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1. Introduction

Self-duality equations play an important role in the context of topological quantum field

theory (TQFT). They provide topological gauge functions that one enforces in a BRST

invariant way, which determine in turn a supersymmetric action in a twisted form. In [1],

there is a classification for possible self-duality equations for the curvatures of forms of

degree p in spaces with dimension d ≤ 16. For euclidean gravity in four dimensions,
it has been known for a long time that the self-duality equations solving the Einstein

equations involve the spin-connection itself [2]. This apparent lack of gauge independence

of a physical equation is not harmful, since its solution can be related to a physical solution

— the gravitational instanton- by a well-defined Lorentz transformation.

In eight dimensions, an interesting result was found, namely that the eight-dimensional

topological Yang-Mills theory gives a SO(8) covariant theory which is Spin(7) invariant, but

is a twisted version of the eight-dimensional supersymmetric Yang-Mills theory [3, 4].1 By

analogy, we expect that topological gravities can only be relevant for manifolds with special

holonomy. Indeed, the possible gravitational self-duality equations for the spin connection

can only be invariant under a subgroup of the Lorentz group (for instance SU(2) ⊂ SO(4)
in four dimensions, Spin(7) ⊂ SO(8) in eight dimensions). In the case of topological Yang-
Mills theories, there are arguments according to which the full Lorentz invariance can

be recovered, after untwisting the topological field theory into a supersymmetric theory.

In the case of topological gravities, the situation is more involved, because the gauge

group is mainly the Lorentz × diffeomorphism symmetry which must be linked to local
1By dimensional reduction to four dimensions and a suitable gauge-fixing in the Cartan algebra allowed

by topological invariance, this theory gives the abelian monopole theory of Seiberg and Witten [5], which

describes the infra-red behavior of the non-abelian super Yang-Mills theory with extended supersymme-

try [3].
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supersymmetry instead of global supersymmetry. It is a priori not clear whether the

untwisting procedure can be systematically applied in a way that transforms the topological

gravity into its natural image, N = 2 supergravity. This has been shown to be true in two

dimensions [6], and Anselmi and Frè have given good arguments that the four-dimensional

N = 2 supergravity can be twisted in a topological gravity [7]. There is moreover a quite

general argument that makes us confident that one can reach all N = 2 supergravities,

through the construction of topological gravities coupled to TQFT’s for p-form gauge

fields. Indeed, all types of superstring theories can be obtained by suitable anomaly free

untwisting of topological sigma-models, which are quite easy to derive, at least in a formal

way [8]. Then, we can rely on the fact that supergravities arise as low energy limits of

superstrings in order to predict a link between supergravities and topological gravities.

The aim of this paper is to give a direct construction of the topological gravity in four

dimensions, and then to show how it determines the N = 2, d = 4 supergravity. As we

will see, manifolds with special holonomy play a relevant rôle both in the correct definition

of the topological theory and of the twist. A nice feature of our work is that it gives a

geometrical interpretation of the graviphoton in supergravity. Another interest is that it

establishes a solid framework for generalizations in higher dimensions. In the concluding

remarks, we will comment about a possible generalization of our topological action in eight

dimensions, which should be relevant for manifolds with Spin(7) holonomy.

As for the determination of new invariants in four dimensions, the TQFT is well defined

on manifolds with an SU(2) holonomy group, as we will show in section 3. These manifolds

admit two covariantly constant chiral spinors. The determination of observables stems from

descent equations, as it is standard in the BRST formalism, and describe a cohomology

which is equivariant with respect to the SU(2)× diffeomorphism symmetry. Their mean
values can only depend on global properties of the chosen manifold for which one computes

the action and the TQFT.

2. The topological gravity

Let us consider the symmetries of ordinary gravity in four dimensions. The basic symmetry

is the Lorentz × diffeomorphism symmetry, whose gauge fields are the spin connection ωabµ
and the vielbein eaµ. We consider these fields as independent ones in a first order formalism,

and through the paper the latin indices a, b, . . . denote flat SO(4) tangent space indices,

and µ, ν, . . . are world indices. The curvatures are

Rab = dωab + ωac ∧ ωcb , T a = dea + ωac ∧ ec , (2.1)

where D = d + [ω, •] is the Lorentz covariant derivative. We define the Lie derivative as
Lξ = iξd − diξ, where ξµ is an anticommuting vector field. We could as well write the
following equation by redefining Lξ into the operator iξD − Diξ. The equations remain
the same, up to a redefinition of all ghosts and of ghost of ghosts, using the similarity

operation exp iξ [9]. With the covariant constraint T
a = 0, one has ω = ω(e), which

