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A uniﬁed scheme is proposed for the construction of many-soliton solutions of a number of
mode!s associated with the time-dependent Schrodinger equation (vector nonlinear Schrodinger
equation, vector model of Yajima-Oikawa type, and others). Cases of nontrivial condensate

boundary conditions are investigated in detail.

INTRODUCTION

The main aim of the present paper is to describe integra-
ble models associated with the time-dependent Schrédinger
equation in a unified approach and to construct many-soli-
ton solutions of such models. These include, for example, the
vector nonlinear Schrddinger equation (NSE) with differ-
ent internal symmetry groups, a vector model of Yajima-
Oikawa type, and others. The “integrability” of some of
these systems follows from the fact that they have commuta-
tion representations (L~A pair or L—-A-B triplet). However,
for noncompact internal symmetry groups, for which con-
densate boundary conditions are physically realistic, the
standard technique of the inverse scattering problem is not
effective.

Our proposed approach, which does not use commuta-
tion representations, actually arose in the heart of the alge-
braic-geometric theory of integrable systems. It is well
known that this theory is used to construct periodic and qua-
siperiodic solutions of integrable systems; it is not nearly so
well known that the technique also makes it possible to con-
struct effectively all currently known explicit solutions of
such systems (many-soliton, rational, and combinations of
these). We wish to demonstrate this in a form accessible to
nonmathematicians, considering examples of models de-
scribed by a Schrddinger equation with a self-consistent po-
tential.

The paper is arranged as follows. In Sec. 1, taking the
example of the generalized Heisenberg magnet, we show
how such models arise. In Sec. 2, we describe in general form
the method of constructing and investigating explicit solu-
tions of such models. In Sec. 3, we consider some specific

e)‘xamples and give corresponding formulas. At the end, we
discuss the results.

1. PHYSICAL MODELS DESCRIBED BY A TIME-DEPENDENT
SCHRODINGER EQUATION WITH A SELF-CONSISTENT
POTENTIAL

The investigation of nonlinear wave phenomena in
physics often leads to systems of differential equations that
model the interaction of a finite number of waves or wave
packets. The simplest such system is the scalar nonlinear
Schrodinger equation (SNSE)
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Wt pae te P2 =0 (e=+ 1), (1)

which describes the self-interaction of a packet of high-fre-
quency waves (for £ = — 1, it is also called the Gross—Pi-
taevskil equation), in particular, the self-interaction of spin
waves (magnons) in ferromagnets, excitons in molecular
crystals, Langmuir waves in a plasma, etc. Equation (1) is,
together with the KdV equation, the currently most popular
and best studied nonlinear model of mathematical physics,
being integrable at both the classical and the quantum level.
Moreover, the quantum (or semiclassical) approach makes
it possible to use not only wave language but also particle
language. The simplest physical model described by (1) is a
Bose gas with a point two-body interaction at zero tempera-
ture (see, for example, Ref. 14). This model provides a very
transparent interpretation of the results, which, with the
necessary redefinitions and renotation, can be used in the
framework of other physical models as well.

A natural generalization of (1) is the system describing
the interaction of a packet ¥ (x, ¢) of high-frequency waves
with a low-frequency wave U(x, ¢). In this case, the complex
function ¥ (x, t) satisfies, as before, an SNSE,

TP+ bae + U + A [P [ 2 =0, (2)

in which the part of the potential U is played by the low-
frequency wave, which is described by one of the following
equations (of self-consistency):

QU = — [} | % (Zakharov'®),. (3a)
(0 + 0) U = |y |2 (Yajima~Oikawa®), (3b)
(01 + 0y + add + PUI,) U = [ | & (Nishikawn o al"),
(3¢)

(O ady) U-+PaiU2 = — ]2 (Makhan’kov®). (3d)

The systems (2) and (3) with A = QO were obtained in plasma
physics, in which they modeled the interaction of Langmuir
and ion-acoustic waves. Later, it was shown that analogous
equations arise in the investigation of the interaction of spin
waves with phonons in ferromagnets® and excitons with
phonons in molecular crystals.” However, in the general case
we now have 4 0.

Another natural generalization of the potential (1) is
the transition from the scalar variant of the NSE to vector
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form, - = (¢, ¥y,..., ¥,)" (VNSE), with replacement
of |#|* by the inner product

(P, ) = 1]2;{3 S Pibss )

where g;; is the metric of the isotopic space. The Hamiltonian
of the system is often found to be invariant with respect to
some internal symmetry group, which is compact or non-
compact, depending on whether or not the matrix g, = 4,8,
is sign definite or indefinite; in the case of Hermitian Hamil-
tonians, the group is U(p,q). Such models describe a Bose
gas with internal quasispin (“‘color”) degrees of freedom;
they also arise in the case of propagation in a nonlinear medi-
um of a high-frequency plane wave with circular polariza-
tion! in the description of spin waves in magnets with layered
structure, in the derivation of the classical continuum analog
of the Hubbard model, and elsewhere. Some of these models
are integrable” and admit fairly complete investigation. Fin-
ally, combining both generalizations, we arrive at vector var-
iants of the time-dependent Schrodinger equation with a
self-consistent potential (low-frequency branch) in one of
the forms (3) listed above (though others are also possible),
i.e., we obtain a system of equations consisting of the equa-
tion

i\l?t + P + U"P -+ b (IP, ’ll)) P o 0 (5)

and one of the equations in Egs. (3) with a right-hand side
that depends on the invariant combination (¢,).

At the semiclassical level, all these models admit an
interpretation in the language of a multicomponent Bose gas
(with internal degrees of freedom) with, in the general case,
different forms of interaction between the particles of the
components and the background mode. In other words, Eqs.
(5) and (3) describe a mixture of gases in which, for

D, i k=1, .
(6)

the particles of the different components attract or repel
each other (A1 #0) and can also emit and absorb acoustic
waves. Therefore, we shall, without specifying a definite
physical problem and interpretation of the results, call equa-
tions like (5) Bose-gas models.

Nevertheless, since it is precisely in the theory of the
condensed state that in recent years models of the type (3)
have made their appearance and been studied, the behavior
of the corresponding systems is of ever increasing interest in
this branch of physics.

The experimental investigation of magnetic crystals
shows that many of them possess a layered or multichain

gih = diag (17 17 coe ey "—17 "'"1 ..

structure.® In the overwhelming majority of cases, the inter- -

action between the layers or chains has a strong influence on
the dynamical behavior of the crystal as a whole. Typical
representatives are crystals of salts,® though analogous
structures are also encountered in organic systems in the
form of molecular chains.’ The microscopic theory of such
structures is usually based on a generalization of the Heisen-
berg spin model to the case of several components.'® The
interaction of “color” degrees of freedom for the interacting
spins of a one-dimensional chain makes it possible to de-
scribe multilayer magnetic systems with weak coupling.
Further, since the one-dimenisonal Hubbard model for a
half-filled band corresponds to a two-component Heisen-
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berg spin chain'! with interaction between the components,
a multicomponent spin chain corresponding to the general-
ized Hubbard model'? can be used to describe collective ex-
citations and their statistical properties in systems with sev-
eral spin species.

In all these cases, we arrive at Bose gas models (5) that,
strictly speaking, realize a dynamical description of the cor-
responding systems at zero temperature. Under experimen-
tal conditions, even at very low temperatures, one usually
measures certain average characteristics such as the static or
the dynamical structure factor. For the theoretical calcula-
tion of these, one sometimes uses a partition function,
which is defined in terms of a functional integral
[Z = fD®,Dbexp( — BH), f=T ~, in the case of real
fields]. However, for the Bose-gas models (5) such an ap-
proach involves certain difficulties,' and therefore the so-
called phenomenological approach, first formulated by
Krumhans!t and Schrieffer,'® has become popular. These
authors noted that the partition function found by transfer-
matrix methods from the functional integral and the parti-
tion function obtained in the approximation of an ideal gas of
kinks in the ®* model were almost identical. Subsequently,
the phenomenological approach was widely used to find the
structure factors in different models (see the review of Ref.
14 and the bibliography given there). We note that one of the
most important directions in the use of the phenomenologi-
cal approach is study of the stability of solitons and the elas-
ticity (or quasielasticity) of their interaction. Such proper-
ties usually hold in the framework of integrable models with
a sufficiently small number of interacting waves. In the cases
when this is not so, the distribution function of the solitons
with respect to both their velocities and amplitudes (or fre-
quencies) must be found on the basis of other considerations
[for example, in the study of Ref. 15, which was based on
numerical experiments, Degtyarev et al. wrote down and
solved an approximate (phenomenologicall) kinetic equa-
tion for solitons in the framework of the system (2)—(3a)
with 4 = 0].

For integrable systems of the form (5) (withn>1)itis
therefore very important to know in analytic form not only
the complete spectrum of single-soliton solutions but also
two- and sometimes three-soliton formulas (particularly
their asymptotic behaviors) in order to gauge the validity of
using the phenomenological approach.

Generalized Heisenberg model and Bose-gas models

We consider the “color” generalization of a magnetic
chain with Hamiltonian"’

H == Hg + HL7 (7)
where
1 ~ .
e — 3 {3 [ sosi s
ij, af
B?jﬁszi@‘g?ﬁ]} \ (7a)

2
Hy=T+U,, T'="- 215 Uo*%ﬁf‘ﬂ (=== @)
j i
(7b)

which describes the interaction of spins of different “colors”™
(species) (a == 1,...,, n). Ignoring the interaction between
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the color and spatial degrees of freedom in the exchange
integrals and taking into account the interaction of only
nearest neighbors, we obtain

J%]ﬁ;:f:,]jj+ H]].;q—-]ocli']t]%(fv (8)

where J;;, , =J(|x; — x;, ,|) is the exchange integral of

the nearest spins, and §* = 5+ i$* and S* are spin opera-
tors.

For sufficiently large values of the spins 5%, the Hamil-
tonian (7) can be rewritten in terms of Bose operators of
creation, ¢;* “, and annihilation, a, by means of the general-
ized Holstein-Primakoff representation: § ;"¢ = V25%(1

fig/2s%) ag S =25 (1= /25
At =at “af, Sz“ = 5% — i}

H, = const—~~— 2 {s]”m SR (af %al o+ aflea)
i, o op

o[ s DL H 1 LSS ) + ) LiLnind o ]}
o of
9

wherel, =Tr L,, s =s.

