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Abstract

We consider the problem of separation of variables for the algebraically integrable Hamiltonian
systems possessing gl(n)-valued Lax matrices depending on a spectral parameter that satisfy linear
Poisson brackets with some gl(n)⊗gl(n)-valued classical r-matrices. We formulate, in terms of the
corresponding r-matrices, a sufficient condition that guarantees that the “separating polynomials”
of E.Sklyanin, Comm. Math. Phys. 150, 181 (1992), D.Scott, J. Math. Phys. 35, 5831 (1994),
M.Gekhtman, Comm. Math. Phys. 167, 593 (1995), P.Diener, B.Dubrovin, Algebraic-geometrical
Darboux coordinates in R-matrix formalism, SISSA preprint 88-94-FM (1994), produce a system of
canonical variables. We consider two examples of classical r-matrices and separating polynomials.
One of these examples, namely, the n-parametric family of non-skew-symmetric non-dynamical
classical r-matrices of T.Skrypnyk, Phys. Lett. A 334, 390, and 347, 266 (2005) and the corre-
sponding separating polynomials is new. We show that the separating polynomials of P.Diener,
B.Dubrovin, ibid., produce in this case a complete set of separated variables for the corresponding
generalized Gaudin models with or without external magnetic field.

Keywords: integrable systems, classical r-matrices, separation of variables

Dedicated to the memory of Ludvig Faddeev

1 Introduction

The algebraically integrable Hamiltonian systems admitting Lax representation

L̇(u) = [L(u),M(u)] (1.1)

have been an object of constant interest during the last forty years. There were a lot of papers (both in
the mathematical and physics literature) and results in the field. One of the most important “structural”
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results in the theory was a discovery of classical r-matrices [19, 17, 10] that serve in order to define
the Poisson brackets between the elements of the Lax matrices [10] providing a necessary and sufficient
condition for Poisson commutativity of the spectral invariants of the Lax matrices [4].

An important problem in the theory of algebraically integrable systems still to be solved in general is
a construction of the so-called separated coordinates for the Lax-integrable finite-dimensional Hamilto-
nian systems. The separated coordinates xi, pj, i, j ∈ 1, d is a set of canonical coordinates that separate
the variables in the Hamilton–Jacobi equation or, more generally, such that the following system of
equations is satisfied:

Φi(xi, pi; I1, ..., Id) = 0, i ∈ 1, d,

where Φi are certain functions, Ik are Poisson-commuting integrals of motion. The important require-
ment is that the separated coordinates constitute a complete family, i.e. they are independent variables
and d is equal to the half of the dimension of symplectic leaves of the phase space

The separated coordinates provide a way to a construction of the action-angle variables from the
Liouville theorem and to explicit integration of the Hamiltonian equations of motion. They are also
important for solving the corresponding quantum integrable systems.

1.1 Separated coordinates of algebro-geometric type

There exists a “magic recipe” for constructing separated coordinates of an algebraically integrable
system (1.1). Let the Lax matrix L(u) depending on the dynamical variables of the Hamiltonian
system be a rational function of the auxiliary spectral parameter u living on the complex plain or, more
generally, on a compact algebraic curve. Consider the spectral curve C on the (u, µ)-plane defined by
the characteristic equation

C = {(u, µ) | det(L(u)− µ · 1) = 0} . (1.2)

Recall that the coefficients of the characteristic polynomial are first integrals of the Hamiltonian system
(1.1). Assume that the roots of the characteristic equation (1.2) are pairwise distinct for generic u ∈ C.
Then the eigenvectors1 f⃗ = (f1, . . . , fn) of the Lax operator,

f⃗ L(u) = µ f⃗ (1.3)

can be considered as sections of a line bundle over the spectral curve (1.2). Then the so-called separated
variables of algebro-geometric type are obtained as coordinates

xi = u(Qi), pi = µ(Qi), i = 1, . . . , D (1.4)

of the points of the divisor Q1 + · · ·+Qd of poles of a section of the line bundle [2, 11, 16, 20, 1, 7, 14,
18, 21, 23]. For example, for the so-called standard’ normalization

fn = 1 (1.5)

1For technical reasons we deal with the eigenvectors of the adjoint operator writing them as row-vectors, i.e., as
elements of the dual space.
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of the eigenvector f⃗ = (f1, . . . , fn) the points Q1, . . . , Qd in eq. (1.4) on the spectral curve are
determined by the equation fn = 0 together with (1.3). Also a slightly more general normalization

κ1f1 + · · ·+ κnfn = 1 (1.6)

with an arbitrary constant vector κ⃗ = (κ1,κ2, ...,κn) will be used below. In this case the poles are such
points (u, µ) of the spectral curve that there exists an eigenvector (1.3) satisfying

κ1f1 + · · ·+ κnfn = 0. (1.7)

Of course, only the points in the finite part |u| < ∞, |µ| < ∞ of the spectral curve are involved in this
construction.

1.2 Poisson algebra of separated functions

For the coordinates (xi, pi) of the poles of a suitably normalized eigenvector f⃗(u, µ), (u, µ) ∈ C one
obtains a complicated system of algebraic equations. In many cases one can construct a pair of separating
functions A(u), B(u) such that the coordinates x1, . . . , xd are determined as zeroes of B(u),

B(xi) = 0, i ∈ 1, d

and the second half of coordinates is obtained as

pi = A(xi), i ∈ 1, d.

The separating functions were constructed in [18], [14], [22] for some gl(n)-valued Lax matrices
L(u) using the standard normalization (1.5) of the eigenvectors and in [7], [22] for the more general
normalization (1.6) (they will be denoted Aκ⃗(u), Bκ⃗(u) below).

The above separating functions B(u), A(u) and Bκ⃗(u), Aκ⃗(u) formally exist for all gl(n)-valued Lax
matrices L(u) governed by arbitrary classical r-matrix r(u, v). Nevertheless two important questions
are still open. They are:

1. For what gl(n) ⊗ gl(n)-valued classical r-matrices r(u, v) =
n∑

i,j,k,l=1
rij,kl(u, v)Xij ⊗ Xkl (Xij,

i, j ∈ 1, n is a standard basis of gl(n)) the functions B(u) and A(u) and/or Bκ⃗(u), Aκ⃗(u) for some
normalizing vector k⃗ produce the canonical variables?

2. For what gl(n) ⊗ gl(n)-valued classical r-matrices r(u, v) =
n∑

i,j,k,l=1
rij,kl(u, v)Xij ⊗ Xkl, Lax

operators L(u) =
n∑

i,j=1
Lij(u)Xij and the normalizing vector k⃗ the functions Bκ⃗(u), Aκ⃗(u) produce a

complete set of canonical coordinates?
In the present paper we give a general answer to the first question, in terms of the corresponding

r-matrices, in the case of linear Poisson algebras of Lax matrices:

{L(u1)⊗ 1, 1⊗ L(u2)} = [r12(u1, u2), L(u1)⊗ 1]− [r21(u2, u1), 1⊗ L(u2)]. (1.8)
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It will be assumed that the Lax matrix is an analytic function on an open disk u ∈ D ⊂ C. The spectral
curve (1.2) is assumed to be irreducible for generic values of the dynamical variables. We will consider
only the r-matrices r(u, v) that, by re-parametrization, gauge transformations and multiplication by
functions of the second spectral parameter admit the following decomposition

r(u, v) =
Ω

u− v
+∆r(u, v), u, v ∈ D (1.9)

where Ω =
n∑

i,j=1
Xij ⊗Xji is the tensor Casimir and ∆r(u, v) is a regular on the diagonal u = v function

with values in gl(n) ⊗ gl(n), possibly depending also on the dynamical variables. It follows from the
results of [6] that the regularity condition (1.9) always holds true for the non-degenerate non-dynamical
skew-symmetric classical r-matrices.

The answer to the first question is given by the following

Theorem 1.1 For a given non-zero vector κ⃗ = (κ1, . . . ,κn)t, denote (xi, pi) ∈ C, i = 1, d the coordinates
of the finite poles of the eigenvector f⃗ = (f1, . . . , fn) of the Lax matrix L(u),

f⃗ L(u) = µ f⃗ , det(L(u)− µ · 1) = 0

normalized by the condition
κ1f1 + · · ·+ κnfn = 1 (1.10)

such that xi ∈ D. Assume all the poles of f⃗ to be simple and, moreover, xi ̸= xj for i ̸= j. The Poisson
brackets (1.8) between these variables satisfy

{xi, xj} = {pi, pj} = 0 ∀ i, j
{xi, pj} = 0, i ̸= j

if the r-matrix satisfies the following condition:
n∑

i, k, s=1

ris,kl(u, v)κsαiβk ≡ 0, l = 1, . . . , n (1.11)

∀ α = (α1, . . . ,αn), β = (β1, . . . , βn) such that α(κ⃗) = β(κ⃗) = 0

where α(κ⃗) =
∑n

i=1 αiκi, β(κ⃗) =
∑n

i=1 βiκi. Moreover, if the r-matrix also satisfies the regularity
condition (1.9) then the Poisson brackets are canonical

{xi, pj} = δij.

Observe that, in the particular case κ⃗ = (0, 0, ..., 0, 1)t corresponding to the “standard” normalization
of the eigenvector of the Lax matrix the condition (1.11) takes the following simple form:

rin,jk(u, v) = 0 ∀ i, j ∈ 1, n− 1, k ∈ 1, n. (1.12)

The proof of Theorem 1.1 is based on a certain structure of the Poisson algebra of separating
functions (cf. [14] where a particular case of an algebra of separating functions was considered) which
is sufficient for them in order to produce the canonical coordinates:
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Lemma 1.1 Let A(u), B(u) be functions of the dynamical variables depending also on the spectral
parameter u satisfying the following Poisson algebra relations

{B(u), B(v)} = b(u, v)B(u)− b(v, u)B(v) (1.13a)

{A(u), B(v)} = α(u, v)B(u)− β(u, v)B(v) (1.13b)

{A(u), A(v)} = a(u, v)B(u)− a(v, u)B(v). (1.13c)

for some functions a(u, v), b(u, v), α(u, v), β(u, v). Define variables xi, pi, i = 1, d as zeroes of B(u),

B(xi) = 0 (1.14)

and values of A(u) at these points,
pi = A(xi). (1.15)

Then the Poisson brackets among xi and pj, ∀i, j ∈ 1, d are quasi-canonical, i.e:

{xi, xj} = {pi, pj} = 0, ∀ i, j ∈ 1, d

{xj, pi} = 0 if i ̸= j,

If, moreover, also the condition

lim
u→v

(α(u, v)B(u)− β(u, v)B(v)) = ∂vB(v) + γ(v)B(v). (1.16)

holds true for some γ(v) then the corresponding Poisson brackets are canonical, i.e.

{xi, pi} = 1, ∀ i ∈ 1, d.

1.3 Constructing separating functions

How to derive the separating functions? Denote ∆(u, µ) = (∆ij(u, µ)) the n× n matrix of cofactors of
L(u)− µ · 1. As an eigenvector of the matrix L(u) with the eigenvalue µ = µ(u) is proportional to

(∆1j(u, µ), . . . ,∆nj(u, µ))

for any j = 1, . . . , n, we arrive at the following system of equations for the poles of the eigenvector

n∑

i=1

κi∆ij(u, µ) = 0, j = 1, . . . , n. (1.17)

Eliminating µ one arrives at the equaton for the u-coordinates of the poles. Solving then the linear
system (1.17) for the vector (1, µ, . . . , µn−1) we arrive at expressions for the µ-coordinates of the poles.

Explicitely, for the poles (u = xi, µ = pi) of the eigenvector of the Lax operator normalized by the
condition (1.10) for an arbitrary non-zero vector κ⃗ the separating functions will be constructed by the
following procedure (see, e.g., [7]). Denote

Bκ⃗(u) := κ⃗ ∧ L(u)κ⃗ ∧ L2(u)κ⃗ ∧ · · · ∧ Ln−1(u)κ⃗ ∈ ΛnCn ≃ C (1.18)
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= det

⎛

⎜⎜⎜⎜⎜⎜⎝

κ1 (L κ⃗)1 (L2κ⃗)1 . . . (Ln−1κ⃗)1
κ2 (L κ⃗)2 (L2κ⃗)2 . . . (Ln−1κ⃗)2
. . . . . . .
. . . . . . .
. . . . . . .
κn (L κ⃗)n (L2κ⃗)n . . . (Ln−1κ⃗)n

⎞

⎟⎟⎟⎟⎟⎟⎠

where L = L(u). Introduce n× n matrix M(u) = (Mij(u)) defined by

Mij(u) = coefficient of µn−i in
n∑

l=1

∆lj(u, µ)κl, i, j = 1, . . . , n. (1.19)

For any 1 ≤ j0 ≤ n define the (n− 1)× (n− 1) matrix M (j0)(u) by eliminating from M(u) the last row
and the column number j0. Finally, another (n−1)× (n−1) matrix M̂ (j0)(u) is obtained from M (j0)(u)
by replacing the last row by

(
Mn,1(u), . . . , M̂n,j0(u), . . . ,Mn,n(u)

)
.

Here the hat indicates that the term Mn,j0(u) is omitted.

Lemma 1.2 Assume that, for a given nonzero vector κ⃗ all finite points Qi = (xi, pi), i = 1, . . . , d of
the divisor of poles of the eigenvector f⃗ normalized by (1.10) belong to the smooth part of the spectral
curve (1.2) and, moreover, the u-coordinates of all these points are pairwise distinct, xi ̸= xj for i ̸= j.
Then

1) x1, . . . , xd are zeros of the function (1.18),

Bκ⃗(xi) = 0, i = 1, . . . , d. (1.20)

2) For every i there exists 1 ≤ j0 ≤ n such that detM (j0)(xi) ̸= 0. For any such j0 the µ-coordinate
of the point Qi is given by the formula

pi = Aκ⃗(xi) (1.21)

where

Aκ⃗(u) = −det M̂ (j0)(u)

detM (j0)(u)
(1.22)

Remark 1.1 The rhs of eq. (1.22) does depend on the choice of j0. Nevertheless, the difference of two
such ratios is divisible by Bκ⃗(u). So the value of Aκ⃗(u) at u = xi does not depend on the choice of j0.

1.4 Formulation of main results

The needed structure of the Poisson algebra of the separating functions Bκ⃗(u), Aκ⃗(u) is given in the
following Theorem:
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Theorem 1.2 The Poisson brackets (1.8) between the functions A(u) = Aκ⃗(u), B(u) = Bκ⃗(u) satisfy
the Poisson commutation relations (1.13) and (1.16) if the r-matrix satisfies the conditions (1.11) and
(1.9) respectively.

The proof of this Theorem is obtained by tedious but straightforward calculations.

Let us explain the algebraic meaning of the condition (1.11). For simplicity let us consider here only
the case of non-dynamical r-matrices with κ⃗ = (0, 0, . . . , 0, 1)t (see subsection 2.2 for the general case).

Proposition 1.1 The first (n − 1) rows of the Lax matrix form a closed Poisson subalgebra in the
Poisson algebra (1.8) if and only if the condition (1.12) holds true.

Taking into account that the separating functions B(u) and A(u) for the standard normalization
κ⃗ = (0, 0, . . . , 0, 1)t are effectively defined on the subalgebra of the Lax matrices generated by the
matrix elements of their first (n − 1) rows, we obtain that the above proposition gives a simple Lie-
algebraic explanation for the necessity of the condition (1.12) in our Theorems. Indeed, if the Poisson
algebra of the coordinate functions of the first (n− 1) rows of the Lax matrix were not closed then the
corresponding Poisson algebra of the functions pi, xj constructed via the matrix elements of the first
(n− 1) rows of the Lax matrix would not be a closed Poisson algebra either.

It is necessary to notice that our algebro-geometric approach to the problem of construction of
canonical variables works equally well both in the case of skew-symmetric and non-skew-symmetric
r-matrices, in dynamical and non-dynamical cases.

