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1
Introduction

One of the greatest scienti�c adventures of the last decades has been the search for an under-
standing of high-temperature superconductivity. This �ght is nowadays strongly entangled with
the �eld of strongly correlated electron systems. This thesis �nds its place in this framework
and, despite we will not address directly the physics of superconductors, it is motivated by the
properties of these materials, and in particular by the iron-based family.

Though it has been more than thirty years since the great discovery of high-temperature
superconductors in copper-oxides [1–3], even nowadays we are lacking a generally recognized
understanding of this phenomenon and a recipe to increase the critical temperature. The
discovery of high-temperature superconductivity in iron-based compounds [4] about a decade
ago stimulated the search for common features between these two di�erent families, iron- and
copper-based compounds, in order to get some general picture of the possible mechanism for
superconducting pairing in these systems.

At �rst glance a similarity between the doping-temperature phase diagram of iron-based
parent compounds and the celebrated one for the cuprates is evident, as reported in Fig. 1.1.
The striking point is a long range antiferromagnetic ordering arising in proximity of the su-
perconducting (SC) state. At least in the perspective of this thesis, the main di�erence is that
the magnetic state of the the cuprates is a Mott insulator, while the parent compounds of the
iron-based superconductors are metallic despite the spin-density wave ordering. Moreover, it is
believed that the superconductivity appears in the neighborhood of other competing phases,
once these phases are suppressed. Typically doping or pressure drives the system out of this
low-T regime of the parent compounds, suppressing the present magnetism, and leading the
system to the superconductive phase [5]. Furthermore, both families consist of the layers com-
posed by the transition-metal atom (Fe and Cu, respectively), with ligand atoms alternating in
the neighboring layers.

Indeed, in the last years Fe-based superconductors (FeSC) were sintetized in di�erent shapes,
structure and composition. Nonetheless, they all share a couple of common robust characteristics:
an atomic layers with Fe in square lattice, and a pnictogen (P/As) or a chalcogen (S/Se/Te) 1

positioned above or below the center of each square of iron ions, forming this way the interlayers
between the Fe planes, as shown in Fig. 1.2 (a). The formed structure has tetragonal symmetry,

1This is were the popular names for these compounds "pnictides" and "chalcogenides" come from.
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2 Introduction

Figure 1.1: Schematic phase diagrams of copper- and 122 family of iron-based high-temperature super-
conductors [6]: both electron doping and hole doping suppress the magnetism of the parent compounds
and induce superconductivity under the characteristic superconducting dome. The blue lines between
the paramagnetic and pseuodogap phases (blue shading) in the copper-based case represent crossover
transitions, black lines between paramagnetic and antiferromagnetic phases are well-de�ned transitions.
The non Fermi liquid behavior (purple shade) is present for the same doping where one observes the
superconducing phase, for larger values of temperature.

which undergoes a structural transition in some parts of the phase diagram [7].
However, the major di�erence between the two families of superconductors is evident already

at the level of electronic structure. Though in both of the families the major role is played by
transition-metal atom, with bands arising from 3d-orbitals crossing the Fermi level and dictating
the physical properties of the system, the di�erent number of electrons in the d-shell and the
di�erent crystal-�eld splitting lead to two di�erent pictures. In the cuprates, only one band
(arising from dx2−y2 orbital) crosses the Fermi level, leading to theoretical descriptions based on
the single-band Hubbard model or related models. On another hand, in FeSC the crystal-�eld
splitting is typically quite small with respect to the other energy scales, meaning that in such
case almost all �ve d-orbitals have to be taken into consideration while constructing the e�ective
model. At the very least, a three-orbital modeling for the so-called t2g orbitals is necessary to
reasonably account for the electronic structure of these compounds, but for some phenomena it
is necessary to consider the whole �ve-fold manifold. In principle, this could provide a very
basic argument for the metallic character of the undoped FeSC, since Mott localization is much
harder to get in multi-orbital systems due to the higher number of kinetic energy channels. In
the rest of the thesis we will discuss these arguments, showing that the picture is quite more
complicated, rich and interesting. Nonetheless, correlation e�ects have been observed in all the
various families of FeSC (in increasing order): 1111 pnictides (such as LaFeAsO), 122 (such as
BaFe2As2), 111 (such as LiFeAs) and, at the more strongly correlated end [8], the 11 chalcogenides
(FeSe, FeTe). We will not list the numerous experimental evidences, but let us show, as depicted
in Fig. 1.2 (b), the DFT+DMFT results for the mass enhancement m∗/m as a measure of the
correlations of the system of the iron 3d-orbitals in the paramagnetic state, together with the
results obtained from optical spectroscopy experiments and (angle-resolved) photoemission
spectroscopy experiments [9]. It is still under debate, however, whether this di�erent degree of
correlations arises due to the structural di�erence [9] or an increase of the interactions [10–12].
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The importance of the multi-orbital nature of FeSC in determining the strength and the nature
of correlations in FeSC is stressed in countless theoretical studies [11, 13–16]. Accounting for the
presence of more than one relevant orbital, one needs to take into consideration also the e�ect
of the inter-orbital interactions which are richer than the pure Hubbard repulsion. In particular,
one has to deal with the Hund’s exchange coupling, which favors high spin con�gurations.
In the presence of the Hund’s coupling, the e�ective interaction that electron "feels" depends
on the orbital character of d-orbitals and spin alignment (which are in accordance with the
Hund’s rules in an isolated atoms) [16]. This energy scale is sizable in atomic Fe [17] and it
leads to the remarkable e�ects which represent both the motivation and the topic of the present
thesis. Intuitively, one expects that the Hund’s rule coupling enhances the electron-electron
correlation e�ects, owing to the suppression of atomic con�gurations that do not maximize
the local magnetic moment. We will see that the interplay between Mott localization and the
Hund’s coupling is however more involved than this simple expectation.

Figure 1.2: (a) Structural motif of the FeSC. Inset: Top view of the FeX trilayer, where X=As,P,S,Se,Te.
The triad (a, b, and c) demonstrates the three crystallographic directions. (b) The DFT+DMFT-calculated
mass enhancement m∗/m of the iron 3d-orbitals in the paramagnetic state and the low-energy e�ective
mass enhancement obtained from optical spectroscopy experiments and (angle-resolved) photoemission
spectroscopy experiments [9].

Many direct consequences of this physics have been identi�ed. The main concept arising
from these studies has been the ’Hund’s metal’, a metallic phase displaying strong correlations
and resisting to the Mott localization up to very large values of the interaction. It is important to
stress that this phenomenology has been found for integer �llings di�erent from half-�lling (for
example two electrons in three orbitals), including the case of six electrons in �ve orbitals which
is a characteristic of undoped iron-based superconductors. In this regime one �nds a particular
sensitivity of the observables to the strength of the Hund’s coupling J, an anomalous magnetic
response [18] connected to a �nite-temperature spin-freezing [19], an e�ective decoupling
between the orbitals [14, 17, 20] and other anomalies that we will address in this thesis. In
recent works [17, 21], the crossover between a regular metal and the Hund’s metal has been
connected to the Mott transition for the half-�lled system [11, 12, 14, 22, 23], identifying a
density-dependent crossover which seems to host the main anomalies we have listed above,
plus an enhancement or even a divergence of the charge compressibility [21].

One of the most important observations is the relation between the Hund’s coupling and
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the so-called orbital selectivity, namely the realization of di�erent physics for electrons with
di�erent orbital index. As we mentioned above, one of the e�ects of the Hund’s coupling is to
favor an e�ective low-energy decoupling between the di�erent orbitals, measured by vanishing
inter-orbital charge correlations. Once the orbitals are decoupled, even small di�erences in the
bandstructure parameters are strongly emphasized when correlations are increased. This gives
rise to orbital-selective physics, which is realized by the combination of electronic-structure
e�ects (which split the degeneracy) and a sizable Hund’s coupling. This can lead either to an
orbital-selective Mott transition, where some orbitals are Mott localized and others are not [24],
but also to a strong di�erentiation in the e�ective masses within the same metallic state [14, 25],
found in earlier studies [9, 10, 27].

In this thesis we tackle some important questions raised by the above mentioned studies and
in general by the physics of iron-based superconductors and other materials with an important
e�ect of the Hund’s coupling. We will focus on the origin of the interaction-resilient Hund’s
metal and present a new picture of the stabilization of this phase, which connects the Hund’s
metal with charge-disproportionation instabilities.

After introductory sections, where we will introduce the physics of strong correlations with
a particular emphasis on the e�ect of multi-orbital character and the Hund’s coupling, we will
present the theoretical approach which we used in our original investigations, the Gutzwiller
approximation.

The new results of this thesis will be presented in Chapters 5, 6 and 7. In Chapter 5 we will
revisit the phase diagram of a three-orbital Kanamori model by drawing its phase diagram in the
full U-J plane, considering even regimes which are usually discarded. In this way we will show
that the Hund’s metal state can be seen as a sort of superposition between two strongly correlated
insulators: a high-spin Mott insulator and a disproportionated Hund insulator where the spatial
charge distribution is not homogeneous. The mixed-valence nature of the metallic state can
survive up to the large values of U and J if those are such to make the two insulating solutions
degenerate (or nearly degenerate). The picture is con�rmed by comparing it with the global
half-�lling case, where no Hund’s metal can be found, and the case where the Hund’s coupling is
negative, which can be realized if a Jahn-Teller electron-phonon coupling exceeds the Coulomb
exchange integral. Also in this case we �nd a correlation-resilient metal when disproportionated
insulating solutions are degenerate with the Mott insulator and a more standard Mott transition
when there is only one insulating solution which is simultaneously stabilized by U and J.

In Chapter 6 we discuss the e�ect of non-uniform Coulomb interactions on the physics
of strong correlations, a topic which is directly connected with the possible orbital selectivity
and it is motivated by realistic calculations of interaction parameters, which are typically not
symmetric.

In Chapter 7 we study the charge compressibility of multi-orbital models with full orbital-
rotation invariance, comparing Ising and Kanamori interactions and di�erent values of the
orbital degeneracy. In all cases we �nd a phase separation instability for interactions slightly
larger than the critical U for the Mott transition in the half-�lled system. The phase separation
boundary extends in doping and U in di�erent ways, according to the number of orbitals and
the interaction form. While the precise results seem to be strongly dependent on the "details" of
the model, an enhancement of the compressibility appears as a generic feature, which can be
connected with many aspects of the phase diagram of the iron-based superconductors and other
materials.
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Strong electronic correlations

2.1 The band theory of solids

Band theory was the �rst theory that had a huge success in explaining the electronic properties
of solids (electronic conductivity, optical response etc.). It was able to predict, by simple means,
whether a system was expected to be metallic or insulating [28]. Consequently, this theory was
considered some sort of "standard model" of the solid state.

The band theory of solids is based indeed on a rather strong approximation, namely assuming
that the electrons behave as non-interacting. This means that adding or extracting one electron
from the system will not leave any consequences on any other electron, since they, electrons, do
not ’feel’ the mutual presence. From a mathematical point of view, the band theory assumes that
the Coulomb interaction between electrons can be approximated by an e�ective single-particle
potential which adds to the interaction with the lattice. This approximation may appear rude
because the energy scales associated with the Coulomb repulsion are quite large and they can
not be neglected. Nevertheless, the band theory turned out to be valid in many solid systems
since a large number of compounds have the screened Coulomb interaction. The rationale for
this success is that the electronic properties are mainly controlled by the valence electrons whose
interaction is screened by core electrons leading to a weaker e�ective interaction. The connection
between the low-energy properties of interacting electrons and a sea of non-interacting electrons
is the basis of the Landau theory of normal Fermi liquids, a phenomenological theory based on
the idea that the excitations of a system of interacting fermions have the same nature of those
of a non-interacting gas provided that some e�ective parameters are used.

Within the band theory the electronic spectrum is constituted by a number of energy bands
separated by forbidden energy regions called gaps. The very existence of bands and gaps is a
consequence of the periodic potential provided by the ionic lattice. Therefore one can construct
the many-body state of the system by populating all the possible single-particle energy levels
while respecting the Pauli principle. imposing that two electrons can not have the same quantum
numbers. The last occupied energy level is usually called Fermi energy or Fermi level εF . The
last populated band, commonly called valence band, can be partially or completely �lled. When
the valence band is partially �lled, the system is metallic, and the electrons in this band give rise
to the electrical conduction and to most electronic properties. Since there are free electronic
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6 Strong electronic correlations

states just above the Fermi level, the electrons can be excited with no energetic cost. On the
another hand, in order to have an insulator, the number of electrons must be such to completely
�ll the last, valence band, separated by a gap from the next, empty, band. In this latter case we
have a situation where in order to add or excite one of the existing electrons would require an
energy cost of the energy gap between the lower exactly �lled valence band and upper empty
conduction band. We say that the system has the gap at the Fermi level. Hence in this situation
the insulator is inert to the applied external �eld, meaning that it can not cause the �ow of the
carriers.

Within this scheme, the only way to have a phase transition between a metal and an insulator
would be to modify the electronic population of the valence band. This can be done by chemical
doping or by electrostatic gating.

The above picture can easily be connected with the chemical character of the material: each
atom in the solids contains an integer number of electrons. It is clear, due to the spin degeneracy,
that having an even number of electrons per unit cell will mean having the full band hence an
insulator. Within the band theory this is an necessary but not su�cient condition to have a gap
at the Fermi level. Accordingly, systems with an odd number will end up having partially �lled
band driving the system to the metallic state.

2.2 Fermi liquid theory
A challenge to obtain the theoretical descriptions of interacting many-body systems gave
rise to many di�erent theoretical approaches. Capturing the e�ects of Coulomb interactions
between many electrons in a lattice was greatly simpli�ed by the Fermi liquid theory [29–31],
an approximative approach introduced by Landau in 1956. As a phenomenological description
of weakly interacting fermionic systems, the Landau theory of normal Fermi liquids provides
description of many properties of metals, explaining why some properties of an interacting
fermion system are very similar to those of the Fermi gas (i.e. non-interacting fermions), and
why other properties di�er. Moreover it is even able to describe some superconducting state,
which was noticed in many metallic systems at low temperatures.

In fact, the basic assumption of this phenomenological theory is that the low-energy and low-
temperature elementary excitation of a system of interacting fermions, so called quasiparticles,
are in one-to-one correspondence with the excitations of a system of non-interacting particles.
This can be realized starting from the single-particle excitations and "turning on" adiabatically
the interaction without changing the character of the excitations. Therefore the quasiparticle
states (thought not being a true state of the interacting Hamiltonian) can be labeled with the
same quantum numbers (particle number, spin, and momentum) as the non-interacting fermionic
states. This correspondence is valid only for weak excitations at low-energy, meaning that the
excitation spectrum remains close to the Fermi surface. In general a quasiparticle excitation has
a �nite lifetime at low energy, as opposed to non-interacting particle.

At this point we can say that most of the low energy properties of a Fermi liquid can be
interpreted as the ones of an ideal gas but rather with renormalized parameters. One of the main
characteristics of the Fermi liquids is the quasiparticles e�ective mass m∗, which, comparing
to the bare non-interacting electron mass m, has a larger value, owing to the presence of the
interactions (between the quasiparticles). The bare band mass m of an electron is de�ned, within
the band theory, as a result of the movement of an electron in a periodic potential, which makes
its motion di�erent with respect to the free-electron one. Accordingly one can see the e�ective
mass m∗, within the Fermi liquid theory, as the reduction of the mobility of the electron as a
consequence of the interactions between the particles. Hence, it comes naturally to take the two
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masses, m∗/m, as the measure of the degree of correlation of a system under the consideration.
Previously described phenomenological idea of Landau Fermi liquid theory was later de-

veloped by Abrikosov and Kalatnikov [32], who gave a formal derivation using diagrammatic
perturbative expansion of the interaction. Therefore, in order to give an insight in m∗/m ratio,
let us consider the self-energy Σ(k, ω) that represents the contribution ("correction") to the
single particle energy (or e�ective mass) due to interactions between the particle and the rest of
the system. Let us then focusing on the zero-temperature behavior, up to order ω, where the
self-energy is purely real and can be expanded as

Σ(k, ω) ' Σ′(k, 0) + ω
∂Σ′(k, ω)

∂ω

∣∣∣∣∣∣
0

, (2.1)

where we denoted the real part of the self-energy as Σ′(k, ω). Here we have neglected the
imaginary part of the self-energy, that corresponds to the decay of quasiparticles, since we
assumes that the decay rate of quasiparticles in much smaller than their energy. This is justi�ed
at energies and temperatures much lower than εF . If we further expand the self-energy and the
dispersion around the Fermi momentum kF , we obtain the expression for the e�ective mass

m
m∗

=

1 − ∂Σ′(k,0)
∂k

∣∣∣∣∣∣
kF

1 − ∂Σ′(kF ,ω)
∂ω

∣∣∣∣∣∣
0

. (2.2)

Since the self-energy does not depend on momentum in the mean-�eld approaches we will be
dealing with in the present work, the numerator of Eq. (2.2) becomes 1 giving

m∗

m
=

(
1 −

∂Σ′(kF , ω)
∂ω

∣∣∣∣∣∣
0

)−1

=
1
Z
, (2.3)

where Z represents the quasiparticle weight, which plays the role in renormalizing the quasi-
particle energy. Eq. (2.3) shows that the e�ective mass is given simply by the inverse of the
quasiparticle weight. Starting from the metallic phase with Z = 1, decrease of Z can be related to
an increased e�ect of correlation, and consequently a metal-insulator transition will occur when
Z vanishes or, following Eq. (2.3) the e�ective mass diverges. This means that at the moment
of transition the electrons do not move anymore, they localize, hence one should expect the
huge enhancement of the e�ective mass comparing to the non-interacting value. Consequently,
the e�ective mass carries the main description of the correlation e�ects as long as the system
remains in a Fermi liquid state. In another words, the quasiparticle picture of Fermi liquid theory
can be taken as a correct description of the metallic states of the systems of interest, breaking
down at the moment of transition to insulator phase.

On another side, the Landau theory that holds for the weakly interacting electrons fails
to describe the system as soon as the interactions become su�ciently large to drive a phase
transition to an insulator, or possibly to a novel non Fermi liquid metals characterized by
anomalous properties. This scenario occurs in materials with open d- or f -electron shells, whose
orbitals are localized and the bands are narrow. In these materials the e�ect of the Coulomb
repulsion between electrons is very pronounced, meaning that the mean-�eld theories can not
be applied anymore.
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2.3 Mott insulators
Despite its huge success, the band theory of solids failed to describe the behavior of some
materials with open d- or f -electron shells, such as transition-metal oxides. In spite of having
an odd number of electrons per unit cell, already in the late 30’s of the twentieth century
experiments [33] have shown unambiguously that these materials behave as insulators. Since
this insulating behavior clearly contrasts with the band theory of solids, we are facing a new
class of insulators, di�erent from those predicted by the band theory, which are usually referred
to as band insulators.

Mott and Peierls [34] suggested that this might be the result of the presence of strong
Coulomb repulsion between electrons, which, in case of transition-metal oxides, are relevant
and must be treated with equal footing with the kinetic energy of the electrons. Seemingly,
this is the point where the mean-�eld treatment of the electron-electron interaction within the
band theory fails, since this theory can hold just for the weakly interacting systems that can be
represented with this independent particle picture. The reason why the e�ect of the screened
Coulomb interaction can not be neglected is because d-orbitals of transition-metal oxides are
very localized and the electronic bands are quite narrow due to the small overlap of the two
adjacent d-orbitals.

The physical picture proposed by Mott can be described in terms of a tight-binding model
where the electrons experience a screened Coulomb repulsion U when two electrons with
opposite spin are on the same lattice site (corresponding to an ion in the crystal). As we shall
see, this is precisely the famous Hubbard model. Let us consider a system with the same number
of electrons as lattice sites, which corresponds to a half-�lled band in the non-interacting limit.

Within this simple framework we can not only understand the existence of Mott insulators,
but also a new kind of transition connecting a metal to an insulator without changing the number
of carriers or, equivalently, the Fermi level.

We can theoretically imagine to tune the interaction strength. At U = 0 the system obviously
describes a metal because we have a half-�lled band. When we increase the interaction, we
have a competition between the kinetic energy, which favors delocalization of the electronic
wave-function, and the interaction, which imposes constraints to the motion of the electrons. It
is easy to be convinced that, when U becomes much larger than the kinetic energy, the ground
state of the system is given by one electron localized on each lattice sites. Every hopping starting
from a similar state necessarily creates a doubly occupied site, which is energetically unfavored
by the Coulomb repulsion. In this way the electrons stay on their sites, ie. they localize and the
material becomes an insulator, or more speci�cally - the Mott insulator [35].

From this description we can easily see that, in a Mott insulator, the behavior of each electron
depends on the state of the others, which is exactly what the adjective correlated means. The
correlations between electrons can not, obviously, be captured by the mean-�eld treatment of
the band theory. For this reason the materials where the interactions are so strong to give rise
to violations or even the breakdown of the band theory of solids are called strongly correlated
systems.

We remind that Mott localization can happen only when the number of electrons is equal
to the number of sites, for this particular case, or, for more generic picture when dealing with
multi-orbital systems, at any commensurate �lling when we have an integer number of electrons
per site. Otherwise doping the Mott insulator with either holes or electrons the system becomes
metallic; the correlations between the electrons still remain, but without possibility to drive the
system up to the Mott insulating state in the absence of any spatial symmetry breaking.

It is important to stress that Mott insulators are usually characterized by a long-range
ordering of the spin (and orbital for more general models) of the localized electrons. It is natural
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that some residual interaction emerges between the spins, leading to real-space ordering. For
the single-band Hubbard model, one �nds a Heisenberg interaction with antiferromagnetic
coupling which gives rise to an antiferromagnetic ordering on bipartite lattice or in the absence
of substantial frustration. Nevertheless, in this work we focus on paramagnetic solutions, where
we inhibit any magnetic or orbital ordering to focus on the intrinsic correlation e�ects induced
by the interactions. This solution is also representative of the �nite-temperature behavior above
the ordering temperature in actual materials.

The main reason for the interest in Mott insulators and Mott metal-insulator transitions is
that many remarkable phenomena happen "close" to Mott transitions, i.e., with little changes of
control parameters like doping, pressure, magnetic �eld or others. Among these phenomena
the appearance of high-Tc superconductivity by doping a copper oxide is certainly one of the
most fascinating and speculated one. In general terms, one can rationalize the proliferation
of interesting phenomena in terms of the fragility of the strongly correlated metallic state in
proximity of Mott localization.

2.4 Single-orbital Hubbard model

As we anticipated in the previous section, the basic ideas behind Mott insulators can be described
in terms of a simple tight-binding model which includes a screened short-range Coulomb
repulsion. Even if the valence bands of most correlated materials have d or f character, which
would imply a multi-orbital description, we can picture the physics within a model where
only one orbital is considered on every lattice site. This situation is also relevant for the high-
temperature superconducting cuprates, where every copper atom has nine electrons in the
d-shell: eight out of nine electrons will �ll those levels which are substantially below (and do
not a�ect the physics of the system), and the only band that crosses the Fermi level is the dx2−y2

with one electron per orbital.
For simplicity we only consider near-neighbor hopping on a square or cubic lattice experi-

encing an on-site Coulomb repulsion U between two electrons on the same site (obviously with
opposite spin in order to ful�ll the Pauli principle). The Hamiltonian reads

Ĥ = −t
∑
〈i j〉σ

c†iσc jσ + U
∑

i

n̂i↑n̂i↓ , (2.4)

where c†iσ is the creation and c jσ is the annihilation operator on two di�erent lattice sites i
and j, respectively, hence the �rst term, together with the hopping amplitude t (an overlap of
the two neighboring Wannier orbitals with dependence on the lattice constant a), represents
the hoppings between the neighboring sites. The second term contains the local U Coulomb
repulsion between the electrons, knowing that n̂iσ = c†iσciσ is the number operator.

For U = 0 we have a standard tight-binding approximation for independent electrons which
can be diagonalized in momentum space giving rise to a single band of width W = 2td, where d
is dimentionality, and it is proportional to the hopping amplitude t. On the other hand, for t = 0
the model reduces to a collection of isolated sites, each hosting one localized electron. If we do
not allow for any magnetic ordering, the spins of the electrons are disordered and we have a
trivial paramagnetic insulator, where the electronic motion is impossible because of the absence
of hopping processes. These two trivial limits, where the system is respectively a metal and an
insulator, must be connected by some transition. If we consider the model at �xed density, it
contains only two energy scales, therefore the whole physics must be controlled by the ratio
U/W .
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Despite the simplicity the model can not be solved exactly, except for the two limiting case
of one and in�nite spatial dimensions where the Dynamical mean-�eld theory becomes exact,
thus the search for a characterization of the Mott transition is still a serious challenge.

The main reason for this is that the transition is expected to occur for intermediate U/W ∼ 1,
where no perturbative approach is possible, and that the competition between the two terms is
a very �erce one. The kinetic term tends to produce delocalized solutions, while the interaction
terms wants to localize the electrons in real space. For these reasons, the study of the Hubbard
model, especially in two dimensions, has been based on numerical approaches or approximate
analytical methods.

As stressed before, one can take a quasiparticle spectral weight Z as a measure of metallicity,
which is equal to 1 in metallic case. Increasing the value of U/W ratio Z starts to decrease. When
the local interaction, ie. the Hubbard repulsion between the electrons U overcomes the energy
scale of the kinetic energy which is de�ned by the bandwidth W , the quasiparticle spectral
weight becomes suppressed, reaching the zero value at the transition.

In this thesis we do not attempt to review all the di�erent approaches focusing on the various
aspects of the Hubbard model, and we focus on a class of studies devoted to the Mott transition
and focusing on the metallic side, where a strongly correlated metal emerges by increasing the
interaction strength.

Mott insulator is characterized by the two bands, lower and upper Hubbard band, separated
with the gap of the order U , that can be pictured as shown in the last panel of Fig. 2.1. Upper
Hubbard band includes those states where we have the double occupied site and represents
the energy cost, in contrast to the lower Hubbard band. When the strength of the interaction
overcomes the bandwidth, the gap opens and the metal-insulator transition occurs.

Let us try to describe schematically the Mott transition. Let us recall (2.4) and rewrite the
Hamiltonian Ĥ − µn̂ it in a slightly di�erent way, for the later convenience

Ĥ = −t
∑
〈i j〉σ

c†iσc jσ +
U
2

∑
i

∑
σ

(
n̂iσ −

1
2

)2

. (2.5)

This form comes from rescaling the chemical potential such that at half-�lling µ = 0 and the
particle-hole symmetry is evident. If we now consider a system at half-�lling, the density of
states at large U (U > W) can be represented [36] as two peaks centered around εF ±

U
2 , so-called

upper and lower Hubbard bands, both with bandwidth W and the gap between them. This picture
describes in the appropriate way the Mott insulating state, and the distance U between them
represents the energy cost for having double occupied state in the upper Hubbard band. Further,
decreasing U means that the gap between these two peaks is decreasing (the overlap between
the atomic orbitals starts to increase as well as the tendency of the electrons to delocalize) and
�nally vanishes at a critical value of the interaction strength Uc = W , signalizing the Mott
insulator-metal transition in the single-orbital case [36, 37]. This "atomic-limit" description will
be discussed in more details in Sec. 3.4.1.

2.5 DMFT
So far we have seen that the correlation driven Mott metal-insulator transition, as one of the most
intriguing phenomena in condensed matter physics, has been widely examined in numerous
studies, particularly the single-orbital model (2.4) at half-�lling [36, 38–41]. The Brinkman-
Rice picture [42] of the transition (within the frameworks of Gutzwiller approach [43] - see
Chapter 4) gives a good description of the quasiparticle spectral weight in the metallic regime,
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with no possibility of reproducing the upper and lower Hubbard bands. The disappearance of
the quasiparticle peak signalizes the metal-insulator transition. On the other side, Hubbard’s
picture describes metal-insulator transition in terms of continuous splitting of metallic band
into an upper and lower Hubbard band de�ning this way an insulating state. Apparently, this
description does not give any information about the quasiparticle spectral weight. Dynamical
mean-�eld theory represents the theoretical approach that was the �rst to unify the Mott and
Brinkman-Rice picture and therefore describe the transition from both insulating and metallic
side.

The initial point for constructing Dynamical mean-�eld theory (DMFT) [44–47] comes
from the study of Metzner and Vollhardt [48] and shortly after Müller-Hartmann [49, 50],
who realized that the diagrammatic perturbation expansions of expectation values (related to
a Hamiltonian under the consideration) simplify in the limit of in�nite lattice coordination
number z. Keeping only the zeroth order term of such expansion gives a simpli�ed theory that
is exact in the limit z → ∞. An important point in this limit is that one has to scale properly
the hopping parameter t → t

√
z to get a non-trivial solution for the physical properties of the

system [48]. Moreover, within the limit z → ∞ all non-local contributions to the self-energy
vanish, recovering the momentum-independence of the self-energy Σ(k, ω) z→∞

= Σ(ω). The
self-energy, though momentum independent, retains the full many-body dynamics, and can
thus describe genuine correlation e�ects.

Figure 2.1: In the limit z→ ∞ the original Hubbard model reduces to a dynamical single-site problem,
which may be viewed as an impurity atom embedded in a dynamical mean-�eld. Electrons may hop from
this atom to the mean-�eld and back, whereas the on-site interact is as in the original model.

The second important step for the realization of this method lies in the following simpli�ca-
tion suggested by Georges and Kotliar [51]: the lattice model, such as the single-orbital Hubbard
one that we have previously introduced, is mapped onto a purely local impurity model, which
is described with an atom embedded in a non-interacting bath [44, 52, 53], as represented in
Fig. 2.2. The bath represents the e�ective medium and it contains all the information about the
intra-atomic interactions. It is coupled to the impurity atom through a hybridization function
∆(ω) via exchange of an electron. The local con�guration on the chosen atom will essentially
�uctuate between all the possible local con�gurations, giving an information about the quantum
evolution of the atom. Moreover, the impurity self-energy becomes equal to the lattice self-
energy. Having self-energy local gives the self-consistency condition and the crucial advantage
of DMFT approach.

Starting with an arbitrary choice of the self-energy of the system, one solves the corre-
sponding impurity problem in order to get a new self-energy. This must be repeated until the
self-energy does not change anymore. From the converged self-energy Σ(ω) it is possible to
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compute the full spectral function A(ω) of the impurity. Since the spectral function is related to
the density of electron states, its evolution with respect to increasing interaction U can provide
us an information about the emergence of the Mott transition at a speci�c critical value Uc. In
Fig. 2.2 we show the schematic evolution of the density of states while increasing the interaction
strength U , which summarizes up the results of many di�erent studies from Ref. [44, 54–56].

Figure 2.2: Schematic plots of the evolu-
tion of the density of states with respect
to increasing interaction. This scheme is
made particularly for the case of half-�lled
Hubbard model in the paramagnetic case,
in scope of comparing di�erent theoretical
approaches. The value of U is increasing
from top to bottom. The �rst four plots
with a �nite spectral weight refer to the
metallic phase. The very last plots refer to
the insulating phase. The Hubbard peaks,
as a precursor of the Hubbard bands, are
visible already in the metallic phase.

At U = 0 the system is represented by the free-
electron density of states, with a bare bandwidth W .
As soon as we start increasing the interaction, we can
observe the coherent quasiparticle peak, but slightly dif-
ferent from the one expected from the Brinkman-Rice
picture (dashed region in Fig. 2.2), due to the appearance
of the symmetric spectral weight broadening. These
two broad peaks are considered to be a precursor of the
lower and upper Hubbard bands previously introduced
in the Hubbard picture [36, 41]. They belong to the in-
coherent part of the spectral function and represent the
high-energy excitations caused by electron-electron in-
teractions. At this point we can observe the dual nature
of electrons, having both localized character at high
energies and metallic behavior with the formation of
itinerant quasiparticles at low energies. Increasing fur-
ther U/W the two peaks tend to move further apart,
while the low-energy peak gets reduced. Close to the
Mott transition (U . Uc), this three peak structure gets
more pronounced. The quasiparticle peak becomes nar-
rower, keeping the height at εF unchanged. Suddenly it
vanishes at a critical coupling Uc, signalizing the Mott
transition, and leaving on another side Mott gap be-
tween the lower and upper Hubbard band developed
around εF ± U/2.

The low-energy physics can be described, to some
extent, in terms of Fermi liquid theory. Using the fact
that, within DMFT, the self-energy Σ(ω) describes the
local correlations as momentum-independent, we can
conclude that the width of the peak that is proportional
to the quasiparticle weight Z ≡ (1 − ∂Σ/∂ω)−1 coincides
with the e�ective mass enhancement, ie. m/m∗ = Z−1 =

1 − ∂Σ/∂ω|ω=0. This means that for vanishing quasipar-
ticle spectral weight the Mott transition occurs through
a divergence of the e�ective mass associated with the
localization of the electrons. Hence we can interpret
the metal-insulator Mott transition as a delocalization-
localization transition, demonstrating the wave-particle
duality of electrons. The factor Z will be later on intro-
duced within the Gutzwiller approximation described in
Chapter 4, which reproduces qualitatively in a correct
way the DMFT picture of the coherent peak.