The evolution of the operator a{*(1) is determined by the
Heisenberg equation ifiaf (t) = [a“ H]

To go over from the quantum Hamiltonian (9) to the
classical Hamiltonian, we apply a reduction procedure
based on the use of coherent states of the Heisenberg—Weyl
group'’

A e %,
Ile._g.l(pjw ep}- aj

%) == I;,I‘ lo%) = 10,

which in our cases possess an important property, namely,
the operator

m, /Z

expressed in normal (Wick) form and averaged over the
states |@ '), gives
A=A LgH= 3 Con ()" (59" (10)
7 )
We use this relation dnd go to the continuum limit by
means of the standard procedure of expanding ¢“(£) = ¢ §

in a  Taylor series @F | =@“E) +ayp g(§‘)
+Lajp g (&) + ... and representing the exchange integrals
in the form J(|x Xp =) =Jy —J (X, —x; —dq)
(and similarly for J). Asa result, we obtain the system
&= Ulag + - 2 T (%40 (11)
of
g% = —b 3 (Ko, py 9y — 5T 00" + S'Z'Jaﬁcpﬁxg)

—-—J (p“Z (LRLS - LSLY) 1982, (12)

in which
Top=ToK g, pr—Jo (LLE -+ 1,LT) S,
Top==J 1K g, =T 1 (LG -+ L,LT) 85, b= Tys/2,
and (a, B) denotes symmetrization with respect to the in-
dices a and . The further investigation of the system (11)~

(12) is associated with the imposition of additional condi-
tions (reductions) on the matrices of coeflicients 7 and L.
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Some special reductions

Example 1. Suppose that the exchange integrals of the
color degrees of freedom are proportional to each other and
are diagonal:

K py =26, L8385 = 20,188,y = 1,8

B

then the system (11)~(12) reduces to a system of the form
(5) and (3a). In the quasistationary (inertialess) limit,
when in Eq. (11) we can ignore the time derivative,

UE t)y=sag= — mw S‘ [' o (028 -+ ¢, (13)

Eq. (12) reduces to the VNSE generated by the Hamiltonian
H= | @1 (K gs) — d (¢*EqP—R (¢*Ke)l,  (14)
in which

(PR 9) = 2 K g, o = 2 2% g%

$2y2 5 ~
d s S O - .
muv} f 201by ° pe=s(—cv),

af & !J.}L 60(,; , ocﬁ = V}nméaﬁ,

| ) i T
e R U A R e CUE R AAN

The variables ¢“(&,¢) and ¢“(£,1) are canonically conjugate
variables,

{6 (). 9f (1)) = 1676 (2 —y)» (15)

with the usual Poisson brackets

64 8B 8B 64
L BY= Z ?‘é(“@:ﬁw“&pa )

The further simplification of (14) is associated with the
presence of internal symmetry in the system, when the
strengths of the interactions for different “colors” are the
same in modulus, A% == ¢ :
[ 1ooa=1, ..., p
o -1, oc~rp+1 sy Pg

Introducing the notation
o (6, 2), =1, ..., p;
Yo (B, 1) = { o (1), a=1 p
8uo (& 1), a=p-+1, ..., p-+q, (16)
Al d 4
(1 O)QB:‘E[((Q»H)::aaéaﬁ’ "5*::”1 %—zp, H - H/b,

(p+q=n).

we obtain
0= (@100 o) — % (6 02— 0 (p, W (A7)
{07 (®), v*P () =i6"%8 € —m), (18)
where
T 0
vr=vrore=(5 %)
and
‘Z“)\ o Z% @
W= 2 1P X =Ty (19)
Oe=sd Q==pot-1

is the U(p, g) inner product. The corresponding equation of
motion

Dubrovin et al. 254

iy - e 20 (b, )b pw =0 (20)

is the U(p, g) VNSE describing an integrable system.’
An analogous reduction, applied to the system (11)—
(12) in dimensionless variables, is (5) -+ (3a):

AU — U — (p, Vs = 0 (21a)
iy A e — U A A (g, )= 0. (21b)

Note that the last term in Eq. (21b) is related to the expres-
sion of (S %? in the Holstein-Primakoff representation, is
proportional to the degree of anisotropy of the original chain
(the ratio J, /J, ), and is still present in the absence of mag-
non-phonon interaction.

The generalized Yajima~Oikawa system can be readily
obtained from (21) by means of the standard procedure of
transition to the monodirected version of the wave equation,

04— 0% 2 — 20 (0 - 02), (22)

and integration with respect to &.

Example 2. To take into account the weak interaction
between the color components in the chains, which we ig-
nored in the previous treatment, we assume that nearest
neighbors make a contribution in the color space. Then the
reduction has the form

g5 188y IV (2
1laﬂ ) 60&[; w:~8(‘33 - , V:&/ﬂ - (u)[jéﬁ, o H)7

whereJ !/J <1, and Jand J ' are the intercell and interchain
exchange integrals, respectively. Using (23), we can obtain
equations of the type (5) and (8) with additional small
terms that take into account the nondiagonality of the ma-
trix of the intercolor interaction. The influence of these
terms on the dynamics of the system can be investigated by
the “standard’ soliton perturbation theory, or by means of
direct methods, or by means of the inverse scattering meth-
od."®

Application of the procedure described above to the
Hubbard model, or rather to its multisublattice spin equiva-
lent, also leads under certain assumptions to systems of the
form (5) + (3) with the U(n/2, n/2) internal symmetry
group in the case of an antiferromagnetic ground state and
U(n,0) in the case of a ferromagnetic ground state (see Ref.
17).

Example 3. Allowance in the Hamiitonian H,, for an-
harmonicity

Uy =4t ) (@500 — 0 )

J

and phonon dispersion

R ]
R -+ Agds -+ s Ay dye ot

leads to replacement of the wave equation (11) by the inho-
mogeneous Boussinesq equation

G — 63 (U2 — o — Pa) = ga% (. ). (24)

where ¢, /3, and g are coeflicients determined by the param-
eters of the original system. By means of a scale transforma-
tion of the variables &, ¢, x, and ¥ we arrive at the system
(5) -+ (3d). The transltlon to the monodirected variant in
Eq. (24) by means of (22) leads to (3c).
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Considering the multicomponent spin system, we have
found that under certain assumptions (long-wave limit,
etc.) it can be reduced to various field models with internal
(“color”’) symmetries. Some of these models are integrable.
They include the NSE with U(p, q) symmetry (obtained in
the quasistatic limit), the color generalization of the Ya-
jima-QOikawa system (obtained in the transonic limit), and,
finally, the system (5) (3d) for A = 0. The remaining nonin-
tegrable variants can often be regarded as systems that are
nearly integrable. All the obtained equations contain not
only linear (phonon and magnon) solutions but also essen-
tially nonlinear (soliton) solutions; we shall discuss the
properties of these solutions in the following sections. For it
is these solutions, together with the linear modes, that de-
scribe the elementary excitations of the corresponding sys-
tem at low temperatures.”® Finally, we note that the models
considered above arise in many branches of physics; in par-
ticular, many of them appear to have been found for the first
time in plasma physics (see, for example, the reviews of Ref.
21).

2. GENERAL SCHEME OF THE METHOD

In this section we describe the method of constructing
integrable models associated with the time-dependent
Schrédinger equation and of finding explicit localized solu-
tions.

Although this method arises from the general “finite-
gap” (algebraic-geometric) scheme, its exposition can in
fact be given in closed form without any use of the results of
algebraic geometry. It seems to the authors that the “alge-
braic-geometric” approach to the construction of many-soli-
ton solutions is one of the simplest and most elementary
methods that enables one to obtain these solutions even in
the cases when for the auxiliary linear problems there is no
systematic solution of the direct and inverse spectral prob-
lems. ‘

It should be noted that our method of constructing solu-
tions of the time-dependent Schrodinger equation with self-
consistency conditions differs from the standard scheme of
the inverse scattering method. For all these equations, repre-
sentations of Lax type or representations in the form of L, 4,
B triplets are known. The linear problems that then arise are
very varied. It can be shown that the solutions of these equa-
tions can be obtained in the framework of a single scheme
that uses just one linear operator,

L == idy — 0% 4 u (%, y),

and not several, as is required by the inverse scattering meth-
od. At the same time, the operator L plays not only an auxil-
iary role but actually occurs as a composite part in the origi-
nal system of equations.

Such an approach to the NSE and its vector generaliza-
tion was first proposed in the case of periodic solutions in
Ref. 22. Periodic solutions for the remaining self-consisten-
cy conditions were constructed in Ref. 23, and it was this
that mainly stimulated the present work.

Construction of “integrable” Potentials of the time-
dependent Schrodinger equation that are associated witha
rational curve

By integrable potentials of the time-dependent Schro-
dinger equation that are associated with a rational curve, we
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mean potentials #(x,¢) for which the equation
[i0y — 0% + u(z, DIP(x, ¢, k) =0 (25)

has a solution of the form

(2, 1, k) = Qy (2, t, k) elhx+ine, (26)
where
On (@ & k) =&Y 4 ay (g, )N~ 4. ay (z, 1)
(27)

is a polynomial in k of some degree .

The variant of construction of such potentials which is
presented below may not be the most general. Nevertheless,
it contains as special cases the many-soliton and rational
solutions of the linear equations in which we are interested.

We first construct complex integrable potentials. We

specify a set of distinct numbers ,,...,%,, (aj), where
i=1,.,N,j=1,., M s=0,., m;, and m, + ... + my,
+ M>N. These quantities are parameters of the construc-
tion. For given parameters, the function ¥(x,t,k) can be
uniquely determined by requiring that it satisfy the follow-
ing system of linear conditions"’

ATy

E; }"jﬂ GO (@t k) fh, = 0. =TV (28)
Jem)oge=
The conditions (28) are equivalent to a system of N linear
equations for the coefficients a,,..., a,. To give the explicit
form of these equations, we introduce the polynomials

P (@, b, k) = e-ihe-ititgy (K" eihxtih2t)

1o \T a8 iperipe R . o
;;;;; o p - tha— k2t (_l_ ().v) ();elh,\ ESVL) (’?k iz 2‘1]‘.[),\ LT

We denote by @; = w; (x,t) the linear functions
wj (@, 1) = ww i, j =1, M.