determines ω up to a local Lorentz transformation. Eventually, a more refined version of

this constraint will be enforced in a BRST invariant way in section 5.
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Since the Lorentz × diffeomorphism symmetry determines a Lie group, the topological
BRST symmetry can be straightforwardly constructed as:

seaµ = Lξeaµ − Ωabebµ +Ψaµ
sωabµ = Lξωabµ +DµΩab + Ψ̃abµ
sΨaµ = LξΨaµ − ΩabΨbµ − LΦeaµ + Φ̃abebµ
sΨ̃abµ = LξΨ̃abµ − ΩacΨ̃cb +DµΦ̃ab − LΦωabµ
sΦa = LξΦa − ΩacΦa
sΦ̃ab = LξΦ̃ab − ΩacΦ̃cb

sξµ = Φµ + ξν∂νξ
µ

sΩab = LξΩab − ΩacΩcb + Φ̃ab . (2.2)

Moreover, we have that Φa = eaµΦ
µ, and thus, sΦµ = LξΦµ.

Here the fields Ψ and Ψ̃ are, respectively, the topological ghosts for e and ω and Φ and

Φ̃ are their ghosts of ghosts. We have that

s2 = 0 (s− Lξ)2 = LΦ (2.3)

on all fields. These equations are the structure equations for topological gravity. They can

be cast in the following geometrical form, which generalizes that given in [10]:

(s+ d)ea + (ωab +Ωab)eb = exp iξ(T
a +Ψa +Φa)

(s+ d)(ωab +Ωab) + (ωac +Ωac) ∧ (ωcb +Ωcb) = exp iξ(Rab + Ψ̃ab + Φ̃ab) . (2.4)

It allows for the geometrical interpretation of all fields.

3. The graviphoton

To determine a TQFT, we have to choose a topological gauge function. The present

paradigm is that the square of the gauge function determines the bosonic part of the

TQFT action, up to boundary terms, as in [1]. In the case of gravity in four dimensions,

there is a well known fact, which one uses for proving the positivity of the gravitational

constant. It says that, up to a pure derivative, the Einstein lagrangian can be expressed as

a quadratic form in the Christoffel coefficients. In a first order formalism, this translates

into the following equation, which is satisfied by the Einstein-Hilbert lagrangian:

LEH = 1
4
εabcd R

ab ∧ ec ∧ ed = ωab− ∧ eb ∧ ωac− ∧ ec + d(ωab− ∧ ea ∧ eb) . (3.1)

For any given Lorentz tensor Xab, we define its self-dual or antiself-dual projection as

Xab
±
= 1
2(X

ab ± 12εabcdXcd). Eq. (3.1) is analogous to the equation |F |2 = |F±|2 ± F ∧ F ,
which allows one to express the Yang-Mills action as the square of the self-dual part of

the curvature, plus a boundary term. However, the case of gravity is more subtle, since

– 3 –



J
H
E
P
0
3
(
2
0
0
2
)
0
1
5

the decomposition in eq. (3.1) is only SU+(2) ⊂ Spin(4) invariant.2 This is related to the
fact that the internal symmetry group cannot be disentangled from the diffeomorphism

symmetry, a situation that also complicates the current ideas about the twist of supersym-

metry. Actually, in order that each term in the r.h.s. of eq. (3.1) is globally well defined,

one has to define the vierbein e on manifolds with SU(2) holonomy. Indeed, as we will see

shortly, this allows one to define transition functions, such that ωab
− ∧ eb ∧ ωac− ∧ ec, and

the boundary term in eq. (3.1) can be separately integrated to give a well defined action,

which one can insert in the path integral. We remark that the breaking of the full Lorentz

symmetry into a subgroup by the self-duality equation, and by the decomposition of the

action into a sum of a boundary term plus a square, is a phenomenon which also occurs in

the eight-dimensional Yang-Mills theory, and in the more general cases classified in [1].

To define topological gravity, eq. (3.1) suggests that we choose the following topological

gauge function — the gravitational self-duality equation — for the vielbein:

ωab
−

µ (e) = 0 . (3.2)

Any given solution of eq. (3.2) extremizes the Einstein action, according to eq. (3.1). As

explained in [2], although this equation is only SU+(2) invariant, it determines solutions

of the SO(4) invariant equation Rab
−
(ω(e)) = 0. Manifolds which admit metrics satisfying

this condition have an SU(2)+ holonomy group (they admit two covariantly constant chiral

spinors); then, the transition functions for the vierbeins eaµ can be chosen as elements of

SU(2)+. Correspondingly, by using the torsion-free condition T
a = 0 to define the ωab =

ωab(e), one can easily show that the self-dual part ωab+(e) transforms as a connection, while

the anti-self-dual part ωab−(e) is globally defined under the SU(2)+ local transformations.
Thus each term on the r.h.s. of eq. (3.1) is well-defined on these manifolds.