In this chapter we gave a very brief insight to Dynamical mean-�eld theory, focusing on
the relevant aspects that will be important for understanding the results of the Gutzwiller
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approximation that we will mainly use within this work. As stressed, Gutzwiller approach is
su�cient if considering the metallic side of the transition. However, the Gutzwiller approxi-
mation picture can be compared, con�rmed and eventually improved by DMFT study, which
provides the exact properties not only of metallic but also insulating many-body state in in�nite
lattice coordination.

So far we have considered the single-orbital Hubbard model, but similar picture can be
generalized for the multi-orbital one. However, DMFT must be taken as an approximation for
real materials. Nevertheless, calculations showed that within DMFT a large amount of physical
properties of among all transition-metal based materials can be analyzed and later compared
with experiments [55, 57, 58]. Information about the lattice structure appears in the DMFT
equation only through the local density of states. Seemingly, more realistic (and less symmetric)
density of states do account for the di�erent competitions between interactions and hence
di�erent results in the various phenomena of this picture. Hence DMFT is a good starting point
for analyzing this many-body problem.

Solving the impurity model in a self-consistent way, one gets the solution of the initial
many-body problem. Yet, this approach, thought a simpli�cation comparing to the original
lattice model, still requires di�erent numerical methods for its handling. Solutions of the general
DMFT self-consistency equations require extensive numerical methods, in particular Quantum
Monte Carlo techniques [44, 59–62], the Numerical renormalization group [54, 63–65], Exact
diagonalization [66], and other techniques. All of these approaches use the fact that in the limit of
in�nite spatial dimensions z→ ∞ the Hubbard model e�ectively reduces to a dynamical single-
site problem with the self-consistency condition (Fig. 2.1). In this sense, the only approximation
in DMFT is the negligence of spatial �uctuations. However, it takes full account of quantum
�uctuations, so that it becomes a good approximation in the case where the spatial �uctuations
are not important, as for example in the systems with large coordination numbers.
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3
Multi-orbital models and Hund’s physics

The single-band Hubbard model is the paradigmatic model to understand the physics of electron-
electron correlations and the Mott transition in their simplest realization. However, in a vast
majority of compounds the electronic structure can not be approximated with a single band
crossing the Fermi level and a description in terms of the single-band model is questionable. This
observation is not surprising because the typical example of strongly correlated materials are
based on transition-metal atoms, in which the 3d-orbitals are partially occupied with di�erent
number of electrons according to the atomic species of interest. The �ve d-orbitals lead in
principle to �ve bands in the solid (or even more if oxygen degrees of freedom are included
and/or spatial symmetry breaking leads to a larger unit cell). While in some special situation,
like the cuprates, the combination of a splitting of the bands and a particular �lling leads to a
single-band description, in the most general case, the electronic structure requires the explicit
inclusion of a given number of orbitals.

The change from one to more orbitals turns out to be far from trivial, leading us to quote
(with a slight abuse) Phil Anderson and his famous phrase "More is di�erent". A number of
recent studies shows indeed that Mott physics reveals surprising new phenomena when we take
into account more than one orbitals and the consequent richer form of the electron-electron
interaction.

As a matter of fact, the properties of multi-orbital systems are very rich and they depend
crucially on di�erent parameters, like the number of electrons and orbitals, the energy splitting
between orbitals and the exchange coupling J. This can give rise to a variety of metallic,
insulating, or bad metallic regimes, leading to the richness of phenomena that we can designate
generally as Hund’s physics. In this chapter we review the main aspects of the modeling of
multi-orbital materials and some very important results which represent the starting point of
the original investigations reported in this thesis.

3.1 d-orbitals in transition-metal oxides

Transition-metal atoms are characterize by a partially �lled 3d-orbitals. This level is �ve-fold
degenerate due to angular momentum ` = 2, which implies that the z-component can assume
the values `z = −2,−1, 0, 1, 2. When the atom is included into a lattice, the neighboring atoms,
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which can be other transition-metals or ligands (like oxygen in oxides) induce a crystal-�eld
that lifts (partially) the degeneracy of these d-orbitals. Depending on the di�erent coordination
(thetrahedral, ochtahedral, square planar etc.), the crystal-�eld can have di�erent e�ects, hence
d-orbitals can be split in di�erent way. This point is of the crucial importance because it allows
us to understand which are the active orbitals that have to be taken into account when de�ning
the model.

In some materials where the degeneracy is totally lifted, such as in the case of copper-oxides,
it can happen (if the bands are narrower than the crystal-�eld splitting) that only one band
with a precise orbital character crosses the Fermi level, meaning that the single-orbital Hubbard
model is su�ciently good choice for a description of the low-energy physics. In this case just two
control parameters, interaction strength U and the bandwidth W , are enough for understanding
the important e�ects of the system.

We discuss now, as a notable example, the case of a cubic crystal-�eld splitting, generated
by a con�guration where the transition-metal atom is surrounded by ligand ions with negative
charge at the same distance along the three coordinate axes, x̂, ŷ, ẑ.

In Fig. 3.1 we show the typical structure of the atomic energy levels in this situation. The
cubic crystal-�eld elevates the energy of dx2−y2 and d3z2−r2 orbitals, which are extending in the
direction towards the ligand ions, with respect to dxy, dyz and dxz orbitals, which are extending
in directions between the surrounding ligand ions. Hence the �ve d-orbitals split into a two-fold
degenerate subset, eg ≡

{
dx2−y2 , d3z2−r2

}
, and a three-fold degenerate subset, t2g ≡

{
dxy, dyz, dxz

}
, as

demonstrated in Fig. 3.1. Since this splitting is usually quite large, only one of the subsets, eg

or t2g, crosses the Fermi energy. However, for example, in iron-based superconductors, where
the ligand atoms are either pnictogen or chalcogen atoms, the separation between eg and t2g

is small and all the �ve d-orbitals are relevant for the description of the low-energy physics.
Therefore we can have situations where the e�ective low-energy manifold is composed by two,
three or �ve orbitals. Moreover, there can be other perturbations that further lift the remaining
degeneracies or modify this hierarchy.

Figure 3.1: Crystal-�eld split of d-orbitals of transition-metal ion in a cubic crystal-�eld with an octahe-
dral environment.
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One can conclude that when several correlated orbitals contribute to the conduction bands,
more parameters come into play, since the number of electron-electron interaction terms in-
creases due to inclusion of orbital degrees of freedom. We will show that this leads to a rich
phenomenology.

3.2 Multi-orbital Hubbard model
In the previous chapter we have considered the single-orbital Hubbard model. However, as
stressed before, in more realistic materials one actually has to deal with more than just one
single-orbital. This mean that, when we expand the Coulomb interaction on a basis of localized
Wannier orbitals (or even simply atomic orbitals), we �nd a number of independent integrals
which in turn correspond to di�erent couplings appearing in the second quantization electron-
electron interaction term (see Appendix A). This holds even if we limit ourselves to on-site
interactions. The most general form of the local Coulomb interaction is obtained in Appendix A
and is written as

Umm′m′′m′′′ =

∫
drdr’w∗m(r)w∗m′(r’) ,U(r − r’)wm′′(r’)wm′′′(r) . (3.1)

If we take m = m′ = m′′ = m′′′, we obtain a Coulomb integral which naturally generalizes
the expression for the Hubbard U of the single-band model. This integral contains the product of
two electron densities (squares of the Wannier orbital wave-function). If instead we take m = m′

and m′′ = m′′′, with m , m′′, performing a change of variable label m′′ → m′, we de�ne an
independent integral associated with the overlap between the electron densities of two di�erent
Wannier orbitals. Assuming rotational invariance between the orbitals U and U′ do not depend
on the orbital indices and can be computed as

U =

∫
drdr’ |wm(r)|2 U(r − r’) |wm(r’)|2

U′ =

∫
drdr’ |wm(r)|2 U(r − r’) |wm′(r’)|2 .

(3.2)

It is clear from Eq. (3.2) that U > U′ because the overlap between two di�erent Wannier
orbitals will always be smaller than the overlap of an orbital with itself. This re�ects the natural
expectation that the Coulomb interaction is stronger for electrons belonging to the same orbitals
(therefore sharing the same portion of space) than for electrons in di�erent orbitals, which avoid
each other more e�ectively.

Eq. (3.1) de�nes also other Coulomb integrals, where m,m′,m′′,m′′′ assume di�erent values
that one can account also for some other independent integral, which rather depends of the
choice of relevant orbitals and symmetry of the system. But let us, for the sake of simplicity,
consider just U and U′, with the possibility of having any number of the orbitals in the system
(from �ve possible d-orbitals), and with no crystal splitting, in order to understand better the
e�ect of inter-orbital Coulomb interaction U′. It is clear, though, that in more realistic treatment
of the problem the Coulomb repulsion should be taken as orbital dependent, since, say, repulsion
between the dxy and the dx2−y2 orbital is larger than the one between the dz2 and the dx2−y2 orbital.
Nevertheless, at this point it is enough to consider the upper assumption of having equal U′

between all di�erent orbitals.
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Assuming N orbitals, the interacting Hamiltonian gets the following form:

Ĥint = U
∑
i,m

n̂im↑n̂im↓ + U′
∑

i,m,m′
n̂im↑n̂im′↓ + U′

∑
i,m<m′σ

n̂imσn̂im′σ , (3.3)

where the �rst term represents the intra-orbital density-density interaction, while the second and
third one stand for inter-orbital density-density interaction between anti-parallel and parallel
spins, respectively. Considering the limit of isotropic U′ = U , and adding the kinetic contribution
and chemical potential shift to the interacting Hamiltonian (3.3), the total Hamiltonian becomes

Ĥ = −
∑
〈i j〉

∑
mσ

tm
i jc
†

imσc jmσ +
U
2

∑
i

∑
mσ

(
n̂imσ −

1
2

)2

. (3.4)

where we have considered just the intra-orbital hopping terms between the same orbitals m
(see Appendix A). Introducing 1/2 in the Hamiltonian (3.4) is just a convention for the chemical
potential µ, in order to imply the particle-hole symmetry in half-�lling case. The Hamiltonian
considered here has a full S U(2N) rotational symmetry with respect to spin and orbital degrees
of freedom. Indeed, the form of (3.4) shows us that the second term depends just on the total
charge since the only relevant term that remains (apart of constant shift) is proportional to
n̂ =

∑
mσ n̂mσ. This indicates that any rotation in the local spin-orbital space leaves the interacting

term invariant under these transformations hence independent of the choice of the local basis
set.

One can anticipate the existence of the Mott transition for any integer �lling of the system
x = n/2N, where n = 1, ..., 2N − 1. Indeed, for very large U , the situation where n electrons
are localized on each site represents the ground state. Instead, the excited state where a charge
excitation is created is separated from the ground state by a gap of order U . This generalizes the
half-�lling situation of the single-band model, where n = 1 is the only con�guration which can
lead to a Mott transition.

Several di�erent studies [67–71] using di�erent techniques have recovered and con�rmed
this result. Particularly interesting for our case is the one obtained with the Gutzwiller approach
(see Chapter 4) in Ref. [67]. The authors demonstrated that the critical interaction strength Uc

for which the metal-insulator transition occurs can be expressed as

Uc(N, n) =
1

(2N − n) n

( √
n(2N − n + 1) +

√
(n + 1)(2N − n)

)2
|ε̄| (3.5)

where ε̄ is the average energy per site in the uncorrelated case

ε̄ =
∑
σ

∫
εD(ε)dε =

∑
σ

ε̄σ , (3.6)

and D(ε) represents the density of states. In our speci�c case we will assume the semi-circular
density of states with half-bandwidth D = 1 and average energy per spin ε̄σ ' −0.2122. Using
Eq. (3.5) for this particular case, one can obtain the left panel of Fig. 3.2.

Obviously, Uc is a function of N and n. Same results were recovered numerically, using
Gutzwiller variational approach, while studying the behavior of quasiparticle spectral weight Z
as a function of interaction strength U , with the transition into a Mott phase for U > Uc(n,N).
Right panel of Fig. 3.2 essentially shows that if we analyze for instance case N = 3, the values of
Uc coincide with the ones predicted with formula (3.5). Note that Uc(n = 1) = Uc(n = 5) as well
as Uc(n = 2) = Uc(n = 4). This is a result of our choice of density of states which is symmetric
in this speci�c case.
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Figure 3.2: Left panel: Critical interaction Uc for di�erent number of orbitals N and di�erent �llings
n = 1, 2, ..., 2N − 1, as a function of n. Right panel: Quasiparticle weight Z as a function of U/D, for
three-orbital models at di�erent �llings; results are obtained with Gutzwiller technique.

Let us now consider in particular the half-�lling case. Recalling Eq. (3.5), imposing n = N,
one obtains:

Uc(N) = 8(N + 1)|ε̄σ| (3.7)

which coincides with the result obtained analytically in Ref. [71] using the Slave-spin mean-�eld
technique and performing a perturbative expansion1 around the atomic limit. Ref. [71] points out
that the critical interaction strength is a growing function of the atomic ground state degeneracy,
meaning that Uc increases together with N. Another point is that Uc is the largest for the
half-�lling case for any number of orbitals.

Figure 3.3: Quasiparticle weight Z as a function of interaction strength U/D (where D is a semi-circle with
half-bandwidth), for the N-orbital Hubbard model at half-�lling (with, from left to right: N = 1, 2, 3, 4, 5).
The results are obtained with Gutzwiller variational approach and they show a perfect accordance with
the Slave-spin mean-�eld [72]. Inset: Dependence of the critical interaction strength Uc on N.

1This can be performed only if the transition is of the second order, which is the case.
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Fig. 3.3 displays numerical results for the quasiparticle weight Z together with values of the
critical interaction Uc (inset), for di�erent number of orbitals N, and con�rms the predictions of
Eq. (3.7). These results are obtained both using Gutzwiller and Slave-spin [72] approach.

Result (3.7) can be compared with more reliable DMFT approach in the limit of in�nite lattice
coordination and large N [68]. In this limit we get the exact large N behavior of the critical
interaction Uc(N) at half-�lling, which is shown to be linear in N, ie.

Uc(N) = 8N|ε̄σ|, (at large N) (3.8)

It is evident that Eqs. (3.7) and (3.8) match in the limit of large N, meaning that the Gutzwiller
approximation (and other slave-techniques) becomes more accurate with increasing N.

3.2.1 Anisotropic Coulomb interaction
When the Coulomb interaction is completely isotropic, i.e. U = U′, we �nd that the critical Uc

scales proportionally to the number of orbitals N. However the assumption that the Coulomb
repulsion between electrons in the same orbital is the same as for electrons in di�erent orbitals
is not likely to be realized in solids. We thus consider here the �rst and simplest generalization,
in which we analyze the case where U′ , U [73, 74]. Indeed, the two Coulomb integrals
presented with Eq. (3.2) do di�er in real materials. Let us parameterize the di�erent values
de�ning α according to U′ = αU and give an explicit example for the three-orbital case, though
the following argument holds for any multi-orbital model. We present our results using the
Gutzwiller approximation which agrees with previous slave-particle approaches [73, 74].

Figure 3.4: Quasiparticle weight Z as a function of interaction strength U/D (where D is a semi-circle
with half-bandwidth), for �xed value of U′/U = α. The results represent the three-orbital Hubbard model
and they are obtained using the Gutzwiller variational technique, showing the perfect accordance with
the RIBS results [74].

Fig. 3.4 shows the behavior of the quasiparticle weight Z as a function of the intra-orbital
interaction U , for �xed values α = U′/U and at half-�lling. Uc reaches a maximum U′ = U ,
where we obviously recover the result discussed above, namely UN=3

c . In the opposite limit
U′ = 0, the orbitals are completely decoupled and the system is reduced to three single-band
Hubbard models, and therefore the transition occurs at UN=1

c , which is much smaller than UN=3
c



3.3 Kanamori model 21

(see Fig. 3.3, for n = N = 1). Interestingly the connection between the two obvious limits does
not appear smooth and regular, but it is extremely abrupt. Indeed, even for α very close to 1 we
�nd a signi�cant reduction of Uc which rapidly approaches small values. Already for α ≈ 0.5
we recover Uc = UN=1

c and the result remains unaltered all the way down to the decoupled value
α = 0 [73, 74].

We notice that the reduction of Uc is not associated with a smaller atomic gap (see also
Sec. 3.4.1), since ∆at = U regardless the value of α, but it is related to a complete quenching of
the orbital �uctuations associated with the lifting of the degeneracy of the system for U > U′,
as shown in Table 3.1. We will turn to this point in Chapter 6.

n Degeneracy Energy
0, [6] 1 0 , [3U + 12U′]
1, [5] 6 0 , [2U + 8U′]
2, [4] 12 U′ , [U + 5U′]

3 U , [2U + 4U′]
3 8 3U′

12 U + 2U′

Table 3.1: Eigenstates and eigenvalues of the Hamiltonian (3.3) in the atomic limit. The boxed numbers
denote the ground state degeneracies for U > U′.

3.3 Kanamori model
Besides the two independent integrals introduced by Eq. (3.2), which are associated to charge-
charge interactions for intra-orbital and inter-orbital Coulomb interaction, one can account for
the other two independent integrals that result from Eq. (3.1) (see Appendix A). These integrals
are de�ned as

J =

∫
drdr’w∗m(r)w∗m′(r’)U(r − r’)wm(r’)wm′(r) ,

J′ =

∫
drdr’w∗m(r)w∗m(r’)U(r − r’)wm′(r)wm′(r’) ,

(3.9)

and they are related to the exchange integrals which are responsible for what we shall call
Hund’s physics. In fact, F. Hund formulated a set of rules that describe the e�ect of exchange
interactions in degenerate atomic shells. These rules specify the ground state con�guration of
outer-shell electrons in isolated transition-metal atoms [75]: singly-occupied con�gurations in
each orbitals are the �rst to be created, aligning as much as spins as possible in order to reach the
con�guration with the total spin S maximized (rule of ‘maximum multiplicity’). Once given S ,
total angular momentum L should be maximized. When there are no single spin con�gurations
left, the extra electrons are used to create doubly occupied con�gurations. Fig. 3.5 shows how
the ground state con�guration is built for the various atoms of the 3d-block of the periodic table,
dictated by the Hund’s rules. These rules indeed arise simply from the exchange interaction
associated to the couplings (3.9).

Eventually, recent works [17, 20, 76–78] have shown that the Hund’s exchange coupling
plays an important role in tuning the correlations in correlated metals. The main investigation
in this thesis will be shaped following this idea. Hence, in order to understand better the e�ect of
these rules on a physical systems that we are interested in, let us consider a convenient choice of
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Figure 3.5: Ground state electron con�gurations and Hund’s rules for 3d-elements

a set of orbitals, where we can utilize corresponding spatial symmetries, that can simplify further
the problem. For this purpose let us assume, as a speci�c case that will be of main interest in
this work, d-orbitals of a transition-metal ion in a crystal-�eld with an octahedral environment.
As we have already emphasized, the �ve d-orbitals are typically split into a two-fold degenerate
eg, and three-fold degenerate t2g orbitals (see Fig. 3.1). Let us now consider the case where the
t2g triplet describes the low energy physics. Since wave-functions wm(r) can be chosen real, as it
stands for d-orbitals, one gets that J = J′, which represents the further simpli�cation and is
convenient for the evaluation of the rotationally-invariant Kanamori Hamiltonian. All other
integrals apart U , U′ , and J are equal to zero due to the axial symmetry of d-orbitals. Since
we want to understand what is the origin of the strong electron correlations in multi-orbital
systems, it comes natural to try to understand the e�ect of each of these Coulomb integrals, (3.2)
and (3.9).

The interacting Hamiltonian for the set of t2g orbitals is �rst proposed by Kanamori [79] for
describing ferromagnetic metals, though later on it turned out to be convenient for describing
multi-orbital systems in general. It has the following form:

Ĥint =
∑

m

Un̂m↑n̂m↓ +
∑
m,m′

U′n̂m↑n̂m′↓ +
∑

m<m′σ

(
U′ − J

)
n̂mσn̂m′σ

− J
∑
m,m′

c†m↑cm↓c
†

m′↓cm′↑ + J
∑
m,m′

c†m↑c
†

m↓cm′↓cm′↑ ,
(3.10)

with number operator n̂mσ =
∑

mσ c†mσcmσ that counts electrons on orbital m = 1, 2, 3 with
spin σ. The �rst three terms of the Kanamori Hamiltonian (3.10) expresses density-density
interactions: the intra-orbital Coulomb repulsion U and the inter-orbital one U′ between two
electrons with opposite spins, as well as the inter-orbital Coulomb interaction U′ − J between
two electrons with aligned spins, respectively. The last one, U′ − J, includes the z-component
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of Hund’s coupling J, and re�ects Hund’s �rst rule. If we present these density-density terms
schematically, as in Fig. 3.6, it becomes obvious that the Coulomb repulsion U between two
electrons occupying, say, orbital m (a) can be reduced placing one of the two electrons on a
di�erent orbital m′ (b), since U′ < U . Moreover, if the two electrons occupy two di�erent
orbitals, m and m′, the Pauli principle does not prevent the electrons to have parallel spins along
the quantization ẑ-axis (c). In such con�guration the energy is further lowered by the Hund’s
coupling J, ie. it is equal to U′ − J.

Figure 3.6: Electron-electron Coulomb interactions in multi-orbital systems: (a) intra-orbital, (b) inter-
orbital with anti-parallel and (c) inter-orbital with parallel spins

The very last terms in Eq. (3.10) represent the spin-�ip and pair-hopping interactions: the
former is the x- and y-component of Hund’s exchange and it �ips the spins of two singly-
occupied orbitals (Fig. 3.7 (a)), while the latter represents the two-electron transfers from a
doubly-occupied to an empty orbital (Fig. 3.7 (b)). These two terms are needed in order to
preserve the S U(2) spin symmetry of Kanamori Hamiltonian, which is still not evident from
the form of Eq. (3.10).

Figure 3.7: Hund’s exchange processes: (a) spin-�ip and (b) pair-exchange

Furthermore, in order to have the rotational invariance of the system, one needs to impose
an additional constraint, ie.

U′ = U − 2J . (3.11)

This condition is exact in case of equivalent t2g orbitals which actually are invariant under the
rotations in real space. Obviously, this holds just when the crystal splitting is strong enough to
push away eg pair of orbitals, and if U,U′ and J are calculated assuming a spherically symmetric
interaction, as we have done so far.

The choice of t2g orbitals is relevant for describing the transition-metal oxides with cubic
symmetry. In the solid-state, however, in many di�erent materials where we consider orbitals
di�erent that t2g ones, the spherical symmetry of the screened Coulomb interaction U(r − r′)
is not preserved, hence the Kanamori Hamiltonian (3.10) is not exact. Nevertheless, numerous
studies applied the Kanamori interaction (3.10) to the full set of d-states. This choice is often
considered to be a reasonable approximation so that U′ = U − 2J can be used in order to
ease the numerical calculations and simplify the de�nition of the problem. However, for more
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realistic treatment of screened interaction one should consider the full Coulomb interaction,
which contains also di�erent matrix elements, and/or realistic values of the parameters of the
Hamiltonian, which can be obtained through constrained-RPA (Random-phase approximation)
method [80].

The full rotational symmetry (ie. invariance under charge, spin and orbital gauge trans-
formations, separately, denoted as U(1)C ⊗ S U(2)S ⊗ S O(3)O symmetry) becomes apparent if
we rewrite the Kanamori Hamiltonian (3.10) in a slightly di�erent way. This can be done by
de�ning the local electron number, spin and orbital angular momentum operators, respectively:

n̂ =
∑
mσ

c†mσcmσ , S =
1
2

∑
m, σσ′

c†mσσ̂σσ′cmσ′ , L =
∑

mm′, σ

c†mσ ˆ̀mm′cm′σ, (3.12)

where m,m′ = 1, 2, 3 labels the t2g orbitals and σ =↑, ↓ the spin components, whereas σ̂σσ′ are
the Pauli matrices and ˆ̀(m)

m′m′′ = −iεmm′m′′ are the O(3) group generators characterizing orbital
rotations. Once done so, the Hamiltonian (3.10) becomes [78]

Ĥint = (U − 3J)
n̂(n̂ − 1)

2
− J

[
2 S2 +

1
2

L2
]

+
5
2

Jn̂ . (3.13)

The �rst term of Eq. (3.13), that depends on the total charge of the site and is proportional to the
Hubbard U , can be interpreted as the overall Coulomb repulsion experienced by electrons on
the same site. On another hand, the second term represents the Coulomb exchange mechanism
responsible for Hund’s rules, which favors, in following order, high spin and high orbital angular
momentum con�gurations. Therefore, J tends to maximize S and L obeying the Hund’s rules,
in order to minimize the energy of the system, according to Eq. (3.13).

The spectrum of Hamiltonian (3.13) is given in Table 3.2:

n ` s Degeneracy Energy
0, [6] 0 0 1 0 , [15U − 30J]
1, [5] 1 1/2 6 0 , [10U − 20J]

1 1 9 U − 3J , [6U − 13J]
2, [4] 2 0 5 U − J , [6U − 11J]

0 0 1 U + 2J , [6U − 8J]
0 3/2 4 3U − 9J

3 2 1/2 10 3U − 6J
1 1/2 6 3U − 4J

Table 3.2: Eigenstates and eigenvalues of the t2g Hamiltonian (3.13) in the atomic limit. The boxed
numbers denote the ground state degeneracies for J > 0.

3.3.1 Ising form of Kanamori model
We pointed out that from the form of the multi-orbital Hubbard model (3.13) the S U(2) symmetry
of the Hund’s spin-spin coupling −2JS2 is evident. However, it is quite common, for the practical
reasons, to retain just the z-component of spin S. This means that, starting from the Hamiltonian
(3.10), one needs to keep just the �rst three density-density terms, omitting the o�-diagonal
ones, spin-�ip and pair-exchange. In this way we obtain the "Ising type" of Hund’s coupling,
−2JS 2

z , which obviously does not preserve anymore the S U(2) symmetry. This approximation
turns out to be extremely useful both for numerical solutions (e.g. Continuous-Time Quantum
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Monte Carlo as a solver for DMFT) and for the Slave-spin mean-�eld. Comparing the tables
of eigenvalues and their degeneracies (see Table 3.2 and 3.3), one notices that the use of the
Ising Hamiltonian does not destroy the main e�ect of the Hund’s coupling, namely favoring
high-spin state, but it reduces the degeneracy of the multiplets as a consequence of the broken
spin-rotation invariance.

n ` s Degeneracy Energy
0, [6] 0 0 1 0 , [15U − 30J]
1, [5] 1 1/2 6 0 , [10U − 20J]

1 1 6 U − 3J , [6U − 13J]
2, [4] 1 0 6 U − 2J , [6U − 12J]

2 0 3 U , [6U − 10J]
0 3/2 2 3U − 9J

3 1 1/2 6 3U − 7J
2 1/2 12 3U − 5J

Table 3.3: Eigenstates and eigenvalues of density-density term of the t2g Hamiltonian (3.13), or so-
called "Ising" form of Kanamori model, in the atomic limit. The boxed numbers denote the ground state
degeneracies for J > 0.

The main di�erences between the two models become obvious if we list, as done in Table 3.3,
the eigenstates and eigenvalues of the Ising form of Hamiltonian (3.13), together with the
corresponding degeneracy and quantum numbers. Customarily we set U′ = U − 2J.

3.3.2 Ising vs. Kanamori model
Fig. 3.8 (left) shows the quasiparticle weight Z as a function of the interaction strength, for
di�erent ratios J/U in the half-�lled system. Comparing the two forms of Hund’s coupling,
Kanamori and Ising, we want to check the importance of neglecting spin-�ip and pair-hopping
terms. The reduction of the critical interaction strength needed to obtain a Mott insulator Uc for
increasing J/U is evident in both cases. However, the two models exhibit some di�erences. In
particular the Ising model has always a larger Z, which re�ects a more correlated state, for the
same value of Hund’s coupling and Hubbard repulsion.

Let us focus on the order of the transition. Even if for J = 0 the transition is continuous, as
soon as J is switched on the transition becomes of �rst order in both cases. While for the Ising
form the �rst-order character persists until the largest physical value J/U = 1/3 and is always
stronger for monotonically growing J/U ratio, the rotationally-invariant Kanamori form shows
rather a non-monotonous trend, where the jump at the �rst-order transition reduces in the
large J region. Though for J/U = 1/3 the jump of Z is quite small, the transition remains �rst
order within the present calculation. This agrees with previous calculations in Ref. [71, 81–83].
However, Ref. [63] suggested the occurrence of a continuous transition in the full Kanamori
case within DMFT approach using the Numerical renormalization group as a solver.

We can get more insight about the two models and the di�erences that arise between them
if we take a look at numerical results in Fig. 3.8 (b), showing the value of the local spin

〈
S 2

z

〉
at

half-�lling. Typically, for strongly correlated metallic systems this quantity increases with U ,
as one can see from the plot, and at Uc it jumps to a �nite value for any �nite J, following the
behavior of the quasiparticle weight which reaches zero value at that transition point.

However, one can notice a large discrepancy between the values of
〈
S 2

z

〉
in the two models.

Basically, this is the consequence of the main drawback of Ising model with respect to Kanamori
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one, namely the negligence of quantum �uctuations of the spins. This is apparent once we
compare Table 3.2 and Table 3.3, for Kanamori and Ising model, respectively. We can see, say
when n = 3, that in the ground state we have the formation of quadruplet in Kanamori and
doublet in Ising form. The same disagreement is present in the other n sectors (apart of n = 0, 1
electrons/holes, where Hund’s coupling does not play a role - see Tables 3.2 and 3.3). This causes,
to some extent, some di�erences in the low-energy physics, which will have some important
consequences for the results we will present in the rest of this thesis.

Figure 3.8: Left panel: The behavior of the quasiparticle weight Z with respect to U/D, where D is the
bandwidth of semi-circular density of states, for di�erent values of J/U ratio. Full lines are associated
to the rotationally-invariant Kanamori form, whereas dashed lines correspond to the Ising form of
Hamiltonian (3.13). For J , 0 the �rst order transition jump is noted, with a slightly di�erent trend in
the two approaches (see text). Black curves associate Uc-s for di�erent J/U ratios. Right panel:

〈
S 2

z

〉
behavior as a function of U for the corresponding values of Hund’s coupling: J = 0.0, 0.01, 0.1. The
expectation value

〈
S 2

z

〉
in the Mott insulator di�ers within the two models. This is due to the negligence

of the quantum �uctuations in the Ising-like form.

3.4 "Janus" e�ect of Hund’s coupling
In this section we brie�y introduce some important results about the e�ect of the Hund’s
coupling on the Mott transition for di�erent integer �llings. We will elaborate more on these
ideas in Chapter 5, where we will present an original analysis of this physics.

We focus on the three-orbital Hubbard-Kanamori model for three independent commensurate
�llings (n = 1, 2 and 3). The results for Z are reported in Fig. 3.10. If we consider the system
at half-�lling, n = N = 3, we �nd that the e�ect of increasing J is to decrease the value of
Z. Consequently, one �nds the suppression of the value of the critical coupling Uc for which
the quasiparticle spectral weight Z vanishes, reaching the Mott insulator state for U > Uc. In
this case the correlation e�ects are increased by Hund’s coupling for every value of U and J.
Actually, this behavior might be considered as expected because Hund’s J tends to align the
spins in di�erent orbitals, consequently constraining the electronic motion because hopping
processes leading to low-spin con�gurations will be unfavored. We can picture this physics
with a simpli�ed sketch shown in Fig. 3.9: we can notice that reaching the double occupied
con�guration by simply hopping from site i to another, say j, is not energetically favorable (one
pays the energy cost U (upper case in Fig. 3.9)), whereas, on another side, some of the hopping
processes are excluded due to the Pauli exclusion principle (lower cases in Fig. 3.9). Hence this
way there remain only those con�gurations where we have aligned spins, which maximize total
spin, lowering in this way the energy of the system (see Eq. (3.13)).
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Figure 3.9: Allowed hop-
ping processes between
the two sites, in the pres-
ence of the Hund’s cou-
pling. The lower two
are forbidden by the Pauli
principle, whereas the up-
per one implies an energy
cost U .

On another hand, the case n = 1 is in contrast with respect to
the previous one. Namely, the increase of J/U ratio drives system
towards the larger values of the critical coupling Uc, giving rise to the
enhancement of Z for the same �xed U value in the metallic phase. In
this case the Hund’s coupling does not introduce important constraint
to the motion.

Actually, the most interesting case turns out to be the one with
n = 2 electrons in three orbitals (or in more general case 1 < n <
N, where n is the integer number). Here one �nds that the Hund’s
coupling has a rather surprising two-fold e�ect on the quasiparticle
renormalization.

In the range of small values of J/U , Z is suppressed with respect
to the case J = 0, similarly to the half-�lled case. After a �rst rapid
drop of Z we �nd, however, a novel behavior in which Z �attens and
displays a long tail. In fact, for J/U large enough, Z retains a small
but �nite value and the system remains metallic. We have therefore
a rather large windows of interactions in which Z is small and the
electrons are strongly correlated but they are not even close to Mott
localization, which occurs at much larger U . This correlation-resistant
metal has been called Hund’s metal and the two-phase e�ect of the
Hund’s coupling has been called Janus e�ect from the roman God
Janus.

