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1 Introduction and summary

One of the fundamental properties of a Lorentzian spacetime is its causal structure. In

the context of the holographic AdS/CFT correspondence, the importance of causality was

noted very early on [1] and it was realized that bulk AdS causality should be at the very

least compatible with boundary causality. In fact in asymptotically AdS spacetimes, causal

propagation through the bulk cannot be faster than propagation along the boundary as a

consequence of the gravitational time-delay effect [2, 3]. Nevertheless, we do not understand

the holographic dictionary well enough to pin-point a particular feature of the boundary

field theory data that we can directly associate with the bulk causal structure. It is however

clear that for any boundary field theory state which is described by a semi-classical bulk

geometry, one can use certain observables of the field theory to probe aspects of the bulk

causal structure, as has been noted in various contexts in the past, see e.g. [4–10].

Of interest to us is the set of bulk spacetime points which is naturally associated with

a particular spatial region of the boundary field theory. This question has been tackled in

a number of different ways in the recent past [11–14]. The various constructions described

in these works can be divided into two classes: those that use regions bounded in the

bulk by extremal surfaces inspired by the holographic entanglement entropy [15] and its

covariant generalization [16], and those that put causal relations at the center stage. From

these analyses and earlier works [17] the following picture emerges: a given spatial region
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A, whilst certainly being cognizant of the causal wedge associated with it in the bulk, is

however able to access information of part of the geometry beyond the causal wedge.

Nevertheless, as noted in [11, 13], one might say that the most natural bulk spacetime

region associated with a spatial region A on the boundary is the causal wedge �A and as-

sociated quantities, since these are constructed solely using causal relations. Furthermore,

the causally inspired constructions, as we shall see, serve to bound other observables, and

in a certain sense the causal wedge is the bare minimum that the boundary field theory

region should reproduce. Inspired by this observation, we undertake an examination of

causal wedges in asymptotically AdS spacetimes (see [18, 19] for some previous observa-

tions). Despite being a simple exercise, it reveals rather interesting surprises; in fact we

will demonstrate that the causal structure constrains other observables such as the entan-

glement entropy in a non-trivial fashion.

1.1 Causal constructions: a review

To set the stage for our discussion let us quickly recall some basic concepts relevant for

the causal constructions. Consider a (d-dimensional) boundary spacetime foliated by a set

of (d − 1 dimensional) Cauchy slices Σt, labeled by boundary time t. We will consider

spacelike (d − 1 dimensional) regions At,Bt, . . . ∈ Σt (generically we drop the subscript t

for notational simplicity). The complement of a region A will be denoted as Ac.
In a nutshell, the causal wedge �A, associated to a boundary region A, is the set of

bulk spacetime points which lie in both the future and the past of the boundary domain

of dependence1 ♦A for the region A,

�A ≡ J−[♦A] ∩ J+[♦A] . (1.1)

In other words, the causal wedge consists of the set of spacetime events through which

there exists a causal curve which starts and ends in ♦A. The boundary of �A restricted

to the bulk, denoted ∂�A, consists of two2 null surfaces ∂±(�A) which are generated by

null geodesics; the outgoing null geodesics ending on the future boundary of ♦A generate

∂+(�A) and the ingoing ones from past boundary of ♦A generate ∂−(�A). These bulk co-

dimension one null surfaces ∂+(�A) and ∂−(�A) intersect along a bulk co-dimension two

spacelike surface ΞA, which for reasons explained in [13] we dub the causal information

surface. In other words,

∂�A = ∂+(�A) ∪ ∂−(�A) and ΞA = ∂+(�A) ∩ ∂−(�A) . (1.2)

By construction, the surface ΞA is anchored on the entangling surface ∂A of the selected

region A, i.e. ∂(ΞA) = ∂A. For orientation, these constructs are illustrated in figure 1,

for planar AdS (left) and global AdS (right). We emphasize that our construction is fully

general and covariant, requiring only a spacetime geometry that allows us to define causal

curves. For convenience we focus on a causal spacetime with a smooth metric.

1 The domain of dependence ♦A corresponds to the boundary spacetime region whose physics is fully

determined by initial conditions at A. More formally, any fully extended timelike curve on the boundary

which passes through ♦A must necessarily intersect A.
2 There may in fact be multiple boundaries; but we postpone a discussion of this subtlety till section 2.
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Figure 1. A sketch of the causal wedge �A and associated quantities in planar AdS (left) and

global AdS (right) in 3 dimensions taken from [20]: in each panel, the region A is represented by

the red curve on right, and the corresponding surface ΞA by blue curve on left; the causal wedge

�A lies between the AdS boundary and the null surfaces ∂+(�A) (red surface) and ∂−(�A) (blue

surface).

Given the bulk co-dimension two surface ΞA, one can associate a scalar quantity with

the region A. In analogy with the definition of the holographic entanglement entropy [15,

16, 21], in [13] we defined the causal holographic information of A, abbreviated χA, as

quarter of the proper area of ΞA in Planck units,

χA ≡
Area(ΞA)

4GN
. (1.3)

Although this number is infinite since ΞA reaches to the AdS boundary, as with entan-

glement entropy, there is information both in the divergence structure as well as in the

regulated quantity.

The simplicity of these bulk constructs suggests that they should have correspondingly

natural field theory dual. Moreover, the importance of causal structure in bulk gravity

indicates that the dual field theory constructs should likewise correspond to fundamental

quantities. In order to obtain hints of what these field theoretic quantities are, we set out

to explore the bulk properties of the causal wedge and associated constructs. In [13] we

have considered certain static geometries in order to study its properties in equilibrium,

and suggested that χA captures the basic amount of information about the bulk geometry

contained in the reduced density matrix ρA for the region A. While χA provides a (rather

weak upper) bound on the entanglement entropy SA, for certain special cases — which

happen to be the ones where we can actually calculate the entanglement entropy from

first principles — the causal information surface ΞA in fact coincides with the extremal

surface EA, so this bound is saturated: χA = SA. To glean more intuition about the

dynamical nature of our constructs, in [20] we focused specific time-dependent backgrounds

corresponding to rapid thermalization. We observed that in general, if we consider a

region A at a certain boundary time tA, the construction of ΞA is quasi-teleological (i.e.
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teleological only on light-crossing timescale) in time-dependent backgrounds, since the

domain of dependence ♦A contains times later than tA.3 Finally, the recent analysis of [22]

attempts to provide some interesting speculations about the field theoretic interpretation

of χA.

In the present work, we continue the exploration of properties of causal wedge and

related constructs, now in complete generality. This presents a somewhat complementary

approach to that of [20]: instead of focusing on specific class of spacetimes where the

explicit computation of χA is tractable, we maximally relax the assumptions about the

bulk spacetime, and consider global properties that these constructs, especially �A and

ΞA, must satisfy in general. Nevertheless, to exemplify our statements and familiarize

the reader with the subtleties, we will present explicit constructions of ΞA in a particular

spacetime in section 2.