We then conclude that the gravitational TQFT that explores the fluctuations of the

metrics around such self-dual solutions can be meaningful only when it is defined over

a manifold with an SU(2) holonomy group. This is analogous to what happens for the

topological Yang-Mills theory in eight dimensions, for which the manifold must have Spin(7)

or SU(4) holonomy [3].

The topological gravity will describe the moduli space associated to eq. (3.2), which

can be rewritten as:

Bab
−
eb ∧ ec ∧ ωca = 0 , (3.3)

where Bab
−
is a constant anti-self-dual Lorentz two-form. Bab

−
can be constructed in terms

of the two constant chiral spinors of the manifold. Let us call Ψ = δe an element of the

tangent bundle of the moduli space of the gravitational instanton, solution of eq. (3.3). By

using the identity δ(e[aωb]cec) = d(e[aδeb]), one finds that Ψ satisfies:

Bab
−
d(e[aΨb]) = 0 . (3.4)

Thus, in addition to the zero modes related to reparametrization invariance, we have the

following zero modes for Ψ:

Ψa → Ψa +Mab+eb , (3.5)
2Our notation is Spin(4) = SU(2)+×SU(2)−, where SU(2)+ has self-dual generators (σab) βα and SU(2)−

anti-self-dual generators (σ̄ab) β̇α̇ .
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where Mab
+
(x) is an arbitrary self-dual local parameter. The zero modes of eq. (3.5)

reflect the SU(2)+ invariance of eq. (3.2), which determines the vierbein e
a
µ only up to a

local SU(2)+ transformation. Actually, eq. (3.5) has already been captured in the BRST

symmetry equation for Ψ in eq. (2.2), and it is the reminder of this BRST equation after

the breaking of the Lorentz symmetry down to SU+(2) by eq. (3.3), with M
ab+ = Φ̃ab

+
.

One subtlety of topological gravity is the way we will gauge fix the invariance in

the ghost action corresponding to eq. (3.5). Since Mab
+
is self-dual, it corresponds to

three degrees of freedom and one must introduce Lagrange multipliers that count for three

independent gauge-fixings. However, we can associate to Mab+ a one-form defined modulo

gauge transformation, which also counts for 3 = 4 − 1 degrees of freedom. Thus, we
will introduce an antighost A that is an abelian one-form, whose BRST variation is a

fermionic abelian one-form Ψ̄. Thus, the very basic invariance in eq. (3.5) strongly suggest

to introduce a U(1) graviphoton field Aµ in topological gravity, with the interpretation

that Aµ has ghost number −2 for consistency. The action must only depend on A through
F = dA, so that we expect that all ghosts associated to the SU(2)+× diffeomorphism
invariance carry no charge under this additional U(1) symmetry.

From a geometrical point of view, for manifolds with a metric satisfying eq. (3.2),

the existence of the zero modes (3.5) is related to the existence of a certain number of

self-dual harmonic two-forms, equal to the Hirzebruch signature τ of the manifoldM. For
the simplest example, the Eguchi-Hanson gravitational instanton, one has only one such

self-dual two-form. In general, one has that, locally, Mab
+
ea ∧ eb = ∑τi=1 ci hi, where hi

is a basis of the cohomology group H2+(M,R). Correspondingly, one has to introduce
a series of Maxwell fields Ai, i = 1, . . . , τ , with ghost number −2. This can be done by
adding to the topological gravity action a sum of topological Maxwell actions, which are

constructed in a standard way from the self-duality conditions on the curvatures F i = dAi

of the additional U(1) gauge fields.

The above considerations lead us to complete the BRST equations by introducing the

U(1) graviphoton A. To do so, we must also introduce an abelian ghost c, a topological

ghost Ψ̄ and a ghost of ghost Φ, so that:

sAµ = LξAµ + ∂µc+ Ψ̄µ
sΨ̄µ = LξΨ̄µ − ∂µΦ− LΦAµ
sΦ = LξΦ− LΦc
sc = Lξc+Φ , (3.6)

and:

(s + d)(A + c) = exp iξ(F + Ψ̄ + Φ) (3.7)

The ghost numbers of the fields A, Ψ̄,Φ, and c are −2,−1, 0 and −1, respectively. Thus,
the BRST symmetry that we consider corresponds to the topological symmetry for the Lie

algebra of the SU(2)+× diffeomorphism ×U(1) group. Since the diffeomorphisms cannot
be represented by finite matrices, we expect that the untwist of the topological symmetry

should determine N = 2 local supersymmetry, instead of global supersymmetry.
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If one sets equal to zero the ghosts ξµ, Ωab and c in all BRST equations, one gets a

BRST operator that is nilpotent, modulo a diffeomorphism with parameter Φµ = eµaΦa, a

Lorentz transformation with parameter Φ̃ab and a U(1) transformation with parameter Φ.