1.5 Examples

We consider briefly also the problem of the completeness of the constructed canonical coordinates. In
the general case, without a specification of the Lax operator as a function of the dynamical variables
and the spectral parameter it is not possible to give an answer whether the coordinate system obtained
with the help of the separating functions is complete. That is why in order to study the problem it
is necessary to specify the r-matrix and the Lax operator. In the present paper we concentrate our
attention on the case of non-dynamical classical r-matrices and on two classes of the Lax operators
corresponding to them, namely, on the Lax operators of the generalized Gaudin systems with [28] and
without [26] external magnetic field. We consider two examples of classical r-matrices and their Gaudin-
type systems. The first one [18], [14], [1], [7] corresponds to the standard rational classical r-matrix and
the standard rational Gaudin model [13]. In this case the set of the canonical coordinates constructed
with the help of the functions Bκ⃗(u) and Aκ⃗(u) with the standard choice κ⃗ = (0, 0, . . . , 0, 1)t is not
complete. In order to have a complete set of the separated coordinates one has either to apply the
functions Bκ⃗(u), Aκ⃗(u) with more general choice of the vector κ⃗ [7] or to make a trick completing the
set of the separated coordinates by some additional functions [1]. In both cases the crucial point for
the completeness is an introduction of a non-trivial and sufficiently generic external magnetic field in
the corresponding rational Gaudin system.

Another example we consider is a new one. This example is connected with the n-parametric family
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of non-dynamical, non-skew-symmetric classical r-matrices of the following form [26]:

ra(u, v) =
1

u− v

n∑

i,j=1

1 + aiu

1 + aiv
Xij ⊗Xji,

that can be viewed as an anisotropic deformation of the rational r-matrices (the parameters ai are
arbitrary). We consider the corresponding Gaudin-type models [26], [27], [28] and the set of canonical
coordinates constructed with the help of the separating functions Bκ⃗(u) and Aκ⃗(u). Remarkably the
r-matrix ra(u, v) is the most general representative in the class of the “diagonal” r-matrices of the form

r(u, v) =
n∑

i,j=1
rji(u, v)Xij ⊗Xji for which the functions Bκ⃗(u), Aκ⃗(u) define the canonical coordinates

for a generic normalization vector κ⃗. We show that, in the case ai ̸= aj, i, j ∈ 1, n and generic choice
of the vector κ⃗ the canonical coordinates constructed with the help of the separating functions Bκ⃗(u),
Aκ⃗(u) constitute the complete family. It is necessary to notice that, contrary to the rational case, the
set of the separated coordinates is complete even without introducing an external magnetic field in the
corresponding generalized Gaudin model.

The described above integrable models associated with “anisotropic” gl(n)⊗gl(n)-valued r-matrices
provide the fourth example of the models with linear Poisson algebras and gl(n)-valued Lax matrices
L(u) for which the separating functions Bκ⃗(u), Aκ⃗(u) produce a complete set of separated coordinates.
The first class of the models is associated with the rational r-matrix and it was briefly described above.
The second class is associated with a special non-skew-symmetric non-dynamical rational r-matrices
obtained by (dynamical) gauge transformation from the standard skew-symmetric trigonometric r-
matrices [25]. Finally, the third class of such models is associated with the dynamical r-matrices of the
elliptic Calogero models and its various degenerations [22]. The r-matrices of all these models satisfy
condition (1.12) either immediately or after a suitable transformation.

The structure of the present paper is the following: in the second section we remind the main
facts about the classical r-matrices and about linear Poisson algebras of the Lax matrices, in the third
section we review the main facts about the separated coordinates in the Lax-integrable case, in the fourth
section we prove the main theorem and in the fifth section two classes of examples are considered. In
the Appendix we develop an alternative technique for studying the necessary and sufficient conditions
for the canonicity of the separated coordinates of algebro-geometric type. Such conditions are given by
Theorem A.1.

2 Hamiltonian systems, Lax algebra and classical r-matrices

2.1 Definitions and notations

Let us consider a finite-dimensional Hamiltonian system on a Poisson manifold P with a Poisson bracket
{ , } and a Hamiltonian H. Let us assume that the corresponding Hamiltonian equations of motion
are re-written in the Lax form:

dL(u)

dt
= [L(u),MH(u)], (2.1)
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where L(u) and MH(u) are some matrices depending on the initial dynamical variables (coordinates
on the space P) and the auxiliary complex parameter u which is constant with respect to the Poisson
bracket { , } and the “time” t.

In the present paper we will assume that L(u) takes its values in the Lie algebra gl(n) = gl(n,C), i.e
L(u) =

n∑
i,j=1

Lij(u)Xij where Xij, i, j = 1, n is a standard basis in gl(n) with the commutation relations

[Xij, Xkl] = δkjXil − δilXkj. (2.2)

The Lax representation (2.1) automatically provides n generating functions of the first integrals of the
corresponding Hamiltonian equations, which can be chosen to be the traces of powers trL(u)k, k ∈ 1, n
of the Lax matrix or, alternatively, the coefficients of the characteristic polynomial of the matrix L(u).
From this follows, in particular, that the “spectral curve” of the Lax matrix is preserved under the time
evolution:

d

dt
det(L(u)− µ · 1) = 0.

For the complete integrability of the Hamiltonian system possessing the Lax representation (2.1) it
is necessary to require the Poisson-commutativity of the above generating functions with respect to the
Poisson brackets { , }. The necessary and sufficient condition for this [4] is a possibility to represent
the initial Poisson brackets re-written on the level of the Lax matrices in the so-called “generalized
r-matrix form” [12]:

{L(u1)⊗ 1, 1⊗ L(u2)} = [r12(u1, u2), L(u1)⊗ 1]− [r21(u2, u1), 1⊗ L(u2)], (2.3)

where the function of two complex variables

r(u1, u2) =
n∑

i,j,k,l=1

rij,kl(u1, u2)Xij ⊗Xkl (2.4)

with values in the tensor square of the algebra g = gl(n) is called classical r-matrix.
The commutation relations (2.3) are written in the component form as follows:

{Lij(u), Lkl(v)} =
n∑

s=1

(ris,kl(u, v)Lsj(u)− rsj,kl(u, v)Lis(u))−
n∑

s=1

(rks,ij(v, u)Lsl(v)− rsl,ij(v, u)Lks(v)).

(2.5)
The r-matrix (2.4) can depend also on the dynamical variables. In this case it is called “dynamical”

and satisfies a complicated equation following from the Jacobi conditions for the bracket (2.3) (see e.g.
[15]):

[L1(u1), [r
12(u1, u2), r

13(u1, u3)]− [r23(u2, u3), r
12(u1, u2)] + [r32(u3, u2), r

13(u1, u3)]+

+ {L2(u2), r
13(u1, u3)}− {L3(u3), r

12(u1, u2)}] + cycl.perm. = 0, (2.6)

where L1(u1) = L(u1)⊗ 1⊗ 1, L2(u2) = 1⊗ L(u2)⊗ 1 etc.
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In the case of non-dynamical, i.e. non-depending on the dynamical variables, classical r-matrices
the equation (2.6) is simplified to the form of the “generalized” or “permuted” classical Yang-Baxter
equation: [12],[4],[3]:

[r12(u1, u2), r
13(u1, u3)] = [r23(u2, u3), r

12(u1, u2)]− [r32(u3, u2), r
13(u1, u3)], (2.7)

where r12(u1, u2) ≡
n∑

i,j,k,l=1
rij,kl(u1, u2)Xij ⊗Xkl ⊗ 1, r13(u1, u3) ≡

n∑
i,j,k,l=1

rij,kl(u1, u3)Xij ⊗ 1⊗Xkl, etc.

In the case of skew-symmetric r-matrices, i.e. when r12(u1, u2) = −r21(u2, u1), where r21(u2, u1) =
P 12r12(u1, u2)P 12 and P 12 interchanges the first and second spaces in tensor product, the generalized
classical Yang-Baxter equation reduces to the usual classical Yang-Baxter equation [19]:

[r12(u1, u2), r
13(u1, u3)] = [r23(u2, u3), r

12(u1, u2) + r13(u1, u3)], (2.8)

solutions of which have been classified in [6].

2.2 Special subalgebras of the Lax algebra

In the sequel we will be interested in certain subalgebras of the Lax algebras. In this section we will
consider only non-dynamical r-matrices. Let us consider n×n constant matrix A = (Aij) and introduce
a linear functional of L(u) by

ℓA(L(u)) = tr(AL(u)) =
n∑

i,j=1

AjiLij(u).

Proof of the following lemma is straightforward.

Lemma 2.1 For any pair of matrices A, B the following formula holds true

{ℓA(L(u)), ℓB(L(v))} = ℓA(L(u))− ℓB(L(v)),

where

Ajs =
n∑

i,k,l=1

(Ajiris,kl(u, v)− rji,kl(u, v)Ais)Blk,

Bls =
n∑

i,j,k=1

Aji (Blkrks,ij(v, u)− rlk,ij(v, u)Bks) .

Let us consider all the matrices as linear operators on the space V = Cn. Choose a subspace W ⊂ V .
Introduce a subspace LW in the space of linear functionals of the above form defined by

LW = {ℓA |A(W ) = 0} .

In the component form we have that the matrices A generating LW are such that
n∑

i=1
Ajiwi = 0, ∀w⃗ ∈ W

and ∀ j.
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We want to derive a sufficient condition on the r-matrix that guarantees that the subspace LW is
closed with respect to the Poisson bracket. For a given non-zero vector w⃗ ∈ W consider a 3-tensor

n∑

s=1

ris,kl(u, v)ws ∈ V ⊗ V ⊗ V ∗. (2.9)

It defines a natural map
rw⃗ : V ∗ ⊗ V ∗ → V ∗. (2.10)

Denote W ∗ ⊂ V ∗ the annihilator of the subspace W ,

W ∗ = {α ∈ V ∗ |α(w⃗) = 0 ∀ w⃗ ∈ W} .

The following proposition holds true:

Proposition 2.1 Let the r-matrix satisfy the following property: for any w⃗ ∈ W the map (2.9) acts
trivially on W ∗ ⊗W ∗:

rw⃗ (W ∗ ⊗W ∗) = 0. (2.11)

Then the subspace of linear functionals LW is closed with respect to the Poisson bracket. This condition
is also a necessary one.

Proof. One has to verify validity of the conditions

n∑

s=1

Aisws = 0,
n∑

s=1

Blsws = 0,

for any w⃗ ∈ W . They are spelled as follows

n∑

s,i,k,l=1

Ajiris,kl(u, v)Blkws = 0,
n∑

i,j,k,s=1

AjiBlkrks,ij(v, u)ws = 0.

for any A, B satisfying A(w⃗) = 0, B(w⃗) = 0, and any w⃗ ∈ W . It is easy to see that these conditions
are equivalent to the conditions of the Proposition.

Let us specify the condition (2.11) in the case of the one-dimensional space W spanned by a non-zero
vector w⃗. In this case we have that the map (2.10) has the following explicit component form:

Mik →
n∑

i,k,s=1

ris,kl(u, v)Mikws

and the condition (2.11) acquires the form:

n∑

i,k,s=1

ris,kl(u, v)Mikws = 0, (2.12)
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for any Mij such that
n∑

i=1
Mijwi =

n∑
j=1

Mijwj = 0. Any such matrix is a linear combination of matrices

of rank 1 that have the form

Mij = αiβj,
∑

αiwi =
∑

βjwj = 0.

Thus in this case the condition (2.11) coincides with eq. (1.11).
As we will see below in the considered gl(n) case a miracle happens: purely Lie algebraic conditions

(2.11) and (2.12) that guarantee that certain subspaces are closed Poisson subalgebras of the r-matrix
Lax algebra coincide with the sufficient conditions for the variable separation.

3 Separation of variables

3.1 General integrable case

Let us recall the definitions of Liouville integrability and separation of variables in the general theory of
Hamiltonian systems. An integrable Hamiltonian system with D degrees of freedom is determined on
a 2D-dimensional symplectic manifold M (symplectic leaf in (P , { , }) and D independent functions
(first integrals) Ij commuting with respect to the Poisson bracket

{Ii, Ij} = 0, i, j ∈ 1, D

(for the Hamiltonian H of the system it can be taken any first integral Ij).
To find separated variables means to find (at least locally) a set of coordinates xi, pj, i, j ∈ 1, D such

that there exist D independent relations:

Φi(xi, pi; I1, ..., IN) = 0, i ∈ 1, D (3.1)

where the coordinates xi, pj, i, j ∈ 1, D are canonical, i.e:

{xi, pj} = δij, {xi, xj} = 0, {pi, pj} = 0, ∀ i, j ∈ 1, D.

The separated variables provide a way to a construction of the action-angle coordinates from the Liou-
ville theorem and half a way to explicit integration of the equations of motion.

Unfortunately, in the general case no algorithm is known to construct a set of separated variables for
a given integrable system. Nevertheless, in the case of integrable systems admitting Lax representation
with spectral parameter there exists an efficient recipe of their construction.

3.2 Lax-integrable case

Let us turn again to the integrable systems admitting Lax representation with the spectral parameter.

Let us consider the auxiliary linear problem for the n× n Lax matrix with the “left” eigenvector
−→
f (u)

of the Lax matrix: −→
f (u)L(u) = µ(u)

−→
f (u).

12



The eigenvector of the Lax matrix is defined by the above equation up to a normalization. The “magic
recipe” to a construction of the canonical variables of algebro-geometric type is the following [16]:

The separated coordinates xi, i ∈ 1, d coincide with the u-coordinates of poles of the properly nor-
malized eigenvector of the Lax matrix. The conjugated momenta pi coincide with the µ-coordinates of
the poles, i.e., with the eigenvalues µ of the Lax operator evaluated at these points: pi = µ(xi). The
functions Φi in (3.1) are all the same and they are obtained from the characteristic polynomial of the
Lax matrix:

Φ(xi, pi; I1, ..., IN) = det(L(xi)− pi · 1n) = 0.

Remark 3.1 In certain examples the coordinates of the poles satisfy {xi, xj} = {pi, pj} = 0, {xi, pj} = 0
for i ̸= j but {xi, pi} can be different from 1. To arrive at canonical coordinates one has to make a
change pi .→ p̃i = f(pi) for a suitable function f(p).

In the general case the “magic recipe” is conjectural. Moreover, in such generality it is difficult
to verify its validity. In particular it is difficult to check that the constructed in such a way variables
xi, pj, i, j ∈ 1, d constitute a complete system of coordinates, i.e. that they are independent and
d = D. Another problem is that for such a general formulation it is not possible to prove that the
Poisson brackets of the constructed coordinates are canonical. That is why in order to prove the last
statement we will specify the normalization of the eigenvector of the Lax matrix as follows:

−→
f (u)κ⃗ = 1,

where κ⃗ = (κ1, ...,κn)t is an arbitrary constant (i.e. not depending on the dynamical variables or spectral
parameters) column vector and the upper “t” will hereafter denote the transposition. In this case it is
possible to concretize the above general recipe. Indeed, in such a case for any pole xj of the eigenvector
of the Lax matrix the normalization condition yields the following equation:

n∑

i=1

f (j)
i κi = 0, (3.2)

where
−→
f (j) = (f (j)

1 , ..., f (j)
n ) is the residue of the vector function

−→
f (u) in the point xj.

The eigenvalue condition yields the following equations

−→
f (j)L(xj) = µ(xj)

−→
f (j). (3.3)

Combining the equations (3.2) and (3.3) one obtains the following system of the equations for the

components of the vector
−→
f (j):

−→
f (j)(L(xj))

mκ⃗ = 0, m ∈ 0, n− 1. (3.4)

This is a linear homogeneous system of equations for f (j)
i . From this it follows that the non-trivial

solutions for f (j)
i exist if the following condition holds:

Bκ⃗(u)|u=xj = det
(
κ⃗ L(u)κ⃗ (L(u))2κ⃗ ... (L(u))n−1κ⃗

)
|u=xj = 0. (3.5)
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That is, the separated coordinates xi can be obtained as zeros of the above defined function Bκ⃗(u),
which is a polynomial as a function of the elements of Lax matrix but can be more complicated (e.g.
meromorphic) as function of u. We will call Bκ⃗(u) to be a separating polynomial. For an arbitrary
vector κ⃗ this polynomial was first written in [7] (see also [22]).

