduces experimental data for all the considered tetranu-
cleotides when comparing it to the unrefined Amber force field (purple bars in Fig.
6.2), although in some case the improvement is very limited. In any case, all the
resulting RMSEs are compatible with the expected error for the forward model
used to compute scalar couplings. Looking at the percentage of violated NOE, we
can see that, except for the GACC tetranucleotide, the new ensemble better repro-
duced NOE experimental distances compared to the original Amber force field. The
improvement is particularly visible for CCCC.
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Figure 6.3: RNA ccGAGAgg (left) and ccUUCGgg(right) tetraloops. Fraction of
folded structures (top) and free energy surface (bottom) with different force-field
parametrizations. Unrefined Amber force-field (Amber)in purple, reweighted Am-
ber force-field (AmberRW) before resampling in green, refined Amber force-field
(AmberRWRES) after resampling in light blue, D. E. Shaw ([111])(DESRES) force field
in yellow.

As regards the 2 tetraloops, we computed the folded fraction and the free
energy as function of the eRMSD from native structure, both with the unrefined
Amber force field and with the reweighted one AmberRW. Results are reported in
Fig. 6.3. As we can see, the fraction of folded structure is significatively increased
for both systems (first row of Fig. 6.3). The introduced correction indeed reduces
the relative weight of some of the unfolded structures observed in the Amber
ensemble.

All the results shown before were obtained performing a reweighting of a given
simulated ensemble. The statistical accuracy of the reweighting procedure depends
however on the distance between the unrefined ensemble and the reweighted one.
In case the two ensemble are too different, reweighting might be inefficient since
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t α β γ δ ϵ ζ χP ur χP yr∑ cos (t) 0.028743 −0.118088 0.369240 −0.068875 −0.061779 −0.083563 −0.007880 0.067727∑ cos (2t) −0.135683 0.199287 −0.269494 0.035808 0.086680 0.091654 −0.054599 −0.116106∑ cos (3t) 0.122662 −0.064958 −0.001949 0.109930 0.042434 0.061681 0.016977 0.037457∑ sin (t) 0.045960 −0.085707 0.080645 −0.011406 0.038967 0.220101 −0.086418 −0.014430∑ sin (2t) 0.064641 0.008920 0.190771 −0.109477 0.054064 0.150732 −0.073151 −0.046067∑ sin (3t) 0.032150 0.016087 0.020993 0.051061 −0.077758 0.015956 0.143994 0.140334

Table 6.3: We report here the values of the λRWRES coefficients obtained with the
proposed procedures, and used to perform the AmberRESRW simulation. The sum in
the first column is meant to be taken on all the torsions of type t present in the

considered system. The quantity KBT

√
6
∑48

i=1 λ2
i

48 can be used as an indicator of
the average corrections per torsion. In this case we obtain a value of 0.68 kJ

mol
.

there may be very few frames in the original ensemble with a significant weight. A
rough estimate of the reweighting accuracy is given by the Kish’s effective sample

size neff =

(∑Nframes
i=1 wi

)2

∑Nframes
i=1 w2

i

. A deep analysis of reweighting performance, together
with a critical comparison between reweighting and restraining methods can be
found in Ref. [16]. The value of neff is bounded to the range 1 ≤ neff ≤ Nframes

and indicates how many frames, among all the available ones, are effectively used in
the reweighting procedure. The value of the Kish effective size can be controlled by
adjusting the regularization parameter α. Although there is no rule of thumb on a
suitable value of neff which ensures good reweighting performance, in the reported
results the chosen value of α⋆ guarantees at least 30% of effective samples, for each
system.

In order to properly validate the predictiveness of the force field corrections
obtained using the reweighing procedure, one should perform a new simulation
(resampling) using these corrections. We performed a resampling for the tetraloops
only. The conformational ensemble for the tetranucleotides obtained in the Amber
simulation was sufficiently overlapping with the experimental one ([106]). We will
call AmberRWRES the ensemble obtained after resampling conformational space using
the optimal values of λ (see Tab. 6.3) obtained with α⋆ = 1500.