It is worth stressing that the tail of Janus phase becomes in�nitely long when J/U becomes
equal to 1/3, meaning that for this particular case the system never encounters the Mott transition.
In Chapter 5 we will discuss at length the physics along this special line and its e�ect on the
properties of the metal also at di�erent values of U and J.

These observations are robust and can be obtained by both DMFT [76] or some of the
auxiliary-("slave") particle techniques [71], all giving the same qualitative behavior as the one
we presented in Fig. 3.10, obtained by Gutzwiller methods. While the weak-coupling behavior
can be understood in terms of the simple arguments we have given above, we can provide an
argument for the resistance of the metal by estimating the Mott gap in the atomic limit.

Figure 3.10: Quasiparticle weight Z as a function of Coulomb interaction U in a three-orbital degenerate
Hubbard-Kanamori model, for di�erent integer �lling n = 1, 2, 3 and di�erent J/U ratio. The presence of
Hund’s coupling J has di�erent e�ect on these three cases, particularly n = 2, where one can observe the
emergence of the Janus e�ect (see in the text).
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3.4.1 Energetics of the Mott gap

Figure 3.11: Hubbard bands emanating from
the atomic excitation spectrum [17]. They are
spread apart following the atomic Mott gap ∆at,
and are broadened by an e�ective bandwidth
W̃ . The blue color represents ”�lled states” (the
extraction part of the spectrum).

In this section we discuss an argument to support
our numerical results showing that the Mott transi-
tion is shifted to very large values of U in the pres-
ence of a sizable J when the �lling is integer but
not half-�lling. A simple way to estimate the Mott
transition is based on a cartoon of the Mott insula-
tor which, however, nicely reproduces for example
DMFT results. As shown in Fig. 3.11, in the Mott
insulator the spectral weight is concentrated in two
Hubbard bands. For a single-band Hubbard model
the centers of the two bands are separated by U and
they have a width of the order of the bare bandwidth
W . We can rationalize this picture in terms of an
atomic solution broadened by incoherent hopping
processes.

We can generalize the estimate of the atomic Mott gap in a more involved multi-orbital
model as

∆at ≡ Eat(n + 1) + Eat(n − 1) − 2Eat(n) . (3.14)

Fig. 3.11 gives a sketch of this strong-coupling argument [41], with the e�ective bandwidth
W̃ = W for the half-�lled single-orbital Hubbard model in the Mott insulating phase U > Uc.
A crude estimate of the critical Uc would be obtained computing the value of U for which the
Hubbard bands separate, obviously given by Uc ' W within our simple atomic picture:

∆Mott = U −W = 0 → Uc = W . (3.15)

This re�ect the natural physical expectation that a Mott insulator is obtained when the Coulomb
repulsion between the electrons overcomes the delocalization energy due to the hopping. When
this cost is zero, the Mott insulator cannot exist, and a metal is obtained, which by de�nition is
the state with delocalized excitations at vanishing energy.

In the case of multi-orbital models, one has to take into account the e�ect of the orbital
degrees of freedom on the e�ective bandwidth W̃ , W , yet still of the order of bare bandwidth W ,
de�ned above. Obviously, introducing N orbitals in a Hubbard model (3.3) increases the ground
state degeneracy and the possible hopping channels, giving contribution to the e�ective kinetic
energy. Owing to the orbital quantum �uctuations in the ground state, it has been estimated
that the Hubbard bands disperse on an energy range W̃ ∼

√
NW [67, 68, 70].

Let us now use the same Hubbard criterion we have considered in the single-orbital case,
where ∆at = U holds also for the multi-orbital case. Therefore [77]

∆Mott = ∆at − W̃ = U −
√

NW = 0 → Uc '
√

NUN=1
c , (3.16)

and we �nd that Uc increases with orbital degeneracy N, as a result of wider Hubbard bands.
If we compare this result (3.16) with the one obtained using DMFT (3.7) and in the Gutzwiller
approximation, we notice that the atomic estimate appears to miss the functional dependence
on N (

√
N instead of linear behavior) which leads to a large underestimation of Uc for large N.

However, this disagreement can be reconciled considering the scenario for the Mott transition in
DMFT, where two critical interactions can be de�ned, usually called Uc1 and Uc2. The two values
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de�ne a window Uc1 < U < Uc2 in which two solutions, metallic and insulating, exist. Therefore
Uc2 is the largest interaction for which a metal exists, and Uc1 is the smallest value for which an
insulator exists. In this light, the critical Uc found in Gutzwiller is clearly an estimate for Uc2

because the method only deals with metallic solutions, while our atomic estimate measures the
instability of the insulator starting from the atomic limit, and therefore is an estimate for Uc1.
Indeed in DMFT one �nds exactly that Uc2 scales with N, whereas Uc1 scales with

√
N.

Once we include the Hund’s coupling, the low-energy multiplets are those with high-spin.
Using these values (see Sec. 3.3) we obtain [77, 78] that the atomic charge acquires the form

∆n
at =

U + (N + 1)J , n = N ,

U − 3J , ∀n , N .
(3.17)

We can estimate the change of Uc once J included, obtaining [77]

δUn
c ∝

−(N − 1)J , n = N ,

3J , ∀n , N .
(3.18)

Consequently, the half-�lled system shows the maximal gain in energy, favoring the opening of
a Mott gap and the Mott insulating phase, simultaneously reducing Uc, whereas in all the other
cases where n , N we encounter the reduction of the Mott gap as a result of the presence of
Hund’s coupling, pushing Uc to very large values [77]. This is a �rst argument to support the
results of the previous section, where we have indeed shown trends which qualitatively follow
this picture, with a critical Uc for the Mott transition reduced by J for global half-�lling and
increased by the same coupling for any other �lling.

Figure 3.12: Critical interaction strength Uc for the Mott transition, as a function of Hund’s coupling J,
for a Hubbard-Kanamori model of three degenerate bands with one (red), two (green) and three (blue)
electrons per site (identical results hold for n > N due to the particle-hole symmetry). The model is solved
with DMFT, with a semi-circular density of states of half-bandwidth D for each band. The dashed lines
indicate the large J behavior calculated analytically in the atomic limit, Eq. (3.18). The shaded region
corresponds to U − 3J < 0 (J/U > 1/3). See Ref. [77, 78].



30 Multi-orbital models and Hund’s physics

In Fig. 3.12 we report the DMFT results for Uc(J), comparing them with the results obtain
in the atomic limit (3.18), for all integer �llings in the three-orbital Kanamori model. One can
observe that the two results match at strong J, con�rming that the simple Hubbard criterion and
Eq. (3.18) capture perfectly the dependence of Uc on J [77]. However, large discrepancy is found
for small values of Hund’s coupling. We can understand this better if we evoke the J = 0 case. In
this limit the hopping processes are not blocked by Hund’s coupling, consequently giving rise to
orbital �uctuations, which are the largest in the absence of J. This leads to a delocalizing e�ect
which moves the critical Uc up to the higher values proportional to the band degeneracy [68] as
we have discussed above.

Figure 3.13: Gutzwiller and DMFT results for the metal-Mott insulator critical coupling Uc for the
three-orbital degenerate Hubbard-Kanamori model as a function of the J/U ratio, at �llings n ≤ N (the
ones for n > N give identical results due to particle-hole symmetry). For half-�lled cases (3 electrons
in three orbitals) the Hunds coupling correlates the system and reduces the critical Uc/D. For all other
�llings on the contrary Uc/D is strongly increased. The slight overestimation of Uc is a known issue of
Gutzwiller (and slave-particle) approach. Nevertheless, the two techniques reveal the same qualitatively
behavior.

Once we set J , 0 these orbital �uctuations get suppressed, which in turns blocks many of
the hopping processes contributing to W̃ , re�ecting a fast reduction of Uc from the high values
at J = 0. This is true for all cases but those in which the system is �lled by one electron or one
hole per site, n = 1, where the aforementioned scheme does not apply because the degeneracy
of the atomic ground state is not split by the Hund’s coupling. Eventually, it can be shown [71]
that already at moderate values of J the orbital quenching is large enough to cause the e�ective
width of the Hubbard bands W̃ to shrink to the single-orbital bandwidth W .

Accordingly, it is necessary to assume a J dependence of the width of the Hubbard bands,
namely W̃ = W̃(J), to account for Un

c (J) behavior showed in Fig. 3.12. This leads to

Un
c (J) ∝

W̃n,n(J) − (N − 1)J , n = N ,

W̃N,n(J) + 3J, ∀n , N ,
(3.19)

where W̃N,n is an estimate of the available kinetic energy for n electrons hopping among N
degenerate orbitals. Now becomes evident that at large J, where W̃N,n ∼ W , the Eq. (3.19) yields
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a linear decrease of Uc at half-�lling and a linear increase for n , N, as in the Hubbard criterion,
which, actually, relies itself on assumption that J is already large enough [77, 78]. As a result, the
atomic-limit argument is not able to explain a non-monotonous Uc(J) at n = 2, which, on the
another hand, is evident from Eq. (3.19). Namely, for generic commensurate �lling 1 < n < N,
the reduction of W̃N,n(J) by orbital blocking is responsible for the decrease of Uc at small J,
while the reduction of the atomic ∆n

at (see Eq. (3.17)) is responsible for the increase of Uc at
large J. The competition between these two e�ects gives the non-monotonous behavior in
Fig. 3.12. We conclude that for J = 0, the largest value of Uc is obtained at half-�lling n = N and
the smallest one for a single electron n = 1. This is reversed at moderate and large J, with Uc

smallest for a half-�lled shell. Once again, the insulating state is favored at half-�lling. Indeed,
most transition-metal oxides with a half-�lled shell are insulators (some examples of relevant
compounds shown in Fig. 3.14).

Finally, in Fig. 3.13 we present the results for the three-orbital degenerate Hubbard-Kanamori
model obtained using the Gutzwiller method together with the DMFT results taken from Ref. [77,
78]. Apparently, DMFT fully con�rms the reliability of the Gutzwiller method, despite the slight
overestimation of Uc which is a known issue of Gutzwiller (and slave-particle) approach.

3.4.2 Density-dependence of the electron-electron correlations
We can now generalize our study to arbitrary densities. In Fig. 3.14 we show a color plot of
the quasiparticle weight Z obtained in DMFT [76] for a �xed value J/U = 0.15 as a function of
�lling (n = 〈n̂i〉 ) and strength of the interaction U (normalized to the half-bandwidth D). The
thick vertical bars are the regions where the system is a Mott insulator. The results at integer
�llings are those presented in Fig. 3.10, with a very small critical Uc at global half-�lling and a
large value for the other integer �llings. The bottom region of small U is weakly correlated, and
a clear and relatively sharp crossover takes place when the interaction is increased, leading to a
large region of strongly correlated states (light color) which can be described as a bad metal.
However, the onset of strong correlation e�ects as a function of U strongly depends on doping.
In particular, the phase diagram appears to be to some extent controlled by the distance from the
Mott transition point at half-�lling. The plot in the full plane clearly shows one single region
with small Z which origins around the Mott transition point for n = 3 and decays relatively
slowly with doping, with a shape which is basically una�ected when we cross the other integer
�llings.

Therefore, the region where the strongly correlated Hund’s metal is found for integer �llings
n = 2 and 4 does not appear to be connected to the Mott transition of that doping, which is
pushed to large values of U , but rather it seems to be at least topologically connected with the
half-�lled Mott transition. For n = 1 the system clearly favors a good metallic behavior (except
at large enough U/D value), meaning that the correlation strength is reduced, therefore Uc

is enhanced. However, the low-energy physics of single-electron case is not a�ected by the
presence of Hund’s coupling, hence we will not discuss it in the following.

We notice that, in the absence of J, the same plots shows a series of correlated regions around
the vertical bars marking the Mott insulators. Therefore, the e�ect of the Hund’s coupling is to
extend the impact of the half-�lling Mott insulator in determining the degree of correlations.
This e�ect has been noted, among the others in Ref. [11, 23], and it has been shown to be a crucial
e�ect to understand the normal-state properties of iron-based superconductors in Ref. [14],
where it has been linked to orbital selectivity and an orbital decoupling mechanism that we will
address in the next section.

The observed particle-hole symmetry in Fig. 3.14 is a direct consequence of symmetric
density of states. It is clear that considering some more realistic density of states will give
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slightly asymmetric picture (see Ref. [78]). We remind that all these results are obtained in the
paramagnetic state where no symmetry breaking is allowed. In this light the results can be seen
as representative of the normal-state of real materials, above the ordering temperature.

Figure 3.14: Color plot of the quasiparticle weight Z in a three orbitals model, for J/U = 0.15, as a
function of �lling and strength of the interaction U , normalized to the half-bandwidth D (taken from
Ref. [76]), solved within DMFT approach. The thick black bars represents the Mott insulating phases
for any integer �lling. The metallic regime is presented with darker color, whereas the lighter regions
correspond to bad metals. One can observe around the case with 2 electrons (or 2 holes) the system
displays bad-metallic behavior in a wide range of the interaction strength.

A very similar picture can be drawn for larger number of orbitals. Indeed the arguments
we gave for the appearance of the Janus physics for 2 electrons (holes) in three orbitals can be
generalized to N orbitals populated by an integer number of electrons di�erent from N. In fact,
in Ref. [76] it is shown that the Janus e�ect gets more pronounced increasing the number of
orbitals N ≥ 3, and it is the strongest when N ± 1 electrons populate N orbitals.

Figure 3.15: Quasiparticle weight Z as a function of Coulomb interaction U in a �ve-orbital degenerate
Hubbard-Kanamori model, for di�erent integer �lling n = 5, 6. The presence of Hund’s coupling J has
di�erent e�ect on these two cases, particularly n = 6, with the emergence of the Janus e�ect.
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In Fig. 3.15 we present the results for the �ve-orbital case obtained within the Gutzwiller
approach. The overall shape of the curves that de�ne the quasiparticle weight is very similar to
the ones presented in Fig. 3.10, and –as expected– the Janus e�ect is even stronger here [17, 76,
84, 85].

Figure 3.16: Color plot of the quasiparticle weight Z in a �ve orbitals model, for J/U = 0.2, as a function
of �lling and strength of the interaction U , normalized to the half-bandwidth D (taken from Ref. [17]),
solved within Slave-spin mean-�eld approach. The thick black bars represents the Mott insulating phases
for any integer �lling. The metallic regime is presented with darker color, whereas the lighter regions
correspond to bad metals. One can observe around the case with 4 electrons (or 4 holes) the system
displays bad-metallic behavior in a wide range of the interaction strength. The shaded square shows the
realistic range for the FeSC, (typical �lling ranging from 5.5 to 6.2).

Fig. 3.16, taken from Ref. [17], reports the complete phase diagram for a �ve-orbital degener-
ate Hubbard model (with half-bandwidth D), showing the quasiparticle weight Z for di�erent
doping and interaction strength, at �xed value J/U = 0.2. The calculations are performed
using Slave-spin mean-�eld approach. The region of parameters relevant for the iron-based
superconductors is highlighted in a rectangular box. The plot suggests that the best way to
understand the correlation e�ects in this regime is not to refer it to the Mott insulator at n = 6,
but rather to describe them as arising from the doping of the half-�lled Mott insulator, thereby
establishing a new connection between iron-based superconductors and cuprates [14].

We notice that neglecting the spin-�ip and pair-hopping terms does not have a crucial e�ect
on the phase diagram, whose shape emerges as a general property of Hund’s correlated systems.

3.4.3 Charge correlations in Hund’s metals and orbital decoupling

In this section we explore in more depth the properties of the Hund’s correlated metal that we
have described in the previous sections. We will follow Ref. [20] where an extensive analysis of
the charge-charge correlations has been carried out.

The analysis of the quasiparticle weight highlights a special role of the n = 5 region in
determining the degree of correlations and its dependence on density as long as J/U is su�ciently
large. In a single-band model the approach to the Mott transition can be mapped either via Z or
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by the behavior of the charge �uctuations

CnT =
〈
n̂2

T

〉
− 〈n̂T 〉

2 =
〈
(δn̂T )2

〉
, (3.20)

where n̂T =
∑

a=1,...,N n̂a, n̂a = n̂a↑ + n̂a↓, δn̂T = n̂T − 〈n̂T 〉, and 〈n̂T 〉 = n. This quantity is indeed
the most direct indication of Mott localization, which is nothing but the correlation-induced
freezing of charge �uctuations.

From Fig. 3.17 one can trace the behavior of Z and CnT for �xed U as a function of J/U , for
two electrons in three orbitals and six electrons in �ve orbitals. Clearly, this �gure shows that
the two quantities stop to behave similarly in multi-orbital models with sizable Hund’s coupling.
In particular we can clearly see that when the inclusion of J reduces Z as we discussed before,
the charge-charge correlations increase, undoubtedly showing that the increase of correlations
in the Hund’s metal does not coincide with Mott localization.

We have observed that in the bad metallic regime (Fig. 3.17) we can drive the system towards
the more correlated states and still have high charge �uctuations. However, so far we have
shown the behavior of the total charge �uctuations.

Figure 3.17: Quasiparticle weight Z
and charge �uctuations CnT (renor-
malized) as a function of Hund’s cou-
pling J for �xed U value. The re-
sults are present for three- and �ve-
orbital model, using the Slave-spin
approach. The enhancement of CnT

concomitant with the suppression of
Z is evident. This behavior di�ers
from the one associated to Mott cor-
related states [20].

Much more insight can be gained by observing that
the total charge �uctuation consists not only of the intra-
orbital charge �uctuations, de�ned as Cintra

n =
〈
n̂2

a

〉
− 〈n̂a〉

2 =〈
(δn̂a)2

〉
, where δn̂a = n̂a − 〈n̂a〉, and 〈n̂a〉 = n/N, but also of

the inter-orbital one, Cinter
n = 〈n̂an̂b〉 − 〈n̂a〉 〈n̂b〉 = 〈δn̂aδn̂b〉

and a , b, which arises from the interaction between elec-
trons in di�erent orbitals. Considering N degenerate orbitals,
we can write the following relation

CnT = N
(
Cintra

n + (N − 1) Cinter
n

)
, (3.21)

where Cintra
n , by de�nition positive or zero, is largest in the

non-interacting limit. On the other hand, Cinter
n is negative

for repulsive interactions and it vanishes in the absence of
interactions as the charge in di�erent orbitals is not corre-
lated.

The �rst thing to be observed from Fig. 3.18 is that Cintra
n

(right panel), after the strong suppression, has a constant
value both in the Mott phase (black) and Hund’s metal (blue),
de�ned by Z (left panel). On another hand, the entrance
into the Hund’s metal has a very strong e�ect on Cinter

n , that
exhibits a modulation in J. Taking into account Eq. (3.21),
having Cintra

n constant, brings to conclusion that the sup-
pression of the inter-orbital part of charge �uctuations is
responsible for the enhancement of the total charge �uctua-
tions with J (due to the di�erent sign of intra- and inter-part).
Except at half-�lling, Cintra

n and Cinter
n do not vanish in the

Mott insulator but their contributions cancel each other leading to zero CnT .
The most convenient way to understand the previously described situation is to study the

hopping processes in the system with N orbitals and n , N electrons. For that purpose let us
consider the hopping between two atoms with all present spins parallel one to each other such
to satisfy the Hund’s rules. If we allow for the hopping processes, an electron can happen to end
up in an empty orbital with the spin parallel (a) or antiparallel (b) to the spins of all the other



3.4 "Janus" e�ect of Hund’s coupling 35

present spins in the hosting atom, with the energy cost E↑↑ = U − 3J or E↑↓inter = U + (n − 3)J,
respectively, or eventually an occupied orbital, forming the double occupied con�guration (c)
paying the energy E↑↓intra = U + (n − 1)J 2. Fig. 3.19 shows these possible processed if n = 2 in
three-orbital systems, say for simplicity, but the same hold for the particle-hole symmetric case,
thus when n > N.

Figure 3.18: Left panel: Quasiparticle weight Z as a function of intra-orbital interaction U and Hund’s
coupling J for 6 electrons in �ve orbitals, the �lling typical for undoped iron-based superconductors (U
and J are in units of the bare bandwidth W and U). Right panel: Total, intra-orbital Cintra

n and inter-orbital
Cinter

n charge �uctuations (renormalized) as a function of U and J for the same model [20]. See text for
detailed explanation.

At half-�lling, n = N, all the orbitals are occupied, hence the Pauli exclusion principle forbids
the processes (a) and (b). On another hand, the (c) process controls the critical Uc(J) for the
Mott transition, and, as we have stressed so far, it is strongly decreased by the Hund’s coupling
J. Yet, for any other commensurate �lling one �nds that, increasing J, the process (a) becomes
the most preferable one, whereas the Uc is pushed to the larger values [77].

Figure 3.19: Hopping processes between two atoms with three orbitals and two electrons, in the presence
of Hund’s coupling. All present spins are parallel one to each other such to satisfy the Hund’s rules. If
we allow for the hopping processes, an electron can happen to end up in an empty orbital with the spin
parallel (a) or antiparallel (b) to the spins of all the other present spins in the hosting atom, or eventually
an occupied orbital, forming the double occupied con�guration (c).

If we take a look at Fig. 3.18, we can see that the Mott insulating phase (characterized with
Z = 0), where the doubly occupied con�gurations are completely suppressed, coincides with
the region where Cintra

n is constant. Yet, this quantity remains constant also at the entrance of
the Hund’s metal, signalizing that the process (c) is excluded.

2For simplicity, only density-density interactions are included while calculating the interaction energy cost.
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Process (b) is n-dependent such that it is suppressed by J for n > 3 and promoted for n < 3.
For this reason one can notice a qualitative discrepancy in Fig. 3.17 between three-orbital systems
with 2 electrons, and �ve-orbital with 6 electrons. Namely, in the former case the suppression of
Z and the enhancement of CnT with J are smoother and favors the enhancement of CnT , whereas
in the later case these quantities are a bit modi�ed in some intermediate J-regime. Nevertheless,
at large J limit for any n , N �lling, all the processes but (a) are completely blocked, giving rise
to the spin polarized state in the Hund’s metal.

Moreover, increasing the value of J the e�ective interaction between electrons, U − 3J,
is decreasing, and �nally vanishes when J/U = 1/3, together with the inter-orbital charge
�uctuations. Particularly, this value is a characteristic of this model and we will come back to its
physical meaning in the Chapter 5.

These arguments provide us with another characterization of a property which has been un-
derlined in several previous studies of Hund’s correlated models, namely a substantial reduction
of the orbital correlations when we enter in the Hund’s metal region[14, 24, 71, 77] which is
also supported by the simple intuition that the spin is maximized by spreading the electrons in
di�erent orbitals and any attempt to change this orbital distribution will unavoidably lead to a
decrease of the total spin, which is clearly against the e�ect of the Hund’s coupling.

As a consequence, the orbitals in a Hund’s correlated metal are e�ectively decoupled, a
property which leads in turn to an increased tendency towards a di�erentiation of the correlation
strength among the electrons in the various orbitals, as long as any small e�ect breaks the full
orbital rotation invariance. It has been shown that such di�erentiation is connected to the
presence of the half-�lled Mott insulator even on �lling ranges quite far from half.

Additionally, let us stress that the above argument was analytically con�rmed in Ref. [71],
performing the perturbative expansion on the two-orbital half-�lled model (as being the most
simple model to deal with, where one can assume the existence of the Hund’s rule coupling).
Indeed, it was shown that, in the large J limit, the critical interaction strength Uc at which the
Mott transition occurs for each of the two orbitals decouple, owing to the presence of Hund’s
coupling J.

So far we have considered the fully degenerate Hubbard models, in order to understand
the e�ect of Hund’s coupling in the most general sense. Such system may be considered
as an open playground for di�erent investigations. Having each orbital independent gives
possibility to perform independent tuning of the correlation strength in each orbital. Hence
only by introducing a small di�erence in the model one may expect a wide range of new
phenomena, leading to the coexistence of weakly and strongly correlated electrons in these
materials. Therefore, in real materials we can discover that even small di�erences in the choice
of parameters can give rise to the di�erent physics in the correlated regime. Such scenario was
supported by a wide range of experiments, as we will see in the following.

3.4.4 Orbital selectivity
We have seen that real materials, such as transition-metal oxides, can be described by multi-
orbital models, where several orbitals are involved. This gives rise to quite rich and more
complex physics that is still lacking of complete and clear description. It is, therefore, important
to understand how di�erent e�ects a�ect the Mott transition once we lift the orbital degeneracy
(by introducing the crystal-�eld splitting, di�erent bandwidths etc.). Eventually, one can �nd
the extreme case of selective di�erentiation in correlations, where electrons in subset of orbitals
are localized, while the rest of the system remain itinerant. This multi-stage quenching of the
charge degrees of freedom has been named the orbital-selective Mott transition (OSMT) [86]. A
variety of di�erent mechanism have been shown to give rise to OSMT, but in virtually all cases
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it turns out that the Hund’s coupling favors this physics by promoting the orbital decoupling
we have just described.

Di�erent bandwidth

The simplest case of multi-orbital Hubbard model with di�erent bandwidths, that captures all the
relevant physics of such system, is the two-orbital Hubbard model with di�erent hopping for the
two orbitals, which has been analyzed in many studies [72, 82, 86–95] using di�erent techniques.
It was shown that, at half-�lling, depending on the choice of the interactions present in the
system, one can have the two-stage localization, coined as "orbital-selective Mott transition"
(OSMT) [86], and consequently, an intermediate orbital-selective Mott phase (OSMP) where the
wide-band electrons are metallic and the narrow-band ones are Mott localized. Furthermore, the
stability of this intermediate phase strongly depends on how the Hund’s rule coupling is taken
into account. The results of previous studies can be summarized in Fig. 3.20 in form of two

Figure 3.20: Left panel: Phase diagram of the two-orbital Hubbard model with di�erent bandwidths, in
dependence of bandwidth ratio (D2/D1) and interaction strength (U/D1), for several values of Hund’s
coupling J/U and for J = 0 (adapted from [72] and obtained with Slave-spin mean-�eld treatment). The
analytic result showing how in the large J limit the orbitals get decoupled is obtained in [71]. Right panel:
the critical ratio (D2/D1)c below which an OSMT is observed as a function of J/U (results are taken
from [95], and obtained within the Gutzwiller approach, coinciding with the predictions of Ref. [72]).

phase diagrams, depending on the interaction strength U , Hund’s coupling J and bandwidth
ratio D2/D1 (where D1 , D2 are the two di�erent half-bandwidths of a semi-circular densities
of states). An OSMP is observed in between a metal at low interaction strength U and a Mott
insulator at high U (left). It is evident that the Hund’s coupling favors the OSMP, due to the
large extension of this region already for small J. These results were con�rmed in detailed
analytical investigation (also present in the plot) within Gutzwiller approach [95] and Slave-spin
technique [71].

In the following we will present some sample calculations for three-band models which
are more related to the content of the other chapters of this thesis. We start from some new
calculations we performed in a three-orbital system with di�erent bandwidths, with purely
Coulomb interaction U = U′ and D1 = D2 , D3, shown in Fig. 3.21. Also in this case we �nd an
OSMT when the ratio D3/D1 is su�ciently small (the critical value is around 0.1) and a phase
diagram which is very similar to the one of the two-orbital model (right panel). We show two
sets of data for Z1 and Z3, one before and the other after the OSMT (left panel).

We underline that in this model, just like in the two-orbital version [71, 72, 95], a critical and
relatively small values of the bandwidth ratio is necessary for the OSMT because the inter-orbital
interaction allow for orbital �uctuations which would lead to a single Mott transition [71] as
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shown in the left panel of the �gure. These results were con�rmed by DMFT calculations.
However, they give clear evidence that the localized band is not a conventional Mott insulator
but has spectral weight down to arbitrarily low energies [72, 95]. This subtle aspect is not
captured by the Gutzwiller approximation and related mean-�eld theories.

Figure 3.21: Left panel: Quasiparticle weight Z of the three-orbital Hubbard model with di�erent
bandwidths, for the wide bands D1 = D2 and for the narrow band D3, obtained with the Gutzwiller
wave-function for di�erent ratios of the bandwidth D3/D1 and J = 0. Right panel: Phase diagram for the
same model, done using the same method, in dependence of bandwidth ratio (D3/D1) and interaction
strength (U/D1). One can note the accordance with the results of Fig. 3.20 that presents the two-orbital
case.

On another side, once Hund’s coupling included, one �nds that the OSMT is strongly favored
already for small values of J, as depicted in Fig. 3.20. Indeed, the same was found in Ref. [77] for
the three-orbital system with three di�erent bandwidths, as shown in Fig. 3.22. A three-step
Mott localization is found in the Slave-spin mean-�eld (left panel) and con�rmed in the more
accurate DMFT (right panel). Moreover, the plot for the later case shows the orbital correlations
for this particular case. One can notice a strong suppression of the orbital �uctuations between
localized and itinerant bands, leading to a decoupled behavior.

Figure 3.22: Left panel: Slave-boson results for for the quasiparticle weight Z of a three-orbital Hubbard
model with bandwidths W = 4, 2, 1, for �xed Hund’s coupling J/U = 0.25 and half-�lling in each orbital.
One can notice an almost completely decoupled behavior due to the presence of J. Right panel: The
same model as the one assumed in the left panel, though results are obtained using DMFT method; the
quasiparticle residue for each band (upper panel), and the orbital correlations (lower panel), which are
suppressed between the localizing band and the itinerant ones, while they remain sizable between the
two itinerant bands. Taken from Ref. [77].
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Crystal-�eld

Di�erent studies [24, 25, 70, 77, 86, 87, 96–98] have shown that an OSMT scenario can take place
also when the symmetry between the orbitals is lifted by a crystal-�eld splitting rather than a
di�erence between the bandwidths W . In such systems it is su�cient that the Hund’s coupling J
reaches a value above some critical Jc needed to trigger the OSMT. However, after many di�erent
attempts to describe the mechanism that would lead to an OSMT of such system [24, 25, 86, 96],
it was only recently that such role was ascribed to the Hund’s rule induced decoupling [20, 77].

In order to understand better this idea, let us consider a three-orbital model with equal
bandwidths, populated with 4 electrons. Let us now assume the existence of a crystal-�eld
splitting such that one orbital has a higher energy ∆ with respect to the other. The phase diagram
for this particular case was obtained using the Slave-spin mean-�eld approach and adjusting the
crystal-�eld such to have the number of electrons per each band �xed [24], and it is reported in
Fig. 3.23 (left).

Figure 3.23: Orbital-selective Mott physics in presence of the Hund’s coupling J: Left panel shows the
phase diagram of a three-orbital Hubbard model populated by 4 electrons, in dependence of correlation
strength U/D and Hund’s coupling strength J/U . As shown in the inset, the crystal-�eld lifts the three-
fold degeneracy such that the upper band becomes half-�lled, whereas the lower two bands remain
degenerate, populated with 3 electrons. An orbital-selective Mott phase, in which the half-�lled band
has a gap, is driven by J. Right panel presents the quasiparticle residue as a function of U/D, for �xed
Hund’s coupling J/U = 0.25 and populations for three bands, namely n = (1, 1.5, 1.5). The results are
obtained within DMFT approach. Inset: inter-orbital correlations (top panel) and local spin susceptibility
(bottom panel). Reproduced from [24].

This setting will tune the orbital population. Namely, for ∆ = 0 all the orbitals will have a
population nm = 4/3 (where m = 1, 2, 3 is the orbital index). Increasing the splitting the higher
band will become less and less populated, until it becomes exactly half-�lled, whereas the lower
two degenerate bands are �lled with 3 electrons in total. If the Coulomb repulsion is large
enough to cause the localization of this upper half-�lled band, but yet smaller than the critical
value for the remaining three electrons in the lower two bands, upper band opens a Mott gap
and becomes selectively localized, while the other two remain metallic, leading to an OSMT.
It is worth to underline that in this case the OSMT occurs despite the electrons have the same
bandwidth and it is driven by a change in the occupation of the orbitals.

This phase is found for a �nite Hund’s coupling J > Jc, for quite large range of U and J
values, with the tendency to widen as J is increased [24, 77]. On another hand, for J < Jc a
direct transition from a metal to a Mott insulator is found, as shown in Fig. 3.23 (left). Here the
crucial mechanism is reaching the commensurate �lling in the upper band, which is favored by
the orbital decoupling mechanism we just discussed.
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This description of this type of OSMT reminds the one done in the previously studied cases
of systems with unequal bandwidth. However, unlike in case with di�erent bandwidths, here
the Hund’s rule coupling J is the minimal requirement to induce OSMT and stabilize OSMP.
Though the Mott insulator transition occurs when the Coulomb interaction strength reaches
some critical value, as evident from Fig. 3.23, the OSMP is totally absent if J = 0 [98]. Therefore,
as shown [77], the main e�ect causing the OSMT in these system of equal bands should be traced
within the suppression of the orbital correlations induced by J, rather than the hopping processes
of the kinetic content of such system. This picture is able to explain why simultaneously the
Mott gap of the lower two bands occupied by a single hole diminishes with J, giving rise to the
extended region of OSMP in the phase diagram.