There is a normalization (called “standard”) corresponding to the following choice of the vector κ⃗:

κ⃗ = κ⃗n ≡ (0, 0, ..., 0, 1)t.

Such a choice produces the separating polynomial Bκ⃗(u)(u) considered in [20] for n = 2, 3 and [18] for
arbitrary n. This polynomial is also equivalent to the separating polynomial considered in [14] and
later in [25]. Using the properties of the determinant it is possible to show that for the vector κ⃗n the
polynomial Bκ⃗(u) can be re-written as the determinant of the (n− 1)× (n− 1) matrix B(u) defined as
follows:

B(u) ≡ Bκ⃗n(u) = detB(u) = det
( −→

l (u) L(u)
−→
l (u) L

2
(u)

−→
l (u) ... L

n−2
(u)

−→
l (u)

)
, (3.6)

where L(u) is a submatrix of L(u) constituted by its first n− 1 rows and columns, i.e Lij(u) = Lij(u),

i, j ∈ 1, n− 1 and
−→
l (u) is the (n− 1) component vector constituted by the first (n− 1)-elements of the

last column of L(u), i.e (
−→
l (u))i = Lin(u), i ∈ 1, n− 1.

In a similar way it is possible to show [25] that the separated momenta pi = µ(xi) corresponding to
a normalization vector κ⃗n are given by the values of the “dual” separating function: pi = A(xi), where

A(u) =
C(u)

D(u)
, (3.7)

and the polynomials C(u) and D(u) are defined as follows:

C(u) ≡ Cξ(u) = det
(

L(u)
−→
ξ

−→
l (u) L

2
(u)

−→
l (u) ... L

n−3
(u)

−→
l (u)

)
, (3.8)

D(u) ≡ Dξ(u) = det
( −→

ξ
−→
l (u) L

2
(u)

−→
l (u) ... L

n−3
(u)

−→
l (u)

)
, (3.9)

where
−→
ξ is an arbitrary n− 1 component vector. Following [14] and [18] we will chose it as follows:

−→
ξ =

−→
ξ 1 ≡ (1, 0, 0, ..., 0)t, (3.10)

i.e. we will put D(u) = Dξ1(u), C(u) = Cξ1(u).

Remark 3.2 Observe that all the choices of Dξ(u) and Cξ(u) give the same answer for A(u) modulo
the ideal generated by B(u). We will use the auxiliary polynomials Dξj(u), Cξj(u), j ∈ 2, n− 1, where

(
−→
ξ j)k = δjk, k ∈ 1, n− 1 in the intermediate calculations.

Remark 3.3 Observe, that the separating polynomial B(u) and the “dual” separating function A(u)
corresponding to the above standard normalization of the eigenvector of the Lax matrix effectively depend
only on the first (n− 1)-rows of the Lax matrix.
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Remark 3.4 Observe that it is possible to use throughout this section instead of the left eigenvector of
the Lax matrix the right one satisfying the following equations:

L(u)
−→
f t(u) = µ(u)

−→
f t(u).

Such a choice is used in the papers [7], [25], [22]. Under such a choice all the formulas above should be
appropriately modified. For example, the separating polynomial B(u) is written as follows:

B(u) = det

⎛

⎜⎜⎝

κ⃗
κ⃗L(u)
...

κ⃗Ln−1(u)

⎞

⎟⎟⎠ ,

the system (1.17) is written as

n∑

j=1

κj∆ij(u, µ) = 0, i = 1, . . . , n

etc.

3.3 Algebra of matrix minors and separating polynomial

In the sequel it will be necessary to rewrite separating functions in another form. For this purpose we
will introduce some new notations.

Definition 1. We denote by L

(
j1 j2... jm
i1 i2... im

)
(u) a minor of the matrix L(u), i.e. the determinant

of the submatrix of L(u) consisting of the elements standing on the intersection of the i1, i2, ... im-th

rows and j1, j2, ... jm-th columns. In particular: L

(
j
i

)
(u) ≡ Lij(u).

In what follows we will use the following representation of the polynomial B(u) [14]:

B(u) = cn−1

n−1∑

αj
i=1; i∈1,n−2; j∈1,i

B({αj
i}, u), (3.11)

where

B({αj
i}, u) = L

(
n
α1
1

)
(u)L

(
α1
1 n

α1
2α

2
2

)
(u) · · ·L

(
α1
n−3... α

n−3
n−3 n

α1
n−2... α

n−2
n−2

)
(u)L

(
α1
n−2... α

n−2
n−2 n

1 2 ... n− 1

)
(u),

(3.12)
We will also use similar representations for the polynomials C(u) = Cξ1(u) and D(u) = Dξ1(u) with

ξ1 of the form (3.10) (recall that A(u) =
C(u)

D(u)
) [14]:

C(u) = cn−2

n−1∑

αj
i=1; i∈1,n−3, j∈1,i

C({αj
i}, u),
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D(u) = cn−2

n−1∑

αj
i=1; i∈1,n−3, j∈1,i

D({αj
i}, u),

where

C({αj
i}, u) = L

(
n
α1
1

)
(u)L

(
α1
1 n

α1
2α

2
2

)
(u) · · ·L

(
α1
n−4... α

n−4
n−4 n

α1
n−3... α

n−3
n−3

)
(u)L

(
1 α1

n−3... α
n−3
n−3 n

1 2 ... n− 1

)
(u)

(3.13)

D({αj
i}, u) = L

(
n
α1
1

)
(u)L

(
α1
1 n

α1
2α

2
2

)
(u) · · ·L

(
α1
n−4... α

n−4
n−4 n

α1
n−3... α

n−3
n−3

)
(u)L

(
α1
n−3... α

n−3
n−3 n

2 3 ... n− 1

)
(u)

(3.14)

The normalization coefficients are given by the following formula: ck =
(−1)

k(k−1)
2

1!2!...(k − 1)!
.

It is also possible to show that [14]

Cξk(u) = cn−2

n−1∑

αj
i=1;i∈1,n−3,j∈1,i

Cξk({α
j
i}, u),

Dξk(u) = cn−2

n−1∑

αj
i=1;i∈1,n−3,j∈1,i

Dξk({α
j
i}, u),

for other choices of the vector ξ. Here

Cξk({α
j
i}, u) = L

(
n
α1
1

)
(u)L

(
α1
1 n

α1
2α

2
2

)
(u) · · ·L

(
α1
n−4... α

n−4
n−4 n

α1
n−3... α

n−3
n−3

)
(u)L

(
k α1

n−3... α
n−3
n−3 n

1 2 ... n− 1

)
(u)

(3.15)

Dξk({α
j
i}, u) = L

(
n
α1
1

)
(u)L

(
α1
1 n

α1
2α

2
2

)
(u) · · ·L

(
α1
n−4... α

n−4
n−4 n

α1
n−3... α

n−3
n−3

)
(u)L

(
α1
n−3... α

n−3
n−3 n

1 2...ǩ... n− 1

)
(u),

(3.16)
where “check” over k means that this index is omitted.

There is the following usefull identity[14]:

(−1)lDξk(u)Cξl(u)− (−1)kCξk(u)Dξl(u) = B
(

n̂− 2n̂− 1

k̂ l̂

)
(u)B(u), k, l ∈ 1, n− 1. (3.17)

where B
(

n̂− 2n̂− 1

k̂ l̂

)
(u) is the complementary to the k-th and l-th row and the (n−2) and (n−1)-st

columns minor of the matrix B(u). The matrix B(u) was defined in the eq. (3.6).

Remark 3.5 Observe that the above formulas for C(u) and D(u) are well-defined only for n ≥ 3.
Nevertheless, the case n = 2 also fits for our construction if we define additionally that for n = 2

B(u) = L

(
2
1

)
(u), C(u) = L

(
1
1

)
(u), D(u) = 1, A(u) = C(u). (3.18)
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Remark 3.6 Observe that, passing from the left to the right eigenvectors of the Lax matrix discussed
in the Remark 3.4 is equivalent to the transposition of the Lax matrix in the formulas above, which

leads to exchange between rows and columns in the corresponding minors, i.e: L

(
j1 ... jm
i1 ... im

)
(u) →

L

(
i1 ... im
j1 ... jm

)
(u).

We will also use the following technically important Proposition:

Proposition 3.1 Let the entries of the Lax matrix satisfy the Poisson brackets (2.5). Then the follow-
ing Poisson brackets between minors of the Lax matrix hold true:

{L
(

j1 .... jM
i1 .... iM

)
(u), L

(
l1 .... lN
k1 .... kN

)
(v)} =

=
M∑

p=1

N∑

q=1

n∑

s,t=1

(
riqs,kpt(u, v)L

(
j1 ....... jM
i1 ..̌iqs.. iM

)
(u)L̃

(
l1 ....... lN
k1 ..ǩpt.. kN

)
(v)−

− rsjq ,tlp(u, v)L

(
j1 ..ǰqs.. jM
i1 ..... iM

)
(u)L̃

(
l1 ..ľpt.. lN
k1 .... kN

)
(v)−

− rkpt,iqs(v, u)L̃

(
j1 ....... jM
i1 ..̌iqs.. iM

)
(u)L

(
l1 ....... lN
k1 ..ǩpt.. kN

)
(v)+

+ rtlp,sjq(v, u)L̃

(
j1 ..ǰqs.. jM
i1 ..... iM

)
(u)L

(
l1 ..ľpt.. lN
k1 .... kN

)
(v)
)
, (3.19)

where

L̃

(
l1 ....... lN
k1 ..ǩpt.. kN

)
(v) ≡

N∑

q=1

(−1)p+qδtlqL

(
l1 ..ľq.. lN
k1 ..ǩp.. kN

)
(v),

L̃

(
l1 ..ľpt.. lN
k1 .... kN

)
(v) ≡

N∑

q=1

(−1)p+qδtkqL

(
l1 ..ľp.. lN
k1 ..ǩq.. kN

)
(v),

L̃

(
j1 ....... jM
i1 ..̌ips.. iM

)
(u) ≡

M∑

q=1

(−1)p+qδsjqL

(
j1 ..ǰq.. jM
i1 ..̌ip.. iM

)
(u),

L̃

(
j1 ..ǰps.. jM
i1 .... iM

)
(u) ≡

N∑

q=1

(−1)p+qδsiqL

(
j1 ..ǰp.. jM
i1 ..̌iq.. iM

)
(u).

Like above check over an index means that this index is omitted in the corresponding minor.

Sketch of the Proof. The Proof is made using double induction on N and M . In more details, the base
of induction is the case M = 1, N = 1. Its validity is evident due to the fact that, in this case by the
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definition of the Poisson bracket (2.5):

{L
(

j1
i1

)
(u), L

(
l1
k1

)
(v)} =

n∑

s,t=1

(
ri1s,k1t(u, v)L

(
j1
s

)
(u)L̃

(
l1
t

)
(v)−

− rsj1,tl1(u, v)L

(
s
i1

)
(u)L̃

(
t
k1

)
(v)− rk1t,i1s(v, u)L̃

(
j1
s

)
(u)L

(
l1
t

)
(v)+

+ rtl1,sj1(v, u)L̃

(
s
i1

)
(u)L

(
t
k1

)
(v)
)
, (3.20)

where by our original definition

L̃

(
l1
t

)
(v) = δtl1 , L̃

(
t
k1

)
(v) = δtk1 , L̃

(
s
i1

)
(u) = δsi1 , L̃

(
j1
s

)
(u) = δj1s.

The next step is an induction on N . It is done decomposing minor of the order N in the row and
column, using the Leibnitz rule for the Poisson brackets and regrouping afterwards the summands. To
complete the proof one has to do induction on M using similar arguments..

Remark 3.7 The introduction of the minors of L(u) with “tilde” seems to have no deep hidden sense
in the general case and is used by us for the notational convenience.

The Proposition (3.1) has the following simple but important Corollary:

Corollary 3.1 Let DM(L(u)) =
n∑

i1,i2,...,iM=1
L

(
i1 .... iM
i1 .... iM

)
(u). Then {DM(L(u)), DN(L(v))} = 0.

In other words the Proposition (3.1) provides a simple alternative proof of the Poisson commutativity
of the coefficients of the characteristic polynomials of the Lax matrix L(u).

3.4 Separating functions and canonical coordinates

Let us now remind a method of constructing canonical coordinates using the separating functions.
Generally speaking this method can be considered independently from separation of variables. In this
subsection we do not assume any special properties of the Poisson manifold P or Poisson structure
{ , }. Neither we assume integrability or existence of the Lax representation.

Let B(u) and A(u) be some functions of the dynamical variables and auxiliary complex parameter u
2, which is constant with respect to the bracket { , }. Let the points xi, i ∈ 1, d be zeros of the function
B(u) and pi, i ∈ 1, d be the values of A(u) at these points. We want to compute Poisson brackets
between these new coordinates using the Poisson brackets between B(u) and A(u).

The following Proposition holds true:

2For the Hamiltonian systems admitting Lax representation with spectral parameter it will naturally coincide with
the spectral parameter in separating polynomials.
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Proposition 3.2 Let B(xi) = 0, pj = A(xj). Then:

(i) {xi, xj} = lim
u→xi,v→xj

( {B(u), B(v)}
∂uB(u)∂vB(v)

)
, where i ̸= j,

(ii) {xj, pi} = lim
u→xi,v→xj

({A(u), B(v)}
∂vB(v)

)
+ {xi, xj} lim

u→xi

(∂uA(u)), where i ̸= j,

(iii) {pi, pj} = lim
u→xi,v→xj

(
{A(u), A(v)}

)
+ {pi, xj} lim

v→xj

(∂vA(v)) + {xi, pj} lim
u→xi

(∂uA(u))−

− {xi, xj} lim
u→xi,v→xj

(∂uA(u)∂vA(v)), where i ̸= j.

Sketch of the Proof. The eqs. (i)-(iii) are obtained by the decomposition of B(u), A(u), B(v), A(v) in
Taylor power series in the neighborhood of the points u = xi, v = xj in the expressions {B(u), B(v)},
{A(u), B(v)}, {A(u), A(v)} respectively and by considering the limits u → xi, v → xj after the calcula-
tion of the Poisson brackets.

4 Main Theorem and its Corollaries

In this section we will formulate our general result about the algebra of separating functions first in
the special case of the vector κ⃗n = (0, 0, ..., 0, 1)t, i.e. for the functions A(u) and B(u) and then we
will extend it to the functions Aκ⃗(u), Bκ⃗(u) with general κ⃗ arriving at Theorem 1.1 formulated in the
Introduction.

4.1 Main Theorem

From the results of the previous subsection it follows that in order to obtain canonical Poisson brackets
among the coordinates constructed with the help of polynomials B(u) and A(u) it is sufficient to require
that the equations (1.13a–1.16) hold true. The conditions for validity of these equations are given in
our main Theorem written in the following component form.

Theorem 4.1 Let the Poisson brackets between entries of the Lax matrix L(u) have the form (2.5)
with some r-matrix r(u, v). Then the separating functions B(u) and A(u) defined in terms of the Lax
matrix L(u) by the formulas (3.6)-(3.9) with the normalization vector κ⃗ = (0, 0, . . . , 0, 1)t satisfy the
relations (1.13a–1.13c) if the following conditions on the matrix elements of the corresponding r-matrix
r(u, v) are satisfied

rin,jk(u, v) = rin,jn(u, v) = 0, ∀ i, j, k ∈ 1, n− 1. (4.1)

For the non-dynamical r-matrices the condition (4.1) is also necessary for validity of the commutation
relations (1.13a–1.13c).

If, moreover, the r-matrix satisfy the regularity condition (1.9) then the condition (1.16) is also
satisfied.
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See below the subsection 4.3 for the detailed proof of the Theorem. Since the function Bκ⃗(u) does
not depend on the choice of a basis in Cn, up to multiplication by a constant factor, and also the
function Aκ⃗(u) after a change of a basis transforms like

Aκ⃗(u) .→ aAκ⃗(u) + bBκ⃗(u)

for some constants a ̸= 0 and b, hence the Theorem 1.2 follows from the above Theorem.