1.2 Preview of results

We will start in section 2 by examining the topological structure of the causal wedge �A for

a simply connected boundary region A. A similar problem was considered in [19], with the

conclusion that for simply connected regions A, the causal wedge must likewise be simply

connected. This follows from the statement of topological censorship [23], which asserts

that every causal curve which begins and ends on the boundary of asymptotically AdS

spacetime I = ∂AdS is contractible to the boundary. Viewing the domain of dependence

♦A ⊂ I as a particular causal sub-domain, the result follows.

Here we will point out that the situation is actually more subtle. Despite the sim-

plicity of A, the associated causal wedge may be topologically arbitrarily complicated: for

example, it can have (arbitrarily) many holes, i.e., non-trivial homology. In the examples

we encounter, we will show that in asymptotically AdSd+1 bulk spacetime, it is possible

for ∂�A to possess non-contractible co-dimension two spheres Sd−1. Thus ΞA may be

composed of multiple disconnected components. Moreover, the change in topology can be

engineered by varying parameters associated with A relative to those characterizing the

bulk geometry, implying interesting ‘phase transitions’ for χ.

This can be observed already in perhaps the simplest non-trivial example distinct from

pure AdS, namely a neutral static black hole in global AdSd+1 for d > 2, provided A is

large enough, as explained in section 2.1 (cf. figure 3 for an illustrative plot). Despite the

simplicity of the setup, this result may come as a surprise to many readers, and in fact (to

our knowledge) has not been pointed out previously in the literature. There may be several

reasons for this. Initial studies of the causal wedge (such as explicitly carried out in [20])

often focus on 3-dimensional bulk geometry, where this effect is absent. For example,

the BTZ black hole causal wedge is simply connected for any region size, as we explicitly

illustrate in section 2.2. Moreover, most higher-dimensional studies typically focus on

planar black holes, so as to consider duals of states of CFT on Minkowski background.

3 Curiously, while χ behaves correspondingly quasi-teleologically in general time-dependent backgrounds,

in the case of collapsing thin null shell examined in [20], the temporal evolution of χ remains entirely causal.

In other words, while the causal information surface Ξ gets deformed by the shell quasi-teleologically, its

area χ remains unaffected till after the region A itself encounters the shell.
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However, the effect we describe is absent for a planar black hole, since there is no region

‘on the other side’ of the black hole which could be causally accessible from the boundary.

We illustrate explicitly that when the CFT lives on the Einstein static universe, ΞA is

disconnected whenever the region A covers a sufficient portion of the full system (ranging

from more than half of the full system in case of tiny black holes to almost the entire system

in case of huge black holes).

Considering large regions A (i.e. comparable to the size of the full system on compact

space) may perhaps seem too artificial to worry about. To dispel such objections, we

proceed in section 2.3 to argue that in fact the causal wedge for arbitrarily small region

can also have holes, for a suitably chosen bulk geometry. A simple example is provided

by the global completion of the conformal soliton [24], which is in fact just a boosted

version of a static black hole [1]. One can also consider genuinely dynamical situations

involving multiple black holes. Though the explicit metric is not known analytically, such

configurations provide simple existence arguments for causal wedges with multiple holes

(and correspondingly multiple components of a disconnected ΞA).

Based on the above examples, one might easily wonder if the non-trivial structure of

a causal wedge is somehow inherited from the bulk geometry being causally non-trivial. It

is in fact easy to argue that this is not the case, as we discuss in section 2.4. A causally

trivial spacetime, such as a compact star, can likewise admit causal wedges with holes.

This further solidifies the robustness of this feature.

Having seen in section 2 that even in simple bulk spacetimes causal wedges may have

surprising properties, the reader might be led to suspect that this will render the CFT

dual of the causal wedge and derived quantities far too complicated. However, we take the

viewpoint that since the causal wedge �A is the simplest and most natural bulk construct

associated with a boundary region A, it ought to have a natural CFT dual nevertheless.

In section 3 we collect the global properties that any causal wedge must satisfy. These

include natural inclusion properties, as well as simple additivity properties of the causal

holographic information χ, which are previewed in section 3.1 and justified in section 3.2.

Having established these global properties for the constructs (�A, ΞA, and χA) derived

from our causal wedge, in section 4 we turn to a brief discussion of implications specifically

for the extremal surface EA and the entanglement entropy SA associated to a given bound-

ary region A. Most intriguingly, the property established in section 3 that any extremal

surface EA must lie outside4 of the causal wedge A, together with the observation of sec-

tion 2 that the causal wedge has a hole (i.e. Ξ consists of two disconnected components)

in the Schwarzschild-AdS background for sufficiently large region A, implies that for such

cases, there does not exist a connected extremal surface anchored on ∂A homologous to

A. In particular, the connected extremal surface EAc corresponding to the complement

Ac of the region A does not satisfy the homology requirement since it is separated from A
by the black hole, while a surface going around the black hole so as to be homologous to

A would necessarily have to enter inside the causal wedge. This means that the extremal

surface whose area gives the entanglement entropy EA must likewise consist of two dis-

4 By outside we mean here that no part of the extremal surface EA can lie within the causal wedge �A.
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connected components: one given by EAc and the other wrapping the black hole horizon.

That in turn implies that for such cases (i.e. sufficiently large A), the difference in en-

tanglement entropies SA − SAc captures precisely the thermal entropy SBH , and therefore

saturates the Araki-Lieb inequality [25].5 This is perhaps the most interesting result of

our explorations, justifying our intuition that the properties of the causal wedges serve to

non-trivially constrain physically understood observables such as entanglement entropy.

Given the potentially profound implications of the existence of causal wedges with

holes, as well as the relative ease with which one can construct examples of such an occur-

rence, one might start to worry that perhaps for any bulk geometry different from pure AdS

(and satisfying the null energy condition), we could construct a sufficiently large boundary

region A whose causal wedge �A has a hole. We address this possibility in section 5 and

suggest that this does not happen unless the deformation is sufficiently strong; in spheri-

cally symmetric situations, we conjecture that the presence of holes in the causal wedge is

associated with the presence of null circular orbits in the spacetime.

2 Topological structure of causal wedge

Let us first examine the topological structure of the causal wedge �A for a given bulk

spacetime and a simply connected boundary region A. Recall that the causal wedge can

be thought of as consisting of causal curves which begin and end in ♦A. Although these

curves are all continuously deformable into each other, we show that the causal wedge can

be topologically more complicated. For example, ΞA need not be homologous to A, or even

when it is, ∂�A need not be homotopic to ♦A. We focus on ΞA, specifically whether or

not it is connected and the nature of transitions between the number of its components.

To motivate the possibility of ΞA having multiple components, let us observe that a

causal wedge cannot penetrate a black hole (i.e., ΞA cannot reach beyond an event horizon).

Heuristically this follows directly from the definition of a black hole: no causal curve from

inside can reach the AdS boundary, much less ♦A ⊂ I (see also section 3). Suppose

however that the black hole is very small (compared to AdS scale). Far away from the

black hole, its gravitational effects are negligible; so there is a spatial region surrounding

the black hole from which causal curves which would have reached well within ♦A in pure

AdS still reach ♦A in the actual spacetime. In other words, although the black hole itself

cannot lie inside the causal wedge, a spatial region fully surrounding it is contained in

�A. This reasoning suggests that for small black holes and sufficiently large regions A,

the causal information surface ΞA has two components: one similar to that in pure AdS

which is anchored on ∂A, and one which shields the black hole. We will now check this

expectation explicitly for Schwarzschild-AdSd+1 for d ≥ 3 (focusing on d = 4 which is

algebraically simplest) and then comment on other geometries.

