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We consider the problem of separation of vagiables for the algebraically integrable Hamiltonian
systems possessing gl(n)-valued Lax matyic dgp nding on a spectral parameter that satisfy linear
Poisson brackets with some gl(n) ®%gMpn)-valued classical r-matrices. We formulate, in terms of the
corresponding r-matrices, a su ient‘%ﬁg n that guarantees that the “separating polynomials”
of E.Sklyanin, Comm. Math. N, 81 (1992), D.Scott, J. Math. Phys. 35, 5831 (1994),
M.Gekhtman, Comm. Math. Phys. 467, 593 (1995), P.Diener, B.Dubrovin, Algebraic-geometrical
Darboux coordinates in R u’w%ormalism, SISSA preprint 88-94-FM (1994), produce a system of

canonical variables. We, consider two examples of classical r-matrices and separating polynomials.
One of these examples, nam he n-parametric family of non-skew-symmetric non-dynamical
classical r- matrlces o) ypnyk, Phys. Lett. A 334, 390, and 347, 266 (2005) and the corre-
sponding separati poly n‘{p als is new. We show that the separating polynomials of P.Diener,
B.Dubrovin, #bid [g)hiﬁz in this case a complete set of separated variables for the corresponding
generalized odels with or without external magnetic field.

Keywords: nteg-rab systems, classical r-matrices, separation of variables
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5 Dedicated to the memory of Ludvig Faddeev

1 J.g\ 5 uction

The algebraically integrable Hamiltonian systems admitting Lax representation

L(u) = [L(u), M(u)] (1.1)

have been an object of constant interest during the last forty years. There were a lot of papers (both in
the mathematical and physics literature) and results in the field. One of the most important “structural”
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results in the theory was a discovery of classical r-matrices [19, 17, 10] that serve in order to define
the Poisson brackets between the elements of the Lax matrices [10] providing a necessary and sufficient
condition for Poisson commutativity of the spectral invariants of the L?Z matrices [4].

An important problem in the theory of algebraically integrable systems still to be solved in general is
a construction of the so-called separated coordinates for the Lax-int rz@e finite-dimensional Hamilto-

nian systems. The separated coordinates x;, p;, 7,75 € 1,d is a set of camtefiical coordinates that separate
the variables in the Hamilton-Jacobi equation or, more generally, such that the following system of
equations is satisfied:

(I)z(xl)pza -[1) ey Id) = Oa l:ﬁ

where ®; are certain functions, I are Poisson-commuting lategrals of motion. The important require-
ment is that the separated coordinates constitute a coniplete ily, i.e. they are independent variables
and d is equal to the half of the dimension of symplectigleaves of the phase space

The separated coordinates provide a way to a comgtrugtion of the action-angle variables from the
Liouville theorem and to explicit integration of the Hamiltonian equations of motion. They are also
important for solving the corresponding quantuw able systems.

—

1.1 Separated coordinates o ebro-geometric type

There exists a “magic recipe” for cofistructi g?eparated coordinates of an algebraically integrable
system (1.1). Let the Lax matri L( ding on the dynamical variables of the Hamiltonian
system be a rational function of the 7 spectral parameter v living on the complex plain or, more
generally, on a compact algebraic curv C0n81der the spectral curve C on the (u, p)-plane defined by

the characteristic equation

= (u, p) | det(L(u) — p - 1) =0}. (1.2)
Recall that the coefficie f fhe racteristic polynomlal are first integrals of the Hamiltonian system
(1.1). Assume that thzoots e characteristic equation (1.2) are pairwise distinct for generic u € C.
Then the eigenvect r 1,- .., [n) of the Lax operator,

fL=nf (1.3)

. seftions of a line bundle over the spectral curve (1.2). Then the so-called separated
-geometric type are obtained as coordinates

can be consi
variables o algeb

of e~p§31n f the divisor Q1 + - - - + Qg of poles of a section of the line bundle [2, 11, 16, 20, 1, 7, 14,
18, 2 |“For example, for the so-called standard’ normalization

fo=1 (1.5)

IFor technical reasons we deal with the eigenvectors of the adjoint operator writing them as row-vectors, i.e., as
elements of the dual space.
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of the eigenvector f = (fi,.--, fn) the points @, ..., Q4 in eq. (1.4) on the spectral curve are
determined by the equation f, = 0 together with (1.3). Also a slightly ‘n?re general normalization

\ (1.6)

with an arbitrary constant vector K = (K1, kg, ..., k) Will be used bel )n this case the poles are such
points (u, ) of the spectral curve that there exists an eigenvector (%3) satisfying

Hlfl"{'"'"{'/infn:]-

Of course, only the points in the finite part |u| < oo, |u| of ‘USle pectral curve are involved in this

construction. : -

1.2 Poisson algebra of separated functions.

For the coordinates (x;,p;) of the poles of a S&Kbl notmalized eigenvector f| (u, i), (u,p) € C one
obtains a complicated system of algebraic eq%i\x;;\f“many cases one can construct a pair of separating

functions A(u), B(u) such that the coordinate , ¢4 are determined as zeroes of B(u),

N
and the second half of coordinates‘%ﬁ\k

= A(z;), i€l,d

The separating functiods were constructed in [18], [14], [22] for some gl(n)-valued Lax matrices
L(u) using the standard orpgalization (1.5) of the eigenvectors and in [7], [22] for the more general
normalization ( t?é will_be denoted Az(u), Bz(u) below).

The above separa nctions B(u), A(u) and Bz(u), Az(u) formally exist for all gl(n)-valued Lax
matrices L(u) gov n by awbitrary classical r-matrix r(u,v). Nevertheless two important questions
are still open. The '

n

For whag_gl(n) @ gl(n)-valued classical r-matrices r(u,v) = > riu(u,v)Xy; @ Xu (X,

i jkl=1
i,j€lnisa a stand¥rd basis of gl(n)) the functions B(u) and A(u) and/or Bz(u), Az(u) for some
normalizing vector/k produce the canonical variables?

Q t gl(n) ® gl(n)-valued classical r-matrices r(u,v) = > 75w, v)X;; ® Xy, Lax

i jokl=1

Xﬁ Z Li;(u)X,; and the normalizing vector k the functions Bg(u), Az(u) produce a
,j=1

completévset of canonical coordinates?
In the present paper we give a general answer to the first question, in terms of the corresponding
r-matrices, in the case of linear Poisson algebras of Lax matrices:

{L(uy) ® 1,1 ® L(ug)} = [ (us,ug), L(uy) @ 1] — [r** (ug, u1), 1 @ L(ug)]. (1.8)

3
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It will be assumed that the Lax matrix is an analytic function on an open disk u € D C C. The spectral
curve (1.2) is assumed to be irreducible for generic values of the dynamical variables. We will consider
only the r-matrices r(u,v) that, by re-parametrization, gauge transfo?Zations and multiplication by
functions of the second spectral parameter admit the following decon: p0%1t1

Q
,v) = Ar( VE 1.9
r(u,v) u—v+ r(u,v) \ (1.9)
where ) = Z X;; ® Xj; is the tensor Casimir and Ar(u, v) ar oh the diagonal u = v function

1,j=1
with values in gl(n) ® gl(n), possibly depending also on the n ical variables. It follows from the
results of [6] that the regularity condition (1.9) always holds%gue f r the non-degenerate non-dynamical
skew-symmetric classical r-matrices.
The answer to the first question is given by the £ol 'ng)

! -
Theorem 1.1 For a given non-zero vector K = M ¢ denote (x;,p;) € C, i = 1,d the coordinates
of the finite poles of the eigenvector f (fi1,. e Lax matriz L(u),
FL(u) = m\ )= p 1) =0
normalized by the condition \ N

K..._F,@nfn:l (1.10)
14

such that x; € D. Assume all the p 0 be simple and, moreover, x; # x; fori # j. The Poisson

brackets (1.8) between these Uamables isfy

{zi 2} ={pi,pj} =0 Vi, j
{xzap] - 0 7’ # ]
iof the r-matrix satzsﬁ(c/fhe lmy{ng condition:
r

k(U V)R B, =0, 1=1,....n (1.11)

(1,...,an), B=(B1,...,0n) such that «(RK)=p(K) =0

where oK ) B(R) = Y1y Biki. Moreover, if the r-matriz also satisfies the regularity
condition (INQ) them the Poisson brackets are canonical
ﬂ

5 {zi,p;} = dyy.

eIV t, in the particular case K = (0,0, ..., 0, 1)! corresponding to the “standard” normalization
of théseigenvector of the Lax matrix the condition (1.11) takes the following simple form:
Tinge(u,v) =0 Vi,jeln—1, kel n. (1.12)

The proof of Theorem 1.1 is based on a certain structure of the Poisson algebra of separating
functions (cf. [14] where a particular case of an algebra of separating functions was considered) which
is sufficient for them in order to produce the canonical coordinates:

4
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Lemma 1.1 Let A(u), B(u) be functions of the dynamical variables depending also on the spectral
parameter u satisfying the following Poisson algebra relations

{B(u), B(v)} = b(u,v)B(u) — b(v, u)B( (1.13a)
{A(w), B(0)} = a(u,v)Bw) — Bu,0) D (1.13b)
{A(u), A(v)} = (u v)B(u) — a(v u) v). (1.13¢)

for some functions a(u,v), b(u,v), a(u,v), f(u,v). Define va abl iy P i = 1,d as zeroes of B(u),
B(z;) = (1.14)

d values of A(u) at th ' K&
and values of A(u) at these points,

pi= (1.15)

If, moreover, also the condition

lim (a(u, v) M,vm»: L B(v) +7(v) B(v). (1.16)

holds true for some ~y(v) then the 007"7" onding Poisson brackets are canonical, i.e.

{z;,pi} =1, Viel,d.

1.3 Constructl fa rating functions

How to derive the s funct10ns7 Denote A(u, 1) = (Ay;(u, 1)) the n x n matrix of cofactors of
L(u) —p - 1. As 1g nvect r of the matrix L(u) with the eigenvalue p = p(u) is proportional to

Alj(u> :u)v s 7Anj(u7 :u))

for any j e arrive at the following system of equations for the poles of the eigenvector

Qs D kilij(up) =0, j=1,...,n. (1.17)
=1

Eli ﬁy 1 one arrives at the equaton for the u-coordinates of the poles. Solving then the linear
systeni(1.17) for the vector (1, u, ..., " ') we arrive at expressions for the p-coordinates of the poles.

Explieitely, for the poles (u = z;, u = p;) of the eigenvector of the Lax operator normalized by the
condition (1.10) for an arbitrary non-zero vector i the separating functions will be constructed by the
following procedure (see, e.g., [7]). Denote

Bi(u) := R A L(w)R A L*(w)g A--- ANL" 7 (u)i € A"C" ~ C (1.18)
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K1 (L /_{)1 (LZE)l (Ln 1 _’)
%) (L /%‘)2 (LQE)Q (Ln 1 )
= det ’ ’
ko (LR (L) : | : (L
where L = L(u). Introduce n x n matrix M(u) = (M;;(u e%b

M;j(u) = coefficient of "™ in ZAU (1.19)

5 4 ]
For any 1 < jo < n define the (n — 1) x (n — 1) mat 1x(w7°)‘('2) by eliminating from M (u) the last row
and the column number jy. Finally, another (n atrix MU0)(u) is obtained from M) (v)

by replacing the last row by m\z

Here the hat indicates that the term M, j, \-Q;nltted

Lemma 1.2 Assume that, for a g ven r vector K all finite points Q; = (z;,p;), i = 1,...,d of
the divisor of poles of the eigenvec rmalzzed by (1.10) belong to the smooth part of the spectml
curve (1.2) and, moreover, the u- coordz tes of all these points are pairwise distinct, x; # x; for i # j.

Then
1) xy,...,x4 are zeros f undtion (1.18),

/ Bu(z) =0, i=1,....d. (1.20)

2) For every i t ext 1 < jo < n such that det M) (z;) # 0. For any such jo the u-coordinate
of the point Q; 1 by the formula
ps = Ax(zs) (1.21)

£
where o~ / i
det M70)(u)
b Ag(u) = ~ det MO (u) (1.22)

1.1 yhe rhs of eq. (1.22) does depend on the choice of jo. Nevertheless, the difference of two
su quios ivisible by Bz(u). So the value of Az(u) at u = z; does not depend on the choice of jo.
~

1.4 rmulation of main results

The needed structure of the Poisson algebra of the separating functions Bz(u), Az(u) is given in the
following Theorem:



E I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishing

Theorem 1.2 The Poisson brackets (1.8) between the functions A(u) = Az(u), B(u) = Bz(u) satisfy
the Poisson commutation relations (1.13) and (1.16) if the r-matriz 5(1763 the conditions (1.11) and

(1.9) respectively.
ﬁ%{ations.

Let us explain the algebraic meaning of the condition (1.11). F@xs;\licity let us consider here only
ec

The proof of this Theorem is obtained by tedious but straightfor

the case of non-dynamical r-matrices with £ = (0,0,...,0,1)" (see sithgection 2.2 for the general case).