Remark 4.1 Not all classical gl(n)⊗gl(n)-valued r-matrices satisfy the conditions (4.1). In particular,
skew-symmetric elliptic r-matrix of Sklyanin [19] (for n = 2) and its generalization of Belavin [5] (for
arbitrary n) does not satisfy the condition (4.1). Nevertheless, the condition (4.1) is not very rigid. It
“kills” only (n− 1)3 + (n− 1)2 of n4 components of the r-matrix.

Example 2. Let n = 2. In this case, as it was already observed, the formulas (3.6)-(3.9) defining the
separating functions should be modified. Nevertheless, using the definition (3.18) of the functions B(u)
and A(u) and the commutation relations (2.5) it is easy to show that the condition (4.1) with n = 2
is necessary, for non-dynamical r-matrices, and sufficient to satisfy the relations (1.13a–1.13c) also in
this case. The gl(2)⊗ gl(2)-valued r-matrix possesses 24 = 16 components. The condition (4.1) has the
form:

r12,11(u, v) = r12,12(u, v) = 0.

It “kills” only 1 + 1 = 2 components of the r-matrix.

4.2 Some corollaries

The Theorem (4.1) has several important Corollaries. The first of them is written as follows:

Corollary 4.1 Let the Lax matrix Lg(u) be obtained from the Lax matrix L(u) by (possibly dynamical)
gauge transformation L(u) → Lg(u) = g−1(u)L(u)g(u). Then the corresponding separating functions
Bg(u) ≡ B(Lg(u)) and Ag(u) ≡ A(Lg(u)) satisfy the algebra (1.13a–1.13c) if and only if the following
conditions hold:

rgin,jk(u, v) = rgin,jn(u, v) = 0, ∀ i, j, k ∈ 1, n− 1, (4.2)

where rgij,kl(u, v) are the matrix elements of the following r-matrix:

rg(u, v) = g−1(u)⊗ g−1(v)
(
r(u, v)− {g(u)⊗ 1, 1⊗ L(v)}g−1(u)⊗ 1+

+
1

2
[{g(u)⊗ 1, 1⊗ g(v)}g−1(u)⊗ g−1(v), 1⊗ L(v)]

)
g(u)⊗ g(v).

If, moreover, the r-matrix rg(u, v) satisfy the property (1.9) then the condition (1.16) is also satisfied.

Remark 4.2 In the case of non-dynamical transformation matrix g(u) the transformed r-matrix is
written more simply as follows:

rg(u, v) = g−1(u)⊗ g−1(v)r(u, v)g(u)⊗ g(v).
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The analogue of this Corollary holds true also for the constant “external” automorphism of the
algebra of the gl(n)-valued Lax matrices:

Corollary 4.2 Let us consider the automorphism σ(L(u)) = −Lt(u). Then the corresponding separat-
ing functions Bσ(u) ≡ B(−Lt(u)) and Aσ(u) ≡ A(−Lt(u)) satisfy the algebra (1.13a–1.13c) if and only
if the following conditions are satisfied:

rt1t2in,jk(u, v) = rt1t2in,jn(u, v) = 0, ∀i, j, k ∈ 1, n− 1, (4.3)

where rt1t2ij,kl(u, v) are the matrix elements of the r-matrix transposed in the first and second component
of the tensor product. If, moreover, the r-matrix r(u, v) satisfies the property (1.9) then the condition
(1.16) is also satisfied.

Remark 4.3 Observe that the condition (4.3) can be rewritten in a more simple way as follows:

rni,kj(u, v) = rni,nj(u, v) = 0, ∀i, j, k ∈ 1, n− 1. (4.4)

It is relevant for the choice of the “right” eigenvector of the Lax matrix and the corresponding separating
functions, discussed in the Remark 3.4 and Remark 3.6.

4.3 Proof of the Main Theorem 4.1

Let us now prove the Theorem 4.1. For this purpose we will need (as it follows from the subsection 3.4)
to show that the commutation relations (1.13a–1.13c) hold true if and only if the condition (4.1) does.
We will do this using the formula of commutation of minors (3.19). In order to simplify the calculation,
we will introduce the following notation:

{X(u), Y (v)} = {X(u), Y (v)}u + {X(u), Y (v)}v,

where the first part consists of the summands with the coefficients rij,kl(u, v) and the second part consists
of the summands with the coefficients rij,kl(v, u). Such a structure is a consequence of the commutation
relations (3.19), Leibnitz rule and bilinearity of the Poisson brackets.

In such a way we have {X(u), Y (v)} = {X(u), Y (v)}u − ({Y (u), X(v)}u)u↔v. In particular,
{X(u), X(v)} = {X(u), X(v)}u − ({X(u), X(v)}u)u↔v. We will use this fact in the subsequent, calcu-
lating only the expressions of the type {X(u), Y (v)}u instead of the full Poisson brackets.

4.3.1 Proof of the equation (1.13a)

Let us first prove the relation (1.13a) calculating explicitly the Poisson bracket {B(u), B(v)}. As
it follows from the above arguments, for this purpose it is enough to calculate only the first part
{B(u), B(v)}u.

The following Proposition is true:
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Proposition 4.1 Let the matrix elements of the Lax matrix L(u) satisfy the commutation relations
(2.5) with some r-matrix r(u, v). Let the separating functions B(u) and A(u) be defined using Lax
matrix L(u) and the formula (3.6). Then the following commutation relations holds:

{B(u), B(v)}u =

= B(u)
( ∑

αd
c∈1,n−1;c∈1,n−2,d∈1,c

cn−1

n−2∑

i=0

i+1∑

j=1

n∑

t=1

(n−1∑

l=1

rll,αj
i+1t

(u, v)−(n−1)rnn,αj
i+1t

(u, v)
)
B̃({αd

c}, v)αj
i+1→t

)
+

+
∑

αd
c∈1,n−1;c∈1,n−2,d∈1,c

c2n−1

∑

βr
p∈1,n−1;p∈1,n−2,r∈1,p

( n∑

t=1

n−2∑

k=1

k∑

l=1

n−2∑

i=0

i+1∑

j=1

rβl
kn,α

j
i+1t

(u, v)B({βr
p}, u)βl

k→n×

× B̃({αd
c}, v)αj

i+1→t +
n∑

t=1

n−1∑

l=1

n−2∑

i=0

i+1∑

j=1

rln,αj
i+1t

(u, v)B({βr
p}, u)βl

n−1→nB̃({αd
c}, v)αj

i+1→t

)
−

∑

αd
c∈1,n−1;c∈1,n−2,d∈1,c

c2n−1

∑

βr
p∈1,n−1;p∈1,n−2,r∈1,p

n−1∑

s=1

n∑

t=1

n−2∑

k=0

n−2∑

i=0

i+1∑

j=1

rsn,αj
i+1t

(u, v)B({βr
p}, u)β

k+1
k →sB̃({αd

c}, v)αj
i+1→t

Here the notation B({αd
c}, v)α

j
i→t means that the upper index αj

i in the corresponding minor in B({αd
c}, v)

is replaced by t, B({αd
c}, v)αj

i+1→t means that the lower index αj
i+1 in the corresponding minor in

B({αd
c}, v) is replaced by t and “tilde” over the B({αd

c}, v) means tilde over the minor in the prod-
uct where the corresponding index was replaced by t. Besides it is assumed that αi+1

i = n, i ∈ 0, n− 2,
αj
n−1 = j, j ∈ 1, n− 1; βk+1

k = n, k ∈ 0, n− 2, βl
n−1 = l, l ∈ 1, n− 1 and there is no summation over

these indices.

Proof of the Proposition. Let us consider the expression {B(u), X(v)}u, where X(v) is one of the
polynomials B(u), C(u) or D(u). Let us observe that, up to a coefficient they can be represented in
the form:

X(v) ∼
∑

αj
i=1,n−1; j∈1,i, i∈I

X({αj
i}, v),

where the set of integers I is defined as follows: I = {1, 2, ..., n−2} in the case ofB(u), I = {1, 2, ..., n−3}
in the case of D(u) and C(u), X({αj

i}, v) are the monomials in minors of the Lax matrix defined by
the formulas (3.12), (3.13) or (3.14).

To simplify the proof we will need one more notation:

{Z(u), Y (v)}u = {Z(u), Y (v)}ũ + {Z(u), Y (v)}ũ,

where {Z(u), Y (v)}ũ is a part of the Poisson bracket given by the first sum in (3.19), {Z(u), Y (v)}ũ
is a part of the bracket given by the second sum in (3.19) and Z(u), Y (v) are polynomials or rational
functions of the matrix minors of the Lax matrix.
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Let us now calculate the expression {B(u), X(v)}ũ. By virtue of the formula (3.19) we obtain:

{B(u), X({αd
c}, v)}ũ =

= cn−1

∑

βr
p∈1,n−1;p∈1,n−2,r∈1,p

( n∑

t=1

n∑

s=1

n−2∑

k=1

k∑

l=1

n−qX∑

i=0

(i+1+δX)∑

j=1

rβl
ks,α

j
i+1t

(u, v)B({βr
p}, u)βl

k→sX̃({αd
c}, v)αj

i+1→t+

+
n∑

t=1

n∑

s=1

n−1∑

l=1

n−qX∑

i=0

(i+1+δX)∑

j=1

rβl
n−1s,α

j
i+1t

(u, v)B({βr
p}, u)βl

n−1→sX̃({αd
c}, v)αj

i+1→t,
)

(4.5)

where qX = 2 in the case of X(u) = B(u), qX = 3 in the case X(u) = D(u), qX = 3 in the case of
X(u) = C(u), and αl

n−1 ≡ l, l ∈ 1, n− 1 in the first case, αl
n−2 ≡ l + 1, l ∈ 1, n− 2 in the second case,

αl
n−2 ≡ l, l ∈ 1, n− 1 in the third case and δX ≡ δi,n−3δX,C (δX,C is non-zero in the case X(u) = C(u)).
On the other hand, the analogous direct calculation using the formula (3.19) shows that

{B(u), X({αd
c}, v)}ũ =

= −cn−1

∑

βr
p∈1,n−1;p∈1,n−2,r∈1,p

( n∑

s=1

n∑

t=1

n−2∑

k=1

k∑

l=1

n−qX∑

i=0

i+1∑

j=1−δX

rsβl
k,tα

j
i
(u, v)B({βr

p}, u)β
l
k→sX̃({αj

i}, v)α
j
i→t+

+
n∑

s=1

n∑

t=1

n−2∑

k=0

n−qX∑

i=0

i+1∑

j=1−δX

rsβk+1
k ,tαj

i
(u, v)B({βr

p}, u)β
k+1
k →sX̃({αj

i}, v)α
j
i→t
)

(4.6)

where αi+1
i = n, βk+1

k = n, qX is defined as above, δX ≡ δi,n−3δX,C and α0
n−3 ≡ 1 if X(u) = C(u).

Here the notation X({αd
c}, v)α

j
i→t means that the upper index αj

i in the corresponding minor in
X({αd

c}, v) is replaced by t, X({αd
c}, v)αj

i+1→t means that the lower index αj
i+1 in the corresponding

minor in X({αd
c}, v) is replaced by t and “tilde” over the X({αd

c}, v) means tilde over the minor in the
product where the corresponding index was replaced by t.

To finish the proof of the Proposition we will need the following Lemma:

Lemma 4.1 Let αi+1
i ≡ n. Then the following identity holds true:

n∑

t=1

i+1∑

j=1

rγδ,tαj
i
(u, v)X̃({αd

c}, v)α
j
i→t =

n∑

t=1

i+1∑

j=1

rγδ,αj
i+1t

(u, v)X̃({αd
c}, v)αj

i+1→t, ∀γ, δ ∈ 1, n.

Proof follows from our definition of L̃

(
α1
i ..α̌

j
i t..α

i
i α

i+1
i

α1
i+1 ... αi+1

i+1

)
(v) and L̃

(
α1
i ... αi

i α
i+1
i

α1
i+1.. α̌

j
i+1t.. α

i+1
i+1

)
(v).

Let now X(u) = B(u). Let us consider the first sums in the expressions (4.5)-(4.6). They coincide
up to a sign. To see this it is enough to rename in the expression (4.6) the indices of summation
βl
k and s: βl

k ↔ s taking into account that the index s in this expression runs effectively from 1 to
n − 1. Indeed, when it is equal to n the corresponding minor in B({βr

p}, u)β
l
k→n has two equal upper
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indices and, hence, turns zero together with all the expression B({βr
p}, u)β

l
k→n. From the structure of

B({βr
p}, u) it follows that B({βr

p}, u)β
l
k→s coincides with B({βr

p}, u)βl
k→s after renaming of the indices

βl
k ↔ s. Hence, applying the Lemma above, it is easy to see that the first sums in the expressions

(4.5)-(4.6) coincide up to the sign and up to the summand corresponding to s = n in the first sum of
the right-hand-side of the expression (4.5).

Let us analyze the second sum in the right-hand-side of the expressions (4.5). It is easy to see that
B({βr

p}, u)βl
n−1→s = B({βr

p}, u) if s = l and is zero if s ̸= l and s < n. Here βl
n−1 is the lower index in the

longest minor in B({βr
p}, u). Indeed, if s < n and s ̸= l then the longest minor in B({βr

p}, u)βl
n−1→s has

two equal indices and turns zero together with all the expression B({βr
p}, u)βl

n−1→s. On the other hand

βl
n−1 ≡ l by the very definition, hence B({βr

p}, u)βl
n−1→l = B({βr

p}, u). The corresponding summands

produce expressions proportional to B(u).
Let us analyze the second sum in the right-hand-side of the expressions (4.6). We have that

B({βr
p}, u)β

k+1
k →s = B({βr

p}, u) if s = n due to the fact that by the very definition βk+1
k = n. We

have n − 1 such summands corresponding to different indices k ∈ 0, n− 2. The corresponding sum-
mands produce expressions proportional to B(u). Other values of s produce summands not proportional
to B(u).

Substituting all this into the formula {B(u), B(v)}u = {B(u), B(v)}ũ + {B(u), B(v)}ũ, using once
again the Lemma 4.1 we obtain the statement of the Proposition.

The Proposition is proven.

Now, using the fact that {B(u), B(v)} = {B(u), B(v)}u − ({B(u), B(v)}u)u↔v we obtain, analyzing
the formula proven in the above Proposition, that the equation (1.13a) holds if and only if the condition
(4.1) is satisfied. Indeed, the sufficiency of the condition (4.1) is evident (see below the explicit form
of {B(u), B(v)} computed under this condition). To prove the necessity, for non-dynamical r-matrices
we need to show that the sum of the second, third and fourth sums in the proven above formula for
{B(u), B(v)}u is proportional to B(u) or zero only if the condition (4.1) is satisfied. On the other
hand, analyzing the summands with the coefficients rsn,αj

i+1t
(u, v) we obtain that they appear with the

following coefficient depending on v:
( ∑

αd
c∈1,n−1;c∈1,n−2,d∈1,c

B̃({αd
c}, v)αj

i+1→t

)
(4.7)

and with the following coefficient depending on u:

∑

βr
p∈1,n−1;p∈1,n−2,r∈1,p

(n−2∑

k=1

k∑

l=1

B({βr
p}, u)

βl
k→s

βl
k→n

+B({βr
p}, u)βs

n−1→n −
n−2∑

k=0

B({βr
p}, u)β

k+1
k →s

)
, (4.8)

where s,αj
i+1 ∈ 1, n− 1, t ∈ 1, n and each of βk+1

k is equal to n.
The coefficient (4.7) is clearly not equal to zero. That is why we have to show that the coefficient

(4.8) can not be proportional to B(u). But this follows from the fact that it is a linear function in

L

(
i
n

)
(u) = Lni(u), i ∈ 1, n with non-trivial coefficients, while B(u) does not depend on the last row
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of the Lax matrix by the very construction. This shows that the necessary condition for validity of the
equation (1.13a) is the condition rsn,αj

i+1t
(u, v) = 0, s,αj

i+1 ∈ 1, n− 1, t ∈ 1, n, i.e. the condition (4.1).

