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Abstract

In this thesis, we implement projective quantum Monte Carlo (PQMC) methods
to simulate quantum annealing on classical computers. A detailed derivation of
the algorithm is presented. We show that in the regime where the systematic
errors are well controlled, PQMC algorithms are indeed capable of simulating
the imaginary-time dynamics of the Schroedinger equation both on continuous
space model and discrete basis systems. We also demonstrate that the tunneling
time of the PQMC method is quadratically faster than the one of incoherent
quantum tunneling. It also shows remarkable stability when applied to frustrated
systems compared to the path integral Monte Carlo algorithm, the algorithm
mostly chosen to do comparisons with quantum annealers. However, a major
drawback of the method comes from the finite number of random walkers needed
to implement the simulations. It grows exponentially with the system size when
no or poor guiding wave-functions are utilized. Nevertheless, we demonstrated
that when good enough guiding wave-functions are used – in our case we choose
artificial neural networks – the computational complexity seems to go from
exponential to polynomial in the system size. We advocate for a search of more
efficient guiding wave functions since they determine when and how feasible
the PQMC simulations are on classical computers, a question closely related to a
provable need or speed-up of a quantum computer.
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Introduction

Half a century ago, the advent of integrated circuits led to a complete change of
the design of computers, steering up the birth of the computer revolution. From
that moment, the size of computers started to considerably reduce, from gigantic
computers in labs, to personal computers in homes, to mobiles phones in pockets.
However, though the number of transistors have been doubling every two years,
according to Moore’s law, it is now very clear to physicists and engineers that it is
about to reach its limit. This phenomena is due to increasing quantum effects in
the chip.

An alternative that researchers have been pursuing to palliate to the possible death
of Moore’s law is to build up computers that function exclusively under the laws
of quantum mechanics. A traditional computer (which we will refer to as classical
computer) as we know it, stores information in bits strings, where each bit can be
either in the state 0 or 1. Whereas in a quantum computer, information is stored in
a qubit, the quantum variant of the bit which can be simultaneously both in 0 and
1 states. This is an inherently quantum phenomenon called superposition, which
together with other quantum properties such as coherence and entanglement is
believed to provide an exponential speed-up in certain calculations compared
with classical computers.

However, the road to a quantum computer revolution is full of pitfalls, the major
one being the extreme sensibility of a quantum state to external perturbation,
leading to its collapse into a classical state. This effect is called decoherence,
the nightmare of many quantum physicists. Nevertheless, researchers have
been searching for potential applications where quantum computers may have
a definite superiority compared to their classical counterpart even when using
“noisy” qubits. One of those applications is solving optimization problem through
adiabatic quantum computation sometimes referred to as quantum annealing
(QA) [1, 2].
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Currently, the state of art in quantum annealing technology is owned by DWave,
with their 2000Q system, a quantum processor chip with 2000 superconducting
qubits. Very recently also, Google announced to have built an 4-leaf Shamrock [3]
superconducting quantum annealer. The usual way in which quantum annealers
(QAs) are tested to inspect if they exploit quantum effects is by performing
quantum Monte Carlo (QMC) simulations on classical computers [4, 5].

QMC methods are stochastic methods used to simulate properties of quantum
systems at finite or zero temperature [6, 7, 8, 9, 10]. They have also been used
as heuristic optimization methods in various ways: to find the minimal config-
urations of Lennard-Jones potentials [11], to solve combinatorial optimization
problems [12, 13, 14, 15, 16, 17], to compare with the performance and ascertain
the quantum nature of quantum annealers [18, 19, 20]. Very recently, they were
successfully used to assess the tunneling time of adiabatic quantum computations
on quantum Ising models [21] (considered to be systems effectively described by
a double well structure) and on continuous space models [21, 22].

It is important to mention that among the plethora of QMC methods available,
there is a particular one that has been standing out as a term of comparison for
the behavior of QAs, namely path integral Monte Carlo (PIMC). PIMC is a QMC
method that simulates quantum many-body systems at finite temperature. When
used to simulate QA, it implements a stochastic Monte Carlo dynamics to explore
the configuration space, sometimes without succeeding. While this stochastic
dynamics might effectively mimic the (real time) behavior of a quantum annealer,
it is in principle distinct from the real-time Schroedinger dynamics.

In this thesis, we investigate the use of another type of QMC method to simulate
quantum annealing namely the projective quantum Monte Carlo (PQMC) algo-
rithm. It is a QMC method that emulates the dynamics of a quantum system in
imaginary-time. One of the motivations is the theory of Refs. [23, 1], showing
that in the adiabatic perturbative regime, imaginary-time Schroedinger dynamics
is expected to simulate (in long annealing times) the behavior of quantum systems
in real-time. On the contrary, when perturbative terms are present, imaginary-
time annealing has been proved to provide quadratic speed-up with respect to its
real-time counterpart [24].

Therefore, one of the goals is to compare the performance of PQMC with respect
to PIMC. Hence, it is also essential to identify, understand, and learn how to
control all the possible flaws and biases of PQMC simulations. We also explore a
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route to boost the performance of the PQMC method using guiding wave functions
based on artificial neural networks states [25].

GUIDE TO THE THESIS

Chapter 1: We describe in details the PQMC method for continuous space models
and for discrete basis models with and without importance sampling. In particular,
in the prospect of quantum annealing simulations, we derive a generic equation
for the PQMC algorithm that has a time-dependent guiding wave-function. In the
last section of the chapter, we introduce a novel way of recovering pure estimators
from PQMC simulations without importance sampling taking as a test bed the
ferromagnetic quantum Ising chain.

Chapter 2: In this chapter, we use the diffusion Monte Carlo (DMC) to simulate
quantum annealing problems on continuous space models. Comparative studies
of DMC vs PIMC on double-well models are shown. We also report results of
performing simulated quantum annealing (SQA) with DMC in comparison with
classical annealing on multiwell potentials. The content of the chapter has been
published in:
E. M. Inack and S. Pilati, Phys. Rev. E 92, 053304 (2015).

Chapter 3: Here, comparisons are made between the tunneling dynamics of
simple DMC simulations, of finite temperature PIMC and of incoherent quantum
annealing on the Ising chain and a frustrated spin model. We also study the
computational complexity of the simple DMC algorithm, in the context of finding
ground state properties of local Hamiltonians with a given precision. The test bed
is the quantum Ising chain (QIC). The results of the chapter are taken from the
recent publication
E. M. Inack, G. Giudici, T. Parolini, G. Santoro and S. Pilati, Phys. Rev. A 97,
032307 (2018).

Chapter 4: We introduce importance sampling making use of the unrestricted
Boltzmann machine (uRBM) as a trial wave function to study the computational
complexity of the QIC. Prior to that, we compare the variational ground-state
energy predictions for the 1D ferromagnetic quantum Ising models, obtained
using the uRBM introduced here, with the RBM recently introduced by Carleo
and Troyer [25]. The results presented here come from a recent preprint
E. M. Inack, G. Santoro, L. Dell’Anna and S. Pilati, arXiv:1809.03562v1
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Chapter 5: SQA using PMQC with and without importance sampling is performed
on the QIC. Results are compared with both the real and imaginary time dynamics
of the Schroedinger equation. We also test our protocol of recovering pure
estimators in PQMC, this time at the end of annealing simulations.

4



1 Fundamentals of projective quan-
tum Monte Carlo algorithms

In this chapter we present projective Quantum Monte Carlo (PQMC) methods.
They allow one to extract certain ground-state properties of quantum many-body
systems. We will first discuss the main idea behind their ability to sample the
ground state wave-function of Hamiltonians that are not affected by the sign
problem by giving a brief overview of PQMC methods.

We then move on to give a detailed description of the algorithm, for both con-
tinuous space and discrete basis models. We particularly highlight and analyze
the possible sources of systematic errors in the method, which are the time step
error and the one due to a finite population of random-walkers. Understanding
those errors is very important because it can be a determining factor when using
the PQMC algorithm to inspect for potential quantum speed-up in using adia-
batic quantum computers instead of stochastic simulations performed on classical
computers. We describe the importance sampling technique and its relevance
in improving the efficiency of PQMC simulations, also in the context of solving
optimization problems. Thus, a new general formalism to simulate PQMC with
time-dependent trial wave-functions is introduced, including terms that had not
been considered previously.

Different ways of approximating the propagator of the imaginary-time Schroedinger
equation are also described, which are the linear Taylor approximation, the non-
symmetric and the symmetric Trotter approximations. These are all affected by a
time step error. Also, a continuous-time exact approximation which does not have
a time step error is presented. For the Trotter approximation, on discrete models,
we write the complete derivation that leads to a binomial sampling protocol.

5



Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

Exactly solvable models are used to benchmark the algorithm. For continuous
space models, we consider the Harmonic oscillator, for discrete basis models the
ferromagnetic quantum Ising model. For the last model, equilibrium dynamics of
the PQMC method is studied close to the quantum critical point.

Lastly, we introduce a novel way to extract pure estimators from PQMC simula-
tions which, by default give mixed estimators. We believe that this is a promising
route in the context of quantum annealing simulations

1.1 Projective quantum Monte Carlo in a nutshell

Let’s consider the Dirac representation of the Schrödinger equation written in
imaginary-time (τ = it

~ )

− ∂

∂τ
|Ψ(τ)〉 = (Ĥ − Eref)|Ψ(τ)〉. (1.1)

~ is the reduced Planck constant. It is set to ~ = 1. |Ψ(τ)〉 is the wave-function
of a quantum system at imaginary-time τ . Ĥ denotes a generic quantum many-
body Hamiltonian with eigenvectors {|Ψn〉} and corresponding eigenvalues {En}.
n = 0, 1, . . . labels the eigenstates of the Hamiltonian. Eref is a reference energy
which, when equal to the average energy 〈Ĥ〉, takes care of the normalization of
the wave-function. In practice, it is kept close to that value in order to maintain
the stability of the simulations, as it will be explained latter. 〈Ĥ〉 stands for the
expectation value of the Hamiltonian in the ground state. PQMC methods could
also be used for excited states in some cases [26], but in this thesis we focus only
on their use for the ground state.

At τ = 0, the system is initialized in a state |ψini〉. Expanding this state on the
eigenvectors of the Hamiltonian Ĥ yields

|ψini〉 =
∑

n

cn|Ψn〉.

|ψini〉 can be any arbitrary state with the only requirement that it has a non-zero
overlap with the ground state, i.e 〈Ψ0|ψini〉 6= 0. After a propagation time τ , the
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1.2. Simple projective quantum Monte Carlo method

state of the system is given by:

|Ψ(τ)〉 =e−(Ĥ−Eref)τ |ψini〉

=
∑

n

cne
−(En−Eref)τ |Ψn〉. (1.2)

As τ increases, higher energy states are exponentially suppressed if Eref ' E0. At
very long times, in the limit when τ →∞, one projects out the ground state.

|Ψ(τ)〉 τ→∞−−−→ c0e
−(E0−Eref)τ |Ψ0〉.

The algorithm thus described recovers both the ground state energy and the
ground state wave-function of Ĥ at zero temperature. It is important to note
from Eq. (1.2) that slower convergence of the algorithm is expected if the energy
difference ∆ = E1−E0 between the first excited state E1 and the ground state E0

(assuming that Eref ' E0) is small. This happens, for e.g., in double well-models
that will be considered in latter chapters in the context of optimization problems.
Other factors such as the choices of the initial configuration and the guiding
wave-function (discussed latter) influence the convergence rate of the algorithm.
When the above algorithm is implemented via a stochastic dynamics, it is dubbed
projective quantum Monte Carlo (PQMC) method.

In the following section we will discuss its practical implementation in Monte
Carlo simulations.

1.2 Simple projective quantum Monte Carlo method

The simple projective quantum Monte Carlo method is an algorithm that evolves
the Schrödinger equation (1.1) in imaginary time. It is called “simple” because it
doesn’t make use of the so-called importance sampling technique, well known to
increase the efficiency of PQMC simulations. In the next section, we will describe
how importance sampling is performed in PQMC simulations, whereas in this
section, we will focus on the description of the simple PQMC method.

The Schrödinger equation in Eq. (1.1) can be solved by iteratively applying the
following equation:

Ψ(x, τ + ∆τ) =
∑
x′

G(x,x′,∆τ)Ψ(x′, τ), (1.3)

7



Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

where Ψ(x, τ) = 〈x|Ψ(τ)〉 denotes the wave function at the imaginary time τ .

G(x,x′,∆τ) = 〈x|e−∆τ(Ĥ−Eref)|x′〉, (1.4)

is the Green’s function of Eq. (1.1) for a short time step ∆τ . Therefore, in
order to perform simulations for long times τ , one has to repeat many steps
with the short time Green’s function. Thus, in the τ → ∞ limit, configurations
x with a probability density proportional to the ground state wave function
Ψ0(x) (assumed to be real and non negative) can be sampled. This is under the
assumption that the Hamiltonian Ĥ is not affected by the sign problem.

One should notice that the Green’s function G(x,x′,∆τ) does not always define a
stochastic matrix 1. Therefore, it cannot be utilized to define the transition matrix
of a conventional Markov chain Monte Carlo simulation. This problem can be
circumvented by rewriting the Green’s function as

G(x,x′,∆τ) = GT(x,x′,∆τ)bx′ , (1.5)

where GT(x,x′,∆τ) is by definition stochastic, hence it defines a transition
probability to go from x′ to x. The normalization factor is

bx′ =
∑
x

G(x,x′,∆τ), (1.6)

the weight on the configuration x′. A stochastic process can then be implemented,
where a large population of equivalent copies of the system, in jargon called
walkers, is evolved. Each walker represents one possible configuration of the
system x′n (the index n labels different walkers), and is gradually modified by
performing configuration updates according to GT(xn,x

′
n,∆τ). Thereafter, their

(relative) weights wn are accumulated according to the rule wn → wnbx′
n
, starting

with equal initial weights wn = 1 for all the walkers in the initial population.

It is important to remark that the matrix elements of the Green’s function
G(x,x′,∆τ) need to be nonnegative otherwise the Monte Carlo simulations
would be impracticable. This is the “infamous” sign-problem. While this im-
plementation is in principle correct, it is known to lead on a practical side to

1A stochastic matrix A is a square matrix whose nonnegative real column entries sum up to
unity, i.e.,

∑
x A(x,x′) = 1. Each entry A(x,x′) would then define the transition probability to

move from configuration x′ to x. Stochastic matrices are used to construct Markov processes in
Monte Carlo simulations.
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1.2. Simple projective quantum Monte Carlo method

an exponentially fast signal loss as the number of Monte Carlo steps increases.
This is due to the fact that the relative weight of few walkers quickly becomes
dominant, while most other walkers give a negligible contribution to the signal.

An effective remedy consists in introducing a birth-death process called branching,
where each walker is replicated (or annihilated) a number of times corresponding,
on average, to the weight wn. Thus, at each imaginary-time τ , the distribution of
the walkers population represents the (unnormalized) ground state wave function
Ψ0(x).

The simplest correct rule consists in generating, for each walker in the population
at a certain imaginary time τ , a number of descendants nd in the population at
imaginary time τ + ∆τ . nd is defined as int [wn + η], where η ∈ [0, 1] is a uniform
random number, and the function int [] gives the integer part of the argument [10].
This scheme allows one to take full consideration of the information contained
in the weight wn. Thus, if nd > 1, nd − 1 identical copies of the walker are
created and added in the current population of walkers. Whereas, if nd = 0, the
corresponding walker is annihilated from the population. After branching has
been performed, all walkers have the same weight wn = 1.

Therefore, the number of walkers in the population fluctuates at each PQMC
iteration and can be kept close to a target value Nw by adjusting the reference
energy Eref . The parameter Eref regulates the variations of the walkers population
by preventing them to increase or decrease in a rapid manner. There are different
ways to maintain the walkers population around a given value. One simple
possibility is to compute the reference energy at time τ + ∆τ using the formula

Eref = E + µ log
Nw

Ncur

. (1.7)

Here, E = 〈Ĥ〉 denotes the energy averaged over the walkers population Ncur at
the previous time step. Ncur refers to the size that the replicas population had at
time τ . Nw is an algorithm parameter chosen by the user. It affects the accuracy
of the results, as explained latter. It is kept fixed all through the simulations. µ is
a small positive parameter which is used to reduce the fluctuations of the walkers
population. The logarithmic function serves to regulate the rate of variations in
the number of walkers.

Introducing the branching process provides one with a feasible, possibly efficient
algorithm. However, such a process might actually introduce a systematic bias
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

if the average population size Nw is not large enough. The bias originates from
the spurious correlations among walkers generated from the same ancestor [27].
This effect becomes negligible in the Nw →∞ limit, but might be sizable for finite
Nw. It is known to be the most relevant and subtle possible source of systematic
errors in PQMC algorithms [28, 29, 30].

Another potential source of systematic errors in PQMC originates from the time
step ∆τ . In order to illustrate that, consider a generic Hamiltonian

Ĥ = Ĥcl + Ĥkin,

where Ĥcl is the potential energy designating the classical part of the Hamiltonian
and, Ĥkin the kinetic part responsible for quantum fluctuations. Employing a
primitive Trotter approximation [10] to separate the contributions from the two
non-commuting terms yields:

e−∆τ(Ĥ−Eref) = e−∆τĤkine−∆τ(Ĥcl−Eref) +O(∆τ 2). (1.8)

Such error is dealt with either by running a single (expensive) simulation with a
very small value of ∆τ or, by running simulations at different values of ∆τ and
extrapolating ground-state energies linearly in the limit where ∆τ → 0.

The left hand side of Equation (1.8) can also be approximated using a Taylor
expansion. It is written as (for e.g. see [31, 32, 33])

e−∆τ(Ĥ−Eref) = 1−∆τĤkin −∆τ(Ĥcl − Eref) +O(∆τ 2). (1.9)

It is a different way to explicitly express the Green’s function, using a Taylor
expansion instead of a Trotter decomposition.

A more accurate estimate of the propagator, that has a higher order error in ∆τ is
given by the symmetrized version of the Trotter approximation [10]

e−∆τ(Ĥ−Eref) = e−
∆τ
2

(Ĥcl−Eref)e−∆τĤkine−
∆τ
2

(Ĥcl−Eref) +O(∆τ 3). (1.10)

By neglecting the O(∆τ 3) terms in the Green’s function, one obtains a quadratic
convergence of ground-state properties in the ∆τ → 0 limit [34]. Higher order
expansions of the imaginary-time propagator exist but require a more complex
implementation [35]. In all our computations (unless it is otherwise stated), we
implement the primitive approximation in Eq. (1.10).

10



1.3. Projective Quantum Monte Carlo method with importance sampling

It is important to mention that the systematic error coming from the time step
∆τ can be completely eliminated in the simulations as we will discuss latter in
the context of continuous-time PQMC methods.

1.3 Projective Quantum Monte Carlo method with
importance sampling

The simple PQMC has the advantage that no prior knowledge of the wave-function
is needed. However, rapidly varying potential energies can seriously affect the
branching step, even to the point of rendering the calculations intractable. A
promising strategy to circumvent the aforementioned problem is to introduce
the so-called importance sampling technique. This is indeed a well established
approach to boost the efficiency of PQMC simulations (see, e.g, Ref. [36]) because
it has the potential to reduce the number of walkers needed to attain a given
accuracy [27]. It consists in evolving a function

f(x, τ) = Ψ(x, τ)ψT (x, τ), (1.11)

via a modified imaginary-time Schrödinger equation. ψT (x, τ) is a guiding func-
tion designed to accurately approximate the ground-state wave function. Its role
is to favor the sampling of configurations with high probability amplitude.

Usually, in PMQC simulations using importance sampling, the guiding function is
considered to be time-independent. A novelty that we introduce in the following
derivation is to have a trial wave function which explicitly depends on time.
The motivation for this consideration stems from the desire to use PQMC as
a quantum-inspired classical optimization method to simulate combinatorial
optimization problems in an annealing setting. As a matter of fact, in a quantum
annealing simulation, the kinetic part of the Hamiltonian is varied with time, and
so is its spectrum. Therefore, it is expected that a trial function that accurately
describes the time-dependent ground state wave function during annealing needs
to be time dependent.

In order to derive how the imaginary-time Schrödinger equation changes, we
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

rewrite Equation (1.1) as

− ∂

∂τ
Ψ(x, τ) =

∑
x′

[
Hx,x′ − Erefδx,x′

]
Ψ(x′, τ), (1.12)

where Hx,x′ = 〈x|Ĥ|x′〉 and δ stands for the Kronecker delta function (assuming a
discrete basis). Using the expression of the wave-function Ψ(x, τ) in Equation 1.11
yields:

∂

∂τ
Ψ(x, τ) =

∂τf(x, τ)

ψT (x, τ)
− f(x, τ)

ψT (x, τ)

∂τψT (x, τ)

ψT (x, τ)
.

Defining a fictitious time-dependent potential energy as

Ṽ (x, τ) = −∂τψT (x, τ)

ψT (x, τ)
, (1.13)

we obtain from Eq. (1.12) that the modified imaginary-time Schrödinger equation
becomes:

− ∂

∂τ
f(x, τ) =

∑
x′

[
Hx,x′ −Erefδx,x′ + Ṽ (x′, τ)δx,x′

] ψT (x, τ)

ψT (x′, τ)
f(x′, τ). (1.14)

In this thesis, an explicit time-dependence of the guiding function is only consid-
ered in the last chapter. Therefore, for the time being, the guiding function will
be referred to without a dependence on τ , i.e ψT (x, τ) ≡ ψT (x). Equivalently, this
would imply a vanishing time-dependent potential Ṽ (x, τ). Nonetheless, remark
that its effect could be trivially added in the PQMC algorithm given that it is
diagonal in the basis state.