Results for tetraloops are reported in Fig. 6.3 and Fig. 6.5. Looking at first
row of Fig. 6.3 we can compare results obtained by reweight only (AmberRW) with
the ones obtained after resampling (AmberRWRES). We can notice that although
AmberRWRES increases the stability of both tetraloops by a factor of 4 and 44 for
ccGAGAgg and ccUUCGgg respectively, the improvement is not as big as the one
obtained by reweighting only. This is a consequence of both the inaccuracy of
the reweighting due to poor sampling of the reference ensemble and a small un-
avoidable overfitting on the specific conformations produced during the reference
Amber simulation. In any case, thanks to the regularization term, the correction
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Figure 6.4: Comparison between the coefficients λRWRES (reported in Tab. 6.3) and
the λWHAM coefficients obtained by performing the reweighting procedure on the
WHAM-combined trajectory. Notice that with the formalism used in this thesis
the coefficients of λ are unitless and they must be multiplied by the value of kbT
when used for reweighting.

is limited, the Kish sample size is relatively large, and the trends observed in the
reweight calculations are the same of those observed in the resampling calculation.
At an early stage we tried the same procedure without including any regulariza-
tion term and, whereas the reweight procedure was reporting a high stability for
the tetraloops, the resampling results were worst than those obtained with the
original force field, indicating that our parameters were highly overfitted on the
conformations sampled in the specific run.

As a further check, we computed the native populations by combining the
Amber and the AmberRESRW simulations using a WHAM procedure ([112]) in order
to take into account both the bias introduced by the meta dynamics potential and
the difference between the two employed force fields. The resulting populations
corresponding to both Amber and AmberRESRW force fields were very close to those
reported above. We notice that, as suggested in Ref. [113] one might reiterate the
fitting procedure.

In our case, the λ coefficients obtained by fitting on the WHAM simulation
using the same regularization parameter α = 1500 were very close to those used in
the AmberRESRW simulation (RMSD = 0.02). This suggests that further iterations
are not required. Comparison between λ coefficients and the values used to perform
the AmberRESRW are reported in Fig. 6.4.

In Fig. 6.5 we report the dynamic secondary structure ([114]) for selected en-
sembles for both tetraloops as obtained using all the employed force fields, together
with the native structures. When the ensemble is selected to only contain con-
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formations where both the stem and the loop are formed (first row), the dynamic
secondary structure is highly homogenous and, by construction, consistent with
native. This ensemble was selected with the same criterion used to identify the
native conformations in the force-field fitting procedure.

Figure 6.5: First and fifth column show, respectively, ccUUCGgg and ccGAGAgg
tetraloops X-ray structures. Both tertiary (first row) and secondary (second row)
structures are shown. Secondary structure were obtained with the BARNABA soft-
ware ([114]). For all the other columns, we show dynamic secondary structure rep-
resentations obtained with different force fields as indicated in the column name.
The color scheme shows the relative number of frames for which the interaction is
formed. Structures are sampled from the unbiased distribution in order to remove
the effect of the metadynamics bias. In the first row, we report ensembles where
the eRMSD of the whole system is within 0.8 from native. In the second row instead
we report ensembles where only the stem has eRMSD from native less than 0.8. In
this second case the loop portion is then free to assume any conformation allowed
by the employed force-field.

Conversely, if we extract ensembles where only the stem is assumed to be
formed (second row) we can quantify the capability of the employed force fields
to reproduce the native loop structure assuming the stem to be formed. For the
GAGA tetraloop, the secondary structure is consistent with the native structure
both using the Amber and the AmberRESRW force fields. This indicates that already
in the original force field the loop would have the correct structure if the stem
is folded. Our correction does not perturb significantly the result. For the UUCG
tetraloop, both the original Amber and the AmberRESRW force fields are not capable
to reproduce the correct loop structure, indicating that further corrections would
be required to this aim. For this system we also report results obtained using
the DESRES force field [111]. We notice that the overall stability of the tetra loop
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using this force field is lower than the one obtained with the AmberRESRW force field
(Fig. 6.3). However, when we select conformations where the stem is formed, the
loop displays a partly correct native structure where the trans-sugar/Watson-Crick
pair (U3-G6) is observed although with a low population. On the other hand the
parallel stacking U3-C5 is not observed. A comparison between the results of the
DESRES force field with the force field corrections derived here is however difficult
since the DESRES force field modified all the nonbonded interactions, whereas our
correction only impact the torsional angles.

6.1 Discussions
The introduced method is based on an existing procedure ([113]) that is here ap-
plied to the fitting of an atomistic force field for RNA systems. An important
extension presented here is the introduction of a regularization procedure that
allows overfitting to be decreased. The method is used to combine data of dif-
ferent type on multiple systems, which is crucial in order to achieve transferable
parameters. Since the optimization of the parameters is done with a reweighting
procedure, its application in a single iteration as shown here is limited to small cor-
rections, such as dihedral terms or other solute-solute non-bonded terms. Fitting
parameters such as partial charges would lead to larger changes in the ensemble,
also involving solvent molecules, and might require to apply the procedure in an
iterative manner by resampling new conformations at every change of the lambda
parameters, in order to progressively shift the simulated ensemble towards the
correct one. Especially in this case, it would be convenient to proceed in the re-
finement using all the performed simulations and combining them with the WHAM
method.