The predictions of these Slave-spin calculations are con�rmed by the more accurate DMFT,
as shown in Fig. 3.23 (right). The quasiparticle weight of the upper orbital vanishes �rst, while
the same quantity for the lower orbitals remains �nite for the large extent of Coulomb coupling,
even if it has a clear change in behavior when the upper orbital becomes localized. In the inset
one can observe the behavior of the inter-orbital charge �uctuations compared with the spin
susceptibility. For small interaction strength, the enhancement of correlations is the consequence
of the predominant role of U . Nevertheless, once the e�ect of J starts being important, the
electrons tend to localize more and to form local high-spin states (as shown by the plot of the
magnetic response in the bottom panel). The inter-orbital charge correlations begin to decrease,
slowly approaching zero-value, signaling the e�ective decoupling of the bands. At this point the
upper band localizes, exploiting the orbital decoupling to completely separate its destiny from
the others.

The interplay between the crystal-�eld splitting and the Hund’s rule coupling terms induces
the redistribution of electrons among the di�erent orbitals (and correspondingly in each band, if
there is no hybridization), giving rise to di�erent individual band �lling [71, 77]. This leads to a
rich variety of phase diagrams [98]. However, we will not go through some deeper investigation
of an OSMP itself, since it is out of the scope of this work. The main point was to stress the
role of Hund’s coupling in such systems, which brings a large range of further investigations
and di�erent phenomena. We suggest further reading in Ref. [70, 72, 77, 97, 98], where more
involved e�ects of di�erent parameters’ interplay are discussed. Speci�cally, Ref. [70] gives a
comparison with realistic transition-metal oxides that can be described with partially lifted t2g

shell, making these predictions more reliable.

Up to now we did a brief review of the simple examples of non-degenerate systems, where
crystal-�eld splittings or bandwidth di�erences characterize the unequal orbitals. We have seen
that in such systems the Hund’s coupling indeed acts as a band-decoupler, giving rise to the
individual behavior of each orbital, depending on the structure and �lling. On another side,
the inter-orbital hopping or local hybridization acts against Hund’s rule coupling. In principle,
this is also true for the crystal-�eld splitting (since the both e�ects favor a singlet ground state,
unlike Hund’s rule that tends to maximize the spin locally). However as long as the e�ect
of Hund’s coupling remains predominant, the presence of hybridization can be treated as a
perturbation which competes with the orbital-selective physics. Moreover, the OSMP of such
system is typically turned into a phase with coexistence of strongly and weakly correlated
electrons in the same conduction bands. Recent investigations [14] showed that such scenario
can be the basis of the correlation properties in the normal state of iron-based superconductors.



4
The Gutzwiller variational method

As we have discussed in the Introduction, the solution of many-body fermionic systems with
strong correlations has been so far elusive even for the simple single-band Hubbard model,
except fot the limiting cases of one and in�nite dimensions. This led to the development of a
variety of di�erent theoretical techniques ranging from fully numerical approaches to more
analytical approaches.

One of the simplest, yet e�ective, approaches is based on the variational wave-function and
the connected approximation introduced in the early 60’s by Martin C. Gutzwiller [99–101]
to describe magnetic metals, and particularly itinerant ferromagnetism in the framework of
a Hubbard model. The main idea of this method was to include electronic correlations on an
otherwise uncorrelated wave-function |Ψ0〉 by de�ning the independent local projectors Pi that
act on the local Hilbert space at site i. The role of Pi was to project out, partially or completely,
the con�gurations in |Ψ0〉 that contain double occupancy (in the case of the single-band Hubbard
model), in order to reduce the energy cost on each site. This was accomplished by introducing
the Gutzwiller variational wave-function of the form

|ΨG〉 = PG |Ψ0〉 =
∏

i

Pi |Ψ0〉 . (4.1)

where the Gurzwiller projector PG is given as a product of local projectors Pi. In the original
formulation by Gutzwiller, the projector was parameterized as Pi = gDi

i , where Di is the local
double occupation operator on site i. The idea is to use the standard variational principle and
minimize the energy as a function of the parameters gi. Despite the simpli�ation, the expectation
value of the Hamiltonian can not be computed analytically in two and three dimensions, and one
has to either resort to a numerical evaluation or to a futher approximation. The latter direction
has been taken by Gutzwiller and it will be pursued also in the present thesis.

Of course, the limited variational freedom and the further approximation limit the use of the
approach. In particular, genuine Mott insulators without spatial symmetry breaking can not be
obtained by Gutzwiller wave-function in the case of singe-band Hubbard model. The approxi-
mation proposed by Gutzwiller [101] failed in predicting a ferromagnetic ground state in one
dimension, but Gutzwiller realized that its accuracy improved in two and three dimensions [101].
Nevertheless, it was two decades later that the work of Metzner and Vollhardt [102, 103] showed
that Gutzwiller approximation was actually variationally exact in the limit of the in�nite dimen-
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sionality. Even if the method is not able to describe a Mott insulator, it provides a reasonable
and e�ective description of the disappearance of the metallic solution, usually referred to as
Brinkman-Rice transition.

The success of Gutzwiller approximation in describing the strongly correlated single-band
model gave rise to the generalization of this approach to more realistic complex systems. Bune-
mann, Gebhard and collaborators developed an approach particularly suitable for the case of
multi-orbital models [104, 105]. This approach was later on extended by Fabrizio and Lanatá [106–
108]. They introduced a parametrization that simpli�es further numerical calculations, bringing
into connection Gutzwiller approximation with the Rotationally-invariant slave-boson approach
(RISB) [83], previously introduced by Lecherman and coworkers.

4.1 TheGutzwiller approximation formulti-orbital systems
Let us consider the following tight-binding multi-orbital Hubbard Hamiltonian:

H = −
∑
〈i, j〉

2M∑
α, β=1

(
tαβi j c†iαc jβ + h.c.

)
+

∑
i

Ui , (4.2)

where operator c†iα creates and c jβ annihilates an electron at site i and j, respectively, and indices
α and β denote single particle states and stand both for di�erent orbital (assuming M orbitals)
and spin (↑ and ↓) degrees of freedom. The �rst term, that we will label asH0, accounts for the
kinetic energy where tαβi j represents the hopping amplitude between the two nearest neighbors
sites i and j, whereas the second term is associated to a purely local many-body interactionUi.

Having more than one orbital on each site i gives rise to several di�erent electronic con�gu-
rations in the local Hilbert space, that are denoted as |Γ, i〉 and of the form

|Γ, i〉 =

∏
α∈Γ

c†iα

nα

|0〉i , (4.3)

where |0〉i is the local vacuum state of a given site i and nα = 0, 1 (α = 1, ..., 2M) are occupation
numbers that de�ne the Fock states |Γ, i〉. Knowing this, one can now de�ne the projection
operator Pi in the most general way as

Pi =
∑
ΓΓ′

λiΓΓ′ |Γ, i〉 〈Γ′, i| . (4.4)

Here λiΓΓ′ represents the variational parameters that modify the weights of the on-site elec-
tronic con�gurations |Γ, i〉 with respect to their values in the uncorrelated wave-function |Ψ0〉.
Particularly, the role of the operator Pi in the single-band Hubbard model is to decrease the
weight of doubly occupied con�gurations, in order to minimize the Coulomb repulsionUi. In a
multi-orbital Hubbard model, the e�ect of the Coulomb interaction is to reduce the weight of
con�gurations with a local occupation di�erent from the average value. If other interactions,
such as the Hund’s exchange coupling, or single-particle e�ects like a crystal-�eld splitting are
included, less obvious contraints are imposed on the local con�gurations, leading to a richer
physical picture.

Therefore our goal is to try to calculate the variational parameters λiΓΓ′ by acting with the
projector Pi on the variational function |Ψ0〉, as it follows from Eq. (4.1). Given that for the
method we are dealing with is convenient to choose |Ψ0〉 as a single-particle wave-function such
that the Wick’s theorem [109] holds (for reasons that will be more clear later). Since we are
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not discussing superconducting solutions or spin-orbit coupling, we use a single-particle Slater
determinant.

Eventually, bothPi and |Ψ0〉 have to be determined in the variational way [110] by minimizing
the average value of the Hamiltonian (4.2) such that

E =
〈ΨG|H|ΨG〉

〈ΨG|ΨG〉
, (4.5)

where E > E0 since the variational principle gives us an upper bound to the ground state energy
E0. Obviously, the ground state found this way gives us the best approximation to the true
ground state of our HamiltonianH .

The exact analytical evaluation of the average values over the variational wave-function
|ΨG〉 is possible only in the limit of in�nite dimensionality or (equivalently) coordination number
z→ ∞, where the variational calculation reduces to calculate expectation values on the Slater
determinant uncorrelated wave-function |Ψ0〉. This is analytically feasible since Wick’s theorem
applies, and it is shown in the Appendix B how one can manipulate and simplify all the expres-
sions that come in the following, in order to get manageable formulas. We recall that the same
approximation has been proposed by Gutzwiller as a sort of spatial mean-�eld approximation.
As a matter of fact, the limit of in�nite coordination enforces a spatial mean-�eld.

The analytical treatment is possible as long as these two constraints are satis�ed [105]:

〈Ψ0|P
†

iPi|Ψ0〉 = 1 , (4.6a)
〈Ψ0|P

†

iPiCi|Ψ0〉 = 〈Ψ0|Ci|Ψ0〉 , (4.6b)

where Ci is the local single particle density matrix operator at site i, with the elements c†iαciβ

(∀α, β)1. In the expression (4.6) the equality (a) is always satis�ed, without reducing the vari-
ational freedom, since Pi is de�ned up to a normalization factor, whereas the equation (b)
limits it. Nevertheless, the advantage of the expression (b) lies in the fact that the density
matrix of the non-interacting system 〈Ψ0|Ci|Ψ0〉 is trivially known, which simpli�es the further
calculations. However, one should not be induced by the expression (b) to believe that the
correlated and uncorrelated local density matrices have to coincide. In fact, in general one �nds
〈ΨG|Ci|ΨG〉 , 〈Ψ0|Ci|Ψ0〉. Regardless, as long as the Gutzwiller correlator Pi commutes with
the local density-matrix Ci [105, 111], the total number of electrons calculated on the variational
wave-function |ΨG〉 and |Ψ0〉 is the same (and it is a conserved quantity).

These expressions are exact only when z→ ∞ and the calculation of the expectation values
on the Gutzwiller wave-function is simpli�ed. However, we can enforce the same constraints and
exploit the same simpli�cations also in �nite dimensions, where they imply an approximation
with respect to the exact variational calculation. This way one encounters the so-called Gutzwiller
approximation.

4.1.1 The expectation values in in�nite lattice coordination
As stressed before, the Gutzwiller approach is variationally exact only in the limit of in�nite
coordination lattice, provided that the constraints (4.6) are satis�ed. This originates from the
fact that all expectation values turn out to be purely local in this limit.

1In the most general case, the single particle density matrix Ci contains also the o�-diagonal terms, c†iαc†iβ and
ciαciβ. Since they contribute to the superconductivity problem, which is not of our interest, we will not take them
into account.
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Recalling Eq. (4.1) and imposing the two conditions, we can calculate all the average values
of interest for our problem in the spirit of the Gutzwiller approximation.

Local operator

Let us assume a general local many-body operator Oi acting on a site i. The expectation value
can be reduced in in�nite lattice coordination (see Appendix B), giving

〈ΨG|Oi|ΨG〉 = 〈Ψ0|P
†

iOiPi|Ψ0〉 . (4.7)

If we now recall expression (4.2), we can rewrite the interacting part of the Hamiltonian as

〈ΨG|Ui|ΨG〉 = 〈Ψ0|P
†

iUiPi |Ψ0〉 . (4.8)

Non-local operator

In addition it also follows that

〈ΨG|Oi j|ΨG〉 = 〈Ψ0|P
†

iP
†

jOi jPiP j|Ψ0〉 . (4.9)

This expression is valid only for the non-local one-particle operator.
Now, if we return back to Hamiltonian (4.2), we �nd that the expectation value of a quadratic

o�-site operator c†iαc jβ has the following form:

〈ΨG|c
†

iαc jβ|ΨG〉 = 〈Ψ0|P
†

iP
†

jc
†

iαc jβPiP j|Ψ0〉 . (4.10)

where we have taken advantage of the constraints (4.6) for local quantities. We can rewrite
Eq. (4.10) as

〈Ψ0|
(
P
†

i c†iαPi

) (
P
†

jc jβP j

)
|Ψ0〉 . (4.11)

given that a local projector Pi commutes with all the other projectors and operators that act on
the sites di�erent than i.

A simple way to proceed is to de�ne the parameter Riβγ from the equality

〈Ψ0|c
†

iαP
†

i ciβPi|Ψ0〉 =
∑
γ

〈Ψ0|c
†

iαciγ|Ψ0〉Riβγ , (4.12)

which is itself a function of both |Ψ0〉 and Pi. After some computational manipulation (see
Appendix B), we arrive to the expression

〈ΨG|c
†

iαc jβ|ΨG〉 =
∑
γδ

R†iγαR jβδ 〈Ψ0|c
†

iγc jδ|Ψ0〉 . (4.13)

Calculating the expectation values of o�-site quadratic operators, putting in relation eqs. (4.11),
(4.12) and (4.13), one �nds that creation and annihilation operator are e�ectively renormalized:

c†iα → P†i c†iαPi =
∑
γ

R∗iαγc
†

iγ , c jβ → P†jc jβP j =
∑
δ

R jβδc jδ , (4.14)

namely a particle with given quantum numbers turns into a linear combination of e�ective
particles (quasiparticles) with all the possible quantum numbers and amplitudes given by the
matrix elements of the matrix Ri. The non-diagonal character of the mapping between physical
fermions and quasiparticles is a very important feature which generalizes over the original
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Gutzwiller of Slave-boson formulation. In the context of Slave-boson this is a key aspect of the
RISB method.

If we now write down (4.13) together with the hopping amplitude tαβi j , we get the average
value of the non-interacting part of the Hamiltonian (4.2) that we shall denoted as E∗:

E∗ = 〈ΨG|H0|ΨG〉 =
∑

i j

∑
αβ

tαβi j 〈ΨG|c
†

iαc jβ|ΨG〉 =
∑

i j

∑
γδ

tγδ
∗i j 〈Ψ0|c

†

iγc jδ|Ψ0〉 = 〈Ψ0|H∗|Ψ0〉 ,

(4.15)
where Ri renormalizes the hopping amplitude

tγδ
∗i j =

∑
αβ

R†iγαtαβi j R jβδ . (4.16)

This way we can de�ne a new one-body e�ective HamiltonianH∗ with the renormalized hopping
amplitudes tγδ

∗i j

H∗ =
∑

i j

tγδ
∗i jc
†

iγc jδ (4.17)

Once we diagonalizeH∗ in momentum space, we get the set of eigenfunctions that describe the
metallic states. These renormalized single-particle states can be connected to the concept of
Landau quasiparticles, whereH∗ can be interpreted as the non-interacting Hamiltonian of the
quasiparticle, and the overall renormalization factor described by Eq. (4.16) can be associated with
the quasiparticle weight Z, i.e., the weight of coherent low-energy excitation in the interacting
many-body spectrum. Due to the local character of the approximation, which would correspond
to a momentum-independent self-energy one has Z = m0/m∗, where m0 is the bare band mass,
and m∗ is the interaction-induced e�ective mass, which measures the reduction of the mobility
of the quasiparticle excitations due to the strong interactions. The increase m∗/m0 describes
how a good metal turns into a bad one, and a divergent e�ective mass (or vanishing Z) signals
Mott localization. As a matter of fact, following the behavior of Z will be the signature of Mott
localization in all our analysis with the Gutzwiller approximation.

4.1.2 Variational problem
Finally, we can write down the expression for the expectation value of the generic tight-bonding
multi-orbital Hubbard model (4.2):

E [Pi,Ψ0] = 〈ΨG|H|ΨG〉 = 〈Ψ0|H∗|Ψ0〉 +
∑

i

〈Ψ0|P
†

iUiPi |Ψ0〉 . (4.18)

The variational problem consists of variationally determining both |Ψ0〉 andPi by minimizing the
average energy (4.18), under condition that 〈ΨG|ΨG〉 = 1 is normalized. The Slater determinant
that minimizes the energy E is the ground state of the non-interacting HamiltonianH∗, as it
follows from Eq. (4.15).

While solving this problem, one encounters two main drawbacks: (I) |Ψ0〉 and Pi are con-
nected by the constraints (4.6) hence they are not independent variables; (II) in case of multi-
orbital models one should be careful since the number of variational parameters scales exponen-
tially with the number of orbitals. In order to further simplify this problem, let us introduce a
new parametrization [106–108], which, apart of giving solution for (I) and signi�cantly reducing
the number of variational parameters in (II), it also includes the possibility to treat multi-orbital
systems with arbitrary on-site interactions and hybridizations.
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4.2 Reformulation of the Gutzwiller approach
In the previous section we have introduced the main concepts behind the Gutzwiller formalism.
We not introduce some recent extensions. It turns out that this approach is equivalent to the
Rotationally-invariant slave-bosons (RISB), which have been introduced in Ref. [83]. In order to
simplify our problem, we introduce two slight modi�cations to our formulation, which actually
resembles the RIBS formalism.

Let us start from the de�nition of the projector Pi in Eq. (4.4). Here |Γ, i〉 and 〈Γ′, i| are
standard many-body Fock states where we populate states of �xed spin and orbital indices. We
will refere henceforth to this basis as the "original basis".

Now we can also introduce the uncorrelated local probability distribution P̂0
i with ele-

ments [106]

P0
iΓΓ′ ≡ 〈Ψ0| |Γ

′, i〉 〈Γ, i| |Ψ0〉 = δΓΓ′P0
iΓ . (4.19)

We can de�ne a matrix λ̂i (the hat will be used to denote matrices in the following) with
linear dimension equal to the size of the local Hilbert space whose elements are the variational
parameters λiΓΓ′ and introduce a new de�nition [106, 107]

φ̂i = λ̂i

√
P̂0

i , (4.20)

Since P̂0
i are positive quantities according to Eq. (4.20) the square root is always de�ned. The

choice of this trivial rede�nition will become clear in the following.
Consequently, with the above de�nition we can conveniently recast the two conditions (4.6)

into the following form

Tr
(
φ̂†i φ̂i

)
= 1 , (4.21)

Tr
(
φ̂†i φ̂iĉ

†

iαĉiβ

)
= 〈Ψ0|c

†

iαc jβ|Ψ0〉 . (4.22)

In Eq. (4.22) also the fermionic operators are represented as matrices acting on the local Hilbert
space

ciα → (ciα)ΓΓ′ = 〈Γ, i| ciα |Γ
′, i〉 . (4.23)

As before, the expectation values of all the operators within the Gutzwiller formalism can be
evaluated in in�nite coordination lattice, imposing these two conditions. Hence the expectation
value of any local observable Oi is given by [105, 106]

〈ΨG|Oi|ΨG〉 = Tr
(
φ̂†i Ôiφ̂i

)
. (4.24)

We can now express Eq. (4.8) in terms of this matrix formulation, and the local term becomes:

〈ΨG|Ui|ΨG〉 = 〈Ψ0|P
†

iUiPi|Ψ0〉 = Tr
(
φ̂†i Ûiφ̂i

)
. (4.25)

The elements of the matrix Ûi read as(
Ûi

)
ΓΓ′

= 〈Γ, i| Ûi |Γ
′, i〉 (4.26)

having |Γ, i〉 and |Γ′, i〉 as a local Fock states.
Recalling Eq. (4.12) one straightforwardly obtains the wave-function renormalization R̂i

inverting the equation
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〈Ψ0|c
†

iαP
†

i ciβPi|Ψ0〉 = Tr


√

P̂0
i ĉ†iα

1√
P̂0

i

φ̂†i ĉiβφ̂i

 =
∑
γ

Tr
(
φ̂†i φ̂iĉ

†

iαĉiγ

)
Riβγ =

∑
γ

〈Ψ0|c
†

iαciγ|Ψ0〉Riβγ

(4.27)
Riβγ being a matrix element of a matrix R̂i.

At this point we can notice that within this rede�nition of the Gutzwiller problem the
interaction energy contribution (4.25) (and in general all the local expectation values) depends
only on the parameters φiΓΓ′ that de�ne the matrix φ̂i, whereas the Slater determinant |Ψ0〉 still
enters in the expectation value of the hopping term by means of (4.27). Hence also in the matrix
formulation the renormalization factor in Eq. (4.27) still retains its complicated form. It will
be shown that this can be improved passing to a new representation simply by performing a
transformation of the basis in the local Fock state.

4.2.1 Mixed state representation

In order to obtain a more e�cient numerical implementation of the Gutzwiller approximation
for multi-orbital problems with general interactions and single-particle terms, it is convenient
to introduce a new representation. Therefore, let us introduce a new basis |n, i〉, de�ned by fiα

operators and related with the original ones ciα by unitary transformation Ŵi such that

W
†

i ciαWi = fiα =
∑
β

Wiαβciβ (4.28)

where the unitary operatorW maps ciα onto a new basis set fiα of single-particle operators.
Let us chooseW such that it diagonalizes the local density matrix operator Ciα in the Slater
determinant

〈Ψ0| f
†

iα fiβ|Ψ0〉 = δαβn0
iα (4.29)

having 0 ≤ n0
iα ≤ 1 as its eigenvalues. Hereafter, we will refer to this new basis as the natural

basis. As we shall see the introduction of this basis leads to a very useful simpli�cation of the
formalism.

If we now rede�ne the Slater determinant |Ψ0〉 and the projector Pi in terms of previously
introduced transformationW and assumingW†W = 1, we get:

|Ψ0〉 →
∏

i

Wi |Ψ0〉 , Pi → PiW
†

i . (4.30)

Returning back to Eq. (4.1) one immediately sees that the transformation leaves the Gutzwiller
wave-function |ΨG〉 invariant. It is worth to stress that, being the transformation unitary, the
transformed |Ψ0〉 remains a Slater determinant.

The crucial step is to use a mixed-basis parameterization for the projector Pi, namely

Pi =
∑
Γn

λiΓn |Γ, i〉 〈n, i| (4.31)

where the Fock states |Γ, i〉 remain de�ned in the original ciα-basis, while the 〈n, i| are de�ned in
the natural basis of fiα operators. Here one should notice that the new matrix λ̂i is de�ned in
the mixed original-natural basis. A generic state |n, i〉 can be written as
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|n, i〉 =

∏
β∈n

f †iβ


nβ

|0〉i (4.32)

where niβ = 0, 1 is the occupation number of the natural states β with β = 1, ..., 2M.
Let us brie�y stress that is quite common, for the practical reasons, to use the convention

that the order of the con�gurations |Γ, i〉 and |n, i〉 is the same. That means that(
c†α

)
i j

=
(

f †α
)

i j
, ∀α, i, j , (4.33)

knowing that the operators c†α and f †α act on their own Fock space.
We can now introduce the uncorrelated density distribution in the natural basis

P0
inm ≡ 〈Ψ0| |m, i〉 〈n, i| |Ψ0〉 = δnmP0

in . (4.34)

The matrix P̂0
i has diagonal form in this basis, and the matrix elements P0

in are easily computed
as

P0
in =

2M∏
β=1

(
n0

iβ

)niβ
(
1 − n0

iβ

)1−niβ
, (4.35)

where the factor n0
iβ appears when a given orbital in the con�guration |n, i〉 is occupied, and the

1 − n0
iβ factor is present for empty orbitals. Seemingly, recalling Eq. (4.20), the expression of the

local projector (4.31) becomes

Pi =
∑
Γn

φiΓn√
P0

i,n

|Γ, i〉 〈n, i| . (4.36)

where φiΓn are the the variational parameters of mixed-basis representation that de�ne a local
variational matrix φ̂i.

Essentially, within the mixed-state representation the �rst condition (4.21) remains un-
changed, since, as stressed before, it does not depend on the transformation. On the other hand,
the condition (4.22), together with (4.29), changes into

Tr
(
φ̂†i φ̂i f̂ †iα f̂iβ

)
= δαβn0

iα , (4.37)

while the matrix representation of the operator fiα in its own local Fock space is

fiα → ( fiα)nm = 〈n| fiα |m〉 . (4.38)

Finally, the renormalization factor can be expressed from

〈Ψ0| f
†

iβP
†

i ciαPi|Ψ0〉 ≡
∑
γ

〈Ψ0| f
†

iβ fiγ|Ψ0〉RWiαγ =
∑
δ

W†

iδβ 〈Ψ0|c
†

iδP
†

i ciαPi|Ψ0〉 =

=
∑
ρδ

W†

iδβRiαρ 〈Ψ0|c
†

iδciρ|Ψ0〉 =
∑
γρ

W†

iργRiαρ 〈Ψ0| f
†

iβ fiγ|Ψ0〉 = RWiαβnβ
(4.39)

where we have used the condition (4.37) and the inverse transformation of Eq. (4.28).
Under the transformation Ŵ the renormalization factor transforms into
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Riα → RWiα =
∑
β

RiβW
†

βα , (4.40)

giving

P†i c†iαPi →
∑
γ

RW∗iαγ f †iγ , P†jc jβP j →
∑
δ

RWjβδ f jδ . (4.41)

After some analytical manipulation (see Appendix A) one can show that the renormalization
factors obtain the simple form

RWαβ =
Tr

(
f̂ †iβφ̂

†

i ĉiαφ̂i

)
√

n0
β

(
1 − n0

β

) , R†Wβα =
Tr

(
φ̂†i ĉ†iαφ̂i f̂iβ

)
√

n0
β

(
1 − n0

β

) . (4.42)

This simpli�cation of the renormalization factor which controls the reduction of metallic behavior
is one of the main results of the use of the mixed representation for the matrix of variational
parameters. Another consequence is that now also the renormalization factor becomes dependent
only on φ̂i like the local operators.

It is important to stress that the introduction of the mixed representation simpli�es the
formalism at little cost. Indeed our derivation shows that the implementation of the approach
does not require the explicit knowledge of the transformation connecting the original and the
natural basis [107].

Rather naturally, for models in which the density matrix is already diagonal (as in models
with purely density-density interactions) we have that the natural and orbital basis coincide,
hence the previously introduced reformulation of the Gutzwiller problem becomes redundant.

4.3 Variational energy of the multi-orbital model

In this section we detail the implementation of the approach for a generic multi-orbital model
using the mixed-basis formulation for the variational problem that we have just outlined. For
simplicity we adopt the notation R̂Wi → R̂i.

Using the above results one can write the expectation value of the Hamiltonian (4.2) within
the Gutzwiller approximation is of the following form, including Lagrange multipliers which
enforce the condition (4.37). This leads to the expression

E = E∗ +
∑

i

Tr
(
φ̂†i Ĥiφ̂i

)
. (4.43)

The variational energy (4.43) has to be minimized with respect to the variational parameters,
φ̂i and |Ψ0〉, ensuring that condition (4.37) is satis�ed. In order to include this constraint, we
introduce the Lagrange multipliers µiαβ:

E =
∑

i

Tr
(
φ̂†i Ûiφ̂i

)
+
∑

i j

∑
αβγδ

〈Ψ0| f
†

iγ f jδ|Ψ0〉R
†

iγαtαβi j R jβδ−
∑

i

µiαβ

(
〈Ψ0| f

†

iα fiβ|Ψ0〉 − Tr
(
φ̂†i φ̂i f̂ †iα f̂iβ

))
(4.44)

We have already stressed that |Ψ0〉 must be the one that minimizes the average value of non-
interacting Hamiltonian 〈ΨG|H0|ΨG〉.



50 The Gutzwiller variational method

Moreover, if we require to have the single-particle density-matrix with the eigenvalue n0
iα, as

in (4.37), we realize that |Ψ0〉 that satis�es such condition is the ground state of the following
variational Hamiltonian: ∑

i j

∑
αβγδ

f †iαR†αβt
βγ
i j Rγδ fiδ −

∑
αβ

µiαβ f †iα fiβ . (4.45)

The �rst term in Eq. (4.45) we can denote asH∗. Here the Lagrange multipliers µiα maximize
the ground state energy. Imposing the value of the parameter µiα, E∗ from (4.43) is obtained as

〈Ψ0|H∗ − µ|Ψ0〉 = 〈ΨG|H0|ΨG〉 ≡ E∗ (4.46)

Once this task is done, one needs to minimize the variational energy per site, and with respect
to all the variational parameters:

∂E
∂φ†

= Ûφ +
∂E∗
∂φ†

+
∑
αβ

µαβφ f †α fβ − Λφ = 0 (4.47a)

∂E
∂Λ

= Tr
(
φ̂†i φ̂i

)
− 1 = 0 (4.47b)

∂E
∂µαβ

= Tr
(
φ̂†i φ̂i f̂ †iα f̂iβ

)
− δαβn0

iα = 0 (4.47c)

where we have dropped out the lattice site index i, since in case of paramagnetic wave-function
the translational symmetry in not broken, so the variational parameters do not depend on site.
The last term in (4.47) corresponds to imposing one more constraint, on the normalization
condition (4.21). Let us also stress that the elements of the matrix Û correspond to the original
basis representation, whereas φ̂ has rows written in the original and columns in the natural
basis.

This way, with Eq. (4.47), we are given a set of non-linear equation. The number of these
equations depends on the number of the variational parameters (φ̂, µ,Λ), and his problem can
be solved iteratively using di�erent numerical tools.

4.3.1 An explicit example: The single band Hubbard model

So far we have seen that the ground state energy of an interacting model can be mapped via
Guzwiller approximation to an e�ective model, with renormalized hoppings that account for
the presence of the interactions of the system. Now we will show an example of how this
approximation can be applied to the simple half-�lled single-orbital paramagnetic Hubbard
model (2.5) - in such de�nition this model is particle-hole symmetric and spin-rotationally
invariant.

The local Fock states for the single-orbital Hubbard model are de�ned with

|0〉, | ↑〉, | ↓〉, | ↑↓〉 . (4.48)

Since the local density matrix is already diagonal in this representation, the original and natural
basis coincide. Therefore, any local operator is represented in a form of 4×4 matrix, such as the
φ̂ matrix, that can be written as
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φ̂iΓΓ′ = φ̂iΓδΓΓ′ =


φi0 0 0 0
0 φi↑ 0 0
0 0 φi↓ 0
0 0 0 φi↑↓

 . (4.49)

On another hand, the Gutwiller constraints Eq. 4.6 get the form

|φ0|
2 + 2|φ1|

2 + |φ2|
2 = 1

2|φ1|
2 + 2|φ2|

2 = 2n . (4.50)

Requiring the paramagnetic solution implies φi↑ = φi↓ = φi1, where we changed the notation
due to simplicity. On another side, the particle-hole symmetry at half-�lling gives φi0 = φi↑↓ = φi0.
Now it comes apparent that Eq. (4.50) coincide in such conditions, since at half-�lling in single-
orbital model we have that n = 1/2, giving one unique constraint. Namely

2
(
|φ0|

2 + |φ1|
2
)

= 1 . (4.51)

Further, all the variational parameters are site-independent in the homogeneous situation,
as well as the hoping renormalization factor that reads

R =
φ∗0φ1 + φ∗1φ0
√

n(1 − n)
= 2

[
φ∗0φ1 + φ∗1φ0

]
. (4.52)

Since the Hamiltonian is real we can also assume wave-functions to be real, hence the same can
be assigned to φ parameters.

Utilizing the condition (4.51) we can get rid of one parameter, say φ1, and, knowing that the
interaction term (4.8) obtains the form

Hi = U


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , (4.53)

we write the variational energy as a function of the single variational parameter φ0:

E = min
|Ψ〉,φ2

0

−R2(φ0)t
∑
〈i, j〉,σ

〈Ψ0|c
†

iσc jσ|Ψ0〉 + U
∑

i

φ2
0

 . (4.54)

As before, the |Ψ0〉 represents the non-interacting Fermi sea. Formula (4.54), with its elegant
formulation, gives the energy in dependence on purely single variational parameter φ2

0 which
we will substitute as φ2

0 = D, to coincide with the original Gutzwiller’s formulation of the
single-band model. Further, if we de�ne the average kinetic energy ε̄ as

ε̄ =
t

Ns

∑
〈i, j〉,σ

〈ψ0|c
†

iσc jσ|ψ0〉 + H.c. (4.55)

Ns being the number of sites, Eq. (4.54) gets the form

E(D) = −Ns 8D(1 − 2D)ε̄ + UDNs , (4.56)

where we found that
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R2 = 8(1 − 2D)D . (4.57)

Minimizing E(D) from Eq. (4.56) with respect to the variational parameter D, one obtainsD(U) = 1
4

(
1 − U

Uc

)
U < Uc ,

D(U) = 0 U ≥ 8ε̄ .
(4.58)

Here Uc ≡ 8ε̄ is de�ned as a critical value of the interaction at the Mott transition when U = Uc.
The number of doubly occupied sites, measured by the double occupation probability D, is
expected to be zero in this limit.

On another hand, plugging (4.58) into the expression (4.57) and (4.56), the kinetic energy
renormalization becomes

Z = 1 −
U2

U2
c
, (4.59)

whereas the expression for the total energy of the single-orbital Hubbard model reads

E = −Nsε̄

(
1 −

U
Uc

)2

. (4.60)

Apparently, the energy (4.60) increases with U and becomes identically zero at U = Uc. Since the
energy dies out with a quadratic dependence on U , this would suggest that at Uc the transition
will be of the second order.