Proposition 1.1 The first (n — 1) rows of the Lax matriz forgl a“elosed Poisson subalgebra in the
Poisson algebra (1.8) if and only if the condition (1.12) hdlds true.

Taking into account that the separating functionsgB{u) A(u) for the standard normalization
K = (0,0,...,0,1)" are effectively defined on the su ‘lgeb'ri of the Lax matrices generated by the
matrix elements of their first (n — 1) rows, we obtai that the above proposition gives a simple Lie-
algebraic explanation for the necessity of the corfdition (4.12) in our Theorems. Indeed, if the Poisson
algebra of the coordinate functions of the first ‘ﬁ:\m s of the Lax matrix were not closed then the
corresponding Poisson algebra of the functidns«w,, = constructed via the matrix elements of the first
(n — 1) rows of the Lax matrix would not, bﬁx@dﬁ%isson algebra either.

It is necessary to notice that our alg %%Q etric approach to the problem of construction of

canonical variables works equally well hoth%in the case of skew-symmetric and non-skew-symmetric
r-matrices, in dynamical and non-dynamical cases.

U

We consider briefly also the p %()f the completeness of the constructed canonical coordinates. In
the general case, withoutfa speci ion of the Lax operator as a function of the dynamical variables
and the spectral para?éter it is not possible to give an answer whether the coordinate system obtained
with the help of the separating<functions is complete. That is why in order to study the problem it
is necessary to sp 1@}?1?6&\51&‘51&}( and the Lax operator. In the present paper we concentrate our
attention on thesc f non-dynamical classical r-matrices and on two classes of the Lax operators
corresponding £0 them;wamely, on the Lax operators of the generalized Gaudin systems with [28] and
without [26] extérgal médgnetic field. We consider two examples of classical r-matrices and their Gaudin-
type systenfs. The first one [18], [14], [1], [7] corresponds to the standard rational classical r-matrix and
the standardyrational Gaudin model [13]. In this case the set of the canonical coordinates constructed
with tife help he functions Bz(u) and Az(u) with the standard choice & = (0,0,...,0,1)" is not
comple In brder to have a complete set of the separated coordinates one has either to apply the
tﬁe:§ (), Az(u) with more general choice of the vector & [7] or to make a trick completing the

e separated coordinates by some additional functions [1]. In both cases the crucial point for
the conipleteness is an introduction of a non-trivial and sufficiently generic external magnetic field in
the corresponding rational Gaudin system.

Another example we consider is a new one. This example is connected with the n-parametric family

1.5 Examples
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of non-dynamical, non-skew-symmetric classical r-matrices of the following form [26]:

1 “1+a2 /

that can be viewed as an anisotropic deformation of the ration tnces (the parameters a; are
arbitrary). We consider the corresponding Gaudin-type modelse[20], 8] and the set of canonical
coordinates constructed with the help of the separating func 'OIb u)tand Az(u). Remarkably the
r-matrix 7, (u, v) is the most general representative in the class o 1eﬁﬁagonal” r-matrices of the form

r(u,v) = > 1i(u,v)X;; ® Xj; for which the functions By % ) define the canonical coordinates

J=1
for a generic normalization vector K. We show that, iQ}l‘e se a; # a;, 1,7 € 1,n and generic choice
of the vector £ the canonical coordinates construct the help of the separating functions Bz(u),
Az(u) constitute the complete family. It is necessary towotice that, contrary to the rational case, the
set of the separated coordinates is complete eve&{s‘\mkout ntroducing an external magnetic field in the

corresponding generalized Gaudin model.
The described above integrable models as@ith “anisotropic” gl(n)® gl(n)-valued r-matrices
provide the fourth example of the models\yith linear Poisson algebras and gl(n)-valued Lax matrices
L(u) for which the separating functio = () Aau) produce a complete set of separated coordinates.
The first class of the models is associal@%{hr he rational r-matrix and it was briefly described above.
The second class is associated wit }SKiE: non-skew-symmetric non-dynamical rational r-matrices
obtained by (dynamical) gauge transfegmation from the standard skew-symmetric trigonometric r-

matrices [25]. Finally, the thi dﬁof such models is associated with the dynamical r-matrices of the

1

elliptic Calogero models a s varigus degenerations [22]. The r-matrices of all these models satisfy
condition (1.12) either i e(pat

The structure of g{e pr nt/paper is the following: in the second section we remind the main
facts about the classi m%:rl es and about linear Poisson algebras of the Lax matrices, in the third
section we review e@in facts about the separated coordinates in the Lax-integrable case, in the fourth
section we prove/théwiain theorem and in the fifth section two classes of examples are considered. In
the Appendix 4gc dévelop.an alternative technique for studying the necessary and sufficient conditions
for the canonigit thé separated coordinates of algebro-geometric type. Such conditions are given by
Theorem AL1. 5

r after a suitable transformation.

—

2 miltonian systems, Lax algebra and classical r-matrices

2.1 }éﬁnitions and notations

Let us consider a finite-dimensional Hamiltonian system on a Poisson manifold P with a Poisson bracket
{, } and a Hamiltonian H. Let us assume that the corresponding Hamiltonian equations of motion
are re-written in the Lax form:
dL(u)
dt
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where L(u) and Mpg(u) are some matrices depending on the initial dynamical variables (coordinates
on the space P) and the auxiliary complex parameter u which is constant with respect to the Poisson
bracket { , } and the “time” t.

i

In the present paper we will assume that L(u) takes its values in the Lie algebra gl(n) = gl(n,C), i.e

L(u) = Y Lij(u)X;; where X;;,i,j = 1,n is a standard basis in gl(m), with the commutation relations
ij=1

(2.2)

The Lax representation (2.1) automatically provides n géneratingunctions of the first integrals of the
corresponding Hamiltonian equations, which can be chosen'to be §he traces of powers tr L(u)*, k € 1,n
of the Lax matrix or, alternatively, the coefficients of @har ristic polynomial of the matrix L(u).
From this follows, in particular, that the “spectral cur f ﬂ’; Lax matrix is preserved under the time

evolution: J e
%det(l:N = 0.

For the complete integrability of the Harfiltonian system possessing the Lax representation (2.1) it
is necessary to require the Poisson-commutativitynof the above generating functions with respect to the
Poisson brackets { , }. The necessary and\sufficient condition for this [4] is a possibility to represent
the initial Poisson brackets re-writte the_level of the Lax matrices in the so-called “generalized

r-matrix form” [12]:
{Llu) ®1,1® L(ug}xk_l Uy, us), L(uy) @ 1] — [r*' (ug, u1), 1 ® L(us)], (2.3)

where the function of two ¢ le),riables

/ n
/ 7y, uy) = Z Tijh (U1, u2) X5 @ X (2.4)

\ idkel=1

with values in the r square of the algebra g = gl(n) is called classical r-matrix.
The commufation relations (2.3) are written in the component form as follows:

£
- . n
{Lij(u), LQ (st (1, 0) Lo (1) = 7ajpa (1, 0) Lis (0)) = Y (ke (v, ) L (0) = 7a135(v, 1) Lis (v)).

(2.5)
The —mat&x (2.4) can depend also on the dynamical variables. In this case it is called “dynamical”
an isfiesa complicated equation following from the Jacobi conditions for the bracket (2.3) (see e.g.

[15]): -

[Li(uy), [ (ug, ug), v (uy, us)] — [P (ug, us), 72 (ur, ug)] + [ (us, ug), 73 (uy, us) |+
+ {La(us), r13(u1, ug)} — {Ls(us), r12(u1, ug)}| + cycl.perm. =0, (2.6)

where Ly (u1) = L(u;) ® 1 ® 1, La(uz) = 1 ® L(ug) ® 1 ete.

9
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In the case of non-dynamical, i.e. non-depending on the dynamical variables, classical r-matrices

the equation (2.6) is simplified to the form of the “generalized” or “permuted” classical Yang-Baxter
equation: [12],[4],[3]: }

[12 (ug, ug), 7 (g, us)] = [r**(ug, us), r'?(uy, ug)] — [r*? uW(ul,uzg)], (2.7)
where 72 (up,ug) = Y i, u2) Xy @ X @ 1, 713 (ug, uz) = et (U1, u3) Xi; ® 1 ® Xy, ete.

i k=1 o =
In the case of skew-symmetric r-matrices, i.e. when 72 (ujj :Q:..,;r Y(ug, uy), where r?!(ug, uy) =
P22 (uy up) P2 and P'? interchanges the first and seconl*spaces in tensor product, the generalized
classical Yang-Baxter equation reduces to the usual classical Yan%Baxter equation [19]:

[rlz(u17u2)77‘13<u17u3) 23(“27 (3)77012 U]_,’LLQ) + T13(U1,U3)], (28)

J=1Ir
solutions of which have been classified in [6].

In the sequel we will be interested in cer: gebras of the Lax algebras. In this section we will
consider only non-dynamical r-matrice\L% cepsider n x n constant matrix A = (A4;;) and introduce

a linear functional of L(u) by \
fA(L%N}U(AL(U)) = ) AjiLi(u).

ij=1
Proof of the following 1 @aightforward.

Lemma 2.1 For anyfb ayices A, B the following formula holds true
3\&4@@)), (p(L(v))} = La(L(u)) — £s(L(v)),

\ >
2.2 Special subalgebras of the xa%‘bra
subal

where

£ 4 Ajs = Z (Ajirisp(u, v) — i p(u, v) Ais) Big,

i,k,1=1

— Bis = Z Aji (Bzms,ij(v, U) - le,z'j(va U)Bks> .

1,5,k=1

s%s ider all the matrices as linear operators on the space V' = C". Choose a subspace W C V.
Introduée assubspace Ly, in the space of linear functionals of the above form defined by

Lw = {4 A(W) = 0}

n
In the component form we have that the matrices A generating Ly are such that ) Ajw; =0,V e W

i=1
and V j.

10
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We want to derive a sufficient condition on the r-matrix that guarantees that the subspace Ly is
closed with respect to the Poisson bracket. For a given non-zero vector w,e W consider a 3-tensor

i Tisg (U, V)ws €V RV @ V™ g\ (2.9)

s=1

It defines a natural map \
VeVt =V (2.10)

Denote W* C V* the annihilator of the subspace W,
={ae V" |a(d )/V}

The following proposition holds true:

Proposition 2.1 Let the r-matriz satisfy the %roperty for any & € W the map (2.9) acts
trivially on W* @ W*:

(2.11)

Then the subspace of linear functzonals 9se wzth respect to the Poisson bracket. This condition
is also a mecessary one.

Proof. One has to verify validity o t

n
isWs = 07 E Blsws = O)
s=1

for any w € W. They a Qfollows

n
Tis k1 (U, V) Bipws = 0, Z A Biyirys,ij (v, u)ws = 0.
)0y 7l i,4,k,s=1
for any A, B satisfying (w) =0, B(w) =0, and any @ € W. It is easy to see that these conditions
are equivalent, to the c/ndltlons of the Proposition.
Let us specify Se ondition (2.11) in the case of the one-dimensional space W spanned by a non-zero
vector @i In"this case we have that the map (2.10) has the following explicit component form:

S ~ 5 Miy, — z”: Tis gt (U, 0) Myws

i,k,s=1

and the eondition (2.11) acquires the form:

n

Z Tis (U, ) Mipws = 0, (2.12)

i,k,s=1

11
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for any M;; such that Z = > M,;jw; = 0. Any such matrix is a linear combination of matrices
j=1
of rank 1 that have the form /

M;; = i35, Zaiwi = Zﬁjwj = 5\

Thus in this case the condition (2.11) coincides with eq. (1.11).

As we will see below in the considered gl(n) case a mlracle urely Lie algebraic conditions
(2.11) and (2.12) that guarantee that certain subspaces are cl on subalgebras of the r-matrix
Lax algebra coincide with the sufficient conditions for the aTTab paration.

3 Separation of variables

')
3.1 General integrable case \‘S

Let us recall the definitions of Liouville integ blh eparation of variables in the general theory of
Hamiltonian systems. An integrable Hamilto \'y-st.em with D degrees of freedom is determined on

a 2D-dimensional symplectic manifold ‘rlc leaf in (P,{, }) and D independent functions
(first integrals) I; commuting with res ect E~Pmsson bracket
= 1,7€1,D

(for the Hamiltonian H of the system 1ts¢an be taken any first integral I;).
To find separated Varlablﬁ\ o find (at least locally) a set of coordinates x;, pj,1,7 €1, 1, D such
cntel

that there exist D indepen atlons:

A

5):1:7, i,7 € 1, D are canonical, i.e:

{x’wp] _61]7 {IL'Z,.T]}—O {pzapj}_o VZ,]GL_D

uanpi . Iy) =0, i€LD (3.1)

where the coordina

a way to explicit integration of the equations of motion.

tely, In the general case no algorithm is known to construct a set of separated variables for
a give ir‘l-t‘?egr ystem. Nevertheless, in the case of integrable systems admitting Lax representation
with spégtral parameter there exists an efficient recipe of their construction.