In the long imaginary-time limit, the walkers sample spin configurations with a
probability distribution proportional to f(x, τ →∞) = Ψ0(x)ψT (x). If ψT (x) is a
good approximation of the ground-state wave function, this distribution closely
approximates the quantum-mechanical probability of finding the system in the
configuration x. The expectation value of the energy in PQMC is computed using
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1.3. Projective Quantum Monte Carlo method with importance sampling

the mixed estimator:

〈Ĥ〉mixed =
〈Ψ0|Ĥ|ψT 〉
〈Ψ0|ψT 〉

=

∑
x〈Ψ0|x〉〈x|Ĥ|ψT 〉∑
x〈Ψ0|x〉〈x|ψT 〉

=

∑
x Ψ0(x)

[
〈x|Ĥ|ψT 〉
〈x|ψT 〉

]
〈x|ψT 〉∑

x Ψ0(x)ψT (x)

=

∑
x Ψ0(x)Eloc(x)ψT (x)∑

x Ψ0(x)ψT (x)
. (1.15)

The quantity Eloc(x), dubbed local energy which is defined as

Eloc(x) =
〈x|Ĥ|ψT 〉
〈x|ψT 〉

, (1.16)

plays a fundamental role for the stabilization of the simulations. If it undergoes
large fluctuations then the (current) number of walkers will also fluctuate a lot.

It is important to notice that if our guiding wave function was exact, i.e., if
ψT (x) = Ψ0(x), then the local energy would be a constant function, Eloc(x) = E0.
This would completely suppress the fluctuations of the number of walkers (this
is a consequence of the zero variance property [27]), therefore eliminating the
bias due to the finite walkers population Nw. If ψT (x) is, albeit not exact, a
good approximation of Ψ0(x), the fluctuations of the number of walkers are still
reduced compared to the case of the simple PQMC algorithm giving a faster
convergence to the exact Nw →∞ limit, thus reducing the computational cost, in
particular for large systems.

The ground state energy E of the system is computed as

E = lim
Nc→∞

1

Nc

Nc∑
i=1

Eloc(xi), (1.17)

where Nc is a number of uncorrelated configurations xi sampled from the proba-
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

bility distribution

p(x) =
Ψ0(x)ψT (x)∑
x Ψ0(x)ψT (x)

. (1.18)

Note that in the case of the Hamiltonian operator, and of other operators that
commute with the Hamiltonian, the mixed estimator defined above provides exact
estimates (within statistical error bar) of the ground state expectation value. In
general, the mixed estimator is accurate only if the trial function ψT (x) is a good
approximation of the ground state wave-function. Pure estimators for operators
that do not commute with the Hamiltonian can be derived too, as explained in
section 1.4.

1.3.1 Continuous space models

In this section, we consider continuous-space models in one spatial dimension. A
generic form of the Hamiltonian is:

Ĥ = −D∇2
x + V̂ (x),

where D = (2m)−1, with m being the particles mass (assumed to be equal for
all particles). Recall that the reduced Planck constant has been set to ~ = 1 all
through the manuscript. x = (x1, . . . , xN) denotes the particles configuration. xi
is the position of the particle i (with i = 1, . . . , N), and N is the particle number.
V̂ (x) stands for the potential energy operator.

Introducing importance sampling with a time independent trial function ψT (x)

transforms Eq. (1.14) to:

− ∂

∂τ
f(x, τ) =

∫
dx′
[
Hx,x′ − Erefδ(x− x′)

] ψT (x)

ψT (x′)
f(x′, τ)

=

∫
dx′
[(
δ(x− x′)[−D∇2

x′ + V (x′)]
)
− Erefδ(x− x′)

] ψT (x)

ψT (x′)
f(x′, τ)

=

∫
dx′δ(x− x′)

[
−D∇2

x′

(ψT (x)f(x′, τ)

ψT (x′)

)
︸ ︷︷ ︸

T

+[V (x′)− Eref ]
ψT (x)

ψT (x′)
f(x′, τ)

]
.

(1.19)
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1.3. Projective Quantum Monte Carlo method with importance sampling

The term T in the kinetic energy is expanded as:

T = ∇2
x′

[ψT (x)f(x′, τ)

ψT (x′)

]
= ψT (x)∇2

x′

[f(x′, τ)

ψT (x′)

]
= ψT (x)∇x′

[∇x′f(x′, τ)

ψT (x′)
− f(x′, τ)

ψT (x′)
F (x′)

]
,

where we have defined a quantum drift force F (x) as

F (x) =
∇xψT (x)

ψT (x)
. (1.20)

Hence, we obtain

T = ψT (x)
[∇2

x′f(x′, τ)

ψT (x′)
− ∇x

′f(x′, τ)

ψT (x′)
F (x′)−∇x′

[f(x′, τ)

ψT (x′)

]
F (x′)− f(x′, τ)

ψT (x′)
∇x′F (x′)

]
= ψT (x)

[
∇2
x′f(x′, τ)− 2F (x′)∇x′f(x′, τ) + F 2(x′)f(x′, τ)−∇x′ [F (x′)]f(x′, τ)

] 1

ψT (x′)
.

One can check that

F 2(x′) =
∇2
x′ψT (x′)

ψT (x′)
−∇x′F (x′).

Therefore, after rearrangement of terms, we obtain

T = ψT (x)
[
∇2
x′f(x′, τ)− 2∇x′ [F (x′)f(x′, τ)] +

∇2
x′ψT (x′)

ψT (x′)
f(x′, τ)

] 1

ψT (x′)
.

Inserting this term in Equation (1.19) yields

− ∂

∂τ
f(x, τ) =

∫
dx′δ(x− x′)ψT (x)

[
−D∇2

x′f(x′, τ) + 2D∇x′ [F (x′)f(x′, τ)]

+ [Eloc(x
′)− Eref ]f(x′, τ)

] 1

ψT (x′)
,

where we have made used of the definition of the local energy in Equation (1.16),
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

which in coordinate space takes the form:

Eloc(x) = −D∇
2
xψT (x)

ψT (x)
+ V (x). (1.21)

The modified Schrödinger Equation thus assumes the following expression for
continuous space-models

− ∂

∂τ
f(x, τ) = −D∇2

xf(x, τ) + 2D∇x[F (x)f(x, τ)] + [Eloc(x)− Eref ]f(x, τ).

(1.22)

This equation displays a twofold effect due to the importance sampling. First,
through the drift force F (x), walkers are conducted to regions of the configuration
space that are the most relevant for sampling. Second, the branching step is
smoothed with the use of the local energy Eloc(x) instead of the bare potential.

Note that when the guiding function is a constant ψT (x) = 1, in order words,
importance sampling is not utilized, as expected, the imaginary-time Schrödinger
equation is recovered.

− ∂

∂τ
Ψ(x, τ) = −D∇2

xΨ(x, τ) + [V (x)− Eref ]Ψ(x, τ). (1.23)

D can be viewed as an effective diffusion constant. This is because the above
equation is similar to a diffusion equation.

From Equation (1.22), we identify an effective Hamiltonian given by

H̃ = −D∇2
x + 2D∇x[F (x)] + Eloc(x)

= Dp̂2 + 2iDp̂[F (x)] + Eloc(x),
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1.3. Projective Quantum Monte Carlo method with importance sampling

such that the modified Schrödinger equation can be re-written as:

− ∂

∂τ
f(x, τ) = (H̃ − Eref)f(x, τ). (1.24)

Therefore, in the same spirit as what was done in Equation (1.3), the modified
imaginary-time Schrödinger is solved by applying iteratively the integral equation:

f(x, τ + ∆τ) =

∫
dx′G̃(x,x′,∆τ)f(x′, τ), (1.25)

where G̃(x,x′,∆τ) is a suitable approximation for the Green’s function of Eq. (1.22)
and is given by the expression

G̃(x,x′,∆τ) = 〈x|e−∆τ(H̃−Eref)|x′〉. (1.26)

Using the primitive approximation of Eq. (1.10) gives

G̃(x,x′,∆τ) ≈ Gd(x,x
′,∆τ)Gb(x,x

′,∆τ), (1.27)

where

Gb(x,x
′,∆τ) = exp

[
−∆τ

(
Eloc(x) + Eloc(x

′)

2
− Eref

)]
, (1.28)

since the local energy is diagonal in the basis state. Whereas the off-diagonal
contribution (coming from the kinetic energy) to the Green’s function is

Gd(x,x
′,∆τ) = 〈x|e−∆τDp̂2−2i∆τDp̂[F (x)]|x′〉.

Using the completeness relation∫
dp|p〉〈p| = 1,

and the expression for the single particle wave-function in coordinate space

〈x|p〉 =
1√
2π
eipx,

17



Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

we obtain

Gd(x,x
′,∆τ) =

∫
dp

(2π)N/2
dp′

(2π)N/2
ei(px−p

′x′)e−∆τDp′2−2i∆τDp′[F (x′)]δ(p− p′)

=

∫
dp

(2π)N
eip(x−x′)e−∆τDp2−2i∆τDp[F (x′)].

From the following integral relation∫
dpe−

a
2
p2

ebp =

√
2π

a
e
b2

2a ,

we obtain the following expression for Gd(x,x
′,∆τ):

Gd(x,x
′,∆τ) = (4π∆τD)−N/2 exp

[
−(x− x′ − 2∆τDF (x′))2

4∆τD

]
. (1.29)

This Green’s function is normalized and defines a standard drift-diffusion process.
Remark that in the absence of a drift force, it would characterize simple diffusion
processes.

Eq. (1.25) could be interpreted as the definition of a Markov chain with transition
matrix equal to the (positive-definite) Green’s function G̃(x,x′,∆τ). However, the
second termGb(x,x

′,∆τ) in Equation (1.27) is not normalized. The Markov chain
can still be defined in an extended configuration space. One has to evolve a (large)
ensemble of copies of the system according to the drift-Gaussian process, with an
additional branching (or killing) process where walker replicas are generated (or
annihilated) proportionally to Gb(x,x

′,∆τ). This branching process, performed
as described above, takes into account the lack of normalization of the Green’s
function, and causes fluctuations in the random-walker number as previously
discussed in Sec. (1.2).

1.3.2 Test case: The Harmonic oscillator

As a test bed, we present results obtained by implementing simple PQMC to
simulate the harmonic potential in one dimension. The objective here is twofold:
first, to show that with such a toy model the algorithm does recover ground state
properties. Second, we show how a smartly chosen guiding function affects how
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1.3. Projective Quantum Monte Carlo method with importance sampling

accurately one can predict the ground state energy of a quantum system.

The Hamiltonian of the system is given by

Ĥ =
p̂2

2m
+ V (x),

with the harmonic potential being:

V (x) =
1

2
mω2x2.

m stands for the mass and ω, the angular frequency of the oscillator, is here
chosen to be the unit of energy. The value for the ground state energy is E0 = 0.5.

The simple PQMC is implemented as described in Section (1.2). Walkers are initial-
ized randomly, then evolved through a free particle diffusion process and branch-
ing. The diffusion part comes as a result of the Green’s function GT(x, x′,∆τ) in
Equation (1.5) being Gaussian. Thus, during the Markov process, each walker

diffuses through a random Gaussian displacement of typical length
√

∆τ
m

. At
imaginary-time τ , each walker positioned at x′ is updated as follows:

x = x′ + η

√
∆τ

m
,

where η is a Gaussian random variable with variance 1. The branching step is
performed with a weight

w = exp
[
−∆τ

(V (x′) + V (x)

2
− Eref

)]
.

Figure 1.1(a) displays how the algorithm is able to recover the ground state
wave-function of the harmonic oscillator. Initially, at τ = 0, walkers have a flat
distribution in space. Thereafter, they are evolved in imaginary time. Different
imaginary times τ (≡ MCs ×∆τ), represent the running time at which the
simulations are being performed. MCs designates the number of Monte Carlo
steps. When τ = 225, a converged distribution of the population is obtained. It
corresponds to Ψ0(x), given by:

Ψ0(x) =
(mω
π

) 1
4

exp
[
−mω

2
x2
]
.
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

Next, we move on to introduce importance sampling in the algorithm. The imple-
mentation follows the description given in Section (1.3). We choose the following
variational wave-function ψT (x) as a guiding function for PQMC simulations:

ψT (x) =
(mω
π
κ
) 1

4
exp

[
−mω

2
κx2
]
, (1.30)

where κ is a variational parameter. κ = 1 corresponds to the case where the
guiding function coincides exactly with the exact ground state wave function, i.e
ψT (x) = Ψ0(x). The diffusion process is similar to the one in simple PQMC except
that an additional update which consists of a drift in the walker coordinate is
added

x = x′ +
∆τ

m
F (x′) + η

√
∆τ

m
.

This is a discrete Langevin equation with a Gaussian noise and a drift force (see
Eq. 1.20),

F (x) = −mωκx.

Branching with importance sampling is done using the local energy computed
using Equation (1.21),

Eloc(x) =
ωκ

2

[
1−mωκx2

]
+ V (x),

instead of the bare potential V (x). The expectation value E of the Hamiltonian is
computed using the average value of the local energy taken on a large population
of walkers.

In Figure 1.1(b), the average energy E = 〈Ĥ〉 is plotted for different values of
κ. Note that when κ = 1, the statistical fluctuations of the average energy are
completely suppressed and the correct value for the ground state energy is found.
However, the farther the guiding function is to the exact ground state, the less
accurate are the results and the greater are the statistical fluctuations. This is
because the local energy is no longer constant and this generate more fluctuations
in the walkers population as the error bars of E demonstrate.

Note however that other systematic errors can also become larger, for example the
one due to the finite time step ∆τ . At large values of the variational parameter,
convergence to the ground state energy (with the time step) is obtained from
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Figure 1.1: (a) Histograms of the density distribution of the population of walkers
in the harmonic potential at different imaginary times τ . For a sufficiently long
τ , the walkers distribution converges towards the ground state wave-function of
the harmonic potential Ψ0(x). (b) Average ground state energy of the harmonic
oscillator computed using PQMC with ψT (x) as a guiding function (see Eq. 1.30)
as a function of the variational parameter κ. The exact value for ground state
energy of the harmonic oscillator is 0.5. Energies are given in unit of ω, the
harmonic oscillator strength.
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

below (data not shown). This explains why the data in Fig. 1.1(b) at large κ are
slightly below the exact result.

1.3.3 Discrete basis models

In this section, we present the implementation of the simple PQMC algorithm, i.e
without importance sampling, for transverse-field Ising models. The formalism
could equivalently be used for particles hopping on a lattice, but we choose to
focus on spin based models which are more relevant for quantum computing,
in particular for studies on solving combinatorial optimization problems via
adiabatic quantum optimization. Initially, a description of simple PQMC following
the theoretical formalism sketched in Ref. [32] will be given. We explain it in
details here because it will latter on serve as a basis for the work presented
in Chapter 3. Subsequently, we present the continuous-time Green’s function
Monte Carlo (CTGFMC) algorithm introduced in [37]. Its choice is motivated
by the fact that it completely removes the time step error inherent in the Trotter
approximation of the Green’s function. It has been used in the results that will be
discussed in Chapters 4 and 5.

Consider a generic Ising spin Hamiltonian defined as:

Ĥ = −
∑
i,j

Jijσ
z
i σ

z
j − Γ

N∑
i=1

σxi , (1.31)

where Jij is the interaction strength between the spins i and j placed on the N
nodes of a graph. σzi and σxi are Pauli matrices acting at site i. Each spin expe-
riences a transverse field of strength Γ, which introduces quantum fluctuations.
We do not explicitly consider longitudinal fields; however, their effect could be
trivially included in the algorithm.

Given |xi〉 an eigenstate of the Pauli matrix σzi at site i with eigenvalue xi = 1

when |x〉 = |↑〉 and xi = −1 when |x〉 = |↓〉, the quantum state of N spins in
the system is indicated by |x〉 = |x1x2...xN〉. The ensemble of 2N states {|x〉} is
chosen as computational basis.

The Schrödinger equation (1.1) is solved by applying iteratively Equation (1.3).
Recall that G(x,x′,∆τ) is the Green’s function of Eq. (1.1). For reasons that will
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1.3. Projective Quantum Monte Carlo method with importance sampling

be explained latter on, we employ the primitive Trotter approximation given by:

G(x,x′,∆τ) = 〈x|e−∆τĤkine−∆τ(Ĥcl−Eref)|x′〉+O(∆τ 2),

where

Ĥcl = −
∑
i,j

Jijσ
z
i σ

z
j , (1.32)

and

Ĥkin = −Γ
N∑
i=1

σxi . (1.33)

The potential energy being diagonal on the basis state |x〉, the functionG(x,x′,∆τ)

transforms to:

G(x,x′,∆τ) ' 〈x|e−∆τĤkin|x′〉︸ ︷︷ ︸
I

e−∆τ [Ecl(x
′)−Eref ],

with Ecl(x) = 〈x|Ĥcl|x〉. Given that Pauli matrices at different sites commutes,
we have the following result:

I = 〈x1x2...xN |e∆τΓ
∑
i σ̂
x
i |x′1x′2...x′N〉

= 〈x1|e∆τΓσ̂x1 |x′1〉〈x2|e∆τΓσ̂x2 |x′2〉...〈xN |e∆τΓσ̂xN |x′N〉

=
N∏
i=1

〈xi|e∆τΓσ̂xi |x′i〉.

One could verify that

〈x|eaσ̂x|x′〉 = ceJ⊥xx
′
, (1.34)

where c =
√

sinh 2a
2

and J⊥ = −1
2

log tanh a.

The formula in Eq. (1.34) is generally used to write I in terms of Ising-like
interactions between same lattice site spins in the imaginary-time domain. Here
we refer to the mapping of a quantum system in D dimension to a classical system
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in D + 1 dimension. Thus, we obtain that

I = cNeJ⊥
∑N
i=1 xix

′
i .

Now, we desire to engineer a diffusion mechanism that encodes multi-spin flips.
To do that, we suppose that during a small time ∆τ , when passing from a spin
configuration |x′〉 to a spin configuration |x〉, a certain number of δ spins are
flipped i.e {

xix
′
i = −1 for δ spins

xix
′
i = 1 for (N − δ) spins.

The Green’s function becomes

G(x,x′,∆τ) ' cNe−∆τJ⊥δe∆τJ⊥(N−δ)e−∆τ [Ecl(x
′)−Eref ]

= cNe∆τJ⊥Ne−2∆τJ⊥δe−∆τ [Ecl(x
′)−Eref ]

=

[
sinh 2∆τΓ

2

]N/2
e−

N
2

log(tanh ∆τΓ)e
δ

(
log(tanh ∆τΓ)

)
e−∆τ [Ecl(x

′)−Eref ]

=

[
2 sinh ∆τΓ cosh ∆τΓ

2

]N/2[
1

tanh ∆τΓ

]N/2[
tanh ∆τΓ

]δ
e−∆τ [Ecl(x

′)−Eref ]

=

[
cosh ∆τΓ

]N[
tanh ∆τΓ

]δ
e−∆τ [Ecl(x

′)−Eref ]. (1.35)

Note that the above Green’s function is not normalized, hence it cannot be used
as a transition probability of a Markov chain. Following the same procedure as in
continuous space models, the Green’s function is rewritten as in Equation (1.27).
The part of the Green’s function responsible for branching is then be given by

Gb(x,x
′,∆τ) =

∑
x

G(x,x′,∆τ)

= e−∆τ [Ecl(x
′)−Eref ]

∑
x

[
cosh ∆τΓ

]N[
tanh ∆τΓ

]δ
. (1.36)

Note that if the symmetrized version of the Trotter approximation was used, it
wouldn’t have been possible to perform the sum (as we will assume latter on) in
x because the term Ecl(x).
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The Green’s function portraying the diffusion of spin configurations is:

Gd(x,x
′,∆τ) =

G(x,x′,∆τ)∑
xG(x,x′,∆τ)

=

[
cosh ∆τΓ

]N[
tanh ∆τΓ

]δ
∑
x

[
cosh ∆τΓ

]N[
tanh ∆τΓ

]δ
︸ ︷︷ ︸

J

,

where,

J =
∑
x

[
e∆τΓ + e−∆τΓ

2

]N[
e∆τΓ − e−∆τΓ

e∆τΓ + e−∆τΓ

]δ
=

1

2N

∑
x

(
e∆τΓ − e−∆τΓ︸ ︷︷ ︸

A

)δ(
e∆τΓ + e−∆τΓ︸ ︷︷ ︸

B

)N−δ
.

Let np be the number of spin configurations that have p spins overturned when
|x′〉 goes to |x〉. Then,

J =
1

2N

(
n0A

0BN + n1A
1BN−1 + n2A

2BN−2 + ...+ nNA
NB0

)
=

1

2N

N∑
p=0

npA
pBN−p,

where
∑N

p=0 np = 2N .

np encodes information about the number of possible configurations that one
obtains after flipping p spins from a chain of N spins. This is so because each
spin configuration with p overturned spins contribute equally to the above sum.
It is a valid approach when assuming a uniform proposal probability of the spins
to be flipped (no longer valid in an importance sampling scheme). Therefore,

25



Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

np =

(
N

p

)
. We obtain a Binomial identity

J =
1

2N

N∑
p=0

(
N

p

)
ApBN−p

=
1

2N
(A+B)N

= e∆τΓN .

Hence,

Gd(x,x
′,∆τ) =

[
cosh ∆τΓ

]N[
tanh ∆τΓ

]δ
e−∆τΓN

=

[
cosh ∆τΓ

e∆τΓ
tanh ∆τΓ

]δ[
cosh ∆τΓ

e∆τΓ

](N−δ)

= P δ
F (1− PF )N−δ, (1.37)

with PF = sinh ∆τΓ
e∆τΓ being the probability for single-spin flip.

Using Eq. 1.36, we write the branching part of the Green’s function as

Gb(x,x
′,∆τ) = e−∆τ [Ecl(x

′)−Eref ]e∆τΓN = e−∆τ [Eloc(x′)−Eref ], (1.38)

where the local energy is given by:

Eloc(x) = Ecl(x)− ΓN. (1.39)

The propagator in Eq. (1.37) defines a positive-definite and column-normalized
matrix. Hence, it can be used to define a conventional Markov chain. Specifically,
at each iteration every spin is addressed and flipped with a probability PF .
Alternatively, one samples the number δ of spins to be reversed from a binomial
probability distribution, and then randomly selects which spins to flip, uniformly.
In practice, the two algorithms turn out to have comparable computational costs.

