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ALGEBRO-GEOMETRIC POISSON BRACKETS FOR REAL
FINITE-ZONE SOLUTIONS OF THE SINE-GORDON EQUATION

AND THE NONLINEAR SCHRÖDINGER EQUATION

B. A. DUBROVIN AND S. P. NOVIKOV

Algebro-geometric Poisson brackets for real, finite-zone solutions of the Korte-
weg–de Vries (KdV) equation were studied in [1]. The transfer of this theory to the
Toda lattice and the sinh-Gordon equation is more or less obvious. The complex
part of the finite-zone theory for the nonlinear Schrödinger equation (NS) and the
sine-Gordon equation (SG) is analogous to KdV, but conditions that solutions be
real require serious investigation.

I. Complex, “finite-zone” solutions of SG and NS. Poisson brackets. The
SG equation (utt − uxx + sinu = 0) and the NS equation (irt = −rxx + 2r2q,
iqt = qxx − 2q2r) can be represented as commutation conditions for λ-pencils (see
[2]):

[L, ∂t +B] = 0,

L = −∂x +
√
λ

(
0 1
−1 0

)
− i

4
(ut + ux)

(
1 0
0 −1

)
− 1

16
√
λ

(
0 e−iu

−eiu 0

)
,(SG)

L = ∂x + λ

(
0 −1
1 0

)
− 1

2

(
i(r − q) r + q
r + q i(q − r)

)
.(NS)

In the periodic or quasiperiodic case (exp(iu) is quasiperiodic for SG) the operator
L has a Bloch eigenfunction ψ which with suitable normalization is meromorphic
on a Riemann surface Γ over the λ plane:

y2 =
2g∏

j=0

(λ− λj), λ0λ1 . . . λ2g = 0;(SG)

y2 =
2g+1∏
j=0

(λ− λj).(NS)

The function ψ possesses poles γj (or zeros γj(x) of the first component of ψ),
j = 0, . . . , g for NS, j = 1, . . . , g for SG. These equations are Hamiltonian with
standard Hamiltonians and Poisson brackets {·, ·}, where the nonzero brackets are
the following:

{u(x), π(x′)}1 = δ(x− x′), π = ut,(SG)

{r(x), q(x′)}1 = δ(x− x′).(NS)
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2 B. A. DUBROVIN AND S. P. NOVIKOV

Formulas for solutions in terms of θ functions, the derivations of which differ little
from the KdV case, can be found in [3] for NS and also in [4] and [5] (Theorem
1 and the example of §4) for SG. We shall not discuss them here. It is important
only that these formulas have the form F (Ux +Wt +K0), where F is a complex
function of g variables and U , W and K0 are constant vectors. In the case of NS the
formula of this type characterizes only the quantity rq; r and q themselves contain
g + 1 periods including the “phase rotation”. The vector U has the components

Uj =
∮

bj

dp,

∮
aj

dp = 0, j = 1, 2, . . . , g,

where (a1, . . . , ag, b1, . . . , bg) is a canonical basis of cycles in H1(Y ), z = λ−1,

(NS) dp = dz

(
± 1
z2

+O(1)
)
, σ∗ dp = −dp

near both infinitely distant points ∞± ∈ Γ, and σ is the holomorphic involution
σ(λ,+) = (λ,−), σ2 = 1;

(SG)−

dp+ = dz(−1/z2 +O(1)), z = λ−1/2 → 0,

dp− = dw(1/16w2 +O(1)), w = λ1/2 → 0,

dp = dp+ + dp−,

∮
aj

dp± = 0, j = 1, 2, . . . , g.

For SG there is the “mean density of topological charge”

2πē = lim
L→∞

1
L

∫ L

0

ux dx.

The function p(λ) represents the “quasimomentum” in the periodic case, i.e.,

ψ±(x+ T, λ) = exp{±ip(λ)T}ψ±(x, λ).