3.2 a;;c-integrable case

Let us turn again to the integrable systems admitting Lax representation with the spectral parameter.
Let us consider the auxiliary linear problem for the n x n Lax matrix with the “left” eigenvector f (u)

of the Lax matrix:
7 W) L) = p(u) f (u)

12
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The eigenvector of the Lax matrix is defined by the above equation up to a normalization. The “magic
recipe” to a construction of the canonical variables of algebro-geometric type is the following [16]:

The separated coordinates z;, i € 1,d coincide with the u—coor‘dmatfzof poles of the properly nor-
malized eigenvector of the Lax matriz. The conjugated momenta p; cowncide with the p-coordinates of
the poles, i.e., with the eigenvalues p of the Lax operator evaluated at these points: p; = u(x;). The

functions ®; in (3.1) are all the same and they are obtained fromﬂz&amcteristic polynomaial of the

Lax matriz:
q)(]}“pl, Il, ceey ]N) = det(L Z;

()~ )= 05
p.alg% {2325} = {pi, i} = 0, {23, pj} =0

Remark 3.1 In certain examples the coordinates of th
for i # j but {x;,p;} can be different from 1. To ar@ at.canonical coordinates one has to make a
change p; — p; = f(p;) for a suitable function f(p): -

In the general case the “magic recipe” is COW Moreover, in such generality it is difficult
to verify its validity. In particular it is difficult te cheekthat the constructed in such a way variables
Ti, P, 1,J] € 1,d constitute a complete sy oordinates, i.e. that they are independent and
d = D. Another problem is that for sueh,a geheral formulation it is not possible to prove that the
Poisson brackets of the constructed coordi %-&{e canonical. That is why in order to prove the last
statement we will specify the normalizatign of the eigenvector of the Lax matrix as follows:

(u)
where & = (K1, ..., k)" is an ar iua%ions nt (i.e. not depending on the dynamical variables or spectral
the

1,

&
I

parameters) column vector a per “t” will hereafter denote the transposition. In this case it is
possible to concretize the @bove general recipe. Indeed, in such a case for any pole x; of the eigenvector
of the Lax matrix the ;@ ¢ H’zati)n condition yields the following equation:

3\ i fi(j)/ii =0, (3.2)

where ?(j) = (j)/..., Ay ) is the residue of the vector function ?(u) in the point x;.
The eigenvalu ondition yields the following equations
- TOLG) = ulay) FO. (33)

Combining ths equations (3.2) and (3.3) one obtains the following system of the equations for the

co en the vector f ):

o TO(L(x,))"R =0, me0,n— 1L (3.4)

This is a linear homogeneous system of equations for f(j ),

; From this it follows that the non-trivial

solutions for fi(j ) exist if the following condition holds:

Bz(W)|y—s, = det ( £ L(w)R (L(w))?R ... (L(u))" 'R ) |u=s, = 0. (3.5)

13
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That is, the separated coordinates x; can be obtained as zeros of the above defined function Bz(u),
which is a polynomial as a function of the elements of Lax matrix but can be more complicated (e.g.
meromorphic) as function of u. We will call Bz(u) to be a sepamtm/

olynomial. For an arbitrary
vector K this polynomial was first written in [7] (see also [22]).
There is a normalization (called “standard”) corresponding to the fa)owin choice of the vector &:

R=#,=(0,0,..01)

Such a choice produces the separating polynomial Bz(u)(u) ¢ ‘i}efed\in [20] for n = 2,3 and [18] for
arbitrary n. This polynomial is also equivalent to the segparatingypolynomial considered in [14] and
later in [25]. Using the properties of the determinant it i:i%isi to show that for the vector &, the
polynomial Bz(u) can be re-written as the determinan@ th £ 1) x (n— 1) matrix B(u) defined as
follows:

)
B(u) = Bz, (u) = detB(u) = det( ?(u) _@f(u)_ﬂu) Z"*2<u>?(u> ) : (3.6)

where L(u) is a sul;matrix of L(u) constitut Qrs’c n — 1 rows and columns, i.e L;;(u) = L;(u),
ne%

i,7€1,n—1and [ (u)isthe (n—1) compo vector constituted by the first (n — 1)-elements of the
last column of L(u), i.e (?(u))l = Lin(u), }),{— 1.

In a similar way it is possible to shogw[25[\that the separated momenta p; = u(x;) corresponding to
a normalization vector K, are givenuh t&g‘u

I\K s of the “dual” separating function: p; = A(x;), where
C
Aw) = £W (3.7)

\ ~ D(u)’
an the polynomials € (u)dind Db defined as follows:
C(u) 1/% aét ( IWe T Wl .. I"wWT ) , (38)
Q@(u) = det ( C Tw Twlw .. T W ) , (3.9)
where € is a‘ri%;y ~ 1 component vector. Following [14] and [18] we will chose it as follows:
S € =€ =(1,0,0,...,0), (3.10)
u) = D, (u), C(u) = Cg, (u).

ﬁ
ie. We% (
Re .27 Observe that all the choices of De(u) and Ce(u) give the same answer for A(u) modulo
the i génerated by B(u). We will use the auziliary polynomials De,(u), Ce,(u), j € 2,n — 1, where

=V, k € 1,n — 1 in the intermediate calculations.

Remark 3.3 Observe, that the separating polynomial B(u) and the “dual” separating function A(u)
corresponding to the above standard normalization of the eigenvector of the Lax matrix effectively depend
only on the first (n — 1)-rows of the Laz matrix.

14
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Remark 3.4 Observe that it is possible to use throughout this section instead of the left eigenvector of
the Lax matriz the right one satisfying the following equations: /

L(w) 7t (u) = p(u) £ (u)

Such a choice is used in the papers [7], [25], [22]. Under such a cho a the formulas above should be
appropriately modified. For example, the separating polynomial B%’ itten as follows:
E &
L(u T~
B(u) = det ,

—~
—'Ln—l 3

—

NI

O

the system (1.17) is written as

ki (u, n=1....n

J=1

etc.

//

N\

3.3 Algebra of matrix mlnﬁ\ea ds separating polynomial

In the sequel it will be necessary t arating functions in another form. For this purpose we

will introduce some new notatlons
Definition 1. We denote

of the submatrix of L(u)

]1 J2"
11 22
g of the elements standlng on the intersection of the iy, 7, ... 7,,-th

(u) a minor of the matrix L(u), i.e. the determinant

rows and j1, Ja,... ]m-t c

In what follows se the following representation of the polynomial B(u) [14]:
< Bw=ci Y. Bl{alhu) B.1)

mns/In particular: L < > (u) = Lij(u).

—1
af:l; i€l,n—2;j€l,i
S
where
1 1 n—3 1 n—2

Y ( )L ( %1 ré ) (u) ( 02232. ag?gn > (u)L( 041%22.'.... ?;nzgln ) (u),
(3.12)
wi&also use similar representations for the polynomials C'(u) = C, (u) and D(u) = Dg, (u) with

C(u)

& of thedform (3.10) (recall that A(u) = D(u)) [14]:

C(u) = Cn—2 Z C<{az}vu)7

ol =1;i€1,n—3,j€1i

15
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n—1

Dlw)=ca Y. Difod}u),

al=1;i€T,n=3, jeL,i

where /\
1 cen B

C({ad},u) = L ( o ) (u)L ( o ) (u)...L(

D({al},u) =L ( CZ > (u)L( (‘jgog ) (u)...L(

Cottathu) = 14 )

Qg
4 (3.15)
1 1 n—4 1 n—3
j o 1 n . Oén_4... Oén_4 n an_3.;. Oén_3 n
De,({oi}u) =L ( % L( asad ) ()~ L ( al ... a3 ) (u)L ( 12..k.n—1 ) (),
(3.16)

where “check” ov kgeans that this index is omitted.
There is thedollowing usefull identity[14]:

——

(—1) e tu)C u/)— (—1)*Ce, (u) D, (u) = B ( n _gnl: 1 ) WBW), kleTn=T (317

e
—_—

n+42n—1
kol
colu M1or of the matrix B(u). The matrix B(u) was defined in the eq. (3.6).

where (u) is the complementary to the k-th and [-th row and the (n—2) and (n—1)-st

Remark 3.5 Observe that the above formulas for C(u) and D(u) are well-defined only for n > 3.
Nevertheless, the case n = 2 also fits for our construction if we define additionally that for n = 2

B(u) = L ( : ) (), Cu) =L ( 1 > (w), D(u) = 1, A(u) = C(u). (3.18)

16
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Remark 3.6 Observe that, passing from the left to the right eigenvectors of the Lax matriz discussed
in the Remark 3.4 is equivalent to the transposition of the Lax matry the formulas above, which

leads to exchange between rows and columns in the corresponding mi

e ( ::Z:)(u)%
(i) ¢

We will also use the following technically important Propogiti

T~
Proposition 3.1 Let the entries of the Lax matriz satisfy ghesPoisson brackets (2.5). Then the follow-

ing Poisson brackets between minors of the Lax matriz ho true.'s

{L( e fﬂ"j ) (), ( ;ﬁ - iﬂjjv ) ()} = \CD

n

M N .
= Z Z Z <riq37kpt(u, v)L | ¢
p=1 ¢q=1

s,t=1

— Tsjotly (U, V)L

— Tkptyigs (Ua U)

where

A
e Jpee JM
Cige i )(“)'

sze abope check over an index means that this index s omitted in the corresponding minor.

Sketch of the Proof. The Proof is made using double induction on N and M. In more details, the base
of induction is the case M =1, N = 1. Its validity is evident due to the fact that, in this case by the

17
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definition of the Poisson bracket (2.5):

() o) o= 3 (o (2 ) wE (] @s\

—rsm,l(u,u)L( ; ) (w)L ( . ) (0) = Thatins U,U)L“Q\ (L ] ) v)
M ()

1

o~

v . (3.20)
where by our original definition

Z(ltl ) (v) = b, Z( . ) (0) = 6, J}L) b, Z({j > () = b0

The next step is an induction on N. It is do%xd(; mposing minor of the order N in the row and

column, using the Leibnitz rule for the Pois -hws and regrouping afterwards the summands. To
complete the proof one has to do inductign on M_using similar arguments..

"
Remark 3.7 The introduction of them L(u) with “tilde” seems to have no deep hidden sense
in the general case and is used by 4\% otational convenience.

The Proposition (3.1) has the following simple but important Corollary:

Corollary 3.1 Let D Sl ( R ) (). Then {Da(L(w)), Dy (L(v))} = 0.

1,08, i =1 (ST

In other words the P sitio 1) provides a simple alternative proof of the Poisson commutativity
of the coefficients ph{@(“cemstlc polynomials of the Lax matrix L(u).

3.4 Sepa tipg nctions and canonical coordinates

réemin method of constructing canonical coordinates using the separating functions.
Generally s eakmé this method can be considered independently from separation of variables. In this
subsection*we ot assume any special properties of the Poisson manifold P or Poisson structure
{, }. Neither'we assume integrability or existence of the Lax representation.

B d A(u) be some functions of the dynamical variables and auxiliary complex parameter u
2w %s*eonstant with respect to the bracket { , }. Let the points z;, i € 1, d be zeros of the function
B(u) and p;, i € 1,d be the values of A(u) at these points. We want to compute Poisson brackets
between these new coordinates using the Poisson brackets between B(u) and A(u).

The following Proposition holds true:

2For the Hamiltonian systems admitting Lax representation with spectral parameter it will naturally coincide with
the spectral parameter in separating polynomials.

18
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Proposition 3.2 Let B(z;) =0, p; = A(z;). Then:
{B(u), B(v

0=t (D) ol

(it) {z;,p;} = lim (%) + {xz,xj} 11 ? ), where i # j,

U—T4,UV—T 5

(i) {pepsy =l ({A@). A@)}) + {p2;} lm (9 g«)@m lim (9, A(u)—

{xz, » 1 A(v)), where i # j.
Z,v%xj
Sketch of the Proof. The eqgs. (i)-(iil) are obtained d‘))mposition of B(u), A(u), B(v), A(v) in

4, v = x; in the expressions {B(u), B(v)},
 the limits v — x;, v — x; after the calcula-

Taylor power series in the neighborhood of the ppint
{A(u), B(v)}, {A(u), A(v)} respectively and by w

tion of the Poisson brackets.

4 Main Theorem and rollarles
In this section we will formulate o al result about the algebra of separating functions first in
the special case of the vector %, = (0,9,...,0,1)!, i.e. for the functions A(u) and B(u) and then we

will extend it to the functio : Bg(u) with general K arriving at Theorem 1.1 formulated in the

Introduction.
4.1 Main The e&

From the results o us subsection it follows that in order to obtain canonical Poisson brackets
among the coordin onstructed with the help of polynomials B(u) and A(u) it is sufficient to require
that the equatibns 1. ~1.16) hold true. The conditions for validity of these equations are given in

our main Theor
-

Theorem 4.1 Let, the Poisson brackets between entries of the Lax matriz L(u) have the form (2.5)

Wri);ten in the following component form.

with sofner- & r(u,v). Then the separating functions B(u) and A(u) defined in terms of the Lax
matriz \L(u) Uy the formulas (5.6)-(3.9) with the normalization vector & = (0,0,...,0,1)" satisfy the
reldtions a—1.13¢) if the following conditions on the matrix elements of the corresponding r-matrix

r(u, ewsatisfied

Tinjk(U, V) = Tin jn(u,v) =0, Vi, j,ke€ln—1 (4.1)
For the non-dynamical r-matrices the condition (4.1) is also necessary for validity of the commutation
relations (1.13a-1.13c).