The quantity in Eq. (1.38) can be written in a symmetrized version so as to reduce
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the systematic bias coming from the time step, i.e:

Gb(x,x
′,∆τ) = e−∆τ [

Eloc(x)+Eloc(x′)
2

−Eref ]. (1.40)

We have checked on the quantum Ising chain that using Gb(x,x
′,∆τ) in the above

form does give correct results of the ground state energy (as shown latter on),
with a relative error that grows quadratically with the time step in the limit where
∆τ → 0. The ground state energy of the Hamiltonian in Eq. (1.31) is calculated
using the expression of the local energy given by the formula in Equation (1.39).

We now move to the incorporation of importance sampling in the PQMC method,
where we use a Taylor expansion to approximate the Green’s function instead of
the Trotter approximation. The modified imaginary-time Schrödinger equation is
solved via a Markov process defined by the following equation:

f(x, τ + ∆τ) =
∑
x′

G̃(x,x′,∆τ)f(x′, τ), (1.41)

where the modified Green’s function is given by

G̃(x,x′,∆τ) = G(x,x′,∆τ)
ψT (x)

ψT (x′)
. (1.42)

G(x,x′,∆τ) is defined as in Eq. (1.4). A suitable approximation for the modified
Green’s function can be obtained by dividing the time step ∆τ into M shorter
time steps

δτ = ∆τ/M.

If δτ is sufficiently short, one can employ a Taylor expansion truncated at the
linear term,

G̃(x,x′,∆τ) ∼= [g̃(x,x′, δτ)]
M
,

where:

g̃(x,x′, δτ) =
[
δx,x′ − δτ(Hx,x′ − Erefδx,x′)

ψT (x)

ψT (x′)

]
. (1.43)

With this approximation, Eq. (1.41) defines a stochastic implementation of the
power method of linear algebra. Convergence to the exact ground state is
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guaranteed as long as δτ is smaller than a finite value, sufficiently small to ensure
that all matrix elements of g̃(x,x′, δτ) are not negative [38].

For a time step δτ , following the same framework as in Equation (1.5), g̃(x,x′, δτ)

can be rewritten as

g̃(x,x′, δτ) = px,x′

∑
x

g̃(x,x′, δτ ′), (1.44)

where px,x′ is the stochastic matrix used to build to Markov chain. It is given by

px,x′ =

[
δx,x′ − δτ(Hx,x′ − Erefδx,x′) ψT (x)

ψT (x′)

]
1− δτ(Eloc(x′)− Eref)

. (1.45)

Given that the time step δτ is very small, most of the tentative to update a
spin configuration from x′ to x will fail. This is because in this regime the
identity operator dominates (px,x′ ≈ δx,x′) hence, the result will be extremely
long autocorrelation times leading to pathologically inefficient simulations.

This problem can be solved by adopting the continuous-time Green’s function
Monte Carlo (CTGFMC) algorithm which was first introduced in [39]. An inter-
ested reader may also refer to Ref. [27] for more details of the algorithm.

The idea is to formally take the M → ∞ limit, and determine the (stochastic)
time interval δτ ′ that passes before the next configuration update occurs. It is
convenient to bookkeep the remaining time δτt left to complete a total interval of
time ∆τ . This is to ensure that each iteration of the PQMC simulation corresponds
to a time step of duration ∆τ . The time interval δτ ′ is sampled using the formula

δτ ′ = Min
(
δτt,

ln(1− ξ)
Eloc(x′)− Ecl(x′)

)
,

with ξ ∈ (0, 1) being a uniform random number.

With the use of importance sampling, the expression local energy is modified. Its
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1.3. Projective Quantum Monte Carlo method with importance sampling

new expression is computed using Equation (1.16).

Eloc(x) =
〈x|Ĥ|ψT 〉
〈x|ψT 〉

=
〈x|Ĥcl|ψT 〉
〈x|ψT 〉

+
〈x|Ĥkin|ψT 〉
〈x|ψT 〉

= Ecl(x) +

[
− Γ

(
〈x̃1|+ 〈x̃2|+ · · ·+ 〈x̃N |

)
|ψT 〉

]
〈x|ψT 〉

= Ecl(x)− Γ

∑N
i=1 ψT (x̃i)

ψT (x)
. (1.46)

|x̃i〉 is equivalent to the spin configuration |x〉 where the spin i has been over-
turned.

Remark that, in the case of simple PQMC for which the trial function is a constant,
say ψT (x) = 1, the form of the local energy in Eq. (1.39) is recovered. It is
interesting to note that, for a constant trial function, since Ĥkin has a non-zero
action on the basis state |x〉, the local energy has a term which depends on
the kinetic energy. This is in contrast to an equivalent situation for continuous
space models where the kinetic energy operator will always annihilate a constant
guiding function (refer to Eq. 1.21).

The spin-configuration update x′ → x (with x′ 6= x) is then randomly selected
from the probability distribution

tx,x′ =
px,x′∑
x6=x′ px,x′

=

{
ψT (xi)∑N
i=1 ψT (x̃i)

, if x′ is different from x of a single spin flip

0, otherwise.

(1.47)

Notice that for a constant guiding function, the probability to propose an update
of the spin configuration is uniform,

tx,x′ =

{
1
N
, if x′ is different from x of a single spin flip

0, otherwise.

Thus, Equation (1.47) portrays the facet of the trial function driving the configu-
rations towards more favorable regions in the configuration space, assuming of
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

course that ψT (x) is appropriately chosen.

The weight-update factor for the branching process takes the exponential form

bx′ =
∑
x g̃(x,x′, δτ ′) = e−δτ

′[Eloc(x′)−Eref ],

with the local energy given by Equation (1.46).

In summary, the CTGFMC algorithm requires to perform, for each walker n in the
population, the following steps:

i) initialize the time interval δτt = ∆τ , and the weight factor wn = 1;

ii) sample the time δτ ′ at which the the configuration update x′ → x might
occur;

iii) if δτ ′ < δτt, update x′ with a transition probability tx,x′ in Eq. (1.47), else set
δτ ′ = δτt;

iv) accumulate the weight factor according to the rule wn → wnbx′ and set
δτt → δτt − δτ ′;

v) Go back to step ii) until δτt = 0;

vi) finally, perform branching according to the total accumulated weight factor
wn.

This continuous-time algorithm implicitly implements the exact imaginary-time
modified Green’s function G̃(x,x′,∆τ).

1.3.4 Test case: The Ferromagnetic quantum Ising chain

In order to show that the PQMC algorithm on discrete models does recover
ground-state properties of quantum many-body systems, we use as a test case
the quantum Ising chain (QIC) with nearest neighbors interactions. Setting a
uniform interaction strength (Jij ≡ J) between spins in the Hamiltonian in

30



1.3. Projective Quantum Monte Carlo method with importance sampling

Equation (1.31) yields

Ĥ = −J
N∑
i=1

σzi σ
z
i+1 − Γ

N∑
i=1

σxi , (1.48)

where the interaction energy J > 0 sets the energy scale. In the following, we set
J = 1. All energy scales are henceforth expressed in units of J . Periodic boundary
conditions are considered, i.e., σaN+1 = σa1 where a = x, y, z.

At zero temperature this model undergoes a quantum phase transition from a
paramagnetic phase at Γ > 1 to a ferromagnetic phase at Γ < 1. Its ground-
state energy EJW can be exactly determined by performing the Jordan–Wigner
transformation, followed by a Fourier and the Bogoliubov transformations [40].

EJW = −
N−1∑
m=0

[
Γ2 − 2Γ cos

2π

N
(m+

1

2
) + 1

]1/2

. (1.49)

Initially, we study the equilibration dynamics of the local energy (averaged over
the current walkers population) computed at different Monte Carlo steps (MCs),
using the formula in Eq. (1.39). It is worth mentioning that the equilibration time
(informally, the number of PQMC steps required to reach a configuration which
is statistically uncorrelated with the initial one) might increase with the system
size or with other Hamiltonian parameters. Also such an effect could affect the
scaling of the computational cost required to determine with the PQMC algorithm
the ground state energy within a target accuracy.

We investigate (using simple PQMC) this possibility by analyzing the scaling of the
equilibration time τeq with the system size N close to the ferromagnetic transition
of the QIC. We set Γ = 0.95. For concreteness, we define the equilibration time
as the number of PQMC iterations, times the time step ∆τ , required to reach a
random-walker population with an average energy within 10% of the equilibrium
(i.e., long PQMC time) value. The walkers are initialized with random spin
configurations, more precisely, for each replica in the population, a value between
−1 and 1 is assigned to each of its spin with a 50% probability. Their number is
scaled so that the systematic bias due to the finite population size is 1% for all
system sizes (as explained in a subsequent chapter).

Figure (1.2)(a) shows the histogram of the equilibration time (using about
100 different runs) for different system sizes. The probability distributions of
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

τeq at different N is centered around the same time interval. This suggests
that τeq doesn’t scale up with the system size. Furthermore, as the results in
Figure (1.2)(b) show, the average equilibration time is constant — within 10%

— when the system size varies from N = 20 to N = 80. This (admittedly non-
exhaustive) analysis indicates that the finite number of random walkers is the
most relevant source of systematic bias in simple PQMC simulations, as we will
demonstrate latter on. A thorough analysis of the equilibration time in more
complex (e.g., disordered) models would be quite useful, but is beyond the scope
of this work.

We also report on the effect of the systematic error due to the time step ∆τ . This
is evaluated by performing simulations with two different branching protocols.
One stemming from the non symmetrized primitive approximation to the Green’s
function defined as in Equation (1.38). The other one from a symmetrized
primitive approximation using Eq. (1.40). We quantify the accuracy by computing
erel, the relative error between the ground state energy E obtained with PQMC
simulations and EJW defined in Eq. (1.49).

erel =
|E − EJW|
|EJW|

. (1.50)

Plots in Figure (1.3) clearly portray the difference between the two approxi-
mations. As expected a linear dependence on erel is found when using a non
symmetrized Trotter approximation of the imaginary-time evolution operator.
While, a quadratic dependence on ∆τ is found when a symmetric Trotter approxi-
mation is used. For both cases, very small values of the time step is sufficient to
find correct estimates, but at the expenses of running very long simulations. All
through the thesis (except for CTGFMC), we do branching with Eq. (1.40) with
a (small) fixed value of the time step, ∆τ between 0.001 and 0.01. The different
choices of Γ in the figure are motivated by the need to be in a regime where
the systematic bias due to the finite number of walkers Nw does not wash out
the scaling of ∆τ . The effect of Nw, which is arguably the most severe source
of systematic errors in PQMC methods will be discussed more exhaustively in
subsequent chapters.

In Figure (1.4), we plot the zero temperature equation of state of the QIC using
the simple PQMC. Good agreement is found with the exact values of the ground
state energy. Hence, we can conclude that, when keeping under control all
the systematic errors of the algorithm, PQMC simulations are indeed powerful
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Figure 1.2: (a) Plot of the probability distribution of the equilibration time τeq for
distinct runs of the PQMC simulations at different system sizes N . The definition
of the equilibration time is given in the text. (b) Average value of τeq for different
sizes N of the spin chain. Simulations are performed for Γ = 0.95 in both (a) and
(b).
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Figure 1.3: Relative error as a function of the time step ∆τ . The values of Γ
are different in both plots and are chosen in a regime where the bias due to
the final walker population is minimal. Nw = 20, 000. Data are computed for a
chain with N = 20 spins. (a) In this plot, branching is done with the Green’s
function in Equation (1.38) which corresponds to a non symmetrized version
of the Suziki-Trotter approximation (see Equation 1.8). The intensity of the
transverse field is Γ = 0.9. The blue line is a linear fit to the data. (b) The red
circles data are obtained with a branching step performed using Eq. (1.40), the
symmetrized version of the Trotter step. The black curve is a quadratic fit to the
data. Γ = 1.6 is utilized. Error bars are smaller than the symbol size.
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Figure 1.4: Ground state energy per spin of the ferromagnetic quantum Ising
chain as a function of the transverse field intensity Γ. The red circles are data
obtained with the simple PQMC method. The blue line corresponds to values
of the exact ground-state energy EJW per spin obtained using the formula in
Equation (1.49). The average number of random walkers is Nw = 20, 000 and
the time step is ∆τ = 10−3. The size of the spin chain is N = 50. Error bars are
smaller than the symbol size.

methods to find ground state properties of quantum many-body systems.

1.4 Estimating observables

In this section, we propose a new way to evaluate pure estimators on the fly in
simple PQMC simulations. The method at the present stage doesn’t seem to be
effective when computing equilibrium ground state properties of large system
sizes. However, it is quite promising in the prospect of recovering pure estimators
at the end of a quantum annealing simulations when using the simple PQMC
method, even for large system sizes.

In simulations performed with PQMC methods, the ground state expectation
value of a local operator Ô is computed with the probability distribution p(x)
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Chapter 1. Fundamentals of projective quantum Monte Carlo algorithms

defined in Equation (1.18). In this subsection, we will denote it as, 〈Ô〉mixed, the
mixed estimator of the operator Ô,

〈Ô〉mixed =
〈Ψ0|Ô|ψT 〉
〈Ψ0|ψT 〉

.

While, we will call 〈Ô〉pure the pure estimator obtained using the quantum me-
chanical probability distribution:

〈Ô〉pure =
〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉

.

When Ô commutes with the Hamiltonian of the system, the mixed estimator,
which is the quantity that can be directly computed in PQMC, has the same value
(apart statistical errors) as the pure estimator i.e, 〈Ô〉pure ≈ 〈Ô〉mixed. However,
when Ô does not commute with the Hamiltonian, the mixed estimator does not
provide the same result as the pure estimator.

It is worth noting that usually in PQMC simulations, the pure estimator is approx-
imated using the Ceperley estimator [41]:

〈Ô〉pure ≈ 2〈Ô〉mixed −
〈ψT |Ô|ψT 〉
〈ψT |ψT 〉

,

where the last term of the above equation is obtained from another set of simu-
lations performed with Variational Monte Carlo. The accuracy of the Ceperley
estimator depends on how accurate the guiding wave function is to the exact
ground state wave-function.

Here, we test a different way of approximating pure estimators (on the fly) in pro-
jective Monte Carlo methods close in spirit to the forward walking technique [42].
The pure estimator is computed as follows (assuming Ô diagonal in the basis
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state):

〈Ô〉pure =
〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉

=

∑
x〈Ψ0|x〉〈x|Ô|Ψ0〉∑
x〈Ψ0|x〉〈x|Ψ0〉

=

∑
x Ψ∗0(x)O(x)ψT (x)

ψT (x)
Ψ0(x)∑

x Ψ∗0(x)ψT (x)
ψT (x)

Ψ0(x)

=

∑
x Ψ∗0(x)

[
O(x) Ψ0(x)

ψT (x)

]
ψT (x)

∑
x Ψ∗0(x)

[
Ψ0(x)
ψT (x)

]
ψT (x)

=
〈Ψ0|O(x) Ψ0(x)

ψT (x)
|ψT 〉

〈Ψ0|Ψ0(x)
ψT (x)

|ψT 〉

=
〈O(x) Ψ0(x)

ψT (x)
〉
mixed

〈Ψ0(x)
ψT (x)

〉
mixed

.

(1.51)

In the forward walking technique, the term Ψ0(x)
ψT (x)

is estimated bookkeeping
(on the fly) the asymptotic offspring of the descendants of the walker x (for
details check [27]). Furthermore, this is done in a context of time-independent
Hamiltonians. However, in the prospect of estimating pure averages in quantum
annealing simulations, in which the Hamiltonian is time dependent, another
alternative to estimate the ratio Ψ0(x)

ψT (x)
is needed. This is because when the

(annealing) simulation is stopped, forward walking can no longer be performed.

We propose to estimate the ratio in Eq. (1.51) using the simple PQMC method,
thus we set the trial function to a constant. Suppose that at a given Monte Carlo
sweep i, the number of walkers in the population is Ncur. Let Ōi be the average
value of the operator Ô taken over the current population of walkers,

Ōi =
1

Ncur

Ncur∑
n=1

Oi
n.

Oi
n designates the value that the local operator has on the nth walker at time i.

Let Ncur(x
(n)
i ) be the number of walkers having the same spin configuration x(n)

i

and, χcur the total number of distinct spin configurations in a population Ncur.
x

(n)
i stands for the configuration of the walker n at time i. The amplitude of the

ground state wave-function on that spin configuration can be estimated to be
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equivalent to the density of walkers in that configuration; i.e.

Ψ0(x
(n)
i ) ≈

Ncur(x
(n)
i )

Ncur

. (1.52)

The above equation is correct provided thatNcur is (very) large, and representative
enough of the configurations that have dominant weights. Hence, we obtain that:

Ōi =
1

Ncur

Ncur∑
n=1

Oi
n

=
1

Ncur

[
Oi

1 +Oi
2 + ...+Oi

Ncur
)
]

=
1

Ncur

[
Oi

1Ncur(x
(1)
i ) +Oi

2Ncur(x
(2)
i ) + ...+Oi

χcur
Ncur(x

(χcur)
i )

]
=

χcur∑
m=1

Oi
m

Ncur(x
(m)
i )

Ncur

≈
χcur∑
m=1

Oi
mΨ0(x

(m)
i ). (1.53)

Therefore, Eq. (1.51) becomes

〈Ô〉pure =
〈O(x)Ψ0(x)〉mixed
〈Ψ0(x)〉mixed

=
O(xi)Ψ0(xi)

Ψ0(xi)

≈

[∑χcur

m=1 O
i
mΨ2

0(x
(m)
i )

]
[∑χcur

m=1 Ψ2
0(x

(m)
i )

] . (1.54)

We compute the estimate of square of the wave-function in two ways. The first
one by simply squaring the value in Equation (1.52),

Ψ2
0(x

(n)
i ) ≈

(Ncur(x
(n)
i )

Ncur

)2

, (1.55)

We stress on the fact that this procedure is not statistically correct, but it is
however used as a simple approximation that might be useful in comparisons
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Figure 1.5: Comparison of the pure estimator of the ground state potential energy
per spin obtained using respectively the almost pure estimator (see Eq. (1.55)),
and the pure estimator (see Eq. (1.56)). The test bed is the quantum Ising chain.
The potential energy is plotted with respect to the transverse field Γ. The red
and blue symbols are data obtained with the simple PQMC with respectively
the approximate estimator and the pure estimator. The solid lines are exact
diagonalization (ED) data for the pure estimator. The number of walkers is
Nw = 20, 000 and the time step is ∆τ = 0.01. We considered a chain with N = 20
spins. Error bars are smaller than the symbol size.

between PQMC simulations and adiabatic quantum computers.

The second way, which is the statistically correct procedure, is implemented
evolving in parallel two distinct replicas population A and B such that:

Ψ2
0(x

(n)
i ) ≈

(Ncur(x
(n)
i )

Ncur

)A
×
(Ncur(x

(n)
i )

Ncur

)B
. (1.56)

In Figure (1.5), we test both estimators by computing the expectation value of
the potential energy in the ground state of the QIC for different transverse field
intensities. The simulations are carried out on a chain of 20 spins, without using
importance sampling. Comparisons are made using exact diagonalization data
(ED) obtained with the pure estimator. It is clearly seen that approximating the
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ground state wave-function with Equation (1.55) what we call “approximate esti-
mator” is not always correct. Whereas, using Equation (1.56) renders satisfactory
results. Nevertheless, the “approximate” estimator turns out to be quite accurate
at small Γ. This is the interesting regime for quantum annealing simulations,
since in that case, one makes measurements at the end of the annealing, where Γ

is 0.

In Figure (1.6), we plot also the average of the absolute value of the magneti-
zation per spin m = 1

N

∑N
i=1 σ

z
i of the QIC. The blue diamond data are obtained

using simple PQMC with the pure estimator, which we showed to be the “correct”
procedure. Comparisons are also made with ED, taking into account correspond-
ing estimators. The mixed estimates of both the magnetization and the potential
energy give wrong results as expected (check the green triangles data). However,
it is interesting to notice that when Γ ≈ 0, the mixed and pure estimators data
converge to the same value. Henceforth, it could then be possible that estimating
with a mixed estimator say, the average potential energy at the end of annealing
(when Γ→ 0), that one does obtains correct values.

In conclusion to this section, we have to say that there is a price to pay in
estimating the ground state wave-function as Eq. (1.56). One should expect that
the number of walkers needed to have a non-zero signal in the approximation
Ψ2

0(x
(n)
i ) should grow with the system size (potentially in an exponential fashion).

One has a signal only if there is some overlap in the configurations that have
nonzero occupation in the two parallel simulations. In fact, simulating a chain of
40 spins with 20, 000 walkers already displays this pathology (data not shown). It
is possible however that using a good trial wave-function reduces considerably
the number of walkers needed, thus opening the way for large scale simulations.
However, in annealing simulations, at the end when quantum fluctuations have
been completely removed, one expects that only few configurations are occupied,
thus giving high chance of overlap. Therefore, this method is a promising tool in
that context.
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Figure 1.6: (a) Expectation value of the absolute value of the ground-state
magnetization per spin of the quantum Ising chain with respect to Γ. The solid
lines are exact diagonalization (ED) data taken on different estimators (see text).
Blue and green filled symbols are data obtained with the simple PQMC with
respectively pure and mixed estimators. (b) Average ground state potential
energy per spin of the quantum Ising chain computed using simple PQMC. The
labels are identical to the plot in (a). In both figures, the target number of
walkers is Nw = 20, 000 and the time step is ∆τ = 0.01. A chain of N = 10 spins
is considered. Error bars are smaller than the symbol size.