5 This observation is further discussed in [26] where it is explicitly demonstrated that connected minimal

surfaces fail to capture the entanglement entropy for large enough regions A. The resulting saturation of

the Araki-Lieb inequality is referred to there as the entanglement plateau phenomenon.
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2.1 Global Schwarzschild-AdSd+1

To illustrate the point that even for simply-connected regions A the causal informa-

tion surface ΞA may be composed of multiple disjoint components, let us consider the

Schwarzschild-AdSd+1 black hole. We will w.l.o.g. set the AdS scale to unity, and charac-

terize the black hole by its horizon size in AdS units, rh ∈ (0,∞). This gives a 1-parameter

family of static, spherically symmetric and physically well-behaved spacetimes with metric

ds2 = −f(r) dt2+
dr2

f(r)
+r2

(
dϕ2 + sin2 ϕdΩ2

d−2

)
, f(r) = r2+1−

rd−2
h (r2

h + 1)

rd−2
. (2.1)

Large black holes (rh > 1) are dual to the thermal density matrix of the field theory on the

Einstein Static Universe ESUd = Sd−1 × R (e.g. as in the case of N = 4 SYM in d = 4),

while small black holes are still physically relevant in the microcanonical ensemble.6 For

convenience we will restrict attention to boundary regions A which preserve SO(d − 1)

spherical symmetry. For purposes of finding the causal wedge �A, we can then reduce this

problem to effectively 3-dimensional one7 by reducing the Sd−1 to one non-trivial angle

ϕ ∈ [0, π]. The region A is then characterized by its radius ϕA. As ϕA → π, the region

covers most of the boundary space.8 On the other hand, the planar black hole case is

recovered in the limit ϕA → 0 and rh →∞.

It is convenient to use coordinates (t, ρ, ϕ) where ρ ∈ [0, π/2) is related to the standard

radial coordinate r by r = tan ρ. The relevant 3-dimensional piece of the bulk metric is

then

ds2 =
1

cos2 ρ

(
−g(ρ) dt2 +

dρ2

g(ρ)
+ sin2 ρ dϕ2

)
, (2.2)

where

g(ρ) = 1− µ cosd ρ

sind−2 ρ
, µ ≡ rd−2

h (r2
h + 1) =

sind−2 ρh
cosd ρh

. (2.3)

Null geodesics in this subspace are characterized by the reduced angular momentum ` ∈
(−1, 1), a discrete parameter η = ±1 labeling outgoing (η = 1) versus ingoing (η = −1)

geodesics, as well as the initial position. We can write the differential equations in terms

of the affine parameter λ where ˙≡ d
dλ as follows:

ṫ =
cos2 ρ

g(ρ)
, ϕ̇ = `

cos2 ρ

sin2 ρ
, ρ̇ = η cos2 ρ

√
1− `2 g(ρ)

sin2 ρ
. (2.4)

6 The translation between field theory and geometry is the following: the black holes with horizon

size rh have a Hawking temperature TBH =
d r2h+(d−2) `2AdS

4π rh `
2
AdS

. These solutions have a minimum value of

TBH attained at rh =
√

d−2
d
`AdS. They however minimize the free energy only for TBH `AdS ≥ d−1

2π
or

equivalently rh ≥ `AdS.
7 Note that any curve which is causal in the full (d + 1)-dimensional space is necessarily causal in the

reduced (2 + 1)-dimensional subspace, and conversely any causal curve in the 3-dimensional spacetime

trivially lifts to a causal curve in the full (d+ 1)-dimensional spacetime.
8 To keep ♦A finite, we will however consider ϕA < π in this section. (As explained in section 3, when

ϕA = π the boundary region A = Sd−1 is a complete Cauchy slice of the Einstein Static Universe. Then

�A is simply the region exterior of the black hole and ΞA is the bifurcation surface of the horizon.)
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We could in principle obtain analytic expressions for (t(λ), ρ(λ), ϕ(λ)), which are given in

terms of elliptic functions. This however does not add much insight and it is easier to see

the structure graphically, so we simply integrate the geodesic equations numerically. In

actual implementation it is convenient to solve (2.4) for t(ρ) and φ(ρ) directly, though we

have to keep track of η changing sign at a turning point where ρ̇ = 0.

Only geodesics with sufficiently large angular momentum have a turning point; these

are ones for which the equation ρ̇ = 0 in (2.4) has a real solution ρ0 ∈ (0, π2 ). It is easy to

check that this only occurs for `2 ∈
(
`20 , 1

)
, where

`0 =

[
1 + (d− 2) d−

d
d−2

(
2

µ

) 2
d−2

]−1/2

d=4−−→
√

4µ

1 + 4µ
=

2 rh

√
r2
h + 1

2 r2
h + 1

. (2.5)

The corresponding value of ρ0 at this minimal `0 corresponds to the circular null orbit

radius and is given by

ρ0(`0) = tan−1

(
dµ

2

) 1
d−2 d=4−−→ tan−1

√
2µ . (2.6)

For general ` > `0, the radial position of the turning point is given by the largest root of

the polynomial ρ̇ = 0 which is of order d (or d
2 for even d); e.g.

ρ0 = tan−1

√√√√ `2

2 (1− `2)

[
1 +

√
1− 4µ

(
1− `2
`2

)]
for d = 4 . (2.7)

(On the other hand, geodesics with ` < `0 have no turning point: instead they terminate

at the curvature singularity at r = 0.)
Now that we have ρ0, we can find the corresponding ϕ and t coordinates for the turning

point. We typically specify the particular `-geodesic by giving the functions t`(ρ) and ϕ`(ρ)
and when necessary explicitly indicating whether we are before or after the turning point.
In particular, we have the following expressions for the trajectory of the future-directed null
geodesics from a boundary point q∨ defined below (hence initially η = −1) parameterized
by `:

t`(ρ) = ti +

∫ ρf

ρi

h`(ρ̃)

g(ρ̃)
dρ̃ , ϕ`(ρ) = ϕi + `

∫ ρf

ρi

h`(ρ̃)

sin2 ρ̃
dρ̃ , h`(ρ) ≡ 1√

1− `2 g(ρ)
sin2 ρ

,

ingoing segment (η = −1) : ti = t∨, ϕi = 0, ρi = ρ, ρf =
π

2
,

outgoing segment (η = 1) : ti = tingoing(ρ0) ≡ t0, ϕi = ϕingoing(ρ0) ≡ ϕ0, ρi = ρ0, ρf = ρ .

(2.8)

Similar expressions can be written down for the geodesics that end up on q∧.

Let us now turn to the strategy for finding ΞA. Since the geometry is static, we can

w.l.o.g. place A at time t = 0. The domain of dependence ♦A for round regions of radius ϕA
is then determined by two boundary points ♦A = J+[q∨]∩J−[q∧] with (t, ρ, ϕ) coordinates

q∨ = (−ϕA, π2 , 0) and q∧ = (ϕA,
π
2 , 0).9 Recall that for general spacetimes the boundary of

9 We adapt the notation introduced in [13]; for simple regions the causal wedge is generated by null

geodesics emanating from two points q∧ in the future and q∨ in the past.