The cohomology of this operator define the observables of the topological theory.

4. The antighost sector

In order to perform the topological gauge-fixing that realizes a TQFT around the solution

of eq. (3.2), we need to complete the fields that have been introduced above, by introducing

suitable antighosts and lagrangian multipliers. Some of the latter will actually be propa-

gating fields, a situation that is a current one in supergravity. Moreover, only the SU(2)+
sector of the Lorentz group, which is left invariant by the gauge-fixing condition eq. (3.2),

has to be retained. The corresponding ghosts are given by the self-dual parts of the fields

Ωab, Φ̃ab considered in section 2.

To display the fields, we adopt the presentation of [10]. In the following diagrams,

the ghost number is the same in any given column, and decreases by one unit when one

goes from one column to the next one on the right. We have made the world indices

explicit. Notice that e and ω have ghost number zero, while A has ghost number −2; this
implies in particular that the BRST doublet (χab

+
, βab

+
) has positive ghost numbers equal

to (1, 2) respectively. The following triangular presentation of all fields can be justified if

one introduces an additional grading that accounts for the antighost number, which allows

one to generalize the geometrical equations (2.4) and (3.7). We have

eaµ
Ψaµ Ψ̄ab

−
µ

Φa Lab
−
, bab

−
µ Φ̄a

ηab
−

η̄a

(4.1)

ωabµ

Ψ̃abµ
¯̃Ψ
ab

µ

Φ̃ab
+

L̃ab
−
, b̃abµ

¯̃Φ
ab+

η̃ab
− ¯̃η

ab+

(4.2)

Aµ
Ψ̄µ χab

+

Φ βab
+

Φ̄

η

(4.3)

ξµ ξ̄µ

bµ
Ωab

+
Ω̄ab

+

bab
+

c c̄

b
(4.4)

Clearly, the antighost Ψ̄ab
−

µ and its Lagrange multiplier bab
−

µ are introduced to imple-

ment the gauge condition on ωab
−

µ as given by eq. (3.2), while ¯̃Ψ
ab

µ and its Lagrange multi-

plier b̃abµ will be used to impose, in BRST invariant way, the relevant gauge condition on the

torsion T aµν(e, ω), which allows one to express the spin connection as a function of e, and

– 6 –
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possibly of other fields. The rest of the fields are needed because we are building a TQFT

that is equivariant with respect to the SU(2)+× diffeomorphism ×U(1) symmetry. This
means that the gauge functions on the fields have an internal gauge symmetry, which must

fixed. To do so, one needs suitable ghosts for ghosts, antighosts for antighosts and their

Lagrange multipliers, which allow one to remove the degeneracies of all ghost propagators,

such as the one displayed in eq. (3.5).

All equations for the antighosts appearing in our field spectrum are of the type

ŝḡ = λ ŝλ = LΦḡ + δΦ̃ḡ (4.5)

with sX = ŝX + LξX + δΩ+X. Notice that ŝ2 = LΦ + δΦ̃+ , where δΦ̃+ is a Lorentz
transformation with parameter Φ̃ab

+
, and that none of the antighosts transform under the

U(1) symmetry defined in eq. (3.7). We have:

ŝΨ̄ab
−

µ = bab
−

µ ŝLab
−
= ηab

−
ŝΦ̄a = η̄a

ŝ
¯̃Ψ
ab

µ = b̃
ab
µ ŝL̃ab

−
= η̃ab

−
ŝ
¯̃Φ
ab+

= ¯̃η
ab+

ŝχab
+
= βab

+
ŝΦ̄ = η

ŝξ̄µ = bµ . (4.6)

It is convenient to do field redefinitions that express the BRST transformation for the

antighost Ψ̄ab
−

µ as follows:

ŝΨ̄ab
−

µ = bab
−

µ + ∂µL
ab− ,

ŝbab
−

µ = (LΦ + δΦ̃+)Ψ̄ab
−

µ + ∂µη
ab− − [Ψ̃µ, L]ab− . (4.7)

In this way one can take care in a more transparent way of the degeneracy which occurs in

the term Ψ̄ab
− ∧ s(e[aωb]cec) = Ψ̄ab− ∧ d(e[a ∧ Ψb]) of the action (5.5). The corresponding

zero-modes for Ψ̄ab
−

µ are explicit in eq. (4.7).