41





2 Simulated quantum annealing of
double-well and multi-well poten-
tials
We analyze the performance of quantum annealing as a heuristic optimization
method to find the absolute minimum of various continuous models, including
landscapes with only two wells and also models with many competing minima
and with disorder. The simulations performed using a projective quantum Monte
Carlo (QMC) algorithm are compared with those based on the finite-temperature
path-integral QMC technique and with classical annealing. We show that the
projective QMC algorithm is more efficient than the finite-temperature QMC
technique, and that both are inferior to classical annealing if this is performed
with appropriate long-range moves. However, as the difficulty of the optimization
problem increases, classical annealing looses efficiency, while the projective QMC
algorithm keeps stable performance and is finally the most effective optimization
tool. We discuss the implications of our results for the outstanding problem of
testing the efficiency of adiabatic quantum computers using stochastic simulations
performed on classical computers.

2.1 Introduction

Recent extraordinary developments in the technology of superconducting flux
qubits give us well-grounded hope that adiabatic quantum computers capable to
solve large-scale optimization problems via quantum annealing will be available
in the near future [43, 44, 20]. However, the currently available quantum
annealers did not demonstrate superiority with respect to state-of-the-art classical
optimization algorithms [45, 46], and it is still under investigation whether
their quantum features play a fundamental functional role in the optimization
process [47, 48, 49, 50, 51]. In fact, it is not even clear if, at least under
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potentials

certain circumstances, one should expect quantum annealing to be superior to
classical methods [52], in particular to simulated (classical) annealing [53].
Some indications suggesting the supremacy of quantum annealing were originally
provided by experiments performed on disordered magnetic materials [54].
Unfortunately, giving a definite answer to this issue using classical computers
is not straightforward [1], since the computational times required to exactly
simulate the real-time dynamics of the quantum annealing process (as defined in
the framework of adiabatic quantum computing [2]) increase exponentially with
the number of variables. Therefore, one has to resort to approximate simulation
methods. The most relevant one consists in performing stochastic simulations
based on quantum Monte Carlo (QMC) algorithms.

It is of outstanding importance to establish if and how computer simulations based
on stochastic methods (hereafter referred to as simulated quantum annealing
(SQA)) can be used to ascertain the superiority of quantum annealing versus
classical algorithms. This would permit us to understand under which conditions
quantum speed-up is attainable [45], and to identify the distinctive signatures of
quantum effects to be sought for in a quantum device.

In this chapter, we analyze the performance of simulated quantum annealing
(SQA) in finding the absolute minimum of simple double-well potentials and in
more intricate multi-well potentials with disorder and with competing interaction
terms. Compared to the Ising models, such continuous-space potentials allow
us to tune more easily the difficulty of the optimization problem, an aspect
which was indeed found to be of crucial importance for a fair assessment of the
performance of quantum annealing [55]. Furthermore, effective double-well and
multi-well potentials have recently been implemented on a D-Wave machine [18],
thus demonstrating that such models could indeed have direct technological
applications.

In most previous studies addressing analogous problems, the simulations were
performed using the path integral Monte Carlo (PIMC) method (relevant excep-
tions are Refs. [11, 14, 56]). This is designed to simulate quantum many-body
systems at finite temperatures, and is based on an effective classical model which
evolves according to the stochastic dynamics defined by the Metropolis algorithm.
Instead, here we employ a projective QMC technique, namely the diffusion Monte
Carlo (DMC) algorithm, which was described in the previous chapter.

The layout of the chapter is as follows: in Section 2.2 we describe the implemen-
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tation of SQA with the DMC algorithm, as well as the CA methods we employ to
perform comparisons with SQA. In Section 2.3, we first consider the optimization
of both symmetric and asymmetric double-well potentials with different types of
SQA and CA methods. Then, we address more intricate models with many closely
competing minima characterized by an increasing degree of difficulty, including:
the multi-well washboard potential, the quasi-periodic (double-sinusoidal) poten-
tial, and a two-particle model with competing interaction terms. Our conclusions
concerning the potential supremacy of quantum annealing and the possibility to
analyze its efficiency with stochastic simulations are reported in Section 2.5.

2.2 Simulated quantum annealing and classical an-
nealing methods

The DMC algorithm is one of the most powerful stochastic techniques to simulate
the ground state of quantum many-body systems [57, 8]. It has proven to be
extremely effective in numerous studies of divers systems, including electrons in
solids, quantum fluids, nuclear matter, ultracold atoms, and also discrete lattice
models.

In this chapter, we consider one-particle and two-particle continuous-space models
in one spatial dimension. The Hamiltonian can be written in the generic form:

Ĥ = − 1

2m

N∑
i=1

∇2
i + V (x), (2.1)

where m is the particles mass, x = (x1, . . . , xN) denotes the particles configu-
ration, with xi the position of the particle i (with i = 1, . . . , N), and N is the
particle number. We consider only the two cases N = 1 and N = 2. The total
potential-energy operator

V (x) =
∑
i<j

vint(|xi − xj|) +
∑
i

vext(xi), (2.2)

is composed by the two-body inter-particle interaction vint(x) and by the external
potential vext(x).

Here, we employ the DMC algorithm exhaustively described in the subsec-
tion 1.3.1 of the previous chapter. The only difference being that the Hamiltonian
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now is time-dependent. In this chapter, we are interested in using the DMC
algorithm as a heuristic optimization method which searches for the optimal con-
figuration xmin, where the potential attains its minimum value Vmin = V (xmin).
This can be achieved by implementing a quantum annealing process, in which
quantum fluctuations are gradually suppressed during the stochastic imaginary-
time evolution. The suppression of quantum fluctuations can be enforced by
reducing the diffusion coefficientD = 1/2m, which is equivalent to a particle mass
increase. This reduces the quantum delocalization of the particle position, thus
favoring random-walkers localization in the configuration xmin corresponding to
the classical absolute minimum.

D = D(τ) is now time-dependent in a step-wise manner (the imaginary-time
can take only the discrete values τ = 0,∆τ, 2∆τ, . . . ) and, in each time-interval
the Green’s function G̃(x,x′,∆τ) (in Equation 1.26) corresponding to a time-
independent Hamiltonian is employed [14]. Equation (1.25) now defines an
inhomogeneous Markov chain, since the transition matrix varies at each step, due
to the (discrete) changes in D(τ). Rigorous sufficient conditions for the ergod-
icity and for the convergence of this quantum annealing method based on the
inhomogeneous Markov chain have been derived in Ref. [31]. The corresponding
conditions for CA were derived in Ref. [58].

Quantum annealing simulated using the DMC method is thus implemented using
the following protocol:
First, we make the random-walkers population equilibrate by applying the stan-
dard DMC algorithm with a constant D = Dini for a sufficiently long equilibration
time τeq. The walkers then distribute according to

f(x, τeq) = Ψini
0 (x)ψT (x), (2.3)

where Ψini
0 (x) is the ground-state wave function at D = Dini.

Then, we run the DMC algorithm for a (long) annealing time τf while decreasing
the effective diffusion coefficient after each time-step ∆τ according to the step-
wise linear law

D(τ) = Dini −∆D
τ

∆τ
, (2.4)
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where,

∆D = Dini
∆τ

τf
. (2.5)

Here, the imaginary time τ is measured from the end of the equilibration time.
At the end of the annealing process the diffusion coefficient vanishes D(τf ) = 0,
while during the last DMC step it is D(τf −∆τ) = ∆D. All quantum annealing
simulations reported in this chapter start with Dini = 0.5 (this is equivalent to an
initial mass m = 1).

For an infinitely slow quantum annealing process (corresponding to τf → ∞),
the random-walkers population would follow the adiabatic ground-state wave
function at D(τ) (multiplied times the trial function ψT (x)), which gradually
shrinks in the minima of the potential landscape. Therefore, at the end of the
quantum annealing process all random walkers would concentrate in the absolute
minimum xmin [31].

The key issue we investigate is how efficiently the absolute minimum is found for
finite τf . To quantify the efficiency of the optimization algorithm we measure the
average of the potential energies computed in the configurations corresponding
to the final random-walkers populations, formally written as:

V̄ (τf ) =

∫
dxV (x)f(x, τf )∫

dxf(x, τf )
. (2.6)

In the standard DMC formalism this formula would correspond to the mixed
estimator (refer to section 1.4) of the potential energy. In particular, we analyze
the dependence of the residual energy

εres = V̄ (τf )− Vmin. (2.7)

as a function of the total annealing time τf . Notice that the total number of
DMC steps in the annealing process is τf/∆τ (we use fixed time-steps, in the
range 2∆τDini ∈ [0.01, 0.1]), simply proportional to the total annealing time; this
number determines the run time of the simulation on the classical computer.

In order to benchmark the performance of the DMC algorithm, we also perform
CA simulations. In CA one uses the Metropolis algorithm to sample configurations
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according to the Boltzmann canonical distribution

P (x) =
e−V (x)/T

Z
, (2.8)

where,

Z =

∫
dxe−V (x)/T ,

and T is the temperature of a fictitious classical statistical system (we chose
units such that the Boltzmann constant is kB = 1). The temperature is gradually
reduced during the simulation, thus removing thermal fluctuations. We adopt a
linear annealing schedule of the temperature:

T (τ) = Tini(1−
τ

τf
), (2.9)

with τ = 0, 1, . . . , τf an integer counting the Monte Carlo sweeps (a number of
proposed updates equal to the number of variables), and Tini the initial tempera-
ture.

The Markov chain is specified by the transition probability

W (x,x′) = A (x,x′)P (x,x′) ,

where P (x,x′) is the probability to propose a move from the configuration x′ to
x. For a symmetric proposal function, the acceptance probability is:

A (x,x′) = min {1, exp [−(V (x)− V (x′))/T ]} . (2.10)

We adopt two proposal functions. The first is the box distribution:

P (x,x′) =
1

2σ
Θ(σ − |xi − x′|) , (2.11)

where Θ(x) is the Heaviside step function; the second is a Lorentzian distribution:

P (x,x′) =
1

π

σ

(xi − x′i)2 + σ2
. (2.12)

The index i labels the particle being (tentatively) displaced from x′i to xi, and
x = (x′1, . . . , xi, . . . , x

′
N). In both cases the parameter σ controls the range of the
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proposed displacements.

However, the two distributions determine qualitatively different dynamics, the
first one characterized by short-range moves with maximum range σ, the sec-
ond one by long-range jumps due to the fat tail of the Lorentzian distribution.
Following Ref. [59], we vary the range parameter during the annealing process
according to the square root law

σ(T ) = σini

√
T/Tini,

where σini is the initial range parameter. This schedule was found to generate
reasonably constant acceptance rates close to the optimal value [59]. For the
box updates, we adopt the initial range parameter σini = 2; for the Lorentzian
updates, we use σini = 2.9 for all models considered in this chapter, apart for the
two-particle model (see Section 2.3), for which we use σini = 1.5.

Analogously to the case of the DMC simulations, we perform the classical anneal-
ing using a large ensemble of random walkers. Before starting the annealing
process, we let the population evolve according to the Metropolis algorithm at
the constant temperature Tini = 1, so that the walkers population equilibrates
at the Boltzmann thermal distribution. As a measure of the CA efficiency we
consider the residual energy εres, defined (see Eq. 2.7) as the average potential
energy of the final random-walker population, minus Vmin. τf is here the number
of Metropolis steps in the annealing process. Clearly, in the classical annealing
case one could perform serial single-walker simulations. Both in DMC quantum
annealing and in CA we determine the uncertainty on εres by repeating a few (typ-
ically 5) simulations starting from different initial random-walker distributions
and computing the standard deviation of the (small) population. The resulting
error bar is typically smaller than the symbol sizes.

One of the key issues we address is whether SQA, which exploits quantum
fluctuations to escape local minima, is more or less efficient than CA, which
instead exploits thermal fluctuations. In particular, we analyze how rapidly εres

decreases with the annealing time τf . One should notice that the annealing
times of the quantum and the classical annealing processes cannot be directly
compared. Indeed, while in the former case τf is an imaginary-time, in the
latter case it is just an integer counting the number of Monte Carlo sweeps
during the annealing schedule. Furthermore, depending on the details of the

49



Chapter 2. Simulated quantum annealing of double-well and multi-well
potentials

implementation (e.g., serial versus parallel simulations of the random walkers in
DMC) the computational times can be different. However, in general, εres decays
asymptotically as a power-law of τf . Therefore, as in previous works [59, 23],
we will compare the powers characterizing the asymptotic scalings of εres in the
various annealing algorithms, thus obtaining a measure of their efficiency which
is independent of the implementation details and of the scale chosen to measure
τf .

The potential sources of systematic errors in the DMC algorithm originate from
the finite time-step ∆τ and the finite walkers population Nw. For all the models
considered in this chapter, we carefully analyzed these effects, and we report
data obtained with small enough values of ∆τ (and symmetrized branching,
see Eq. 1.28) and large enough values of Nw ∈ [10000, 20000] to be close to the
asymptotic exact regime.

2.3 SQA of double-well potentials

We start by analyzing the performance of the DMC algorithm as a heuristic
optimization method in the context of double-well potentials. We consider the
two models introduced in Ref. [23]. The first is a symmetric double well:

Vsym = V0

(
x2 − a2

)2
/a4 + δx, (2.13)

where V0 = 1, a = 1 and δ = 0.1 (see Fig. 2.1, top panel). Since δa � V0, the
difference in the two minima is ∆V ' 2δa, with the absolute minimum located at
xmin ' −a. The two wells have essentially the same widths.

We adopt the annealing protocol described in the Section 2.2, where the parameter
D is linearly reduced to zero (in a step-wise manner). We perform both DMC
simulations with importance sampling using a Boltzmann-like trial wave function

ψT (x) = exp
(
−β̃V (x)

)
, (2.14)

where β̃ = 0.8 is a fictitious inverse temperature and also without importance
sampling, setting ψT (x) = 1.

The results for the residual energy εres as a function of the annealing time τf
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Figure 2.1: SQA of symmetric and asymmetric double-well potentials. Top panel:
potential energy V (x) versus particle coordinate x. Central panel: residual energy
εres versus annealing time τf for the symmetric double well, obtained using
the DMC algorithm, the DMC algorithm with importance sampling (IS-DMC),
the PIMC algorithm with instanton move (PIMC+ins., from Ref. [59]), and via
integration of the real-time Schrödinger equation (RT, from Ref. [23]). Bottom
panel: as in the central panel (except for the RT data), for the asymmetric double-
well. The horizontal brown dot-dashed lines indicate the lowest εres reachable in
the PIMC simulation due to the finite temperature. The thick black solid segments
indicate fits to the DMC asymptotic data according to the power-law scaling
εres ∼ τ

−1/3
f . The units of τf in PIMC and DMC simulations are different (see text).

The thin dashed curves are guides to the eye. Here and in the other graphs the
error bars are smaller than the symbol size.
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are displayed in Fig. 2.1 (we recall that the number of DMC steps, and so
the simulation run-time, is simply proportional to τf). We observe that the
use of importance sampling introduces a quantitative improvement, providing
somewhat lower residual energies; however, the two approaches (with and
without importance sampling) display the same asymptotic scaling

εres ∝ τ
−1/3
f , (2.15)

meaning that the efficiency of the optimization process is not affected in a quali-
tative manner. This power-law dependence with the characteristic power −1/3

was first found in Ref. [23] by exactly solving the imaginary-time Schrödinger
equation for a single harmonic well; it appears to be a generic feature of DMC
quantum annealing in the asymptotic regime.

Fig. 2.1 also displays the residual energies obtained in Ref. [59] using the PIMC
method, employing a linear annealing protocol as in our DMC simulations. For
the PIMC data, the annealing time τf represents the number of Monte Carlo
sweeps. One observes that for large τf the PIMC data decay similarly to the DMC
results; however, in the τf →∞ limit they saturate at the energy corresponding to
the temperature at which the PIMC simulations were performed. In principle, this
finite temperature could be reduced arbitrarily close to zero (but at the expense
of higher computational cost); therefore, we conclude that the DMC and the
PIMC quantum annealing methods perform comparably well in this symmetric
double-well problem.

A more interesting test problem is obtained by introducing an asymmetry in the
widths of the two wells; specifically, we consider the asymmetric potential:

Vasym(x) =

{
V0

(
x2 − a2

+

)2
/a4

+ + δx if x > 0

V0

(
x2 − a2

−
)2
/a4
− + δx if x < 0,

(2.16)

where the new constants are a− = 0.75 and a+ = 1.25. In this case, the well
corresponding to the false minimum is wider than the well corresponding to the
absolute minimum (which is located at xmin ' −a− − δa2

−/(8V0), to linear order
in δ).

In the early state of the annealing process, where zero-point motion is large, the
wave function weight is mostly located close to the false minimum, implying
a larger probability to find the quantum particle in the wider well. Only in a
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latter stage of the annealing process, where the annealing parameter D is small
(corresponding to a large particle mass), the wave function starts concentrating
in the deepest (narrower) well. This is reflected in the dependence of εres versus
τf obtained with the DMC algorithm, which displays different behaviors in the
two stages, with the crossover taking place at τf ≈ 103. In the asymptotic regime
τf →∞, the residual energy decays again with the power-law εres ∝ τ

−1/3
f , just

like in the symmetric wells case, both with and without importance sampling.

It is interesting to observe that the PIMC data display a qualitatively different
behavior: the residual energy decreases much slower than in the symmetric wells
case, even well before the thermal limit is reached. This occurs in spite of the
fact that the PIMC simulations were performed including the so-called instanton
Monte Carlo update, which is designed to displace a significant portion of the
path-integral across the energy barrier which separates the two wells, exploiting
the knowledge of the potential landscape details. In principle, this kind of
update should boost the performance of the PIMC simulations, strongly favoring
equilibration. However, it is clear that in the framework of the annealing process
this is not sufficient; in fact, the transfer to the deepest (but narrower) well is
particularly slow. This dramatic change of efficiency going from symmetric to
asymmetric double-wells appears to be a deficiency of the path-integral scheme,
rather than a genuine feature of a perfect quantum annealer. Similarly, very
recents results on random Ising chains also display pathological samplings of the
PIMC [60]. There, different behaviors of the PIMC were obtained depending on
the type of proposal move that was used to update the spin configurations.

Whereas, when quantum annealing is simulated via the DMC algorithm, the
asymmetry of the two wells has essentially no effect on the optimization efficiency.
In the DMC scheme, the random-walker distribution in the different wells easily
equilibrates thanks to the branching process, making it perfectly suited to simulate
the optimization of potential energy landscapes in situations where quantum
tunneling across energy barriers plays a fundamental computational role.

Such a case was indeed recently implemented by researchers working with a
D-Wave Two chip via an appropriate choice of the couplings between the quantum
spins in two unit cells of the Chimera graph [18]. In this experiment, the effective
double-well potential varies in time, with the false minimum appearing first, and
the absolute minimum appearing at a latter time. While classical trajectories
would remain trapped in the false minimum, quantum tunneling allows the
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Figure 2.2: Classical annealing (CA) and SQA of the asymmetric double-well
potential. Residual energy εres as a function of annealing time τf obtained using
the Metropolis algorithm with Lorentzian proposed moves (cyan triangles) and
box-type moves (violet squares), and using the DMC algorithm (red circles). The
thick black solid segments is a fit to the DMC asymptotic data with the power-law
εres ∼ τ

−1/3
f . The dotted black curve is a fit to the CA box-moves data with the

asymptotic law εHF
res (τf ) (see text). The units of τf in CA and DMC simulations are

different, see text.
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Figure 2.3: CA and SQA of the washboard potential (shown in the inset). The
symbols are defined as in Fig. 2.2. The thick black solid segment is a fit to the
DMC asymptotic data with the power-law εres ∼ τ

−1/3
f . The dotted black curve

is a fit to the CA data with the logarithmic law εres = c1 log−1(c2τf ), where the
fitting parameters are c1 and c2.

system to reach the absolute minimum. This setup is slightly different from the
double-well model we address here: in our case the potential does not vary with
time, but the system is initially attracted towards the well corresponding to the
wrong minimum due to its larger width. It is possible that in the time-dependent
potential case considered in Ref. [18] the PIMC and DMC algorithms would
perform equally well.

The DMC simulations have a more direct connection with the quantum annealing
as understood in the framework of adiabatic quantum computing, which assumes
a real-time Schrödinger dynamics with a time-dependent Hamiltonian [2]. Indeed,
inspired by the conjecture formulated in Ref. [23], Morita and Nishimori [32]
showed that, from the imaginary-time version of the adiabatic theorem, it follows
that the residual energy obtained from the imaginary-time Schrödinger dynamics
has, for τf → ∞, the same asymptotic scaling form as the one obtained from
the real-time Schrödinger dynamics. Since the DMC algorithm stochastically
simulates the imaginary-time Schrödinger equation - with the difference that the
annealing parameter is decreased in a step-wise manner (see Section 2.2) - it
represents a more legitimate benchmark for the performance of the quantum
annealing process as it would be implemented on an ideal (perfectly isolated)
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quantum device operating at zero temperature.

The strong relation between imaginary-time and real-time dynamics has been, in
fact, confirmed in nontrivial simulations of both clean and disordered Ising models
driven to critical points [61, 56]. However, the conditions for the applicability of
the adiabatic perturbation theory of Ref. [32], namely that the adiabatic ground-
state contribution is the dominant one at all times, might be violated in certain,
possibly relevant, cases. In fact, in clean and disordered Ising chains driven across
the quantum critical point, the Kibble-Zurek scaling of the residual energy was
shown to demonstrate completely different results for the real and imaginary
time dynamics [24].

As an illustrative example, we show in Fig. 2.1 (central panel) the residual en-
ergies for the symmetric double-well case as obtained by performing quantum
annealing via real-time Schrödinger dynamics. These data were obtained in
Ref. [23] via exact (deterministic) numerical integration of the time-dependent
Schrödinger equation. As predicted by the theory of Ref. [32], the real-time resid-
ual energies share the same asymptotic scaling behavior as the DMC imaginary-
time data, the uniform shift being affected by the use of importance sampling
and of the mixed energy estimator in the DMC simulations (see Chapter 1).