These results are obtained within the Gutzwiller approximation and they describe a metal-
insulator transition. For U < Uc departing from the Fermi liquid with a renormalized kinetic
energy, the quasiparticle weight Z, that, as we have stressed, can be associated to the renormaliza-
tion factor R, monotonically decrease with increase of the interaction strength U . The vanishing
Z at Uc is the consequence of the suppression of double occupied con�gurations that prevents
the hopping processes between two di�erent sites, forcing these quantities to be zero at the
insulating side. Together with the reduction of the double occupation probability one encounters
the enhancement of the spin �uctuations, leading to the formation of the local magnetic moment
at the Mott transition. Indeed, it was found that at this point the spin susceptibility diverges.
Apparently, one can conclude that the correlations in such systems have a non-trivial e�ect on
the emerging physics phenomena. However, the Mott insulator at U > Uc has zero energy and
is completely featureless within the Gutzwiller approximation.

Lastly, let us stress that the expression (4.60) gives the same result as the one obtained by
Brinkman and Rice [42], and it holds for n = 1/2. Apparently, when n , 1/2, the results is
rather di�erent. Due to its dependency on the �lling of the system, the Brinkman-Rice transition
immediately disappears in this, non-half-�ling case.

4.4 Final remark
Summing up all previously said, let us give some conclusion about the applicability and reliability
of the method we have introduced in this chapter.

As stressed before, the paramagnetic Gutzwiller wave-function brings improvements in
describing the strongly correlated systems since it suppresses (partially projects out) the double
occupations driven by the Coulomb repulsion between the electrons. Yet, it fails in describing in
correct way the Mott transition in the non-in�nite lattice coordination. The main reason for this
is its incapability to account properly for spacial correlations, which, in fact, are not so crucial
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in the limit of in�nite coordination number since the e�ect of all the neighboring sites on an
arbitrary one can be seen as an average mean-�eld. Nevertheless, the question remains whether
this wave-function is the best choice for the ground state or not.

In order to improve the Gutzwiller wave-function by providing these intersite correlations,
one can use density-density Jastrow factor as in Ref. [112]

|ΨG〉 → exp

−∑
i j

vi jnin j

 |ΨG〉 (4.61)

where vi j are variational parameters whereas ni is the occupation number at site i. Though more
accurate with respect to original GW wave-function, Gutzwiller-Jastrow wave-function can only
be implemented numerically, using Variational Monte Carlo, which su�ers from the �nite-size
of the system [113].

Nevertheless, the development of Dynamical mean-�eld theory (DMFT) [44, 114], which
is indeed exact in the limit of in�nite coordination, gave us the possibility to test the quality
of Gutzwiller wave-function, giving the physical meaning of the Gutzwiller approximation.
In fact, comparing these two methods it was shown that for single-orbital Hubbard model, in
in�nite dimensions, the Gutzwiller wave-function does properly describes the behaviour of
the quasiparticle [44], at least qualitatively. Besides, knowing that the local correlations play
the crucial role in the metallic phase, it is justi�ed to assume that changes in the quasiparticle
properties while approaching the transition do not depend very much on dimensionality d, in
case when d > 1.

The Gutzwiller approximation scheme turns out to be reliable whenever the Gutzwiller
wave-function is able to faithfully describe the ground state [103]. Therefore, despite it fails to
describe the Mott insulator, relatively simple Gutzwiller approach is convenient choice when
one takes the metallic regime under the consideration, as will be our case.

The formulation of the Gutzwiller variational problem described within this chapter, that
leads itself to e�cient numerical implementation, will be suitable for investigating the multi-
orbital models in the rest of this thesis.
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5
Hund’s metals: A tale of two insulators

In the previous chapter we have reviewed some of the recent literature which has contributed
to develop the concept of ’Hund’s metal’, a strongly correlated metal which is however far from
Mott localization, in the sense that increasing the Coulomb interaction U does not lead to further
correlation and localization. As we discussed above, this physics has been widely studied and
characterized in a number of studies highlighting di�erent remarkable properties of the Hund’s
metal or happening at the crossover between a standard metal and the novel regime.

On the other hand, much less activity has been focused on understanding the physical
mechanism for which a metal can survive to a very strong value of the Hubbard U and the
Hund’s coupling J. This is also particularly surprising because both U and J are expected
to reduce the e�ective kinetic energy of the electrons by imposing di�erent constraints on
the electronic motion: The �rst term limits charge �uctuations, while the second freezes spin
�uctuations. In this chapter we focus exactly on this question and we actually connect the
existence of the Hund’s metal with a balance between the e�ects of the two interactions.

More precisely, we will show that the correlation-resistant metal emerges from the competi-
tion between two distinct insulating states, namely a high-spin Mott and a charge dispropor-
tionated insulator, favored respectively by the Coulomb interaction or the exchange coupling,
and characterized by a di�erent ionic valence. This competition results in an asymptotic mixed-
valence metallic state in the region where the interaction parameters are balanced. In particular,
we show that along a given line of the U-J phase diagram, the two insulators are degenerate
and the metal survives even for divergent interactions as long as the hopping is �nite.

Before entering our analysis, that can be found also in Ref. [115], we summarize some
important basic properties of our model which will be useful in the subsequent analysis.

5.1 Model and atomic multiplets

In this study we will consider the three-orbital lattice Hamiltonian composed of a single particle
term describing the kinetic energy and a local interaction part of the general form

Ĥ = Ĥkin +
∑

i

Ĥint
i . (5.1)

55
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The simplest version of (5.1) includes only nearest-neighbor intra-orbital hopping tm, such
that

Ĥkin = −
∑
〈i j〉mσ

tmd†imσd jmσ (5.2)

where d†imσ(dimσ) is creation (annihilation) operator. Here σ =↑, ↓ are the spin components and
the sum runs over m = 1, 2, 3 degenerate orbitals, so that we can further use the notation tm = t.
This way Ĥkin contains only diagonal elements in orbital space and gives identical eigenvalues
for all three orbitals, meaning that Ĥkin remains invariant under orbital rotations. The details
of the hopping term will not be relevant for our discussion, at least as long as there is no local
hybridization between the di�erent orbitals.

For the discussion of this chapter it is particularly useful to remind the form of the Kanamori
Hamiltonian (3.13), which is written in an explicitly symmetric form in terms of the total density,
spin and angular momentum operators on each lattice site

Ĥint = (U − 3J)
(n̂ − 3)2

2
− J

(
2 S2 +

1
2

L2
)
, (5.3)

keeping in mind that n̂ =
∑

mσ d†mσdmσ represents the local1 electron number operator, m labeling
the t2g orbitals, whereas S and L are spin and angular momentum operators, respectively. In
the expression above we have properly rede�ned the chemical potential in order to make this
expression explicitly particle-hole symmetric around half-�lling n = 3. Further, it is convenient
to denote the on-site repulsion between electrons in the �rst term as U∗ = (U − 3J), which will
be useful in the following.

In the atomic limit the Hamiltonian is easily diagonalized in the basis of the atomic multiplets
|Γ〉 = |n, `, s〉 that are simultaneously the eigenstates of the density operator n̂ and of the orbital
and spin angular momentum operators L2 and S2, as well as their z-components Lz and S z. The
eigenvalues are trivially

EΓ = E(n, `, s) = (U − 3J)
(n − 3)2

2
− J

(
2s(s + 1) +

1
2
`(` + 1)

)
, (5.4)

where the degeneracy associated to each eigenvalue is associated with the possible values of the
S z and Lz operators and it is simply given by

gΓ = g(n, `, s) = (2` + 1)(2s + 1) . (5.5)

The atomic eigenstates |Γ〉, classi�ed according to the quantum numbers n, `, s, together with
the corresponding eigenvalues and degeneracy de�ned with Eq. (5.4) and (5.5), respectively, are
listed in Table 5.1. The particle-hole symmetry of the Hamiltonian (5.3) becomes apparent from
the eigenvalues EΓ presented in the table.

In this chapter we solve the model de�ned by Eqs. (5.1), (5.2) and (5.3) using both the
Gutzwiller approximation (GW) (see Chapter 4) and the Rotationally-invariant slave-boson
(RISB) formalism [83]. In both these approaches, as well as in Dynamical mean-�eld theory,
the kinetic energy term only enters through the non-interacting density of states. Here, for
simplicity, we consider a �at density of states of width W which we will use as our reference
energy unit. Indeed we could easily use a tight-binding dispersion and even a more realistic and
material-oriented density of states. However, the choice of a simpli�ed density of states stems

1From now on we will drop the site-label i due to simplicity.
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from the attempt to identify those physical e�ects that are purely driven by interactions and not
related to a speci�c lattice structure.

In that spirit, the GW/RISB formalism is particularly suited to study, in a quasi-analytical
fashion, multi-orbital systems characterized by local interactions that cannot be cast in the form
of density-density terms, such as Hund’s rule coupling in the Kanamori Hamiltonian (3.10). The
rotational invariance of the formalism guarantees that all interacting terms are treated on an
equal footing. The method represents, therefore, an ideal tool for investigating the interplay
between Coulomb and exchange couplings, and the physics that emerges from their competition.

No. |Γ〉 = |n, `, s〉 nΓ `Γ sΓ gΓ EΓ φ|Γ〉

1 |0, 0, 0〉 0 0 0 1 9
2 (U − 3J) φ|0,0,0〉

2
∣∣∣1, 1, 1

2

〉
1 1 1

2 6 2(U − 3J) − 5
2 J φ|1,1, 1

2〉

3 |2, 0, 0〉 2 0 0 1 1
2 (U − 3J) φ|2,0,0〉

4 |2, 1, 1〉 2 1 1 9 1
2 (U − 3J) − 5J φ|2,1,1〉

5 |2, 2, 0〉 2 2 0 5 1
2 (U − 3J) − 3J φ|2,2,0〉

6
∣∣∣3, 0, 3

2

〉
3 0 3

2 4 −15
2 J φ|3,0, 3

2〉

7
∣∣∣3, 1, 1

2

〉
3 1 1

2 6 −5
2 J φ|3,1, 1

2〉

8
∣∣∣3, 2, 1

2

〉
3 2 1

2 10 −9
2 J φ|3,2, 1

2〉

9 |4, 0, 0〉 4 0 0 1 1
2 (U − 3J) φ|4,0,0〉

10 |4, 1, 1〉 4 1 1 9 1
2 (U − 3J) − 5J φ|4,1,1〉

11 |4, 2, 0〉 4 2 0 5 1
2 (U − 3J) − 3J φ|4,2,0〉

12
∣∣∣5, 1, 1

2

〉
5 1 1

2 6 2(U − 3J) − 5
2 J φ|5,1, 1

2〉

13 |6, 0, 0〉 6 0 0 1 9
2 (U − 3J) φ|6,0,0〉

Table 5.1: Eigenstates |Γ〉 and eigenvalues EΓ of the t2g rotationally-invariant Hamiltonian (5.3) in the
atomic limit, assuming particle-hole symmetry (included in the Hamiltonian). The boxed numbers denote
the ground-state degeneracies for J > 0. Number of electrons n, spin s and orbital number ` are given for
the corresponding eigenstates. The last column shows the slave-boson amplitudes for the description of
the eigenstates in the RISB formalism, equivalnt to rotationally-invariant Gutzwiller.

Within the RISB approach we associate an amplitude φ|Γ〉 to every multiplet |Γ〉, which
corresponds directly to the projectors de�ned in the Gutzwiller method. Indeed, we have pointed
out in Sec. 4.2 that the two approaches turned out to be equivalent, what, indeed, we have shown
by our present results, obtained by both approaches, which showed a perfect match. In the
following we will keep on calling the projectors as ’slave-boson amplitudes’, always refering to
both approaches.

Once we implement all the symmetries we are left with the thirteen slave-boson amplitudes
corresponding to the multiplets listed in the Table 5.1 out of 64 states de�ning the local Hilbert
space.
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5.2 Mott transition at n̄ = 3 and n̄ = 2

We start by discussing the Mott transition in our model for two characteristic average densities
n̄ = 2 and n̄ = 3. In Fig. 5.1 we display the quasiparticle weight Z for di�erent J/U ratios, at
two di�erent average densities, n̄ = 2 and n̄ = 3. We obviously reproduce the results discussed
in Chapter 3. At half-�lling case the increase of J/U tends to enhance the correlations in the
system, decreasing the value of critical interaction strength Uc, while the transition always
remains of �rst order for any �nite J. On the other hand, in the n̄ = 2 case we �nd the two-stage
behavior, and eventually the Janus-faced role of Hund’s rule coupling for sizable J/U ratio,
pushing forward the Uc for the metal-insulator Mott transition. For J/U = 1/3 the critical U
actually diverges and the system remains always metallic. The transition is of �rst order only
for J/U < 0.1, well before the Janus regime sets in. In the third panel we compare, for the two
densities, the spinodal line where the metallic solution disappears with the point where the
energy of the metal becomes higher than that of the insulator and the actual Mott transition
occurs. The di�erence is signi�cant only for relatively small J/U also for n̄ = 3, and it reduces
for very large J/U , where the coexistence region actually shrinks.

Figure 5.1: Quasiparticle weight Z as a function of U , for di�erent J/U ratios, at commensurate �lling
n̄ = 2 (equivalent to n̄ = 4) and n̄ = 3. In the third panel we plot the Uc extracted from the plots of the
other panels compared with the spinodal line of the metallic solution in the two cases.

In Fig. 5.2 we follow the population of each multiplet as a function of U , for the two cases
n̄ = 2 and n̄ = 3, keeping J/U �xed to few di�erent values ranging from the pure Hubbard model
to the value J/U = 1/3 where the charge-charge repulsion vanishes (J/U = 0.0, 0.02, 0.2, 1/3).
These plots can be seen as the generalization to a multi-orbital case of the decrease of double
occupations as a function of U in the single-band Hubbard model. The generalization also
reveals the two di�erent e�ects of the Hubbard U and of the Hund’s coupling J.

For U = 0 the independent electrons picture suggests that all slave-boson amplitudes, each
associated to a corresponding multiplet state, are equal, hence all multiplets are populated
according to their degeneracy. For J = 0, as U becomes larger, the Coulomb energy of a local
con�guration depends only on the total charge per site, as suggested by Eq. (5.3). Therefore, the
system tends to favor just those multiplets from the particle number sector that corresponds to
the value of total charge, namely those with n̄ = 2 (Fig. 5.2 - left) and n̄ = 3 (Fig. 5.2 - right) for
our two cases (see Table 5.1). The amplitudes of all the multiplets with n , n̄ vanish at the Mott
transition.

When we include also a �nite Hund’s coupling J, a further �ltering takes place, and high-spin
con�gurations are favored at the expenses of those with lower spin. For relatively small values
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Figure 5.2: Multiplet population (obtained by inequivalent slave-boson amplitudes φ|Γ〉 (see Table 5.1),
for di�erent J/U ratios, at commensurate �lling n̄ = 2 (equivalent to n̄ = 4) and n̄ = 3. Full lines represent
the multiplets with the maximum spin, whereas the dashed ones represent the remaining multiplets
belonging to the same number sector as the former one. The scale of the U axis is the same for all plots
in order to stress the e�ect of the Hund’s coupling on the critical value of the interaction.

of J, the e�ect of the latter is a small correction to the hierarchy between multiplets dictated by
the Hubbard interactions, but the competition becomes indeed more subtle when J grows.
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In the half-�lling n̄ = 3 case, an increasing J appears to facilitate the Mott transition by
�ltering (among the states with n̄ = 3) only the high-spin state, as it is apparent comparing the
four right panels in Fig. 5.2. The very fast reduction of the populations of most multiplets reduces
the possibility of charge �uctuations and of hopping processes. Therefore the quasiparticle
weight Z measuring the e�ective kinetic energy falls very rapidly. When J is su�ciently large,
all the electrons are very rapidly frozen into the quadruplet |3, 0, 3/2〉, while all other multiplet
populations are equal to zero, as shown in Fig. 5.2. This e�ect gets more pronounced the more
we increase the value of J/U ratio, forcing the system to localize for much smaller values of U .
In this case U and J cooperate in driving a very rapid and abrupt Mott localization, as we have
already shown in the plots of the quasiparticle weight Z.

The situation for n̄ = 2 is indeed very di�erent. However, for small values of U and J the
picture resembles the one from n̄ = 3 case. Both U and J reduce the populations of the various
multiplets and Z falls correspondingly. Instead, increasing further U , for the small values of J/U
one �nds that the most dominant multiplet is the one with the maximum spins con�guration,
ie. |2, 1, 1〉, forming a high-spin Mott insulator for U > Uc. Nevertheless, when J/U reaches a
certain range of values (J/U = 0.2 in our example), one enters a regime in which the high-spin
states with occupation di�erent from the average value n̄ = 2 survive for a relatively large
range of interactions, as shown in Fig. 5.2 (left). When this happens, the decrease of Z slows
down and we enter in the Hund’s metal, which is characterized by local valence �uctuations.
Therefore the Hund’s coupling is competing with the Hubbard U . For J/U = 1/3 we see that all
the four di�erent high-spin multiplets belonging to the four di�erent particle number sectors,
n = 0, 1, 2, 3, survive for arbitrary values of U . As a result, Z remains �nite and constant in the
same region, and the Mott insulator is never reached. A much more subtle interplay between
the two interaction is leading to the Hund’s metal.

We complement this information by reporting, in Fig. 5.3, the charge correlation functions
de�ned in Sec. 3.4.3. As we did in the previous discussion, we contrast the behavior of the total
charge correlation per orbitals (Ctot), with the intra-orbital (Cintra) and inter-orbital (Cinter) charge-
correlation function, satisfying Eq. (3.21). As stressed before, the intra-orbital and inter-orbital
contributions have, by de�nition, the opposite sign.

Just like the multiplets, the results for J = 0 do not reveal particular di�erences between
the di�erent densities n̄ = 2 and n̄ = 3. In both cases the total charge correlations vanish at the
Mott transition, Ctot = 0. This is realized by a cancellation between the positive intra-orbital
correlation and the negative inter-orbital ones. In particular the former are basically constant as
a function of U , while the latter increase from zero to a value that cancels out the intra-orbital
contribution (see Appendix C).

When we introduce the Hund’s coupling at half-�lling (right panel in Fig. 5.3), we modify
this scenario as the vanishing of Ctot happens abruptly and it is the result of Cintra and Cinter,
which both decrease in absolute value before canceling out at the Mott transition. The main
e�ect of J is thus to reduce Cintra, helping the Mott localization adding a further constraint to
electronic motion, in agreement with the previous analysis of the multiplet population. In some
sense, the cooperative e�ect of U and J leads to a kind of super-localization of Mott-Hund
character.

For n̄ = 2 (left panel in Fig. 5.3), after a weak-J regime where the picture is not di�erent
from the one at half-�lling, with a slight reduction of the absolute values of both Cintra and
Cinter, we enter in the Hund’s dominated region. Here Cinter is modulated owing to the fact
that the electrons in di�erent orbitals interact with a coupling U − 3J, which is reduced as J
increases and it vanishes for J/U = 1/3, as shown in the left bottom panel. On the other hand
the intra-orbital correlations Cintra tend to �atten as a function of U as J/U is increased, since
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Figure 5.3: Charge correlation (total, inter-orbital and intra-orbital), for di�erent J/U ratios, at commen-
surate �lling n̄ = 2 (equivalent to n̄ = 4) and n̄ = 3. The scale of the U axis is the same for all plots in
order to stress the e�ect of the Hund’s coupling on the critical value of the interaction.

the intra-orbital correlations are essentially related to the double occupancy which, as shown by
Fig. 5.2, is already quenched when the crossover from the standard metal to the Hund’s metal
takes place. The vanishing of inter-orbital correlations is a signature of the orbital decoupling,
which becomes more and more complete as J/U = 1/3 is approached.
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5.3 Extended phase diagram in the U-J plane
The symmetric form of the interaction of the Kanamori model, expressed with Eq. (5.3), shows
clearly that the condition U = 3J has a special role in the properties of the model. For this value
of the interaction the charge-charge repulsion vanishes, leaving to the second term the role of
the only interaction. Moreover, on the same line, namely J/U = 1/3, one �nds from Eq. (3.10)
that the coe�cient of the equal-spin inter-orbital Coulomb repulsion vanishes, which leads to
the orbital decoupling. One can also notice that for U − 3J the atomic estimate of the Mott
gap vanishes. All these phenomena underlay or accompany the onset of a metallic state which
survives even when U and J become exceedingly larger than W .

Needless to say, this suggests that the line U −3J = 0 is a very special boundary in the phase
diagram of the model, and indeed most studies assumed that this boundary could not be crossed
assuming that all Coulomb term must be positive, hence U∗ > 0. However, the presence of strong
electron-phonon interactions and Jahn-Teller (JT) distortions may substantially renormalize
both U and the exchange coupling J, yielding an e�ective J whose value may lie outside the
aforementioned limit, with the negative values of Coulomb coupling U∗ < 0. We shall, therefore,
treat this term as a generalized e�ective coupling, exploring the whole paramagnetic phase
diagram of Eq. (5.3) as a function of U and J, treated as independent interaction parameters [116].
Besides its potential direct interest for system with sizable electron-phonon coupling, we believe
that, at the very least, a theoretical analysis beyond this line, J/U = 1/3, will help to shed light
on the Hund’s induced correlation e�ects. In the �nal part of this chapter we will also consider
the case in which J < 0, a situation which can again be induced by a strong electron-phonon
coupling. This comparison will help us to strengthen our conclusions by showing the existence
of a di�erent yet, comparable correlation-resilient metal also in this negative-J regime.

We start, however, our presentation from the case J > 0 which is the main object of the
present thesis of the overwhelming majority of manuscripts discussing the Hund’s metal.

In the phase diagram of Fig. 5.4 we show, for independent values of U/W and J/W , the
quasiparticle spectral weight Z in the paramagnetic state for a commensurate �lling n̄ = 2.
As before, Z measures the degree of metallicity of the system, with values close to 1 (yellow)
correspond to a non-interacting metal, while Z = 0 (dark blue) describes localized electrons of a
correlated insulator.

5.3.1 Two insulators
The main feature of our extended diagram is the presence of a wide metallic region appearing
as a ribbon centered around the J/U = 1/3 (light blue) line, which corresponds to U∗ = 0,
surrounded by two insulating regions. Both these insulators are characterized by a vanishing
quasiparticle spectral weight Z = 0 (dark blue), hence they are not band insulators, but some
kind of correlation-induced states.

The insulator in the J/U < 1/3 (positive-U∗) region is the standard high-spin Mott insulator.
Having 2 electrons per three orbitals, in average, means that in the Mott state each lattice site will
be occupied by exactly two electrons, populating the lowest energy multiplet2 with maximum
spin con�guration |2, 1, 1〉 (state 4 in Table 5.1), as shown in the left box of Fig. 5.5. Since U∗

is positive and large, the charge �uctuations are frozen, as shown in Fig. 5.3. The e�ect of the
positive J is to arrange the two electrons in a high-spin con�guration.

The other insulating region for J > U/3 (with the exception of a peculiar region at J/U > 3/4,
which we shall discuss later on) is a less standard state in which only two multiplets are populated,

2In the paramagnetic phase all components of a given multiplet, with `z = −`, . . . , ` and sz = −s, . . . , s, are
equally populated.
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Figure 5.4: Paramagnetic phase diagram of the Hund system at commensurate �lling n̄ = 2. Here, the
dark region on the right is a Mott insulator, whereas in the upper left part there are two insulating
states: A Hund insulator, in the region between the dashed and dotted lines, and an extreme negative
charge-transfer insulator above the dotted line. The dashed (J/U = 1/3) and dotted (J/U = 3/4) lines
indicate the degeneracy between the parent insulating states. The inset shows the same phase diagram
(with identical scales for U , J, and Z) for a commensurate �lling n̄ = 3. In this case, the Mott and Hund
insulators coincide.

namely the high-spin multiplet with three electrons |3, 0, 3/2〉 (state 6 in Table 5.1) with a
probability p3 = 2/3, and the empty site |0, 0, 0〉 (state 1 in Table 5.1) with a probability p0 = 1/3.
We can picture this as a state where in every group of three sites we have two sites populated
by three electrons in the high-spin state and one empty site, as depicted in the right box of
Fig. 5.5. It is easy to picture this state as the result of a compromise between an attractive
local interaction U∗ < 0 which wants to concentrate charge on every site and a large Hund’s
coupling which maximizes the local spin. This favors con�gurations with three electrons on a
site in high-spin state at as much sites as possible (depending of the average number of electrons
present in the system). Obviously, for a system with 2 electrons per site this would mean that
this non-homogeneous insulator will consist of 2 sites occupied by exactly three electrons each
and one site empty, leading to a charge disproportionation.

We can refer to this state as a Hund insulator3. This means that the energy gain one obtains
by realizing this spin 3/2 con�guration overcomes the imbalance in charge created this way.
Like in the Mott insulating state, also here charge �uctuations are suppressed; however, it is not
the Coulomb repulsion that gaps them, but rather the energy gain associated with maximizing
the local spin.

In the following we want to connect the existence of these two insulators with the correlation-
resilient metal which intrudes between them. It is particularly interesting that the metal appears

3Within a single-site mean-�eld, like GW/RISB, but also DMFT in the paramagnetic state, this state is insulating
and the empty sites are randomly distributed. Indeed, one can build an e�ective model in the large J regime
which features both antiferromagnetic spin and nearest-neighbor repulsive terms of order t2/J and a three-electron
hopping term of the order t3/J2. The derivation and solution of this model are beyond the aim of the present
manuscript, and our conclusions remain valid also in the case the insulator becomes a bad metal.
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between the two insulators even when U and J are both very large with respect to W .

Figure 5.5: Schematic plot of the realization of the two distinct insulating states: a high-spin Mott
and a charge disproportionation insulator, favored either by the Coulomb interaction or the exchange
coupling, respectively. While in the Mott insulator all sites are populated by the lowest energy multiplet
with maximum spin con�guration |2, 1, 1〉, in the non-homogeneous Hund insulator the system tends to
populate as much as sites as possible with the high-spin state |3, 0, 3/2〉 (with probability p3 = 2/3), on
expense of leaving some site empty (with probability p0 = 1/3).

Owing also to the fact that both insulators have atomic nature, we start our analysis from
the atomic limit with the aim of understanding how a metallic solution can appear in this limit.

In the atomic limit we can build the energy of the Mott insulator and of the Hund insulator
simply by using the eigenvalues EΓ listed in Table 5.1. The Mott insulator has energy EM =
1
2 (U − 3J) − 5J, while the one corresponding to the Hund insulator reads EH = −5J. Therefore
the Mott insulator is stable for 0 < J/U < 1/3 and the Hund insulator is the lowest energy state
for 1/3 < J/U < 3/4. At the extreme value J/U = 3/4 the Hund insulator becomes energetically
unfavorable with respect to a fully disproportionated state with six electrons on one site every
two empty sites.

The Hund and Mott insulating states are degenerate exactly along the line J/U = 1/3.
Noteworthy, along the same line another inhomogeneous insulator is degenerate with the Mott
and Hund insulators discussed above. This insulating state consists of sites with either one or
three electrons (populating the maximal spin multiplet, |1, 1, 1/2〉 and |3, 0, 3/2〉, respectively,
corresponding to states 2 and 6 in Table 5.1), with equal amplitudes. This state is never stable in
the atomic limit except for the special line U∗ = 0, where it contributes to the increase of the
degeneracy of the ground state and, as we shall see, to the stabilization of the Hund’s metal.

We notice that this maximal degeneracy can be tracked down to the speci�c form of the
Kanamori Hamiltonian, in particular to the factor 4 between the coe�cients of the S2 and
L2 terms in Eq. (5.3) which favors the spin over the orbital angular momentum. It is worth
mentioning that this relation between the coe�cients is obviously not a necessary condition for
the rotational invariance of the Hamiltonian and any linear combination of L2 and S2 would
have satis�ed the same condition. A di�erent ratio between the two terms would result in a
simpler twofold degeneracy between the Mott and Hund insulators, which appears than as a
fundamental fact which simply follows from symmetry properties and not by arbitrary choices
in the de�nition of the Hamiltonian.

Another peculiar consequence of the factor 4, strictly connected with the maximal degeneracy
mentioned above, is the fact that the degeneracy line J/U = 1/3 corresponds also to the vanishing
of the (n̂ − 3)2/2 coe�cient of U∗ = (U − 3J) in the Hamiltonian (5.3). In terms of the explicit
Kanamori parametrization, this corresponds to the aforementioned inter-orbital decoupling.
We believe there is nothing fundamental about the coincidence between the vanishing of U∗

and the degeneracy of the insulators, apart from the aforementioned enlarged degeneracy. A



5.3 Extended phase diagram in the U-J plane 65

di�erent ratio between the coe�cients would result in a degeneracy line at some U∗ , 0 and a
clear separation between the two phenomena.

All above said is a consequence of the observation [77] that the U = 3J line is the locus at
which the atomic Mott gap ∆(n̄) = E0(n̄ + 1) + E0(n̄− 1)− 2E(n̄) = U − 3J vanishes, where E0(n̄)
is the atomic ground state for n̄ electrons. The vanishing of the atomic Mott gap for U = 3J, and
its small value for values of J/U close to this speci�c one, have already been noted in Ref. [77]
as an argument for the resilience of the metallic region. However, the de�nition based on the
inability of the system to open a Mott gap does not provides us with an explicit characterization
of the Hund’s metal which we discuss in the following section.

5.3.2 The Hund’s metal as a bridge between the two insulators
We can now move to the inspection of the metallic solution (Z > 0) that separates the Mott
and Hund insulating states. Although the metallic region is fully connected, in contrast to the
insulating ones, we can, nevertheless, di�erentiate between two profoundly di�erent regimes as
a function of the interaction strength, which are nothing but the standard metal and the Hund’s
metal that we discussed in previous sections. The data of the �rst panel of Fig. 5.1 correspond
to cuts along straight lines, de�ned with �xed J/U ratio. Namely, passing from the origin of
the phase diagram of Fig. 5.4, they show that the evolution from the region of small U and J is
nothing but the Hund’s crossover we have widely discussed.

In the left bottom panel of Fig. 5.2 we have already shown the evolution of the multiplets as
a function of U along the U∗ = 0 line. In the region of small J and U (bottom left part of the
phase diagram of Fig. 5.4), connected to the non-interacting solution (Z = 1) at J = U = 0, all
the atomic multiplets are populated and a large number of hopping processes can be realized,
leading to the maximum kinetic energy available in our model. Nevertheless, an increase of
either U or J has the same net e�ect of reducing Z by disfavoring some multiplets, thereby
reducing the phase space for hopping processes: an increase of U tends to reduce the population
of multiplets with particle number di�erent from the average �lling (in this case, n̄ = 2), whereas
an increase of J tends to reduce the population of multiplets with low spin. Both e�ects reduce
the number of available hopping channels between sites, weakening the metallic properties
measured by Z. For small values of the interaction parameters this reduction is smooth and
relatively slow.

Then a rather sharp crossover occurs, where Z �attens. As we discussed above, the only
populated multiplets are those with local occupation 0, 1, 2 and 3, and the largest spin con�gura-
tion, namely |0, 0, 0〉, |1, 1, 1/2〉, |2, 1, 1〉, and |3, 0, 3/2〉. We now realize that these states are also
those featured in the degenerate atomic insulators. The crucial observation is that the hopping
Hamiltonian has �nite matrix elements between these states even when U and J are very large.
Therefore we can exploit the charge �uctuations between the di�erent atomic insulators and
obtain a metal with a signi�cant kinetic energy. As a matter of fact, Z does not drop as a function
of U because the populations of the di�erent states remain constant. This is the physical reason
for the resilience of the Hund’s metal. We are able to satisfy the constraints due to J and U
without killing the charge �uctuations.

The link between the Hund’s metal and the insulators is clari�ed by Fig. 5.6, where we show
the populations of the atomic multiplets along a cut at �xed U/W = 3.5, which connects both
the insulating regions, Mott and Hund one, respectively, by increasing J/W value. One can
observe that in the vicinity of the Mott transition the metallic state is formed by transferring
a fraction of the population of |2, 1, 1〉 multiplet to the |1, 1, 1/2〉 and |3, 0, 3/2〉 multiplets, in
equal amount. Hence, close to the Mott transition the insulators that give rise to the mixed
valence state are only the Mott insulator and the additional degenerate insulator characterized
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Figure 5.6: Left panel: Population of the various multiplets as a function of J/U at �xed U/W = 3.5
and n̄ = 2. Right panel: Charge-charge correlations (total, inter-orbital, and intra-orbital) for the same
parameters as in the left panel. This particular cut is chosen in order to demonstrate the connection
between two distinct insulators, Mott and Hund across the Janus phase. For this purpose, we present in
both plots the quasiparticle weight (depicting the Janus tail) as a reference.

by one and three electrons per site (with p1 = p3 = 1/2). However, by going deeper into the
Hund’s metal region, the Hund insulator comes also into play, signaled by the rising of the n = 0
population already for J/U < 1/3, i.e., before the degeneracy line is reached. Eventually, at the
line of degeneracy the n = 1 population reaches its maximum and starts to decrease, whereas the
|0, 0, 0〉 and |3, 0, 3/2〉 populations continue to rise, thereby suggesting that the Hund insulator
is now dominating the mixed-valence state. Therefore, the Hund’s metal appears as a kind of
a bridge between the di�erent atomic insulators, and its mixed valence character results from
the disproportionated character of two of the three insulators. As we mentioned above, the
degeneracy between the Mott and Hund insulator is expected to be realized also in other models
which respect spin and orbital rotation invariance.