If, moreover, the r-matriz satisfy the regularity condition (1.9) then the condition (1.16) is also
satisfied.

19
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See below the subsection 4.3 for the detailed proof of the Theorem. Since the function Bz(u) does
not depend on the choice of a basis in C”, up to multiplication by a constant factor, and also the
function Az(u) after a change of a basis transforms like /

Ax(u) — a Ax(u) + b Bx(u) 5\

for some constants a # 0 and b, hence the Theorem 1.2 follows fromthe*above Theorem.

Remark 4.1 Not all classical gl(n)® gl(n)-valued r-matrices Z‘)V/.tk conditions (4.1). In particular,
skew-symmetric elliptic r-matriz of Sklyanin [19] (for n =£2 )« s generalization of Belavin [5] (for
arbitrary n) does not satisfy the condition (4.1). Neverthelgss, t Scondztwn (4.1) is not very rigid. It

“kills” only (n — 1)3 + (n — 1)? of n* components of tgﬁ m

Ezample 2. Let n = 2. In this case, as it was alr bsE)/ed, the formulas (3.6)-(3.9) defining the
separating functions should be modified. Nevert}deqeﬂ-n‘g-the definition (3.18) of the functions B(u)
t

and A(u) and the commutation relations 1sieasy to show that the condition (4.1) with n = 2

is necessary, for non-dynamical r-matrices, and to satisfy the relations (1.13a—1.13c) also in
this case. The ¢l(2) ® gl(2)-valued r-matrix p {Q&Q = 16 components. The condition (4.1) has the

form:
(b =212, v)
It “kills” only 14+ 1 =2 componen@x atrix.

4.2 Some corollaries

=
/§
- —

The Theorem (4.1) has sever 'mmtant Corollaries. The first of them is written as follows:

Corollary 4.1 Let the atm 9(u) be obtained from the Lax matriz L(u) by (possibly dynamical)
gauge tmnsformatwn ) = g u)L(u)g(u). Then the corresponding separating functions
BI(u) = = A(L9(u)) satisfy the algebra (1.13a-1.13¢) if and only if the following

condztzons hold
m]k ) Tign,jn(u7v> :07 VZ,],k € 1>n_ ]-; (42)

,_7&) ¢ thé matriz elements of the following r-matriz:

P9 b IR 571 (0) (1) — {0 8 1,18 L)) 0) 0 14
K5 + 5l @ 11 g}~ W) © 7 (0),1© L)) )g(u) © g(v).

If, mo ov}, the r-matriz r9(u,v) satisfy the property (1.9) then the condition (1.16) is also satisfied.

Remark 4.2 In the case of non-dynamical transformation matriz g(u) the transformed r-matriz is
written more simply as follows:

r9(u,v) =g~ (u) ® g~ (v)r(u,v)g(u) @ g(v).

20
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The analogue of this Corollary holds true also for the constant “external” automorphism of the
algebra of the gl(n)-valued Lax matrices:

Corollary 4.2 Let us consider the automorphism o(L(u)) = —L*( u) hemgthe corresponding separat-
ing functions B°(u) = B(—L(u)) and A°(u) = A(—L'(u satzsfy t bm 18a-1.13c¢) if and only
iof the following conditions are satisfied:

Vi,

T (W, v) = 1if% (u,v) = 0,

(4.3)

in,jk

where rf;t,fl(u v) are the matrix elements of the r-matriz t a'?pos mn the first and second component
of the tensor product. If, moreover, the r-matriz r(u,v) s 'sﬁesyze property (1.9) then the condition
(1.16) is also satisfied. -

Remark 4.3 Observe that the condition (4.3) can N;@ n in a more simple way as follows:

Pni kg (U, ) =7 m,nj(u%‘lg
It is relevant for the choice of the “right” eigenm‘\'@f the Lax matriz and the corresponding separating

functions, discussed in the Remark 3.4 an 3.0.

4.3 Proof of the Main h&M

Let us now prove the Theorem 4.1. Fo his“purpose we will need (as it follows from the subsection 3.4)
to show that the commutatio .13a-1.13c) hold true if and only if the condition (4.1) does.

relations
We will do this using the fo I%mmutation of minors (3.19). In order to simplify the calculation,
we will introduce the foll 111; nogation:

WY (0)} = {X (), Y (0)}u + {X(u),Y(0)}o,

where the first par con th 0 he summands with the coefficients 7;; 1 (u, v) and the second part consists
the coefficients 45, kl(v u) Such a structure is a consequence of the commutation
relations (3.19% Leibnitzwule and bilinearity of the Poisson brackets.

In such@:@i ¢ hlve {X(),Y(v)} ={X(u),Y(v)}y — {Y(u), X (V) }u)ueso- In particular,

i jkeT,n—1 (4.4)

{X (u), X( S X () — ({ X (u), X (v) }o)ueso- We will use this fact in the subsequent, calcu-
essions of the type {X(u),Y (v)}, instead of the full Poisson brackets.

lating only; t
4.3¢1 Ql&} of the equation (1.13a)

Let hr% prove the relation (1.13a) calculating explicitly the Poisson bracket {B(u), B(v)}. As
it follows from the above arguments, for this purpose it is enough to calculate only the first part

{B(u), B(v)}u-

The following Proposition is true:

-~
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Proposition 4.1 Let the matriz elements of the Lax matriz L(u) satisfy the commutation relations
(2.5) with some r-matriz r(u,v). Let the separating functions B(u) and A(u) be defined using Lax
matriz L(u) and the formula (3.6). Then the following commutation reldtions holds:

+ 2 Z et (0 0) BB} )%

x B({ad},0),, ot WB{al}v), ﬁt)
t=1 =1 i=0
k+1 ~
> 2 > w,v) BB}, w)™ 7 B({ag},v),,
adeln—T;cel,n—2,del,c Bpel,n—T;pel,n—2,rel,
Here the notation B({a?}, v)az_’t mea at e @per index o in the corresponding minor in B({ad},v)

B({ad},v) is replaced by t and “ti Mf the B({ad},v) means tilde over the minor in the prod-
uct where the corresponding index was replaced by t. Besides it is assumed that o™ =n, i € 0,n — 2,

=j,7€1l,n—-1; Bkﬂ £ c0,n—2, 8 _,=11€1,n—1 and there is no summation over
these indices.

Proof of the Propositio et ais consider the expression {B(u), X (v)},, where X (v) is one of the
polynomials B(u), C )\x\ . Let us observe that, up to a coefficient they can be represented in

the form:
3 X(v) ~ > X({od},v),

y ol =Tn—T1; jel,, iel
where the setiof in erd T is defined as follows: I = {1,2,...,n—2} in the case of B(u), I = {1,2,...,n—3}
in the caselof D(1$ and C(u), X({a]},v) are the monomials in minors of the Lax matrix defined by

the forpmulas(3.12), (3.13) or (3.14).
To implif}st e proof we will need one more notation:

\ I {Z(),Y (0)}u = {Z(w),Y (0)}z + {Z(u),Y (v)}",

where {%(u),Y (v)}z is a part of the Poisson bracket given by the first sum in (3.19), {Z(u),Y (v)}*
is a part of the bracket given by the second sum in (3.19) and Z(u), Y (v) are polynomials or rational
functions of the matrix minors of the Lax matrix.

is replaced by t, B({af},v)azﬂ_)ts:; abv the lower indexr o, in the corresponding minor in

22
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Let us now calculate the expression {B(u), X (v)}z. By virtue of the formula (3.19) we obtain:
{B(u), X({al},v)}a =
n n n—2

92 k n—gx (i+14+35x) \
= Cp_1 Z Z Z Z Bksa 1t U)gl s {Oé )a 1—>t
i+

Breln—Typel,n—2,rel,p t=1 s=1 k=1 =1 =0 J=1

n—1n—gqx (i+14+6x)

+Z D sl (w0)B «g X({ath v, ) (45)

s=1 =1 1= 7j=1

3

._.
O

WhereqX—ZinthecaseofX( ) = B(u), ¢x =31 e ), ¢x = 3 in the case of

X(u)=C(u),and o!,_, =1,1€1,n—1 in the first cage, al —l+1 lel n—21nthesecondcase

al _,=1,1€1,n—1in the third case and dx = d; 5X’C§O is non-zero in the case X (u) = C(u)).
On the other hand, the analogous direct calc ation ing the formula (3.19) shows that

{B(u), X({ad} 0)}" =

= —Cn-1 > Z gt o0 (0 0) BB w) A K ({ad ), o)

Breln—Tpeln—2,relp s=1 =1 =1 =0 j=1-0x

k+1

ot (0 BUBL 0 X ({ad},0) 1) (46)

where o/t = n, ,Bkﬂ

'*%od as above, dx = 0;,_30x.c and a2 _; =1 if X(u) = C(u).
I St

Here the notation X« }, means that the upper index 0% in the corresponding minor in
X({al},v) is replaced{ﬁy X ( g},v)agﬂ _,, means that the lower index «,, in the corresponding
minor in X ({ad},v)i Wd v t and “tilde” over the X ({ad},v) means tilde over the minor in the
product where thefcorresponding index was replaced by t.
To finish thedproof of the Proposition we will need the following Lemma:

£
’-Hjé n. Then the following identity holds true:

n 1+1

u,v) X ({af}, )it erm ({ad}) eV eTn.

t=1 j=1

i+1 1 i+1
Proo?lé%s from our definition of L < all a7t} O;: ) (v) and L ( lai Ly i1 ) (v).
Qg o Qg Q- Z+175 a1
Let now X (u) = B(u). Let us consider the first sums in the expressions (4.5)-(4.6). They coincide
up to a sign. To see this it is enough to rename in the expression (4.6) the indices of summation
Bi and s: B «» s taking into account that the index s in this expression runs effectively from 1 to
n — 1. Indeed, when it is equal to n the corresponding minor in B({3;},u w)P=" has two equal upper
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indices and, hence, turns zero together with all the expression B({f,}, w)P=". From the structure of
B({8;}, u) it follows that B({ﬁ;},u)ﬁllfm coincides with B({ﬂ;},u)ﬁlzc?zfter renaming of the indices

rst sums in the expressions
g toss = n in the first sum of

s (4.5). It is easy to see that

B <+ s. Hence, applying the Lemma above, it is easy to see that t
(4.5)-(4.6) coincide up to the sign and up to the summand correspo
the right-hand-side of the expression (4.5).

Let us analyze the second sum in the right-hand-side of the expuessi

BB} uwg s =B({By},u)if s =landiszeroif s # l and s . e b, is the lower index in the
longest minor in B({f;},u). Indeed, if s <n and s # [ then t geg minor in B({8)},u)s  _, has
tvvo equal indices and turns zero together with all the expuéssion . On the other hand

1 = by the very definition, hence B({8;},u)s K) , . The correspondmg summands

produce expressions proportional to B(u).
Let us analyze the second sum in the right-han ehf the expressions (4.6). We have that

B({By}, u)’ BTl s = B({By},u) if s = n due toghe t that by the very definition S = n. We
have n — 1 such summands corresponding to N ices k € 0,n — 2. The corresponding sum-
mands produce expressions proportional to Bu her values of s produce summands not proportional
to B(u).
Substituting all this into the formula ’ )}u = {B(u), B(v)}z + {B(u), B(v)}¥, using once
again the Lemma 4.1 we obtain the st e i oPDhe Proposition.
The Proposition is proven.

Now, using the fact that {B(u), B = B(v)}y — ({B(u), B(v) }u)uew We obtain, analyzing
the formula proven in the abo position, that the equation (1.13a) holds if and only if the condition
(4.1) is satisfied. Indeed, t ‘ufﬁci§1cy of the condition (4.1) is evident (see below the explicit form
of {B(u), B(v)} computedfunder+his condition). To prove the necessity, for non-dynamical r-matrices
we need to show that the of ghe second, third and fourth sums in the proven above formula for
{B(u), B(v)}, is pro(u'l d B(u) or zero only if the condition (4.1) is satisfied. On the other

iona
hand, analyzing th O:H\L.NQS with the coefficients r_ _; . .(u,v) we obtain that they appear with the
G4
following coefficien S‘é

epending on v:

y p ( ) B{ad},v) ) (4.7)

adel,n—T;cel,n—2,del,c

o c yn—1; HIeT 4y
and wit _t\h olloéing coefficient depending on w:

_ n—2
r B S r r ktl g
. (X BUS L+ BUG = 3 BATLwE ), @)
re ngl;pel,n—Q,reﬁ k=1 I=1 k=0

where sja/, | € 1,n—1,t € 1,n and each of ,8’”1 is equal to n.