Therefore, one understands the importance of comparing the performance of the
DMC algorithm with the one of CA-based methods in this and in more challenging
optimization problems; this will help us understand in which situations quantum
annealing has at least the potential to outperform classical algorithms. Also, it is
useful to establish if and when the stochastic simulation of the imaginary-time
Schrödinger dynamics on a classical computer via the DMC algorithm becomes
unfeasible (e.g., due to the exponential growth on the required random-walker
number [29]), because only in such a case one is actually forced to resort to
quantum devices.

Fig. (2.2) shows the DMC and the CA data for the asymmetric double-well
potential. CA is performed both with the short-range (box) and with the long-
range (Lorentzian) proposed updates, as described in the Section 2.2. In the
former case, the stochastic dynamics is well described by the Fokker-Planck
equation [62], which - as shown by Huse and Fisher [63] - in a double-well
problem leads to the following asymptotic decay of the residual energy (see
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Figure 2.4: CA and SQA of the quasi-disordered potential (shown in the inset).
The symbols and the curves are defined as in Fig. 2.2.

dotted curve in Fig. 2.2):

εHF
res(τf ) = c1τ

−∆V /B
f [ln (c2τf )]

2∆V /B , (2.17)

where c1 and c2 are fitting parameters, ∆V = δ(a+ + a−) is the splitting between
the two minima and B = V0−∆V −V (xmin) is the energy barrier separating them.
As discussed above, DMC quantum annealing displays the power-law asymptotic
decay εres ∼ τ

−1/3
f , clearly outperforming CA with short-range updates. However,

long-range (Lorentzian) updates strongly increase the efficiency of CA, making it
more performant than the DMC algorithm.

2.4 SQA of multiwell potentials

It is now natural to wonder how CA and DMC quantum annealing perform in
more challenging optimization problems. To address this question, we consider
the multi-well problem defined by the following “washboard” potential (shown
in the inset of Fig. 2.3):

V (x) = a1x
2 + a2 sin (a0x) + a2, (2.18)
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where a0 = 15, a1 = 0.01 and a2 = 1. This model was first studied in Refs. [64, 65],
where it was suggested that CA should suffer from a pathological slowdown due
to the presence of many well-separated minima. In a wide range of annealing
times [23], the residual energy decay should be at best logarithmic: εres(τf ) ∝
(ln(τf ))

−1.

The CA data with short-range (box) updates (shown in Fig. 2.3) are indeed
consistent with this logarithmic upper bound, showing that, in general, with the
CA dynamics it becomes problematic to equilibrate to the minimum energy con-
figuration when many close solutions compete. Instead, DMC quantum annealing
maintains its efficiency, displaying again the asymptotic decay εres ∼ τ

−1/3
f (we

only display data obtained with the pure DMC algorithm, since importance sam-
pling was again found not to affect the asymptotic efficiency). This −1/3 power
appears to be the footprint of quantum annealing. Below, we will demonstrate
the same behavior in even more intricate problems. This suggests that the identi-
fication of a −1/3 power-law decay in a quantum annealer could be interpreted
as an evidence of quantum effects playing a fundamental computational role.

We also notice that, as in the double-well case, long-range updates boost the
efficiency of CA at the point of outperforming the DMC algorithm. One might
suspect that long-range updates do not provide the same boost in more complex
problems with more variables. We will show latter on that this is indeed the case.

DMC quantum annealing has so far displayed a surprisingly stable efficiency.
Clearly, the models we addressed previously do not contain one of the most
relevant ingredients which make realistic optimizations problems difficult, namely
a disordered distribution of the competing solutions. Disorder is indeed expected
to hamper quantum annealing due to the Anderson localization phenomenon.
This consists in the spatial localization of the Hamiltonian eigenstates, causing
the absence of particle diffusion. While in three and more dimensions Anderson
localization takes place only for sufficiently strong disorder [66], in one and two
dimensions any amount of uncorrelated disorder induces localization.

A minimal model which contains (quasi) disorder is the following double-sine
potential:

V (x) = K0x
2 + A [sin(b1πx) + sin(b2πx)] , (2.19)

where K0 = 0.01 , A = 1, b1 = 2, and b2 = 1 + 51/2. Due to the irrational ratio
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Figure 2.5: Potential energy V (x1, x2) of the two particle model 2.20 in the
case A = 5. The colorscale represents the potential intensity, x1 and x2 are the
coordinates of the two particles. The absolute minimum is at V (−0.25,−0.208) ∼=
−9.99759.

of the wave-lengths of the two sinusoidal functions, this potential is aperiodic.
However, it is deterministic and, therefore, not truly random. This kind of pseudo-
randomness is conventionally referred to as quasi-disorder. In a tight binding
scheme (which would be rigorously justified if one sinusoidal potential was
much more intense than the other one) this incommensurate double-sine model
could be approximated by the so-called Aubry-André Hamiltonian, provided
one neglects the weak harmonic confinement. Differently from one-dimensional
models with uncorrelated disorder, in the Aubry-André Hamiltonian, Anderson
localization takes place at a finite disorder strength or, equivalently, when the
particle mass exceeds a critical value [67]. We expect the weak harmonic term
to play a minor role, at least well beyond the critical point, meaning that the
Hamiltonian eigenstates would still be strongly localized in this regime. This
strong spatial localization inhibits diffusion, preventing the particle from exploring
the complete configuration space, possibly causing localization in local minima.
It is therefore interesting to analyze whether in the last part of the quantum
annealing process, where the annealing parameter is small and, correspondingly,
the particle mass is large, Anderson localization deteriorates the efficiency of
DMC quantum annealing.
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In fact, the data displayed in Figure (2.4) show that the efficiency of DMC quan-
tum annealing is not affected by the presence of quasi-disorder, demonstrating
again the extreme stability of its performance (notice that here and in the follow-
ing we only consider data obtained without importance sampling). As in the case
of ordered minima (i.e., the washboard potential) CA with short-range updates
displays a pathological slow-down of the annealing process at large annealing
times, leading to a logarithmic decay of the residual energy. However, CA with
long-range updates is still the most efficient optimization algorithm.

So far, the DMC algorithm has proven to be an effective and stable optimization
method. However, the fact that it is outperformed by CA if appropriate (long-
range) Monte Carlo updates are included is quite discouraging for the prospect of
developing quantum enhanced optimization algorithms. As anticipated above,
one might wonder whether it is always possible to obtain such a boost in the
efficiency of CA via long-range updates. To address this question, we consider a
model with two particles which move in an external potential and interact with
each other. The potential energy is defined as:

V (x1, x2) =K0(x2
1 + x2

2)/2 +Krel(x1 − x2)2/2+

A [sin(b1πx1) + sin(b2πx2)] ,
(2.20)

where we set K0 = 0.01, Krel = 2, b1 = 2, and b2 = 1 + 21/2. For the intensity
parameter A, we will employ the three values A = 1, 3, 5.

The first term in Eq. (2.20) confines both particles in a global harmonic trap.
The second term introduces an attractive harmonic interaction between the
two particles. The last term is inspired by the incommensurate double-sine
potential analyzed previously. However, here the two particles experience the
two sinusoidal fields separately. The first sinusoidal field acts only on one particle,
while the second one acts on the other particle. While the attractive interaction
tends to localize the two particles in the same location, the sinusoidal terms have
their minima in different points. The competition among the terms in Eq. (2.20)
constitutes the minimal element of frustration.

If one interprets Equation (2.20) as the external potential of one particle moving
in a two-dimensional system, one obtains the intricate landscape shown in Fig-
ure (2.5). One notices that there are several closely competing solutions, well
separated by high energy barriers. By construction, there is no periodicity and
the bottoms of the different valleys are at close but different levels. The height of
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Figure 2.6: CA and SQA of the two particle model. Top panel: residual energy
εres versus annealing time τf obtained using CA with Lorentzian updates, for
different intensities A of the sinusoidal part of the potential. Central panel: data
analogous to those in the top panel, obtained using the DMC algorithm. Bottom
panel: comparison between CA and SQA at A = 5. The thick black solid segment
indicates the asymptotic scaling of the DMC data εres ∼ τ

−1/3
f , while the black

dotted curve the one of the CA data εres ∼ log−1 (cτf ).

61



Chapter 2. Simulated quantum annealing of double-well and multi-well
potentials

Figure 2.7: Final random-walker distribution in CA [panels (a) and (c)] and in
SQA [panels (b) and (d)]. Panels (a) and (c) correspond to short annealing times
τf = 103, while panels (b) and (d) correspond to long annealing times τf = 105.
The colorscale corresponds to the random-walker density.

the barriers can be varied by changing the intensity parameter A, allowing us to
tune the difficulty of the optimization problem.

The results of the optimization of this two-particle model are displayed in Fig. 2.6,
both for CA (top panel) and SQA performed via the DMC algorithm (central
panel). The CA simulations are performed with Lorentzian updates. We apply
three kinds of updates: the first displaces only the first particle, the second the
other particle, the third applies the same displacement to both particles. It is
evident that when A increases the asymptotic slope of the CA data diminishes,
indicating a loss of efficiency of the optimization process.

Instead, the DMC data display the same asymptotic decay εres ∼ τ
−1/3
f for all

values of A. As anticipated before, the independence of the asymptotic power-law
decay of the residual energy appears to be the hallmark of quantum annealing.
The comparison shown in the bottom panel of Fig. 2.6 (for A = 5) demonstrates
that in the most challenging optimization problem DMC quantum annealing
outperforms CA, suggesting that quantum annealing has indeed the potential to
outperform classical algorithms in hard optimization problems.

It is particularly instructive to analyze how and why SQA outperforms CA. In
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Fig. 2.7 we show the probability to reach a certain two-particle configuration
(x1, x2), both with CA and SQA, after a short and after a long annealing time. In
the mixed estimator scheme (see section 1.4), this probability corresponds to the
spatial distribution of the random-walker population at the end of the annealing
process. We observe that, in CA, several false minima have a large probability
to be selected. While the random-walker distribution in each individual well
rapidly shrinks, even after a long annealing time quite a few competing solutions
are still likely to be chosen. This indicates that CA has high chance to remain
trapped close to false minima. The behavior of DMC quantum annealing is, in
a sense, the opposite: already after a short annealing time only three wells are
populated by random walkers. However, the distribution in each well is quite
broad, indicating that SQA is slower in sinking to the very bottom of the well.
After a long annealing time, only the well corresponding to the absolute minimum
is populated, but the residual energy is still nonzero since the random walkers
need further time to sink to the very bottom of the well, thus selecting the optimal
configuration.

At this point, it is worth mentioning that other classical algorithms which poten-
tially outperform CA for specific optimization problems, in particular for small
systems, do exist (e.g., genetic algorithms). However, CA has proven to be one of
the most powerful and versatile optimization methods [53], succeeding even in
challenging continuous-variables problems with multiple minima (e.g., the opti-
mization of the structure of Lennard-Jones clusters [68]) where gradient-based
algorithms like the conjugate gradient method remain trapped in local minima.
Therefore, CA represents a fair term of comparison for SQA.

2.5 Conclusions

We have analyzed the efficiency of SQA in finding the absolute minimum of differ-
ent model potentials in continuous space, including symmetric and asymmetric
double wells, and also more intricate models with many closely competing min-
ima with both ordered and disordered spatial distribution of the wells. Contrarily
to the finite-temperature path-integral Monte Carlo techniques adopted in several
previous studies, the projective method employed in this work, namely the DMC
algorithm, exhibits a stable performance which is not affected by details of the
potential energy landscape like the asymmetry of the competing wells.
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While the DMC quantum annealing is outperformed by CA in simple one-variable
model potentials if one employs ad-hoc Monte Carlo updates which exploit
the specific features of the potential landscapes, it is easy to construct more
challenging optimization problems with more variables where such tricks in
CA become ineffective and SQA turns out to be the most effective optimization
method. This result is strongly encouraging for the prospect of developing
quantum devices which exploits quantum fluctuations to enhance the efficiency
of optimization methods. The stable performance of DMC quantum annealing,
characterized in quite general continuous-space models by an asymptotic power-
law decay of the residual energy, appears to be a hallmark of an ideal quantum
annealer.

The DMC algorithm is designed to simulate the ground states of isolated quantum
systems; it does not take into account thermal fluctuations nor the coupling to
the environment. Including these effects in a projective QMC algorithm would
provide us with an extremely useful tool to investigate the potential of realistic
devices designed to perform adiabatic quantum computations. This is clearly an
interesting direction for future research. Also, it would be important to identify
the cases where the DMC simulations become infeasible due to, e.g., an exponen-
tial scaling of the required random-walker number [28]. Computational problems
of this kind did not occur in any of the double-well and multi-well problems
addressed in this work, probably due to the small particle number. However, in
the context of standard (i.e., without annealing) quantum simulations of parahy-
drogen clusters, results suggesting an exponential scaling of the random-walker
population with the system size have been reported [29, 69]. In a subsequent
chapter we will discuss on a possibility to attenuate the scaling of the walkers
population.
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3 Understanding Quantum Tunneling
using DMC Simulations

In simple ferromagnetic quantum Ising models characterized by an effective
double-well energy landscape the characteristic tunneling time of path-integral
Monte Carlo (PIMC) simulations has been shown to scale as the incoherent
quantum-tunneling time, i.e., as 1/∆2, where ∆ is the tunneling gap. Since
incoherent quantum tunneling is employed by quantum annealers (QAs) to solve
optimization problems, this result suggests there is no quantum advantage in
using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterex-
ample is the recently introduced shamrock model, where topological obstructions
cause an exponential slowdown of the PIMC tunneling dynamics with respect
to incoherent quantum tunneling, leaving the door open for potential quantum
speedup, even for stoquastic models. In this work, we investigate the tunneling
time of projective QMC simulations based on the diffusion Monte Carlo (DMC)
algorithm without guiding functions, showing that it scales as 1/∆, i.e., even
more favorably than the incoherent quantum-tunneling time, both in a simple
ferromagnetic system and in the more challenging shamrock model. However
a careful comparison between the DMC ground-state energies and the exact
solution available for the transverse-field Ising chain points at an exponential
scaling of the computational cost required to keep a fixed relative error as the
system size increases.

3.1 Introduction

Adiabatic quantum computers, such as the quantum annealers (QAs) built using
superconducting flux qubits [43, 44, 20] — or, potentially, with Rydberg atoms
trapped in arrays of optical tweezers [70] — can be used to solve complex

65



Chapter 3. Understanding Quantum Tunneling using DMC Simulations

combinatorial optimization problems. They implement a quantum annealing
process [71, 4, 1], in which quantum mechanical tunneling through tall barriers is
used to escape local minima, and quantum fluctuations are gradually removed by
reducing to zero the transverse field of a quantum Ising model. While in problems
with energy landscapes characterized by tall but thin barriers quantum tunneling
definitely makes QAs more efficient than classical optimization methods such as
simulated classical annealing [72, 73], certain examples are known where the
opposite seems to be true [16, 17].

In a recent study [21], which aimed at shedding light on the relation between
the dynamics of SQA and the one of QAs, it was found that the characteristic
timescale of tunneling events occurring during path-integral Monte Carlo (PIMC)
simulations increases with the system size as 1/∆2, where ∆ is the energy gap
between the ground state and the first exited state (see also Ref. [74]). This
1/∆2 scaling was found to hold in ferromagnetic quantum Ising models [21],
which are characterized by an effective double-well energy landscape (the two
symmetric minima are the ground states with opposite magnetizations), and also
in one-dimensional and two-dimensional continuous-space double-well models
relevant for quantum chemistry applications [22]. Remarkably, this is the same
scaling of the time of incoherent quantum tunneling in symmetric double-well
models [75].

Furthermore, according to the adiabatic theorem, also the annealing time required
in a coherent adiabatic quantum computation to avoid diabatic transitions [76]
to the first exited state must increase as the squared inverse of the smallest
instantaneous gap. The similar scaling of the respective tunneling times — which
was explained using an instanton theory [77] — suggests that PIMC simulations
can efficiently simulate incoherent quantum tunneling. This latter phenomenon
is supposed to be one of the empowering resources of QAs (although quantum
superposition and entanglement might also be crucial ingredients). It allows
them to explore different localized states far away in Hamming distance, like
those typically emerging in the glassy phases characteristic of Ising glass models
at small transverse field. On the one hand, this finding suggests that SQA can
be used to predict the performance of QAs, providing us with a useful tool
to guide the engineering of these devices. On the other hand, it might also
imply that SQA has the same potential efficiency in solving complex optimization
problems as QAs have, meaning that quantum speedup is unlikely to be achieved
(apart for a prefactor), at least as long as the Hamiltonian under consideration is
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stoquastic 1 [79, 80].

Latter on, Ref. [3] introduced the so-called “shamrock model”, showing that due to
topological obstructions [81] — which originate from frustrated couplings in this
model — the PIMC tunneling time increases with the system size exponentially
faster than the incoherent quantum tunneling time, giving one hope that QAs
can outperform SQA, and so maybe also other heuristic optimization methods
running on classical computers.

The performance of SQA in solving optimization problems crucially depends on
the specific type of QMC algorithm as it was shown in the precedent chapter. The
above mentioned study [3] of the QMC tunneling time for the shamrock model
considered only finite-temperature PIMC algorithms. This naturally raises the
following questions: can projective QMC methods efficiently simulate quantum
mechanical tunneling? Would they be immune from the (exponential) pathologi-
cal slowdown which affects the PIMC simulations in the shamrock model?

The main goal of this chapter is to address the above two questions. In order to
do so, we implement a projective QMC method for quantum Ising models based
on the DMC algorithm in which the stochastic dynamics is defined by the Trotter-
decomposed imaginary-time evolution operator. Then, following Refs. [21, 22],
we introduce a protocol to measure the characteristic time of tunneling events
occurring in DMC simulations, and we analyze the scaling with the system size
of the so-defined tunneling time, both in the ferromagnetic quantum Ising chain
and in the shamrock model. Furthermore, in order to understand if the DMC
algorithm allows one to efficiently simulate the behavior of QAs on classical
computers, we analyze the computational cost of DMC ground-state simulations.
In particular, we study the convergence of the systematic biases in calculations of
the ground-state energy, using as a testbed the quantum Ising chain. It should be
noted that we focus on the simple DMC algorithm, i.e., we do not consider the use
of importance sampling techniques [82]. These are based on suitably constructed
guiding wave functions which represents the worst case scenario in which no
suitable guiding wave function that approximates the ground state can be defined.
As we will show in the next chapter, importance sampling can indeed boost the
algorithm efficiency and fasten the convergence of the systematic biases.

1A local Hamiltonian is called stoquastic [78] if all of its off-diagonal matrix elements defined in
the standard basis of n qubits are real and non-positive. This would imply that the corresponding
Hamiltonian would not be affected by the sign problem in a Monte Carlo simulations. Examples
of such Hamiltonians are the quantum Ising model and the ferromagnetic Heisenberg model.
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The rest of the chapter is organized as follows: in Section 3.2, we describe the
protocol used to measure the characteristic time of tunneling events occurring
during the DMC simulations, and we provide the results for the ferromagnetic
quantum Ising chain, making comparisons with exact diagonalization calculations
of the gap, showing the 1/∆ scaling of the tunneling time with the system size. In
Section 3.3 the system-size scaling of the DMC tunneling time for the shamrock
model is analyzed, showing also in this case the 1/∆ scaling. Section 3.4 reports
the analysis of the convergence of the systematic bias of the DMC algorithm due
to the finite size of the random walker population. Our conclusions and the
outlook are reported in Section 3.5.

The potential sources of systematic errors in the DMC algorithm originate from
the finite time step ∆τ and the finite number of random walkers Nw. For what
concerns the DMC tunneling times, we carefully analyzed these effects, and we
report in Sections 3.2 and 3.3 only data obtained with small enough values of
∆τ and large enough values of Nw to be in the asymptotic exact regime. For
what concerns predictions of ground-state energies, a detailed analysis of the
systematic bias due to the finite Nw is reported in Section 3.4. The systematic
error in the ground-state energy due to the finite ∆τ is less relevant and can be
made smaller than statistical uncertainties with moderate computational effort,
so its analysis is not reported in this work.

3.2 The Ferromagnetic quantum Ising Chain

In this section, we describe the protocol we use to measure the characteristic
time of tunneling events occurring in a DMC simulation, and we present the
results for the one-dimensional ferromagnetic transverse-field Ising model already
mentioned in the chapter 1. In other to make this chapter more comprehensive,
we will rewrite again its Hamiltonian (see Eq. 1.48), which is given as:

Ĥ = −
N∑
i=1

Jσzi σ
z
i+1 − Γ

N∑
i=1

σxi , (3.1)

where the coupling is J > 0 (set to J = 1) and Γ is the intensity of the transverse
field. Periodic boundary conditions are considered, i.e., σaN+1 = σa1 where a =

x, y, z. At zero temperature this model undergoes a quantum phase transition
from a paramagnetic phase at Γ > 1 to a ferromagnetic phase at Γ < 1. In the
Γ → 0 limit quantum fluctuations are suppressed and one has two degenerate
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Figure 3.1: DMC tunneling time ξ for the ferromagnetic Ising chain (open sym-
bols) as a function of the number of spins N , for different values of the transverse
field Γ with J = 1. The closed symbols represent the inverse gap values 1/∆
obtained with exact diagonalization and rescaled by a parameter α(Γ) = O(1).
The thin dashed curves represent exponential fits on the tunneling time ξ in the
large-N regime. Here and in the other graphs of the chapter, the error bars are
smaller than the symbol size if not visible.
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Figure 3.2: The shamrock, a model of N frustrated spins in a transverse field. It is
made up of K = (N − 1)/2 leaves each having three spins. The solid dark-green
lines depict ferromagnetic interactions (with interaction strength J = 6) between
the central spin and all the other N − 1 spins. The dashed light-green lines
instead show the anti-ferromagnetic interactions (with interaction strength J − ε)
between the outer spins of the same leaf (see Eq. 3.2). The overall effect results
in creating 2K tunneling paths between the degenerate classical ground states in
the incoherent quantum tunneling regime.