5.3.3 Charge �uctuations

In order to better understand the interplay between the degeneracy of the atomic states and
the orbital decoupling, we now study the charge response of the system along the same line,
U/W = 3.5, presented in Fig. 5.6 (right panel).

In the Mott insulator one �nds that the total charge �uctuations are equal to zero, as expected
in a state where the charge �uctuations are completely frozen. This is actually realized as a sum
of positive and negative values of intra-orbital and inter-orbital contributions, respectively, as
discussed above. In this region the intra-orbital �uctuations are constant. The reason for this is
that we are already far in this region where the Coulomb repulsion U is very large, and forbids
any type of processes leading to two electrons in the same orbital (since these processes are
penalized by U). However, the inter-orbital �uctuations can still be active, since we have the
possibility to distribute two electrons in three orbitals. In this way we can allow them to move,
always avoiding having the two electrons in the same orbital.

Entering the correlated Hund’s metal region, the negative inter-orbital correlations start to
increase, and eventually become zero just at the value J/U = 1/3, which corresponds to the
inter-orbital decoupling. As discussed before, the value of the interaction U − 3J between the
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electrons in di�erent orbitals is basically zero, and then it changes sign across the line. At this
point the inter-charge �uctuation changes sign and starts increasing very rapidly as long as
we move towards the charge disproportionated Hund insulator. Consequently, the total charge
�uctuations here grow all the way to the Hund insulating region. Once we enter the Hund
insulating region, which is a non-homogeneous state, Eq. (3.21) can not be used. Nevertheless, at
least locally, one can always �nd that the charge �uctuations will be equal to zero. To conclude,
it is important to stress that, due to the freezing of the intra-orbital charge �uctuations, the
inter-orbital processes are the one to enable this metallic region.

5.3.4 Region J/U > 3/4

For the sake of completeness, let us brie�y explain the peculiarity of the J/U > 3/4 region. In
this extreme case of negative charge gap, U∗ < −5/4U , the insulating ground state is simply the
state that maximizes the charge imbalance, so that each site has either the minimum (n = 0)
or maximum (n = 6) number of electrons even if these states have zero spin. In order to ful�ll
the average �lling n̄ = 2, the fractions of empty or fully occupied sites will be p0 = 2/3 and
p6 = 1/3, respectively. Importantly, despite the fact that this insulator is degenerate with the
Hund insulator at J/U = 3/4, no metallic state emerges along the degeneracy line at strong
coupling. In other words, there is a direct �rst-order transition between the two insulators. The
reason is that the two insulators cannot be connected by simple hopping processes between
multiplets that are already present in the insulators, and in order to form a metallic state one
would have to populate all the multiplets with intermediate particle number between zero and
six, paying a high potential energy cost. This region, in any case, is most likely unphysical for
any real material.

5.4 The case n̄ = 3. Mott and Hund insulators coincides
We have stressed repeatedly that the Hund’s metal physics is not realized at half-�lling, where a
more standard Mott transition is realized, even if with some peculiarity that we discussed.

The link between the degeneracy of the atomic insulators and the realization of a Hund’s
metal can be better understood by looking at Figs. 5.7, where the phase diagram is shown for a
commensurate �lling n̄ = 3. The di�erence with n̄ = 2 is apparent. Here the insulating region is
fully connected and the metallic behavior is limited to a relatively small region of small U and J.
This is clearly generalizing to the region of J/U > 1/3 the results we have presented in Fig. 5.1.

The key observation to understand the lack of a Hund’s metal state in the large U and J
regime is that, for this density, there is no competition between Hund’s coupling and Hubbard U .
Indeed the state |3, 0, 3/2〉 satis�es simultaneously the Hubbard term, which selects states with
3 electrons, and the Hund’s coupling since we obtain the highest possible spin. Therefore, the
Mott and the Hund insulator simply coincide and they amount to a single multiplet with �xed
population. Consequently, for large U and J there is no coexistence of multiplets with di�erent
population, hence the kinetic term has no matrix elements and the system remains insulating.
As we have seen before, the e�ect of the interactions is simply to �lter out the Hund/Mott
insulating state out of the many multiplets, leading to a progressive (actually abrupt) decrease
of Z.

Finally, in Fig. 5.8 we show the quasiparticle weight, multiplet population and charge cor-
relations at �llings 2 ≤ n̄ ≤ 3, connecting the two limiting cases we have considered so far,
n̄ = 2 and n̄ = 3. We focused on the same point of the two phase diagrams, belonging to the
degeneracy line, where U/W = 3.5 and J/U = 1/3. We see the progressive �ltering of the n̄ = 3
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Figure 5.7: Paramagnetic phase diagram of the Hund system at commensurate �lling n = 4. Here, the
dark blue region on the right is a Mott insulator. The dashed (J/U = 1/3) and dotted (J/U = 3/4) lines
indicate the degeneracy between the parent insulating states. Here the Mott and Hund insulators coincide.

Mott insulating multiplet out of the bunch of populated multiplets for n̄ = 2. As a matter of fact
the system survives in a Hund’s metal for every doping di�erent from n̄ = 3, even if the valence
�uctuations are reduced by approaching half-�lling. The evolution of the charge correlation
functions shows that the whole region of densities is characterized by vanishing inter-orbital cor-
relations, con�rming our previous statement that Hund’s metal physics is realized everywhere
but in the Mott insulator.

Figure 5.8: Multiplet populations (left), charge correlations (right) and quasiparticle weight (both) as
a function of the average density connecting the Hund’s metal and Mott insulator at U/W = 3.5 and
J/U = 1/3.
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5.5 Phase diagrams for negative J

In this chapter, as in the rest of the thesis, we have so far considered the ’physical’ case of
a positive Hund’s coupling J > 0. The sign of the Hund’s exchange descends indeed from
the repulsive character of the Coulomb interaction which re�ects in an exchange mechanism
favoring high-spin (and high-orbital angular momentum) con�gurations. However, it can be
interesting to extend our analysis also to the case of J < 0, a regime which can be useful to
strengthen our conclusions, and that can also �nd a physical realization in some materials.

The physical mechanism to obtain an inversion the Hund’s rules is the coupling with
phonons. In particular, for a multi-orbital electron-phonon system, one has Holstein modes,
which couple to the total charge and therefore reduce the value of U , and Jahn-Teller modes,
which couple with internal degrees of freedom and lead to an attractive term in the spin and
orbital channels. Formally, one can integrate out the phonon modes, which leads to an e�ective
attractive electron-phonon interaction that depends on the frequency. If we assume, for formal
simplicity, an antiadiabatic limit for the electron-phonon coupling, we can neglect the frequency
dependence and the phonons give rise to terms which are exactly of the same form of the
Coulomb interaction, but with opposite sign. This is the case of alkali-metal doped fullerides
A3C60 (where A = K, Rb, Cs), where it has been shown [117–121] that the attractive contribution
due to phonons has the same functional form of the Hund’s exchange, but it has a larger
strength with respect to the repulsive Coulomb term (the J we used so far). Therefore, we have
Je f f = J − Jphonons < 0. In the following we will use the standard symbol J for Je f f and we
will consider J < 0, which means that the system now favors low-spin and low-orbital-angular
momentum states. We notice that this model, with small values of J, has been shown to describe
(actually predict) the phase diagram of Cs3C60 under pressure and the whole dependence of
the superconducting phase on the lattice spacing in these materials, which features a �rst-
order transition between a Mott antiferromagnet and an s-wave superconductor. After DMFT
calculations at model level have shown that this physics is a direct consequence of a large
U and a �nite negative J [118, 119], this scenario has been made quantitative by ab-initio
modeling [120, 121]. More recently, DMFT calculations have shown that for larger values of
J/U one �nds a kind of Jahn-Teller metal which is the negative-J counterpart of the Hund’s
metal [122].

We now follow the same strategy we used for J > 0 case and explore the phase diagram of
the model for the same densities n̄ = 2 and n̄ = 3. We start from the half-�lling system, which is
motivated by the physics or alkali-doped fullerides.

In the phase diagram in the right panel of Fig. 5.9 we show the quasiparticle spectral weight
Z in the normal state (inhibiting the superconducting ordering, which is also realized using
RISB [123]). It is evident that the phase diagram is di�erent from the repulsive-J model at the
same density, but it is reminiscent of the situation we found for n̄ = 2 in the previous model.
In fact, in contrast to the Hund system, the case of negative J sees the competition between
distinct insulating states, promoted by either U or J.

The insulator (dark region) on the right side of the plot is again a standard Mott insulator
with three electrons localized on every site. In this case, the three electrons now populate the
lowest-spin multiplet |3, 1, 1/2〉 (state 7 in Table 5.1). The insulator in the left-upper part of
the diagram is instead a charge-disproportionated insulator favored by the negative Hund’s
coupling. In this case this is a simpler state formed by equal proportions of sites populated by
two or four electrons in the low-spin con�guration, namely the |2, 0, 0〉 and |4, 0, 0〉 multiplets
(states 3 and 9 in Table 5.1). It is interesting to note that in this case the ’Jahn-Teller insulator’
is a superposition of singlets with di�erent occupations which can be seen as a precursor of
the superconducting state. In this sense it is reminiscent of the pairing insulator found in the



70 Hund’s metals: A tale of two insulators

attractive Hubbard model when superconductivity is inhibited [124, 125]. This suggests an
interesting link between the mixed-valence metal and superconductivity.

We can, therefore, follow the same line of thought of the J > 0 case and discuss the stability
of the two insulators. Also here the two insulators become indeed degenerate along a certain
line with constant |J|/U ratio, in this case |J|/U = 1/2, while the two insulators are stable above
and below the line in the atomic limit.

Figure 5.9: Left panel: Quasiparticle weight Z as a function of interaction strength U and di�erent values
of �xed |J|/U for a JT system at n̄ = 3 (and n̄ = 2 in the inset). Right panel: The same quantity for a
whole range of U and J. For n̄ = 3 and |J|/U = 1/2 (degeneracy between Mott and pairing insulators), Z
remains asymptotically �nite at arbitrarily large U . Corresponding cuts at �xed |J|/U are shown in the
left panels.

Let us now turn to the metallic state which, as the phase diagram shows, fully separates the
Mott and pairing insulators. Also in this case the metal undergoes a clear crossover moving
from the weakly correlated region at small U and J, where all the multiplets are populated
and the quasiparticle weight decreases as a function of both U and |J|. On the other hand, the
highly correlated region located along the degeneracy line represents a JT metal (in analogy
with the Hund’s metal), where the only populated multiplets are those already present in the
insulating states on the left and right of the region, namely |3, 1, 1/2〉, |2, 0, 0〉 and |4, 0, 0〉. As
in the Hund system, the emergent JT metal can be regarded as a mixed-valence state where,
in the presence of a degeneracy between two insulating states, the systems gains additional
kinetic energy by allowing hopping processes that connect the eigenstates of the two insulators.
The maximum energy gain and maximum quasiparticle weight are reached exactly on the line
of degeneracy, where the multiplet population reveals a state that is a symmetric mixture of
the two insulators. The analogies between JT and Hund’s metals are further strengthened by
the similarity in the Janus e�ect, shown in the left panel of Fig. 5.9, where we plot cuts at �xed
|J|/U . We also note that, as a result of the lower degree of degeneracy that characterizes the
JT system, and the corresponding smaller number of hopping processes that take place in the
JT metal, the asymptotic value of the quasiparticle weight is smaller, here, in comparison to
the Hund system. It should be clear that this result strongly supports our interpretation which
considers the degeneracy between strongly correlated insulators as the key condition for the
existence of the correlation-resilient metal regardless of the precise model at hand.

A last con�rmation of our picture is given by the phase diagram for n̄ = 2 (inset in right
panel of Fig. 5.9). In this case, just like for n̄ = 3 and positive J, the pairing insulator and the
Mott insulator coincide and they are simply given by the single state |2, 0, 0〉 (obviously the same
would happen for n̄ = 4), which clearly satis�es both the Hubbard U , since charge �uctuations
are frozen, and the negative Hund’s coupling, since the state has S = 0 and L = 0. In this case
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the Jahn-Teller-Mott insulator [117] invades a large area of the phase diagram and no Jahn-Teller
metal is stabilized. The metallic solution survives only in the bottom left part of the phase
diagram.

There is yet an important di�erence between the JT and Hund systems, namely the link
between the degeneracy line between competing insulating states and the vanishing charge-
transfer gap. While in both systems the degeneracy line is the place where the mixed valence
JT or Hund’s metals are stabilized, in the JT system the degeneracy line is not linked with a
vanishing charge-transfer gap as in the Hund system. In fact, the charge-transfer gap remains
positive for any value of J < 0. Consequently, in the JT system the metallic solution at half-�lling
and large U ∼ 2|J| remains stable upon doping, and the e�ects of the |J|/U = 1/2 ratio are
characteristic only of the n̄ = 3 commensurate �lling.

5.6 Conclusions
In this chapter we have extended the usual range of the parameter U and J associated to the
Kanamori model, with the scope to study the origin of the Hund’s metal. We have shown,
exploring the full U-J phase diagram of the system with two electrons in three-orbitals, that
the correlation-resilient metal emerges precisely in the region between the two distinct insu-
lating states: a high-spin Mott insulator, favored by the Hubbard repulsion U , and a charge
disproportionation insulator, or so-called Hund insulator, favored by the exchange coupling and
characterized by the inhomogeneous spatial charge distribution.

The competition between the two insulators results in an asymptotic mixed-valence metallic
state in the region where the interaction parameters are balanced. Indeed, we have shown
that the Hund and Mott insulating states are degenerate exactly along the line J/U = 1/3,
appearing at arbitrarily large interaction strength. Moreover, along the same line we �nd
another inhomogeneous insulator, degenerate to the Mott and Hund insulator, which, indeed,
contributed to the hopping processes needed for the realization and stabilization of Hund’s
metal. However, this state is never stable in the atomic limit.

In order to con�rm this picture and make it more general, we compared this situation with
the one of the global half-�lling n̄ = 3, where we have seen that the Hund’s metal can not
be found. Even making the further comparison with a case with negative Hund’s coupling,
corresponding to the Jahn-Teller coupling with some local phononic modes, we found that the
correlations-resilient metal emerges along the line where the disproportionated insulators are
degenerate.

These results provide a characterization of the Hund’s metal state and connect its presence
with possible charge instabilities, which have indeed been observed in chromates, and have
proposed to play a crucial role in iron-based superconductors.
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6
Orbital dependent interactions

In this thesis we have accounted for some of the many interesting results which have been
obtained in the last years for strongly correlated multi-orbital models. Most of the results have
been obtained for very symmetric models in which both the electronic bands and the interactions
do not depend on the individual orbitals and they are parameterized by two parameters, U and
J, which can be takes in its full Kanamori form and in the Ising version. Already with these
important simpli�cations these models reveal a rich physics [71, 78], which can �ourish in a
number of directions once we consider deviations from the symmetric case.

As we commented in Chapter 3, the e�ect of breaking the symmetry between the orbitals
has been mainly taken into account in the single-particle properties, in particular considering
di�erent hoppings (bandwidths) for the various orbitals or a crystal-�eld splitting. We have
brie�y discussed how both these e�ects can lead to orbital di�erentiation and even orbital-
selective Mott transitions. Both these orbital-selective phenomena are indeed strongly favored
by the Hund’s coupling, which decouples the orbitals, therefore favoring a di�erent behavior
among them. In this section we focus on a di�erent way to induce orbital-selective phenomena,
which is also motivated by the properties of real solids. Namely, we focus on the case where the
interaction terms appearing in the Kanamori Hamiltonian are not independent on the chosen
orbitals. This is in most cases the outcome of realistic estimates of the Coulomb integrals using,
e.g., constrained-RPA [80], and it is certainly the case when we consider unit cells including
di�erent correlated atoms, which may be relevant for some interesting materials.

Already the symmetric problem depends on a number of parameters, namely J, U , the
number of orbitals and the �lling, and allowing for arbitrary values for the Coulomb and
exchange integrals makes the parameter space hopelessly complicated. For this reason we
will choose a few subset of parameters to reveal some main trends induced by non-symmetric
interactions.

73
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6.1 Non-uniform density-density interactions for J = 0

Symmetric interactions with U′ , U

We start exploring the e�ect of non-uniform interactions on the Mott transition of multi-orbital
Hubbard model. For that purpose, let us generalize the case we discussed in Sec. 3.2 of a multi-
orbital Hubbard model in which we only have charge-charge interactions and let us take that the
repulsion between electrons in di�erent orbitals U′ is smaller than the one for electrons in the
same orbitals U . At this level we are not really invoking the breaking of rotational invariance
between the orbitals, but this analysis can be used as a starting point. We start from results
obtained in the absence of the Hund’s coupling, J = 0, in order to examine how the orbital
degeneracy e�ects a metal-insulator transition. Here we report the results for three-orbital
model at the three independent integer electronic �llings. Since our goal is to study purely
the role of the multi-orbital interactions on the Mott transition, we exclude the possibility of
having the crystal-�eld splitting terms or any asymmetry regarding the width or shape of the
bands, setting the inter-orbital hybridization to be equal to zero. For simplicity, we consider a
�at density of states for each orbital, where W is the bandwidth of the non-interacting electron
band, though our main conclusions should not depend on this choice.

Let us now try to investigate the behavior of the quasiparticle weight for the �llings di�erent
from n = N. We still assume that the inter-orbital Coulomb interaction can be expressed in
terms of the intra-orbital one, equivalent in each orbital, with the dependence U′ = αU , where
α ≤ 1. As we will see below, this particular case captures many important features observed in
the more relevant (J , 0) case and allows a simple interpretation of the results. To write things
explicitly, if the interaction is Ĥint = 1/2

∑
mn Umnn̂mn̂n, here we are taking U11 = U22 = U33 = U

and U12 = U23 = U13 = U′.
In Fig. 6.1 we show the results for this model at �lling n ≤ N. The three plots show a

striking similarity with those of Fig. 3.10 for the three-orbital Hubbard-Kanamori model with
�nite J, discussed in Sec. 3.31. However, this should not come as a surprise recalling Eq. (3.10).
Indeed, if we consider that the Kanamori Hamiltonian imposes U′ = U − 2J, meaning that U′

is constrained by the value of Hund’s coupling J, we can see α as if it "carries" the portion of
e�ect of J. In this sense one can write U′ = U − 2J = αU → 1 − 2J

U = α. If we impose α = 1
we get J = 0, both corresponding to the situation where U′ = U . On another side, when α = 0,
we �nd that U = 2J, which is satis�ed precisely when U′ = 0 in Kanamori case. However,
one should not conclude (wrongly) that the two models are the same. Namely, the Kanamori
Hamiltonian (3.10) in the third term contains also the explicit contribution of J accounting
for the interaction between aligned spins in two di�erent orbitals (that, moreover, polarize
the system), in which essentially all the Hund’s physics is contained, whereas the condition
U′ = U − 2J is a consequence of a chosen model. However, we can see the above mentioned
similarities between two models as if the former one contains a portion of the e�ect of Hund’s
coupling in Kanamori model. This will become more clear in the following.

First, let us consider the situation with a single electron in three orbitals. This case is a quite
trivial one, since having a single electron the system does not pay any energy cost due to the
absence of other electrons. On another side, the reduction of α tends to decouple these three
degenerate orbitals. Eventually, when α = 0, meaning that the inter-orbital interaction is absent,
one �nds the situation where all the orbitals behaves as three independent single-orbitals with
1/3 electron in each of them. From this situation results the metallic behavior, that becomes
more and more pronounced as the orbitals are more and more decoupled.

1Note that, however, the relative value of U is di�erent since in the two cases we are assuming two di�erent
density of states: �at and semi-circular one, respectively.
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On the other hand, the case n = 2 to some extent reminds the Janus e�ect described in
Chapters 3 and 5, for the reason explained above. However, despite showing a well pronounced
tail for large values of Coulomb repulsion, the strong decrease of Z for the small U found with
Kanamori Hamiltonian is absent. This is due to the fact that once we include a complete J (or
even its Ising component) we have a strong quenching of the hopping channels, since only
processes which conserve the high-spin con�gurations are allowed. For this reason one �nds
a strong reduction of the e�ective kinetic energy and consequently of Z. On another side, in
the model considered here we do not have any constraints on the choice of spin, in sense that
an electron can hop to any position, as long as it satis�es the Pauli principle. Therefore, this
model somehow features only half of the ’Janus’ physics, namely the increase of the atomic gap,
and a somehow intermediate scenario. Eventually, the tail remains metallic while decreasing α,
having 2/3 of (uncorrelated) electron in (almost) decoupled three orbitals.

Figure 6.1: Quasiparticle weight Z as a function of interaction strength U1/W (where W is the bandwidth
of the �at density of states), for n ≤ N (and corresponding n > N due to particle-hole symmetry). There
is an evident resemblance with the behavior in Fig. 3.10 induced by Hund’s coupling J (see in the text).

Finally, the half-�lling case n = 3, anticipated in Chapter 3, was partially discussed in Ref. [74],
by means of RIBS and DMFT approach. Here we con�rm the ideas underlined within that study,
or more precisely, that for α < 0.5 the critical interaction Uc is independent of the value of U′ and
coincides with the one estimated for the single-orbital case. Also in this case orbital �uctuations
are apparently completely quenched when α is below this threshold. Meanwhile, for larger α
Uc is shifted towards higher values, owing to the enhancement of the charge �uctuations with
increasing U′ and correspondingly α. The maximum critical value of the interaction strength is
obtained when U′ = U , recovering the result for the fully rotationally-invariant model.

Let us make a short remark regarding this particular case, with n = 3 electrons. To be speci�c,
let us compare it with the result from Fig. 3.10 for the same �lling. The trend of decreasing
α is similar to the one obtained by increasing J, as long as α > 0.5. At this point, as already
mentioned, a sudden decoupling between the orbitals takes place. In Kanamori one does not
�nd this kind of rigid decoupling and the evolution as a function of J is more regular. As a �rst
argument, we can attribute this to the several matrix elements connecting the di�erent orbitals
of the Kanamori model.

6.1.1 Asymmetric interactions

The previous section as well as a few previous studies have shown that once we reduce the
symmetry of the interactions we immediately �nd deviations from the standard behavior of
the Mott transition which partially recalls the e�ect of the Hund’s coupling. In this section we
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further reduce the symmetry of the interactions assuming a hierarchy between the di�erent
orbitals. More precisely, we decide that orbital 1 is more correlated than the other two orbitals,
i.e., that their intra-orbital repulsion is not the same and in particular U11 > U22 = U33. We may
see this e�ect as arising from a di�erent chemical nature of orbital 1 (as an extreme example, we
can thing of copper oxides, assuming orbital 1 to be copper and orbitals 2 and 3 oxygen), or from
some symmetry breaking induced by lattice deformations or other structural/chemical e�ects.

Figure 6.2: Asymmetric Coulomb interactions in multi-orbital systems: (a) intra-orbital, for each of the
three bands, (b) inter-orbital, between two di�erent bands

In order to describe this e�ect, we introduce the following parametrization:

U22 = U33 = βU11

U12 = U13 = αU11

U23 = αβU11 = βU12 = βU13 ,

(6.1)

as graphically described in Fig. 6.2 We have de�ned, besides the α parameter introduced above,
a new coe�cient, β, which controls the ration between the Coulomb repulsion in orbitals 2 and
3 with respect to 1. α is again de�ned as the ratio between the o�-diagonal interactions and the
diagonal ones. Here we assume, somewhat arbitrarily, that also the o�-diagonal interactions
have a hierarchy, with the interaction between orbitals 2 and 3 smaller by the same factor β
with respect to the repulsions involving also orbital 1 (U13 and U12). For β = 1 we recover the
model of the previous section. This choice is obviously motivated by the need for reduction of
the number of parameters to allow for some characterization of the physics. We will avoid the
limits where α and β are very small, where some pathological behavior can be realized.

We present our results along some lines with a �xed value of one parameter.

6.1.2 α = 1

We start from the case where α = 1 and where the only parameter introducing an asymmetry
between the orbitals is β, meaning that U11 = U12 = U13 = U1, and U22 = U33 = U23 = βU1.
The main e�ect of β < 1 is to make orbital 1 more correlated than the orbitals 2 and 3, at the
same enhancing the repulsion between it and the other orbitals. The main expectation is that
the decrease of β should induce a depopulation of orbital 1, an e�ect which, at least qualitatively,
mirrors that one related to a crystal-�eld splitting, where orbital 1 has higher energy than the
other two. In such situation the system will tent to prefer those con�gurations with the lower
energy cost, namely the ones in the lower manifold (belonging to the orbitals 2 and 3). Obviously,
this is expected to lead to a di�erentiation in the values of Z between the orbitals.

In Fig. 6.3 we plot Z1 and Z2 = Z3 and the orbital occupations as a function of U1, for three
values of β and for the three densities n = 2, 3, 4 (notice that now n = 2 and n = 4 are not
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equivalent because particle-hole symmetry is explicitly broken). We do not report results for
n = 1, which is barely a�ected by the anisotropies and for n = 5 for reasons we describe below.

The main e�ect of β goes exactly in the direction we expected. For β < 1 increasing the
absolute value of all the interactions leads to an increasing tendency to transfer charge from
orbital 1 to orbitals 2 and 3. Therefore, in all the three cases we consider, we start from a
homogeneous distribution between the three orbitals, but we rapidly induce a polarization
where more and more charge is populating the two orbitals with smaller interaction. This
leads to physically di�erent scenarios according to the value of the total charge, namely n1 and
n2 = n3. In all cases we reach at some point a transition where orbital 1 is completely empty
and the remaining electrons occupy the two-fold degenerate manifold, which then undergoes
a Mott transition when U becomes large enough. The critical values of Uc reproduce that of
a two-orbital model. For n = 4 we have instead a band insulator with Z = 1 occupied by four
electrons. According to this picture, the case n = 5 leads to a situation with a half-�lled band for
orbital 1 and a completely full 2-3 manifold.

Figure 6.3: Quasiparticle weight Z1 and Z2 = Z3 and orbital occupation n1 and n2 = n3 in a three-orbital
non-degenerate Hubbard model, for di�erent integer �lling n = 2, 3, 4. We set α = 1.0 and β = [0.7, 1.0].

Apparently, if we would have taken β > 1, making two orbitals more correlated, there would
have been a sort of inversion between the results for n = 2 and n = 4 in Fig. 6.3.

6.1.3 α = 0.7

Now we study the system as a function of β starting from a situation where α < 1, which leads
to a partial "decoupling" between the orbitals, as discussed above. In particular we consider
α = 0.7 (see Fig. 6.6). For this choice of α we are not yet in the regime where the model behaves
as a collection of single-orbital models, but we are also quite far from the symmetric α = 1
regime.

Once we allow the change of β that leads to a smaller energy cost of having an electron in the
con�gurations related to the orbital 2 and 3, we fully lift degeneracy, setting the parameters from
Eq. (6.1) to be all di�erent. The results obtained for this model are presented in Fig. 6.4, where we
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have presented the quasiparticle weights, Z1 and Z2 = Z3, together with the occupation number
for each band, n1 and n2 = n3.

Figure 6.4: Quasiparticle weight Z1 and Z2 = Z3 and orbital occupation n1 and n2 = n3 in a three-orbital
non-degenerate Hubbard model, for di�erent integer �lling n = 2, 3, 4. We set α = 0.7 and β = [0.7, 1.0].

Let us �rst, for simplicity, focus on the case n = 3. Clearly, situation α = 0.7, β = 1 is the one
observed in Fig. 6.1 with a rather fast Mott transition favored by the decoupling of the orbitals,
as discussed above. If we slightly imbalance orbital 1 with respect to the others by taking β = 0.9,
we can see that the Z-s are increased as well as the critical Uc for the Mott transition, inducing
only very small di�erentiations between Z1 and Z2 = Z3 and for the occupations, where n1

becomes smaller than n2 = n3. When the initial di�erentiation is small, as in this case, the
two orbitals do not decouple and, increasing the interactions counteract the initial bifurcation
between the occupations. Indeed, by increasing U one obtains a single Mott transition where
the Z-s of the three orbitals vanish simultaneously and we recover an even population of the
three orbitals. When we further reduce β, we recover instead results similar to α = 1, where the
system polarizes at a critical Uc, meaning that the orbital 1 becomes empty and the remaining
two orbitals host the three electrons with a Mott transition taking place by further increasing
the interaction.

For n = 4 we have a similar trend with respect to n = 3. For moderate imbalance β = 0.9 we
�nd an initial polarization of the orbital populations followed by a correlation-induced reduction
of the same quantity. This leads also in this case to a single Mott transition which, however,
appears to be of �rst-order, signaling that the competition between the e�ects of α and β is here
stronger.

For n = 2 we �nd instead a scenario which is closer to the case of α = 1 and to the results
obtained for smaller β for the other two densities. Here already for the small value β = 0.9 we
�nd that the polarization between the orbitals increases as a function of the interaction and
leads to complete orbital polarization at a value of U which is reduced by decreasing β, that
makes the system less symmetric. In this case it seems that the lower occupation of the orbitals
with smaller repulsion allows for a more e�ective decoupling between them and orbital 1 with
respect to the other densities.
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6.1.4 β = 0.8

Finally, let us examine the behavior of the system at �xed β, such to split the intra-band Coulomb
interactions that belong to two di�erent manifolds, comparing results for di�erent α-s which
span from the fully symmetric regime α = 1 to the completely decoupled limit α = 0.

Figure 6.5: Quasiparticle weight Z1 and Z2 = Z3 and orbital occupation n1 and n2 = n3 in a three-orbital
non-degenerate Hubbard model, for di�erent integer �lling n = 2, 3, 4. We set α = [0.0, 1.0] and β = 0.8.

The results for n = 2 con�rm that this density is particularly susceptible to full orbital
polarization which in turn leads to a completely empty orbital 1. At least for the chosen value
of β we �nd indeed a complete polarization at some U , whose value grows when we reduce α.
Just as in all the previous cases, after the polarization of orbital 1, we observe a more or less
standard Mott localization in the remaining manifold of orbitals 2 and 3.

In the half-�lling case, presented in Fig. 6.5, we see that the value of α triggers a clear change
of behavior between the polarized limit and the case where we have a collective Mott transition,
which is realized for small values of α.

Finally, n = 4 case shows a very interesting behavior. Namely, while decreasing α, the
system "transits" from band insulator-metal regime, to an OSMT. This means that, instead of
choosing between having one band empty and other two full, and all equivalently populated
bands, the system prefers to split them such to have two independent Mott transitions. This is
possible since the splitting between the manifolds is already su�ciently large and, moreover, the
manifolds are almost decoupled (α ∼ 0.3) or fully decoupled (α ∼ 0). If we recall what we have
previously anticipated, namely that decreasing α to some extend corresponds to an increase of
J, we can observe some similarities in behavior between this situation and the one described in
Sec. 3.4.4, for crystal-�eld split orbitals in the presence of the Hund’s coupling.

Already these few snapshots assuming a very limited parametrization show the richness of
the physics induced by orbital-dependent interactions, suggesting that these e�ects should be
seriously taken into account in studies of real materials. We notice a strong dependence on small
changes of parameters and on the charge density, which is characteristic of correlated materials.
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6.1.5 Summary diagram

Figure 6.6: A sketch of two distinct regimes,
polarized (blue) and singe Mott (red) emerging
from the competition between two di�erent pa-
rameters, α and β, de�ned in Eq. 6.1 or more
precisely, between anisotropic Coulomb interac-
tions. The red line for β = 1 shows the situation
of symmetric interactions with U , U′.

We can summarize the results of our model in a
sort of phase diagram in the space of α and β. We
consider the case of n = 3 which emerges as the
most generic among the densities we have consid-
ered. Along the line β = 1 we have a "standard"
metal-Mott insulator transition where the electrons
are equally distributed among the orbitals, no mat-
ter the value of α (which a�ects only the critical
interaction strength Uc). When we increase α, we
introduce a competition with a phase where the or-
bitals are decoupled by α and polarized by β. There-
fore we have a sort of critical α, growing with β
above which we obtain the full polarization with
an empty orbital 1 and a Mott transition limited to
the 2-3 manifold. We can see this simple diagram
as the skeleton of more realistic and complete de-
scriptions of this physics. As we have seen above,
the main competition between a single collective
Mott transition and a polarized systems can also
be enriched by other phases like an OSMT in the
case of four electrons.