The coefficients of the expansion of p(λ) are called the Hamiltonians of the “higher
SG” or “higher NS”:

p(λ) = λ+ c0 + c1/2λ+ . . . , λ→∞+, NS;

p(λ) =

{√
λ+ 2πē+ c+(16

√
λ)−1 + · · · , λ→∞,

−(15
√
λ)−1 + πē− c−

√
λ+ · · · λ→ 0;

(SG)

here 2c0 =
∫

(ln q)x dx, c1 = −
∫
rq dx is the generator of the phase rotation and

c+ + c− = H is the SG Hamiltonian, and p(λ) is single-valued on Γ̂ (see below).
The algebro-geometric Poisson brackets [1] are

{λj1 , λj2} = {γq1 , γq2} = 0.

Since for NS the number of indices j is equal to g + 1, the Abel transformation
linearizes the dynamics of only g complex quantities on the torus J(Γ). There still
remains the “phase variable” in the kernel of the Abel transformation. This is a
typical situation for matrix systems where the number of poles γj is greater than
the genus. The SG case is essentially scalar.

The analytic brackets are given by a meromorphic 1-form Q(λ) dλ on Γ or on
the covering Γ̂ → Γ which preserves the closedness of all cycles (aj); here

{Q(γj), γk} = δjk, {Q(γj), Q(γk)} = 0.
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The bracket {·, ·} is said to be consistent with the SG (or NS ) dynamics if all its
higher analogues are Hamiltonian.

Example 1. The standard bracket {·, ·}1 is analogous to [6] for NS and to Exam-
ple 4 of [1] for SG:

Q1(λ) dλ = 4ip(λ)λ−1dλ (on Γ̂),(SG)

Q1(λ) dλ = −2ip(λ)dλ ∼ 2iλ dp(λ).(NS)

The annihilators of these brackets consist of the periods T1, . . . , Tg together with
the condition

∏
λj = 0 for SG, and of T1, . . . , Tg+1 for NS.

Example 2. The Poisson bracket {·, ·}2 of the stationary problem∑
cjδHj = 0,

where the Hj are Hamiltonians of the higher analogues of SG or NS. According
to [7], these Poisson brackets are consistent with the SG and NS dynamics; the
bracket {·, ·}2 is algebro-geometric and analytic in analogy to [8]:

Q2(λ) dλ = 2i

1 + 16
√ ∏

λj 6=0

λj

 √∏
(λ− λj)λ−2 dλ,(SG)

Q2(λ) dλ = −2i
√∏

(λ− λj) dλ.(NS)

The annihilator of the bracket {·, ·}2 consists of the quantities (cj) which can be
expressed in one-to-one fashion in terms of the following symmetric functions of the
end points of the zones:

σ1, σ2, . . . , σg−1,±
√
σ2g,(SG)

σ1, σ2, . . . , σg+1,(NS)

where σk =
∏

i1<···<ik
λi1 · · ·λik

.

Remark. According to an analogue of Lemma 3 of [1], for brackets consistent with
the SG or NS dynamics the Hamiltonians of the higher SG or NS equations are
generated by the same coefficients of the expansion of Q(λ) near the points λ = ∞+

(NS) or λ = 0,∞ (SG) as for the standard bracket {·, ·}1. All the remaining
coefficients of the expansion belong to the annihilator.

II. Conditions for real SG and NS solutions in the γ representation. The
action variables. Suppose that a solution u(x, t) is real for SG or r = ±q̄ for
NS (notation: NS±). The most difficult question is the precise description of the
location of the quantities γj on Γ. The case NS+ where L is selfadjoint is an
exception. In this case all λj ∈ R, j = 0, 1, . . . , 2g + 1. Cycles aj on Γ are selected
which lie over the lacunae [λ2j , λ2j+1], j = 0, 1, . . . , g. In analogy to KdV, γj ∈ aj .
We obtain the torus T g+1 = (a0× a1× · · · × ag). The action variables Iq conjugate
to the angles φq (mod 2π) on T g+1 have the form

(1) Ij =
1
2π

∮
aj

Q(λ,Γ) dλ, j = 0, 1, . . . , g.