Under this condition the formula for {B(u), B(v)} acquires a form of the type (1.13a):

{B(u), B(v)} =

= B(u)
( ∑

αd
c∈1,n−1;c∈0,n−2,d∈1,c+1

cn−1

n−2∑

i=0

i+1∑

j=1

n∑

t=1

(n−1∑

l=1

rll,αj
i+1t

(u, v)−(n−1)rnn,αj
i+1t

(u, v)
)
B̃({αd

c}, v)αj
i+1→t

)
−

−B(v)
( ∑

αd
c∈1,n−1;c∈0,n−2,d∈1,c+1

cn−1

n−2∑

i=0

i+1∑

j=1

n∑

t=1

(n−1∑

l=1

rll,αj
i+1t

(v, u)−(n−1)rnn,αj
i+1t

(v, u)
)
B̃({αd

c}, u)αj
i+1→t

)
.

(4.9)

Remark 4.4 Observe that we have shown the necessity of the condition (4.1) for the eq. (1.13a) to
be true, hence this condition is necessary for all the system (1.13a–1.13c) to be true and, hence the
necessity stated in the theorem is proven. We have only to prove further that the condition (4.1) is
sufficient in order for the equations (1.13b)-(1.13c) to be true.

4.3.2 Proof of the equation (1.13b)

Let us now consider the Poisson brackets {B(u), A(v)}. To calculate them we have to calculate the

Poisson brackets {B(u), C(v)} and {B(u), D(v)} and use the fact that A(v) =
C(v)

D(v)
, and, hence:

{B(u), A(v)} =
1

D2(v)
(D(v){B(u), C(v)}− C(v){B(u), D(v)}).

Using the fact that {B(u), X(v)} = {B(u), X(v)}u−({X(u), B(v)}u)u↔v, we have to calculate {B(u), C(v)}u,
{B(u), D(v)}u and {C(u), B(v)}u, {D(u), B(v)}u.

On the other hand, using the results obtained in the previous subsection and taking into account
the necessary condition (4.1) it is easy to show that:

{B(u), D(v)}u =

= cn−2B(u)
( ∑

αd
c∈1,n−1;c∈1,n−3,d∈1,c

n−3∑

i=0

i+1∑

j=1

n∑

t=1

(n−1∑

l=1

rll,αj
i+1t

(u, v)−(n−1)rnn,αj
i+1t

(u, v)
)
D̃({αd

c}, v)αj
i+1→t

)
,

where it is assumed that αj
n−2 = j + 1, j ∈ 1, n− 2 and there is no summation over these indices.

In the analogous way we obtain:

{B(u), C(v)}u =

= cn−2B(u)
( ∑

αd
c∈1,n−1;c∈1,n−3,d∈1,c

n−3∑

i=0

(i+1+δi,n−3)∑

j=1

n∑

t=1

(n−1∑

l=1

rll,αj
i+1t

(u, v)−(n−1)rnn,αj
i+1t

(u, v)
)
C̃({αd

c}, v)αj
i+1→t

)
,
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where αl
n−2 ≡ l, l ∈ 1, n− 1 and there is no summation over these indices.

Now let us now calculate the expressions {D(u), B(v)}u and {C(u), B(v)}u. Like in the case
of the previous subsection, it will be useful to calculate more general expressions {D(u), X(v)}u,
{C(u), X(v)}u. Using the arguments analogous to the ones used in the previous subsection and the
necessary condition imposed on the matrix elements of the r-matrix (4.1) we obtain:

{D(u), X({αd
c}, v)}u = D(u)

(n−qX∑

i=1

i+1+δX∑

j=1

n∑

t=1

(n−1∑

l=2

rll,αj
i+1t

(u, v)−(n−2)rnn,αj
i+1t

(u, v)
)
X̃({αd

c}, v)αj
i+1→t

)
+

+
n−1∑

l=2

(−1)lDξl(u)
(n−qX∑

i=1

i+1+δX∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)X̃({αd
c}, v)αj

i+1→t

)
. (4.10)

In the analogous way we will have:

{C(u), X({αd
c}, v)}u = C(u)

(n−qX∑

i=1

i+1+δX∑

j=1

n∑

t=1

(n−1∑

l=2

rll,αj
i+1t

(u, v)−(n−2)rnn,αj
i+1t

(u, v)
)
X̃({αd

c}, v)αj
i+1→t

)
−

−
n−1∑

l=2

Cξl(u)
(n−qX∑

i=1

i+1+δX∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)X̃({αd
c}, v)αj

i+1→t

)
, (4.11)

where qX = 2 in the case of X(u) = B(u), qX = 3 in the case X(u) = D(u), qX = 3 in the case of
X(u) = C(u), and αl

n−1 ≡ l, l ∈ 1, n− 1 in the first case, αl
n−2 ≡ l + 1, l ∈ 1, n− 2 in the second case,

αl
n−2 ≡ l, l ∈ 1, n− 1 in the third case and δX ≡ δi,n−3δX,C (δX,C is non-zero in the case X(u) = C(u)).
With the help of the the identity (3.17) with k = 1, taking into account that C(u) = Cξ1(u),

D(u) = Dξ1(u), we obtain from the equations (4.10) and (4.11):

{A(u), X({αd
c}, v)}u =

B(u)

D2(u)

n−1∑

l=2

(−1)lB
(

n̂− 2n̂− 1

1̂ l̂

)
(u)

n−qX∑

i=1

i+1+δX∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)X̃({αd
c}, v)αj

i+1→t.

Substituting X(u) = B(u) we will have:

{A(u), B(v)}u =

= cn−1
B(u)

D2(u)

n−1∑

l=2

(−1)lB
(

n̂− 2n̂− 1

1̂ l̂

)
(u)

∑

αd
c∈1,n−1; c∈1,n−2; d∈1,c

(n−2∑

i=0

i+1∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)B̃({αd
c}, v)αj

i+1→t

)
.
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Using this we obtain the following final expression for the bracket {B(u), A(v)}:

{A(u), B(v)} = D−2(u)×
(
cn−1B(u)

n−1∑

l=2

(−1)lB
(

n̂− 2n̂− 1

1̂ l̂

)
(u)

∑

αd
c∈1,n−1; c∈1,n−2; d∈1,c

(n−2∑

i=0

i+1∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)B̃({αd
c}, v)αj

i+1→t

)
−

cn−2B(v)
(
D(u)

∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

(i+1+δi,n−3)∑

j=1

n∑

t=1

(n−1∑

l=1

rll,αj
i+1t

(v, u)−(n−1)rnn,αj
i+1t

(v, u)
)
C̃({αd

c}, u)αj
i+1→t

− C(u)
∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

i+1∑

j=1

n∑

t=1

(n−1∑

l=1

rll,αj
i+1t

(v, u)− (n− 1)rnn,αj
i+1t

(v, u)
)
D̃({αd

c}, u)αj
i+1→t

))
,

where it is assumed that αl
n−2 ≡ l, l ∈ 1, n− 1 when this index is relevant to C(u) and αl

n−2 ≡ 1 + l,
l ∈ 1, n− 2 when this index is relevant to D(u).

The equation (1.13b) is proven.

4.3.3 Proof of the equation (1.13c)

Let us now consider the Poisson brackets {A(u), A(v)}. To calculate them we have to calculate the
Poisson brackets {C(u), C(v)}, {C(u), D(v)}, {D(u), C(v)} and {D(u), D(v)} and use the fact that

A(v) =
C(v)

D(v)
and, hence:

{A(u), A(v)} =
1

D2(u)D2(v)
(D(u)D(v){C(u), C(v)}+ C(u)C(v){D(u), D(v)}−

− C(u)D(v){D(u), C(v)}− C(v)D(u){C(u), D(v)}). (4.12)

Using the fact that {A(u), A(v)} = {A(u), A(v)}u − ({A(u), A(v)}u)u↔v, we have to calculate only
{C(u), C(v)}u, {C(u), D(v)}u, {D(u), C(v)}u, {D(u), D(v)}u.

We will again assume that the necessary condition (4.1) holds true. We will use the results obtained
during the proof of the equation (1.13b). In particular, with the help of equations (4.10) we derive that:

{D(u), D(v)}u =

= cn−2D(u)
( ∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

i+1∑

j=1

n∑

t=1

(n−1∑

l=2

rll,αj
i+1t

(u, v)−(n−2)rnn,αj
i+1t

(u, v)
)
D̃({αd

c}, v)αj
i+1→t

)
+

+ cn−2

n−1∑

l=2

(−1)lDξl(u)
( ∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

i+1∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)D̃({αd
c}, v)αj

i+1→t

)
, (4.13)
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{D(u), C(v)}u =

= cn−2D(u)
( ∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

(i+1+δi,n−3)∑

j=1

n∑

t=1

(n−1∑

l=2

rll,αj
i+1t

(u, v)−(n−2)rnn,αj
i+1t

(u, v)
)
C̃({αd

c}, v)αj
i+1→t

)

+ cn−2

n−1∑

l=2

(−1)lDξl(u)
( ∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

(i+1+δi,n−3)∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)C̃({αd
c}, v)αj

i+1→t

)
, (4.14)

In an analogous way, with the help of equations (4.10) it is easy to derive that:

{C(u), C(v)}u =

= cn−2C(u)
( ∑

αd
c∈1,n−1;c∈1,n−3,d∈1,c

n−3∑

i=0

(i+1+δi,n−3)∑

j=1

n∑

t=1

(n−1∑

l=2

rll,αj
i+1t

(u, v)−(n−2)rnn,αj
i+1t

(u, v)
)
C̃({αd

c}, v)αj
i+1→t

)

− cn−2

n−1∑

l=2

Cξl(u)
( ∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

(i+1+δi,n−3)∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)C̃({αd
c}, v)αj

i+1→t

)
. (4.15)

{C(u), D(v)}u =

= cn−2C(u)
( ∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

i+1∑

j=1

n∑

t=1

(n−1∑

l=2

rll,αj
i+1t

(u, v)−(n−2)rnn,αj
i+1t

(u, v)
)
D̃({αd

c}, v)αj
i+1→t

)
−

− cn−2

n−1∑

l=2

Cξl(u)
( ∑

αd
c∈1,n−1; c∈1,n−3; d∈1,c

n−3∑

i=0

i+1∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)D̃({αd
c}, v)αj

i+1→t

)
. (4.16)

Substituting the four expressions obtained above in the equation (4.12) and taking into account the
identity (3.17) with k = 1 we finally obtain:

{A(u), A(v)}u = cn−2B(u)
(n−1∑

l=2

(−1)lB
(

n̂− 2n̂− 1

1̂ l̂

)
(u)

∑

αd
c∈1,n−1;c∈1,n−3,d∈1,c

(
C(v)×

×
n−3∑

i=0

i+1∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)D̃({αd
c}, v)αj

i+1→t −D(v)
n−3∑

i=0

(i+1+δi,n−3)∑

j=1

n∑

t=1

rl1,αj
i+1t

(u, v)C̃({αd
c}, v)αj

i+1→t

))
,

(4.17)

where throughout this subsection it is assumed that αl
n−2 ≡ l, l ∈ 1, n− 1 when this index is relevant

to C(u) and αl
n−2 ≡ 1 + l, l ∈ 1, n− 2 when this index is relevant to D(u).

Keeping in mind that {A(u), A(v)} = {A(u), A(v)}u − ({A(u), A(v)}u)u↔v we immediately obtain
from the equation (4.17) that the equation (1.13c) holds true.
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4.3.4 Proof of the equation (1.16)

Now in order to complete the prooof of the Theorem we have only to prove the equation (1.16). In
order to do this let us observe that, the coefficient functions a(u, v), b(u, v), α(u, v), β(u, v) entering
into the definition of the separation algebra (1.13a–1.13c) have been explicitly calculated in the previous
subsection. They are complicated (polynomial or rational) functions of the matrix elements of the Lax
operator, but linear functions of the matrix elements of the r-matrix. We will use this fact proving the
equation (1.16). In order to prove this equation we will take into account the regularity property (1.9)
of the r-matrix:

r(u, v) =
Ω

u− v
+∆r(u, v),

which is a key property for this proof. We have:

lim
u→v

(α(u, v)B(u)−β(u, v)B(v)) = lim
u→v

((α−1(u, v)

u− v
+ α0(u, v)

)
B(u)−

(
β−1(u, v)

u− v
+ β0(u, v)

)
B(v)

)
=

= α−1(v, v)∂vB(v)+

(
(α0(v, v)− β0(v, v)) + ∂u(α−1(u, v)− β−1(u, v))|u=v + lim

u→v

(α−1(v, v)− β−1(v, v))

u− v

)
B(v),

where the decompositions α(u, v) =
α−1(u, v)

u− v
+ α0(u, v), β(u, v) =

β−1(u, v)

u− v
+ β0(u, v) correspond

to the above decomposition of the r-matrix and we have used that the functions α−1(u, v), β−1(u, v),
α0(u, v), β0(u, v) are regular on the diagonal u = v.

Now to prove the equation (1.16) it is necessary to notice that, due to the form of the decomposition

(1.9), the functions
α−1(u, v)

u− v
and

β−1(u, v)

u− v
coincide with the functions α(u, v) and β(u, v) for the case

of standard rational r-matrix, containing only the pole part. But this case was considered in [14]. It
was shown there that α−1(u, v) = β−1(u, v) = 1. Using this result we obtain:

lim
u→v

(α(u, v)B(u)− β(u, v)B(v)) = ∂vB(v) + (α0(v, v)− β0(v, v))B(v).

The equation (1.16) is proven. This finishes the proof of the main Theorem.

5 Examples of integrable models and separated variables

5.1 The completeness problem

The difficult problem in the theory of separation of variables is the problem of completeness of the
constructed canonical coordinates. Let us briefly discuss it.

Till this moment we have been working with an arbitrary Lax matrix satisfying the r-matrix Pois-
son brackets (2.3). Nevertheless, in order to understand whether the separating functions produce a
complete family it is necessary to specify not only the r-matrix but also the Lax operator as a function
of the spectral parameter and dynamical variables, i.e. to specify the Poisson manifold P . Moreover,
in the higher rank cases it is necessary also to specify the type of the coadjoint orbit to which the
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dynamical variables belong, i.e. to specify a symplectic leaf M ⊂ P . After having fixed the manifold
M it is possible to compare its dimension with the number of the coordinates produced by separating
functions. It turns out that not for all classical r-matrices satisfying the condition (4.1) and not for all
corresponding Lax operators (which can be different for the same classical r-matrices — see [29]) the
separating functions produce complete set of separated variables.

In this paper we will consider one of the most general classes of the Lax operators that exist for any
non-dynamical classical r-matrices, namely the Lax operators of the generalized Gaudin models with
[28] and without [26] external magnetic field. We will consider two types of such r-matrices satisfying
the condition (4.1) for which the separating functions of the generalized Gaudin models produce the
complete set of separated coordinates. The first type is the rational r-matrix. The separated coordinates
for this example are known and were considered previously in [1], [14], [18], [7]. The second class is
connected with the so-called “anisotropic” non-skew-symmetric classical r-matrix discovered in [26] (see
also [27]). The separation of variables for the corresponding generalized Gaudin models is a new result.

5.2 The Generalized Gaudin models with or without magnetic field

Let us consider the generalized Gaudin models associated with the general non-dynamical classical
r-matrix with spectral parameters.

Let S(m)
ij , i, j = 1, n, m = 1, N be linear coordinate functions on the dual space to the Lie algebra

gl(n)⊕N with the following Poisson brackets:

{S(m)
ij , S(p)

kl } = δpm(δkjS
(m)
il − δilS

(m)
kj ). (5.1)

The linear space (gl(n)⊕N)∗ is a Poisson manifold of the dimension n2N . It is foliated by the symplectic
leaves — the coadjoint orbits of the group GL(n)N . We will be interested in symplectic leaves of the
maximal dimension — nondegenerate coadjoint orbits. Their dimension is equal to 2D = (n2−n)×N .
They can be described as level surfaces of n×N Casimir functions:

C(m),k =
n∑

i1,i2,....ik=1

S(m)
i1i2S

(m)
i2i3 ...S

(m)
iki1

, m ∈ 1, N, k ∈ 1, n.