5. The topological gravity action

In order to determine a TQFT for topological gravity, which uses the above fields, we

need a little bit of thinking. The expression eq. (3.1) of the Einstein action and the the

self-duality equation (3.2) are the signal for the existence of a TQFT for gravity. It is

quite clear that the definition of a TQFT that concentrates in a BRST invariant way the

path integral around the solution of eq. (3.2) breaks the SO(4) invariance down to SU+(2).

We must therefore consider a quantum field theory in which the path integral measure

only involves vierbeins that determine a globally well defined topological lagrangian. As

discussed in section 3, this restricts the choice to manifolds with SU(2) holonomy.

To recover the full Lorentz symmetry after an untwisting procedure, the existence

of the topological ghost Ψ̄ of the U(1) gauge field A is essential. It allows a complete

determination of spinor fields. Indeed, the fields

(Ψaµ, Ψ̄
ab−
µ , Ψ̄µ) (5.1)

– 7 –
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can be untwisted to the two gravitini (λα̇iµ , λ
i
µα), where i = 1, 2 labels the automorphism

group SU(2)R of N = 2 supergravity. As shown explicitely in the next section, this follows

from the fact that, two pairs of dotted and undotted spinors can be twisted into a vector,

a selfdual or antiselfdual two-form and a scalar, thanks to the two different possibilities of

extracting an SO(4) symmetry from the SU+(2)× SU−(2)× SU(2)R symmetry group [11].
Thus, we need the Lorentz scalar ghost Ψ̄µ, and we understand that Aµ must have ghost

number −2, in order that Ψ̄µ has ghost number −1, as Ψ̄ab−µ . This completes the analysis
done in the previous section for the introduction of A.

In supergravity, the standard gauge condition for the local supersymmetry on the spin

3/2 gravitini λiµ is

γνDνγ
µλiµ = 0 . (5.2)

If this condition is imposed in a way that respects the ordinary BRST symmetry of su-

pergravity, it yields a propagation of the Lagrange multipliers, as first observed by Nielsen

and Kallosh [12]. This leaves little room, but for the interpretation of the fields

(Φa, Lab
−
+ L̃ab

−
,Φ) , (Φ̄a, Lab

− − L̃ab− , Φ̄) (5.3)

as the twist of pairs of commuting Majorana spinors that will be identified, eventually, as

the ghosts and antighosts of the local supersymmetry of N = 2 supergravity. Then,

(η̄a, ηab
−
, η) (5.4)

can be identified as the twist of anticommuting Majorana spinors, which are the propagat-

ing Lagrange multipliers for the gauge-fixing on the gravitini, as we will see in more detail

in the next section. The twisted version of the gauge condition (5.2) naturally arises as the

relevant gauge fixing for the topological ghosts that occur in topological gravity.

This parallel is just enough to tell us how to choose the gauge functions for having a

theory which, (i), concentrates the path integral around the gravitational instanton, and

(ii), has a BRST symmetry corresponding to a twisted supersymmetry. Since the Lie alge-

bra we start from contains the reparametrization symmetry, which cannot be represented

by finite matrices, we expect a link between this topological BRST symmetry and local

supersymmetry, rather than global supersymmetry.

We face the problem of determining an action that contains the Einstein-Hilbert term,

expressed under the form displayed in eq. (3.1), plus a term that depends on the sixteen

fermionic degrees of freedom contained in eq. (5.1). This action is:

ITQFT =

∫
s
[
Ψ̄ac

− ∧ ec ∧ eb ∧ (ωba− + bba−)
]
+

+ s
[
χ+
(
β+ + 2(F + Ψ̄ab

− ∧ Ψ̄ab− + Ψ̄ ∧ Ψ̄)
)
+ 2F− ∧Ψa ∧ ea

]
=

+ s

[
¯̃Ψ
ab ∧ eb ∧∗ (T a(ω, e) + Ψ̄ab− ∧Ψb + Ψ̄ ∧Ψa)

]
, (5.5)

where χ+ = χab
+
ea ∧ eb and β+ = βab+ea ∧ eb. One must expand the s-exact term, using

the above definition of s, to get the full expression of ITQFT . Notice that the dependence

– 8 –
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on the Lagrange multiplier β+, which has ghost number two, arising from the second line

of eq. (5.5) breaks the U(1) ghost number symmetry of this action down to a Z2 symmetry.