The method is very flexible in that arbitrary error functions can be optimized.
In this specific case, we used NMR data and population of native structures.
Other possible choices for nucleic acid systems could be helical parameters or
other structural quantities for which ranges of acceptable values can be identified
a priori.

For the investigated systems, we have shown that very small corrections to
dihedral angles can perturb significantly the population of the native structure in
RNA tetraloops. By only correcting dihedrals we were not able to obtain a force
field capable to fold the investigated loops to the native structure with a significant
population. However, the resulting populations were improved with respect to the
original ones and, for the UUCG tetra loop, higher than those obtained with a
recently proposed reparametrization ([111]). By including several systems and
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a large number of datapoints, we were able to mitigate the side effects of the
corrections in an automatic fashion.

We decided to use as starting point the Amber force field including non-
standard modifications on the phosphate oxygens and in combination with the
OPC water model. This choice was motivated by the good performance shown
by this force field in moderating the population of intercalated structures in RNA
tetranucleotides ([106]). However, these modifications might lead to side effects
on systems not tested here. The procedure introduced here might lead to better
results if based on a more accurate starting point. Since torsional potentials are
usually fitted as the last step in force field derivation, we suggest that a final re-
finement could be performed with the procedure introduced here, including all the
desired structural features in the minimized error function.

As a word caution, we would like to point out that before suggesting the derived
corrections to be used on new systems they should be validated on a larger set of
RNA motifs.



Chapter 7

Conclusions and Perspectives

The subject of this thesis was the development of techniques to enforce NMR so-
lution experiments in molecular dynamics simulations. In Chap. 2 we developed a
framework based on the Maximum Entropy principle were experiments resulting
from ensemble measurements can be used to complement molecular dynamic simu-
lations (prior). Among the many possible ensembles compatible with the enforced
experimental averages, the Maximum Entropy solution finds the least biased one
with respect to the prior ensemble. The algorithm builds, on-the-fly, an additional
bias potential which is linear in the forward model used to compute the enforced
quantity as function of the atomic coordinates. Usage in combination with en-
hanced sampling methods is also possible. In our applications shown in Chap. 4
and Chap. 5 we combined the proposed method with the RECT enhanced sam-
pling [96]. Overfitting has been addressed with particular care as well as tolerance
to outliers in experimental data. The method can be applied on-the-fly during
MD simulations or by reweighting previously available trajectories. In Sec. 3.2
the framework is then extended and proposed as a tool to be used in a force field
refinement procedure. The proposed strategy consists in simulating several sys-
tems in parallel (in the same way as in multi replica simulations) allowing them
to share the same corrections on a set of variables considered to be chemically
equivalent among all the considered systems. The method is applied to the refine-
ment of state of the art RNA force field by fitting 3J scalar coupling NMR data
on a set of RNA nucleosides and dinucleotides (A, C, ApA, ApC, CpA, CpC). The
resulting corrections are validated by reweighting previously available trajectories
of RNA tetranucleotides which were not included in the training set. Results show
an overall good improvement with respect to the starting Amber force field.

In Sec. 3.3 we proposed a new strategy aimed at overcoming the limitations of
the Maximum Entropy approach, in which one is limited to corrections of the same
functional form of the forward model. This approach is not anymore based on the
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Maximum Entropy formalism and can only be applied by reweighting available
trajectories. In this new formulations, any ensemble average can be enforced using
arbitrary functional forms for the correcting bias potential. Also in this frame-
work the method is applied on multiple systems in parallel, with proper overfitting
treatment, allowing to derive transferable force-field corrections. We applied this
method to the refinement of RNA force-field, using both RNA tetranucleotides
and tetraloops as training set. The derived corrections were validated by perform-
ing new simulations of ccUUCGgg and ccGAGAgg tetraloops systems with the
refined force-field. Results show significant improvements on the stability of the
considered tetraloops both when comparing to the original Amber force field and
when comparing with a recent parametrization of RNA force field[111].

It must be anyway noticed that none of the used parametrization is able to
reproduce the experimental stability of tetra loops. This is a challenging task,
that will require additional work and improvements.

In perspective, the force field refinement methods introduced here could be ap-
plied starting from different non bonded parameters. For instance, one could start
from the reparametrization proposed in Ref. [111], from the corrected hydrogen-
bond parameters proposed in Ref. [115], or from any other force field. It might
also be beneficial to include more experimental information in the form of struc-
tural quantities for which ranges of acceptable values can be identified a priori,
such as, for instance, helical parameters. The accuracy and transferability of the
derived corrections can be further improved by including more and heterogeneous
systems in the training set.