Then the conditions (28) can be written in the form of the
isystem of equations

hY A 'lnj
. \Y hl s i,
2 ay, (X, t) \_J i aij/)N#e,s (x, L. Kj) 'y
kel Je=dog==0)

”?j
\“ N L8
AR 257 S
Fe=tos=0

G towg) e i 1N, (29)

We denote by 4(x,t) = (4, (x,t)) the N X N matrix
formed from the coefficients of @, (x,¢) in (29) and by
A(xtk) the (N + 1) X (N 4+ 1) matrix of the form

B RN

M H?j ) é .................... :.
-2 D APy (L %) et ;

P SE
AL l : A i

\ \‘\ S

L /190

P sz 8, %)e”‘)jg

(30)

THEOREM 1. Suppose that the matrix A (x,#) of the
system (29) is not identically (with respect to x and ¢) de-
generate. Then a function #(x,t,k) of the form (26) deter-
mined by the conditions (28) satisfies Eq. (25) with poten-
tial (x,t) equal to

w(x, t) = 2104, (x, t) == 20% In det 4 (x, 1). (3
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The proof is absolutely standard for the theory of
“finite-gap” integration and uses only the form of ¥ and the
conditions that determine it.

If we set u(x,t) = 2id,a, (x,t), then substitution of
(26) in (25) immediately shows that the left-hand side of
this equation is equal to a function zZ(x,t,k) of the form

V(b k)= (@, (2, )E " L ay (o, 1)) eibstie,
which is completely analogous to (26) but without the term
k" in the preexponential factor. Since the conditions (27)
are linear and do not depend on x and ¢, for any linear opera-
tor A= A(d,, d,) we have the result that the function
@(x,t,k) = Ay(x,t,k) will again satisfy the conditions (27).
Hence, @, ,...,a, satisty a system of linear equations with the
same coefficients as for a,,..., ay. In contrast to the equa-
tions for these last quantities, the system of equations for
a,,...,a, is homogeneous. Hence, &, = ... = @, = 0, and Eq.
(25) is proved.

The proof of the second equality in (31) follows direct-
ly from Cramer’s rule for the solution a, (x,) of the system
(29) and from the obvious relation

_:_ ()\ [ PI\'—L s (.’L", t, k) eihx—Hl\'Zt] I)N, s (11 t, ]») elha-pikze,

The theorem is proved.

Remark. For nondegeneracy of the matrix 4 (x,¢) it is
obviously necessary that the matrix (&) of coefficients of
the system of linear conditions (28) havc rank N. In what
follows, we shall assume that this condition on the rank of
the matrix ( a;j ) is satisfied. We note also that the function
¥(x,t,k) is not changed if the matrix (aj') is multiplied from
the left by an arbitrary constant nondegenerate N X N ma-
trix.

As we have already said, for arbitrary values of the pa-
rameters »;, (a;) the obtained potentials u(x,7) are com-
plex and meromorphic functions of the variables x and 7. We
now describe the restrictions on these parameters that guar-
antee reality and nonsingularity (for all real x and 1) of the
potentials u(x,z).

We consider here only the case m, = ...m,, = 0 (an ex-
ample that leads to rational solutions of the SNSE and in
which N = 2, m; %0 was analyzed in Ref. 24). In this case,
we require that M = 2V and that the quantities x,,..., Hon
have nonzero imaginary parts and are arranged in complex-
conjugate pairs:

Ky == Uy L1, N,

Without loss of generality, it can be assumed that the minor
of the matrix (a;)= (a,.j“) formed from the columns with
numbers j =N + 1,..., 2N is not degenerate. We shall as-
sume that this minor is unity (see the remark above). Then
the system of equations (28) can be rewritten in the form

N

V() = — 2 o (%), =1, N, (32)

where a;; is a constant N X N matrix. It is convenient to re-
normalize the function ¢¥(x,1,k), setting

(o A WP, f, k)
Ve t, k)= e .
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e

R A TR
E“:‘(l -+ Z*ﬁff/{}—*)(, L (33)
For the renormalized function W (x,t,k) the conditions (32)

are written in the form
3
Y (, Low;) == .,,L C,ires Wi, £ k), (34)

VS e j

where the constant matrix (C;) is related to the matrix (a;)
by the equations

Cij = LR )l oy (w), i, j =1, N, (35)

R(k) = (k —3,)...(k — %y ), and the prime denotes the de-
rivative with xespect to k.

THEOREM 2. Suppose that the parameters s,..., %y,
(C;), which specify through the conditions (34) a function
W (x,t,k) of the form (33), satisfy the following require-
ments: _

a) the matrix (C;) is anti-Hermitian, C; - Cy;

b) we number the poINts % ..., %ty i such away that Im
%, >0, i=1,., pand Im »x, <0, i=p-+ 1,.., N. It is re-
quired that the Hermitian matrix

(iVL(Jl{I)y 1 s: /1.1 l <: D,
be positive definite and that the Hermitian matrix
(ikl(/vhl)v P 1 <\: ’[1.7 [ < ‘Vv

be negative definite (these matrices need not be strictly defi-
nite). Then the function W(x,,,k) for k #ix; depends
smoothly on x,t for all real x,7 and is an eigenfunction for the
operator L = id, — 3% + u(x,t) with a smooth real poten-
tial (and zero eigenvalue). For these functions,

(o Y e uﬁf;“ll" t ]‘), ak(x kl) 36
Wix, &, k)= R TR (e (36)
w(x, t) = 20% In det M (z, t), 37
where
(‘i("uw)i——m].) ] '
Mz, t)==Cj+ = Rl (x-+wnl), 4, j=1, N;
Hi—Nj
] (38)
A;[ij’ M for l.’. j== m Moo =1, M= e, } (39)
M= (k—w»;)y e ", i=1, N.
Proof. We consider the rational function
Qe, L k)= (z, t. k)W (2, £, k). (40)

The residue of this function at the point k= « is

— {a, (x,t) + a (x,0)). In addltlon this function has sim- .

ple poles at the points k = x,, k = », with residues

res, Qa, t, k)= res, Wiz, t, k) v (z, tT‘/mcﬁ)

o Z C¥, ¥, (41)
where we have set
W= Wi (x, t)=res, ¥ (x, ¢, k)=r;(x, 1) e, i=1, N.
(42)
Similarly,
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res; Qa, &, k)= (e, b, n)res, Ve, 1, k)
N
— ) VY (43)
=1
It therefore follows from the condition of anti-Hermiticity
that the sum of the residues of the function Q(x,t,k) at all
finite poles is zero. From this we conclude that the residue at
infinity is zero, i.e., @, = - a,. This then entails reality of
the potential u (x,f) by virtue of the formula u = 2id,a,.
Smoothness of u (x,2) and W {x,0,k) for k #¢; is equiva-
lent, as follows from (36) and (37), to nondegeneracy of the
matrix M (x,t), which is the matrix of coeflicients of W, that
are determined by Eq. (42) in the system of equations (44),
which is equivalent to the original equation (34). We shall
show that the system of conditions (34) has a unique solu-
tion for all real x,r. We rewrite this system in the form of a
system of linear equations for the residues W, (x,¢}, which
are determined by Eq. (42):

N (0, ~w, -

L (‘l<()[ @) . Wl G TTW (44)
Z (‘ij o S j — ’ ) .
j=1

A 'rf‘r’vj

Degeneracy at certain x,¢ of the matrix of coefficients of this
system signifies solvability of the corresponding homoge-
neous system (with zeros on the right-hand sides). This last
condition is equivalent to the existence of a nonvanishing
function W' (x,4,k) of the form

W, b k) Dy _'_’M(],_i), NI

which satisfies the conditions (34). We shall show that this
is impossible. We consider the integral over the real axis

oo

0< g W (ot )Rk U@ (et Ryl L

- oo

where Q' (x,t,k) is constructed from the function W' (x,t,k)
by means of Eq. (40). We calculate the integral / in terms of
the residues of the function Q' (x,1,k) lying in the upper half-
plane. For these residues, Egs. (41) and (43) hold if ¥, is
replaced by W, = res, W'. Therefore, we have

NN
1 VXY o i
I .90 (\ \ C; W \p ~ L )_, C[}_l[rjlpi)
i= 1] - { (ETE B UL
» \\1
i A SN\ AT AP
i (Y W= YW
i, T A
N

i i .
T & A t ’ ’
SN e NN ).

i=1 je=p1 fz=p 1 je
Redenoting in the first and third sums the indices of summa-
tion, we finally obtain
) N -
I:=2mi ( D Ve, v— Y lv‘;(:,.jw';) <0
Ry i, S=pt
by virtue of condition (b) of the theorem. The resulting con-
tradiction proves the smoothness for all real x,Z, of the func-
tions W (x,t,k) and u(x,¢). Equations (36) and (37) can be
derived in the same way as (30) and (31). The theorem is
proved.
DEFINITION 1. We shall call the integrable potential
u(x,t) specified in the framework of our construction by the
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N parameters 5 ,..., 5 5 together with the N X N matrix (Cy
an N-soliton potential.

For the corresponding solutions of the scalar NSE (see
Sec. 3), such a definition of the number of solitons agrees
with the standard definition. In vector models, our defini-
tion of the number of solitons does not always agree with the
intuitive definition.?

We now establish the circumstances under which two
sets of “spectral data” (x,), (Cy) and (%)), (C}) deter-
mine the same Schrddinger operator with the same family of
eigenfunctions ¥ (x,t,k). For this, it is convenient to use the
relations (32). We represent the matrix {a;), whichisrelat-
ed to (C;) by Eq. (35), in the block form

where the square matrices @, and a_ have dimensions
pXpand (N — p) X (N — p) respectively. We assume that
the matrix o _ is nondegenerate. Then a transformation of
the form [s;, (a;)]- [x/(a}),] where

{xi, i=1, p
Mpe=d ; (45)
His [ = )+1. N
oy —Pacty | — ot
(ais) ( i A ) (46)

does not change the relations (32), which determine the
functions W (x,t,k). Thus, in the case of nondegeneracy of
the minor & _ the points x, | , .., %y can be “pushed” from
the lower into the upper half-plane [the matrix (C;;) having
been also changed, in accordance with Egs. (46) and (35)]
without change of the Schrddinger operator and its eigen-
function.

We also mention a case of “trivialization” of the basic
system (34), for which there is in the matrix (C;) across of
Zeros, 1.e.,

Civg=Ciig— 0, j= 1, N.