(classical) states with all spins up |↑↑ . . . ↑〉 or all spins down |↓↓ . . . ↓〉. In order
to go from one state to the other, the system would have to overcome an energy
barrier separating the two minima, with the magnetization playing the role of a
one-dimensional reaction coordinate which parametrizes a symmetric double-well
profile.

For small Γ > 0, in the thermodynamic limit there are still two degenerate ground
states with opposite magnetizations, but in a finite chain the degeneracy is lifted
by an exponentially small (in the system size) energy gap due to the quantum
tunneling which couples the two states. This scenario is reminiscent of what
happens in a QA towards the end of the annealing process when the transverse
field is small and the system explores different well-separated local minima via
incoherent quantum tunneling. For this reason, shedding light on how tunneling
events take place in QMC simulations — even in the simple double-well scenario
— is important to understand if QAs have the potential to outperform classical
heuristic optimization algorithms, such as SQA.

We define the DMC quantum tunneling time ξ by implementing the following
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Figure 3.3: DMC tunneling time ξ for the shamrock model DMC (open symbols)
as a function of the number of spins N , for different values of the transverse
field Γ. The other system parameters are J = 6 and ε = 0.2. The filled symbols
represent the inverse gap values 1/∆ obtained with exact diagonalization and
rescaled by a parameter α(Γ) = O(1). The thin dashed curves are exponential fits
to the tunneling time ξ in the large-N regime.

protocol: the simulation starts with all random walkers initialized in the basis
state with all spins pointing up; we then measure the imaginary time τ (com-
puted as time step ∆τ times number of DMC iterations) required to first reach
a certain percentage of walkers, somewhat arbitrarily taken to be 25%, with
negative magnetization (majority of spins pointing down), meaning that they
have crossed the energy barrier. This definition is analogous to the one employed
in Refs. [21, 22, 3] in the case of PIMC simulations, where a certain percentage
of imaginary-time slices, instead of walkers, is considered. The simulation is re-
peated approximately 250 times for larger systems and small Γ and approximately
2500 for smaller systems and larger values of Γ. We then take the average value
to define ξ and its standard deviation to define the error bar.

The DMC tunneling times for the ferromagnetic Ising chain are shown in Fig-
ure (3.1), as a function of the number of spins N and for different values of
Γ. For large N the data display an exponential growth, quite similar to the
dependence of the inverse gap 1/∆, which we obtain via exact diagonalization
of the Hamiltonian matrix. In fact, by multiplying the inverse gap 1/∆ by an
appropriate numerical prefactor α we obtain precise matching between the two
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Figure 3.4: Comparison between the tunneling times of the finite-temperature
PIMC algorithm and the DMC algorithm, for the shamrock model at Γ = 0.5.
The PIMC data are obtained from the formula ξ = 2K/∆2, which was found
in Ref [3]. The solid blue points represent the scaling 1/∆2, characteristic of
incoherent quantum tunneling. The red triangles represent the DMC data. They
are well described by the scaling law α/∆ (green empty circles), where the gap ∆
is obtained via exact diagonalization. The simulation parameters are J = 6 and
ε = 0.2.

datasets. The coefficient α turns out to be a number O(1). We also consider
different definitions of DMC tunneling time, using percentages of walkers that
have to cross the barrier between 10% and 25%, obtaining again results which
follow the 1/∆ scaling but with a slightly different value of the prefactor α.

The inverse-gap scaling displayed by the DMC tunneling times is similar to the
result found in Ref. [21] using modified PIMC simulations performed using open
boundary conditions in imaginary time. This is not surprising, since such modified
PIMC method had been originally introduced as a computational tool to study
ground-state properties [83, 84]. However, it is usually employed in combination
with guiding wave functions that accurately describe the ground state, so that the
convergence to the zero-temperature limit as a function of the total path length is
quite rapid. How this algorithm converges to the ground state in the absence of
the guiding wave function has not been analyzed in detail yet.

It is also worth stressing that in the PIMC formalism the tunneling time is defined
by counting the number of Monte Carlo sweeps (a sweep corresponds to one
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3.3. The shamrock model

Monte Carlo step per spin) and, therefore, it does not bear the significance of
imaginary time as in the DMC method employed in this thesis. In Ref. [21],
also finite-temperature PIMC simulations (with periodic boundary conditions)
have been performed, finding that the PIMC tunneling times scale as 1/∆2. This
behavior was found in ferromagnetic Ising models, which are characterized by
a one-dimensional reaction coordinate, and it was latter confirmed also in one-
dimensional and two-dimensional continuous-space models [22], showing that it
persists also when the reaction coordinate is multidimensional.

Considered together, the above findings suggest that QMC algorithms are either as
efficient as (in the case of the finite-temperature PIMC algorithm) or quadratically
faster than (in the case of the PIMC algorithm with open boundary conditions
in imaginary time or of the DMC algorithm) QAs in tunneling through energy
barriers and therefore, if one assumes that incoherent quantum tunneling is the
major resource of QAs, also in solving optimization problems.

3.3 The shamrock model

The results for the ferromagnetic Ising chain presented in the previous section
indicate that, in an effective double-well system, QMC simulations can efficiently
simulate incoherent quantum tunneling and, therefore, they might potentially be
as efficient as, or even faster than QAs in solving complex optimization problems.
In order to understand if this finding is valid in a more general setup, the authors
of Ref. [3] considered a model, named “shamrock”, which contains the minimal
elements of frustration. This model is described by the following Hamiltonian:

Ĥ = −J
K∑
i=1

2i+1∑
j=2i

σz1σ
z
j + (J − ε)

K∑
i=1

σz2iσ
z
2i+1 − Γ

N∑
i=1

σxi . (3.2)

The N spins are grouped in K rings, which form the leaves of the shamrock. See
Fig. (3.2). Each ring is made of three spins and the K rings all share one spin,
which is placed in the center. The number of spins is related to the number of
rings by the formula N = 2K + 1. In Eq. (3.2) ε� J is a small interaction energy.

The first term in Eq. (3.2) describes ferromagnetic interactions between the
central spin and the outer N − 1 spins. The two outer spins of each ring are
coupled to each other by an anti-ferromagnetic interaction, described by the
second term in Eq. (3.2). The intensity of the transverse field in the last term in
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Eq. (3.2) is Γ.

We investigate the DMC tunneling time using the protocol described in Section 3.2.
The results are shown in Figure (3.3). They display the same 1/∆ scaling already
observed in the case of the ferromagnetic Ising chain, corresponding to a quadratic
speedup with respect to incoherent quantum tunneling. The value of the prefactor
α used to superimpose the inverse-gap data to the DMC tunneling time is, as in
the ferromagnetic Ising chain, a number of O(1). This suggests that frustrated
couplings do not play a fundamental role in the tunneling dynamics of DMC
simulations.

In Figure (3.4) we also report the scaling of the tunneling times ξ obtained in
finite-temperature PIMC simulations in Ref. [3]. As opposed to the DMC data,
which display the same 1/∆ scaling in the ferromagnetic Ising chain and in the
shamrock model, the PIMC results display, in the latter model, a faster growth of ξ
with the system size, very accurately described by the scaling law ξPIMC ∝ 2K/∆2.
Due to the 2K term, this growth is exponentially faster than the scaling of the
DMC tunneling time and of the timescale of incoherent quantum tunneling.

This pathological slowdown of PIMC simulations was indeed anticipated by the
perturbation theory of Ref. [3]. This theory predicts that in frustrated models
where the two competing ground states are connected by a number of homotopy-
inequivalent paths which grows with system size, incoherent quantum tunneling
can display a quantum speedup if many inter-path transitions are inhibited by
topological obstructions (related to the obstructions discussed in Ref. [81]). The
shamrock model was indeed introduced as an example of this scenario, with
the PIMC simulations confirming the theoretical prediction also beyond the
perturbative regime.

3.4 Analysis of the systematic bias in DMC simula-
tions due to the finite random-walker popula-
tion

As mentioned in Chapter 1, the ground-state energy obtained via DMC simulations
is subject to two sources of possible systematic bias, originating from the finite
time step ∆τ and from the finite random-walker number Nw. The convergence to
the ∆τ → 0 limit is quadratic, and all results presented in this chapter have been
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Figure 3.5: Main panel: Relative error erel = |E − EJW| / |EJW| of the DMC result
E with respect to the exact Jordan–Wigner theory EJW as a function of the
transverse field intensity Γ, for different system sizes N . The average number of
random walkers is Nw = 20000. Inset: erel as a function of the inverse number of
walkers 1/Nw, for different transverse field intensity Γ. The size of the spin chain
is N=60.

performed using sufficiently small ∆τ to make its systematic effect negligible
compared to the statistical uncertainty. In this section, we focus on the bias
resulting from the finite value of Nw. All data reported here have been obtained
with DMC simulations much longer than the equilibration time, meaning that
there is no bias due to the initial random-walker configuration (see also the
discussion on equilibration times reported in subsection 1.3.4).

We consider the ferromagnetic quantum Ising chain defined in Eq. (3.1). Its
ground-state energy per site can be exactly determined via Jordan–Wigner trans-
formation, obtaining in the thermodynamic limit

EJW/N = − 2

π
(1 + Γ) E (θ) , (3.3)

where E(x) is the complete elliptic integral of the second kind and [40]

θ2 = 4Γ/
[
(1 + Γ)2] . (3.4)

As a reference for the outcomes of the DMC simulations, we use the ground-state
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energy results obtained from the Jordan–Wigner transformation applied on the
corresponding finite-size systems. In fact, for system sizes larger than N = 30,
the relative discrepancy between the ground state energies of the finite systems
and the one corresponding to the thermodynamic limit is below 0.02%, and is
negligible on the scale considered in this Section.

In the main panel of Fig. (3.5), we plot the relative error

erel =
|E − EJW|
|EJW|

, (3.5)

of the DMC result E with respect to the Jordan–Wigner theory as a function of
the transverse field intensity, for different system sizes. These data correspond
to a fixed random walker population Nw = 20000. One notices that in the
paramagnetic phase Γ > 1, as well as in the Γ→ 0 limit, the systematic bias due
to the finite Nw is negligible. However, in the ferromagnetic phase 0 < Γ < 1

a systematic bias is observable, and this bias increases with the system size N .
The maximum relative error appears to drift to smaller Γ values as N increases,
giving one the (wrong) impression that high accuracy is more difficult to achieve
when quantum fluctuations vanish. However, by analyzing how the relative error
vanishes in the Nw → ∞ limit for different Γ values at fixed system size (see
inset of Fig. 3.5) one understands that in the asymptotic large-Nw regime the
largest relative error occurs for Γ values close to (but smaller than) the quantum
critical point Γ = 1. We attribute this effect to the large ferromagnetic fluctuations
characteristic of the critical regime.

To better understand the effect of the finite random-walker population, we analyze
in Fig. (3.6) the convergence to the exact Jordan–Wigner result in the Nw →∞
limit, considering different system sizes, at Γ = 0.95. The data are well described
by power-law fitting functions of the type erel = c/Nβ

w, where c and β are fitting
parameters. The exponent β decreases with the systems size, meaning that,
as the system size increases, it takes a larger population of walkers to obtain
accurate predictions. In order to quantify this dependence, in Figure (3.7) we
show how the number of walkers required to have a fixed relative error increases
with the system size. In the large-N limit, the data are well described by an
exponential fitting function, possibly indicating that the computational complexity
of the simple DMC algorithm (i.e., without the use of the importance sampling
technique) is exponential in the system size.
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3.5 Conclusions

We implemented a projective QMC method for quantum Ising models based on
the DMC algorithm — in which the transition matrix is defined using a Trotter
approximation of the Green’s function — and we investigated the characteristic
time of tunneling events in problems characterized by an effective double-well
energy landscape. We found that the DMC tunneling time increases with the
system size as the inverse of the gap, that is, more favorably than the incoherent
tunneling time, which increases as the inverse gap squared. This inverse-gap
scaling was found to hold both for a ferromagnetic quantum Ising chain and for
the more challenging shamrock model. This is in contrast with previous studies
based on finite-temperature PIMC simulations, where a pathological slowdown
due to topological obstructions originating from frustrated interactions was found
to cause, in the shamrock model, an increase of the PIMC tunneling time which
is exponentially faster [3] than the inverse-gap squared scaling observed in the
case of simple ferromagnetic models [21]. Our findings indicate that the DMC
algorithm is not affected by the obstructions that slow down the PIMC tunneling
dynamics, thus suggesting that this algorithm is a more efficient engine for SQA
considered as a heuristic optimization method.

Motivated by the arguments of Ref. [3] — according to which a classical algorithm
is to be considered an efficient simulation of QAs only if it reproduces both
their tunneling dynamics and their equilibrium properties — we analyzed the
computation time required by the DMC algorithm to accurately predict ground-
state properties. The analysis of the systematic bias in the ground-state energy
due to the finite random-walker population revealed an exponential increase of
the population size and, therefore, of the computation time, required to keep a
fixed relative error as the system size increases. This suggests that, in general, the
computational effort required to simulate the behavior of QAs via simple DMC
simulations running on classical computers scales exponentially, leaving the door
open for potential quantum speedup.

The finding of this exponential scaling is consistent with the statement of Ref. [85]
that the problem of estimating the ground state energy of a stoquastic Hamilto-
nian with a small additive error is at least NP-hard 2. This statement is based

2In some cases, ground-state energies of stoquastic models might be obtained in polynomial
time using continuous-time PIMC simulations. However, the path-integral length has to increase
with the system size, likely leading to increasing equilibration and correlation times, and so
perhaps to the exponential scaling of the computational cost in the worst case scenario. In fact, it
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on the observation that any Hamiltonian diagonal in the computational basis is
stoquastic, and that finding its ground state encompasses hard optimization prob-
lems such as k-SAT and MAX-CUT. This essentially rules out the possibility that a
polynomially scaling algorithm applicable to generic stoquastic Hamiltonians can
be found. Still, for certain ferromagnetic models, including the transverse-field
Ising chain considered in this work, algorithms which — albeit being far from
practical — have a provably polynomial scaling have recently been found [87].
However, since the DMC algorithm we employ in this chapter is not tailored to a
specific (e.g., ferromagnetic) Ising model, it is natural to observe the exponential
behavior corresponding to a generic model.

The use of importance sampling might also allow one to efficiently simulate the
models described in Refs. [33, 88], for which simple (i.e., without importance
sampling) projective QMC methods have been shown to fail due to the large
discrepancy between the L1-normalized ground-state wave function — which is
the probability distribution sampled from in simple projective QMC simulations —
and the L2-normalized ground-state wave function, which is sampled from when
performing a measurement on the ground state of the adiabatic process. We plan
to investigate these issues in future works.

Building accurate trial wave functions for generic optimization problems is an
important, but highly nontrivial, task. We argue that finding models where
such importance sampling technique is not feasible (because no accurate and
efficiently computable guiding wave function exists) could help us in identifying
optimization problems where quantum advantage can be achieved. For the same
purpose, it would be useful to identify which features of a Hamiltonian might
cause a pathological slowdown of the DMC dynamics.

is known that close to the superfluid to Mott-insulator transition ground-state PIMC simulations
are feasible only with the use of very accurate trial wave functions [86].
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4 Projective quantum Monte Carlo
simulations guided by unrestricted
neural network states
We investigate the use of unrestricted Boltzmann machines (uRBMs), as guiding
functions in projective quantum Monte Carlo (PQMC) simulations of quantum
spin models. As a preliminary step, we investigate the accuracy of the uRBM as a
variational Ansätze for the ground state of the ferromagnetic quantum Ising chain.
We find that by optimizing just three variational parameters, independently on
the system size, accurate ground-state energies are obtained, comparable to those
previously obtained using restricted Boltzmann machines with few variational
parameters per spin. Chiefly, we show that if one uses optimized uRBM as guiding
functions for importance sampling the efficiency of the PQMC algorithms is
greatly enhanced, drastically reducing the most relevant systematic bias, namely
that due to the finite walker population. The scaling of the computational cost
with the system size changes from the exponential scaling characteristic of PQMC
simulations performed without importance sampling, to a polynomial scaling,
apparently even at the quantum critical point. The important role of the protocol
chosen to sample hidden-spins configurations, in particular at the critical point,
is analyzed. We discuss the implications of these findings for what concerns the
problem of simulating adiabatic quantum optimization using stochastic algorithms
on classical computers.

4.1 Introduction

Quantum Monte Carlo (QMC) algorithms are generally believed to be capable of
predicting equilibrium properties of quantum many-body systems at an affordable
computational cost, even for relatively large system sizes, at least when the
sign problem does not occur. However, it has recently been shown that the
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computational cost to simulate the ground state of a quantum Ising model with
a simple projective QMC (PQMC) algorithm that does not exploit importance
sampling techniques scales exponentially with the system size, making large-scale
simulations unfeasible [69]. This happens in spite of the fact that the Hamiltonian
is sign-problem free.

This result stresses the importance of shedding light on the computational com-
plexity of PQMC algorithms: if these computational techniques allowed one to
simulate, with a polynomially scaling computational cost, both the ground-state
properties of a model Hamiltonian, and also the tunneling dynamics of a quantum
annealing device described by such Hamiltonian (as discussed in the previous
chapter), then quantum speedup would be very unlikely to be achieved. We
focus in this chapter on the first of the two aspects, specifically, on analyzing
and improving the scaling of the computational cost to simulate ground-state
properties of quantum Ising models.

It is well known that the efficiency of PQMC algorithms can be enhanced by im-
plementing importance sampling techniques using as guiding functions accurate
variational Ansätze [36]. However, building accurate variational wave-functions
for generic many-body systems is a highly non trivial task. Recently, variational
wave-functions that mimic the structure of neural networks have been shown
to accurately describe ground-state properties of quantum spin and lattice mod-
els [25, 89, 90]. The authors of Ref. [25] considered neural network states
that mimic restricted Boltzmann machines (RBM), i.e. such that no interaction
among hidden spins is allowed. One very appealing feature of such restricted
neural network states is that the role of the hidden spins can be accounted for
analytically, without the need of Monte Carlo sampling over hidden variables.

Furthermore, such states provide very accurate ground-state energy predictions,
which can be systematically improved by increasing the number of hidden spins
per visible spin (latter on referred to as hidden-spin density). However, this high
accuracy is obtained at the cost of optimizing a number of variational parameters
that increases with the system size. This optimization task can be tackled using
powerful optimization algorithms such as the stochastic reconfiguration method
(see, e.g, Ref. [91]). Yet, having to optimize a large number of variational
parameters is not desirable in the context of quantum annealing simulations,
since one would be dealing with a variational optimization problem, potentially
even more difficult than the original classical optimization problem.
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In this chapter, we consider instead neural network states that mimic unrestricted
Boltzmann machines (uRBMs), allowing intra-layer correlations among hidden
spins, beyond the inter-layer hidden-visible correlations and the intra-layer visible-
visible correlations (see Fig. 4.1). The structure of these states resembles the one
of the shadow wave functions originally introduced to describe quantum fluids
and solids [92, 93]. We test their representational power considering as a testbed
the ferromagnetic quantum Ising chain. The main goal of this chapter is to show
that the above-mentioned unrestricted neural network states can be used as a
guide for importance sampling in PQMC simulations.

The rest of the chapter is organized as follows: in Section 4.2 we define the
conventional Boltzmann-type variational wave functions and the unrestricted
neural network states, and we then analyze how accurately they predict the
ground-state energy of the quantum Ising chain via optimization of, respectively
one and three, variational parameters. Section 4.3 deals with the continuous-time
PQMC algorithm and with the implementation of importance sampling using both
Boltzmann-type wave functions and, chiefly, unrestricted neural network states,
showing how the systematic bias due to the finite random-walker population is
affected, both at and away from the quantum critical point. The important effect
of choosing different sampling protocols for the hidden spins is also analyzed.
Our conclusions and the outlook are reported in Section 4.4.

4.2 Unrestricted neural network states for quantum
Ising models

Once more, we consider as a test bed the one-dimensional ferromagnetic quantum
Ising Hamiltonian defined in Eq. (1.48):

Ĥ = Ĥcl + Ĥkin, (4.1)

where Ĥcl = −J
∑N

i=1 σ
z
i σ

z
i+1 and Ĥkin = −Γ

∑N
i=1 σ

x
i .

Recall that the function Ecl(x) = 〈x|Ĥcl|x〉 (with x = (x1, x2, . . . , xN)) corre-
sponds to the Hamiltonian function of a classical Ising model, while the operator
Ĥkin introduces quantum (kinetic) fluctuations.

Our first goal is to develop trial wave functions that closely approximate the
ground state wave function Ψ0(x) = 〈x|Ψ0〉 of the Hamiltonian (4.1). A simple
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Ansatz can be defined as

Ψκ(x) = e−βEcl(x) = e−K1
∑N
i=1 xixi+1 . (4.2)

κ is here a set of real variational parameters to be optimized. Their values are
obtained by minimizing the average of the energy, as in standard variational
quantum Monte Carlo approaches. In this case, only one parameter K1 = β is
present, κ = {K1}. This choice is inspired by the classical Boltzmann distribution
where β would play the role of a fictitious inverse temperature. The above Ansatz
will be referred to as Boltzmann-type wave function.

A more sophisticated Ansatz can be constructed by using a generative stochastic
artificial neural network, namely an unrestricted Boltzmann Machine (uRBM),
see Figure (4.1). Beyond the visible spin variables x = (x1, x2, . . . , xN), one
introduces N hidden spin variables h = (h1, h2, . . . , hN), taking values hi = ±1

(with i = 1, . . . , N). Periodic boundary conditions within the layers are also
incorporated, i.e xN+1 = x1 and hN+1 = h1. The trial wave function is thus
written in the following integral form:

Ψκ(x) =
∑
h

φκ (x,h) , (4.3)

where,

φκ(x,h) = e−
∑N
i=1(K1xixi+1+K2hihi+1+K3xihi) . (4.4)

Notice that the architecture of this uRBM includes correlations between nearest-
neighbor visible spins, between nearest-neighbor hidden spins, as well as between
pairs of visible and hidden spins with the same index i. These three correlations
are parametrized by the three constants K1, K2, and K3, respectively. With this
uRBM trial Ansatz, the set of variational parameters is κ = {K1, K2, K3}.