Whereas the applications here were limited to RNA oligonucleotides, the in-
troduced methodologies could certainly be applied to other molecular systems for
which the accuracy of empirical force field is suboptimal, such as for instance
disordered proteins.

In general, we expect that methods based on the combination of experimental
data and molecular simulations will find significant application in the future, both
to study specific systems for which experimental data are available and to refine
empirical force fields.



Appendix A

More on prior error

A.1 Generic error prior
Here we discuss in detail the relationships between the prior on the discrepancy between
simulation and experiment P0(ϵ), the prior on its variance P0(σ0), and the expected value
of the discrepancy ξ(λ) =

∫
dϵP0(ϵ)e−λϵϵ∫
dϵP0(ϵ)e−λϵ .

We here assume that ϵ is Gaussian distributed with unknown variance, and introduce
a prior P0(σ0) on its variance:

P0(ϵ) =
∫ ∞

0
P0(σ0)

e
− ϵ2

2σ2
0

√
2πσ0

dσ0 (A.1)

From this equation we can compute ξ(λ) as

ξ(λ) =
∫

dϵe−λϵP0(ϵ)ϵ∫
dϵe−λϵP0(ϵ)

= − ∂

∂λ
log

∫ ∞

−∞
dϵe−λϵP0(ϵ)

This can be written equivalently using P0(σ0) resulting in:

ξ(λ) = − ∂

∂λ
log

[∫ ∞

0
dσ0

P0(σ0)√
2πσ0

∫ ∞

−∞
dϵe

−λϵ− ϵ2
2σ2

0

]
= − ∂

∂λ
log

[∫ ∞

0
dσ0P0(σ0)e

λ2σ2
0

2

]
(A.2)

Clearly, there is a large degree of arbitrariness in the choice of the prior P0(σ0). We here
introduce a class of functions P0(σ0; σ, α) defined as

P0(σ0; σ, α) = Cσα
0 e−

σ2
0(α+1)

2σ2 (A.3)

Here C = 2 1
2 (α−1)

(
σ2

α+1

)α+1
2 Γ

(
α+1

2

)
is a normalization factor, σ is a parameter that can

be interpreted as the typical expected error, and α > −1 is a parameter that determines
how peaked is the prior. In the limit of α → ∞ the prior turns into a Dirac delta function,
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resulting in a Gaussian priors on ϵ. The parameter αhere is related to the parameter k,
introudced in the main text, by the relation α = 2k − 1. In the general case one can find
by straightforward manipulation that

ξ(λ; σ, α) = − λσ2

1 − λ2σ2

1+α

Here it is possible to see that ξ(λ; σ, α = ∞) = −λσ2, which corresponds to a Gaussian
prior on ϵ, and ξ(λ; σ, α = 1) = − λσ2

1− λ2σ2
2

, which corresponds to a Laplace prior on ϵ. A
plot for different choices of α is provided in figure A.1 showing how α affects the priors.
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Figure A.1: Prior functions both on the variance σ0 and on the additional variable ϵ
for a set of chosen values for α. All the priors have the same value for the typical error
σ = 2. Left panel shows the family of priors P0(σ0; σ = 2, α). The prior P0(σ0; σ =
2, α = 2000) is represented in an inset with a different scale and shows that for large
values of α the prior converges to a delta function centered in σ = 2. Right panel
shows the corresponding family of priors on ϵ obtained through equation (A.1).
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A.2 Maximum a posteriori vs Maximum Entropy
In the main text we argued that different theoretical frameworks would lead to iden-
tical algorithms whenever they result in the same function ξ(λ), which represents
the tolerated discrepancy between experiments and simulations for a given value of
the Lagrangian multiplier λ. Here we cover the relationship between our Maximum
Entropy (MaxEnt) procedure and the Maximum a posteriori (MAP) approach of
ref. [45]. A maximum a posteriori framework would lead to the definition ξ (λ) =
arg max

ϵ

[
P0(ϵ)e−λϵ

]
. For a Gaussian prior P0(ϵ) the posterior P (ϵ) ∝ P0(ϵ)e−λϵ is also

Gaussian and its mode and average coincide. Thus, the iterative procedure introduced
in this thesis would lead to a result equivalent to that of the method discussed in
Ref[45]. However, for a non-Gaussian prior this is not true. Since ξ(λ) is the only
expression entering directly in the minimization procedure, we argue that different
theoretical frameworks would lead to identical results whenever they result in the same
function ξ(λ). In MAP one aims at finding the optimal probability density maximizing
a suitable posterior functional. In Hummer[45] such functional is defined as:

P [p(x)|data] ∝ exp
(

−θ
∫

dxp(x) ln p(x)
p0(x)

)
P [data|p(x)]

where P [data|p(x)] represent the likelihood function of the observed data. To keep
the notation consistent with the one we used in our approach we denote as ξ =
fexp −

∫
dxp(x)f(x) = fexp − ⟨f⟩ the discrepancy between the experiments and the

simulations. We then notice that the likelihood P [data|p(x)] only depends on ξ and we
thus write it as P (ξ). For simplicity we are considering a single experiment here. One
can then find the optimal probability density p(opt)(x), which maximizes the posterior,
for a generic likelihood functional P(ξ):

p(opt)(x) ∝ p0(x) exp
(

−f

θ

∂ ln P [data|ξ]
∂ξ

)

This expression is identical to the probability density that would be sampled with a
MaxEnt procedure P (x) ∝ P0(x)e−λf with the following definition of λ:

λ = 1
θ

∂ ln P(ϵ)
∂ϵ

(A.4)

In the case of a Gaussian likelihood P(ξ) ∝ e− ξ2

2σ2 the MAP approach leads to
λ = − ξ

σ2 which will give a p(opt)(x) equivalent to the one of equation 21 of Ref[45]. In
our MaxEnt approach, this is equivalent to using a Gaussian prior on the additional
variable ϵ which leads to ξ(λ) = ⟨ϵ⟩ = −λσ2, namely λ = − ⟨ϵ⟩

σ2 . Since λ is the same
in both approach we conclude that both MAP and MaxEnt lead to the same optimal
probability density.

This is not true in general for non-Gaussian priors. We here discuss the case of a
Laplace prior P (ξ) ∝ e

−
√

2 |ξ|
σ0 . Using this prior in MAP leads to λMAP (ξ) = −

√
2

σ
sgn(ξ).
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The equivalent relationship in our MaxEnt approach is ξ = − λMaxEntσ2

1−
λ2

MaxEnt
σ2

2

, which can be

inverted leading to λMaxEnt(ξ) = 1−
√

σ2+2ξ2

ξ
. A plot comparing λMAP (ϵ) and λMaxEnt(ξ)

for σ = 1.0 is provided in figure A.2a. In both cases the Lagrangian multiplier is limited
to the range [−

√
2

σ
, +

√
2

σ
]. Interestingly, by using in the MaxEnt procedure a prior from

the class discussed in equation (A.3) and setting α = 1 results in ξ = − λσ2

1− λ2σ2
2

which
correspond to the Laplace prior introduced before. This indicates that different priors
in the two different frameworks could lead to exactly the same relationship between
Lagrangian multipliers and discrepancy between theory and experiments.

−
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2

√
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𝛼
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1)
[𝑎

.𝑢
.]

𝜉 [𝑎.𝑢.]

a)

MAP
MaxEnt

−
√

𝛼 + 1/𝜎

√
𝛼 + 1/𝜎

𝜆(
𝜉;

𝛼)
[𝑎

.𝑢
.]

𝜉[𝑎.𝑢.]

b)

𝛼 = 0
𝛼 = 1
𝛼 = 5
𝛼 = 10
𝛼 = 2000

Figure A.2: In panel a) is shown the dependence of the Lagrangian multipliers from
the variable ξ both in MaxEnt with Laplace prior (green) and in maximum a posteriori
approach (pink). In panel b) is shown the α dependence of λ when using a prior
P0(σ0, α) from the family introduced in A.3. For this example σ = 1 was used.
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Lagrangian multipliers (Hz−1)
seq. H1′H2′ H2′H3′ H3′H4′ H4′H5′ H4′H5′′ H1′C2/C4 H1′C6/C8

A 0.2187 0.0242 0.1732 0.0363 −0.1917 0.1113 −0.1084

G 0.1745 0.0002 0.2048 0.0487 -0.1423 0.0910 -0.2729

C 0.2972 0.0044 0.2093 0.1003 -0.1782 0.0340 0.0104

U 0.2742 -0.0397 0.1828 0.0722 -0.2063 -0.0298 0.0232

Table B.2: Average Lagrangian multipliers for each of the seven 3J scalar coupling on
each RNA nucleosides. Lagrangian multipliers are averaged between 50ns and 100ns.
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Figure B.1: Correcting potential on the adenosine χ′ angle both with σ = 0 (pure
MaxEnt) and with error toleration σ = 2.0
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Self-consistent Maximum Entropy
force-field refinement
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Figure C.1: Free-energy profiles for all the corrected torsional angles of A and C,
using the standard AMBER force-field, and the AMBERαζSC obtained with the self-
consistent procedure introduced in this thesis starting from the AMBERαζ force-field.
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Figure C.2: Free-energy profiles of all corrected torsionals of ApA, ApC, CpA,
CpC systems, using the standard AMBER force-field, AMBERαζ), and the refined
force-field AMBERαζSC obtained with the self-consistent procedure introduced in
this thesis starting from the AMBERαζ force-field.
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Appendix D