– 8 –



J
H
E
P
1
0
(
2
0
1
3
)
0
5
9

the full causal wedge �A is generated by bulk null geodesics which start at q∨ (for ∂−(�A))

or end on q∧ (for ∂+(�A)). Their intersection gives ΞA. Since the Schwarzschild-AdS

spacetime is static, the two sets of geodesics are merely time-reversed versions of each

other, and their intersection necessarily lies at t = 0. Furthermore, by spherical symmetry,

each congruence respects ϕ-reversal symmetry. This means that it suffices to find just one

congruence to determine the rest. For convenience of discussion let us label the four sets

of geodesics by letters P (F ) for past (future) congruence and R (L) for right (left) part

of each congruence, i.e. ingoing from the boundary towards positive (negative) ϕ. So PR

and PL geodesics generate ∂−(�A) and FR and FL geodesics generate ∂+(�A), with ` > 0

along the PR and FL congruence. Hence we only need to find the solution to (2.4) given

by t`(ρ) and ϕ`(ρ) for the PR congruence, say; the symmetries

PR`(t, ρ, ϕ) = PL`(t, ρ,−ϕ) = FR`(−t, ρ, ϕ) = FL`(−t, ρ,−ϕ) (2.9)

then immediately give the PL, FR, and FL congruences.

Let us now consider the intersections of these congruences.10 For each `, PR` geodesic

intersects FR` geodesic at t = 0 and similarly for the PL` and FL` geodesics. Let us denote

the curve generated by these intersections (i.e. parameterized by `) on the t = 0 surface

by Xt=0, and let us denote its coordinates by (ρt=0(`), ϕt=0(`)) and (ρt=0(`),−ϕt=0(`)) for

the R and L halves of the congruences respectively. For each `, we can find these by first

solving t`(ρ) = 0 for ρ and then substituting this into ϕ`(ρ) to determine ϕ. Consider now

the function ϕt=0(`). For the radial geodesics, we necessarily have ϕt=0(0) = 0, whereas

for the boundary geodesics, it is easy to see that ϕt=0(1) = ϕA < π. If ϕt=0(`) increases

monotonically with `, or more generally if ϕt=0(`) < π for all ` ∈ (0, 1), then Xt=0 gives

the full curve ΞA.

However, there exists another set of intersections between the congruences which be-

comes relevant if ϕt=0(`) > π. In particular, the FR` geodesic intersects the FL` geodesic

at ϕ = π, and similarly for PR and PL geodesics. When ϕt=0(`) > π, the PR geodesic

from q∨ (along which ϕ starts from 0 and increases monotonically with the affine parame-

ter) would have intersected the PL geodesic (at ϕ = π) before intersecting the FR geodesic

(at t = 0 and ϕ = ϕt=0(`) > π). The moment two null geodesics from q∨ intersect,11 they

henceforth become timelike-separated from q∨, and therefore enter inside �A, no longer

remaining on ∂−(�A). The subsequent intersection on Xt=0 is therefore not on ∂−(�A)

and correspondingly is not relevant for ΞA. Said differently, ΞA closes off at ϕ = π.

To summarize, the condition for ΞA to have two disconnected components is

max
`∈(0,1)

ϕt=0(`) > π . (2.10)

If (2.10) holds, then there are two12 solutions of ϕt=0(`) = π; let us label them by 0 <

`1 < `2 < 1. In such a case, ΞA has one component given by Xt=0 for ` ∈ (0, `1) and

10 For the Schwarzschild-AdSd+1 spacetime, it can be checked that geodesics within each congruence do

not intersect each other.
11 In slight abuse of language but following previous terminology, we will refer to these intersections as

caustics and denote them by C± for the ∂±(�A) congruences.
12 A-priori, there could have been an even number larger than 2, but explicit checks indicate that this
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Figure 2. A plot of the intersection points of the future and past congruence, Xt=0, plotted on

the Poincaré disk. In each panel, the outer circle represents the AdS boundary (with the region A
highlighted in red; ϕA = 2.5 in both panels). The black hole size is rh = 0.5 (left) and rh = 0.2

(right), denoted by red dashed curve (but obscured in the latter case). Xt=0 is composed of the

individual intersection points, color-coded by ` (from red at ` = 0 to purple at ` = 1). For large

enough black hole (left), ϕt=0(`) < π for all `, and therefore Xt=0 = ΞA. For small black hole

(right) Xt=0 self-intersects and therefore ΞA has two components as indicated.

another given by Xt=0 for ` ∈ (`2, 1). The latter is connected to the AdS boundary and is

anchored at ∂A for ` = 1. The former is disconnected from the boundary and wraps the

black hole. This situation is illustrated in figure 2, where we plot Xt=0 on the Poincaré

disk for connected (left) and disconnected (right) case.

To understand better what happens in the disconnected case, it is instructive to con-

sider the full causal wedge. This is illustrated in figure 3 where we plot the causal wedge for

the same set of parameters as in the right panel of figure 2, but now on a 3-d spacetime di-

agram in ingoing Eddington coordinates.13 There are several features of note: as expected,

the causal wedge clearly has a hole, causing ΞA to have two disconnected components, one

anchored on ∂A and one wrapping the black hole. This was already necessitated by the

observation that the causal wedge cannot penetrate the black hole, while approximating

the pure AdS causal wedge far away from the black hole. However, unlike the pure AdS

doesn’t happen; essentially there isn’t enough structure in the geodesic equations for Schwarzschild-AdS

to allow multiple extrema. Said differently, there are two competing effects which influence how much a

geodesic ‘orbits’ in a given time span: the light bending gets stronger nearer to the black hole, but so does

the time-delay. To maximize the former while minimizing the latter, we need to tune ` to attain the optimal

penetration depth (approximately given by the null circular orbit radius); our assertion follows since ϕt=0(`)

increases for smaller ` and decreases for larger `.
13 Following previous convention [20], we plot ρ radially and choose the vertical coordinate such that

ingoing radial null geodesics lie at 45◦. This fixes the vertical coordinate to be given by v − ρ+ π
2

, where

v = t+
1

2r2
h + 1

(√
r2
h + 1

[
tan−1 tan ρ√

r2
h + 1

− π

2

]
− rh tanh−1 rh

tan ρ

)
.

For this reason, the plot is asymmetric under vertical flip.
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Figure 3. Causal wedge for the case rh = 0.2 and ϕA = 2.5, as in right panel of figure 2. Same

color-coding (by `) is applied to the null geodesic generators of ∂±�A. In addition to the AdS

boundary and horizon, the plot exhibits the region A (indicated by the thick red curve), the two

components of ΞA (indicated by the thick blue curves), and the curves of caustics C± (indicated by

thick brown curves) which connect up the two components of ΞA. The causal wedge �A bounded

by the null generators clearly exhibits a hole.

case, the boundary of the causal wedge has caustics where the L and R geodesics from the

same congruence intersect each other (before intersecting those from the other congruence).

The two caustic curves (C+ on ∂+(�A) and C− on ∂−(�A)) lie at ϕ = π and connect the

two components of ΞA, where the latter cusps.