The coefﬁment (4. 7) is clearly not equal to zero. That is why we have to show that the coefficient
(4.8) can not be proportional to B(u). But this follows from the fact that it is a linear function in
L ;L (u) = Lpi(u), i € 1,n with non-trivial coefficients, while B(u) does not depend on the last row
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of the Lax matrix by the very construction. This shows that the necessary condition for validity of the
equation (1.13a) is the condition r_, ; ,(u,v) =0, 5,0, € I,n — Q/ n, i.e. the condition (4.1).
741

We (1.13a):

Under this condition the formula for { B(u), B(v)} acquires a form
{B(u), B(v)} =
n—2 n

i+1
:B(u)( E Cn— 12 E Tl 0l 1tuv
adcln—T1;c€0,n—2,dcT,c+1 =0 j=1 t=1 l 1
n—2

1+1
~B()( 3 Y Z%J Lok (ﬂs et o0 ) B0 ) L,).
adel,n—T1;ce0,n—2,del,c+1 i=0 j=1 t=1 I[=1
Q Y (4.9)

Remark 4.4 Observe that we have shown the necessiy ofthe condition (4.1) for the eq. (1.13a) to
be true, hence this condition is necessary for %Ke system (1.13a—1.13c) to be true and, hence the

necessity stated in the theorem is proven. to prove further that the condition (4.1) is
sufficient in order for the equations (1.13b)- be true.
4.3.2 Proof of the equation (1]&\ ~

k

Let us now consider the Poisson brac e\Q ), A(v)}. To calculate them we have to calculate the
C
Poisson brackets {B(u),C(v)} and%(v)} and use the fact that A(v) = Cv) and, hence:

D(v)’

n

21(U) (D(){B(u), C(v)} = C(v){B(u), D(v)}).

V£ {B(u), X () }u—{ X (1), B(v)}0)ueso, we have to calculate { B(u), C'(v)}y,
ur {D(u ) ( )}u

v
zgi\the results obtained in the previous subsection and taking into account
4 1) it is easy to show that:

Using the fact that {%{)
{B(u), D(v)}, and
On the other

(B, DL 4
NI Y T w0 D ) Dl 0 ),

ssumed that o) _, = j+ 1, j € T,n — 2 and there is no summation over these indices.
“analogous way we obtain:

n—3 (i+14+8;n—3) n n-1

= cn,QB(u)( Z Z Z Titad, ¢ (u,v) (n—l)rnn’agﬂt(u,U))é({a?},v)aﬁl_ﬁ),

adeln—T1;cel,n—-3,del,c t=1 l 1
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l

where a;,_, =, 1 € 1,n — 1 and there is no summation over these indices.

Now let us now calculate the expressions {D(u), B(v)}, and {C(u), B(v)},. Like in the case
of the previous subsection, it will be useful to calculate more geneg expressions {D(u), X (v) }u,
{C(u), X(v)},. Using the arguments analogous to the ones used in the preyious subsection and the
necessary condition imposed on the matrix elements of the r-matri (4@ we obtain:

n—qx i+14+dx n n—

{D(w), X({al},v) (Z > >

i=1 j=1 t=1 |I=

+ Z ).De, (u

In the analogous way we will have: \ D
n—qx i+1+6x n \

{Cw). X({od o)} =Cw) (X X Doty (n:0) (=21, 0 (0. 0) X ({0} 0)y, )=

4 1
=1 j=1 ,t=1 2
n—1 7’+1+6X n
B CZ Z Zrlla] tUU ({af},v)ag+ﬁt), (4.11)
= =1 =1 t=1

where ¢x = 2 in the case of X (u) qu = 3 in the case X(u) = D(u), ¢x = 3 in the case of
X(u)=C(u),and o!,_; =1, 1 n — 11 the first case, ol,_, =1+ 1,1 € 1,n— 2 in the second case,
al ,=1,1€1,n—1in the ir% and dx = 0;»—30x.c (dx,c is non-zero in the case X (u) = C(u)).

With the help of the ghe identity (3.17) with & = 1, taking into account that C(u) = C¢ (u),
D(u) = D¢, (u), we obtaifirofii th t/e quations (4.10) and (4.11):

{A(u), X ({a?}, }} D2(u 1)'B ( ' _TznlA_ 1 ) (u) : X:lei+ (u,0)X ({ad} )ai}ﬁt‘

Xé\ ) we will have:

Substitutin
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Using this we obtain the following final expression for the bracket { B(u), A(v)}:
{A(w), B)} = D(u)x A
T 2 i \ _
(cn_lB(u)Z(—l)lB ( P ) (u) 3 ( 'r'll’agﬂt(u,v)B({ozf},v)agﬂ_}t)—

adeln—1;celn—2;del,c 1=04=1

n—3 (i+14+0;n-3) n n—1
Cn—2B(v) (D(u) 727 Z Z Z(Zr”’az@w\(n )rnn’agﬂt(v,u))é({ag},u)agﬂ_ﬂ

=1 g

|
Q
—~
=
M1
)
NgE
:
B
A~
3
Mz
Nﬁ
QQ
<
Z-\
e
3
S
Qh
<
=
SN—
S
—_
Qo
(e}
:v—’
S
L
|
N—
N—

n

[ € 1,n — 2 when this index is relevant to D(u)\

The equation (1.13b) is proven. \\
4.3.3 Proof of the equation (1.13c) \ ~
Let us now consider the Poisson brac ?&X ,A(v)}. To calculate them we have to calculate the
)

Poisson grackets {C(u),C(v)}, {C‘\ {D(u),C(v)} and {D(u),D(v)} and use the fact that
Av) = DEZ; and, hence:

1

.
where it is assumed that of, , =1,1€ 1,n —1 en\tk's index is relevant to C(u) and of,_, =1 +1,

%D)(v){C(U)y C(v)} + C(u)C(w){D(u), D(v)}—
% y
— C(u)D(w){D(u),C(v)} — C(v)D(u){C(u), D(v)}). (4.12)

Using the fact th @(u),A v)} = {A(u), A(v)}, — ({A(u), A(v) }o)ueso, We have to calculate only

{C(u), C(0) b, AC (WS R(0) b, {D(w), C(0) }u, {D(u), D(v) -
We will aga a,{su?e hat the necessary condition (4.1) holds true. We will use the results obtained
0 e

during the proef quation (1.13b). In particular, with the help of equations (4.10) we derive that:
{D(y),;D(v )

{A(w), A®)} = T

s n—-3 i+l n n—1

= Gl > (3 Pt (0 0) = (0=2)1, 0 (0,0)) D({0h0)s )+

L adeln—T1;cel,n—3;del,c =0 j=1 t=1 [=2

n—1 n—3 i+1 n _
+na D (=1)" D (u) > Pt (W 0) D} 0) ), (413)
=2 adeTn—T1;cel,n—3;del,c +=0 j=1 t=1
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{D@), Co)}, =
n—3 (i+14+6;n-3) n n—1
e Y D3> gt 30) = (00)ECa} o)y )

adel,n—1;c€l,n—3;de t=1 l2

In an analogous way, with the help of equations (4.10) '-iiQ to
{C(u), Cv)}u = ~ )
n—3 (i+14+8;n—3) n n-—1

S CIGNED SHND Y o 3 )2y () O, )

adeln—T;cel,n—3,de T,c i= Jj=1

— Cn—2 Z Ce,(u) (

wn—3) n

> e, o000tk v) ) (415)
t=1

{Cu). D)} =
— c-2C(0) 3 L DN et 0002 g0 DDA P, )

a‘ieln 1;celn—
n—3 1+1 n

S P a0 0)D({ad},v) 3+1—>t)' (4.16)
deln T;c€1,n—3;del,c ©=0 j

1 t=1

Substituting the fglr pres ions obtained above in the equation (4.12) and taking into account the
identity (3.17) wi 1 we finally obtain:

n—2n—1
B( . )(u) 3 (C(U)x

adel,n—T;cel,n—3,del,c

n— 3(7'+1+6'Ln 3) n
Z Z Zrll J 1t u U ({af},v)ag+1_>t>>,

(4.17)

where throughout this subsection it is assumed that o/, _, =1, 1 € T,n — 1 when this index is relevant
to C(u) and o!,_, =1+1,1 € 1,n — 2 when this index is relevant to D(u).

Keeping in mind that {A(u ), (v)} = {A(u), A(v) }y — ({A(u), A(V) }u)uesw We immediately obtain
from the equation (4.17) that the equation (1.13c) holds true.
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4.3.4 Proof of the equation (1.16)

Now in order to complete the prooof of the Theorem we have only to ove the equatlon (1 16). In

order to do this let us observe that, the coefficient functions a(u,v), ) entering

into the definition of the separation algebra (1.13a—1.13¢c) have been ¢ ‘mculated in the previous

subsection. They are complicated (polynomial or rational) functions e matrix elements of the Lax

operator, but linear functions of the matrix elements of the r-matr will use this fact proving the

equation (1.16). In order to prove this equation we will take i 0‘300 t the regularity property (1.9)
S

of the r-matrix: 0
+ Adf(u, ),
— K5
lim (a(u, v) B(u)—f(u, v) B(v)) = EE% — \ 3) % + Bolu, m) B(v)) =

= a_l(v,v)avB(v)—|—<(ag v,v) — Bo(v,v)) \_1@1 V) — B-1(u, v))|umv +1 (a-1(v,0) = B_I(U’U))) B(v),

r(u,v) =

u
which is a key property for this proof. We have:

—v uU—1v
_1(u,v
where the decompositions a(u,v) Bu,v) = M + So(u,v) correspond
uU—1v
to the above decomposition of the a 1 we have used that the functions a_;(u,v), f_1(u,v),
ap(u,v), Bo(u,v) are regular on th 1 u=v.
Now to prove the equatlon (1. 16 ecessary to notice that, due to the form of the decomposition

1(u v)

coincide with the functions a(u,v) and f(u,v) for the case
—v

was shown there that 7_1 ) =

ms\sqm — B(u,0)B(v)) = 8,B(v) + (ao(v,v) — Aolv,0)) B(v).

The equation roven. This finishes the proof of the main Theorem.

5 Ex n of integrable models and separated variables

he ompleteness problem

cu roblem in the theory of separation of variables is the problem of completeness of the
const ted“canonical coordinates. Let us briefly discuss it.

Till shis moment we have been working with an arbitrary Lax matrix satisfying the r-matrix Pois-
son brackets (2.3). Nevertheless, in order to understand whether the separating functions produce a
complete famlly 1t is necessary to specify not only the r-matrix but also the Lax operator as a function
of the spectral parameter and dynamical variables, i.e. to specify the Poisson manifold P. Moreover,
in the higher rank cases it is necessary also to specify the type of the coadjoint orbit to which the

29



E I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishing

dynamical variables belong, i.e. to specify a symplectic leaf M C P. After having fixed the manifold
M it is possible to compare its dimension with the number of the coordinates produced by separating
functions. It turns out that not for all classical r-matrices satisfying th%)ndition (4.1) and not for all
corresponding Lax operators (which can be different for the same classical'zmatrices — see [29]) the
separating functions produce complete set of separated variables.
In this paper we will consider one of the most general classes oi%ixx operators that exist for any
en

non-dynamical classical r-matrices, namely the Lax operators of th lized Gaudin models with
[28] and without [26] external magnetic field. We will consid t@ types of such r-matrices satisfying
the condition (4.1) for which the separating functions of ralized Gaudin models produce the
complete set of separated coordinates. The first type is the tationalk r-matrix. The separated coordinates
for this example are known and were considered previeusly«in [5, [14], [18], [7]. The second class is
connected with the so-called “anisotropic” non—skew—s@e’c ic classical r-matrix discovered in [26] (see
also [27]). The separation of variables for the correspon %jg)neralized Gaudin models is a new result.

5.2 The Generalized Gaudin moéﬁ{\@: or without magnetic field
Let us consider the generalized Gaudin moﬁwﬁ{mia‘ced with the general non-dynamical classical

r-matrix with spectral parameters.
Let Si(]m), i,7 =1,n, m =1, N be linea
gl(n)®N with the following Poisson bra

{STGEH. — 577 (5,57 — 5,5). (5.1

The linear space (gl(n)®V)* i a%n manifold of the dimension n2N. It is foliated by the symplectic
leaves — the coadjoint orits ofsghe group GL(n)N. We will be interested in symplectic leaves of the
maximal dimension egenerate coadjoint orbits. Their dimension is equal to 2D = (n? —n) x N.
They can be descrlbegyz le f

faces of n x N Casimir functions:
P Yooosist s mel N, keln.