Plumed Input Files

D.1 Maximum Entropy restraints on RNA Nucle-
osides

##########################
## A nucleoside structure
##########################
MOLINFO STRUCTURE=adenosine.pdb  MOLTYPE=rna
#########################
#### CVs
#########################
n1: TORSION  ATOMS=10,9,27,28
n2: TORSION  ATOMS=28,27,25,26
n3: TORSION  ATOMS=26,25,6,7
n4: TORSION  ATOMS=7,6,3,4
n5: TORSION  ATOMS=7,6,3,5
c1: TORSION  ATOMS=@chi¿1
chi1: TORSION  ATOMS=10,9,11,12
g1: TORSION  ATOMS=@gamma¿1
puck1: PUCKERING  ATOMS=@sugar¿1
#########################
## Karplus relations used to back calculate 3J scalar couplings
#########################
#JH1'¿H2'
j1: MATHEVAL  ARG=n1  FUNC=9.67*cos(x)*cos(x)−2.03*cos(x)  PERIODIC=NO
#JH2'¿H3'
j2: MATHEVAL  ARG=n2  FUNC=9.67*cos(x)*cos(x)−2.03*cos(x)  PERIODIC=NO
#JH3'¿H4'
j3: MATHEVAL  ARG=n3  FUNC=9.67*cos(x)*cos(x)−2.03*cos(x)  PERIODIC=NO
#JH4'¿H5'
j4: MATHEVAL  ARG=n4  FUNC=8.313*cos(x)*cos(x)−0.99*cos(x)+1.373+0.27*cos(x)*sin(x)  PERIODIC=NO
#JH4'¿H5''
j5: MATHEVAL  ARG=n5  FUNC=8.313*cos(x)*cos(x)−0.99*cos(x)+1.373¿4.752*cos(x)*sin(x)  PERIODIC=NO
#JC4¿H1'
MATHEVAL ...
LABEL=j6
ARG=c1
FUNC=3.6*cos(x−(pi/180.0)*68.6)*cos(x−(pi/180.0)*68.6)+1.8*cos(x−(pi/180.0)*68.6)+0.4  PERIODIC=NO
... MATHEVAL
#JC8¿H1'
MATHEVAL ...
LABEL=j7
ARG=chi1
FUNC=4.2*cos(x+(pi/180.0)*(60.0−68.9))*cos(x+(pi/180.0)*(60.0−68.9))−0.5*cos(x+(pi/180.0)*(60.0−68.9))+0.3
PERIODIC=NO
... MATHEVAL
#########################
## Concurrent Metadynamics
# (Is present only in replica 1,2,3 with increasing BIASFACTORS)
#########################
METAD ARG=c1  SIGMA=0.25  PACE=500  TAU=12  TEMP=300  BIASFACTOR=1.5  GRID_MIN=−pi  GRID_MAX=pi  FILE= HILLS_c1
METAD ARG=g1  SIGMA=0.25  PACE=500  TAU=12  TEMP=300  BIASFACTOR=1.5  GRID_MIN=−pi  GRID_MAX=pi  FILE= HILLS_c2
METAD ...
ARG=puck1.Zx,puck1.Zy  SIGMA=0.15,0.15  PACE=500  TAU=12  TEMP=300  BIASFACTOR=1.5  GRID_MIN=−pi,−pi
GRID_MAX=pi,pi  FILE= HILLS_c3
... METAD
########################
###### MaxEnt procedure
########################
MAXENT ...
LABEL=res
ARG=j1,j2,j3,j4,j5,j6,j7
KAPPA=0.01,0.01,0.01,0.01,0.01,0.01,0.01
TAU=3.0,3.0,3.0,3.0,3.0,3.0,3.0
ERROR_TYPE=LAPLACE #Using Laplace priori for error treatment
SIGMA=0.5
TSTART=50000
TEND=100000
TYPE=EQUAL AT=6.0,5.0,3.4,3.0,3.4,3.6,3.9
... MAXENT
PRINT ...
ARG=j1,j2,j3,j4,j5,j6,j7
STRIDE=10  FILE= Adenosine
... PRINT