As an aside, we remark that the presence of caustics in the causal wedge implies

that generically the causal information surface ΞA need not be smooth; for less symmetric

spacetimes this can happen even when ΞA is connected. Although that might seem like

a bizarre feature, it is worth remembering that it is actually no worse than the analogous
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Figure 4. The projection of the causal information surfaces ΞA for various ϕA onto the Poincaré

disk of Schwarzschild-AdS5 with fixed black hole size rh = 0.2, color-coded by ϕA which varies from

0 (red) to π (purple) in increments of 0.1. (For example, the blue curve with ϕA = 2.5 corresponds

to the projection of ΞA in figure 3.) We can clearly see that ΞA pinches off; for larger ϕA, the

disconnected component of ΞA is located very near the horizon.

property of an event horizon, which likewise is not smooth generically.14 In particular,

although a horizon generator has to remain on the horizon, new generators can enter the

horizon at caustics.

Let us now return to considering the effect of varying the parameters, namely the tran-

sition between connected and disconnected ΞA exemplified in figure 2. As we decrease the

black hole size rh (for a fixed ϕA), the curve ϕt=0(`) reaches higher and higher, eventually

exceeding π (and growing without bound as rh → 0). This is because the null geodesics

whose angular momentum is close to `0 orbit around the black hole many (∼ r−1
h ) times

before reaching t = 0. Conversely, for fixed rh, the causal information surface ΞA is con-

nected if ϕA is sufficiently small (and is guaranteed to be so if ϕA < π/2 for any rh) and

disconnected if ϕA is large enough (and is guaranteed to be so when ϕA → π for any rh).

This is illustrated in figure 4, which plots the causal information surfaces ΞA for the full

range of ϕA at a fixed black hole size (rh = 0.2, as in figure 3), projected onto the Poincaré

disk. This presents a somewhat complementary information to that in figure 2: whereas

the latter varied rh at fixed ϕA, figure 4 varies ϕA at fixed rh.

Since ϕA is connected for small ϕA and disconnected for sufficiently large ϕA, we’re

14 Event horizons are locally Lipschitz, but not necessarily more regular than that [27]. There even

exist (rather exotic) examples [28] where the event horizon is ‘nowhere’ differentiable, in the sense of non-

existence of any open neighbourhood where the horizon is differentiable, though they are differentiable

‘almost everywhere’ in a measure-theoretic sense. More generally, [29] showed that differentiability fails

precisely where new generators join the horizons.
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guaranteed by continuity that for any rh, there is a critical region size ϕ∗A for which Ξ just

pinches off. Let us denote the angular momentum along the corresponding null geodesic

(i.e. the one passing through this pinch-off point) by `∗. The four geodesics, PR`∗ , PL`∗ ,

FR`∗ , and FL`∗ , all intersect at a single point t = 0, ϕ = π, and ρ = ρ∗. While this

is true whenever ϕt=0(`) = π, here we have an extra condition that ΞA self-intersects at

a tangent, i.e. that max`∈(0,1) ϕt=0(`) = π. This condition is satisfied only for a specific

relation between rh and ϕA. Hence to determine `∗ and ρ∗, and correspondingly the critical

curve in (rh, ϕA) plane, we need to be able to find max`∈(0,1) ϕt=0(`) efficiently.

While doing this numerically is rather time-consuming, we can simplify matters using

the following observation. Geodesics with angular momentum `0, when close to ρ ≈ ρ0,

move very slowly in the ρ direction. Hence to compensate, i.e. to remain null, they have to

move faster in the ϕ direction to cross the same temporal distance than nearby-` geodesics

(which move at finite speed in the ρ direction everywhere). Assuming that this effect

dominates over what happens to the geodesics in passage between the boundary and vicinity

of ρ0(`0), the `0 geodesic will reach ϕ = π ‘earlier’ than the nearby-` geodesics. This in

turn means that if we cut them off at t = 0 to find ΞA, the pinch-off which happens at

ϕ = π will occur near the `0 geodesic. This implies that `∗ ≈ `0. Assuming that in fact

`∗ = `0, it is very simple to find the critical curve in (rh, ϕA) plane given by a function

ϕ∗A(rh), since for each fixed rh (which determines `0 using (2.5)), we merely need to find

ρ∗ by solving t`0(ρ∗) = 0, and then integrating the `0-geodesic from (t = 0, ρ = ρ∗, ϕ = π)

back out to the boundary to find ϕA.

We have used this trick to plot the critical curve on (ϕA, ρh) plane in figure 5 for various

spacetime dimensions. The approximation `∗ ≈ `0 can independently be checked by explicit

numerical integration and it works extremely well for a large range of black hole sizes.15 As

expected, for tiny black holes ρh � 1, the critical size of the region is ϕ∗A → π/2 and grows

linearly with ρh ∼ rh since there is effectively no other scale in this regime, whereas for

very large black holes ρh � 1, ϕ∗A → π asymptoting to a constant. Note that as ϕA → π

we are guaranteed to have a non-trivial topology of ΞA. In particular, consider the limiting

case where A = S3\i0, i.e., A is a punctured sphere (henceforth denoted as ϕA = π−).

Then no matter how large the black hole is, the causal wedge reaches all the way around

the boundary while having a hole due to the horizon. However, from the observation of

footnote 8 (further discussed in section 3) it follows that the limit ϕA → π is not smooth.

It is worth remarking that the non-trivial topology of the causal wedge described above

relies on working in global Schwarzschild-AdS geometry. In the planar Schwarzschild-AdS

black hole geometry, one cannot circumnavigate the black hole, there being no “other side”.

Nevertheless, as we will describe later, even in the Poincaré patch of AdS it is possible to

encounter causal wedges with non-trivial topology; for instance a localized black hole in

the Poincaré patch will likewise do the trick (see section 2.3).

Above we have presented an example of a causal wedge with one hole. It is now

conceptually easy to generalize this situation to a causal wedge with multiple holes. For

15 In examples that we have examined we find that `∗ − `0 ∼ 10−3 for black holes which are roughly of

the order of the AdS radius.
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Figure 5. The critical curves on (ϕA, ρh) plane indicating where ΞA pinches off for Schwarzschild-

AdSd+1. ΞA has two components above the curve and only a single component below. To guide the

eye, we also indicate the ϕA = π/2 and ϕA = π (dashed lines); the latter gives the upper bound in

ϕA, while the former indicates the lower bound below which ΞA is connected for Schwarzschild-AdS

black hole of any size. The topmost (red) curve corresponds to Schwarzschild-AdS4 geometry where

the effect of gravity is strongest, while the next (orange) curve is for Schwarzschild-AdS5 which is

our prime exhibit. Increasing the dimension results in slower growth of ϕ∗A(ρh), as exemplified by

d = 5 (green), d = 6 (blue), d = 7 (purple), d = 19 (purple dotted) and d = 49 (blue dashed). The

effects of the weaker gravitational potential are clearly visible with the increasing dimension and

the bottommost curve is close to the limiting behaviour for large d.

example, we can consider a (dynamical) situation with multiple small black holes in AdS.16

The black holes will generically orbit each other on timescales set by their separation,

radiate gravitational waves, and eventually coalesce. But we can separate scales in such

a way that around each black hole there is a region which is inside a causal wedge for

appropriate A. In fact, if ϕA ≈ π/2, we may see transitions in the number of components

of Ξ. For small black holes and ϕA larger than π/2 by amount related to the black hole

separation, ΞA will have a component around each horizon, apart from the one connected

to ∂A. Hence for a ‘galaxy’ with N separated black holes in AdS, Ξ will have N + 1

disconnected components.