In this case, the eigenfunction W(x,z,k) has the form
Wl b ee k";zo 0
Voo, ¢, k)= " W (x, t. k),

where the function W (x,#,k) does not depend on 3, and is
determined by a system of the form (34), from which the
row with the number i, has been removed. The potential
u(x,t) will also not depend on .

We shall now also give the laws of transformation of the
spectral data corresponding to Galileo, scale, and other sim-
ple transformations of the potential of the Schridinger oper-
ator.

a) The Galileo transformation

a@’::x+1;t; o= t.

For this,
xgv::x[—u/il, i=1, N, (47)
(Cij) = {C1y)-

We have
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Yo't k) (48)
=W(x, t, k) T (H? t), where k' == k—p/2.

b) The translations
2 =x - axy =1t t,.

Under such transformations, the spectral data transform in
accordance with the law

wi=2;, i=1, N;
Cij=Cizexp{il(xi—n)) 2o+ — %) L]}, & j=1, N.
(49)
Obviously,

w oz, t') = u(z, t);

W, U, k) =W (a, t, k) etk
c¢) The scale transformations

' o= Ay t = A%,
The transformation law for the spectral data is

wp = Ay, =1, N;

(Ci3) = (Ciy).

The potential and eigenfunctions transform as

wo(@, t) =A% (x, t); ¥ (@, U, k)=Y(z, t, k),

where k' = 4 k.
d) Spatial and time reflections:

2 o= gy = L

Then

At the same time,

W, t) = ux, t)
Wa!, ', k)= (z, t, k),

where k' = £,

Asymptotic properties of the potentials and eigenfunctions
of the constructed operators

ThecaseN=1
The system (44) reduces to the single equation

ei@w) -
€ w) Wy (, t) = —elo.

U=

Here » =7, (we suppose Im % >0), C=C,;, Re C,; =0,
Im C>0(for C=0, everything becomes trivial),
w = x{(x + xt). Hence
- i{@—o -1
Y (z, t)= wei‘*’(C+ ei )) .

H—H

We write % = a + i3. We then obtain ¥

iﬁ eiax+i(oc2-[-}2)t

w ==
Vi(z, t)= V ipC Ch[B (z— o)+ 2aBy]

(30)
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where x, has the form

i ::%5— In V(;_—T;—)_C (51)
For r = ry (x,£), we obtain
r(z, 1) = ip {1 4 th [ (z — xo) -+ 2aptl}. (52)

Thus, to the case N = 1 there corresponds the well-known

“single-soliton” potential of the Schrddinger operator which

decreases in all directions except directions of the form

x = — 2at 4 const:

w(z, t) = 21 dyr (2, 1) = —2p* ch™? [P (¢ — xy) 4 2apt).
(53)

The eigenfunction of the corresponding Schrodinger opera-
tor has the form

¥ 1 )= [1 4 ip 1 th [(x g} +2aﬁt]] bR, (54)

k—%

Thecase N> 1

The asymptotic behavior of the functions ¥ (x,4,k) can-
not be readily described for arbitrary values of the param-
eters (¢;), (C;). We shall consider here only the simplest
case when Im »; >0,/ = 1,...,V:

det (Cy;) 5= 0.

Some other examples of calculation of the asymptotic beha-
viors are considered below.
We consider first the asymptotic behavior at large x and

fixed t. Asx— — 0,
eﬁj eiijwwjt) -0

o imj s O, ] ::T:WN

Therefore, the system (44) for the residues ¥ ,..., ¥ of the
function W (x,t,k) goes over into the system

L CijWi==0, i=s i, N.

N
%
=1

Therefore, ¥, -0 for allj. It is easy to see that this decrease is
exponential, i.e.,, as X —» — oo

¥ (a, 1) > Wi()ebs, j=1, N,
0 ‘ain functions of ¢, and
where W} (¢) are certain functio ,

p o= min | Imw; s (55a)

7
We also have
e >0, j=1N, (55b)
since r; = \l/je"i“’f. Therefore, the potential u(x,t) also de-
creases exponentially; it is readily seen that

u (3;7 Z) e () (9,2(5-‘5)Y e o

where f3 is determined by Eq. (552). From (55b) we obvi-
ously find that

Vo(, t, k) — plhlathD) g 00,

In the limit x— -+ oo, the calculation is somewhat more
complicated. Here the matrix of the system (44) tends to
infinity. Going over to the variables r, = ¥, exp( — iw;), we
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rewrite the system(44) in the form

% (Cop™i+ =) rj= =1, i=TN.

Ki——Nj

j=1
As x— - o0, this system is transformed into
ro

N
45— —0 =W, (56)

Hi—H%j

ju=1

where by #9,..., r% we have denoted the limiting values.
The rational function
N 0
ot D

=1

can be uniquely represented in the form

where P(k) is a polynomial of degree N with unity as the
leading coefficient. It fol}_ows from (56) that f(,;) = 0 and,
hence, P(k) = II, (k — x,). Hence

%

N
k .
W, t, k) H ,F:701)1<x+-)«t)’ £ — o0, (57)
) .
i=1

The functions ¥, decrease exponentially, and
W, (x, 1) — 1% as x> 400, je=1, N. (58)
One can show that

u (e, t) = 0 (e—2h), - oo, (59)

where 3 is determined by Eq. (55a).

For a degenerate matrix (C}), the asymptotic beha-
viors at large x are more complicated. We note here the fol-
lowing property: Suppose that all the points x,,..., % liein
the upper half-plane but the matrix (C;;) is degenerate. If the
imaginary parts Im 2,..., Im 5, are all pairwise different,
then at least one of the functions V¥, (x,),..., ¥y (x,t) as
x- — oo increases unboundedly. For suppose the constants
Aoy Ay (not all zero) satisfy the conditions

N et i

,Zl }Vicij'“': 0, j=1, N.

=
Multiplying the i-th equation of the system (44) by 4, and
then adding all the equations, we obtain

(0, -0 ;)

N N __
e 7 X {0,
Sy e Wy — D) A
dm=1

Hyp—%j

1, j=1

Going to the limit x— — oo in this relation under the as-
sumption that the functions ¥ ,,..., V¥, are bounded, we ob-
tain A, = ... = 45 = 0. The resulting contradiction proves
the unboundedness of the functions V.

Note also that for a special choice of the spectral data
(%), (Cy) the potential u (x,t) is a periodic or quasiperiodic
function of x. For periodicity with respect to x with period 7,
we obviously require

Ciiexpli (x; — %) T1 = Cyj, 4, j =1, N. (60)

This follows from (49). If we set »; = a; + if3;, then (60)
can be rewritten in the form
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a; —ay = 1I"125n,
Bty =0

where 1, are certain integers.
If we replace this condition by

Bi +B; =0 fori C; 0,

ijs

for Ci;5£0,

th.en the potential u(x,z) will be a quasiperiodic function
with respect to x. It is obvious that these relations can be
solved if the matrix (C;) satisfies the requirements

Ciz = 0, CyCiCr;y =0, i, j, k=1, N.

The conditions of periodicity and quasiperiodicity with re-
spect to f are similar.

We now turn to the study of the asymptotic behavior
with respect to ¢ at large ¢ for fixed x. We shall again assume
that Im »; >0,/ =1,..., N, and det(C;) #0. Two essentially
different cases are possible. The first is when Im x;=0for all
J=1,..., N. Calculations similar to the ones just made show
that the functions W, (x,1),..., ¥y (x,) and u(x,) are ex-
ponentially damped as ¢— oo, the rate of damping being de-
termined by the number min; [Im »;].

The second case is when at least one of the imaginary

parts Im J is zero. We choose the simplest situation:
> Im x?\v_l > Im b = 0.

Imui>... (61)

Ast— — oo, the system (48) can be rewritten asymptotical-
ly in the form

N
5

N . TR
2 Ci=0, =T N1, (62)
s
N1 (‘i(ENv-mN) _
2 Cxy o o,
HN — KN

We denote by (CY) the matrix that is the inverse of (Cy).

Makingin (62) a change of variables in accordance with the
formula

N
] N ) v
W= DOy, 1, N,
(=1
we obtain
®; =0 for j=1, N —1,
— ) I{l\)N—(U\») -1
1«)v|, P S 4 NN
My == e N [ 1 h NN
AN AN

From this we obtain the form of the oscillating asymptotic
behavior of the function VYV, ast— — oo

| L — o om)‘\
! C‘Y\‘N (@ = 0 ne)
B N N N
(CN ‘\Y)ml »;__ _L _
AN —HAN
oiN ‘/ TOAY T Y —
=Ry s Py apse—r b N (63)
where xy = iy, and
=
¥iny (64)

Frorp this it is readily deduced that the potential u(x, ¢) has
a soliton asymptotic behavior (fixed soliton) of the form

w(z, £) - —2% ch 2 [By (x — 27)), ¢ —oo.
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For the complete function W(x,z,k) we obtain the asympto-
tic behavior

¥z, t, k)

For the potential u(x, r) we again obtain a soliton asympto-
tic behavior:

The phase shift of the fixed soliton corresponding to the

.transition from t- — o tot— + o can thus be calculated
in accordance with the formula

The t— -+ oo asymptotic behaviors on the straight lines
x = vt + X, canbe calculated similarly (one can directly use
Egs. (47) and (48) for a Galileo transformation]. We find
that the potential u(x,?) decomposes asymptotlca into soli-
tons of the type (53), moving with velocitiesv; = — (Im %2/
Imsx;, j = 1,..., N. The phase shifts of these sohtons can be
calculated in accordance with formulas of the type (67). We
note that the interaction of these solitons does not reduce to a
binary interaction, owing to the presence of the term (1/8y
InJCunC™, in (67).