Since the collection of cycles aj cuts Γ into two parts Γ = Γ+ ∪ Γ−, we have

(2)
∑

q

Iq =
∑
Pk

res
λ=Pk

[Q(λ)dλ], Pk ∈ Γ+.
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We shall henceforth assume that the form Qdλ is “real” for real Γ and has a unique
pole on Γ+ at the point λ = ∞+. Under these conditions the following result holds.

Theorem 1. Suppose that the Poisson bracket is consistent with the dynamics of
all NS. Then the following assertions are true:

a) The action variables conjugate to the angles on the torus T g+1 have the form
(1).

b) The sum
∑g

0 Iq = res∞+ [Qdλ] coincides with the generator of the phase
transformation r → reiφ.

c) The Hamiltonians of the “higher NS” are obtained from the expansion of
Q(λ) dλ at λ = ∞+ in terms of z = λ−1 at the same sites as in the expansion of
Q1(λ) dλ = 2ip dλ (and with the same coefficients). The remaining terms of the
expansion belong to the annihilator.

We now proceed to the involved cases of SG and NS−. Using the results of [9],
[10] and [3], we can easily describe an admissible class of surfaces Γ:

1) The branch points come in complex conjugate pairs (λ2j+1, λ2j+2 = λ̄2j+1);
among them there is no real pair (NS−).

2) Part of the branch points λ0 < λ1 < · · · < λ2k−2 < λ2k−1 < λ2k = 0 is real
and negative; the other part of the branch points (λ2j+1, λ2j+2 = λ̄2j+1) comes in
complex conjugate pairs, j > k (SG).

As x ∈ R varies the zeros γj(x) cover sets Mj ∈ Γ containing cycles [Mj ] with
the natural orientation; the projections of these on the λ plane are invariant under
the mapping λ→ λ̄. Let xα ∈ R, |xα| → ∞ if α→∞, where γj(xα) ≈ γj(x0), and
γjα : [x0, xα] →Mj .

Definition. The average “number of oscillations” is

mj = lim
α→∞

deg γjα

xα − x0
≥ 0.

where deg γjα
is the torsion number in the homology group H1(Γ).

Lemma 1. Let aj be the homology class of the γ-cycle [Mj ]; then aj1 ◦ aj2 = 0,
and τ∗aj = aj, where τ(y, λ) = (−ȳ, λ̄).

Using the collection (aj), we choose a canonical basis of cycles and normalize
dp(λ) with respect to this basis. There arises the vector Uj =

∮
bj
dp.

Lemma 2. 2πmj = Uj > 0.

We introduce the “natural” numeration of the cycles a′q = aj , q = q(j), where
· · · < mq−1 < m < · · · . The following results can be proved.

Theorem 2. The homology classes aq possess representations which are curves
M ′

q without self-intersections having the properties that their projections N ′
q onto

the λ plane are without self-intersections and do not intersect pairwise, and that
they are invariant under the mapping λ → λ̄. In the case of SG the curves N ′

q(j)

are closed for 1 ≤ j ≤ k, and they intersect the semiaxis (0,∞) once at points µq

and the segment [λ2j−2, λ2j−1]; they intersect the real axis nowhere else; the curves
N ′

q(j) for j > k and all N ′
q for NS− terminate at the branch points λ2j−1, λ2j, and

intersect the real axis once at points µq of the semiaxis (0,∞). Here 0 < · · · <
µq−1 < µq < · · · under the natural ordering of q(j). The subgroup of the group
H1(Γ, Z) generated by the cycles (aq) does not depend on the ordering. A basis of
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γ-cycles [M ′
q] ∈ H1(Γ) is uniquely determined by these properties with the condition

Uq ≥ 0. There is the formula for the average density of topological charge

(3) ē =
∑
j≤k

σjmj = (2π)−1
∑
j≤k

σjUj ; σj = ±1, j = 1, 2, . . . , k,

where the signs depend on the “index” σ = (σ1, . . . , σk), σj = ±1, j = 1, . . . , k, of
the connected components of real solutions for given Γ (see Theorem 3). For NS−
there are no real branch points and

∑g
0 aj = 0.