Let us fix N distinct points of the complex plane νm, m = 1, 2, ..., N belonging to the open region in the
complex plane were the condition (1.9) holds true. For a given r-matrix one can construct the following
classical Lax operator:

L(u) =
n∑

p,q=1

Lpq(u)Xpq ≡
N∑

m=1

n∑

i,j,p,q=1

rij,pq(νm, u)S
(m)
ij Xpq. (5.2)

Using generalized classical Yang-Baxter equation (2.7) it is possible to show (see [26]) that L(u) satisfies
a linear r-matrix Poisson brackets (2.3). This is the Lax operator of the generalized gl(n)-valued classical
Gaudin spin chain.

30



Let, moreover, c(u) =
n∑

i,j=1
cij(u)Xij be a solution of the so-called “shift equation” [28]

[r12(u, v), c(u)⊗ 1]− [r21(v, u), 1⊗ c(v)] = 0,

where cij(u) are functions of u non-depending on the dynamical variables.
The “shift element” can be added to any Lax operator satisfying linear r-matrix Poisson brackets

(2.3) (see [28]). In particular, it can be added to the Lax operator (5.2):

L(u) =
N∑

m=1

n∑

i,j,p,q=1

rij,pq(νm, u)S
(m)
ij Xpq +

n∑

i,j=1

cij(u)Xij. (5.3)

It produces the Lax operator of the classical Gaudin model in an external magnetic field.
Using the spectral invariants of the Lax matrix one obtains n series of generating functions of the

integrals of motion. The residues at the points u = νl, l ∈ 1, N of the second order generating function
— trace of the square of the Lax matrix — produces the following quadratic integrals [26]:

Hl =
N∑

k=1,k ̸=l

n∑

i,j,p,q=1

rij,pq(νk, νl)S
(k)
ij S(l)

pq +
n∑

i,j,p,q=1

r0ij,pq(νl, νl)S
(l)
ij S

(l)
pq , (5.4)

for the case of the Lax operators (5.2) and

Hl =
N∑

k=1,k ̸=l

n∑

i,j,p,q=1

rij,pq(νk, νl)S
(k)
ij S(l)

pq +
n∑

i,j,p,q=1

r0ij,pq(νl, νl)S
(l)
ij S

(l)
pq +

n∑

i,j=1

cij(νl)S
(l)
ij , (5.5)

for the case of the Lax operators (5.3). Here r0ij,pq(u, v) are the matrix elements of the regular part of
the r-matrix.

The integrals (5.4) are the generalized classical Gaudin Hamiltonians [26] and the integrals (5.5)
are the generalized classical Gaudin Hamiltonians in an external magnetic field [28] corresponding to
general non-dynamical gl(n)⊗ gl(n)-valued classical r-matrix. In the case of skew-symmetric classical
r-matrices the second term in the Hamiltonians (5.5) and (5.4) vanishes and they coincide with the
standard Gaudin Hamiltonians [13] with or without external magnetic field.

5.3 Standard rational r-matrix and standard rational Gaudin models

Let us consider the simplest possible case, namely the case of the standard rational r-matrix and
standard rational Gaudin models with or without external magnetic field [13].

5.3.1 Standard rational r-matrix

The standard rational r-matrix is a simplest possible r-matrix containing only the pole part

r12(u, v) =
Ω12

u− v
=

n∑
i,j=1

Xij ⊗Xji

u− v
. (5.6)

It is evidently skew-symmetric. The following Proposition holds true:
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Proposition 5.1 The r-matrix (5.6) satisfies the conditions (1.11) for an arbitrary vector κ⃗.

Proof. The fact that the r-matrix (5.6) satisfies the condition (4.1) follows immediately from its
definition. Due to its GL(n)-invariance it readily follows that also the condition (1.11) is satisfied.

The shift element for the r-matrix (5.6) coincides with arbitrary constant element of gl(n):

c(u) =
n∑

i,j=1

cijXij.

In the present paper we will use only the shift elements of the following form: c(u) =
n∑

i=1
ciXii.

5.3.2 Standard rational Gaudin models with or without magnetic field

Let us now consider the standard Gaudin models with or without external magnetic field associated
with the classical r-matrix (5.6). For this purpose we will specify the formulas (5.2), (5.4) and (5.3),
(5.5) for the case of the classical r-matrix (5.6).

Let us first consider the case of standard rational Gaudin model without external magnetic field.
We will have the following Lax operator (5.2) in this case [13]:

L(u) =
N∑

k=1

1

νk − u

n∑

i,j=1

S(k)
ij Xji. (5.7)

The corresponding generalized Gaudin Hamiltonians (5.4) are written as follows [13]:

Hl =
N∑

k=1, k ̸=l

1

νk − νl

n∑

i,j=1

S(k)
ij S(l)

ji . (5.8)

Using the constant shift element it is possible to define the following “shifted” Lax operator:

L(u) =
N∑

k=1

1

νk − u

n∑

i,j=1

S(k)
ij Xji +

n∑

i=1

ciXii (5.9)

and the following standard rational Gaudin Hamiltonians in an external magnetic field:

Hl =
N∑

k=1, k ̸=l

1

νk − νl

n∑

i,j=1

S(k)
ij S(l)

ji +
n∑

i=1

ciS
(l)
ii . (5.10)

Remark 5.1 Observe that the set of integrals of motion obtained with the help of the rational Lax oper-
ator without a magnetic field (5.7) is incomplete. It is obvious for N = 1; for N > 1 the incompleteness
can be easily checked. It becomes complete only after the introduction in the Lax operator of the external

magnetic field c(u) =
n∑

i=1
ciXii were ci ̸= cj, i ̸= j, i, j ∈ 1, n.
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5.3.3 The completeness of separated variables

As it was observed above the Lax operator of rational Gaudin system without magnetic field does
not provide by itself a complete family of integrals of motion. That is why all the types of separating
polynomials constructed with its help do not provide a complete set of separated coordinates. Motivated
by this we will consider in this subsection only the generalized Gaudin system in an external magnetic
field with ci ̸= cj, i ̸= j, i, j ∈ 1, n. We will be interested in the separated coordinates on the non-
degenerate coadjoint orbits. That is why we have to present n(n− 1)×N separated coordinates.

As it was already observed, the r-matrix (5.6) satisfies the condition (4.1). That is why the sepa-
rating functions A(u) and B(u) corresponding to the standard normalization of the eigenvector of the
Lax matrix produce the canonical coordinates. Nevertheless, this set of canonical coordinates is not
complete.

Indeed, let us consider the set of zeros of the function B(u). It will be enough to consider the case

N = 1. Let us introduce the auxiliary spectral-parameter-independent matrix S(1) =
n∑

i,j=1
S(1)
ij Xij. We

have that (u− ν1)L(u) = S(1) + (u− ν1)c, where c is a constant diagonal shift element.

Using the fact that the function B({αj
i}, u) contains the minor L

(
α1
m−1... α

m−1
m−1 n

α1
m ... αm

m

)
(u), where

αj
i ∈ 1, n− 1, we see that, after multiplication by (u − ν1)m this minor becomes a polynomial of the

degree at most (m− 1) in u. The maximal degree is achieved when (m− 1) upper indices coincide with
(m − 1) lower indices in the corresponding minor. Using the definition of the function B(u) written
in the form (3.11)–(3.12) we immediately obtain that the function B(u) (after the multiplication by

the polynomial f(u) = (u − ν1)
n(n−1)

2 ) is a product of (u − ν1)n−1 by a polynomial of the degree

1 + 2 + ... + (n − 2) =
(n− 2)(n− 1)

2
in u with non-trivial coefficients. This is why zeros of the

function B(u) corresponding to the standard normalization of the eigenvector of the Lax matrix give us

only
(n− 2)(n− 1)

2
separated coordinates xi instead of the necessary

n(n− 1)

2
coordinates, i.e n − 1

coordinates xi and n− 1 coordinates pj are missing.
Let us consider the case N > 1. It is easy to see from the explicit form of the function B({αj

i}, u)
that, adding to the Lax operator (5.21) poles at u = ν2, u = ν3 etc. yields (after the multiplication

by (u − νk)
n(n−1)

2 ) exactly
n(n− 1)

2
new roots of the equations B(u) = 0. As a result we obtain that

the separating function B(u) corresponding to the standard normalization of the eigenvector of the Lax
matrix produces

(
n(n− 1)×N − 2(n− 1)

)
instead of needed n(n− 1)×N separated coordinates.

There are two ways to resolve the arisen problem of incompleteness. The first one was proposed
in [1]. Its idea is to find additionally 2(n − 1) canonical coordinates commuting with the separated
coordinates constructed with the help of the standard separating functions B(u), A(u).

The following Proposition holds true:

Proposition 5.2 The complete set of the canonical coordinates for the rational Gaudin system in

a diagonal external magnetic field c =
n∑

i=1
ciXii, where ci ̸= cj, i ̸= j, i, j ∈ 1, n consists of the
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separated coordinates constructed with the help of the standard separating functions B(u) and A(u) and
the coordinates

pSi ≡ −
N∑

k=1

S(k)
ii , xS

j = ln
N∑

k=1

S(k)
jn , i, j ∈ 1, n− 1. (5.11)

Proof. In order to prove this proposition we remind that, as it was shown above, the separated
coordinates are invariant with respect to the coadjoint action of the maximal parabolic subgroup. This
action can be represented on the infinitesimal level by the action of the generators Mij such that

{Mij, Lkl(u)} = δkjLil(u)− δilLkj(u), (5.12)

where k ∈ 1, n− 1, l ∈ 1, n, i ∈ 1, n− 1, j ∈ 1, n. Using the GL(n)-invariance of the rational r-matrix

it is possible to show that, for the Lax operator (5.9) the functions Mii =
N∑
k=1

S(k)
ii and Min =

N∑
k=1

S(k)
in

satisfy (5.12). That is why they commute with the separated coordinates constructed with the help of
the standard separating functions B(u) and A(u). On the other hand it is easy to show that for such
functions Mii and Mjn the following commutation relations hold true:

{Mii,Mjj} = {Min,Mjn} = 0, {Mii,Mjn} = δijMin, i, j ∈ 1, n− 1.

Now, using the parameterization (5.11), we obtain the proof of the Proposition .

The simple way of completing of the set of separating coordinates given in the above Proposition
does not work for the case of more general classical r-matrices. Indeed, for the r-matrices not possessing

GL(n) symmetry the functions Mii =
N∑
k=1

S(k)
ii , Mjn =

N∑
k=1

S(k)
jn do not satisfy the relations (5.12). That is

why it is not possible to use them in other cases and it is necessary to find another way for constructing
a complete set of separated coordinates. A possible solution was proposed in [7]. Its idea is to consider
instead of the functions B(u) and A(u) the separating functions Bκ⃗(u) and Aκ⃗(u) corresponding to
arbitrary normalization of the eigenvector of the Lax matrix.

The following proposition holds true:

Proposition 5.3 Let Bκ⃗(u) = Bgκ⃗(u), Aκ⃗(u) = Agκ⃗(u) be the transformed separating functions cor-
responding to the vector κ⃗ normalizing the eigenvector of the Lax matrix. Let κi ̸= 0, i ∈ 1, n and
ci ̸= cj ̸= 0. Then zeros of the function Bκ⃗(u) and the values of the function Aκ⃗(u) in these zeros, where
the functions Bκ⃗(u), Aκ⃗(u) are calculated for the Lax operator (5.9), constitute a complete set of the
coordinates of separation on the generic coadjoint orbit of the direct product of N copies of GL(n).

Proof. Let us first compute the number of zeros of Bκ⃗(u). From the definition (1.18) it readily
follows that it is a rational function of the form

Bκ⃗(u) =
B̃κ⃗(u)

∏N
k=1(νk − u)

n(n−1)
2

. (5.13)
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To compute the degree of the polynomial B̃κ⃗(u) we use the following expansion

L(u) = C +O
(
1

u

)
, u → ∞

where C = diag(c1, . . . , cn). So the i-th column of the matrix (1.18) is equal to

Li−1(u)κ⃗ =

⎛

⎜⎜⎜⎜⎝

ci−1
1 κ1

.

.

.
ci−1
n κn

⎞

⎟⎟⎟⎟⎠
+O

(
1

u

)

so

Bκ⃗(u) = κ1 . . .κn

∏

i>j

(ci − cj) +O
(
1

u

)
, u → ∞.

Comparing degrees of the numerator and denominator in (5.13) we conclude that

deg B̃κ⃗(u) = N
n(n− 1)

2
.

Let us now prove independence of the canonical variables. It suffices to prove independence of
the roots x1, . . . , xd, d = N n(n−1)

2 , of the polynomial Bκ⃗(u). We will verify their independence at a
particular point of the phase space. As the coefficients of Bκ⃗(u) depend polynomially on the phase
variables, such a verification is sufficient for proving independence at a generic point. To simplify the
formulae we will do the calculations for the particular case κ⃗ = (1, 1, . . . , 1).

Consider the case of diagonal matrices S(k),

S(k) = diag
(
λk
1, . . . ,λ

k
n

)
, k = 1, . . . , N.

The Lax matrix is diagonal,

L(u) = diag (µ1(u), . . . , µn(u)) , µi(u) = ci +
N∑

k=1

λk
i

νk − u
.

The definition (1.18) of Bκ⃗(u) reduces to the Vandermonde determinant

B(u)κ⃗ =
∏

i>j

(µi(u)− µj(u)) .

So, at this point of the phase space the variables x1, . . . , xd are roots of the equations

µi(u) = µj(u), i < j. (5.14)

Every such equation has N roots. Denote them x1
ij, . . . , x

N
ij . For a generic choice of the constants λk

i

we can assume that all these roots are pairwise distinct.
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Let us now consider a small perturbation

L(u) .→ L(u) + δL(u).

Since we want to stay on the same symplectic leaf, we have to impose conditions

δLii(u) = 0, i = 1, . . . , n.

For the variation of the polynomial Bκ⃗(u) we obtain

δ logBκ⃗(u) =
∑

i ̸=j

δLij(u)

µi(u)− µj(u)
. (5.15)

The proof of this formula is identical to the proof of Lemma A.2 in the Appendix; it is even simpler as
the basis of eigenvectors of L(u) coincides with the standard basis in Cn. Observe that the symmetric
part of the matrix δL(u) does not contribute to the rhs. So, without loss of generality we can assume
antisymmetry

δLji(u) = −δLij(u) ∀ i, j.
From eq. (5.15) it readily follows that

δxp
ij = 2

δLij

(
xp
ij

)

µ′
i

(
xp
ij

)
− µ′

j

(
xp
ij

) , 1 ≤ i < j ≤ n, p = 1, . . . , N. (5.16)

Hence
∂xp

ij

∂S(q)
kl

=
δikδjl(

µ′
i

(
xp
ij

)
− µ′

j

(
xp
ij

))
(νq − xp

ij)
, i < j, k < l, p, q = 1, . . . , N. (5.17)

Using the well known Cauchy determinant

det

(
1

ai − bj

)

1≤i,j≤N

=

∏
i<j(ai − aj)

∏
k>l(bk − bl)∏

i, j(ai − bj)

we obtain the determinant of the Jacobi matrix (5.17)

det

(
∂xp

ij

∂S(q)
kl

)
= 2N

n(n−1)
2

∏

i<j

[
N∏

p=1

(
µ′
i

(
xp
ij

)
− µ′

j

(
xp
ij

))−1

∏
s<t(νs − νt)

(
xt
ij − xs

ij

)
∏

s, t

(
νt − xs

ij

)
]
̸= 0. (5.18)

The Proposition is proven.