Figure D.1: Sample PLUMED[85] input file for the simulation of the A nucleosides
showing both the enhanced sampling method[96] and our MaxEnt procedure with
error treatment. BIASFACTOR for the four replicas: 1.0, 1.5, 2.5, 5.0.
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D.2 Maximum Entropy Force-Field Refinement

#############################
#### A nucleoside structure
#############################
MOLINFO STRUCTURE=adenosine.pdb  MOLTYPE=rna

#########################
#### CVs
#########################
n1: TORSION  ATOMS=10,9,27,28
n2: TORSION  ATOMS=28,27,25,26
n3: TORSION  ATOMS=26,25,6,7
n4: TORSION  ATOMS=7,6,3,4
n5: TORSION  ATOMS=7,6,3,5
c1: TORSION  ATOMS=@chi−1
chi1: TORSION  ATOMS=10,9,11,12
g1: TORSION  ATOMS=@gamma−1
puck1: PUCKERING  ATOMS=@sugar−1

#########################
## Karplus relations used to back calculate 3J scalar couplings
#########################
#JH1'−H2'
j1: MATHEVAL  ARG=n1  FUNC=9.67*cos(x)*cos(x)−2.03*cos(x)  PERIODIC=NO
#JH2'−H3'
j2: MATHEVAL  ARG=n2  FUNC=9.67*cos(x)*cos(x)−2.03*cos(x)  PERIODIC=NO
#JH3'−H4'
j3: MATHEVAL  ARG=n3  FUNC=9.67*cos(x)*cos(x)−2.03*cos(x)  PERIODIC=NO
#JH4'−H5'
j4: MATHEVAL  ARG=n4  FUNC=8.313*cos(x)*cos(x)−0.99*cos(x)+1.373+0.27*cos(x)*sin(x)  PERIODIC=NO
#JH4'−H5''
MATHEVAL ...
LABEL=j5
ARG=n5  
FUNC=8.313*cos(x)*cos(x)−0.99*cos(x)+1.373−4.752*cos(x)*sin(x)  PERIODIC=NO
... MATHEVAL
#JC4−H1'
MATHEVAL ...  
LABEL=j6
ARG=c1  
FUNC=3.6*cos(x−(pi/180.0)*68.6)*cos(x−(pi/180.0)*68.6)+1.8*cos(x−(pi/180.0)*68.6)+0.4  PERIODIC=NO
... MATHEVAL
#JC8−H1'
MATHEVAL ...
LABEL=j7
ARG=chi1  
FUNC=4.2*cos(x+(pi/180.0)*(60.0−68.9))*cos(x+(pi/180.0)*(60.0−68.9))−0.5*cos(x+(pi/180.0)*(60.0−68.9))+0.3  PERIODIC=NO
... MATHEVAL
 #########################
 #Extra CVs to have the same CVs on which to apply refinement procedure
 #Notice if some CVs are only present in a dinucleoside (i.e. dhiedral anglese involving a phospate)
 #in this nucleoside input file they are setted to a fictitious constant.
 #########################
 jA3: COMBINE  ARG=j3   PERIODIC=NO
 jA6: COMBINE  ARG=j6   PERIODIC=NO
 jA7: COMBINE  ARG=j7   PERIODIC=NO
 jC3: CONSTANT  VALUE=0.0   
 jC6: CONSTANT  VALUE=0.0
 jC7: CONSTANT  VALUE=0.0
 j8: CONSTANT  VALUE=0.0
 j9: CONSTANT  VALUE=0.0
 j10: CONSTANT  VALUE=0.0
 j11: CONSTANT  VALUE=0.0
 j12: CONSTANT  VALUE=0.0

#########################
#Concurrent Metadynamics
#They present in all 4 replicas, with increasing BIASFACTOR from 1(reference replica) to 5
#########################

METAD ARG=c1  SIGMA=0.25  PACE=500  TAU=12  TEMP=300  BIASFACTOR=1.70998  GRID_MIN=−pi  GRID_MAX=pi  FILE= HILLS_c1
METAD ARG=g1  SIGMA=0.25  PACE=500  TAU=12  TEMP=300  BIASFACTOR=1.70998  GRID_MIN=−pi  GRID_MAX=pi  FILE= HILLS_c2
METAD ...
ARG=puck1.Zx,puck1.Zy  SIGMA=0.15,0.15  PACE=500  TAU=12  TEMP=300  BIASFACTOR=1.70998  
GRID_MIN=−pi,−pi  GRID_MAX=pi,pi  FILE= HILLS_c3
... METAD