This means that the ghost number is conserved only modulo two. This is an unavoidable

feature if we want the graviphoton field A to propagate with a Maxwell term F ∧∗F , since,
according to our previous definitions, this term has ghost number −4. From the twisted
supergravity point of view, this can be understood as a consequence of the fact that the

U(1)R group, which is identified with the ghost number symmetry after the twist, is only a

symmetry of the equation of motions of N = 2 supergravity, and not of the whole action [7].

However, this problem can be avoided in the topological theory, which can be alternatively

defined without the term in (β+)2 responsible of the U(1) symmetry breaking. In this case,

the A field does not propagate, and the topological action (5.5) simply localizes this field

to its classical solutions.

The last term in the eq. (5.5) gives a constraint that determines in a Lorentz covariant

way the spin connection ω as a function of e and of other fields in eq. (5.1). It also allows

one to eliminate the Lorentz topological ghosts Ψ̃ and ¯̃Ψ in function of the other ghosts by

algebraic equations of motion.

In order to fix the gauge for the topological ghosts, we consider the following s-exact

term:

Ighosts =

∫
d4x s

[√
g(Φ̄aDµΨ

a
µ + L̃

ab−DµΨ̄
ab−
µ + Φ̄∂µΨ̄µ)

]
(5.6)

This term, after untwisting, provides the propagation of the fields in eqs.(5.3) and (5.4),

together with a gauge-fixing for the longitudinal parts of all topological ghosts in eq. (5.1).

In order to establish the comparison with the twisted supergravity action, we need an

identification of χab
+
with Ωab

+
, which is obtained by the additional term:

Iχ/Ω =

∫
d4x s

[√
g
(
¯̃Φ
ab+

(Ωab
+ − χab+)

)]
. (5.7)

In the next section we will see in fact that the field χab
+
does not appear in the twisted

supergravity multiplet. The term (5.7) also gauge-fixes the symmetry in eq. (3.5), by

providing an equation for the ghost-for-ghost Φ̃ab
+
. Notice that the terms in Ωab

+
appearing

in eq. (5.5) after the identification (5.7) can be easily reabsorbed thanks to the SU(2)+
equivariance of the action.3 In the next section we will show that the resulting topological

action corresponds to the twisted version of N = 2 pure supergravity.

As for the gauge fixing of the local Lorentz symmetry, we proceed in two steps. We

know that, if the Riemann curvature is self-dual, i.e. Rab
−
= 0, one can always find an

SU(2)− Lorentz transformation such that also the corresponding spin connection is self-
dual, ωab

−
= 0 [2]. The first line of eq. (5.5) exactly implements this condition in an

SU(2)+ equivariant way. Eventually, the left-over SU(2)+ invariance can be fixed by the

term:

ILorentz =

∫
d4x s

[√
g
(
Ω̄ab

+
(eaµδ

µ
b − eµaδbµ)

)]
. (5.8)

3They can actually be reabsorbed by the field redefinition Ψa′ = Ψa + 1
2
Ωab

+

eb, which does not induce

additional terms in the action due to its SU(2)+ equivariance.
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The action

I = ITQFT + Ighosts + Iχ/Ω + ILorentz (5.9)

is thus our candidate for describing topological gravity. It is still U(1) and reparametriza-

tion invariant. The gauge fixing of these last symmetries can be completed by the obvious

term s(c̄∂µAµ+ ξ̄
ν∂µgµν). A more refined analysis of this gauge fixing term could be done,

by introducing the extended formalism with another BRST operation, which would control

the reparametrization and U(1) invariances, in a way that is analogous to that used for

other types of topological gauge theories in [13].

As for the observables, the situation is as follows. We have constructed a lagrangian

that is globally well-defined over any given four-dimensional manifoldM with SU(2) holon-
omy. It can be considered as the gauge-fixing of topological invariants, which can be com-

binations of Tr(Rab ∧ Rab), Tr(εabcdRab ∧ Rcd) and F ∧ F . The operation s describes a
topological symmetry that is equivariant with respect to SU(2)+ and reparametrization

symmetry. Eq. (2.4) indicates that possible observables are the field polynomials obtained

by doing the substitutions T → T + Ψ + Φ, R → R + Ψ̃ + Φ̃ and F → F + Ψ̄ + Φ, in
all invariant polynomials in R, T and F that one can construct, as a generalization of [3].

The claim is that the expectation values of these observables, computed from the action

in eq. (5.9), only depend on the differential structure of M. The amazing feature is the
relationship of the whole action to Poincaré supergravity.