We emphasize that the asymptotic decay into solitons
that we have just described takes place under the condition
that the imaginary parts of 5} ,...,x% are different. If some of
these imaginary parts are the same, bound states of solitons
arise. We give the form of the corresponding asymptotic be-
haviors for the case

We now calculate the asymptotic behavior as r— + .
It is here convenient to go over to the variables PX) Ly

(x,2). The system (44) can be rewritten dsymptotlcally in
the form
N -

14> —L— =0,

gt TR

N-1
—i0n 1

S (Cae L),

J=1

KN —%j

i=1, N—1,

+ (e"i(‘;N_“’N)_}_ . 1

UN—UN

)I‘N::—-l. (65)

The first equations of the system (65) gives the following
result: ¥ — 1 zeros of the rational function

Rl =1+ 2 k-—x Imx=Imui=. .. >Inxk pp=...= I xk =0,
J=1
lie at the points 5 . Setting assuming, as above, that Im x; >0, = 1,..., N, det(C};) #0.
v ; a) The limit £~ — «. We denote by (C?) the matrix
R (k) = (k—a NH ( ﬁ (e — w)) -1 that is the inverse of (C;); by (C ;7 IN ot 1cijen WE denote
f=1 i==1 i ’ the matrix that is the inverse of (CY) y 1 1cijens
where a is an unknown quantity, we obtain S CiCY- =81, 4, j=N—m-+1, N.

f g==N ~m-+1

Thenin the limit - — o the function ¥ (x,¢,k) has an oscil-
lating (i.e., quasiperiodic with respect to¢ for real k) asymp-
totic behavior of the form

H (%) o

rys = , =1, N.

Substituting in the last equation of (65), we determine a. W (2, t, k) =W (2, L, k)
After some simple calculations we then obtain in the limit

to 4+ oo: where the function

N .

2 " ) il(x+ht)
k'--%j

J==N-m+1

e e
ch By (x—af)]

\I,N (:l), 1) — S LS
V —2iBnCrn

Y- (x, t, k)= <1+

where is specified by the m points of the discrete spectrum

Ky my 1%y and the mXm matrix (G;) in accordance

G = arg Zy, xh— ﬁtv In [V " 2PaCrn | Zull: with ]Eh: basic construction (see the beginning of Sec. 2).
B e
7 H KN — W (66) —— e
N RN A W5 (. t)=13'%, j=N—m-+1, N,

PN
be the residues of this function. Then the residues W ,..., ¥
of the function W(x,t,k) have as -~ — oo an oscillating
asymptotic behavior of the form

W (x, t)— V5 (x. 1),

N

l)——+ Z

I, s=N—m-+1

i N—m+1, N,

: ‘——AJ e e

e H e { + %H ¥ (z. CCRVT (2, 1), j=1, N—m.
The corresponding asymptotic behavior of the potential
u(x,t) ->u"(x,0) is an m-soliton behavior, determined by
the discrete spectrum xn_,, 4 1,..., %y and the matrix
(Cy). Thefunctionu ™ (x,t) depends quasiperiodically on 7.

b) The limit /-~ + «. We denote by R(k) a rational
function of the form
N-m -

1 ke

iz |

X[1+4th By (x— xa))]} elklx+ht),

u(z, f) — 2p% ch2 [Py (x — z5)1,

t— o0,
R (k) -

and by (C ") an m X m matrix of the form
KN——;ZZ'
AN — Ry

T — x5 = BN (VC’NNCNN' H

Bw
ikN

)- (67) Cijem= R () CyR (w), & j= N—m 1, N.

261 LJ . . -
Dubrovin et af. 260 Sov. J. Part, Nucl. 19 (3), May-June 1988

Then in the limit 7— + o« the asymptotic behavior of the
function ¥ (x,t,k) is

Y (2, t, k) —> R (k) ¥ (z, t, k), (68)

where the function ¥ * (x,t,k) is determined by the m points
of the discrete spectrum sy _ ,,, 4 1,...,%y and the m X m ma-
trix (C ) in accordance with the basic construction. The
form of the asymptotic behaviors for the functions W, (x,1)
can readily be directly extracted from formula (68). The
potential has a f-quasiperiodic m-soliton asymptotic behav-
ior u(x,t) —u" (x,t) determined by the discrete spectrum
Xy _ma 1y and the matrix (C ;7). The transition from
the matrix (C' ;) to the matrix (C | )} determines the law of
interaction of the bound state of m sohtons with the remain-
ing components of the N-soliton solution.

Self-consistency conditions

In the neighborhood of k = « the function W(x,1,k)
defined at the beginning of the section can be represented in
the form

W, b k) =1+ 2 B ) ) ek, (69)
=1
The first factor is the expansion with respect to k& ' of the

pre-exponential factor in (33). In particular,

N
f=a=2 s B HE O
=
Substitution of the expansion (69) in Eq. (25) leads to the
following equations for the coefficients £, (x,1):
I=0,1...; & =1.
(70)

The dot denotes the derivative with respect to ¢, and the
prime denotes the derivative with respect to x.
We consider again the meromorphic function

i‘é.l - 21&211 - gll’ }— ugl = Ov

Qz, &, k) =¥ (z, ¢, k) ¥(z, 1, k).

Its expansion in the neighborhood of infinity has the form
Qa, t, k) =1+ 2 Ji(e, 1)k
1==2

The first few coefficients of the expansion have the form

Jz:'gz“*‘gz““gf» J‘yzé—kéﬁ—&(iz—-fég), } (71)
J, *"EA ‘}‘Ea + Ei (Ea— E?) + l§212-

Using the relations (70), we can readily find the connection
between the expressions (71) and the potential u(x, 1) of the
time-dependent Schrodinger equation.

LEMMA. For any formal solution W (x,£,k) of the form
(26) of Eq. (25) we have

Jo (@, ) = - (0, 1) ey ¢ const; (72)
Oyl (@, 1) = o (3, ); (73)
it (z, 1) —%lt - é (U — Ol ) (74)

The relation (72) was obtained in Ref. 22, and the ex-
pressions (73) and (74) in Ref. 23. Note that the constant ¢,
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in (72) can be found from the asymptotic behavior of
1(x,t,k) as x — 0. For example, in the situation considered
above with Im x, > 0 and a nondegenerate matrix (Cj)we
have Q(x,t,k) -1, u(x,t) -0, x> + oo, whence ¢, = 0.

The obtained relations serve as the basic construction of
solutions with all forms of self-consistency conditions [see
(79), (81), and (82) below]. Let E(k) be a rational func-
tion of one of the three forms

n

b2
EUC) = k—j-— Z €; k_—i‘k—l 5 (75)
i=t
E (k)= k- ak+ 3 8ik——~ilc- ; (76)
i=1

" b2

E (k) = k¥ - B2+ vk + D) &, oy el (77
i1

The constants a,f3,7, k;, and b, are arbitrary real quantities.
The coefficients are €, = + 1. We denote by ®,(x,t) the
functions

D; (2, t) = bW (z, t, k), j=1, n.
By definition, the functions @, satisfy the equations
iy — O+ u(e, )D; =0, j—=1. n (78)

The functions W, (x,£), j = 1,..., N, defined by (42) also sat-
isfy the same equation:

W — W (e, W =0, =1, N

THEOREM 3. Suppose the functions ®,(x,t) and
W, (x,t) are constructed from the set of parameters
Hyse2y (Cy) and from a rational function E(k) of one of
the three types (75)~(77). Then the following self-consis-
tency conditions hold.

1. If E(k) has the form (75), then

n n
jad | 4 2 b
gk D edi o= ) gD (2, 1))
it i1
N

— DV Wila, HE Y (e, 1), (79)

i, j=1
where
Eij = Ciy(E (x)— E (%), i j— 1N (80)

2. If E(k) has the form (76), then

. 7 N
*gh,,;,,a.l‘é_ S e D (e t)]};-—( > W,.E,.j\]fj>x. (81)
(e INES!
and the matrix (£, has the form (80).
3. If E(k) has the form (77), then

3 1 \ Uy 72N
. e ) et
"g‘“ U — “8_ (“xx.\' ()u'”x)x i B 5 v B)

n N

L AR < ) M\Fi['*vr'.i\vj)”‘ (82)

[N i, it

and the matrix (E;;) has the form (80).
Proof. Consider the rational function
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Qa, 1, ky=E®R) Ve, t. k)Y (2. £, k).

Applying to this function the residue theorem, and bearing
inmind (41) and (43), we obtain the self-consistency condi-
tions (79)—(82). The theorem is proved.

We note that a matrix (E;) of the form (80) is Hermj-
tian. Therefore, by a linear transformation of the functions
W, ,..., W, this matrix can be made diagonal, and on the dia-
gonals there will be + 1 or 0.

For common values of the parameters 2; (Cy) and also
an arbitrary rational function E(k) of one of the indicated
types, the Hermitian quadratic form on the right-hand sides
of the self-consistency conditions will have a high rank equal
to N -+ n. For the self-consistency conditions (79), for ex-
ample this will mean that the functions ®,,..., ®,, ¥ ,..., ¥,
give a solution of an (n 4 N)-component vector NSE whose
symmetry type is determined by the signature of the Hermi-
tian matrix

e, 0

(83)

When special conditions are imposed on the parameters of
the construction, the rank of this matrix may decrease, this
corresponding to a decrease in the number of components of
the vector NSE (the same applies to the other self-consisten-
¢y conditions).

What is the difference between the solutions (V,d) of
the self-consistency equations corresponding to matrices of
the form (83) with the same rank and signature but different
numbers n of finite poles of the function £(k)? It follows
from the foregoing results that the functions W, ,..., ¥, and
®,..., b, have different asymptotic behaviors at large x—in
general, the functions @, (x,7) have an oscillating asympto-
tic behavior as x — «, while the functions W (x,0) decrease
exponentially at large x. This cirumstance must be taken
into account in the construction of the many-soliton solu-
tions by choosing the function E(k) in accordance with the
required boundary conditions.

3. S0ME EXAMPLES
Scalar models

Example 1. We shall show how in the framework of our
construction we can obtain the well known® many-soliton
solutions of the scalar NSE (with attraction). We take
E(k) = k. The matrix (E;) of theform (80) must have rank
1 for the scalar case. Therefore, the matrix (C;) must have
the form

Coy=n 20 TR, (84)

%i——%j

where y,,..., ¥, are arbitrary complex constants, and 4 is a
real number.