1110 Migig 15217

>ofth'nate functions on the dual space to the Lie algebra

91,12,....05 =1

ints of the complex plane v,,, m = 1,2, ..., N belonging to the open region in the
complex plane werg the condition (1.9) holds true. For a given r-matrix one can construct the following
classic or:

S ~ L(u) = Z Lpg(u) X Z Z Tijpg(Vim, 0 S(m)X (5.2)

p,g=1 m=11,5,p,q=1

Using generalized classical Yang-Baxter equation (2.7) it is possible to show (see [26]) that L(u) satisfies
a linear r-matrix Poisson brackets (2.3). This is the Lax operator of the generalized gl(n)-valued classical
Gaudin spin chain.
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Let, moreover, c(u) = Y ¢;j(u)X;; be a solution of the so-called “shift equation” [28]
ij=1

[ (u, ), e(w) ® 1] = [ (v, ), 1 ® c(v)] =
where ¢;;(u) are functions of v non-depending on the dynamical varjdb \

The “shift element” can be added to any Lax operator satisfy%g'&ear r-matrix Poisson brackets
)

(2.3) (see [28]). In particular, it can be added to the Lax operator

(5.3)

Z Z 7ij.pq (Vi U S(m) pat

m=14,5,p,q=1

It produces the Lax operator of the classical Gaudin odel anixternal magnetic field.
Using the spectral invariants of the Lax matrix o obt 1s n series of generating functions of the
integrals of motion. The residues at the points u —%ﬁ of the second order generating function
fo

— trace of the square of the Lax matrix — prodé\ owing quadratic integrals [26]:
\ z
Z Z T”’W(V‘SH\SH\SEEQ + Z U,pq(yl’ Vl)si(j)sz()fz)f (5.4)

k=1,k#l 1,5,p,q=1

for the case of the Lax operators (5.2) and ~

Z Z Tijpa( @lq + Z 7,?J}Joq(yl’yl S()S(l) + Z cij(1) SZ(J)’ (5:5)

kil,k}#l 1,J,p,q=1 4,73,p,q=1 3,j=1

ere r?] »q(1;v) are the matrix elements of the regular part of

for the case of the Lax opera 3).
the r-matrix.
The integrals (5.4) th alized classical Gaudin Hamiltonians [26] and the integrals (5.5)

are the generalized c 1c a n Hamiltonians in an external magnetic field [28] corresponding to

general non- dynamlc )-valued classical r-matrix. In the case of skew-symmetric classical
r-matrices the sec er i the Hamlltomans (5.5) and (5.4) vanishes and they coincide with the
standard Gaudi tomans [13] with or without external magnetic field.

5.3 Standa ra’tlonal r-matrix and standard rational (Gaudin models

Let us conSider the simplest possible case, namely the case of the standard rational r-matrix and
standard Tatio audin models with or without external magnetic field [13].

5. S ard rational r-matrix

N
The standard rational r-matrix is a simplest possible r-matrix containing only the pole part

12 Z;l Xij @ X5
7"12(U, U) e = W= . (56)

u—v u—v

It is evidently skew-symmetric. The following Proposition holds true:
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Proposition 5.1 The r-matriz (5.6) satisfies the conditions (1.11) for an arbitrary vector K.
Proof. The fact that the r-matrix (5.6) satisfies the condition (4.1)Aollows immediately from its
definition. Due to its GL(n)-invariance it readily follows that also the NQ& (1.11) is satisfied.

The shift element for the r-matrix (5.6) coincides with arbitrary Qant element of gl(n):

u) = Z i Xij- ‘)H

3,j=1
_—

In the present paper we will use only the shift elements of the foﬁ))wing form: c(u) = > Xy

5.3.2 Standard rational Gaudin models Wlt}x out magnetic field

without external magnetic field associated

Let us now consider the standard Gaudin mo \\”
with the classical r-matrix (5.6). For this p r?%b\we 1l specify the formulas (5.2), (5.4) and (5.3),
(5.5) for the case of the classical r-matrix (
Let us first consider the case of stan §d7r2 al Gaudin model without external magnetic field.
We will have the following Lax operatK(& i1 this case [13]:
Z S& X (5.7)
,j=1

The corresponding generaliz hSn Hamiltonians (5.4) are written as follows [13]:
N

— Z CHRRCHS (5.8)

klk;ﬁl 1,j=1

I/k—u

k= i=1

k=1 7,0=1

ﬁ
and the follg%&andard rational Gaudin Hamiltonians in an external magnetic field:

N n
1 k) o(l) 0
H, = Y gt S0, 5.10
l k:;;él Ve 1 z; vt ZC 10

Rema 5 1 Observe that the set of integrals of motion obtained with the help of the rational Lax oper-
ator without a magnetic field (5.7) is incomplete. It is obvious for N = 1; for N > 1 the incompleteness
can be easily checked. It becomes complete only after the introduction in the Lax operator of the external

n —_
magnetic field c(u) = Y ¢; Xy were ¢; #¢;, 1 # j, 1,7 € 1,n.

=1
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5.3.3 The completeness of separated variables

As it was observed above the Lax operator of rational Gaudin systez/without magnetic field does
not provide by itself a complete family of integrals of motion. That is all the types of separating
polynomials constructed with its help do not provide a complete set o hrz%\coordinates. Motivated
by this we will consider in this subsection only the generalized Gan espjstem in an external magnetic
field with ¢; # ¢;, 1 # j, 1,5 € 1,n. We will be interested in the'sepatated coordinates on the non-
degenerate coadjoint orbits. That is why we have to present nfn==1) separated coordinates.

As it was already observed, the r-matrix (5.6) satisfies the'eoddition (4.1). That is why the sepa-
rating functions A(u) and B(u) corresponding to the standard normalization of the eigenvector of the
Lax matrix produce the canonical coordinates. Neverthelags, th§ set of canonical coordinates is not
complete. (Q‘;

Indeed, let us consider the set of zeros of the funct B(’a It will be enough to con51der the case

N = 1. Let us introduce the auxiliary spectral—% rfndependent matrix SO = Z S( ) X,;. We
s

7,7=1
have that (u — vy)L(u) = SO + (u — vy)c, WhelN nstant diagonal shift element.
1 m—1
Using the fact that the function B( {o/ 1, NcontHins the minor L ( Y1~ amanll " ) (u), where

ozf € 1,n — 1, we see that, after multi hca ion by (u — v1)™ this minor becomes a polynomial of the
degree at most (m — 1) in u. The mamg\é egree is achieved when (m — 1) upper indices coincide with

(m — 1) lower indices in the corre 1nor Using the definition of the function B(u) written
in the form (3.11)—(3.12) we imme btaln that the function B(u) (after the multiplication by
,1)
2 )

n(n

the polynomial f(u) = a product of (u — v1)"! by a polynomial of the degree
1424+ ..+ (n—-2) =

function B(u) correspon
(n—2)(n—1)

in u with non-trivial coefficients. This is why zeros of the

o t6 the'standard normalization of the eigenvector of the Lax matrix give us

n(n —1)
2

only Oordinates x; instead of the necessary coordinates, i.e n — 1

2 ate
coordinates x; and %dinates pj are missing.

Let us considershe/case N > 1. It is easy to see from the explicit form of the function B({a?},u)

that, adding t the, Lax operator (5.21) poles at u = vy, u = v3 etc. yields (after the multiplication
n(n— nn — 1

by (u — vy) = a(fly % new roots of the equations B(u) = 0. As a result we obtain that

the separating funtion B(u) corresponding to the standard normalization of the eigenvector of the Lax

matrixprodu fe(n — 1) x N —2(n — 1)) instead of needed n(n — 1) x N separated coordinates.
Thexe are $wo ways to resolve the arisen problem of incompleteness. The first one was proposed
It

in ]} & is to find additionally 2(n — 1) canonical coordinates commuting with the separated
coordinates.constructed with the help of the standard separating functions B(u), A(u).
Thefollowing Proposition holds true:

Proposition 5.2 The complete set of the canonical coordinates for the rational Gaudin system in

a diagonal external magnetic field ¢ = > ¢;X;, where ¢; # ¢;, i@ # j, i,j € 1,n consists of the
i=1
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separated coordinates constructed with the help of the standard separating functions B(u) and A(u) and

the coordinates v
Z W et =my SW. el (5.11)
k=1

Proof. In order to prove this proposition we remind that, asgit ? shown above, the separated
coordinates are invariant with respect to the coadjoint action of the maximal parabolic subgroup. This
action can be represented on the infinitesimal level by the acti ny the“generators M;; such that

SU)

{Mij, Lkl(u)} = 5k]Lzl('U/> leLk] (512)

where k€ I,n—1,l€1,n,i€1l,n—1,j€ 1,n. Usi g‘the 1nvariance of the rational r-matrix
N

it is possible to show that, for the Lax operator (5 ft&tlons M;; = Z S¥ and My, = 3 5%
k=1 k=1

satisfy (5.12). That is why they Commute with the sepa ted coordinates constructed with the help of

the standard separating functions B(u) and A He other hand it is easy to show that for such

functions M;; and Mj,, the following commu atlons hold true:
{Mua M]]} {Mwu 205 M]n} - 61]M1n7 Za] € 17” -1

Now, using the parameterization (5,11),\wewbtain the proof of the Proposition .

The simple way of completing of hﬁ of separating coordinates given in the above Proposition

does not work for the case of na® eneral classical r-matrices. Indeed, for the r-matrices not possessing
N

&= z Sk M, =>" SJ(-:) do not satisfy the relations (5.12). That is
k=1

=
why it is not possible j h/em n other cases and it is necessary to find another way for constructing

a complete set of sep d co nates A possible solution was proposed in [7]. Its idea is to consider
instead of the functi and A(u) the separating functions Bz(u) and Agz(u) corresponding to
arbitrary normalj 9§ of the eigenvector of the Lax matrix.

sition holds true:

GL(n) symmetry the functions

Propositigin5.3 t/B,-{(’U,> = B%(u), Az(u) = A% (u) be the transformed separating functions cor-
responding o thewector & normalizing the eigenvector of the Lax matriz. Let x; # 0, i € 1,n and
c; # ¢ B0 zeros of the function Bz(u) and the values of the function Az(u) in these zeros, where
the fungtions Bz(u), Az(u) are calculated for the Lax operator (5.9), constitute a complete set of the
separation on the generic coadjoint orbit of the direct product of N copies of GL(n).

coofdina
ﬁ‘. “Tet us first compute the number of zeros of Bg(u). From the definition (1.18) it readily
follows that it is a rational function of the form

(5.13)

Br(u)
n(n—1) °

Bg(u) = N
[T (e — )2
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To compute the degree of the polynomial Bg(u) we use the following expansion

L(u)zC—i—O(%), U — 00 /\

where C' = diag(cy, ..., ¢,). So the i-th column of the matrix (1.18)% Qlal to

kg

Ilwi=| . Q

i1
c K
SO L

Bz(u) = K, (c

(K“{u) |

i>]

Comparing degrees of the numerator and degominator i (5.13) we conclude that
\ n(n—1)

N 2
Let us now prove independenc of\ canonical variables. It suffices to prove independence of
the roots 1, ..., ©g, d = N "("2_1 ) ynomlal Bz(u). We will verify their independence at a
particular point of the phase space. As_the coefficients of Bz(u) depend polynomially on the phase

variables, such a verification j fnﬁ‘e’n‘c or proving independence at a generic point. To simplify the
ions

)

Q

formulae we will do the calgu r the particular case & = (1,1,...,1).
Consider the case of agO}aa africes S,

/ _diag(A’f,...,A’;), k=1,...,N.
The Lax matrix i di@%

_\Q}(?O = diag (1 (u), .. -, (), pi(u) = ¢ + Z V:\—iu

The definiti 1]%) of Bz(u) reduces to the Vandermonde determinant

). Blu)e = [ () — ps(w))

i>j
~
So, at this point of the phase space the variables x1, ..., x4 are roots of the equations
i) = (), i <. (5.14)

Every such equation has N roots. Denote them xllj, cee

we can assume that all these roots are pairwise distinct.

xfj . For a generic choice of the constants \¥
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Let us now consider a small perturbation
L(u) — L(u) 4+ 0 L(u).
Since we want to stay on the same symplectic leaf, we have to impos corh‘l(oqs
0Lij(u)=0, i=1,... n.