6. The relationship to the supergravity action

We will now see that the topological gravity theory discussed in the previous section cor-

responds to the twisted version of four dimensional N = 2 pure supergravity. The twist

of this theory has been already considered in [7]. What we want to underline here is that

special holonomy manifolds are required in order to have a well-defined twist operation.

We have seen in the previous section that the topological gravity lagrangian is globally

well-defined on manifolds with SU(2) holonomy. The corresponding BRST algebra is asso-

ciated with the SU(2)+× diffeomorphism ×U(1) symmetry, while the remaining SU(2)−
factor of the Spin(4) group is a global symmetry. Thus, it is possible to define the twist

on such manifolds, as one does in the standard global supersymmetry case, by redefining

a new factor SU(2)′−, such that:

SU(2)′− ≡ diag(SU(2)− ⊕ SU(2)R) . (6.1)

Correspondingly, the fields of the topological gravity, given by a vector, an anti-self-dual

two-form and a scalar denoted as (Xa, X̄ab
−
, X̄), determine two dotted and undotted

spinors according to:

Xαβ̇ = Xa(σa)αβ̇

X α̇
β̇
= X̄ab(σ̄ab) α̇

β̇
+ X̄δ α̇

β̇
(6.2)

One assembles Xαβ̇ and X α̇
β̇
as a pair of two Majorana spinors λi, by identifying the index

α̇ in eq. (6.2) as an internal SU(2)R index i. The dictionary between the fields of topological
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gravity and of supergravity is thus:

(Ψaµ, Ψ̄
ab−
µ , Ψ̄µ) → λiµ

(η̄a, ηab
−
, η) → di

(Φa, Lab
−
+ L̃ab

−
,Φ) → κi

(Φ̄a, Lab
− − L̃ab− , Φ̄) → κ̄i (6.3)

λiµ stand for two spin 3/2 gravitini, κ
i and κ̄i stand for two pairs of commuting Majorana

spinors that are the spin 1/2 ghosts and antighosts for N = 2 local supersymmetry, and di

are the corresponding spin 1/2 anticommuting Lagrange multipliers.

If we restrict to terms that are not more than quadratic in the Ψ and Ψ̄ topological

ghosts, it is easy to get that, after computing the s-exact terms in eq. (5.5), and eliminating

the fields with algebraic equations of motion,

ITQFT ∼=
∫
ωab

− ∧ eb ∧ ωac− ∧ ec − (dΨa + ωba+Ψb) ∧ Ψ̄ ∧ ea −

− (dΨa + ωba+Ψb) ∧ Ψ̄ac− ∧ ec −
− F+ ∧ F+ − 2F+ ∧ (Ψ̄ab− ∧ Ψ̄ab− + Ψ̄ ∧ Ψ̄) +
+ 2F− ∧Ψa ∧Ψa . (6.4)

Notice that in this action the covariant derivatives with respect to the SU(2)+ factor of

the Lorentz group appear, as expected in a construction that is SU(2)+ equivariant. Up

to the boundary term d(ωab
− ∧ ea ∧ eb) coming from the decomposition (3.1), the action in

eq. (6.4) yields, after untwisting, the N = 2 supergravity action, which reads:

ISUGRA ∼=
∫
1

4
εabcdR

ab ∧ ec ∧ ed +Dλ̄i ∧ γ5γaλi ∧ ea − F+ ∧ F+ −

− 1
2
F ∧ λ̄i ∧ γ5λjεij − 1

4
εabcdF

abec ∧ edλ̄i ∧ λjεij , (6.5)

up to quartic terms in the gravitini. As for these terms, they should be taken into account

by a suitable redefinition of the connection ωab. We recall in fact that in supergravity there

are extra contributions to the torsion, such that the defining equation for the connection

is actually

dea + ωac(e,Ψ, Ψ̄) ∧ ec + 1
2
λ̄iγa ∧ λi = T a(ω, e) + Ψ̄ab− ∧Ψb + Ψ̄ ∧Ψa

= 0 . (6.6)

Thus, the solution of eq. (6.4) is a function ωac(e,Ψ, Ψ̄), which contributes to the presence

in the action of quartic terms in the fermionic fields. Such quartic terms come from the

Einstein action, as well as from the second line in the topological action eq. (5.5).