Using [11] and [12], we can prove the following assertion.

Theorem 3. 1) For the SG equation with k = 0 and NS− there is only one real
torus for given branch points—“the spectrum” of the operator L.

2) For SG with k 6= 0 there are 2k connected components numbered by collections
σ = (σ1, . . . , σk), σj = ±1, j = 1, . . . , k, with the collections of γ-cycles

(Mσ1
1 ,Mσ2

2 , . . . ,M
σj

j , . . . ,Mσk

k ,Mk+1, . . . ,Mg) = M(σ),

where M−
j = τ(M+

j ) and τ is the anti-involution τ(y, λ) = (−ȳ, λ̄). For j ≤ k the
anti-involution τ reverses the direction of the projection N ′

j and changes the sign
of mj in (3).

3) To each component with index σ there corresponds a collection of covering γ-
cycles M̂(σ) = (M̂σ1

1 , . . . , M̂σk

k , M̂k+1, . . . , M̂g) on Γ̂ which jointly form part of the
boundary of one of the copies of Γ in Γ̂ (we recall that the surface Γ̂ is glued together
from an infinite number of copies of Γ cut along the cycles aj). Suppose that σ′

is obtained from σ by changing only one sign with index j (σj = +1 → σ′j = −1).
Then the collection M̂(σ′) is obtained from M̂(σ) by superposition of the operation
τ on the cycle M̂+

j (the curve M̂+
j is replaced by the curve M̂−

j homologous to it
on Γ̂ which covers the curve M−

j = τ(M+
j )) and the shift of all γ-cycles by the

monodromy transformation κj : Γ̂ → Γ̂ corresponding to the cycle bq(j):

M̂(σ′) = κj(M̂σ1
1 , M̂σ2

2 , . . . , τM̂
σj

j , . . . , M̂σk

k , . . . , M̂g).

Corollary 1. If the form Qdλ is meromorphic on Γ with poles only at λ = 0,∞,
then the action variables of distinct components σ = (σ1, . . . , σk), σ′ = (σ′1, . . . , σ

′
k)

differ for those j where σj 6= σ′j :

Iq(j)(σ)− Iq(j)(σ′) =
1
2
(σj − σ′j) res

λ=0
[Qdλ].

Corollary 2. For the standard bracket {·, ·}, the form Q1 dλ = 4ip dλ/λ is mero-
morphic on Γ̂ (κjp(λ) = p(λ) + Uj); passage from the component σ = (σ1, . . . , σk)
to the component σ′ = (σ′1, . . . , σ

′
k) implies the change of action variables

Iq(s)(σ) =
1
2π

∮
M̂s(σ)

Q1 dλ→ Iq(s)(σ′) =
1
2π

∮
M̂s(σ′)

Q1 dλ,

where
Iq(s)(σ′) = Iq(s), s > k,

Iq(s)(σ′) = Iq(s) + 8π

[
k∑

s=1

ms

σsσj − σ′sσ
′
j

2

]
, j ≤ k.
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Remark 1. In a recent preprint [13] the action variables for SG, k = 0, g = 2,
are actually indicated in a certain integral basis of the group of a-cycles which is
defined without using the natural numeration.

Remark 2. In the recent paper [14], where effective conditions for real SG solutions
are obtained expressed in terms of θ functions, a random basis of a-cycles was used.
For applications it is natural to use the canonical basis of a-cycles found here in
which the structure of the formulas is considerably simplified.
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