5.4 Anisotropically deformed rational r-matrices and Gaudin-type models

5.4.1 Anisotropically deformed rational r-matrices

Let Xij, i, j ∈ 1, n be the standard basis of gl(n). Let aj, j ∈ 1, n be arbitrary complex numbers. Let
us consider the following gl(n)⊗ gl(n)-valued function:

ra(u, v) =
1

u− v

n∑

i,j=1

1 + aiu

1 + aiv
Xij ⊗Xji. (5.19)
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As it was shown in [28] it satisfies the generalized non-dynamical classical Yang-Baxter equation (2.7),
i.e. it is indeed a classical r-matrix. This r-matrix is gauge equivalent to “irrational” or “hyperelliptic”
r-matrix discovered in [26]. The r-matrix (5.19) can be viewed as an anisotropic deformation of the
rational r-matrix: when aj → 0, j ∈ 1, n the r-matrix (5.19) passes to the standard rational r-matrix.

The r-matrix (5.19) admits the decomposition (1.9). Indeed, the direct calculation shows that:

ra(u, v) =
Ω

u− v
+∆r(v, v) =

n∑
i,j=1

Xij ⊗Xji

u− v
+

n∑

i,j=1

aiXij ⊗Xji

1 + aiv
.

For the classical r-matrix (5.19) exists the following shift element [30]

c(u) =
n∑

k=1

ck
1 + aku

n∑

i=1

ai − ak
1 + aiu

Xii, (5.20)

where ck are arbitrary complex numbers. Contrary to the case of the standard rational r-matrix, the
shift element (5.20) nontrivialy depends on the spectral parameter u.

The r-matrix (5.19) belongs to the class of the so-called “diagonal” with respect to the standard
root basis r-matrices, i.e. to the r-matrices of the following form:

r(u, v) =
n∑

i,j=1

rji(u, v)Xij ⊗Xji,

i.e. rij,kl(u, v) = rji(u, v)δkjδil. From this we easily obtain that the r-matrix (5.19) satisfies the condition
(4.1). It occurs, moreover, that the r-matrix (5.19) satisfies a stronger condition:

Proposition 5.4 The r-matrix (5.19) satisfies the condition (1.11) for arbitrary constant vector κ⃗.

Proof. It will be sufficient to prove this statement for a suitably normalized vector κ⃗. Chose
κn = 1 as such a normalization. The corresponding group element gκ⃗ is written in this case simply as

gκ⃗ = 1n +
n−1∑
i=1

κiXin, g
−1
κ⃗ = 1n −

n−1∑
i=1

κiXin. Using this and the direct calculation one shows that for any

diagonal in the root basis r-matrix the corresponding gauge-transformed r-matrix reads as follows:

rgκ⃗(u, v) =

=
n∑

i,j=1

rji(u, v)Xij⊗Xji+
n∑

i=1

n−1∑

j=1

(rji(u, v)−rni(u, v))κjXin⊗Xji+
n−1∑

i=1

n∑

j=1

(rji(u, v)−rjn(u, v))κiXij⊗Xjn+

+
n−1∑

i=1

n−1∑

j=1

(rji(u, v) + rnn(u, v)− rjn(u, v)− rni(u, v))κjκiXin ⊗Xjn.

From the explicit form of the transformed r-matrix we immediately obtain that the condition (1.12) is
equivalent to the following conditions

(i)rin,ji = κj(rji(u, v)− rni(u, v)) = 0, (ii)rin,jn = κiκj(rji(u, v) + rnn(u, v)− rjn(u, v)− rni(u, v)) = 0,
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where i, j ∈ 1, n− 1. In the case κi ̸= 0, i ∈ 1, n− 1 in order for this condition to be satisfied one has
to impose the following requirements on the r-matrix:

(i) rji(u, v) = rni(u, v), (ii) rjn(u, v) = rnn(u, v), ∀ i, j ∈ 1, n− 1,

i.e. one has to require that rji(u, v) = rni(u, v), ∀ i, j ∈ 1, n. The r-matrix (5.19) satisfies this condition.
Proposition is proven.

5.4.2 The generalized Gaudin model with or without external magnetic field

Let us now consider the generalized Gaudin models with or without external magnetic field associated
with the classical r-matrix (5.19). For this purpose we will specify the formulas (5.2), (5.4) and (5.3),
(5.5) for the case of the classical r-matrix (5.19).

First we consider the generalized Gaudin model without an external magnetic field. The Lax operator
(5.2) is written in this case as follows [26]:

L(u) =
N∑

k=1

1

νk − u

n∑

i,j=1

1 + aiνk
1 + aiu

S(k)
ij Xji. (5.21)

The corresponding generalized Gaudin Hamiltonians (5.4) have the following form [26]:

Hl =
N∑

k=1,k ̸=l

1

νk − νl

n∑

i,j=1

1 + aiνk
1 + aiνl

S(k)
ij S(l)

ji +
n∑

i,j=1

ai
1 + aiνl

S(l)
ij S

(l)
ji . (5.22)

Using the shift element (5.20) we define the following shifted Lax operator (5.3):

L(u) =
N∑

k=1

1

νk − u

n∑

i,j=1

1 + aiνk
1 + aiu

S(k)
ij Xji +

n∑

k=1

ck
1 + aku

(
n∑

i=1

ai − ak
1 + aiu

Xii) (5.23)

and the following generalized Gaudin Hamiltonians in an external magnetic field [28]:

Hl =
N∑

k=1,k ̸=l

1

νk − νl

n∑

i,j=1

1 + aiνk
1 + aiνl

S(k)
ij S(l)

ji +
n∑

i,j=1

ai
1 + aiνl

S(l)
ij S

(l)
ji +

n∑

k=1

ck
1 + akνl

(
n∑

i=1

ai − ak
1 + aiνl

S(l)
ii

)
.

(5.24)

Remark 5.2 Observe that, when ai ̸= aj, i, j ∈ 1, n the introduction of the shift element (contrary to
the case of rational r-matrices) does not increase the number of integrals obtained using the unshifted
Lax matrix.
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5.4.3 The completeness of the separated coordinates

Let us now consider the problem of separation of variables for the described in the previous subsection
subclass of the generalized Gaudin models. In this subsection we will assume that ai ̸= aj, i, j ∈ 1, n.
It turns out that, in this case introduction of the external magnetic field does not affect completeness
of the separated coordinates. That is why, for the purpose of simplicity, we will hereafter consider only
the generalized Gaudin models without a magnetic field. Indeed, the set of separated coordinates of
the generalized Gaudin models with a magnetic field is complete if and only if the corresponding set of
separated coordinates of the generalized Gaudin models without a magnetic field is complete.

The r-matrix (5.19) is diagonal in the root basis and obviously satisfies the condition (4.1). That
is why the separating functions A(u) and B(u) corresponding to the standard normalization of the
eigenvector of the Lax matrix produce the canonical coordinates. Nevertheless, this set of canonical
coordinates will not be complete. Indeed, let us consider the set of zeros of the function B(u). It will
suffice to consider the case N = 1. We omit the upper index of the generalized spin variable in this
case.

Let us introduce an auxiliary spectral-parameter-independent matrix

S =
n∑

i,j=1

SijXij.

We will have the following relation between the minors of the matrices L(u) and S:

L

(
j1....jm
i1....im

)
(u) =

1

(u− ν1)m(1 + aj1u)....(1 + ajmu)
S

(
i1....im
j1....jm

)

Using the definition of the function B(u) written in the form of minors (3.11)-(3.12), we obtain that
B(u) becomes a polynomial of the degree 1 + 2 + ... + (n − 2) = (n−2)(n−1)

2 in the spectral parameter
after multiplication by the following polynomial:

f(u) = (u− ν1)
n(n−1)

2 (1 + anu)
n−1
(
(1 + a1u)(1 + a2u)...(1 + an−1u)

)n−2

,

where we have used that the function B({αj
i}, u) contains minors L

(
α1
m−1... α

m−1
m−1 n

α1
m ... αm

m

)
(u) and also

the fact that the indices of summation αj
i used in the function B({αj

i}, u) run from 1 to n− 1.
That is why in the caseN = 1 zeros of the functionB(u) corresponding to the standard normalization

of the eigenvector of the Lax matrix give us only
(n− 2)(n− 1)

2
separated coordinates xi instead of the

necessary
n(n− 1)

2
coordinates, i.e n− 1 coordinates xi are missing.

Fortunately, by virtue of the Proposition (5.4) the r-matrix (5.19) satisfies also the condition (1.11).
That is why we can use the transformed separating functions instead of the standard ones.

The following proposition is true:

39



Proposition 5.5 Let Bκ⃗(u) = Bgκ⃗(u), Aκ⃗(u) = Agκ⃗(u) be the transformed separating functions corre-
sponding to the normalization vector κ⃗ (see (1.6)) with κi ̸= 0, i ∈ 1, n. Let ai ̸= aj. Then zeros of the
function Bκ⃗(u) and the values of the function Aκ⃗(u) in these zeros, where the functions Bκ⃗(u), Aκ⃗(u)
are calculated for the Lax operator (5.21), constitute a complete set of the separated coordinates on the
generic coadjoint orbits of the direct product of N copies of GL(n).

To simplify the calculations we will give the proof for the particular choice

κ⃗ = (1, 1, . . . , 1).

Proof. For u → ∞ the Lax matrix behaves as follows

L(u) = − 1

u2
L∞ +O

(
1

u3

)

L∞ =
N∑

k=1

n∑

i, j=1

1 + aiνk
ai

S(k)
ij Xji. (5.25)

Let us prove that, assuming that the eigenvalues λ1
∞, . . . , λn

∞ of the matrix L∞ are pairwise distinct
that Bκ⃗(u) can be represented in the form

Bκ⃗(u) =
B̃κ⃗(u)

∏N
k=1(u− νk)

n(n−1)
2
∏n

i=1(1 + aiu)n−1

where B̃κ⃗(u) is a polynomial in u of degree n(n−1)
2 × N . Indeed, from (5.25) it follows, rewriting the

determinant (1.18) in the basis of eigenvectors of L∞, that

Bκ⃗(u) = C(−1)
n(n−1)

2 u−n(n−1)
∏

i>j

(
λi
∞ − λj

∞
)
+ . . . , u → ∞

where the constant C ̸= 0 is the determinant of the transition matrix to the basis of eigenvectors of L∞
and the periods stand for the terms of higher order. Hence

deg B̃κ⃗(u) = deg

[
N∏

k=1

(u− νk)
n(n−1)

2

n∏

i=1

(1 + aiu)
n−1

]
− n(n− 1) =

n(n− 1)

2
N.

So, under the above assumption3 we have exactly n(n−1)
2 N variables xi defined as roots of the polynomial

B̃κ⃗(u). We will now prove independence of these variables following the scheme used in the proof of
Proposition 5.3. Start from a diagonal Lax matrix

L(u) = diag(µ1(u), . . . , µn(u)), µi(u) =
N∑

k=1

λk
i

νk − u
+

ai
1 + aiu

λ0
i , i = 1, . . . , n

3Needless to say that the assumption holds true for a generic point in the phase space.
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where λ1
i , . . . , λ

N
i are arbitrary numbers and we put

λ0
i = λ1

i + · · ·+ λN
i .

For every pair of indices i < j we have N canonical coordinates defined as the roots u = x1
ij,. . . , u = xN

ij

of the algebraic equation
µi(u) = µj(u).

After an infinitesimal variation
L(u) → L(u) + δL(u)

with δLii(u) = 0 for any i we obtain the infinitesimal variation of the roots

δxp
ij =

1

µ′
i

(
xp
ij

)
− µ′

j

(
xp
ij

)
N∑

q=1

[
δS(q)

ij − δS(q)
ji

νq − xp
ij

+
ai

1 + aix
p
ij

δS(q)
ij − aj

1 + ajx
p
ij

δS(q)
ji

]

(cf. eq. (5.16) above). Using a modification of the Cauchy determinant

det

(
1

ai − bj
+

1

bj − c

)
=

∏
i<j(ai − aj)

∏
k>l(bk − bl)∏

i, j(ai − bj)

∏

i

c− ai
c− bi

obtain the determinant of a minor of the Jacobi matrix
∂xp

ij

∂S
(q)
kl

selecting the columns with k < l

det

(
∂xp

ij

∂S(q)
kl

)
=
∏

i<j

[
N∏

p=1

(
µ′
i

(
xp
ij

)
− µ′

j

(
xp
ij

))−1

∏
s<t(νs − νt)

(
xt
ij − xs

ij

)
∏

s, t

(
νt − xs

ij

)
∏

r

1 + aiνr
1 + aixr

ij

]
̸= 0. (5.26)

Hence the Jacobi matrix has the maximal rank N n(n−1)
2 .

6 Conclusion and discussion

In the present paper we have considered the problem of separation of variables for the algebraically
integrable Hamiltonian systems possessing gl(n)-valued Lax matrices that satisfy linear Poisson brackets
with arbitrary gl(n)⊗ gl(n)-valued classical r-matrices. We have found, in terms of the corresponding
r-matrices, a sufficient condition that guarantees that the separating polynomials of [20], [18], [14], [7]
produce the canonical coordinates. We consider two examples of the non-dynamical classical r-matrices,
the corresponding Lax operators of Gaudin-type systems along with the separating polynomials and
separated coordinates for them. One of these examples is new.

Let us emphasize that our result works also in the case of dynamical classical r-matrices. In particular
the r-matrix of the gl(n) Calogero models does satisfy our separation condition. We have not considered
the Calogero models in the present paper redirecting the interested reader to the paper [22]. In this
context it is worthwhile to mention existence of the separated coordinates also for the Ruijsenaars
systems [22]. However they are related with the quadratic r-matrix Poisson brackets. This and also
other examples of quadratic Poisson algebras will be considered in the subsequent publication [9].
Another challenging problem is to extend the results of the present article to the quantum case. This
problem is still open.
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A Appendix

In this Appendix we obtain a necessary and sufficient condition for validity of the canonical Poisson
brackets between the separated variables of algebro-geometric type.

Let (xi, pi), i ∈ 1, d be the points of the spectral curve specified by the following condition: there
exists a (left) eigenvector fi ̸= 0

fi L(xi) = pifi

of the Lax matrix L(u) with u = xi satisfying

< fi,κ >= 0. (A.1)

It will be assumed that the space of such eigenvectors is one-dimensional for every i. By f ′
i denote the

right eigenvector of the same matrix with the same eigenvalue

L(xi)f
′
i = pif

′
i .

The n×n Lax matrix will be considered as a linear operator on the space V = Cn. The right eigenvectors
belong to V while the left ones are in the dual space V ∗. Also κ is a fixed nonzero vector in V . The
angle brackets denote the natural pairing V ∗ ⊗ V → C,

< a, b >= asb
s, a = (a1, . . . , an) ∈ V ∗, b = (b1, . . . , bn)T ∈ V.

Let r(u, v) =
(
rijkl(u, v)

)
be an r-matrix depending analytically on the complex variables u, v away

from the diagonal u = v. It defines a linear Poisson bracket on the space of Lax matrices. Our goal is
to derive a necessary and sufficient conditions for validity of the commutation relations

{xi, xj} = {pi, pj} = {xi, pj} = 0, i, j = 1, . . . , d, i ̸= j. (A.2)

We also add a regularity assumption specifying the behavior of r-matrix on the diagonal

r(u, v) =
Ω

u− v
+∆r(u, v), u → v (A.3)

where
Ω =

∑

i, j

X i
j ⊗Xj

i

and ∆r(u, v) is analytic on the diagonal. This condition turns out to be sufficient for validity of the
commutation relations

{xi, pi} = 1, i = 1, . . . , d. (A.4)

For every i ∈ 1, d let us define a vector σi ∈ V using the following
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Lemma A.1 For every i ∈ 1, d there exists a vector σi ∈ V satisfying

(L(xi)− pi · 1) σi = κ. (A.5)

Proof: The condition of compatibility of such a system coincides with (A.1).

Denote
rκ(u, v) : V

∗ ⊗ V ∗ → V ∗ (A.6)

the linear map defined by the (2,1)-tensor

(rκ(u, v))
ij
k = κsrijsk(u, v). (A.7)

Theorem A.1 1) The variables xi, pj satisfy the commutation relations (A.2) iff the r-matrix satifies
the following system of equations

〈
(fi ⊗ fj)rκ(xi, xj), f

′
j

〉
= 0, i ̸= j = 1, . . . , d (A.8)

⟨(fi ⊗ fj)rκ(xi, xj), σj⟩ = ⟨(fj ⊗ fi)rκ(xj, xi), σi⟩ , i, j = 1, . . . , d. (A.9)

2) If moreover the r-matrix satisfies the regularity assumption (A.3) and the equations

⟨(fi ⊗ fi)∆rκ(xi, xi), f
′
i⟩ = 0 (A.10)

hold true for any i then the commutation relations (A.4) hold true too.