This comparison allows us to truly identify the topological ghosts of e and A as fields

that can be twisted into two gravitini. Moreover the U(1) gauge field is the graviphoton

field. As already remarked in the previous section, a subtle feature is that A has ghost

number equal to minus two, which implies that the U(1) ghost number symmetry is broken

to Z2.
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As for the rest of the action, the terms that depend on L in eq. (5.5) and the lagrangian

eq. (5.6) provide an action, which is, after using the correspondence eq. (6.3):

∫
d4x
√
g(diγνDνγ

µλiµ + κ̄
iγνDνγ

µDµκ
i) . (6.7)

This is precisely what is needed to fix local supersymmetry in supergravity, and completely

identifies the ghost of ghosts, antighosts of antighosts and their Lagrange multipliers in

eq. (6.3) as the twisted ghosts, antighosts and Nielsen-Kallosh ghosts of supergravity.

7. Remarks and conclusions

It is striking that a straightforward construction of topological gravity for manifolds with

SU(2) holonomy can be obtained as the BRST invariant gauge-fixing of the standard in-

variants, Rab ∧Rab or εabcdRab ∧Rcd and F ∧F . We can define observables by considering
the cocycles that arise from these invariants, owing to the geometrical equations (2.4)

and (3.7). This possibility was already proposed by Witten [14] in the context of Weyl

gravity, and by Anselmi and Frè [7].

As for the utility of topological gravity, it seems that it holds only for manifolds

of a certain type, namely for those that admit gravitational instantons, as hyper-Kähler

manifolds. As we have seen in section 3, the fields of the topological gravity multiplet have

a nice geometrical interpretation in terms of linear deformations around the gravitational

instanton,4 which seems quite analogous to that of the fields of the topological Yang-

Mills theory in four dimensions for the gauge instantons [11, 16]. The manifolds involved

in our analysis admit self-dual abelian connections, which can be naturally included in

our topological model. We underline that the presence of such U(1) connections for these

manifolds, also called “abelian instantons”, makes it difficult to compute for these manifolds

the Seiberg-Witten topological invariants associated to the twist of theories with N = 2

global supersymmetry [5]. The topological gravity action, which we have discussed, could

be useful to get information on these cases.

It is however unclear to us whether one can give to the four-dimensional boundary

term d(ωab
− ∧ ea ∧ eb) any interpretation as a topological term. This is maybe possible

on certain manifolds, e.g., hyper-Kähler ones. Were it the case, it would provide cocycles

from descent equations, which could be used tentatively to compute new invariants from

the path integral.

A progress introduced by the present work is a rather systematic way for having topo-

logical gravities in higher dimensions. A promising case is in eight dimensions, for which [3]

suggests that one can use the octonionic gravitational instanton equation [17] as a gener-

alization of eq. (3.2),

ωab − 1
2
Ωabcdωcd = 0 , (7.1)

where Ω4 is the octonionic four-form used in [3].

4An explicit evaluation of the zero-modes of the Eguchi-Hanson gravitational instanton can be found

in [15].
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It is indeed well known that, on an eight-dimensional manifold, one has a Spin(7)

invariant decomposition of two-forms, as 28 = 7 ⊕ 21, corresponding respectively to the
eigenvalues λ = −3, 1 of the octonionic four-form Ω4. Eq. (7.1) corresponds to setting to
zero the components of the curvature in the former seven dimensional subspace. Following

the same line of reasoning as in section 3, one foresees the following generalization of the

four dimensional lagrangian:

∫
M4

ωab
− ∧ ωac− ∧ eb ∧ ec →

∫
M8

Ω4 ∧ ωab− ∧ ωac− ∧ eb ∧ ec (7.2)

This is a well-defined lagrangian on manifolds with Spin(7) holonomy. It is thus tempting

to consider a cohomological theory, whose BRST symmetry is associated to a Spin(7)×
diffeomorphism × gauge invariance, corresponding to the following generalization of the
four dimensional case∫

M4
s
(
Ψ̄ab

− ∧ (ωac− + bac−) ∧ eb ∧ ec
)
→
∫
M8
Ω4 ∧ s

(
Ψ̄ab

− ∧ (ωac− + bac−) ∧ eb ∧ ec
)
.

(7.3)

Manifolds with Spin(7) and G2 holonomy have recently attracted a renewed interest (see,

e.g., [18]). The relevant rôle, which is played in this context by the self-duality conditions on

the spin connection, has been underlined in [19]. We are currently studying the link between

the action (7.3) and that of supergravity in eight dimensions. Moreover, the dimensional

reduction of the theory stemming from the action (7.3) provides very interesting models

in lower dimensions, in the spirit of [3]. For example, the reduction to seven dimensions

should be related to G2 holonomy manifolds. We can also expect an interesting low-energy

effective theory for N = 2 supergravity in four, two and zero dimensions.
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