For the variation of the polynomial Bz(u) we obtain

dlog Be(u) = » (5.15)

The proof of this formula is identical to the proof of Lgmm iln the Appendix; it is even simpler as
the basis of eigenvectors of L(u) coincides with the standard<basis in C". Observe that the symmetric
part of the matrix dL(u) does not contribute to the ithout loss of generality we can assume

antisymmetry
From eq. (5.15) it readily follows that \\
(P

oy = (5.16)

Hence

N (5.17)

) _ z<]( — ay) Hk>l( bi)
—b; 1<i,j<N Hi,j(ai —bj)

we obtain the deterfminant ofithe Jacobi matrix (5.17)

Using the well known Ca%ter mant

HLH(M R | LT

The Proposition i.%proven. O

ﬂ
5.4 isétropically deformed rational r-matrices and Gaudin-type models
5.4. \\nisotropically deformed rational r-matrices

Let X,;,%,j € 1,n be the standard basis of gl(n). Let a;, j € 1,n be arbitrary complex numbers. Let
us consider the following gl(n) ® gl(n)-valued function:

1 & 14 au
o(u,0) = X @ X, 5.19
7o (U, V) U—U”le‘i‘aiv j QA ( )
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As it was shown in [28] it satisfies the generalized non-dynamical Classical Yang-Baxter equation (2.7),
i.e. it is indeed a classical r-matrix. This r-matrix is gauge equivalent t “irrational” or “hyperelliptic”
r-matrix discovered in [26]. The r-matrix (5.19) can be viewed as an nlsotroplc deformation of the
rational r-matrix: when a; — 0, j € 1, n the r-matrix (5.19) passes to.the ard rational r-matrix.
The r-matrix (5.19) admits the decomposition (1.9). Indeed, th dlre k cal lation shows that:

Z Xij ® Xj;
ro(u,v) = + Ar(v,v) = b= ” o X
“ u—v ,j 1+ av
For the classical r-matrix (5.19) exists the following sh(%n&nt [30]
Ck,
_ X 2
C(U) Z 1+ a » il (5 0)

The r-matrix (5.19) belongs to the class o called “diagonal” with respect to the standard

‘0% llowing form:
A e

ri(u, v) X ® Xj;,

where ¢ are arbitrary complex numbers. Contf o the case of the standard rational r-matrix, the
shift element (5.20) nontrivialy depends on t{(\s\Q arameter .
he

root basis r-matrices, i.e. to the r-matric

i.e. rijp(u,v) =rj(u,v)0k;04. From this'we easily obtain that the r-matrix (5.19) satisfies the condition
(4.1). Tt occurs, moreover, that theg-matrix (5.19) satisfies a stronger condition:

Proposition 5.4 The rnatrix 9) satisfies the condition (1.11) for arbitrary constant vector R.

Proof. Tt will be guffici ‘é prove this statement for a suitably normalized vector K. Chose
kn, = 1 as such an mzﬂ%&@n. The corresponding group element gz is written in this case simply as

n—1

inyg=+ =1, — > k;X;,. Using this and the direct calculation one shows that for any
i=1

oot basis r-matrix the corresponding gauge-transformed r-matrix reads as follows:

9% (u, v) g‘s
n n n—1 n—1 n
— Z 7']-;?11,1«; X +ZZ (rji(w, v)=rp;(u, v)K; X ®X +ZZ (i (w, v)=rjn(u, v) ki XX+

B, 7=1 i=1 j=1 i=1 j=1
\ n—1n—1
o + Z Z(rﬁ(u, V) + T (U, 0) — 70 (U, V) — 10 (0, 0) ) K5 Xy @ X
i=1 j=1

From the explicit form of the transformed r-matrix we immediately obtain that the condition (1.12) is
equivalent to the following conditions

()7 ingi = K;(15i(w,v) = rpi(u,v)) = 0, (40)7in jn = Kikj (15i(w, V) + Tpp(w, V) — 70 (0, 0) — Tp(u, v)) = 0,
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where 4,7 € 1,n — 1. In the case k; # 0,7 € 1,n — 1 in order for this condition to be satisfied one has
to impose the following requirements on the r-matrix:

(1) mji(u,v) = rpi(u,v),  (149) rjn(u,v) = ro,(u,v) Vz 7

Proposition is proven.

5.4.2 The generalized Gaudin model with or with t rital magnetic field
Let us now consider the generalized Gaudin models with o Wlth t external magnetic field associated
with the classical r-matrix (5.19). For this purpose W will the formulas (5.2), (5.4) and (5.3),

(5.5) for the case of the classical r-matrix (5.19). ~2
First we consider the generalized Gaudin model W\Lxut anéxternal magnetic field. The Lax operator

(5.2) is written in this case as follows [26]: \
N
1 1+ a;vg (k)
% SOk o) 5.21
v, — — 1 + a;u 1) J ( )

o
nians (5.4) have the following form [26]:

i.e. one has to require that rj;(u,v) = r;(u,v), Vi,j € 1,n. The T—K satlsﬁes this condition.

The corresponding generalized Gaudin\fami

N

1 il o) g (l) n Z S SOFSI) (5.22)
1+ ' '

lj jl

ey ’_g} ’]11"’_@1]/[ ij by a;v
Using the shift element ( efine the following shifted Lax operator (5.3):

I+ a;vy gk y a; — ag
Lu)& . X, 5.23
(u)wxﬁgsg‘—u”zl 1+ au Sii j+zl+akuzl+az ) ( )

and the followirg ggne ized Gaudin Hamiltonians in an external magnetic field [28]:

1 £ L+ aivk o g 0ot | N~ Ck ~ ik )
H, = S —— gWgt G o))
uk)ylzl—kaiul K ”—i_zl—kam K “+;1+akw Z;l—kaﬂ/z "

7,7=1

s (5.24)

Re hi? 5.2 Observe that, when a; # a;, i,j € 1,n the introduction of the shift element (contrary to
the ¢ oﬁational r-matrices) does not increase the number of integrals obtained using the unshifted
Lazx matwiz.
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5.4.3 The completeness of the separated coordinates

Let us now consider the problem of separation of variables for the describéd in the previous subsection
subclass of the generalized Gaudin models. In this subsection we will e that a; # aj, i,j € 1,n.
It turns out that, in this case introduction of the external magnetic e’li?i&not affect completeness
of the separated coordinates. That is why, for the purpose of simplic e will hereafter consider only
the generalized Gaudin models without a magnetic field. Indeed, the set _of separated coordinates of
the generalized Gaudin models with a magnetic field is compl e‘I?an ly if the corresponding set of
separated coordinates of the generalized Gaudin models witho magnetic field is complete.

The r-matrix (5.19) is diagonal in the root basis and gbviouslygatisfies the condition (4.1). That
is why the separating functions A(u) and B(u) corresponding to the standard normalization of the
eigenvector of the Lax matrix produce the canonical goordinates. Nevertheless, this set of canonical
coordinates will not be complete. Indeed, let us consider the'get of zeros of the function B(u). It will
suffice to consider the case N = 1. We omit the upper index of the generalized spin variable in this
case.

Let us introduce an auxiliary spectral—parawl pendent matrix

n\
% Szsz]
ig=1
We will have the following rela@gﬂ the minors of the matrices L(u) and S:

L(thm> _ 1 S(ihwm>

1wl A‘S (u—v1)™(1+aju)...(1 +a;,u) J1eee-Jm

Using the definition of t fu}ctl B(u) written in the form of minors (3.11)-(3.12), we obtain that
B(u) becomes a polynginialof thé degree 1+ 2+ ... + (n —2) = % in the spectral parameter
after multiplication b§ t 1

n(n— n—2
u ?u — 1) = (14 a,u)" ! ((1 + aju)(1 + agu)...(1 + an_lu)) :

£
{ . j : : al _..amln
where we hfave usedighat the function B({c]},u) contains minors L " o (u) and also

the factrthat she i)dices of summation o used in the function B({a’},u) run from 1 to n — 1.
is Wh55 in the case N = 1 zeros of the function B(u) corresponding to the standard normalization

(n—2)(n—1)
2

coordinates, i.e n — 1 coordinates x; are missing.

of 0@; tor of the Lax matrix give us only separated coordinates x; instead of the

nn—1)
2

Fortunately, by virtue of the Proposition (5.4) the r-matrix (5.19) satisfies also the condition (1.11).
That is why we can use the transformed separating functions instead of the standard ones.
The following proposition is true:

necessary
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Proposition 5.5 Let Bz(u) = B9%(u), Az(u) = A% (u) be the transformed separating functions corre-
sponding to the normalization vector i (see (1.6)) with r; # 0, i € 1,n. Let a; # a;. Then zeros of the
function Bz(u) and the values of the function Az(u) in these zeros, wiﬁ: the functions Bz(u), Az(u)

are calculated for the Lax operator (5.21), constitute a complete set o M&ted coordinates on the

generic coadjoint orbits of the direct product of N copies of GL(n). )
To simplify the calculations we will give the proof for the particular choice

R=(1,1,...,1). ‘)...\

ﬁ

Proof. For u — oo the Lax matrix behaves as follows 3

1 Pya

) =~k ol

N n o

1 Y
i, i (5.25)

Let us prove that, assuming that the eigenyvalu ..., AL of the matrix L., are pairwise distinct

that Bz(u) can be represented in the form -~
\ Bg(u)
BR’(U) ar N n(n—1) n 1
s — i) [Ti=: (1 + au)"~

where Bg(u) is a polynomialdin u of degree @ x N. Indeed, from (5.25) it follows, rewriting the
determinant (1.18) in the basis‘ef eigenvectors of L, that

&
) 0 is the determinant of the transition matrix to the basis of eigenvectors of L,
and the perio stzyl the terms of higher order. Hence

A T (=X o uh

i>j

o / = nn-1) - n(n—1)
deg Bs(u = deg H(u — ) 2 H(l +au)" | —nn—1) = 5 N.
k=1 i=1
n—1)

So, undex the éoove assumption® we have exactly "(T

Biz(w)*aVe will now prove independence of these variables following the scheme used in the proof of
Proposi ion'5.3. Start from a diagonal Lax matrix

N variables x; defined as roots of the polynomial

N
. )\f a; .
L(u) = diag(p(u), . . ., pn(u)), pi(u) = Z P + T a~u)\?’ 1=1,...,n
k=1 v

3Needless to say that the assumption holds true for a generic point in the phase space.
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where A}, ..., AY are arbitrary numbers and we put

A =\ + AN {
For every pair of indices i < j we have N canonical coordinates define SNOtS U= lej,. Lu=al
of the algebraic equation

pi(w) = pj(u).
After an infinitesimal variation
L(u) = L(u) + 6 L(u )

with 0L;;(u) = 0 for any i we obtain the infinitesimal variafion of the roots

N () (@)
1 559 _ 55la)_ . o
e v 559 — 550
AL At T
(cf. eq. (5.16) above). Using a modification of t ~Qeterminant

. ; ; b, — b —a,
det< 1 . 1 ) 4 ) [T (bx — b1) H C— a
(ll‘—bj bj—C \HZ]((LL bj) C—bi

obtain the determinant of a minor of the \OB'

oaP. ) ‘
x(’;) selecting the columns with k < [

ot N 1 [T (vs — v )(m :v) 1—|—a1/
det 2| = 115 , st ® 4 T A0 (5.26)
Hence the Jacobi matrix has& imal rank N 22— n(n by 0
6 Conclusio discussion

ha considered the problem of separation of variables for the algebraically
ystems possessing gl(n)-valued Lax matrices that satisfy linear Poisson brackets
n)-valued classical r-matrices. We have found, in terms of the corresponding

[(n) ®

r-matrices, asufficient €ondition that guarantees that the separating polynomials of [20], [18], [14], [7]
produce thé canonicakcoordinates. We consider two examples of the non-dynamical classical r-matrices,

the correspouding lLax operators of Gaudin-type systems along with the separating polynomials and
separated coo tes for them. One of these examples is new.

Let g emphasize that our result works also in the case of dynamical classical r-matrices. In particular
thew-matr1 the gl(n) Calogero models does satisfy our separation condition. We have not considered
the gefo models in the present paper redirecting the interested reader to the paper [22]. In this
context it is worthwhile to mention existence of the separated coordinates also for the Ruijsenaars
systems [22]. However they are related with the quadratic r-matrix Poisson brackets. This and also
other examples of quadratic Poisson algebras will be considered in the subsequent publication [9].
Another challenging problem is to extend the results of the present article to the quantum case. This
problem is still open.
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A Appendix \\

In this Appendix we obtain a necessary and sufficient conditi omahdlty of the canonical Poisson
brackets between the separated variables of algebro-geomefric type:
Let (x;,p;), @ € 1, 1, d be the points of the spectral curv pemﬁyd by the following condition: there
exists a (left) eigenvector f; # 0
of the Lax matrix L(u) with u = z; satisfymg ""-'
< ?}g\> ’ (A1)

It will be assumed that the space of such ig@s one-dimensional for every i. By f! denote the
am

right eigenvector of the same matrix with igenvalue

o

i), Z/ =pif, 1/ :
The nxn Lax matrix will be conside linear operator on the space V' = C". The right eigenvectors
belong to V' while the left ones are in dual space V*. Also k is a fixed nonzero vector in V. The

angle brackets denote the na rzﬂ‘pqsrmg VeV —C,
<a,b (ay,...,a,) €V*, b= ....0")T eV

Let r(u,v) = (r?l (/ v)) an/ r-matrix depending analytically on the complex variables u, v away
es a linear Poisson bracket on the space of Lax matrices. Our goal is

from the diagonal u= ;J\{%i
to derive a necess y%d sufficient conditions for validity of the commutation relations

y ] Z‘j} = {pz,p]} = {JZ’i,pj} = 0, i, ] = 1, .. .,d, 7 7é ] (A2)
We also ad@ rﬂ/y assumption specifying the behavior of r-matrix on the diagonal

-~ r(u,v) = ” (_2 ” + Ar(u,v), u—wv (A.3)
where Ks

\\ Q:ZX;®X5

0,7

and Ar(u,v) is analytic on the diagonal. This condition turns out to be sufficient for validity of the

commutation relations

For every i € 1,d let us define a vector o; € V using the following
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Lemma A.1 For everyi € 1,d there exists a vector o; € V satisfying

(L(z;) — p; - 1) 07 = k. / (A.5)

Proof: The condition of compatibility of such a system coincides wi ‘% O
Denote
re(u,v) V'@ V* = V; -) (A.6)
the linear map defined by the (2,1)-tensor —
ﬁ
(w0 = wri ). § (AT)

Theorem A.1 1) The variables x;, p; satisfy the co utatﬁ'jn relations (A.2) iff the r-matriz satifies
the following system of equations

<(fz®fg Tk xuw] i#j=1,....d (A8)
((fi ® fi)re(wi 25), 05) @%\%& (5,0, 00, 5 =1,....d. (A.9)
2) If moreover the r-matriz satisfies the requlawity

f&@\a

hold true for any v then the commuta ations (A.4) hold true too.