6.2 E�ect of the Hund’s coupling

We �nally brie�y discuss the e�ect of a full Hund’s coupling on the above physics. We introduce
an orbital independent coupling

J = J12 = J13 = J23 = γU1 , (6.2)

which we study as a small perturbation to the system.
A small value of J does not a�ect the physics along the line α = 1, since the e�ective level

splitting induced by the change of β is strong enough. Indeed, the Hund’s coupling, which
attempts to spread the electrons in di�erent orbitals, is known to compete directly with the
crystal-�eld splitting [78] and it is therefore expected to compete also with the similar e�ect
induced by β. However, our orbital-dependent interactions are not completely equivalent to a
crystal-�eld splitting. In particular, there is still an interaction between the orbitals which is
expected to favor a metallic behavior in orbitals 2 and 3. Due to this dependence, the e�ective
separation between the manifolds becomes even stronger than for a single-particle splitting,
hence J has a harder time to a�ect the physics of such system.

Now, let us assume the case α = 0.7, β = 0.9, where we still have that U11 ∼ U22 = U33 and
a mild decoupling e�ect, so that the e�ect of J can be observed. In fact, Fig. 6.7 shows the e�ect
of Hund’s coupling on the quasiparticle weight and orbital occupation for global half-�lling.
One can notice the tendency of J to lower the critical Uc and to favour the �rst-order character
of the transition regardless the initial behavior in the absence of J, precisely as in full symmetric
case described in Chapter 3. Moreover, it is shown that Ising and Kanamori treatment of this
interaction do not reveal any di�erence in the estimation of Uc. However, a slight discrepancy
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is noted in the slope of the quasiparticle weight (and correspondingly oscillation in occupation
number from the referent one) for the moderate values of U .

Figure 6.7: Quasiparticle weight Z1 and Z2 = Z3, and orbital occupation n1 and n2 = n3 presented in
the inset, in a three-orbital non-degenerate half-�lled Hubbard model, for J , 0. We have chosen two
di�erent points (α = 0.7, β = 0.9 and α = 0.7, β = 0.8), one of them close to the line splitting the two
regimes in Fig. 6.6: one can observe the tendency of Hund’s coupling J to drive the system towards the
Mott insulating phase. No huge di�erence between Ising and Kanamori treatment is observed.

We �nally examine the behavior close to the line separating the two regimes in Fig. 6.6. As
we have seen so far, two regimes correspond to di�erent physical behavior, with stronger e�ect
of the energy splitting between the manifolds due to the imbalance between U-s on one side
(blue region), and decoupled nature of the orbitals on another side (red regime). These two
regimes compete along the above-mentioned line in Fig. 6.6. We take the point α = 0.7, β = 0.8
in Fig. 6.7, where we observe a clear and strong tendency of J to push the system towards the
stabilization of the Mott phase at the expenses of the region where the system polarizes into a
two-orbital model. The qualitative e�ect is the most natural, since the Hund’s coupling wants to
spread the electrons between the orbitals and it does not like the full polarization, but the size
and the rapidity of the e�ects are remarkable, con�rming the huge sensitivity of this physics on
details of the interaction terms.

6.3 Conclusions
We have investigated the e�ect of anisotropic Coulomb interaction in three-orbital Hubbard
model, by means of Gutzwiller approximation. The results reveal a strong sensitivity to even
small deviations from fully symmetric interactions. Already for values of our e�ective parameters
α and β we �nd rapid deviations from the known results. An anisotropy of interactions between
di�erent orbitals acts to some extent as a crystal-�eld splitting, favoring an orbital polarization.
In generic cases, the solutions are dominated by the competition between the tendency to have
a single Mott transition with equal occupation of the various orbitals and the polarized regime
favored by the anisotropy. We map out this competition in the space of α and β and we present
also interesting dependencies on the �lling. In particular, in the case where one orbital has a
larger Coulomb repulsion than the others and when n = 4, we �nd an orbital-selective Mott
transition reminiscent of that found in Ref. [24].

Finally, we have checked to which extent the Hund coupling a�ects the interplay among the
intra- and inter-orbital Coulomb interaction and the metal-insulator transition. Moreover, we
have observed that there are no huge di�erences between the Ising and Kanamori treatment, that
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suggests us that in more realistic calculations, where the interactions are indeed non-uniform,
the choice between the two does not induce any change nor novelty in a physical systems.

Already this very basic and simpli�ed analysis assuming a very limited parametrization show
the richness of the physics induced by orbital-dependent interactions, suggesting that these
e�ects should be seriously taken into account in studies of real materials. We notice a strong
dependence on small changes of parameters and on the charge density, which is characteristic
of correlated materials.



7
Compressibility enhancement in

multicomponent Hubbard models

In the previous sections we have reviewed some properties and emergent e�ects associated with
the presence of a sizable Hund’s exchange interaction in strongly correlated models [71, 76–78]
and we presented a novel analysis which demonstrates the mixed-valence nature of the Hund’s
metal and its relationship with charge disproportionation instabilities. Following Ref. [11, 12, 14]
we have stressed that the proximity of the half-�lling Mott insulator (where the number of
electrons per site n equals the number of orbitals N) has an essential e�ect on the nearby Hund’s
metal phase [71], which extends in a large regions of dopings, in particular when the �lling
is n = N ± 1. This observation has several important consequences which are particularly
relevant in the understanding of iron-based superconductors. Among this we focus on the
recent observation that the charge compressibility can be enhanced and diverge at the Hund’s
metal crossover [21], which can be directly connected with mixed-valence behavior and charge
ordering.

A divergent compressibility signals indeed a thermodynamic instability towards a macro-
scopic phase separation where the system is no longer stable in a homogeneous state. A similar
state can be turned into a charge-ordered phase if longer-range Coulomb interactions are
included, and it can also act as the source of a booster of a superconducting instability.

In Ref. [21] the Slave-spin mean-�eld has been used to compute the compressibility of the
Kanamori model with only density-density interactions (or the so-called "Ising" type of Kanamori
model) for di�erent number of orbitals. These calculations have shown that the phase separation
instabilities appear quite generally together with the Hund’s metal phenomenology, but that
they strongly depend on the number of orbitals. This suggests that the results can depend on
other "details", such as the presence of the spin-�ip and pair-hopping terms. In this chapter we
extend this analysis to the more general case of a full Kanamori interaction and discuss in details
the dependence on the number of orbitals and on the value of the Hund’s coupling using the
rotationally-invariant Gutzwiller approximation.

83
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7.1 Compressibility in strongly correlated models

The electronic compressibility κel, which measures the response of the electronic system to an
attempt to change its volume via an external pressure can be computed as

κel =
1
n2

dn
dµ

, (7.1)

where n is the total charge density and µ is the chemical potential of a system. This expression
clearly shows that, besides the 1/n2 factor, the compressibility is proportional to the charge
susceptibility χc = ∂n/∂µ, being µ the conjugated variable to the density. Therefore, this quantity
measures also the thermodynamic stability of the system with respect to an attempt to change the
number of particles by moving the chemical potential. For this reason, this is a particularly useful
and sensitive probe of the response of strongly correlated electron systems. In the following we
will use, as it is customary done, κel for the charge susceptibility.

The Mott insulator is indeed an incompressible phase, characterized by a vanishing com-
pressibility. This is a simple consequence of the fact that, in the Mott insulating phase, changing
the change of chemical potential within the Mott gap will not induce any change to the number
of particles. In the general case, the compressibility in the metallic state is �nite and it tends to
decrease approaching the Mott transition1.

However, there are situations in which the approach to the Mott insulator displays a divergent
charge response despite the incompressible nature of the insulating region. In particular, it has
been widely debated whether phase separation occurs in two-dimensional strongly correlated
models for the copper-oxygen planes of the high-temperature superconductors, namely the
Hubbard model and the t-J model [126]. We do not want to enter the details of the debate, which
go beyond the scope of this work, but we remind the basic ideas and the signi�cance of this
phenomena.

According to several studies, the charge compressibility diverges approaching the half-�lled
Mott insulator (which is typically antiferromagnetic), leading to a macroscopic phase separation
between the half-�lled magnet and a metallic phase with larger doping. We have, therefore, a
spatial coexistence between two phases with di�erent charge density. We underline that the
divergence of the compressibility has been found only in two and one dimensions, and it is not
expected to occur in three dimensions. It is certainly not found in Dynamical mean-�eld theory
and in slave-particle approaches, which always �nd a �nite compressibility in the metal all the
way towards half-�lling. A divergent compressibility can be however triggered, also at DMFT
level, by additional interactions, such as the electron-phonon coupling [127]. This means that
the divergence of compressibility that we discuss in this section is inherently associated with
the multi-orbital character of our models and in particular to the physics of the Hund’s coupling
that we discussed in the previous chapters.

As we mentioned above, the divergence of the compressibility is not merely signaling an
instability of the metallic state, but it opens the way to the realization of several phases. In par-
ticular, the phase-separated state can be seen as the ancestor of the charge-ordering instabilities
which have been more recently identi�ed in the cuprates. The idea is that, when longer-range
Coulomb interactions are included, the thermodynamic phase separation is strongly frustrated
because the concentration of charge-rich regions becomes energetically unfavorable. The sys-
tem can therefore �nd a compromise between the two tendencies, leading to incommensurate
charge-ordering patterns, whose precise nature and ordering vector depend on the doping and

1A crossover to standard band insulator can also result in zero compressibility at the metal to band insulator
transition. However, the way how the system approaches the transition point is di�erent, as discussed in Ref. [37].
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on the details of the system. We refer to Ref. [128] for a recent review of this scenario in light of
the evolving experimental scenario in high-temperature superconductors.

Moreover, we can connect the divergent compressibility to a wider class of instabilities.
Within the Landau Fermi liquid theory one can obtain the following expression for the com-
pressibility:

κel =
D∗(εF)
1 + F s

0
, (7.2)

where D∗(εF) is the interacting density of states at Fermi level, associated to the quasiparticle,
namely D∗(εF) = D(εF)/Z, Z is the quasiparticle weight and D(εF) is the bare density of states.
On another hand, F s

0 is the isotropic, spin-symmetric Landau parameter which contains the
information about the residual interaction between quasiparticles.

If the values of Z are positive and regular (as we found for all the multi-orbital models studied
in this thesis), the only way in which a divergence of the compressibility can arise is through a
vanishing denominator. This can happen only if F s

0 ' −1, which corresponds to an attractive
interaction between the quasiparticles in the particle-hole channel, at q = 0, ω → 0. An
attraction in the particle-hole channel can also be re�ected in the particle-particle channel and
give rise to an attractive scattering amplitude in the Cooper channel, hence to superconductivity.
This has been originally proposed as an argument which connects the tendency towards phase
separation with the very origin of the superconducting instability, and it has been realized in
di�erent microscopic models.

There is, however, an other scenario, in which superconductivity does not arise solely from
the charge instability, but it can be associated with a low-energy instability driven, for example,
by bosons. Also in this case, an enhancement or a divergence of the compressibility can help the
superconducting phase by boosting the e�ective vertex. One can indeed show that F s

0 ' −1 leads
to an enhancement of the vertex in various channels, which can increase an already existent
instability. We will not elaborate further about the actual realization of this scenario both in
models and in actual materials, but a similar idea can connect the common idea that pairing in
the iron-based superconductors arises from spin �uctuations with the strong correlation physics
that we described in this thesis.

7.2 Compressibility enhancement inHund’smetals: "Ising"
Hamiltonian

In this section we review the results of Ref. [21] which represent the starting point of the
present analysis. As we mentioned above, these results have been obtained within the Slave-
spin mean-�eld approach. We do not discuss the details of this method, that can be seen as
a derivation of the Slave-boson method, in which the auxiliary particles (which supplement
the pseudofermion) are spin 1/2, one in correspondence of each fermionic species. Similarly to
the Slave-boson, one rewrites the model in the extended Hilbert space and then introduces a
mean-�eld approximation by decoupling the fermions from the spins. The practical advantage
of the Slave-spin representation is the very low computational cost, while the main price to pay
is the inability to treat interaction terms which are not in the density-density form. For more
details we refer to Ref. [71]. In the context of this thesis, we can view the Slave-spin approach as
a slightly less accurate approximation with the same philosophy of our Gutzwiller/RISB method.

Fig. 7.1 presents the chemical potential µ in a function of the total charge density n, for three
di�erent models: degenerate two-orbital (left panel), three-orbital (central panel) and �ve-orbital
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(right panel) Hubbard model with semi-circular density of states of half-bandwidth D. The
charge compressibility is given by the inverse of the slope of these curves.

We show results for a large number of values of the Coulomb interaction U and �xed ration
between the Ising-type Hund’s coupling J and U , ie. J/U = 0.25. This value is indeed quite
large, substantially more than realistic estimates even for materials which are characterized by a
large Hund’s coupling as the iron-based superconductors, where one can estimate J/U ' 0.15.
However, this choice has been shown to lead to a good agreement (even quantitative) with
experiments in iron-based superconductors without any tuning when changing doping/nature of
the compound. In some sense we can view this overestimate of J as a trick to compensate for the
neglect of the spin-�ip and pair-hopping terms. We de�ne the chemical potential so that µ = 0
corresponds to half-�lling, which makes the model particle-hole symmetric. For this reason we
only plot values of the density larger than half-�lling, which are obviously representative also
of the region of negative doping of the Mott insulator.

Figure 7.1: Degenerate two-orbital (left panel), three-orbital (central panel) and �ve-orbital (right panel)
Hubbard model with semi-circular density of states of half-bandwidth D, and Ising-type Hund’s coupling
J/U = 0.25: µ vs. n curves for di�erent values of U . The curves for U > Uc show a negative slope inside
a spinodal line departing from the Mott transition that is marked with black connected circles. In the 3-
and �ve-orbital case most of the µ vs. n curves for U > Uc show a double change of slope, so that the
instability zone extends between two spinodal lines (black connected circles) both at �nite doping from
half-�lling. The results are obtained using the Slave-spin approach in Ref. [21].

We choose the values of U such that all of them but one are above the critical value for the
Mott transition at half-�lling n = N (where N is the number of orbitals), which for the present
choice of parameters are UN=2

c = 1.96 D, UN=3
c = 1.52 D and UN=5

c = 1.06 D. Therefore, for all
these curves the starting half-�lling point describes a Mott insulator. In each plot there is also
a reference value of U below the Mott transition. In this latter metallic solution, coming from
higher densities towards half-�ling, the chemical potential decreases smoothly all the way down
to the half-�lling value µ = 0. The compressibility is clearly positive for every density and
the system is thermodynamically stable. The same behavior is found also for the other curves
U < Uc belonging to the metallic side, but they are omitted here due to redundancy.

The situation is completely di�erent when U > Uc. Here the slope remains positive when
we are far from the Mott insulator but, reducing the doping, we �nd, for every value of the
orbital degeneracy N, a non monotonic behavior. The chemical potential increases when we
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decrease the doping, which signals a negative compressibility and an unstable system. The
change in slope obviously goes through a vanishing slope, which corresponds to a divergence of
the compressibility. The divergence of the compressibility is marked with a black line.

Figure 7.2: Left panel: Instability zones reported in the U-doping plane for the two-orbital (purple),
three-orbital (green), and �ve-orbital (blue) models, with J/U = 0.25. The low-U frontier departs from
the Mott transition point at half-�lling (symbols). For growing number of orbitals N the unstable zone
extends to larger value of doping, albeit narrowing in U . Right panel: A plausible mechanism for the
charge instability cause by the presence of J. Seemingly, the Hund’s rule coupling causes total quenching
of orbital �uctuations at half-�lling, reducing the width of the Hubbard bands. Upon doping the quenching
is lifted and the Hubbard bands are expected to expand (going from ∼ W to some larger value W̃). This
might cause a lower chemical potential at larger particle density, i.e. a charge instability [21].

From Fig. 7.1 it becomes immediately evident that, despite the common appearance of a
divergent compressibility, the results for the two-orbital model present a qualitatively di�erent
trend with respect to other two, three- and �ve-orbital case. As we said above, the large doping
region is apparently stable with a positive slope. Then one encounters one single minimum
("critical") point for which the slope vanishes, ie. dµ

dn = κ−1
el = 0, or in another words, a divergent

compressibility. Moving further towards half-�lling, the slope becomes negative and it remain
negative for any doping smaller than the critical point where the compressibility diverges.
Exactly at half-�lling the chemical potential jumps at µ = 0. This happens for all values of
U > Uc. Therefore the phase separation is always between a half-�lled Mott insulator and a
doped metal. Indeed if we depict all the points of divergent compressibility in the phase diagram
shown in Fig. 7.2, we �nd an instability zone which survives up to very large values of U (even
if it shrinks as a function of doping in the very-large U region).

On the other hand, the behavior of the µ(n) curves is richer in the region of small dopings.
For U slightly above the Mott transition we �nd a similar behavior with respect to N = 2, with
an instability which extends down to half-�lling. At some distance from the Mott insulator
we �nd instead that the curvature turns back into positive for very small doping through a
maximum (see for example the data for 1.9 < U < 2.2 in the middle panel of Fig. 7.1). The
maximum corresponds obvioulsy to a second line of divergent compressibility shown in the
�gure. This means that we can also have a phase separation between two metallic solutions with
di�erent densities. For larger interactions the region of phase separation shrinks and disappears,
meaning that the system becomes stable again, in sharp contrast with the two-orbital model.

These results, as well as di�erence and analogies between models with di�erent number of
orbitals, are summarized in Fig. 7.2, where the boundaries corresponding to the divergence of the
charge susceptibilities are compared. The two-orbital case shows a phase separation in the whole
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region of U > Uc, but it is limited to a region of moderate doping which extends maximally for
U ' 3D and shrinks rather slowly, with a kind of "onion" shape. As we increase the number
of the orbitals, the divergence is limited to a thinner and thinner region of interactions close
to Uc, but at the same time it extends to larger and larger dopings. The shape qualitatively
changes from an onion to a kind of "moustache", which gets more and more thin and extended in
doping as the number of orbital grows. Interestingly for N = 5, which is relevant to iron-based
superconductors, the region extends almost to n = 6, which is the stochiometric composition.

7.3 Gutzwiller approximation results
In this section we present a complete set of results using the rotation-invariant Gutzwiller
formulation, which allows us to solve both the Ising version of the model and the full Kanamori
interaction as written in Eq. (3.10), which was not accessible to the Slave-spin mean-�eld of
Ref. [21]. This extension is particularly important because the study we just reviewed shows that
the results are extremely sensitive to a change in the number of orbitals and it is not clear if the
choice of the interaction Hamiltonian can have a similar e�ect. In the Supplementary material of
Ref. [21] one can �nd a brief discussion of this comparison in the case of the two-orbital model
(using RISB), which shows that the qualitative response remains similar, even if the inclusion
of spin-�ip and pair-hopping term appears to reduce the doping region where the instability
takes place. However, we have already shown that the two-orbital case is peculiar, and a direct
study of three and �ve orbitals is necessary to support these results and ultimately address the
relevance of the compressibility divergence in multi-orbital models and possibly in iron-based
superconductors.

7.3.1 Three-orbital Model

In this section we report the results of our intensive investigation of the phase separation
boundary, which is mainly focused at understanding the importance of the full Kanamori
interaction. In Fig. 7.3 we report the µ-n curves obtained using the Gutzwiller method for
the Ising (left) and Kanamori (right) interactions and two di�erent values of Hund’s coupling,
J/U = 0.15 and J/U = 0.25. These are just two examples taken among many data we have
obtained, chosen to compare the value used in the previous section with a more realistic estimate
for transition-metal oxides or the iron-based superconductors. Also in this case we choose one
value of U below the Mott transition and several values for U > Uc where the half-�lled system
is a Mott insulator.

The results show that, at least within this range, the phase separation instability is not
strongly a�ected by the value of J/U and actually we �nd that the quantitative e�ect of reducing
J/U is opposite in the Ising case (where a smaller J leads to a slightly smaller region of phase
separation) and the Kanamori case (where reducing J leads to a very small increase of the phase
separation region).

The most interesting feature of this plot is that the instability region indeed is present also
in the Kanamori modeling, even if the details of the phenomenology are di�erent from the
Ising case. In particular, similarly to the two-orbital Ising model, the three-orbital Kanamori
only displays one line of divergence and the compressibility is negative down to half-�lling. In
contrast with this case, however, the phase separation region closes if we increase U . It must be
noted that the critical value for the Mott transition depends rather strongly on the used model.

We can indeed summarize the evolution and the change in position and shape of the instability
region in a plane of density and U for the two models and di�erent choices of J/U . The results
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Figure 7.3: Chemical potential µ vs. total charge density n, for the degenerate three-orbital Hubbard
model with semi-circular density of states of half-bandwidth D, and with Hund’s coupling J/U = 0.15
(typical value) and J/U = 0.25 (value used in Ref. [21]). Left panel corresponds to the Ising-type of
Hund’s coupling, while the right one shows the full-Kanamori interaction. The curves are associated to
di�erent values of the interaction strength, where most of the U > Uc curves show a double change of
slope for the Ising model, a negative slope inside a spinodal line departing from the Mott transition that
is marked with black connected circles, so that the instability zone extends between two spinodal lines
(black connected circles) both at �nite doping from half-�lling. On another side, in the Kanamori model
the slope remains negative up to the Mott transition. Moreover, one can note a signi�cant reduction of
the instability zone for this model. The results are obtained using the Gutzwiller approach.
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are shown in Fig. 7.4, left panel representing the Ising solution, right - Kanamori. Indeed, while
at J = 0 no divergent compressibility is found, thus the system appears to be always stable,
already at small J/U a wide instability range opens in both cases. For both models the region of
interactions where phase separation occurs is very large for small J/U and it becomes thinner
and thinner as J/U grows. The areas of instability are also pushed down to smaller U simply
because the critical U for the Mott transition is reduced by J. As we mentioned above, the
extension in doping evolves di�erently as a function of J/U . For the Ising interaction, larger
J/U implies a larger critical density, for the Kanamori interaction it is exactly the opposite and
the doping range becomes indeed very small when J/U becomes very large.

For instance, nc ≈ 3.41 at J/U = 0.3 for Ising, while for the Kanamori model we have nc ≈

3.08 for J/U = 0.3. These results show a non-trivial e�ect of the precise choice of interaction
which partially contradicts the results for two orbitals reported in Ref. [21] (Supplement material).
In the next section we will see how the scenario evolves moving to �ve orbitals.

We can add a very handwaving argument about this di�erence. The answer for this behavior
might be explained by following: the main di�erence between the Ising and Kanamori Hamilto-
nian lies in the Hund’s coupling contributions taken into account. Namely, while Ising model
accounts only for the density-density term of Eq. (3.10), the Kanamori instead considers also the
additional processes, such as spin-�ip and pair-exchange. These processes give rise to magnetic
�uctuations in the system, reducing somehow the impact of the Hund’s interaction and favoring
this way the metallic behavior.

Figure 7.4: Evolution of the zone of instability (in the U-n plane) as a function of J/U in the three-orbital
Hubbard model. At each value the system is unstable for densities between n = 3 and the corresponding
frontier: left panel showing the Ising type, and right panel the Kanamori type of the Hund’s interaction.
The instability is absent at J = 0.

We have already noticed that region bounded by the divergence of the compressibility starts
at the half-�lled Mott transition, just like the region of Hund’s metal, as we discussed in the
Chapter 3. We now discuss the relationship between the enhancement of the compressibility
and various observables which are sensitive to the Hund’s metal crossover [20, 71, 77, 78, 84].

In particular, we consider two di�erent dopings, chosen such that one falls into the instability
region and is close enough to half-�lling, and another right outside the instability region, as
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reported in Fig. 7.5, both for Ising and Kanamori three-orbital model for J/U = 0.25 (therefore the
actual values of the densities are di�erent because of the di�erent shape in the phase diagrams).
In the four panels we show, the e�ective mass enhancement due to interaction (which does
not depend on the orbital in the present model) that is given by m∗/m = 1/Z, the expectation
value of the square of the total spin

〈
S 2

z

〉
, the inter-orbital charge correlation functions between

two arbitrary orbitals Cinter and the inverse of the compressibility κ−1
el . In the region of small

U , where the system is safely in the metallic regime, all our observables do not depend on the
chosen doping.

Figure 7.5: Main quantities highlighting the crossover from normal (small U/D) to Hund’s metal (large
U/D) in three-orbital Ising (left) and Kanamori (right) Hubbard model with Hund’s rule coupling J/U =

0.25, solved within the Gutzwiller approach (labeled "GW") for two di�erent dopings in proximity of
half-�lling: mass enhancement, total local spin-spin correlation function, inter-orbital charge correlation
function and (inverse) electronic compressibility. The results obtained for the Ising model within Slave-
spin mean-�eld (labeled "SS") are taken from Ref. [21] and replotted on top of our results. We can see the
perfect overlap between all the quantities but the compressibility, implying that the di�erence between
the two methods, Gutzwiller and Slave-spin, lie in di�erently estimated value of µ (see in the text).

We can observe that in metallic regime, for small enough U , while U < Uc the two lines,
corresponding to di�erent dopings, coincides for all the quantities. Increasing the interaction,
the observables for the smaller doping (closer to half-�lling) display a rather abrupt crossover
and they rapidly reach extreme values, while the same observables at a larger doping undergo a
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smoother evolution and they reach intermediate values. In particular, the e�ective mass grows
to a large value, the total spin reaches a saturated high-spin value (which is larger for the Ising
model due to the neglect of quantum �uctuations), and the inter-orbital correlation vanishes
signaling the orbital decoupling. The occurrance of a sharp crossover takes place at the same
interaction strength where the compressibility diverges (zero of its inverse), which only happens
for the small doping. The correspondence between the boundary of the Hund’s crossover and
the compressibility divergence is realized both in the Ising and the Kanamori models, suggesting
that this result has a deep physical meaning. For the larger dopings we still observe some
precursors of the phenomena happening at the crossover, with a relatively large compressibility
and a milder crossover in the observables.

So far we have compared the results for di�erent densities and the same model. If we, instead,
contrast the behavior of the two models for the same density n = 3.3, we can see that for the
same doping the e�ective mass of the Ising model is almost twice the value found for Kanamori
model. This con�rms that the Ising model drives system to a more correlated regime, favoring
the Mott phase.

7.3.2 Five-orbital model
In this section we extend our analysis to the �ve-orbital degenerate model. In Fig. 7.6 we plot the
same information of Fig. 7.3, comparing the Ising (left) and Kanamori (right) type of interaction
for the same two values of J/U = 0.15, 0.25. The computational cost of the calculation is
somewhat larger than for three orbitals, which limits a little our analysis in the small doping
region.

For �ve orbitals we �nd a stronger dependence on J/U , especially for the Ising model, and
all the four sets of data show a minimum and a maximum of µ(n), i.e., the phase separation
region is limited to �nite-doping slice and it does not extend down to half-�lling.

In Fig. 7.6 one can notice a feature which we did not observed in the previous data, namely
a sudden jump in µ for very small doping and for U-s which are just above Uc. This jump is
not just a numerical artifact, and it arises by comparing the energies of two di�erent solutions,
obtained starting respectively from n = N (in this case n = 5) and n = N + 1 (here n = 6) and
moving slowly and carefully the density in the two opposite directions, as marked with the
arrows in Fig. 7.7. In left panel of this plot we have indeed shown the two di�erent solutions
found depending on the choice of the direction in which we move in the phase diagram, and
a coexistence region between them (shaded). If we, for instance, plot the quasiparticle weight
Z as a function of doping, we can see the same feature. This gives us idea that we have the
coexistence region between two distinct metals (whose energies we need to compare in order to
get a transition point between the two). Indeed, the metal extended in larger values of doping
corresponds to a normal metal arising from the non-interacting limit once the interactions
included, whereas the one obtained for the values of doping close to n = N is the metal obtained
while doping the Mott insulator at half �lling. Interestingly, this feature, which can connect the
divergence of the compressibility with the coexistence of solutions which is characteristic of the
Mott transition in DMFT, is realized only for �ve orbitals.

Finally, the evolution of the instability zone (see Fig. 7.8) reminds the one for the model
with three-orbitals, but unlike expected in Ref. [21], the instability region does not increase in
doping with the number of orbitals. This conclusion represents rather a drawback of the Ising
treatment that does not take into account the full Hund’s coupling. Kanamori treatment, on
another side, fully accounts for the present quantum �uctuations and e�ect of J, limiting the
instability region in quite reduced range of doping (n ≈ 5.3 for J/U = 0.25, instead of n ≈ 5.85
estimated with the Ising treatment of Hund’s coupling).
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Figure 7.6: Chemical potential µ vs. total charge density n, for the degenerate �ve-orbital Hubbard
model with semi-circular density of states of half-bandwidth D, and with Hund’s coupling J/U = 0.15
(typical value) and J/U = 0.25 (value used in Ref. [21]). Left panel corresponds to the Ising-type of
Hund’s coupling, while the right one shows the full-Kanamori interaction. The curves are associated
to di�erent values of the interaction strength, where most of the U > Uc curves show a double change
of slope, a negative slope inside a spinodal line departing from the Mott transition that is marked with
black connected circles, so that the instability zone extends between two spinodal lines (black connected
circles) both at �nite doping from half-�lling. One can note a signi�cant reduction of the instability
zone for this model, pushed closer to the smaller values of doping. The results are obtained using the
Gutzwiller approach.



94 Compressibility enhancement in multicomponent Hubbard models

Figure 7.7: Coexistence of two metallic solutions at the zone of phase instability. An example is given for
the �ve-orbital case, demonstrating the chemical potential µ and the quasiparticle weight Z as a function
of doping n at J/U = 0.15 (for the Ising model).

Figure 7.8: Evolution of the zone of instability (in the U-n plane) as a function of J/U in the �ve-orbital
Hubbard model. At each value the system is unstable for densities between n = 5 and the corresponding
frontier: left panel showing the Ising type, and right panel the Kanamori type of the Hund’s interaction.
The instability is absent at J = 0.



7.3 Gutzwiller approximation results 95

7.3.3 Discussion
We give now a brief qualitative discussion of the physical origin of a negative and divergent
compressibility in the present calculations. We stress again that a similar instability is a rather
counterintuitive phenomenon. When κel is positive, adding an electron to the system shifts
the chemical potential to higher values. We can picture this process as �lling a glass with
water: as long as we pour water in the glass, the water lever will rise. Now, let us assume
the charge compressibility has a negative value, as, indeed, we have seen in our data. This
means that the chemical potential will drop down while adding more electrons in the system.
Correspondingly, it would be as if the level of water in a glass would decrease while pouring
water in it. Figuratively, this might have happened if the glass was able to change its shape in
the presence of the water due to some feedback of the presence of water itself. In other words, a
non-interacting picture (where the glass remains itself in the presence of water) can not explain
any instability in which the compressibility is not simply positive.

Within the Gutzwiller approximation or the Slave-boson mean-�eld, the e�ects of correlations
are relatively simple and they amount to introduce a quasiparticle renormalization Z and
Lagrange multipliers which renormalize the chemical potential. In the models we have studied,
where orbital degeneracy is not broken, Z and λ are orbital-independent and we have only two
quantities to express the e�ect of the interactions. Therefore, our e�ective Hamiltonian can be
written as

Ĥ − µn̂ =
∑
kmσ

(Zεk + λ − µ) f †kmσ fkmσ , (7.3)

where f †kmσ represents the creation operator of a quasiparticle, with de�ned momentum k,
orbital m and spin σ index. Having in mind degenerate multi-orbital system, the bare electronic
dispersion relation εk is the same for each band as well as λ and Z. The number of quasiparticles
should be equal to the particle density n f ≡

∑
kmσ

〈
f †kmσ fkmσ

〉
= n. Imposing the Luttinger

theorem, that states that the volume of the interacting Fermi surface is proportional to the
particle density, we can relate the chemical potential µ of the interacting model to the non-
interacting one, µ0, with the same density, or in another words:

n f (U) =

∫ (µ−λ)/Z

dεD(ε) =

∫ µ0

dεD(ε) = n(U = 0) , (7.4)

obtaining the relation (at zero temperature)

µ0 =
µ − λ

Z
. (7.5)

From Eq. (7.3) one can compute the compressibility and obtain a Fermi liquid-like expression
where D∗(EF) = D(EF)/Z as expected and

F s
0 = D∗(EF)

(
µ0
∂Z
∂n

+
∂λ

∂n

)
. (7.6)

This implies that a divergence of the compressibility, which can only happen if F s
0 = −1, can

only arise from the two derivatives in Eq. (7.6). The �rst term is always positive because Z is
always reduced when we approach the Mott insulator, which means that its derivative with
respect to density has the same sign of µ0. Therefore the only source of a negative Landau
amplitude is a negative derivative of the Lagrange multiplier (obviously with a su�ciently large
amplitude to overcome the positive contribution and to reach a value of -1).

Once again, a similar result is not expected in a rigid-band picture. λ basically acts as a
correction to the chemical potential and it grows if the density grows. In particular, when we
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dope a Mott insulator, it jumps towards the Hubbard bands, which are roughly at a distance
U/2 − W̃/2 from the chemical potential of the Mott insulator, where W̃ is the e�ective width
of the Hubbard bands. Then, further increasing the density would be expected to increase λ at
least within a rigid-band picture. Our evidence clearly demonstrate that this is not the case and
some collective e�ect must invert this trend. We can indeed give an argument, based on the
concept of orbital decoupling.