INCLUDE FILE= common.dat

Figure D.2: Sample input file for A nucleoside used in the self consistent procedure. We
recall that this setup consist of 24 replicas, the first 4 of which regards the A nucleoside.
BIASFACTOR’s for the four replicas: 1.0, 1.70998, 2.92402, 5.0. File “common.dat”
containing the paramenter for the MaxEnt procedure is the same for all replicas and
is reported after.
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##MaxEnt restraining procedure for the A nucleoside
##It will fit data for A and send corrections to all the other systems
#########################
MAXENT ...
LABEL=resA
ARG=j1,j2,jA3,j4,j5,jA6,jA7
KAPPA=0.001,0.001,0.001,0.001,0.001,0.001,0.001
TAU=3.0,3.0,3.0,3.0,3.0,3.0,3.0
ERROR_TYPE=LAPLACE
SIGMA=2.0
TSTART=150000
TEND=300000
TYPE=EQUAL AT=6.0,5.0,3.4,3.0,3.4,3.6,3.9 
LEARN_REPLICA=0 #Since reference replica for A is the 0 one
PACE=200
... MAXENT

##MaxEnt restraining procedure for the C nucleoside
##It will fit data for C and send corrections to all the other systems
#########################

MAXENT ...
LABEL=resC
ARG=j1,j2,jC3,j4,j5,jC6,jC7 
KAPPA=0.001,0.001,0.001,0.001,0.001,0.001,0.001
TAU=3.0,3.0,3.0,3.0,3.0,3.0,3.0
ERROR_TYPE=LAPLACE
SIGMA=2.0
TSTART=150000
TEND=300000
TYPE=EQUAL AT=3.6,5.0,5.8,2.8,4.2,1.9,3.3
LEARN_REPLICA=4 #Reference replica for C
PACE=200
... MAXENT

##MaxEnt restraining procedure for the ApA dinucleoside monophosphate
##It will fit data for ApA and send corrections to all the other systems
#########################

MAXENT ...
LABEL=resAA
ARG=jA3,j4,j5,jA6,jA7,j8,j9,j10,j11,j12
KAPPA=0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001
TAU=3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0
ERROR_TYPE=LAPLACE
SIGMA=2.0
TSTART=150000
TEND=300000
TYPE=EQUAL AT=10.5,5.3,7.4,4.4,7.3,3.0,3.8,9.0,14.7,3.7
LEARN_REPLICA=8 #Reference Replica for ApA
PACE=200
... MAXENT

##MaxEnt restraining procedure for the ApC dinucleoside monophosphate
##It will fit data for ApC and send corrections to all the other systems
#########################

MAXENT ...
LABEL=resAC
ARG=jA3,jC3,j4,j5,jA6,jC6,jA7,jC7,j8,j9,j10,j11,j12 
KAPPA=0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001
TAU=3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0
ERROR_TYPE=LAPLACE
SIGMA=2.0
TSTART=150000
TEND=300000
TYPE=EQUAL AT=6.1,7.1,4.1,5.5,2.1,1.4,2.8,4.5,4.0,3.4,8.7,14.1,3.3 
LEARN_REPLICA=12 #Reference Replica for ApC
PACE=200
... MAXENT

##MaxEnt restraining procedure for the CpA dinucleoside monophosphate
##It will fit data for CpA and send corrections to all the other systems
#########################

MAXENT ...
LABEL=resCA
ARG=jA3,jC3,j4,j5,jA6,jC6,jA7,jC7,j8,j9,j10,j11,j12 
KAPPA=0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001
TAU=3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0
ERROR_TYPE=LAPLACE
SIGMA=2.0
TSTART=150000
TEND=300000
TYPE=EQUAL AT=5.5,6.8,5.2,7.0,1.8,1.6,4.3,4.6,4.3,3.8,8.7,14.7,3.4
LEARN_REPLICA=16 #Reference Replica for CpA
PACE=200
... MAXENT

##MaxEnt restraining procedure for the CpC dinucleoside monophosphate
##It will fit data for CpC and send corrections to all the other systems
#########################

MAXENT ...
LABEL=resCC
ARG=jC3,j4,j5,jC6,jC7,j8,j9,j10,j11,j12 
KAPPA=0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001
TAU=3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0
ERROR_TYPE=LAPLACE
SIGMA=2.0
TSTART=150000
TEND=300000
TYPE=EQUAL AT=14.5,4.9,6.2,2.8,9.1,4.3,3.2,8.9,15.5,3.1
LEARN_REPLICA=20 #Reference Replica for CpC
PACE=200
... MAXENT

Figure D.5: File “common.dat” containing all the MaxEnt algorithm parameters which
is the same for all the systems.
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D.3 Force-Field Refinement by Reweighting
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