It is straightforward to generalize the uRBM Ansatz including more layers of
hidden spins. Every additional hidden-spin layer adds two more variational
parameters, and it effectively represents the application of an imaginary-time
Suzuki-Trotter step e−∆τĤ for a certain time step ∆τ . Thus, a deep neural network
state with many hidden layers can represent a long imaginary-time dynamics,
which projects out the ground state provided that the initial state is not orthogonal
to it. In fact, the mapping between deep neural networks and the imaginary
time projection has been exploited in Refs. [94, 95] to construct more complex
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neural network states. In this work we consider only the single hidden-spin layer
uRBM, since this Ansatz turns out to be adequate for the ferromagnetic quantum
Ising chain. The multi hidden-spin layer Ansatz might be useful to address more
complex models as, e.g, frustrated Ising spin glasses. Extensions along these lines
are left as future work.

In a recent work [25], Carleo and Troyer considered a restricted Boltzmann
machine (RBM), where direct correlations among hidden spins were not allowed.
Their Ansatz included a larger number of hidden spins, as well as more con-
nections between visible and hidden spins, leading to an extensive number of
variational parameter proportional to αN , where α = 1, 2, . . . . One advantage
of the RBM, due to the absence of hidden-hidden correlations, is that the role of
hidden spins can be analytically traced out.

The uRBM we employ, which is analogous to the shadow wave functions used
to describe quantum fluid and solids, includes only three variational parameters,
independently of the system size. However, their effect has to be addressed by
performing sampling of hidden spins configurations, as described below. Note
that one could map this specific uRBM in one-dimension to a matrix product state
with small bond dimension [96, 97], allowing to integrate out the hidden-spin
configurations. However, we are interested in a flexible QMC algorithms that
straightforwardly extends to general setups, in particular to higher-dimensional
geometries and to models with disorder and/or long-range interactions, since
these are relevant for optimization problems. In these cases Monte Carlo sampling
becomes essential [98].

It is worth pointing out that correlations beyond nearest-neighbor spins could
also be included in the uRBM Ansatz, with straightforward modifications in the
sampling algorithms described below. We mention here also that, as shown in
Ref. [99], neural network states with intra-layer correlations can be mapped to
deep neural networks with more hidden layers, but no intra-layer correlations.

In the case of an uRBM variational wave function, the average value of the energy
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Figure 4.1: Structure of the unrestricted Boltzmann machine. The lower (yellow)
nodes depict visible spins, the upper (magenta) nodes depict the hidden spins.
The horizontal segments indicate intralayer visible-visible and hidden-hidden
correlations. The vertical (blue) segments represent the interlayer correlations
between the corresponding visible and hidden spins. The green lines allude to a
possible extension to deep layers architectures.

E = 〈Ĥ〉 is computed as follows

〈Ĥ〉 =
〈Ψκ|Ĥ|Ψκ〉
〈Ψκ|Ψκ〉

=

∑
x,x′ Ψκ(x)Hx,x′Ψκ(x′)∑

x Ψκ(x)Ψκ(x)

=

∑
x,x′

[∑
ha
φκ(x,ha)

]
Hx,x′

[∑
hb
φκ(x′,hb)

]∑
x

[∑
ha
φκ(x,ha)

] [∑
hb
φκ(x,hb)

]
= � Eloc(x,hb)� , (4.5)

where the local energy Eloc(x,h) is defined as

Eloc(x,h) =

∑
x′ Hx,x′φκ(x′,h)

φκ(x,h)
, (4.6)

with Hx,x′ = 〈x|Ĥ|x′〉. ha and hb indicate two hidden spin configurations. Notice
that the formula for the local energy can be symmetrized with respect to the two
sets of hidden spins ha and hb, providing results with slightly reduced statistical
fluctuations. The double brackets� · · · � indicate the expectation value over
the visible-spin configurations x and two sets of hidden spins configurations ha
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Figure 4.2: Relative error erel in the variational estimates of the ground-state
energy as a function of the transverse field Γ, obtained using the simple Boltzmann
wave function and for the unrestricted Boltzmann machine (uRBM) Ansatz. The
system size is N = 80. For comparison, we also show the data corresponding to
the restricted Boltzmann machine (RBM) from Ref [25], where α indicates the
hidden-spin density. The thin lines are guides to the eyes.

and hb, sampled from the following normalized probability distribution:

p(x,ha,hb) =
φκ(x,ha)φκ(x,hb)∑

x,ha,hb
φκ(x,ha)φκ(x,hb)

. (4.7)

As in standard Monte Carlo approaches, this expectation value is estimated as
the average of Eloc(x,h) over a (large) set of uncorrelated configurations, sam-
pled according to p(x,ha,hb). The statistical uncertainty can be reduced at will
by increasing the number of sampled configurations. The optimal variational
parameters κopt that minimize the energy expectation value can be found us-
ing a stochastic optimization method. We adopt a relatively simple yet quite
efficient one, namely the stochastic gradient descent algorithm (see, e.g., [27]).
While more sophisticated algorithms exist as, e.g., the stochastic reconfiguration
method [91], such methods are not necessary here since the Ansätze that we
consider include a very small number of variational parameters, one or three. In
fact, in these cases the optimal variational parameters can be obtained also by
performing a scan on a fine grid. By doing so, we obtain essentially the same
results provided by the stochastic gradient descent algorithm.
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We assess the accuracy of the optimized variational wave functions by calculating
the relative error (see also Eq. 1.50)

erel =
|E − EJW|
|EJW|

, (4.8)

in the obtained variational estimate E of the ground state energy of the Hamilto-
nian in Eq. (4.1). EJW is the exact finite size ground state energy of the quantum
Ising chain defined in Equation (1.49).

Figure (4.2) displays the relative error erel in Eq. (4.8) corresponding to the
variational wave functions introduced above, as a function of the transverse field
Γ. The system size is N = 80, which is here representative of the thermody-
namic limit. The Boltzmann-type Ansatz does not provide particularly accurate
predictions. In the ferromagnetic phase Γ < 1, the relative error is up to 10%.
The uRBM, instead, provides very accurate predictions. The relative error is
always below 0.1%. The largest discrepancy occurs at the quantum critical point
Γ = 1. Such high accuracy is remarkable, considering that the uRBM Ansatz
involves only 3 variational parameters. It is also worth mentioning that very
similar accuracies are obtained also for different system sizes. Therefore, the
uRBM Ansatz represents a promising guiding function for simulations of quantum
annealing optimization of disordered models.

As a term of comparison, we show in Fig. (4.2) the results obtained in Ref. [25]
using the RBM Ansatz. The relative errors corresponding to the RBM with hidden-
unit density α = 1 are larger than those corresponding to the uRBM, despite
the fact that the RBM Ansatz involves a larger number of variational parame-
ters. However, it is worth stressing that the RBM results can be systematically
improved by increasing α. For example, with α = 2 the RBM relative errors are
approximately an order of magnitude smaller than those corresponding to the
uRBM Ansatz.

4.3 Importance sampling guided by unrestricted neu-
ral network states

In this section, we discuss how optimized variational wave functions can be
utilized to boost the performance of PQMC simulations. The PQMC method that
we implement is the continuous-time Green’s function Monte Carlo (CTGFMC)
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Figure 4.3: Number of random walkers Nw required to determine, using the
PQMC algorithm without importance sampling, the ground-state energy with a
relative error erel, as a function of the system size N . Different datasets correspond
to different transverse field intensities Γ and different relative errors. The lines
represent exponential fitting functions.

method exhaustively described in chapter 1. The guiding wave-functions used
for importance sampling in the CTGFMC simulations are the variational wave-
functions Ψκ(x) introduced in Sec. 4.2 where, the variational parameters κ are
set at their optimal values.

In order to employ the unrestricted neural-network states as guiding functions, the
PQMC algorithm has to be modified. One has to implement a combined dynamics
of the visible-spin configurations x and of the hidden-spin configurations h. We
will indicate the global configuration as y = (x,h). The goal is to sample global
configurations with the (normalized) probability distribution

p(y) =
Ψ0(x)φκ(x,h)∑
x,h Ψ0(x)φκ(x,h)

. (4.9)

This allows one to compute the ground state energy as

E =
1

Nc

lim
Nc→∞

Nc∑
i=1

Eloc(xi,hi), (4.10)

where Nc is a number of uncorrelated configurations {yi} sampled from p(y).
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Figure 4.4: Number of random walkers Nw required to determine, using the
optimized Boltzmann-type wave function to guide importance sampling in the
PQMC simulation, the ground-state energy with a relative error erel, as a function
of the system size N . Different datasets correspond to different transverse field
intensities Γ. The (red) dotted and (blue) dot-dashed lines represent exponential
fitting functions, while the (green) dashed line represents a power-law fit with
power b = 0.54(5).
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The local energy Eloc(x,h) is defined as in Eq. (4.6).

A suitable algorithm was implemented in Ref. [100] in the case of the continuous-
space Green’s function Monte Carlo algorithm, where importance sampling was
implemented using shadow wave functions. Here we modify the approach of
Ref. [100] to address quantum spin models. The visible-spins configurations x
are evolved according to the CTGFMC described above, keeping the hidden-spin
configuration h′ fixed. The modified imaginary-time Green’s function is now

G̃(x,x′,∆τ |h′) = G(x,x′,∆τ)
φκ(x,h′)

φκ(x′,h′)
. (4.11)

As discussed in subsection 1.3.3, this has to be rewritten as the product of a
stochastic matrix, which defines how the visible-spin configurations updates are
selected, and a weight term, which is taken into account with the branching
process. The weight-update factor is

by′ =
∑
x

G̃(x,x′,∆τ |h′).

The dynamics of the hidden-spins configurations is dictated by a (classical)
Markov chain Monte Carlo algorithm.

Considering φκ(x,h) as an unnormalized probability distribution allows one to
write — for any fixed visible-spin configuration x — the Master equation:

φκ(x,h) =
∑
h′

T (h,h′|x)φκ(x,h′), (4.12)

where T (h,h′|x) is the transition matrix that defines the Markov process. Clearly,
the following condition must be fulfilled∑

h

T (h,h′|x) = 1, (4.13)

for any x. Our choice is a single spin flip Metropolis algorithm, where the flip of
a randomly selected spin is proposed, and accepted with the probability

A(h′ → h|x) = Min

{
1,
φκ(x,h)

φκ(x,h′)

}
. (4.14)
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Figure 4.5: Number of random walkers Nw required to determine, using the
optimized uRBM Ansatz to guide importance sampling in the PQMC simulation,
the ground-state energy with a relative error erel, as a function of the system
size N . The number of single-spin Metropolis updates of the hidden spins per
CTGFMC hidden-spin update is k = 0.1N . The (red) dotted line represents and
exponential fit, while the (blue) dot-dashed line represents a linear fit.

Here, h differs from h′ only for the (randomly selected) flipped spin. One could
perform a certain number, call it k, of Metropolis updates, without modifying the
formalism. In fact, this turns out to be useful, as discussed below. The combined
dynamics of the visible and the hidden spins is driven by the following equation:

f(y, τ + ∆τ) =
∑
y′

G(y,y′,∆τ)f(y′, τ), (4.15)

with

G(y,y′,∆τ) = T (h,h′|x)G̃(x,x′,∆τ |h′). (4.16)

It can be shown [100] that the equilibrium probability distribution of this equation
is the desired joint probability distribution p(y) in Eq. (4.9). The stochastic
process corresponding to this equation can be implemented with the following
steps:

i) perform the visible-spin configuration update x′ → x, keeping h′ fixed, accord-
ing to the CTGFMC algorithm described above (including accumulation of
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the weight factor);

ii) perform k single-spin Metropolis updates of the hidden-spin configuration h′,
keeping x fixed;

iii) perform branching of the global configuration.

It is easily shown that the hidden-spin dynamics does not directly affect the
weight factor since the normalization of the Green function of the combined
dynamics is set by by′.

Since the optimized uRBM describes the ground state wave function with high
accuracy, one expects that its use as guiding function leads to a drastic reduction
of the systematic errors due to the finite random walker population. However,
one should take into account that there might be statistical correlations among
subsequent hidden-spin configurations along the Markov chain. This might in
turn affect the systematic error. Clearly, increasing the number of Metropolis
steps k per CTGFMC visible-spin configuration update allows one to suppress
such correlations, possibly reducing the systematic error. This will indeed turn
out to be important, in particular at the quantum critical point where statistical
correlations along the Markov chain are more significant.

Following Ref. [69], we analyze the computational complexity of the PQMC
algorithm by determining the number of walkers Nw needed to determine the
ground state energy of the Hamiltonian (4.1) with a prescribed accuracy. All
data described below have been obtained with a time step ∆τ = 0.1, and all
simulations have been run for a long enough total imaginary time to ensure
equilibration.

First, we consider the simple PQMC algorithm i.e., performed without importance
sampling. Fig. (4.3) displays the scaling with the system size N of the number
of walkers Nw required to keep the relative error erel, defined in Eq. (4.8), at the
chosen threshold. This scaling is evidently exponential, below, above, and also at
the quantum critical point. The most severe scaling comes from the ordered phase
and could be attributed to the fact that the simple PQMC is formally equivalent
to PQMC with a constant ψT (x) for importance sampling. This turns out to be a
very poor choice of the guiding function in the ordered regime given that it treats
all configurations on an equal footing. Analogous results have been obtained in
Ref. [69] using the diffusion Monte Carlo algorithm.
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Figure 4.6: Number of random walkers Nw required to determine, using the
optimized uRBM to guide importance sampling in the PQMC simulation, the
ground-state energy with a relative error erel, as a function of the system size N .
The transverse field intensity is set at the ferromagnetic quantum critical point
Γ = 1. Different datasets correspond to different values of the the number of
single-spin Metropolis updates k. The (red) dotted line represents an exponential
fit, while the (black) dot-dashed line represents a power-law fit, with power
b = 0.55(1).
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4.3. Importance sampling guided by unrestricted neural network states

Introducing importance sampling using the optimized Boltzmann-type Ansatz
as guiding function significantly reduces the systematic error due to the finite
random walker population, allowing one to reach quite small relative errors. In
particular, in the paramagnetic phase at Γ = 1.4, the scaling of Nw versus N is
quite flat (see Fig. 4.4); it appears to be well described by the power-law Nw ∼ N b

with the small power b = 0.54(5), rather than by an exponential. However, in the
ferromagnetic phase at Γ = 0.6 and at the quantum critical point Γ = 1 the scaling
is still clearly exponential. This means that the simple Boltzmann-type Ansatz is,
in general, insufficient to ameliorate the exponentially scaling computational cost
of the PQMC algorithm.

Figure (4.5) shows the scaling of Nw obtained using the optimized uRBM Ansatz
as the guiding function. The number of hidden-spin Metropolis steps per visible-
spin update is set to a (small) fraction of the system size N , namely to k = 0.1N .
At Γ = 0.6, the required walker population size Nw turns out to be essentially
independent on the system size N . It is worth noticing that the prescribed relative
error is here as small as erel = 10−6, and that this high accuracy is achieved with
a rather small walkers population Nw . 1000. However, at the quantum critical
point, Nw still displays an exponential scaling with system size. This effect can be
traced back to the diverging statistical correlations among subsequent hidden-spin
configurations along the Markov chain, due to quantum criticality. As anticipated
above, these statistical correlations can be suppressed by increasing the number
of hidden-spin updates k.

Figure (4.6) displays the scaling of Nw, at the quantum critical point, for different
k values. One observes that the scaling substantially improves already for moder-
ately larger k values, leading to a crossover from the exponential scaling obtained
with k = 0.1N , to a scaling behavior that is well described by a square-root
function Nw ∼ N0.55(1) when k = 10N . While it is in principle possible that, for
system sizes N � 300, Nw still approaches an exponential scaling with a very
small base, we argue that the data we provide indicate that the scaling of Nw is
not exponential, even at the ferromagnetic critical point, provided that k is large
enough.

It is important to point out that increasing k implies a correspondingly increasing
contribution to the global computational cost of the PQMC algorithm. However,
since k is here linear in the system size, this contribution does not modify, to
leading order, the scaling of the global computational cost. Therefore, one
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can conclude that the uRBM Ansatz is sufficient to change the scaling of the
computational cost of the PQMC algorithm from exponential in the system size,
to an amenable polynomial scaling. In the simulations presented here, single-spin
flip Metropolis updates are employed for the hidden variables. It is possible that
cluster spin updates would lead to an even faster convergence to the exact Nw →
∞ limit, due to the more efficient sampling of the hidden-spin configurations.
However, such cluster updates cannot always be implemented, in particular for
frustrated disordered Hamiltonians relevant for optimization problems; therefore,
we do not consider them here.

4.4 Conclusions

The accuracy of variational wave-functions that mimic unrestricted Boltzmann
machines, which we refer to as unrestricted neural network states, has been
analyzed using the one-dimensional ferromagnetic Ising model as a testbed. By
optimizing just three variational parameters, ground-state energies with a relative
error smaller than 10−3 have been obtained. The ferromagnetic quantum phase
transition turns out to be the point where the relative error is the largest. This
accuracy is comparable to the one previously obtained using restricted neural
network states with few hidden variables per visible spin [25].

These restricted neural network states involve a number of variational parameters
proportional to the system size, as opposed to the unrestricted neural network
states considered here, where the (small) number of variational parameters
is fixed. This feature of the unrestricted states makes them very suitable in
the context of quantum annealing simulations for Ising-type models (which
are sign-problem free). However, since one has to integrate over hidden-spins
configurations via Monte Carlo sampling, as opposed to the case of the restricted
neural network states [25] — for which the hidden-spin configurations can be
integrated out — they represent a less promising approach to model ground-
states of Hamiltonian where the negative sign-problem occurs. Indeed, in such
case an accurate variational Ansatz might have to include also hidden-spins
configurations with negative wave-function amplitude, making Monte Carlo
integration via random sampling inapplicable.

We have found that unrestricted neural network states allow one to drastically
reduce the systematic bias of the PQMC algorithm originating from the finite size
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of the random-walker population. Specifically, the scaling of the population size
required to keep a fixed relative error as the system size increases changes from
the exponential scaling characteristic of simple PQMC simulations performed
without guiding functions, to a polynomial scaling. This also implies a corre-
sponding change in the scaling of the computational cost. This qualitative scaling
change occurs above, below, and apparently also at the ferromagnetic quantum
phase transition, at least for the system sizes N . 300 considered in this article.
While we cannot strictly rule out a weak exponential scaling for N � 300, the
numerical data we provide suggest that this is an unlikely scenario. Instead, a
conventional variational Ansatz of the Boltzmann type was found to provide a
significant improvement of the computational cost only above the critical point
(in the paramagnetic phase), but to provide only a marginal improvement at and
below the transition.

It is worth emphasizing that the use of unrestricted neural network states as
guiding functions in PQMC simulations requires the sampling of both the visible
and the hidden spins, using the combined algorithm described in Sec. 4.3 (more
efficient variants might be possible). The role of the statistical correlations among
hidden-spin configurations shows up in particular at the ferromagnetic quantum
critical point. We found that these correlations can be eliminated by performing
several single-spin updates, still without affecting, to leading order, the global
computational complexity of the simulation.

In Ref. [87] it was proven that it is possible to devise polynomially-scaling nu-
merical algorithms to determine the ground-state energy, with a small additive
error, of various ferromagnetic spin models, including the ferromagnetic Ising
chain considered here. However, practical implementations have not been pro-
vided. The numerical data we have reported in this manuscript indicate that
the PQMC algorithm guided by an optimized unrestricted neural network state
represents a practical algorithm with polynomial computational complexity for
the ferromagnetic quantum Ising chain.

More in general, it was shown in Ref. [85] that the problem of estimating the
ground-state energy of a generic sign-problem free Hamiltonian with a small
additive error is at least NP-hard. Indeed, this task encompasses hard optimiza-
tion problems such as k−SAT and MAX-CUT. This suggest that there might be
relevant models where the unrestricted neural network states discussed here are
not sufficient to make the computational cost of the PQMC simulations affordable.
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Relevant candidates are Ising spin-glass models with frustrated couplings. Such
systems might require more sophisticated guiding functions obtained, e.g., includ-
ing more hidden-spin layers in the unrestricted neural network state, as discussed
in Sec. 4.2. In future work we plan to search for models that make PQMC simu-
lation problematic. We argue that this will help us in understanding if and for
which models a systematic quantum speed-up in solving optimization problems
using quantum annealing devices, instead of PQMC simulations performed on
classical computer, could be achieved.

98



5 Simulating quantum annealing
using PQMC: a preliminary explo-
ration
In this chapter, we use the projective quantum Monte Carlo (PQMC) method
described previously to simulate quantum annealing on the quantum Ising chain
(QIC). We first implement the simple PQMC method, i.e, without importance
sampling and show the results of the residual energies with respect to the total
annealing time. In order to compare on an equal footing the dynamics of the
quantum annealing simulations with the one obtained numerically by solving
the imaginary-time Schroedinger equation (IT-SHE) [24], one needs the pure
estimator of the average residual energies. We compute them using the techniques
introduced in Chapter 1. We show that for finite size systems, the residual energy
of the PQMC method scales with the total annealing time as what is obtained
with the IT-SHE [24]. We study more in details the annealing simulations by
looking at the distributions of the residual energies at the end of the annealing
for different system sizes.

Next, for a fixed system size, we study two specific annealing simulations, one in
which the classical ground state is recovered at the end of the annealing and the
other one for which the simulations end up in the excited state of the classical
Hamiltonian.