So far, this section has focused on the topology of the causal wedge and the connect-

edness of ΞA. Before closing, let us make an observation about the nature of the ‘phase

transition’ between connected and disconnected ΞA as seen by its area χA. Although we

don’t evaluate the causal holographic information χ explicitly, we expect that for fixed rh,

16 While such solutions are not known analytically one can construct approximate solutions using a

matched asymptotics method.
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Figure 6. (Left:) A plot of the causal wedge �A and ΞA (blue curve) in BTZ, with rh = 0.02

and ϕA = 2.5. (Right:) Projection of spacelike geodesics EA onto the Poincaré disk, for varying

ϕA ∈ [0, π] in increments of 0.05π and rh = 0.1. Since EA = ΞA in BTZ, the left and right panels

are analogous to figure 3 and figure 4, respectively (modulo the different rh values).

χA(ϕA) is not smooth at the transition point ϕ∗A. Consider the full curve (on our (t, ρ, ϕ)

subspace) Xt=0 generated by intersections of future and past geodesics, characterized by

(ρt=0(`), ϕt=0(`)). The causal information surface ΞA is a subset of this curve, restricted by

ϕt=0(`) ≤ π; in particular the two curves are identical only when ΞA has just one connected

component. Since the spacetime is smooth, the geodesics, and hence their intersections,

must vary smoothly in `. Similarly, the length of the full Xt=0 should vary smoothly as we

change ϕA. However, at the transition point ϕ∗A, χ ceases to be given by length of Xt=0:

the difference is given by the finite length piece where ϕt=0(`) > π. We would therefore

expect that χA(ϕA) has a kink at ϕA = ϕ∗A.

2.2 BTZ

Having seen the rich structure of ΞA for Schwarzschild-AdS5, one might wonder whether it

is also present in the simpler case of the 3-dimensional BTZ geometry, which has the form

(2.2) with

g(ρ) = sin2 ρ− r2
h cos2 ρ . (2.11)

Here the calculation is in fact much simpler, and the explicit expressions for null geodesics

which generate ∂�A were presented in e.g. [20]. A representative causal wedge is plotted in

the left panel of figure 6. We choose ϕA = 2.5 as in figure 3, and we use a tiny black hole

rh = 0.02 in order to emphasize the difference from the higher-dimensional case. In fact,

as observed already in [13], in BTZ spacetime ΞA exactly coincides with EA; the latter

corresponds to the spacelike geodesic anchored at ±ϕA on the boundary. The spatial
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projection of these is described by

tan ρ = rh
cosh(rh ϕA)√

cosh2(rh ϕA)− cosh2(rh ϕ)
. (2.12)

As can be easily seen, connected spacelike geodesics always exist for arbitrary ϕA, as

illustrated in the right panel of figure 6.

One reason why the causal wedge does not close off as in the higher dimensional case is

that taking the black hole arbitrarily small rh → 0 does not approach pure AdS: the latter

is achieved when r2
h = −1. Said differently, in 3 dimensions, the influence of the black hole

does not fall off fast enough. Not only are the effects of a tiny BTZ black hole perceptible

on AdS scale, but even near the boundary there is a qualitative difference between presence

and absence of a black hole. A different way to see that 3-dimensional bulk is special is to

note that we have argued that causal wedges must be simply connected to the boundary

domain A [19] as follows form topological censorship [23]. Since in this low dimension ΞA
is a curve, it must be smoothly deformable to ♦A. It thus follows that there is no room for

non-trivial topology of ΞA in three dimensional bulk spacetimes.

2.3 Boosted black hole

In section 2.1 we have seen that for higher dimensional Schwarzschild-AdS black hole of

any size, the causal wedge has holes for sufficiently large boundary region A. As rh →∞,

the critical size of A for which ΞA becomes disconnected approaches ϕ∗A → π, whereas for

rh → 0, the critical size ϕ∗A → π/2. In particular, to obtain disconnected ΞA for this class

of geometries, the region A must cover at least half of the boundary sphere, and therefore

sample a large part of the system. However, we now argue that large A is actually not a

prerequisite for existence of disconnected ΞA, in the sense that for any finite region A on

the boundary we can construct asymptotically AdS geometries (in more than 3 dimensions)

for which ΞA is disconnected.

In fact, a simple example which does the job is a boosted version of the global

Schwarzschild-AdS black hole discussed in section 2.1. We can consider a family of ge-

ometries, considered e.g. in [1], corresponding to a boosted global black hole with fixed

total energy.17 At zero boost this is the standard global AdS black hole while at infinite

boost, this solution limits to a gravitational shock wave in AdS. In the static coordinates

(defined with respect to a specified boundary time), the boosted black hole follows a tra-

jectory which approximates that of a timelike geodesic.

We don’t need to do a new calculation to see what will happen for causal wedges in

such a geometry, since we can simply boost our causal wedge for the static black hole found

in section 2.1. In other words, we can implement a coordinate transformation which in pure

AdS would transform a timelike geodesic at the origin ρ(t) = 0 to one which oscillates back

and forth with energy E > 1, whose radial profile is given by

ρ(t) = sin−1

[√
E2 − 1

E
sin t

]
. (2.13)

17 See also [30] for a recent discussion where such geometries were called oscillons.
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The requisite transformation is most easily obtained from isometrically embedding AdSd+1

into Rd,2 endowed with the flat metric ds2 = −dX2
−1 − dX2

0 +
∑d

i=1 dX
2
i , restricted to

the hyperboloid −X2
−1 −X2

0 +
∑d

i=1X
2
i = −1. This embedding makes the AdS isometries

obvious: for instance we have manifest boost invariance, say X0 → coshβ X0 + sinhβ X1

and X1 → coshβ X1 + sinhβ X0, leaving all the other Xi’s unchanged. The energy E

in (2.13) is related to the boost in the obvious manner E = coshβ. So the relevant

isometric embedding, which implements the boost and yields AdS in the conformally ESU

coordinates, i.e. (2.2) with g(ρ) = 1, is

X0 = coshβ
sin t

cos ρ
+ sinhβ

sin ρ

cos ρ
cosϕ , X−1 =

cos t

cos ρ
,

X1 = coshβ
sin ρ

cos ρ
cosϕ+ sinhβ

sin t

cos ρ
, Xk =

sin ρ

cos ρ
sinϕ Ωk , (2.14)

where Ωi with i = 2, · · · , d are direction cosines, i.e.,
∑

i Ω2
i = 1, coordinatizing a unit

Sd−2 and thus explicitly ensuring the SO(d − 1) symmetry in the transverse space. The

actual transformation is then generated by comparing the X’s for β = 0 with those for

arbitrary boost in (2.14), and is given (modulo some branch issues) by

ρ̄(ρ, t, ϕ) = tan−1

[
1

cos ρ

√
(coshβ sin ρ cosϕ+ sinhβ sin t)2 + sin2 ρ sin2 ϕ

]
t̄(ρ, t, ϕ) = tan−1

[
coshβ tan t+ sinhβ

sin ρ cosϕ

cos t

]
ϕ̄(ρ, t, ϕ) = cot−1

[
coshβ cotϕ+ sinhβ

sin t

sin ρ sinϕ

]
(2.15)

where the barred coordinates correspond to boost with respect to the unbarred coordinates

by a boost β. The direction cosines are unchanged since we retain SO(d− 1) symmetry.