{ ssumption (A.3) and the equations

c(Ti ), 1y =0 (A.10)

ﬁ

Remark A.1 [t is easy to sge thatthe equations (A.8), (A.9) follow from the condition (1.11) of the
paper. Indeed, as the vec< bath satisfy the normalization (A.11), the condition (1.11) implies

(fi @ fi)re(u,v) =0

S Jis
e}m&u — v we also arrive at (A.10).

Let us proceéd he proof of the Theorem. We begin with proving eq. (A.9) deriving it from
vanishing of tle brackets{z;, z,}.
el t hodts of the spectral curve over u € C in a sufficiently small neighborhood of u = z;
by number§ 1, 2, ) .y n in such a way that the point (z;,p;) belongs to the n-th sheet. In a similar

way Wﬁ e sheets over a small neighborhood of v = z;. Denote (f{(u)) the n x n matrix of (left)

for any u, v. Tak:

eigenvegtors OSL u)
FR)Li () = pa(u)fi(u), o, 1=1,....n
Heremﬁs the value of the algebraic function u(u) on the a-th sheet. The eigenvectors

fHw) = (fi(u),..., fr(w))

coincide with the rows of the matrix. They will be normalized by the following conditions
(fY(u),k)y=1, a=1,....,n—=1, (f"(u),k) =u—x;. (A.11)

43



! I P | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

Publishing

With such a normalization the matrix (f{(u)) depends analytically on u. Denote (g¥(u)) = ( fou)™
the inverse matrix. It also depends analytically on w. Its columns ga(u)Z— (gL (u),...,g"(w))" are right

eigenvectors of L(u). Choose
\ (A.12)

ear v = z; and choose the

fi=flu=um), fi=gnlu=u).

In a similar way we define the matrices (f{(v)) and (g%(v)) a
eigenvectors f; and f] like in (A.12).

In the subsequent calculations we will use indices a, b, .
corresponding eigenvalues of the matrix L(u) while the indi
coordinates in the original basis in C". It will be always dssume
J,...but notina,b, .... 5

Recall that xq, ..., x4 are zeros of the determinanc

B(u) =k A L(u)k A LQM%
We will first compute derivatives of B(u) as a %@\o L(u).
Denote
m“(u>ﬂ'('u)mi,

SN P ()3 ()
the components of the vector xk and, the \nb{'{ f the matrix 6 L(u) in the basis of eigenvectors. Notice
as
1

that, due to the normalization (A%
(aﬁ- S=r"(u) =1, K"(u)=u-—u. (A.13)
(#) = fi(v)r’

Lof = = k") =1, K(v) = v — 1. (A.14)

/ £
Lemma A.2 Th@%rmula holds true
- "fb(u) b () S L
_‘Q/ 510gB(U>—aZb: a(u)Ya( )OLy(w) (A.15)
A |
b b - 70
Y (u) = > ) o (A.16)

\ < L el —pew)”

The formula (A.15) can be derived from eq. (30) in [7]. For convenience of the reader we will sketch
the proof here.
Proof: The following wellknown formula for derivatives of determinants will be used.

—

iC

...will be used to label their
mmation over repeated indices 1,

.fo‘a labelling the eigenvectors and the
e

Similar expressions hold tpiie fo

X

where
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Lemma A.3 Let Xy, ..., X, be n linearly independent vectors in C" depending on parameters. Then
for an arbitrary variation '

1<*] /
one has \

S(XiA-AXp)=trA-Xi A A (A.17)

i the linear approrimation wrt the variation.

In our case .)--..\

so 60X, =0,
6 X;(u) = Z Lp(u)cSL(u@)/)gj i=2,...,n.

p+q=i—1
L
Rewriting in the basis of eigenvectors obtain \1'\
Hp\U

- ¥ VoL () () fulu).

p+g=i—1 ab

We are now to decompose this vector 1t§§e‘ct to the basis
L = Z - fe(u).

To this end we first decompase 1genvectors with respect to the basis Xi, ..., X,,. The following
linear system is to be solve

wfz & Y B Wk () = o

Write hi(u) = hif C Thus the entries of the matrix A (u) are coefficients of the Lagrange inter-
polation polyn 1als endmg on the parameter u

Zm W=, Pz = ptau) = b

We arriye at ﬁse following decomposition

\ 5 () = A7 (u)X; (u)

where

=3 > - ‘pmwmmw

a,b p+q=i—2
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To compute the trace Af(u) we first simplify the following sum

Z Z ha/'La:u’b

i ptq=i—2 /\

(here and below we omit the dependence on u in order to simplify, t tatlons For a # b we have

ptHg=i—2 -~
So i E 5
S hipbug=

i prq=1—2

p+q i— &‘\

Hence
Z Z haua:u’a l_ =Z i .
i ptg=i—2 ; z:p,a o Ha = He

Here we have used the explicit ex n or he Lagrange polynomials

Fora=1b

) _ c;éa( /’La)
Q c;éa(ua H’C)
This completes the p?«‘ O

Lemma A.4 The Pdissou_brackets between the logarithms of the separating functions B(u) are given

by the following f m-v
{log B(u),1d ZZ (u) £(v) V) (U, v) ZZ il ~1v) Y (u)rs (v, u)  (A.18)
(u) k<(v) b /f“(u ) k¢(v) i

a#b c,d
g@th(i entries of the r-matrixz in the basis of eigenvectors

where ¢
b rig(u,v) = f(u) £ (v) gy (u)gh(v)r (u, v).

The Wf,g v,u) is giwven by a similar expression interchanging u and v.

Proof: Using eq. (A.15) obtain

U)

(u) [ (wygh(w) { L (u). L U}ZZij Y(0)ff W)gi(v).

{log B(u),log B(v)} = Z

Ka
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Rewriting the formula for the Poisson bracket
{LI(w), L (v} = . (u,0) L (u) = rif(u, ) L (u) = (v, U)Li%) + 1 (v, u) L (v)
in the basis of eigenvectors we obtain, after simple calculations }

K () EYv)

Yo ()Y () (o) — (.145) b > ®) = (a(v) = pe(v)) rgg (v, w)]

flog B(u), log B(n)} = 3

K (u) w¥(v) ¢

a,b,c,d
-~
For the first term in the square brackets it suffices to sumfover a 4. Then the factor (uy(u) — pq(u))
cancels with Y?(u). In a similar way we deal with the secongd term. This gives (A.18). O

Corollary A.1 The following formula holds true f rgLLPm')son brackets between the variables x;

<
ro (45, ) ) ‘ (A.19)

{xi’ xj} =

Proof: For u — x;, v — x; the lhs of (A: &}%
own)
T, T
{log B(u),log B = e + regular terms.
S\ (u— ;) (v — ;)

In the rhs the terms with the same poles are obtained only for a = ¢ = n and d # n, due to the

normalization (A.11). Due t me normalization x°(u) = k¥(v) = 1 for b, d different from n. This
proves the Corollary. O
%

[©)

Let us now Consid? kets {z;,p;} for i # j. Denote

P(u. 1) = det (L(u) — i - 1)

N

the characteristi€ polymomial of the Lax matrix.
£
Lemma A5 Fo nyd and any a =1,...,n and an arbitrary v the following formula holds true

n—1
o {wima(0)} = D i (@i, 0). (A.20)
5 =1
Proof: et\ us compute the Poisson bracket

{log B(u),log P(v, 1)} = {log B(u), Ly.(v) } M (v, 1)

where
M(v. ) = (L) — 1)
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Using eq. (A.15) after a straightforward calculation we arrive at

{log B(u), log P(v, 1)} = = 8 Mf (v, u)ff(U)Q?%, v).
a#b
>

Representing the inverse matrix in the basis of eigenvectors \
1
Mk: — k c
Ho =3 (U)gé%(v@k

we finally obtain the following expression

Finally, applying similar arguments t%&bove equation at the limit y — u.(v) we complete the proof
of Lemma. O

Corollary A.2 If the co

A
3

Proof: Specializing (A.20) for @ = n and v = x; we obtain
/
wia j} = {xiy,u’n(v)}vzij + | — {xivxj} = Zrbn (xi’xj)‘
v=a; b=1

i # . (A.21)

dv

_—

G :

YV\ proceed to considering the brackets of momenta.

LemmayA.6 Vanishing of the Poisson brackets {z;, x;} and {x;,p;}, {x;, p;} implies that also {p;,p;} =
0.

Proof: Denote
P(u, p) = det (L(u) — p- 1)
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the characteristic polynomial of the Lax matrix. It is well known that the r-matrix nature of the Poisson
bracket implies commutativity of the characteristic polynomials

{P(u, 1), P(0,v)} = 0 A
for arbitrary u, v, p, v (see, e.g. the book [10]). Hence the eigenvalu Qhe Lax matrix also commute

{a(w), po(0)} =0 Y, v, Va, bzl

SN

Choose a = b = n and set u = x;, v = x; to obtain

q
dun( i) dpf(ry) | dpa(@:) dun(x )
{pi7pj} = {Mn(u)v,un(v)}uzxi,’u:xj + { zap]} + {EZ? M : + du : {$Zax1} - O
|
As it follows from the statements proven a hlng of the brackets {z;,z;} = {x;,p;} =
{pi,p;} = 0 for ¢ # j is equivalent to the follo in stem of equations written in terms of certain
components of the r-matrix in the basis of e s of the Lax matrix
(A.22)
and
m“ ol xj,xz) (A.23)
— s :C] — ()

a,

N/ 4 7é j. Our goal now is to “translate” these conditions in terms
n ?e original coordinates. The following elementary statement will be

evaluated at u = x;, v =
of the entries of the 7& i

useful.

Lemma A 7 For anb\ ,d the following identity holds true for the right eigenvectors gi(x;),
oy gnlzy) of t La atme:vl

_\ / igk(xz) = K. (A.24)

Proof Den (f¥(x;)) the matrix of (left) eigenvectors evaluated at the point u = z; and
(ml)) 55 inverse matrix. Due to the normalization (A.1) one has

v ;
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Multiplying both sides by G on the left we obtain (A.24). O

Let us verify that eq. (A.22) coincides with (A.8). The lhs of (A.Q%is nothing but the following
multiple sum

We have

(@)oo fo(@a)) = fis o (0 (5)s o £l (25)) 2y 7%), e g@) =

and
n—1

)
b=1 Q ‘)
( o

due to the above Lemma. So we arrive at eq. (A.9).
e

Let us now look at eq. (A.23). Proceeding l'k\t&he revious calculation we see that the following
vector appears in the lhs %
)

Pj — ,Mb(xj

LH — Y ey = —n

=1

This implies eq. (A.9) with{o;, = > 7~} 9(z;) _  Notice that validity of this equation does not

b=1 p;—pp(x;)
depend on the choice of 1 t0 (A.5). Indeed, the freedom in choosing o; is in adding a vector

proportional to g, (z;) = addition does not contribute to (A.9) due to eq. (A.8).

It remains to veriffithat g4 p;} = 1 under the assumptions (A.3), (A.10). Indeed, eq. (A.10)
implies that the regular pasg Ar(u,v) of the r-matrix does not contribute to this bracket. And for the
standard rational —n%rix

Q

u—v

r(u,v) =
it was proven.in

Remark A Th§ necessary and sufficient conditions (A.8), (A.9) can be certainly simplified when
workinf with c ete examples of Lax algebras. In the analysis of these examples one has first to prove

rbitrary complex numbers. If this is the case then the next step would be to check that,
choosipg appropriately an element L(u) with poles over prescribed values u = z;, v = xz; one can
obtain agbitrary (left) eigenvectors f; and f; satisfying the normalization (A.1) and, moreover, the right
eigenvector f; also can be arbitrary. If it happens like this then the equation (A.8) immediately implies
the condition (1.11) derived in the main part of this paper from Poisson-closedness of the algebra of
separating functions. The equation (A.9) in this case holds true automatically. We plan to consider
more examples of Lax algebras in subsequent publications.
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