We move on to study the effect of the main source of systematic errors in the
PQMC method which is the one due to the finite number of random-walkers.
Previously, in Chapters 3 and 4, we studied how a finite number of walkers
introduces a bias in equilibrium ground state simulations. In this chapter, we
study how the number of walkers affects the results when the PQMC method is
implemented to solve an optimization problem via a quantum annealing process
in which the transverse field decreases in time thus gradually removing quantum
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fluctuations.

Lastly, we present results of simulated quantum annealing (SQA) performed
using the PQMC with importance sampling. We use the formalism described in
the first chapter. Even though importance sampling is performed with a naive
Boltzmann-like trial wave-function, we show that it indeed helps substantially
to perform adequate simulations of the annealing dynamics. As it was in the
case of continuous space-models, we observe that, though the use of a guiding
wave-function reduces the residual energy, the scaling of the residual energy using
a mixed estimator remains the same. Nevertheless, it seems to portray (if valid in
the thermodynamic limit) a quadratic speed-up compared with the Kibble-Zurek
scaling predicted for real-time dynamics of the Schroedinger equation [101],
which path integral Monte Carlo was very recently shown to portray [60].

5.1 Introduction

The long term aim of our study is to solve hard optimization problems. In order
to accomplish our goal, we develop a heuristic method to find the ground-state of
the following type of Hamiltonian

Ĥcl = −
∑
ij

Jijσ̂zi σ̂
z
j −

∑
i

hiσ̂zi , (5.1)

where Jij denotes the interaction strength between spins at site i and j and hi is
the strength of the longitudinal field at site i.

Many difficult optimization problems can be encoded using the form of the above
Hamiltonian with the terms Jij and hi representing a typical instance of the
problem to solve. The potential energy landscape of Ĥcl is usually made-up of a
very large number of hills and valleys and finding the deepest valley corresponds
to solving the optimization problem.

Classical annealing (CA) [53] and quantum annealing (QA) [1] are the main
heuristic methods used to address such optimization problems. In the latter case,
it is achieved by introducing a fictitious dynamics in the configuration space
which enables the system to explore different configurations in the system. The
task is successfully completed if at the end of the search the configuration that
minimizes the potential energy is found. The adiabatic theorem guarantees that it
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is the case provided that the annealing time is much larger than the instantaneous
gap squared of the Hamiltonian.

The dynamics is implemented through quantum fluctuations by introducing a
fictitious kinetic energy term

Ĥkin = −Γ(τ)
∑
i

σ̂xi . (5.2)

Thereafter, the system is initially prepared in the paramagnetic regime where
Γ(τ)� Jij, hi, then it is set to (hopefully) follow adiabatically the dynamics of
the Hamiltonian

Ĥ(τ) = Ĥcl + Ĥkin(τ). (5.3)

The strength of the transverse field is progressively reduced to zero according
to a given protocol. When all quantum effects are completely removed from the
system, the ground state of the classical Hamiltonian Ĥcl is (in principle) found.

The QA method described above cannot be applied on classical computers due to
the exponential amount of resources needed thus, one has to resort to the use of
QMC methods. In the community, the above scheme is usually implemented using
the path-integral Monte Carlo (PIMC) method. Using that, the D-dimensional
Hamiltonian Ĥ(τ) is mapped into an equivalent classical Hamiltonian in D + 1

dimensions. Thereafter, a stochastic dynamics is performed on the resulting
Hamiltonian using Metropolis Monte Carlo hence, it is not directly related to the
Schroedinger dynamics.

In our approach, we aim at implementing an evolution more closely related to
the imaginary-time Schroedinger dynamics using the PQMC method.

5.2 SQA used with simple PQMC for the quantum
Ising model

In this section, we use as a test bed the quantum Ising model already studied in
the previous chapters. The only difference being that the kinetic energy is now
time dependent: Γ ≡ Γ(τ). τ here stands for an imaginary time. The derivations
performed in Chapter 1 are still valid and we will use them both for the simple
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PQMC method and for the PQMC with importance sampling (PQMC-IS).

Simulated quantum annealing is performed by preparing the system in the ground
state of the QIC Hamiltonian where a very large value of the transverse field is
chosen. All through this chapter it is set to Γ0 = 5. Then the transverse field
is gradually reduced following the typical protocol also employed in quantum
annealers

Γ(τ) = Γ0(1− τ

τf
). (5.4)

τf is the total imaginary-time during which the system is evolved and, is referred
to as the annealing time. It is equal to the time step times the number of steps in
which the annealing is performed. As in the continuous-time case, we measure the
annealing time starting from configurations previously equilibrated at Γ0 = 5. At
the end of the annealing procedure, we compute the error εres that the algorithm
makes in finding the classical ground-state

εres(τf ) =
〈Ψ0(τf )|Ĥcl|ψT (τf )〉
〈Ψ0(τf )|ψT (τf )〉

− E0. (5.5)

ψT (τf ) here is a constant since we are using PQMC without importance sampling,
however we find it useful to define it in such a way given that it will be used latter
on when importance sampling is introduced. The average in Eq. 5.5 is estimated
using typical averages given that the distribution of the solutions at the tail end of
the annealing is not always normal as we will show latter on. The typical average
of the residual energy is defined as[

εres(τf )
]
typ

= e[ln εres(τf )estimator]
avg , (5.6)

where [.]avg stands for the sum of elements in brackets divided by the total number
of those elements. The label estimator in Eq. (5.6) refers to the type of estimator
that has been used.

Given that the PQMC algorithm gives a mixed estimator, we have to proceed to a
re-weighting procedure at the tail end of the annealing in order to approximate
pure estimators. We use at the end of the annealing schedule the novel method
that we introduced in section 1.4. Except it is otherwise stated, in all the plots in
this chapter, we use the “approximate” pure estimator computed with Eqs. 1.54
and 1.55. In this case of the QIC, the solution of the optimization problem
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Figure 5.1: SQA of the quantum Ising model at different sizes Lx of the chain.
Top panel: Typical average of the residual energy εres versus annealing time τf ,
obtained using the simple PQMC algorithm. Bottom panel: Residual energy of
independent runs versus τf . The simulations are equivalent to the ones that
produce data of panel (a). The blue solid line indicate a function given by τf−2

whereas, the black line is the function τf−1. For all data, the walkers population
is Nw = 30, 000.
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Figure 5.2: Probability distribution of the residual energy data taken from 5.1(b)
at fixed annealing time τf . Data are plotted for different system size N .

corresponds to finding one of the two equivalent classical states with all spins
aligned up or down.

In Figure 5.1 we show results of the typical residual energy average with respect
to the total annealing time τf at different system sizes. Averages are taken over
many (of the order of 100) different initial states. This is done by changing for
each simulation the seed of the pseudo random number generator. In the panel
(a), data labeled with IT-QA comes from [24] where the exact imaginary-time
dynamics of the Schroedinger equation was performed. There, the authors used
a novel approach based on a general imaginary-time dependent BCS state that
has a Gaussian form [24].
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The blue line in both plots corresponds to the power-law τf
−2, it is chosen to

represent the scaling of the IT-SHE calculated in [24]. System sizes of 32 and 42

spins seem to follow the dynamics of IT-QA at long annealing times whereas larger
system sizes show pathological behaviors. In the panel (b), we plot individual
instances of the residual energies for different runs of the annealing dynamics.
We see that for large system sizes there are some instances for which εres(τf ) falls
on the blue line. Furthermore, the data at large annealing times the data give a
seemingly bimodal distribution. The data that do not fall on that line describe
a plateau which seems to indicate that the dynamics got stuck in highly excited
classical states.

In order to understand deeper what is going on in the simulations, we draw an
histogram of the residual energies that are obtained at the end of the annealing
for each independent run of the simulations. Figure 5.2 shows the probability
distribution of εres(τf ) for different speed of the annealing at different system
size N . A small τf is a sort of quantum quenching and as data in the panel (a)
show, the algorithm is inefficient for those cases to find the classical ground state
energy. When the annealing is performed long enough, the adiabatic regime (at
least for small N) is reached and the ground state is found with higher accuracy.
Nevertheless, the simple PQMC method seems to suffer from a metastability
problem for large system sizes. In this plot, a clearer bimodal mode is observed
in the data set, hence justifying the use of typical averages.

5.3 A case study of two distinct SQA runs

We then move on to study two different dynamics of the algorithm which are
obtained from two independent runs at a fixed system size N = 52 spins. We will
call them dyn A and dyn B. Figure 5.3 shows the dependence of the instantaneous
ground state energy with respect to Γ(τ) as the annealing proceeds for the two
dynamics previously mentioned. While the first one is able to project out the
excited state at the tail end of the annealing, the second one stuck there. ∆

on Figure 5.3(b) stands for the second gap which is the difference between the
energies of the second excited state and the ground state obtained via Jordan-
Wigner theory. Note that the first excited state will not be visible on this plot
given that the first gap closes exponentially with the system size in the magnetic
regime of the QIC. From the second panel of Figure 5.3, it seems that the PQMC
simulations start going off the adiabatic regime after they have crossed the
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Figure 5.3: (a) Dynamics of two distinct SQA runs performed using simple PQMC.
The instantaneous ground state energy of the QIC is plotted versus the time
dependent transverse field Γ(τ) (b) Zoom of the data in panel (a) to show details
of the ferromagnetic regime. The blue line shows exact ground state energy data
obtained using the Jordan–Wigner transformation. ∆ stands for the gap between
the second excited state and the ground state (see text).

106



5.4. Finite walkers population effect on the annealing simulations

quantum critical point. This is expected given that it is the point where the gap
between the ground state and the first excited vanishes.

Figure 5.4 shows further details of the two dynamics. At the end of the annealing,
the spin configurations are grouped into categories. The grouping rule is to
put into the same category spin configurations that are equivalent under the Z2

symmetry. In panels (a) and (b), we plot the classical energy with respect to the
index labeling the different categories. dyn A has two order of magnitudes less
categories than dyn B, indicating that most of its walkers did find the classical
ground state. This is further verified in panels (c) and (d) where for dyn A, most
of the walker fraction is in one spin configuration, which is the classical ground
state. Whereas, dyn B has a much wider distribution of spin configurations.

5.4 Finite walkers population effect on the anneal-
ing simulations

In this section, we discuss on the effect of the finite number of random-walkers
Nw on SQA simulations. It was already shown in the previous chapters, using
equilibrium simulations, that Nw is the most severe systematic error of the PQMC
method. Here, we are going to see that it is also very damaging for quantum
annealing simulations.

In Figure (5.5) we plot the average residual energy with respect to the total an-
nealing time for different values of the target number of walkers Nw. Simulations
are done for a fixed (representative large) system size made up of 52 spins. As
it was previously shown in Fig. 5.1, panel (a) indicates averages of the εres(τf )
taken for different runs of SQA and panel (b) depicts individuals values of εres(τf )
at the end of the annealing. The figure clearly shows the dramatic effect that a
finite number of walkers has on the simulations. With few walkers, say Nw = 300,
the ground state energy is never reached even after runs as long as τf = 103 thus,
giving an erroneous scaling of the residual energies.

As the number of walkers increases, we observe a totally different behavior
of the residual energy. When Nw = 300, 000 walkers, the bimodal distribution
previously seen for smaller Nw vanishes in the long annealing time regime (see
also Fig. 5.2). This indicates that the sampling crisis observed is actually caused by
the insufficiency in the number of walkers. At annealing times of about τf = 100,
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Figure 5.4: Panels (a) and (b) show the energy of distinct walkers at the end of
the annealing for two different runs of the SQA simulations (see text). Panels (c)
and (d) show the walker fraction of distinct walkers at the end of annealing for
the two dynamics previously mentioned.
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one already converges to the correct IT-QA scaling for the largest number of
walkers. Given that the PQMC method is formally correct in the Nw → ∞,
we can conclude that a bimodal distribution is an artifact due to the incorrect
implementation of the algorithm.

As discussed in Chapters 3 and 4, in equilibrium simulations, the scaling of the
number of walkers required to have a fixed relative error is exponential in the
system size. Therefore, one could suspect a similar behavior happening in the case
of SQA. However we showed in Chapter 4 that a (good) guiding wavefunction
may reduce the computational scaling of the algorithm, hence we introduce in
the next section importance sampling.

5.5 SQA with a time-dependent trial wave function

In this section, we present the first attempt to implement SQA using a time-
dependent trial wavefunction. The details of the formalism is taken from deriva-
tions performed in section 1.3. The PQMC method used is the continuous-time
Green’s function Monte Carlo (CTGFMC) algorithm presented in Chapter 1.

We chose a simple Boltzmann-like trial wave function for importance sampling,
our choice is inspired by the work done in [14]. The trial wavefunction is given
by

ψT (x, τ) = e−
β̃(τ)

2
Ecl(x). (5.7)

Ecl(x) is the classical energy of the QIC. β̃(τ) is a fictitious time-dependent
inverse-temperature given by:

β̃(τ) = λ
[
1− e−1/Γ(τ)

]2

. (5.8)

λ is a parameter that needs to be fixed. We do it by scanning different values
of λ in equilibrium simulations at the critical point of the quantum Ising chain.
Simulations are performed using the CTGFMC method and the value of λ that
minimizes the standard deviation of the energy is chosen.
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Figure 5.5: Similar plot as in Figure 5.1. A spin chain of length N = 52 is used at
different values of the finite number of random-walker Nw.
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5.5. SQA with a time-dependent trial wave function

The new local energy used in the branching is given by

Eloc(x, τ) = Ecl(x) + Ṽ (x, τ)− Γ(τ)

∑N
i=1 ψT (x̃i, τ)

ψT (x, τ)
. (5.9)

x̃i is equivalent to the spin configuration x where the spin i has been overturned.
Ṽ (x, τ) is the fictitious time-dependent potential energy defined in Eq. (1.13).

The transition matrix is also modified, instead of it being given by Equation (1.47),
it is now time-dependent:

tx,x′(τ) =

{
ψT (xi,τ)∑N
i=1 ψT (x̃i,τ)

, if x′ is different from x of a single spin flip

0, otherwise.
(5.10)

Fig. (5.6) shows the results on the SQA simulations performed on a chain of 52

spins. Since we are using importance sampling, the procedure we introduce in the
first chapter to approximate pure estimators cannot be used. We therefore plot
values of the mixed estimators. We make comparisons with the “approximate”
pure and mixed estimators obtained with simple PQMC simulations. For those
cases, we plot the data in Fig. 5.5 for which the finite number of random-walkers
is Nw = 300, 000. It is interesting to note that our simulations with importance
sampling use only Nw = 5, 000, i.e, 60 times less walkers than the case without
importance sampling. Nevertheless, as it can be seen on the plot the data are well
behaved.

Furthermore, we observe that using the mixed estimator with and without an-
nealing gives the same scaling of the (typical) average residual energy at long
imaginary times, i.e εres v τf

−1. However, when an “approximate” pure estimator
is used, the scaling is εres v τf

−2, which is equivalent to the scaling of the IT-SHE.

Though the use of importance sampling renders the simulations more efficient,
it still gives the same scaling as in the case when it is not used. However, if this
scaling persists in the limit of infinite system sizes, it would display a quadratic
speed-up with respect to the real-time dynamics of the Schroedinger equation
(RT-SHE) as given by the Kibble-Zurek scaling, which is εres v τf

−1/2. Note
also that, this quadratic speed-up would apply also for finite temperature path-
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Figure 5.6: SQA of the quantum Ising model for both the simple PQMC and
the PIMC with a time-dependent guiding wavefunction. Details of the plots are
similar as in Fig. (5.1), however, the red line is a function that goes like τf−1.
Different estimators are used to find the typical average of the residual energy as
the data describe on the figure.
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5.6. Conclusions

integral Monte Carlo that was very recently shown have the same scaling as the
RT-SHE [60].

Notice that the Ceperley estimator could be used in this case, but we have not
calculated it. It would indeed be interesting to check whether when using the
Ceperley estimator, we are able to recover the scaling of the imaginary-time
dynamics of the Schroedinger equation found in [24].

5.6 Conclusions

In this chapter, we have introduced an implementation of simulated quantum
annealing using PQMC methods where importance sampling is performed using
a time-dependent trial wavefunction. Comparisons with the simple PQMC were
performed, and we showed that better estimates of the residual energies are
found when using importance sampling even though the scaling εres remained
the same when using a mixed estimator. Nevertheless, if this scaling is proven
valid for infinite chains, it would imply a quadratic speed-up compared to both
finite temperature path integral Monte Carlo simulations and the real-time dy-
namics of the Schroedinger equation. This result suggests that projective Monte
Carlo methods may be a more efficient quantum-inspired optimization method
compared with PIMC.

However, it would be interesting to see how PQMC simulations perform, when
all parameters causing systematic errors are under control, in models that have
elements of disorder. This is quite appealing given that in recent results on
random Ising chains, finite temperature PIMC were shown to have a sampling
crisis and were not able to recover the real-time dynamics of the Shrodinger
equation.

In the simple PQMC case, we used the novel way of approximating pure esti-
mators introduced in section 1.4. We found the scaling of the simple PQMC to
be equivalent to the one of the imaginary-time dynamics of the Schroedinger
equation. This suggests that the dynamics of PQMC simulations are indeed closer
in spirit to the one of the imaginary-time dynamics of the Schroedinger equation.
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Summary and outlook

In this thesis we have developed algorithms based on the projective quantum
Monte Carlo (PQMC) method, with a focus on applications to complex optimiza-
tion problems. In particular, a new formalism to perform stochastic simulations
of the modified imaginary-time Schroedinger equation taking into account a
time-dependent trial wave function has been derived. Thus, extending previ-
ous formalisms that considered only time-independent trial wave-functions. A
detailed description of the PQMC algorithm has been provided, shedding light
on the origin of the possible sources of systematic errors which can affect the
efficiency of the method. It introduces different types of propagators based on
Trotter approximations or on a Taylor expansion, in order to stochastically sim-
ulate the imaginary-time Schroedinger equation aiming to reduce or eliminate
some of those systematic errors. We have also proposed a novel way of estimating
quantum mechanical average, in order to reduce or completely remove the bias
that affects so-called mixed estimators.

In Chapter 2, using double-well models, we showed that simulated quantum
annealing (SQA) performed with PQMC algorithm is a more effective solver
compared to finite temperature path integral Monte Carlo (PIMC) algorithm even
when it is used with Monte Carlo moves specifically tailored to the problem at
hand. Though the PIMC method has been the QMC method of choice to perform
comparisons with the outcomes of quantum annealers (QAs), it has been shown
to display sampling problems in continuous models [59] and more recently in
discrete based models [60]. We also shown that in models with more challenging
potential energy landscapes, SQA driven by the PQMC algorithm has the potential
to outperform simulated annealing (SA) even when the latter is performed with
specifically tailored moves.

Inspired by recent studies [21, 22] in which the incoherent quantum tunneling
time of a quantum annealer was compared to the tunneling time of PIMC simula-
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tions, we studied the tunneling time of simple DMC simulations and compared
it with the aforementioned methods. We showed that, differently from finite
temperature PIMC algorithm, the DMC tunneling time kept the same inverse gap
scaling, 1/∆, both in the quantum Ising chain (QIC) and in a recently introduced
model of frustrated spins dubbed Shamrock model [3]. The Shamrock model
was introduced as an example where PIMC tunneling times scale worst than the
incoherent tunneling time, indicating that quantum speed-up might be possible
on QAs. Note that Google has recently announced to have plans of building a
quantum annealer modeled after the Shamrock model therefore, our simulations
will be a useful term of comparison with the ones performed on their chip.

In Chapter 4, using unrestricted Boltzmann machines (uRBMs) as new variational
wave functions –with just 3 parameters to optimize– we obtained ground state
energies comparable to the recent results of the Restricted Boltzmann machines
(RBMs) [25] on the QIC with the hidden-density unit α set to unity. α is the
ratio between the number of hidden and visible units thus, corresponds to an
extensive number of variational parameters. Then, we used optimized uRBMs
as guiding wave functions for importance sampling in PQMC simulations with
importance sampling to ameliorate the computational complexity of the simple
DMC simulations shown in Chapter 3. We showed that the scaling of the compu-
tational cost goes from exponential in the system size to polynomial apparently
even at the quantum critical point, provided that correlations among subsequent
hidden spin variables are removed after an appropriate sampling protocol. It
is worth emphasizing that the studies of the computational complexity of the
QIC done in Chapter 3 are the the first to provide a clear numerical evidence
of the exponential cost required to find the ground state energy of a stoquastic
Hamiltonian at a fixed relative error.

Next, we addressed the problem of simulating the quantum annealing dynamics
using PQMC algorithms with and without importance sampling on the quantum
Ising chain. Using the mixed estimator, we found that the residual energy
scales like the inverse of the total annealing time εres v τf

−1, for finite size
systems. Whereas, with the help of the new way of approximating pure estimators
introduced in Chapter 1, we showed that for the simple PQMC method, the
correct scaling of the imaginary-time dynamics of the QIC is recovered, namely
εres v τf

−2. This suggests that, if the same scaling remains for infinite system
sizes, just using the mixed estimator, the PQMC method would render better
results compared with the real-time dynamics of the Schrödinger equation for

116



Summary and outlook

which εres v τf
−1/2. It is therefore primordial to check those assumptions in the

future. Furthermore, the use of importance sampling was found to be crucial in
those simulations given that in its absence, the bias due to the finite population of
walkers was shown to render the simulations impracticable for large system sizes.

Therefore, a potential follow-up of this thesis would be to build efficient trial wave
function which can be used in the context of annealing simulations to improve the
performance of the PQMC method. Potential candidates are the uRMBs studied
in this work. It would also be interesting to study how the efficiency in obtaining
ground state properties depends on the number of deep layers in the uRBMs and,
how that would affect tunneling times in PQMC simulations. We believe that
this is a potential route to address more complex models such as frustrated spin
glasses. Therefore, using such deep layer uRBMs in PQMC simulations could help
in tackling difficult combinatorial problems in the quantum annealing framework.

A possible work in that direction would be to use SQA implemented via DMC
to train deep Bolzmann neural networks. An attempt that has already been
implemented using PIMC methods [102, 103].
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