Note that the boundary is preserved, ρ̄(ρ = π
2 , t, ϕ) = π

2 under (2.15), and this then

specifies the corresponding transformation induced on the boundary. More precisely, the

bulk coordinate transform implementing the boost corresponds to a conformal transforma-

tion (involving both time and space) on the boundary. This transformation changes the

size of ♦A. In particular, small A and highly boosted black hole translates to large A in

the static black hole frame, at time where the black hole is closest to the region A on the

boundary in the boosted picture. This is illustrated in figure 7, which shows how a fixed

size region A taken at different times translates into a variable-sized region in a boosted

frame with relative boost β (red curve corresponds to zero boost while purple to β = 4).

If we take a hemispherical region with ϕ̄A = π/2 (left), the ‘breathing’ of its size ϕA in

the boosted frame is symmetric, whereas starting with a small region (right) only produces

large sizes in the boosted frame at short intervals. Nevertheless, it is easy to see that no

matter how small we take the region A in the unboosted frame, its size in the boosted

frame can get arbitrarily close to π for sufficiently large boosts.

It is now a simple matter to translate the effect of the boost on the causal wedge: it

is precisely the same effect as that of varying the size of ϕA. The topological attributes

cannot change by the coordinate transformation; so since �A has a hole in unboosted
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Figure 7. Effect of boost on the size ϕA of a region A, as a function of time, as described

in the text. Specifically, we take a fixed-sized region ϕ̄A = π
2 (Left) and ϕ̄A = π

8 (Right) in the

boosted frame and plot how its size ϕA varies in the unboosted frame as a function of time t, for

various values of boost, from unboosted case β = 0 (red) to β = 4 (purple) in increments of 0.5.

This illustrates how arbitrarily small region in boosted frame can look large in unboosted frame for

sufficiently large boosts, albeit for time intervals whose size also shrinks with the boost.

frame (equivalently the static black hole spacetime) for large regions, the same is true in

the boosted frame (equivalently in the boosted black hole spacetime) even for small regions

— but only at the auspicious times and for sufficient boosts.

It is worth noting that another construction which describes the same (Schwarzschild-

AdS) geometry in different coordinates is obtained by simply restricting attention to the

Poincaré patch of global Schwarzschild-AdS. The CFT dual on Minkowski space of such

configurations was dubbed ‘the conformal soliton flow’ by [24]. The event horizon defined

with respect to the Poincaré patch is then closely analogous to the boundary of the causal

wedge, since it is generated by null geodesics in Schwarzschild-AdS which end on the

boundary at i+ of the Poincaré patch which corresponds to some finite ESU time; this

was constructed explicitly in [31] (cf., their figure 3 for a plot18 of the event horizon in

global coordinates in 3 dimensions, though the vertical axis is the BTZ time t rather than

the coordinate used above in figure 6 which is more analogous to Eddington time). More

precisely, the future event horizon indicated there would correspond to ∂+(�A) for ϕA = π,

though ΞA for any other ϕA can easily be read off by slicing their blue surface horizontally

higher than i0.

So far in this subsection we have discussed geometries which are static though not

manifestly so (they all admit a Killing field which is timelike everywhere outside of event

horizon). It is even easier to construct examples with disconnected ΞA for dynamical

situations with collapsing and evaporating black holes, where the event horizon lasts only

for a finite time. Again by separation of scales, if the black holes are tiny on AdS scale we

can put them anywhere, and they will only eat out tiny spacetime regions from the AdS

causal wedge. Then the original ∂�A (connected to ∂♦A) will be only minimally deformed

18 Strictly speaking the plot in [31] is for the BTZ conformal soliton where we have argued for the absence

of non-trivial topology; a similar picture in higher dimensions should reveal the appropriate structure.
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but the full ∂�A will now include additional disconnected components. This will again

translate into ΞA having multiple components, but now if we try to project them onto a

single Poincaré disk, they may even intersect. However, topological censorship will still

guarantee that the causal wedge remains simply connected.

Finally, note that since we can take A arbitrarily small, the above construction can

likewise be implemented in Poincaré AdS, where the dual CFT lives on flat space. In

other words, having asymptotically global AdS bulk geometry is not a prerequisite to

disconnected ΞA either.

2.4 Stars in AdS

So far all our examples of disconnected ΞA involved causally non-trivial bulk geometries.

In such situations it is easy to argue from first principles that for sufficiently large A the

causal wedge must have holes, since by causality �A cannot reach past the event horizon.

However, we will now see that the presence of an event horizon is not a prerequisite for

disconnected ΞA. As long as Ac 6= ∅ and we are in more than 3 bulk dimensions, all of

the examples discussed above can be modified to keep the geometry causally trivial but

nevertheless the causal wedge unaffected. In black hole geometries, null geodesics starting

arbitrarily near the event horizon take a long time to reach the AdS boundary. So they

typically don’t make it out to ♦A; as a result ΞA remains a finite distance away from the

event horizon.19 We could then take the metric to remain identical in the region reached

by �A but modify it outside that region so as to get rid of all the horizons.

For example in the Schwarzschild-AdS case, we could in principle replace the black

hole by a compact star (or even a static shell) which is just slightly bigger than the original

black hole. To find out whether or not this is physically realistic, let us examine how

compact would such a star have to be. Since its maximal size is bounded by the deepest

reach of ΞA, and the latter occurs at ϕ = 0, we merely need to see how deep does the radial

(` = 0) null geodesic from q∨ penetrate by the time t = 0. This value of course depends

on both ϕA and rh. When ϕA is small, the geodesic of course does not have time to reach

very deep, but then the causal wedge does not have holes, so this regime is irrelevant for

our purposes. On the other hand, if we take ϕA too large in order to guarantee �A having

a hole, the geodesics have longer time to travel and typically they approach exponentially

close to the horizon. For example in the case illustrated in figure 3, the ρ value reached by

the radial (red) geodesics ρΞ is already very close to the horizon: ρΞ−ρh
ρh
≈ 5× 10−6, which

is scarcely realistic for a compact star.

To maximize the size of the requisite star, then, we want to minimize ϕA subject to ΞA
being disconnected, i.e. take ϕA = ϕ∗A, and study the corresponding ρΞ as a function of ρh.

Numerical studies indicate that the maximal value attained, which occurs in the limit of tiny

black holes, is ρΞ−ρh
ρh

≈ 10−4. While this is still not be achievable for physically relevant

equations of state for the star, it demonstrates the matter-of-principle point that event

horizons are not necessary for topologically non-trivial causal wedge. In fact, preliminary

19 This is an extreme case of the time delay effect discussed in [3].
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investigations indicate that it might be possible for charged scalar solitons in AdS to have

non-trivial causal wedge topology; it would be interesting to explore this further.