We have brie�y discussed that a sizable Hund’s coupling leads to an e�ective decoupling
between the orbitals, which makes the excitations orbital-diagonal. This has crucial consequences
on the width of the Hubbard bands. So far it has been shown that the width of the Hubbard
bands [36, 41] depends in general on the number of orbitals. In particular for zero or small J, W̃
typically scales with the number of orbitals N as ∼

√
NW (where W is a bare bandwidth of a

single-orbital model) [129]. However, the onset of Hund’s coupling J tends to reduce this value
to the bare one W [71], as a consequence of the orbital decoupling, which makes excitation
within each orbital similar to those of a single-band model. As a consequence of quench of the
orbital �uctuations, which is the strongest at half-�lling, one �nds the reduction of the hopping
channel and lastly a decrease of the kinetic energy.

Apparently, this gives rise to the reduction of the width of the Hubbard bands. The described
mechanism holds at half-�lling, but it is expected to smoothly break down as we dope the
system. It is somehow intuitive to expect that once an extra charge is brought to the system,
the number of doubly occupied orbitals increases leading to an "unquenching" of the orbital
degrees of freedom. This would cause again the widening of the Hubbard bands (up to the value
∼
√

NW). Therefore, if the Hubbard bands widen as the system is doped, one can have the
counterintuitive e�ect that the e�ective chemical potential (controlled by λ) actually decreases
when the density increases, as shown in the right panel of Fig. 7.2. This e�ect is the realization
of the adaptive glass we mentioned in our intuitive picture.

This arguments show the crucial role of the Lagrange multiplier and its density dependence
in the onset of the divergent compressibility. Therefore also the di�erence between Slave-spin
and Gutzwiller results for the same model is most likely due to λ, also because Z does not show
important di�erences.

Figure 7.9: Robustness of the compressibility di-
vergence with respect to the choice of numerical
method: Slave-spin mean-�eld (labeled "SS") and
present, Gutzwiller approach (labeled "GW"). Re-
sults for µ with respect to n curve in the three-
orbital model with J/U = 0.25 for U/D = 1.9, 2.1
(from bottom to top) are displayed and show that
the instability is robustly found in both methods.
Both methods give the same estimation for µ close
to half-�lling. However, results slightly di�er at
larger U/D, due to the di�erence in the treatment
of λ (contributing µ) in the two methods.

Either way, from Fig. 7.9 one can notice the same position of the chemical potential (and
therefore λ) at half-�lling, and then a shift that barely increases as a function of n, and conse-
quently a slight discrepancy in κel vs. U curves. However, the di�erence is just quantitative,
whereas the qualitative description holds and is not a�ected by di�erent λ. Therefore, the found
divergence and appearance of the frontier from the half-�lled Mott transition point is a common,
robust feature, independently of the chosen method.
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7.4 Conclusions
In this chapter we have extended a previous analysis [21] of the charge compressibility of
multi-orbital Hubbard models by comparing Ising and Kanamori type of Hund’s coupling, at
the same time confronting the two methods, Slave-spin mean-�eld and Gutzwiller approach for
three- and �ve-orbital models.

We have con�rmed that the main ideas related to the Ising type of interaction, discussed in
Ref. [21], are robust and hold in general for multi-orbital systems, namely, that the presence of a
diverging compressibility is connected with the crossover between the crossover from a regular
metal to a Hund’s metal, and that this feature is independent on the choice of the methods, at
least at the level of these quasiparticle-based approaches. A slight di�erence can arise in some
of the quantities, whereas the qualitative description remains unchanged in general. Moreover,
the estimation of the lower frontier departing from the half-�lled Mott transition is quite precise
and coincides between the di�erent methods.

However, in the particular case the Slave-spin method fails to treat in a proper way the full
Kanamori interaction [71], therefore tends to an overestimation of the region of phase separation.
We have shown that Kanamori treatment recovers qualitatively all the main ideas from Ref. [21],
with the only di�erence that the instability zone is largely reduced and tends to drop further
with the increase of the Hund’s coupling.

In any case, the overall numerical results indicate that the enhancement of the charge
compressibility associated with the phase separation does exist near the Mott transition at half
�lling. This result is of a huge interest owning to the connection between the instabilities arising
with the phase separation that can give rise to the possible pairing mechanism important for the
emergence of the high-Tc superconductivity. The remarkable point is that the instability phase
arises at the crossover between conventional metallic phase, and the Hund’s phase, characterized
by the (orbitally) selective electronic correlation strength. This can also establish one further
link with the cuprates [14], where phase separation has been widely discussed as a possible
source of anomalies of the phase diagram including charge-density waves and some aspects of
the superconductivity itself.
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8
Conclusions

Undoped iron-based superconductors accommodate six electrons in the �ve d-orbitals belonging
to Fe-atom. It is nowadays well established that a correlated model at this �lling is characterized
by a bad metallic state induced by a sizable value of the Hund’s coupling J even when the
Hubbard U becomes substantially larger than the bandwidth [12, 13, 19, 76]. Such systems are
usually identi�ed as Hund’s metal [16]. This concept has been introduced to rationalize the
observation that, in theoretical models of iron-based superconductors, ruthenates, and other
materials, many relevant observables turn out to be remarkably dependent on Hund’s coupling
J rather than on the Hubbard interaction U .

In this thesis we gave some contributions to the understanding of this –still elusive– regime
exploring di�erent regimes of the incredibly rich physics of multi-orbital strongly correlated
model.

The main theoretical tool used in this thesis has been the Gutzwiller approximation and
correspondingly - the equivalent Rotationally-invariant slave-boson approach. These approaches
provide a reliable description of the Mott transition starting from the metallic solution, for a
relatively cheap numerical investigation of a wide range of model parameters. Moreover, the
rotational invariance of this formalism gives possibility to treat all interacting terms on an equal
footing. This allows us to explore the di�erent e�ects arising in the presence of U and J in
the multi-orbital Hund’s metals, such as FeSC. Therefore, in spite of being limited only to the
metallic solution of the problem, these methods reasonably captures all the physics of the strong
correlated systems with bad-metallic behavior.

In the introductory chapters we summarized some relevant aspects of iron-based SC and
of the relative models, supplemented by some original calculations used either to benchmark
our approach comparing with previous results and to complement the physical picture in light
of our original contributions. In particular, we focused on the di�erence between the so-called
Kanamori modeling of the Hund’s coupling which has rotational invariance in the orbital space
and its Ising approximation, and we discussed the role of single-particle perturbations breaking
the orbital symmetry via crystal-�eld splitting or assuming di�erent hopping for di�erent
orbitals.

Particularly, we focused our research on three- and �ve-orbital models, since these usually
represent the active orbitals in FeSC, and moreover, both show the same emerging e�ects in the
presence of Hund’s coupling. For obvious reasons of numerical cost, most of our studies have
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been limited to the three-orbital model, but a number of examples in previous papers and in the
present thesis suggest that the results for the three-orbital model share the same basic physics
of the more expensive �ve-orbital version.

We have organized our original results in three chapters which focus respectively on di�erent
aspects of Hund’s-induced strong electronic correlations, namely (i) the physical origin and
the characterization of the Hund’s metal and its resilience to large repulsions; (ii) the e�ect of
anisotropic interactions in the orbital space in modifying the multi-orbital physics and (iii) The
role of the Hund’s coupling in driving a phase-separation instability at the crossover between a
normal metal and a Hund’s metal.

In Chapter 5 we have studied the origin of the Hund’s metal phase by exploring the phase
diagram of the Kanamori model in a wider than usual range of parameters. In the case of two
electrons in three-orbitals, our analysis has shown that the correlation-resilient metal emerges
from the competition between two distinct insulating states, namely a high-spin Mott and a
charge disproportionation insulator, favored by the Hubbard repulsion U and the exchange
coupling, respectively, and characterized by a di�erent ionic valence. This competition results
in an asymptotic mixed-valence metallic state, at arbitrarily large interaction strength, along a
line of the phase diagram where the two parent insulators are degenerate. In this state, charge
�uctuations and metallic behavior arise from the presence of hopping processes that connect the
two degenerate insulators. The metallic properties are maximized when the system is exactly
in the middle between the two insulators, in order to exploit as much as possible the charge
�uctuations between the atomic state with di�erent local occupation.

This observation also connects the Hund’s metal behavior with the charge-disproportionation
observed in some chromates, which have exactly the electronic con�guration for which this
physics is found. We notice that the charge-disproportionation of the insulator is a key ingredient
for the appearance of the Hund’s metal.

Considering other densities and even a di�erent sign for the Hund’s exchange, we have
established a strong link between the existence of a Hund’s metal (i.e., a metal which survives
when the interactions are much larger than the bare kinetic energy) and the degeneracy between
competing insulators. In particular, we �nd that for the standard Kanamori model the case n = 3
there is no competition between insulators and no Hund’s metal state. On the other hand in
a model with negative J (which can be seen as arising from Jahn-Teller coupling with some
local phononic modes) we �nd a correlations-resilient metal (a Jahn-Teller metal, in this case)
for n = 3, where two di�erent insulators exist and become degenerate exactly where the metal
is stabilized, and we do not �nd any special metallic state for n = 2, where there is only one
insulating solution.

These �ndings clearly provide a new perspective on the Hund’s metal, whose very existence
appears associated to a mixed-valence state where the prevalence of the Hund’s coupling leads
to the population of di�erent atomic states with di�erent occupation, all with the highest spin.

In the following Chapter 6 we relaxed some of the approximations used in de�ning a
Kanamori Hamiltonian, considering a more generic form of the interactions which takes into
account a possible asymmetry between the orbitals which can arise from chemical or structural
di�erences. Similar deviations between interaction parameters are indeed typical in realistic
estimates of the U and J terms performed using, e.g., constrained-RPA. One immediately realizes
that in principle one has a huge number of interaction terms even for three orbitals. For this
reason we selected, with some arbitrariness, a parametrization in terms of two parameters,
which we labeled α and β. Basically the former controls the ratio between intra-orbital and
inter-orbital interactions, while the latter controls the ratio between the interaction in one of
the three orbitals and in the others. We have studied the interplay between these two terms,
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showing that the main outcome is the competition between a regime where the three orbitals
remain coupled and a single Mott transition takes place with the same population for the three
orbitals and a second regime with a pronounced orbital polarization where the most correlated
orbital becomes empty and the system reduces to a two-orbital system which undergoes an
independent Mott transition. However, the results also depend on the number of electrons and
in the speci�c case of four electrons we �nd a regime of orbital-selective Mott transition. We
also notice that, in the presence of deviations from the fully simmetric modeling the role of
the Hund’s coupling is reduced and the di�erence between a Kanamori modeling and an Ising
approximation becomes much smaller. Roughly speaking, we can picture the breaking of the
degeneracy between the interaction terms as leading to an e�ective crystal-�eld splitting which
indeed competes with J.

These results suggest that the inclusion of minor orbital-dependence in the interaction
parameters can lead to important changes in the physics including the onset of novel phenomena
which are absent in the symmetric parametrization. In a general sense, this observation follows
from the extreme sensitivity of these systems to perturbations which a�ect the orbital channel.
This should be seriously taken into account in theoretical approaches where strong correlation
e�ects are added to the realistic bandstructure.

In Chapter 7 we turn back to symmetric Kanamori and Ising models to address the issue
of their stability with respect to phase separation and the relevance of the Mott insulator at
half-�lling in determining the full phase diagram as a function of the density. We have indeed
shown that a recent claim [21] of a divergence of the compressibility in a region of the density-
interaction phase diagram, which originates from the Mott transition, is robust with respect
to the number of orbitals and the precise form of the interaction Hamiltonian. The emergence
of the diverging compressibility close to the half-�lled Mott transition is a common feature
that can be put into connection with the crossover where the Hund’s metal is established.
Regardless the slight quantitative discrepancy between results, qualitative estimation of the
lower frontier departing from the half-�lled Mott transition is quite precise and coincides
between di�erent methods. On another hand, the Kanamori treatment of the problem reveals
that the instability zone is reduced and tends to drop further with the increase of the Hund’s
coupling, comparing to the Ising approach in Ref. [21]. The answer for this behavior can be
�nd in the fact that the Kanamori Hamiltonian, besides density-density Hund’s coupling terms,
includes also the hopping processes collected in the spin-�ip and pair-exchange interaction (see
Eq. (3.10)). Besides, this study also con�rms the central role of the Mott transition at global
half-�lling in determining the degree of correlation in the full doping phase diagram, which
appears as a completely general feature regardless of the number of orbitals and the precise
nature of the interaction Hamiltonian.

The generic divergence of the compressibility can be closely related to very appearance
of superconductivity or, in more general terms, to the enhancement of various instabilities,
including superconductivity, nematic ordering and possible charge-ordered states. This last
observation can link the results we discussed above on charge disproportionation with the
present tendency towards phase separation, con�rming a strong connection between Hund’s
metal and incipient charge instabilities.

These new results contribute to close the gaps in our understanding of Hund’s metals and
their role in real materials, and they also open new perspectives for future studies, among which
we can foresee a thorough investigation of the e�ect of anisotropies of the interaction on the
behavior of the compressibility and the charge instabilities, as well as a microscopic calculation
aiming to link the enhancement of the compressibility with weak-coupling instabilities.
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A
First appendix

A.1 Derivation of the multi-orbital Hubbard Hamiltonian

In this appendix we derive the multi-orbital form of the Hubbard model and corresponding
Coulomb integrals. For that reason let us consider the second quantization many-body Hamilto-
nian for interacting electrons in a periodic potential, namely [28]

Ĥ =
∑
σ

∫
drΨ†σ(r)

[
−
~2

2me

~∇2 + V(r)
]
Ψσ(r)+

+
∑
σσ′

∫
dr dr’Ψ†σ′(r) Ψ†σ(r’) U(r − r’) Ψσ′(r’) Ψσ(r) (A.1)

where me is the mass of an electron, V(r) = −
∑

i
Zie2

|Ri−r|
and refers to the periodical potential,

U(r − r’) = 1
2

e2

|r−r’| is the Coulomb interaction and Ψσ(r) is a �eld operator that creates a particle
with spin σ at position r. Moreover, the �rst term of Eq. (A.1), that we may denote as Ĥ0,
represents the single-particle term (or more precisely kinetic energy plus the periodic potential
provided by the ions), whereas the second one, say Ĥint, collects all the information about the
electron-electron interactions.

Kinetic part of Hamiltonian Ĥ0 is diagonalized by Bloch wave-functions ψkmσ(r), which are
delocalized in the solid. On another side, for setting up our problem, it is convenient to introduce
a basis set of localized wave-functions, such as Wannier states, which are de�ned in terms of
the Bloch wave-functions ψkmσ(R) (where k is a wave-vector), and have the form:

wimσ(r) = wmσ(r − Ri) ≡
1
√

Ns

∑
k∈BZ

e−ik·Ri ψkmσ(r) (A.2)

where Ns represents the number of sites, and BZ - Brillouin zone of the reciprocal k-space. The
Wannier wave-functions represent a convenient choice since they satisfy orthogonality and
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completeness relations:

∫
drw∗imσ(r) w jm′σ′(r) = δi j δmm′δσσ′ , (A.3a)∑
imσ

w∗imσ(r) wimσ(r’) = δ(r − r’) . (A.3b)

It is clear that the form of Wannier functions present in Eq. (A.2) is particularly useful when
dealing with strongly correlated materials, since one assumes the density of the electrons
concentrated mostly around the position of the ion.

At this point we are able to de�ne the �eld operator in this basis as:

Ψ†σ(r) =
∑

i

∑
m

wimσ(r) c†imσ . (A.4)

Here c†imσ is an operator that creates an electron with the spin σ in the n-th Wannier orbital and
position Ri.

If we now apply the transformation de�ned with Eq. (A.4) to the �eld operators in the
expression (A.1), the kinetic part reads:

Ĥ0 =
∑
σ

∫
drΨ†σ(r)

(
−
~2

2me

~∇2 + V(r)
)
Ψσ(r) =

=
∑
σ

∑
mm′

∑
i j

∫
drw∗imσ(r) c†imσ

(
−
~2

2me

~∇2 + V(r)
)

w jm′σ(r) c jm′σ =

=
∑
σ

∑
mm′

∑
i j

tmm′
i j c†imσc jm′σ , (A.5)

where the hopping matrix elements tmm′
i j correspond to:

tmm′
i j =

∫
drw∗imσ(r)

(
−
~2

2me

~∇2 + V(r)
)

w jm′σ(r)

=

∫
dr

(
~2

2me

(
~∇w∗imσ(r)

)
· ~∇w jm′σ(r) + V(r) w∗imσ(r) w jm′σ(r)

)
. (A.6)

Since the Wannier orbitals are localized in space, the hopping amplitude tmm′
i j decays rapidly

with the distance, so we can take into a consideration just the existence of the hoppings between
the nearest neighbors. This is a valid approximation when dealing with highly localized d
orbitals, as in our case. Moreover, tmm′

i j can always be rewritten in a proper basis via an unitary
transformation, in order to get a diagonal form. However, within this work we were assuming
just the intra-orbital hoppings, hence let us impose, due to simplicity, that m = m′. This way the
kinetic energy becomes

Ĥ0 =
∑

i j

∑
m

∑
σ

tm
i j c†imσ c jmσ . (A.7)

Accordingly, one can obtain the interacting part of the Hamiltonian (A.1), substituting the
�eld operators with the new Wannier functions (A.4), such that
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Ĥint =
1
2

Umm′m′′m′′′
i jkl c†imσ c†jm′σ′ ckm′′σ′ clm′′′σ , (A.8)

with the interaction

Umm′m′′m′′′
i jkl =

∫
dr dr’w∗imσ(r) w∗jm′σ(r’) U(r − r’) wkm′′σ′(r’) wlm′′′σ(r). (A.9)

In the following we will omit the spin index in the orbital wave-functions, since it is important
only for the spin-orbit interaction that we will not be dealing with. Moreover, dealing with
purely local interactions that decay rapidly with the distance between two sites, say i and j,
means that all the site indices are equal, namely i = j = k = l, which further permits us to drop
out the site index i.

The simplest realization is the on-site interaction between electrons in the same orbital,
meaning that m = m′ = m′′ = m′′′. which is nothing but the contribution to the interaction in
the Hubbard model. The interaction matrix element is:

Um =
1
2

∫
dr dr’ |wm(r)|2 U(r − r’) |wm(r’)|2 (A.10)

whereas the corresponding contribution to the Hamiltonian is

ĤU
int =

1
2

∑
i

∑
m

∑
σσ′

Umc†imσ c†imσ′ cimσ′ cimσ =

=
1
2

∑
i

∑
m

∑
σσ′

Um
(
c†imσ cimσ c†imσ′ cimσ′ − δσσ′c

†

imσ cimσ′

)
=

= Um
∑

i

∑
m

n̂im↑n̂im↓. (A.11)

Analogously, one can �nd the second contribution arising from the on-site interaction
between electrons in di�erent bands. Namely, if we impose in Eq. (A.9) that m = m′ and
m′′ = m′′′, with m , m′′, performing a change of variable label m′′ → m′, the so-called inter-
orbital Coulomb interaction becomes:

U′mm′
=

1
2

∫
dr dr’ |wm(r)|2 U(r − r’) |wm′(r’)|2 , (A.12)

giving the Hamiltonian

ĤU′
int =

1
2

∑
i

∑
mm′

∑
σσ′

U′mm′c†imσ c†im′σ′ cim′σ′ cimσ =

=
1
2

∑
i

∑
mm′

∑
σσ′

U′mm′ n̂imσ n̂im′σ′ =

=
1
2

∑
i

∑
σ

∑
mm′

U′mm′ (n̂imσ n̂im′σ + n̂imσ n̂im′σ̄) =

= U′
∑

i

∑
σσ′

n̂imσn̂im′σ′ . (A.13)

We can have also the channels which are not diagonal in the occupation number. One of the
possibilities is too impose m = m′′ , m′ = m′′′, such that the exchange reads as
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Jmm′ =
1
2

∫
dr dr’w∗m(r) w∗m′(r’) U(r − r’) wm(r’) wm′(r) . (A.14)

Further, we can write the corresponding Hamiltonian as

ĤJ
int =

1
2

∑
i

∑
mm′

∑
σσ′

Jmm′c†imσ c†im′σ′ cimσ′ cim′σ =

= J
∑

i

∑
σσ′

c†imσc†im′σ′cimσ′cim′σ. (A.15)

The last contribution to the interacting Hamiltonian is the pair-exchange term, which arises
for m = m′ , m′′ = m′′′, and is written as

J′mm′
=

1
2

∫
dr dr’w∗m(r) w∗m(r’) U(r − r’) wm′(r’) wm′(r), (A.16)

whereas the Hamiltonian becomes

ĤJ′
int =

1
2

∑
i

∑
mm′

∑
σσ′

J′mm′c†imσ c†imσ′ cim′σ′ cim′σ =

=
1
2

∑
i

∑
mm′

J′mm′
(
c†im↑ c†im↓ cim′↓ cim′↑ + c†im↓ c†im↑ cim′↑ cim′↓

)
=

= −J′
∑

i

(
c†im↑cim↓c

†

im′↓cim′↑ + h.c.
)
. (A.17)

All these therms corresponding to the interacting Hamiltonian can be summed up and
present in the Kanamori form (see Eq. (3.10) and Section 3.3), which is discussed within this
thesis.
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Second appendix

B.1 Contraction terms with two fermionic lines

In the following we will show why the expectation values on the Slater determinant of those
terms having P†iPi with two fermionic lines vanish by means of Gutzwiller constraints (4.6).

For that purpose, let us recall Wick’s theorem1, which can be used to evaluate the average
values on |Ψ0〉. Now let us rewrite the second constraint in Eq. (4.6)2:

〈Ψ0|P
†

iPic
†

iacib|Ψ0〉 =

=1

〈Ψ0|P
†

iPi|Ψ0〉 〈Ψ0|c
†

iacib|Ψ0〉 + 〈Ψ0|P
†

iPi c†iacib|Ψ0〉connected

II cond.
= 〈Ψ0|c

†

iacib|Ψ0〉 +
���

���
���

�:0
〈Ψ0|P

†

iPi c†iacib|Ψ0〉connected .

(B.1)

The subscript "connected" refers to all possible contractions between c†iacib and a pair of single
fermion operators from P†iPi.

In Eq. (B.1) we have utilized constraints (4.6). Namely, this equation suggested us that the
�rst disconnected term is the only one su�cient to satisfy the second condition, assuming at
the same time the �rst condition. Therefore, we can conclude that the expectation values on the
Slater determinant of any pair of single particle operators from P†iPi will be equal to zero.

B.2 Contraction terms with four andmore fermionic lines

We want to demonstrate that all those terms coming from the Wick’s decoupling in eq. (4.7),
and connecting the two sites, i and j, with four or more fermonic lines vanish in the limit of
in�nite dimensionality (lattice coordination number). For that aim, it is convenient to consider
the following tight-binding Hamiltonian

1For Slater determinants Wick’s theorem holds. This theorem states that expectation values of many-particle
operators can be obtained by calculating all possible pairings of creation and annihilation operators.

2This is, in the following, derived only for single a and b index; one should, instead, do it for each pair.
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Ĥ = −
∑

i j

2M∑
a,b=1

(
tab
i j c†iac jb + h.c.

)
+

∑
i

Ûi , (B.2)

where creation (annihilation) operator c†ia(c jb) creates (annihilates) an electron at site i ( j), with
the spin and M orbital denoted as a (b), whereas tab

i j represents the hopping amplitude between
the two nearest neighbors sites i and j, and Ûi collecting all the local many-body terms. If we
consider for a second the �rst term of Eq. (B.2), corresponding to the kinetic energy, we can
notice that it scales as ∝ Ns

Z
2 , where Ns is the number of sites in the crystal. In case where

the coordination number goes as Z → ∞, we need to normalize the hopping in the correct
way. Therefore, tab

i j is normalized with respect to the coordination number such to give a �nite
average of the energy.

Indeed, Metzner and Vollhardt [48] stated that in the limit of in�nite dimensionality the
only way to obtain a Hubbard Mott with a non-trivial kinetic energy is to rescale the hopping
amplitude as

t ∝
t̃
√

Z
, (B.3)

or in another words

t
∑
〈i j〉

〈Ψ0|c
†

iacib|Ψ0〉 ∝ Zt
〈
〈Ψ0|c

†

iacib|Ψ0〉
〉

j
∝
√

Zt̃
〈
〈Ψ0|c

†

iacib|Ψ0〉
〉

j
, (B.4)

where
〈
〈Ψ0|c

†

iacib|Ψ0〉
〉

j
is the average value of the hopping matrix element between nearest

neighbors j3.
From Eq. (B.4) one can �nd that, for large Z, the kinetic energy per site i is �nite only for〈

〈Ψ0|c
†

iacib|Ψ0〉
〉

j
∝

1
√

Z
. (B.5)

Therefore, multiplying four contraction terms of the Wick decoupling in Eq. (4.10) (or in
more general expression (4.9)), where four fermionic lines join two sited i and j, one obtains a
product of four terms of the kind (B.5), so that such connection term vanishes as ∝ 1

Z2 . Summing
over all nearest neighbors j one �nds a contribution of order 1

Z which vanishes in the limit of
in�nite Z. Clearly, contracting more than four fermionic lines vanishes even faster in the in�nite
coordination limit.

B.3 Derivation of the expectation values in the in�nite lat-
tice coordination

In the following we derive the expectation values of local and non-local operators presented in
Chapter 4.

Local operator

The most general form of the local operator, expressed with Eq. (4.7), can be obtained as it
follows:

3Apparently, including further neighboring sites one would have to substitute a scaling term
√

Z with
√

d,
where d = N Z

2 represents dimensionality.
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〈ΨG|Oi|ΨG〉 = 〈Oi〉ΨG
=

〈Ψ0|
∏

i

P
†

i

Oi

∏
j

P j |Ψ0〉

 =

〈Ψ0|
∏
s,i

P†s

P†iOiPi

∏
j,i

P j |Ψ0〉


s→ j
= 〈Ψ0|

∏
j,i

P
†

jP j

P†iOiPi |Ψ0〉

= 〈Ψ0|
∏
j,i

P
†

jP j|Ψ0〉

=1

〈Ψ0|P
†

iOiPi |Ψ0〉 +

���
��

���
���

���
�:0

〈Ψ0|

∏
j,i

P
†

jP j

P†iOiPi |Ψ0〉connected

Z→∞
= 〈Ψ0|P

†

iOiPi|Ψ0〉 .

(B.6)

The label "connected" refers to all terms where operators at di�erent sites are averaged together.
Assuming Eqs. (4.6) and previous discussions in Sections B.1 and B.2, this term vanishes in the
limit of in�nite coordination.

Derivation of Eq. (4.8) follows straightforwardly from Eq. (B.6) just by substituting a general
local operator Oi withUi that contains all the interaction contributions.

Non-local operator

Accordingly, we apply the same procedure for deriving Eq. (4.9), namely

〈ΨG|Oi j|ΨG〉 =
〈
Oi j

〉
ΨG

=

〈Ψ0|
∏

i

P
†

i

Oi j

∏
j

P j |Ψ0〉

 =

〈Ψ0|
∏
s,i
s, j

P†s

P†iP†jOi jPiP j


∏
r,i
r, j

Pr |Ψ0〉


r→s
= 〈Ψ0|

∏
s,i
s, j

P†sPs|Ψ0〉

=1

〈Ψ0|P
†

iP
†

jOi jPiP j|Ψ0〉 .

(B.7)

The same holds when proving the result of Eq. (4.10), or more precisely (4.13):

〈ΨG|c
†

iαc jm′ |ΨG〉 =
〈
c†iαc jm′

〉
ΨG

= 〈Ψ0|
∏
s,i
s, j

P†sPsP
†

i c†iαPiP
†

jc jm′P j|Ψ0〉

=

=1

〈Ψ0|
∏
s,i
s, j

P†sPs|Ψ0〉 〈Ψ0|P
†

i c†iαPiP
†

jc jm′P j|Ψ0〉

= 〈Ψ0|P
†

iP
†

jc
†

iαc jm′PiP j|Ψ0〉 = 〈Ψ0|P
†

i c†iαPi

I

P
†

jc jm′P j

II

|Ψ0〉

=

I =
∑

m′ R∗iam′c
†

im′

II =
∑
α R jbαc jα

=
∑
αm′

R∗iam′R jbα 〈Ψ0|c
†

im′c jα|Ψ0〉 =
∑
αm′

(
R†iβa

)∗
R jbα 〈Ψ0|c

†

iβc jα|Ψ0〉 .

(B.8)
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where we have expended the expectation value 〈Ψ0|P
†

i c†iαPiP
†

jc jβP j|Ψ0〉 in Wick’s products. By
means of Wick’s theorem, each contraction gives zero since we have the odd number of the
operators. Hence the �rst term is the one where we can extract one line and it is the only one
that survives (the next one will be the one with three lines - negligible, and so forth).
Apparently, taking the in�nite coordination limit (see Sections B.1 and B.2) and imposing
constraints de�ned in Eqs. (4.6) we have the cancellation of Gutzwiller projector contributions
up to the expectation values. Therefore, it seems natural to follow the route Z → ∞ such to
have a controlled approximation [104, 105, 111].



C
Third appendix

C.1 Charge �uctuations in non-interacting and fully inter-
acting limit

In this appendix we give a quick analytical check for the expected values of the charge �uctua-
tions. Namely, we consider a trivial half-�lling case, imposing J = 0, investigating two di�erent
limits, non-interacting and Mott insulating one.

For this purpose, let us write the expression for the charge �uctuations in the most general
way, namely

C̃αβ =
〈
n̂αn̂β

〉
− 〈n̂α〉

〈
n̂β

〉
. (C.1)

Since n̂α(β) = n̂α(β)↑ + n̂α(β)↓, substituting it into Eq. (C.1), we get

〈
n̂αn̂β

〉
=

〈(
n̂α↑ + n̂α↓

) (
n̂β↑ + n̂β↓

)〉
=

〈
n̂α↑n̂β↑

〉
+

〈
n̂α↓n̂β↓

〉
+

〈
n̂α↑n̂β↓

〉
+

〈
n̂α↓n̂β↑

〉
(C.2)

and

〈n̂α〉
〈
n̂β

〉
=

〈(
n̂α↑ + n̂α↓

)〉 〈(
n̂β↑ + n̂β↓

)〉
=

〈
n̂α↑

〉 〈
n̂β↑

〉
+

〈
n̂α↓

〉 〈
n̂β↓

〉
+

〈
n̂α↑

〉 〈
n̂β↓

〉
+

〈
n̂α↓

〉 〈
n̂β↑

〉
.

(C.3)
It is clear that assuming α = β we get

〈
n̂α↑n̂α↑

〉
=

〈
n̂α↑

〉〈
n̂α↓n̂α↓

〉
=

〈
n̂α↓

〉
〈n̂αn̂α〉 =

〈
n̂α↑

〉
+

〈
n̂α↓

〉
+ 2

〈
n̂α↑

〉 〈
n̂α↓

〉
〈n̂α〉 〈n̂α〉 =

〈
n̂α↑

〉2
+

〈
n̂α↓

〉2
+ 2

〈
n̂α↑

〉 〈
n̂α↓

〉
, (C.4)

such that the expression for the intra-orbital charge �uctuations, once we substitute Eq. (C.4)
into Eqs. (C.1), (C.2) and (C.3), becomes
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C̃αα = C̃intra =
〈
n̂α↑

〉 (
1 −

〈
n̂α↑

〉)
+

〈
n̂α↓

〉 (
1 −

〈
n̂α↓

〉)
. (C.5)

On another side, if α , β, one �nds

〈
n̂ασn̂βσ′

〉
= 〈n̂ασ〉

〈
n̂βσ′

〉〈
n̂αn̂β

〉
= 〈n̂α〉

〈
n̂β

〉
(C.6)

which again, returning back to Eqs. (C.1), (C.2) and (C.3), gives us the inter-orbital �uctuations

C̃αβ = C̃inter = 0 . (C.7)

It is useful to rede�ne Eq. (C.1), namely

Cαβ =
C̃αβ

〈n̂α〉
〈
n̂β

〉 =

〈
n̂αn̂β

〉
〈n̂α〉

〈
n̂β

〉 − 1 , (C.8)

such that in the non-interacting regime, when U = 0, we �nd:

Cintra =

〈
n̂α↑

〉
+

〈
n̂α↓

〉
+ 2

〈
n̂α↑

〉 〈
n̂α↓

〉〈
n̂α↑

〉2
+

〈
n̂α↓

〉2
+ 2

〈
n̂α↑

〉 〈
n̂α↓

〉 ,
Cinter = 0 .

On another side, entering the insulating regime is characterized by vanishing of the average〈
n̂αn̂β

〉
, whereas the values 〈n̂α〉 and

〈
n̂β

〉
remain �nite. For this reason, one would expect to �nd

Cinter ≈ −1 .

for the inter-orbital charge �uctuations. Further, interpolating the non-interacting and the fully
interacting limit, we get that the inter-orbital correlation function should be negative.

At U = 0, zero-value of Cinter corresponds to the non-interacting limit and describes a
situation where electrons �uctuate a lot. Introducing the correlations in the system, however,
this value tends to drop down. Moreover, one can observe some additional changes in the
behavior of Cinter once we allow J , 0, as described in Chapters 3 and 5.
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