It can be assumed that these constants are nonzero and
are normalized by the condition

N
2 lnlE=1.
j=1

[If 7, = O for some j, then in the matrix (C;) we obtain a
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|
=
E 1

vanishing row and a vanishing column, i.e., the system (34)
becomes trivial (see Sec. 2).] Then it can be assumed that all
the %,,...,% lie in the upper half-plane. Indeed, this follows
from the results of Sec. 2 by virtue of the nondegeneracy of
matrices of the form [(x;, —%;)~'].> The condition for
positive definiteness of the matrix / - '(C;), where (C;;) has
the form (84), is equivalent to the inequality 4 >0 (we as-
sume thatIm %, > 0,7 = 1,..., N). The Hermitian form of the
type (80) reduces in this case to

N _ . D’; 5
S LA AR D ER AT

i, j=1 i=1
In our case, the constant ¢, in (79) is zero. We finally obtain

the result that the function
N .
™ ——det M (z, ¢
ol 0=V 3 w¥ia 0=VTIREE=S . (89

i==i

where the N X N matrix M(x,t) has the form

M. e ﬂ’i?i‘}‘ei(ai—(‘)j)
ij ;i‘“%j s
M (x, t) = Mz, t) for i, j—=1, N,
Mo =0, M=o My=v, i=1i, N, (86)

is a decreasing, as |x| — w0, solution of the NSE
Iy = Qux +2 ¢ [* .

Example 2. One can construct similarly decreasing so-
Iutions of the time-dependent (scalar) Schrodinger equation

gy = Quy — ugp (87)

with self-consistency conditions of the form

1 2

5 U =k (88)
or

3 — (U — Oully)y = —8 | ¢ |2 (89)

[we have set @ = f#=y =0 in Egs. (81) and (82)]. For
these conditions, the solution has the form (85), where the
matrix M(x,t) is given by

- i(w, — ;)
vy o0

M= q=2, 3,

ol Hy—%y
nf — i

the matrix (M,j ) is given by formulas (86), and 4 > 0. Here,
q = 2for Eq. (88); in this case, the i ,..., 5 must be taken to
lie in the first quadrant of the complex plane, i.c.,

Imu;, >0, Rewx; >0, (=1, N.
For Eq. (89), ¢ = 3; the x,,...,xy lie in the sectors
0 <Carg x; <-§— , Eg—argxi <m, i=1, N,

and »; 5 for i#j.
For self-consistency conditions of the form

é‘ﬁ: Il (90)
or
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the solution can be expressed in the same form, but A <0,
and the restrictions on x; are different, namely, for Eq. (90)
(g = 2) the following inequalities must hold:

Imx; >0, Rex; <0, i=1, N,
For Eq. (91) (g = 3), the restrictions on x,,...,% are

i=1, N.

"g’ <<argx; << 2—; )
Example 3. We shall explain the technique for con-

structing nondecreasing solutions for different self-consis-

tency equations initially for the simple example of scalar

nonlinear Schrodinger equations. For the construction of

solutions of the NSE with attraction that are nondecreasing

(oscillating) as |x|— co, we can take the function E(k) in

the form

bt
k—ky ®

E k)~ k—

The Hermitian form (E;) of the form (80) must be zero
(since otherwise we do not obtain the scalar NSE). In other
words, we must have fulfillment of the matching conditions

E () =E () for Cpy#0 (92)

(we have used the fact that the coefficients b, and k, are
real). Since the degree of the rational function E(k) is 2, we
obtain the result that the equation E(x, ) = E(3;) foreachi
can be satisfied for precisely one value of j. Therefore, for
each / there is precisely one value of the index j = v({) such
that C; #0 {we recall that we are not considering matrices
(C;) with vanishing rows]. It follows from the Hermiticity
of the matrix (C,) that v is an involution on the set of indices
(1,..., N). Since the relation E(%; ) = E(x;) cannot be satis-
fied for nonreal x,, the involution v does not have fixed
points. Thus, NV is even and the points »; can be numbered in
such a way that

E(%y_i+q) = E (), i=1. N/2.
The matrix (C};) is antidiagonal. It is readily seen that the

points x,,...,%, ,, can be assumed to lie in the upper half-
plane; then the points

dyigo ke =T N2 (93)
‘ i /»‘1
will lie in the lower half-plane. Finally, we obtain the follow-
ing formulas for nondecreasing solutions of the NSE of the
form

iy = Qgy + 2 (l P lz . b?) Py

¢ (x, 1) =bem %%———éz‘ :)) eiflahal)) (94)
where 7 is an arbitrary real constant and the N X NV matrix
M(x,t) has the form
i(E?i—“)].)

My (%, t)=C;, nyuji+ —;T:‘T )
where C,,..., Cy are any nonvanishing complex numbers sat-
isfying the relation of skew-Hermiticity

Cyepry=—Cy,  1=T1N/2,

A

and x,,...,% 5 satisfy the conditions (93); the matrix M(x,?)
has the form
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AA[”:MH for 1<{1, j<KN;

. O 099
‘A[OO =1, Mio == Omi, Mloi T i== 11 N
1~ %y
Note that if
Im (#t; 4+ %yojqn) =0, & =1, N2 (96)

[by virtue of (93), the points »; and xy ., = 2k, — %, lie
in this case on a circle of radius b, with center at the point
k,1, then the solution @ (x,t) will be a quasiperiodic function
of x (see Sec. 2). But if the conditions (96) are not satisfied
for any value of i, then the asymptotic behavior of solutions
@{(x,t) of the form (94) for constant ¢ will be

¢ (@ t—ben [ (7/”’“ ) e, g — oo,

J

where the product is taken over all j for which
ImQGe; +xp ;) <0

¢ (x, 1) bein H ’ (w‘fﬁ—v;) elhsle i) s - 00,
J
in which the product is over the remaining values of j. We
omit the derivation of these formulas. The asymptotic be-
havior with respect to ¢ can be calculated similarly, but de-
pends on the relations between the Im ;.
We now turn to study of the NSE with repulsion:

«

i = @ua — 2 (J @ " — 82) @.
Here, the function (k) must have the form

. i
E(R) = ht 5=

while the matching conditions (92) must still hold. As
above, we obtain an involution v on the set of indices (1, 2,...,
) such that C; 50 only forj = v(i). However, this involu-
tion may have fixed points. Suppose that there are 1 fixed
points y of the involution v; then N =1/ -+ 2m. One can
choose a numbering of the points x,...,5,, such that the
points x,,...,%; lie on a circle of radius b, with center at &,
while the remaining points are distributed in pairs symmet-
ric with respect to this circle, i.e.,

Pt — Ryl = by, =1

b e -
Pz -1, L-m.

AN_i+I+L 11~]~——_- ,
ni—ky

The matrix (C;) must have the form

0 4
(ci5)= N g ’

where the numbers C,,..., C, are purely imaginary and the
numbers d,,.., d,, are arbitrary; all these quantities are non-
zero. The points x,...,x; can be assumed to lie in the upper
half-plane. Note that the points %, and %y _,,, ., for each
i>1 lie in one of the half-planes. Therefore, from the condi-
tion of definiteness of the matrix (/ lCU) we obtain d,
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=+ =d, =0. Thus, it can be assumed that m = 0 and
that the matrix (Cy) is diagonal. We finally find that the
solutions of the NSE with repulsion can be expressed in the
form (94), where the matrix (M (x,1)) has the form
~ (@, ~o )
Mij(a, ty=iC;8,; 2t T
Hi— %j
the numbers sx,,...,%y lie in the upper half-plane, with
|, — k| = by, i=1,., N, and the numbers C,,..., C, are
real and positive; the matrix A/ is constructed from the ma-
trix M in accordance with (95). The simplest of these solu-
tions (V = 1) has the step form

@z, 1) =0, {1 -+ ip

wherex = a + if =k, + b ,(cos & 4 isin £),& #0,7wisan
arbitrary parameter, and

i4tht 11 pik (R i

,EA
ky—%n

[see Egs. (51)~(54)]. For N> 1, the constructed solution is
a nonlinear superposition of steps.

Vector models

Example 1. We shall construct solutions of the vector
NSE with U(n, 0) symmetry that decrease as x-— oo, Sup-
pose first that n <. To obtain decreasing solutions, we must
take the function E(k) in the form E(k) = k. The Hermi-
tian matrix (E;) will have the form

By = (% — %)) Copy 0, j =1, N.

This matrix must be non-negative definite of rank n. We
represent it in the form £ = TI" * T, where [ is a rectangular
matrix of rank n, i.e.,

Eii = ?—:’1 ?qi‘v\/]" 97)
We obtain the form of the matrix (C;):

}:x "Y-qi\’fl j o
Cij q-il_%_“_v i /7 /17 ]v (98)

Hi— i

It is readily seen that if the matrix T" = (y,) does not have
vanishing columns, then the matrix (C;) of the form (98)
will be positive definite if all the numbers x,...,x, lie in the
upper half-plane. But if in the matrix I' there are vanishing
columns, then in the matrix (C;) there will be vanishing
columns (and rows), and this, as we know, corresponds to a
decrease in the number of the parameters x,...,5 .

We finally conclude that if the numbers x,,...,2 lie in
the upper half-plane and I' = (y,,) is any rectangular n X N
matrix, then functions @, (x,7),..., ¢, (x,1) of the form

ot M Dy
Dy(x. 1)- det M77(e. 1) g==1. n, (99)

where the N X N matrix M(x,1) = (M) has the form

n

:\: :«’qi‘qu’%—oi(;;immj)
M, t)=20 L= N, (100)
Ki——%j

and the (N +D)X(N +1) matrices MP(x,1)
= (M”(x,0)) have the form
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M@ My for i, j=1, N5 M{=0; } (101)
M@=y, MG =", j=T1, N,

are solutions of the system of equations

iy, @+ 2 (}]i D, 2) By k=T 1 (102)

These solutions are exponentially damped for |x|— « and
fixed ¢ by virtue of the results of Sec. 2 [the matrix (C;) is
here nondegenerate]. We shall describe the asymptotic be-
havior with respect to ¢ below; it will be seen from this de-
scription that these solutions are a nonlinear superposition
of N single-soliton solutions of the form

expli (o + (5= P O] (103

)

N 3 =
Dy, g (27 1) = D g (2g—0) 5 ch [Bo(e— 25 )-+20gBqt]
2 gl — T )elq

Wy e Oyt iy, g1, N,

where @, are certain constant vectors (different for
[— + oo and{— — o) oflength 1. [ Werecall that asympto-
tic decay into solitons and, hence, asymptotic behaviors of
the form (103) are obtained only in the generic case in which
the quantities Im 2] are pairwise different. The general N-
soliton solution (in which the Im %} may be equal) willbe a
conglomerate formed from solitons and bound states of
them. }

So far we have constructed N-soliton solutions of Eq.
(102) with Nz2n. For N < n, all N-soliton solutions of the »-
component NSE can be obtained from the N-soliton solu-
tions of the N-component NSE {with U(N,0) symmetry] by
multiplication by means of the action of the group U(n).