Remark A.1 It is easy to see that the equations (A.8), (A.9) follow from the condition (1.11) of the
paper. Indeed, as the vectors fi, fj both satisfy the normalization (A.11), the condition (1.11) implies

(fi ⊗ fj)rκ(u, v) = 0

for any u, v. Taking the limit u → v we also arrive at (A.10).

Let us proceed to the proof of the Theorem. We begin with proving eq. (A.9) deriving it from
vanishing of the brackets {xi, xj}.

Let us label the sheets of the spectral curve over u ∈ C in a sufficiently small neighborhood of u = xi

by numbers 1, 2, . . . , n in such a way that the point (xi, pi) belongs to the n-th sheet. In a similar
way we label the sheets over a small neighborhood of v = xj. Denote (fa

k (u)) the n× n matrix of (left)
eigenvectors of L(u)

fa
k (u)L

k
l (u) = µa(u)f

a
l (u), a, l = 1, . . . , n.

Here µa(u) is the value of the algebraic function µ(u) on the a-th sheet. The eigenvectors

fa(u) = (fa
1 (u), . . . , f

a
n(u))

coincide with the rows of the matrix. They will be normalized by the following conditions

⟨fa(u),κ⟩ = 1, a = 1, . . . , n− 1, ⟨fn(u),κ⟩ = u− xi. (A.11)
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With such a normalization the matrix (fa
k (u)) depends analytically on u. Denote

(
gka(u)

)
= (fa

k (u))
−1

the inverse matrix. It also depends analytically on u. Its columns ga(u) = (g1a(u), . . . , g
n
a (u))

T are right
eigenvectors of L(u). Choose

fi = fn(u = xi), f ′
i = gn(u = xi). (A.12)

In a similar way we define the matrices (fa
k (v)) and

(
gka(v)

)
analytic near v = xj and choose the

eigenvectors fj and f ′
j like in (A.12).

In the subsequent calculations we will use indices a, b, . . . for labelling the eigenvectors and the
corresponding eigenvalues of the matrix L(u) while the indices i, j, . . . will be used to label their
coordinates in the original basis in Cn. It will be always assumed summation over repeated indices i,
j, . . . but not in a, b, . . . .

Recall that x1, . . . , xd are zeros of the determinant

B(u) = κ ∧ L(u)κ ∧ L2(u)κ ∧ · · · ∧ Ln−1(u)κ.

We will first compute derivatives of B(u) as a function of L(u).
Denote

κa(u) = fa
i (u)κ

i,

δLa
b (u) = fa

i (u)g
j
b(u)δL

i
j(u)

the components of the vector κ and the entries of the matrix δL(u) in the basis of eigenvectors. Notice
that, due to the normalization (A.11) one has

κ1(u) = · · · = κn−1(u) ≡ 1, κn(u) = u− xi. (A.13)

Similar expressions hold true for κa(v) = fa
i (v)κ

i

κ1(v) = · · · = κn−1(v) ≡ 1, κn(v) = v − xj. (A.14)

Lemma A.2 The following formula holds true

δ logB(u) =
∑

a, b

κb(u)

κa(u)
Y b
a (u)δL

a
b (u) (A.15)

where

Y b
a (u) =

⎧
⎪⎨

⎪⎩

1
µa(u)−µb(u)

, a ̸= b

∑
c ̸=a

1
µa(u)−µc(u)

, a = b.
(A.16)

The formula (A.15) can be derived from eq. (30) in [7]. For convenience of the reader we will sketch
the proof here.
Proof: The following wellknown formula for derivatives of determinants will be used.

44



Lemma A.3 Let X1, . . . , Xn be n linearly independent vectors in Cn depending on parameters. Then
for an arbitrary variation

Xi .→ Xi + δXi, δXi = Aj
iXj

one has
δ (X1 ∧ · · · ∧Xn) = trA ·X1 ∧ · · · ∧Xn (A.17)

in the linear approximation wrt the variation.

In our case
Xi = Li−1(u)κ

so δX1 = 0,
δXi(u) =

∑

p+q=i−1

Lp(u)δL(u)Lq(u)κ, i = 2, . . . , n.

Rewriting in the basis of eigenvectors obtain

δXi(u) =
∑

p+q=i−1

∑

a,b

µp
a(u)µ

q
b(u)δL

a
b (u)κ

b(u)fa(u).

We are now to decompose this vector with respect to the basis

Xj(u) = Lj−1(u)κ =
∑

c

µj−1
c (u)κc(u)fc(u).

To this end we first decompose the eigenvectors with respect to the basis X1, . . . , Xn. The following
linear system is to be solved

hj
c(u)Xj(u) = fc(u) ⇔

∑

j

hj
c(u)µ

j−1
c (u)κc(u) = δjc .

Write h̃j
c(u) = hj

c(u)κ
c(u). Thus the entries of the matrix h̃j

c(u) are coefficients of the Lagrange inter-
polation polynomials depending on the parameter u

Pc(z) =
n∑

j=1

h̃j
c(u)z

j−1, Pc (z = µa(u)) = δac.

We arrive at the following decomposition

δXi(u) = Aj
i (u)Xj(u)

where

Aj
i (u) =

∑

a,b

∑

p+q=i−2

κb(u)

κa(u)
h̃j
a(u)µ

p
a(u)µ

q
b(u)δL

a
b (u).
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To compute the trace Ai
i(u) we first simplify the following sum

∑

i

∑

p+q=i−2

h̃i
aµ

p
aµ

q
b

(here and below we omit the dependence on u in order to simplify the notations). For a ̸= b we have

∑

p+q=i−2

µp
aµ

q
b =

µi−1
a − µi−1

b

µa − µb
.

So ∑

i

∑

p+q=i−2

h̃i
aµ

p
aµ

q
b =

1

µa − µb
.

For a = b ∑

p+q=i−2

µp
aµ

q
a = (i− 1)µi−2

a .

Hence
∑

i

∑

p+q=i−2

h̃i
aµ

p
aµ

q
a =

n∑

i=1

(i− 1)h̃i
aµ

i−2
a =

(
d

dz
Pa(z)

)

z=µa

=
∑

c

1

µa − µc
.

Here we have used the explicit expression for the Lagrange polynomials

Pa(z) =

∏
c ̸=a(z − µa)∏
c ̸=a(µa − µc)

.

This completes the proof of Lemma.

Lemma A.4 The Poisson brackets between the logarithms of the separating functions B(u) are given
by the following formula

{logB(u), logB(v)} =
∑

a ̸=b

∑

c,d

κb(u)

κa(u)

κd(v)

κc(v)
Y d
c (v)r

ac
bd(u, v)−

∑

a,b

∑

c̸=d

κb(u)

κa(u)

κd(v)

κc(v)
Y b
a (u)r

ca
db(v, u) (A.18)

where racbd(u, v) are the entries of the r-matrix in the basis of eigenvectors

racbd(u, v) = fa
i (u)f

c
j (v)g

k
b (u)g

l
d(v)r

ij
kl(u, v).

The matrix rcadb(v, u) is given by a similar expression interchanging u and v.

Proof: Using eq. (A.15) obtain

{logB(u), logB(v)} =
∑

a, b

κb(u)

κa(u)
Y b
a (u)f

a
j (u)g

i
b(u)

{
Lj
i (u), L

l
k(v
}∑

c, d

κd(v)

κc(v)
Y d
c (v)f

c
l (v)g

k
d(v).
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Rewriting the formula for the Poisson bracket

{
Lj
i (u), L

l
k(v
}
= rjlsk(u, v)L

s
i (u)− rslik(u, v)L

j
s(u)− rljsi(v, u)L

s
k(v) + rsjki(v, u)L

l
s(v)

in the basis of eigenvectors we obtain, after simple calculations

{logB(u), logB(v)} =
∑

a, b, c, d

κb(u)

κa(u)

κd(v)

κc(v)
Y b
a (u)Y

d
c (v) [(µb(u)− µa(u)) r

ac
bd(u, v)− (µd(v)− µc(v)) r

ca
db(v, u)] .

For the first term in the square brackets it suffices to sum over a ̸= b. Then the factor (µb(u)− µa(u))
cancels with Y b

a (u). In a similar way we deal with the second term. This gives (A.18).

Corollary A.1 The following formula holds true for the Poisson brackets between the variables xi

{xi, xj} =
n−1∑

a, b=1

(
rnnab (xi, xj)

pj − µb(xj)
− rnnab (xj, xi)

pi − µb(xi)

)
. (A.19)

Proof: For u → xi, v → xj the lhs of (A.18) behaves as

{logB(u), logB(v)} =
{xi, xj}

(u− xi)(v − xj)
+ regular terms.

In the rhs the terms with the same poles are obtained only for a = c = n and d ̸= n, due to the
normalization (A.11). Due to the same normalization κb(u) = κd(v) ≡ 1 for b, d different from n. This
proves the Corollary.

Let us now consider the brackets {xi, pj} for i ̸= j. Denote

P (u, µ) = det (L(u)− µ · 1)

the characteristic polynomial of the Lax matrix.

Lemma A.5 For any i and any a = 1, . . . , n and an arbitrary v the following formula holds true

{xi, µa(v)} =
n−1∑

b=1

rnaba (xi, v). (A.20)

Proof: Let us compute the Poisson bracket

{logB(u), logP (v, µ)} = {logB(u), Ll
k(v)}Mk

l (v, µ)

where
M(v, µ) = (L(v)− µ · 1)−1 .
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Using eq. (A.15) after a straightforward calculation we arrive at

{logB(u), logP (v, µ)} = −
∑

a ̸=b

κb(u)

κa(u)
Mk

l (v, µ)f
a
j (u)g

i
b(u)r

jl
ik(u, v).

Representing the inverse matrix in the basis of eigenvectors

Mk
l (v, µ) =

∑

c

gkc (v)
1

µc(v)− µ
f c
l (v)

we finally obtain the following expression

{logB(u), logP (v, µ)} =
∑

a̸=b

κb(u)

κa(u)

racbc (u, v)

µ− µc(v)
.

Considering the limit u → xi and using the normalization (A.11) like in the proof of the previous lemma
we arrive at the following bracket

{xi, logP (v, µ)} =
n−1∑

b=1

∑

c

rncbc (xi, v)

µc(v)− µ
.

Finally, applying similar arguments to the above equation at the limit µ → µc(v) we complete the proof
of Lemma.

Corollary A.2 If the condition {xi, xj} = 0 is fulfilled then

{xi, pj} =
n−1∑

b=1

rnnbn (xi, xj), i ̸= j. (A.21)

Proof: Specializing eq. (A.20) for a = n and v = xj we obtain

{xi, pj} = {xi, µn(v)}v=xj +

(
dµn(v)

dv

)

v=xj

{xi, xj} =
n−1∑

b=1

rnnbn (xi, xj).

We now proceed to considering the brackets of momenta.

Lemma A.6 Vanishing of the Poisson brackets {xi, xj} and {xi, pj}, {xj, pi} implies that also {pi, pj} =
0.

Proof: Denote
P (u, µ) = det (L(u)− µ · 1)
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the characteristic polynomial of the Lax matrix. It is well known that the r-matrix nature of the Poisson
bracket implies commutativity of the characteristic polynomials

{P (u, µ), P (v, ν)} = 0

for arbitrary u, v, µ, ν (see, e.g. the book [10]). Hence the eigenvalues of the Lax matrix also commute

{µa(u), µb(v)} = 0 ∀u, v, ∀ a, b = 1, . . . , n.

Choose a = b = n and set u = xi, v = xj to obtain

{pi, pj} = {µn(u), µn(v)}u=xi, v=xj +
dµn(xi)

du
{xi, pj}+ {pi, xj}

dµn(xj)

dv
+

dµn(xi)

du

dµn(xj)

dv
{xi, xj} = 0.

As it follows from the statements proven above vanishing of the brackets {xi, xj} = {xi, pj} =
{pi, pj} = 0 for i ̸= j is equivalent to the following system of equations written in terms of certain
components of the r-matrix in the basis of eigenvectors of the Lax matrix

n−1∑

b=1

rnnbn (xi, xj) = 0 (A.22)

and
n−1∑

a, b=1

rnnab (xi, xj)

pj − µb(xj)
=

n−1∑

a, b=1

rnnab (xj, xi)

pi − µb(xi)
(A.23)

evaluated at u = xi, v = xj for any i ̸= j. Our goal now is to “translate” these conditions in terms
of the entries of the r-matrix in the original coordinates. The following elementary statement will be
useful.

Lemma A.7 For any i = 1, . . . , d the following identity holds true for the right eigenvectors g1(xi),
. . . , gn(xi) of the Lax matrix L(xi)

n−1∑

k=1

gk(xi) = κ. (A.24)

Proof: Denote F = (fa
k (xi)) the matrix of (left) eigenvectors evaluated at the point u = xi and

G =
(
gka(xi)

)
its inverse matrix. Due to the normalization (A.1) one has

Fκ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
.
.
.
1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Multiplying both sides by G on the left we obtain (A.24).

Let us verify that eq. (A.22) coincides with (A.8). The lhs of (A.22) is nothing but the following
multiple sum

n−1∑

b=1

rnnbn (xi, xj) =
n−1∑

b=1

fn
k (xi)g

s
b(xi)f

n
l (xj)g

t
n(xj)r

kl
st(xi, xj).

We have

(fn
1 (xi), . . . , f

n
n (xi)) = fi, (fn

1 (xj), . . . , f
n
n (xj)) = fj,

(
g1n(xj), . . . , g

n
n(xj)

)T
= f ′

j

and
n−1∑

b=1

(
g1n(xi), . . . , g

n
n(xi)

)T
= κ

due to the above Lemma. So we arrive at eq. (A.9).
Let us now look at eq. (A.23). Proceeding like in the previous calculation we see that the following

vector appears in the lhs
n−1∑

b=1

gb(xj)

pj − µb(xj)
.

On the rhs a similar vector appears with i ↔ j. Clearly this vector satisfies

(L(xj)− pj · 1)
n−1∑

b=1

gb(xj)

pj − µb(xj)
= −

n−1∑

b=1

gb(xj) = −κ.

This implies eq. (A.9) with σj = −
∑n−1

b=1
gb(xj)

pj−µb(xj)
. Notice that validity of this equation does not

depend on the choice of a solution to (A.5). Indeed, the freedom in choosing σj is in adding a vector
proportional to gn(xj) = f ′

j. Such an addition does not contribute to (A.9) due to eq. (A.8).
It remains to verify that {xi, pi} = 1 under the assumptions (A.3), (A.10). Indeed, eq. (A.10)

implies that the regular part ∆r(u, v) of the r-matrix does not contribute to this bracket. And for the
standard rational r-matrix

r(u, v) =
Ω

u− v
it was proven in various ways [7, 1, 14, 18] that {xi, pi} = 1. The Theorem is proved.

Remark A.2 The necessary and sufficient conditions (A.8), (A.9) can be certainly simplified when
working with concrete examples of Lax algebras. In the analysis of these examples one has first to prove
that the u-projections of the poles of the eigenvectors of the Lax matrix normalized by the condition
(A.1) can be arbitrary complex numbers. If this is the case then the next step would be to check that,
choosing appropriately an element L(u) with poles over prescribed values u = xi, v = xj one can
obtain arbitrary (left) eigenvectors fi and fj satisfying the normalization (A.1) and, moreover, the right
eigenvector f ′

j also can be arbitrary. If it happens like this then the equation (A.8) immediately implies
the condition (1.11) derived in the main part of this paper from Poisson-closedness of the algebra of
separating functions. The equation (A.9) in this case holds true automatically. We plan to consider
more examples of Lax algebras in subsequent publications.
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