Remark. By virtue of the definition of the N-soliton po-
tential given in Sec. 2, an N-soliton solution of the vector
NSE is specified by N poles »,...,2y . In particular, we shall,
irrespective of the vector dimension, use the term “‘single-
soliton solution™ for one that is determined by a single pole
s = »,. It can always be obtained from a solution of the sca-
lar NSE by means of an isorotation.

We note also that solutions of the form (99)-(101),
which for given »,,...,%y corresponds to different matrices
I' = (y,) withoneand the same Hermitian form (£;) of the
form (97), can be obtained from each other by the action of
the unitary group U(n).

The asymptotic behavior as |1 |- « (x fixed) can be
found from Eq. (61)-(66) by using the connection between
the components @ ,..., ¢, of the solution of the vector NSE
and the residues W, ,..., ¥ of the function W (x,t,k):

Dy (e, 1) > v, ) k=1, .

Suppose, as before, that the conditions (61) are satisfied,
i.e., the N-th soliton is fixed while the others move from right
toleft). Then inthe limitf— — oo we find from (63) that the
asymptotic behavior of the functions @, (x,7) is

\ v _ipd
O o e Sy e e B e
TV e 2ip Y 2eh B (2 ap)

wy = ik

The phase x, has the form (64).
In the limit -~ + oo, we obtain the asymptotic behav-
ior
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LiR% i ipt
| Zx ) yurg e ML
Dy (2, 1) > T (_ 2iL’>NCNN> PN By (v —a)

k=1, n,

where Z,, x;", and ¢, are given by Eq. (66). Thus, the
phase shift x,;” — x;~ can be calculated in accordance with
(64); the unit vectors ® 2, which occur in (103) have the
form

.
Df = ) O (— O 2ipy)

je=1
; | Zy | 172 iy
i v (g ) O

Example 2. We construct solutions of the two-compo-
nent NSE with oscillating asymptotic behavior. We analyze
in detail only the two-soliton solutions.

Case I. Both components oscillate as |x| — oo . The func-
tion E(k) must be taken in the form

E(k)=Fk+¢ -7;?% + ey 7»—_?—2]-‘;«
Heree,, £, = -+ 1; these signs correspond to the symmetry
type of the vector NSE. The Hermitian form (&) of the
form (80) must be zero, i.e., the following matching condi-
tions must be satisfied:

E(w;) = E (v) for Cy==0, i, j=1,N. (104)

If the conditions (104) on the set of parameters (x; ), (C;)
are satisfied for the given function E(k), then the function
W (x,t,k) constructed from these parameters in accordance
with Eq. (36), (38),-and (39) gives a solution & = (¥,
@, ) of the vector NSE of the form

ID; e D — 2 [, | D2 6| Dy |2 —e b2 — e,b2] D, (105)
in accordance with the formulas
D (z, 1) = b¥ (z, L, k), j=1, 2 (106)

For N = 1, we obtain the single-soliton solution

) 1 )
@ (z, 1) =b; {1 g ;f;—%“” -+ th (B (2 — )

+ Zaﬁt)]} e”‘j(x*hj’),
jiw',li 2’1 (107)
where the relationship between x =2, = « + i and the pa-

rameters k,, k,, b,, b, is determined by the matching condi-
tion

() = L (x). (108)
The signs £, and £, in (105) can take any values apart from
£, = €&, = — lin this case, the relation (108) does not have
solutions].

In the two-soliton case (N = 2) there are two types of
matrix (C;;) for which the conditions (104) have solutions.
The first type is diagonal matrices (C;), i.e., C,, = 0; the
second type is antidiagonal matrices, i.e., C,; = Cy, =0.
Forif C,;, #0and C,, 5£0, then we must have the conditions
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E () = E(ny), E ()= E (%y).

The first of these shows that the number » = E () is real.
From this we conclude that the numbers »,, x,, », are the
three roots of the cubic equation E(k) = r with real coeffi-
cients. But this is impossible, since all three numbers
5,7 ,,%, are nonreal (and distinct).

We consider in more detail both types of two-soliton
solution.

Typel C, =0,C,, #0,C,, #0.Itcanbeassumed that
Imoe; >0, Im %, > 0. The matching conditions have the form

E(r) = E (%), E(t) = E ().

For e, =¢, = — 1, these conditions cannot be solved. For
other signs (&,, £, ), inequality restrictions arise. It can be
shown that these restrictions can be described in terms of the
position of the point of intersection with the real axis of the
central perpendicular to the segment [»,,%,]

@ = P ug 2] %y |2 s (109)

2 (e -}y — 3 — %)

with respect to the segment [k, &, ]. Thus, for U(0,2) sym-
metry, for which £, = ¢, = 1, the quantity a of the form
(109) must lie within the segment [k, k, ], but for U(1,1)
symmetry (different signs &,, £,) outside the segment
[k, k, ] (included here is also the limiting case in which the
segment [2,,%,] is vertical).

The asymptotic behavior of these solutions for |x| - o,
and fixed ¢ can be calculated as in Sec. 2. We have

beihatetol)

Z)ityle,(x-{»k‘t)
O (x, t)—»( ) ), L 00 (110)

ey ) (e %) e gy
(b1 — %) (k1 — %2)

bi
D (z, t)—>

5 .I'~>~E-00.
b, (kg —#4) (g — o) pifa(x +hat)
2 (kg ny) (/\2—‘%9

(11

The asymptotic behaviors of the constructed solutions
for |t | - o with fixed x can be calculated similarly. Omitting
the calculations, we give the form of the asymptotic beha-
viors for the case Im 53 > 0, Im x5 = 0. Inthelimitf> — o,

; (, 1) by {1+ L if_::;: (£ th B, (2— w31} €T,

Ao 1y, Pu>0, % In Y = 2iB,C,.

In the limit - -+ oo, the asymptotic behavior is

D; (. 1)
ﬁl}j{i»f%%— ;:Jz-;o (1L thB, (@— ;)]}Cihj(;\:—mjtwmk
j=1.2,

where

;rg—r“»—:-ﬁi*—ln __’%i_], m::arg-jij::;i Cooje=1 2

The asymptotic behaviors as |¢|— o on the straight lines
x = — 2,1 + X, have a similar form. We have obtained a
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nonlinear superposition of single-soliton solutions of the
form (107).

Type 2. C; = C,, =0, C, #0. It can be assumed that
Im s, > 0,Im, < 0. The matching conditions have the form

E (%)) = E (x,). (112)

We shall discuss the solvability of these conditions (here, the
signs €, , £, can be arbitrary). Let

b:_.ﬁa’il:.m

(%= %) = (%2 “4?

be the point of intersection of the segment [5¢,,5¢,] with the
real axis. Further, we set

d (]C) . bm(xl“ ;Z]) ('22“”2) (%1~ %) (3?2—&1)
(b— k) (s} 2g— g — %p)?

If the conditions {112) are to have a solution, the points &,
k,, 24, 2, must not lie on one circle, i.e.,

ko = d (k).

At the same time, the possibilities for the signs €, €, depend
on ky, k,, %, %, as follows:

by < ky<<b=>g = —g, =1
b <l < ly=> g = —gy = —1;
ky = b=-b =0
li,l = b= by = 0
Iy <t b <hy << d (k) =g = g = 1
by << b <0 d (k) << ky =8, = £y = —1.

The asymptotic behaviors of the solutions &,(x,t) for
|x| = oo with fixed ¢ depend on the relationships between
Im s, and Im »,. Namely, for Im (¢, + x,) > 0 the asymp-
totic behaviors have the form (110) and (111). For Im
(¢, + 25) = 0, the solution ®(x,?) is quasiperiodic with re-
spect to x. Finally, for Im (3, 4+ »,) <0 the asymptotic be-
haviors as x— + o« in Egs. (110) and (111) are inter-
changed.

The asymptotic behaviors for |t |- o at fixed x can be
calculated very easily. Under the condition Im s} >0,
Im 2 = 0 we shall have:

Ast— —

(I)j (.Z', t) - bjeihjm«'hjt)’ j o= 1» ‘-‘)

as?— -+ oo

@; (z, #)- ,b.uﬁ j—%2)

0ll:j(x ;—I(j() - I 7 B

Thus, for solutions of this type the asymptotic behavior is
purely exponential. These solutions do not reduce to a super-
position of single-soliton solutions, and it is therefore natu-
ral to call them double solitons.

We note that for arbitrary ¥ solutions of the form (106)
of Eq. (105) reduce to a nonlinear superposition of solitons
and double solitons. For the U(2,0) case, triple solitons are
alsoadded. A triple soliton arises for IV = 3, when the matrix
(C,) has the form

0 Cry C
(Cij> =10y 0 0 ,
Cy 00
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and the matching conditions are
E () = E (43) = E (x,)

(g, = & = — 1), and the points x,, x, lie in the upper half-
plane and x in the lower. We omit the proof of these asser-
tions.

Case 2. The component D, (x, t) oscillates as x — o,
while the component &, (x,¢) is damped as x — . We take
the function £(k) in the form

12
E (k) =k+e 7=

The simplest solution of this form-—a single-soliton solu-
tion—arises in the framework of our construction for ¥ = 1.
It is specified by the parameters =2, = a + iff (let > 0)
and C,, = iC,,, C,, >0, and has the form (obtained in Refs.
2 and 31)

O, (2, 1)=b { F -‘1{—;—{“ thp(z—

N Zal)}} ol kD)

B (113)
) =) (1 n—ky |2—e b expi(ax (a2 —p2) t)
D, (2, 1) = 7 B 0 1 ¥ e 77y
Here
Zy = L YV =2ipC,. (114)

p

The vector function @ = ($,,P,) of the form (113) is a
solution of the equation

i) = 0f — 2 [e; | D, |2

+ ey [ Dy P — e8] @y, =1, 2. (115)

Here, the sign &, is determined subject to the condition
|2 — k,|*5%¢€,b} and has the form

gy = sgn [g,b] — | % — £k ]

Thus, for £, = — 1 we also have g, = — l and (113) isa
single-soliton solution of the vector NSE with U(2, 0) sym-
metry. For

g, =1, {w—Fk|>b

we have £, = — 1; we obtain a solution of the NSE with
U(1,1) symmetry. For

g, =1, |u—Fk |<Tbh

we obtain a solution the NSE with U(0,2) symmetry.
If the relation

| % — ky |* = g, b% <> B () = £ (%)

holds (this is possible only for £, = 1), the component P,
vanishes identically, and the solution (113) reduces to the
single-soliton solution (114) of the NSE with repulsion.
We shall show that for ¢, = 1 the many-soliton solu-
tions reduce to a nonlinear superposition of solitons. We
must have the following conditions: The Hermitian form
(£;) of the form (80) must have rank 1. We assume first

that there are no matching conditions on the points s ,...,2¢ v,
ie.,
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£ (721) = B (y’})a i, | = TN'

Then the matrix (C;;) which determines the solution must
have the form

S UL N R J p ' (116)

Here, 7, ,..., ¥ are arbitrary complex constants which satis-
fy

N

Dby P =1, (117)

1
and A is a real number. Assuming that y,,..., ¥, 50 (see
Example 1 above), we obtain nondegeneracy of the matrix
(C,). It may therefore be assumed that all the points »,...,
%y lie in the upper half-plane. It follows from the condition
of non-negative definiteness of the matrix (i ~'C;) that the
points x,,...,%y and the number A must satisfy one of the
following conditions:

B a0, I E () >0, i =1, N,

@ (118)
ixmlfllt:ﬂn:
D) e U, hnf( 1) < i1, N,
ijy [ (119)

|}{[ —n/'f‘i < /)1.

The first possibility corresponds to the U(1,1) NSE, the sec-
ond to the U/(0,2) NSE. Thus, determining from the points
3 15e. 2y Which satisfy (118) or (119) (and lie in the upper
half-plane), and the matrix (C;) of the form (116) [inthese
formulas, E(k) =k +bi(k—Fk)" '] the function
W (x,t,k) by means of Eq. (36), (38), and (39), we obtain
solutions of the vector NSE with U(1,1) or U(0,2), respec-
tively, setting

Dy (2, =¥ (x, t, k) [

¥
D, (e )=V k] 20 yives W, £, k). [ (120)
=

We shall now show that these solutions do indeed describe a
nonlinear superposition of single-soliton solutions of the
form (113). But first we consider the matching conditions.
What happens if for certain 7, j the condition E(;c,- Y =E(x;)
is satisfied? In this case, the i-th and j-th rows (and columns)
of the matrix (£;) must be zero. Therefore, in the i-th row of
the matrix (C;) only the element C,, can be nonzero. But the
numbers x;, x; satisfying the matchmg condition lie in one

half-plane. T hex efore, the corresponding block of the matrix
(C;;) can remain sign definite only if j = i, i.e., the matching
condition has the form

E () = E (;) <=> L n; — iy | = by,

Thus, the general form of the matrix (C,;) determining
the solution of the described type of two-component NSE
with U(1,1) or U(0,2) symmetry is

A
/Yu]

R —— for A (|, —k|—0b,)>0;
Cij=193 E()—E @ ( il=b)

Ciidigr i —hal by

We recall that for 4 >0 we obtain U(1,1) symmetry, while
for A <0 we have U(0,2) symmetry. At the same time, the
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formulas (120) for the solution remain valid. The constants
Vises ¥y Satisfy (117).

We now turn to the calculation of the asymptotic beha-
viors. Here, all points {; } lie in the upper half-plane and the
matrix (C;) is nondegenerate. We can therefore use the
asymptotic formulas of Sec. 2. Suppose that ¢ is fixed. Then
in the limit x> — o

b,eih(x+hyt)
@ (x, t)-—»( ! )

0

In the limit x - oo,

b ] Fim % et
® (z, t)— LT

0
We calculate the asymptotic behaviors for |¢ | - o and
fixed x in the same way as above under the assumption
Imx?>0fori=1,.,N — 1,Ims} = 0. Using the formulas
of Sec. 2, we have in the limit t— — o

Dy ixy 1)

AL ENKN [ th By (2 — ;)] oot a0;

2 kN

i~ Bt o)

O (kP )2

b, (. §) = Tk v

Here, x;~ has the form (64), and
- En—F;

g3 = arg Yy +arg || I_N'———TL .
iAEN ’

where we have introduced the notation

2

b
Ey=E (n;) =+

}{j—“]\”l '

As t— + o, the asymptotic behavior is

@, (x, t)
by 41 L _E—‘JY..Zﬁ.\_. (14 thpy (2 ,.Jﬁ)]} elha(x+hgt)ig] -
1 2 ky—wxN ' N 0 ’
i Oi(~ﬁ?\yz+q~§>
) Py T 12 2172 N
(I)2 (‘17 t)“" i”N"‘kll (”MN ]‘il b]') ch ﬁ:\, (H,‘——JT,)

The phase x;” has the form (66) and

ot Hm.l[fg;@,

Irr—"/,?
Je N
. AN —%j
5 == Qrg Ya -k arg ﬂ e .
P2 g Yy - arg B Sy =g
J#N

We have obtained single-soliton asymptotic behavior. A
simple calculation shows that the interaction between soli-
tons reduces to a binary interaction. This is a consequence of
the following expressions for the phase shifts of the N-th
soliton:

i 1 [ En—Ej || wy=n
Az uf oy = D) = In I“T"_—‘] ------- i—’} ;
R T .‘:_i\' B; 1 Ly —E; AN —Hj |
M= pi— o7 = 2 arg
j#N

. R < =) (En—Ej)

AN, = (g — (5 == \:‘ arg L /])(‘]\ 2J

fa==fz— 1 'j\' S (un-—uj) (En—E;)

J=
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In conclusion, we note that in the case of U(2,0) sym-
metry, for which e, = — 1, the many-soliton solutions are a
nonlinear superposition of single-soliton solutions, and also
double solitons. The simplest double soliton corresponds to
the case V = 2, the points 5, %, satisty the matching condi-
tion

and the matrix (C;) has the form

; (o C“)
NG, 0 )

We shall not analyze the properties of such solutions here.

CONCLUSIONS

We have presented above the present status of problems
that arise from the study of a class of models which we have
called models of a nonideal Bose gas. From the point of view
of the theory of the condensed state the important question is
that of the existence in some ordered system (crystal, mag-
net, ete.) of localized excitations of soliton (or solitonlike)
type. For the understanding of the statistical properties of
such excitations (if they exist), it is necessary to solve the
problem of the stability of individual solitonlike objects, and
also their interaction with each other. In the framework of
the models considered here and related to the time-depen-
dent Schrédinger equation some of these problems have been
solved constructively. Namely, we have used the general
method developed in Sec. 2 to obtain and investigate the
asymptotic behaviors of the many-soliton solutions of some
integrable versions of the NSE with self-consistent poten-
tials. Such many-soliton solutions describe fairly well a
rarefied gas of solitons. Moreover, depending on the effect of
the interaction, one can speak of ideal, weakly nonideal gas-
es, ete.

We discuss first the formulas obtained in Sec. 3 from the
point of view of stability. It is known that in the framework
of compact versions of the vector NSE with attraction,
U(p,0), solutions of plane-wave type (condensate solu-
tions) and also those obtained from them by a local modifi-
cation are unstable (instability of gravitational type). The
condensate solutions obtained in the framework of compact
versions of the vector NSE with repulsion, U(0,q), are sta-
ble.>?* The stability of the localized solutions with zero-val-
ue boundary conditions for U{p,0) and condensate condi-
tions for U(0,q) has been rigorously established only for
some of the simplest (single-soliton) solutions.”**’” The
question of the stability of arbitrary N-soliton solutions of
the U(p,0) NSE is still open and on the answer must be
expected to depend both on the type of equation and on the
type of solution. At the least, it appears that the single-soli-
ton droplet solutions of the U(p,0) vector NSE are stable, as
is indicated by qualitative arguments based on the inverse
scattering method (see also the generalization of the @
theorem in Ref. 27).

For models with noncompact symmetry U(p,q) stabil-
ity of the condensate is ensured by the condition®

I3 i q, .
(W, W) Z IW(A{”) 12— L Nfiw 12> 0,
j=1 Jused
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Only when this condition is satisfied do the many-soliton
formulas have meaning in the condensate formulation of the
problem. The stability of the two-soliton solutions (in our
definition or single-soliton solutions in the naive definition)
in the framework of the simplest noncompact U(1,1) NSE
was investigated at the Laboratory for Computation Tech-
niques and Automation at the Joint Institute for Nuclear
Research at Dubna by means of a numerical experiment.
The results favor stability of such solitons. The many-soliton
asymptotic behaviors obtained above enable us to assert that
in the framework of the compact models with arbitrary sig-
nature [ U(p,0) or U(0,q); in the first case see also Ref. 28],
and also for the U(1,1) NSE, the interaction between the
solitons reduces to a binary elastic interaction, this interac-
tion leading to a change in the phases of the solitons in the
configuration and color spaces. There can also be color ex-
change, a result that was first established in Ref. 1.

All this means that a gas of solitonlike excitations can,
depending on the physical formulation of the problem (i.e.,
what quantities are taken into account, what correlation
functions are calculated, etc.), be regarded within the frame-
work of one and the same model as ideal (soliton number
density appreciably less than unity) or nonideal, if one is
interested, for example, in its color. In the physical situa-
tions in which the soliton gas can be regarded to sufficient
accuracy as ideal it is sensible to use the phenomenological
approach of Ref. 13 to calculate, for example, the dynamical
structure factors of scattering'® in vector models, with,
moreover, any signature of the metric of the “color” space
when N>2. In this sense, the method which we have pro-
posed for investigating the vector equations and their solu-
tions can be regarded as a tool for the further study of corre-
sponding models of, for example, the physics of the
condensed state (see Sec. 1).

UTranslator’s Note. The Russian use of i = /I,N to denote i = 1,..., N is
retained in the displayed equations in this paper.

DTranslator's Note. The Russian notation for the trigonometric, inverse
trigonometric, hyperbolic functions, etc., is retained here and through-
out the article in the displayed equations.
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1n what follows, we shall also find it convenient to use this simple propo-
sition: If all the numbers x,,...,%y, %,,...,% v are different, and Im »x; > 0,
i=ylLp, Imx; <0, j=p+1,.,N, then the Hermitian matrix
{i(3, - 2;) ]~ " has signature (p,N - p).
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