3 General features of ΞA and χA

Having seen some curious features of causal wedges in specific classes of examples, we

now turn to explaining the more ‘standard’ and completely general properties indicated in

section 1.2. We consider generic boundary regionsA and B (using the subscript t to indicate

when they lie on the same time slice) and describe simple relational properties20 of causal

wedges etc. associated with them, including observations pertaining to our constructs in

causally non-trivial spacetimes. We will then compare the areas of various surfaces and

consider (sub)additivity properties of χ. Finally, we will close with a discussion of extremal

surfaces, both within the boundary of the causal wedge and in the full spacetime. In the

process, we will specify a useful relation between �A and any extremal surface EA, whose

implications we will consider in section 4. In order to facilitate the reading, in section 3.1

we summarize our claims, leaving their proofs and discussion to section 3.2.

3.1 Summary of properties

The simple properties which we prove in section 3.2 are as follows:

1. If At ∩ Bt = ∅ (and more generally if A and B are spacelike-separated), then �A
and �B are spacelike-separated. Hence �A ∩ �B = ∅ and ΞA and ΞB are likewise

spacelike-separated.

2. If At ⊂ Bt (and more generally if ♦A ⊂ ♦B), then �A ⊂ �B.

Moreover, if At is entirely inside Bt (more generally if ∂♦A ∩ ∂♦B = ∅), then ΞA and

ΞB are spacelike-separated, with ΞB lying deeper than ΞA (equivalently outside �A).

3. If At and Bt overlap (i.e., if A ∩ B 6= ∅, but A\B 6= ∅ and B\A 6= ∅), then

�A∩B ⊂ �A ∩ �B ⊂
{
�A,�B

}
⊂ �A ∪ �B ⊂ �A∪B . (3.1)

where by
{
�A,�B

}
we mean either �A or �B. Moreover, ΞA∪B and ΞA∩B are

spacelike-separated, with ΞA∪B lying deeper than ΞA∩B (i.e. outside �A∩B), etc.

4. For any (not necessarily stationary) bulk black hole spacetimes, no causal wedge can

penetrate the event horizon. It then immediately follows that ΞA cannot penetrate

an event horizon for any A.

5. Causal holographic information satisfies Additivity:

If A ∩ B = ∅, then χA∪B = χA + χB.

6. Causal holographic information satisfies Subadditivity:

If A ∩ B 6= ∅, then χA∪B ≤ χA + χB.

(However, Strong Subadditivity is not necessarily satisfied, as demonstrated in [13].)

20 See also e.g. [3, 18, 19] for earlier related discussions.
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7. From the set of all surfaces on ∂�A anchored on ∂A, ΞA is the minimal-area one.

8. Extremal surface EA must lie outside (or on the boundary of) the causal wedge �A.21

3.2 Proofs of simple properties

Some of the proofs of the above statements use the concept of a causal curve, which we

take to be a nowhere-spacelike, maximally extended, connected curve (either in the bulk

or along the boundary). We will denote a future-directed causal curve from a point p to a

point q in the spacetime by γ+
p→q = γ−q→p. Existence of such a curve guarantees that q is

in the future of p.

(1). Causal wedges of spacelike-separated regions are spacelike-separated:

First note that if A and B are spacelike-separated, then the corresponding domains of

dependence ♦A and ♦B are spacelike-separated. Otherwise there would exist a (boundary)

causal curve which contains points in ♦A (and hence, by definition of domain of depen-

dence, must intersect A) as well as points in ♦B (and therefore must intersect B as well).

However, existence of causal curve through both A and B contradicts the assumption that

A and B are spacelike-separated.

We can now extend essentially the same proof-by-contradiction into the bulk: If �A
and �B are not spacelike-separated, then there exists a (bulk) causal curve γa→b passing

through points a ∈ �A and b ∈ �B. w.l.o.g. assume that γa→b = γ+
a→b is future-directed.

By definition of causal wedge, we also know that there exists a causal curve γ̃a through

the point a which starts and ends on the boundary inside ♦A and similarly ∃ γ̆b through

b starting and ending in ♦B. Out of these three causal curves we can now create a new

causal curve γ = γ̃+
♦A→a ∪ γ

+
a→b ∪ γ̆

+
b→♦B

composed of the past part of γ̃a, γ
+
a→b, and future

part of γ̆b, joined at a and b, starting from ♦A and ending in ♦B. By suitably projecting γ

onto the boundary obtains a causal22 curve γ̄ intersecting both ♦A and ♦B, contradicting

the observation that ♦A and ♦B are spacelike-separated. This proves that �A and �B are

spacelike-separated.

In particular, there are no points in �A and �B which can be connected by a causal

curve. Since the causal information surfaces Ξ are contained in the causal wedges, there

is correspondingly no causal curve connecting ΞA and ΞB — hence these are likewise

spacelike-separated. Moreover, the absence of causal curve connecting points in �A and

�B trivially implies the absence of common points between �A and �B; in other words,

�A ∩ �B = ∅. �

(2). Causal wedge inclusion for nested regions: First of all, note that if A ⊂ B,

then any boundary causal curve γ̄a through a point a ∈ ♦A must by definition intersect

21 However, as demonstrated in [20], EA and ΞA need not be always spacelike-separated. When they are,

the above statement guarantees that EA lies deeper than ΞA.
22 The fact that bulk causal curves ‘project’ to boundary causal curves is easy to see: the tangent vector

to the bulk causal curve is timelike (ds2 < 0) and in restricting to the boundary one eliminates a spatial

direction which (as long as the projection is performed in such a way as to maintain the relative weighing

of temporal and angular components) makes ds2 even more negative. Also note that we are restricting to

the causal wedge of the boundary and so are necessarily outside any black hole horizons.
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A and therefore it must necessarily also intersect B, which means that a ∈ ♦B. In other

words, ♦A ⊂ ♦B. We now extend the same argument into the bulk: for any point a ∈ �A,

there exists a causal curve γa which begins and ends in ♦A and therefore begins and ends

in ♦B. This implies that a ∈ �B, proving the inclusion �A ⊂ �B.

To show the rest of the statement, pertaining to ♦A lying strictly inside ♦B, we first

recall an obvious characteristic of points lying on the boundary of a causal wedge, namely

the existence of nearby points which lie outside the causal wedge. In particular, since ΞB
lies on the boundary of �B, if p ∈ ΞB, then within any open neighborhood O(p), there exists

a point q which does not lie within �B. More specifically, since ΞB lies on the intersection

of future and past boundaries of the causal wedge, there exist points q ∈ O(p) through

which no causal curve γq can start or end in ♦B. This in turn implies that through any

b ∈ ΞB, any causal curve γb can at best make it to ∂♦B, but not inside ♦B\∂♦B.

We now show that ΞB lies outside �A. Using the previous observation, we can see

that if any point b ∈ ΞB lies inside �A, then there exists a causal curve γb which reaches

♦A ⊂ ♦B\∂♦B, a contradiction. To say this differently, suppose that there exists a point

b ∈ ΞB which lies inside �A. If b ∈ �A\∂�A, then there exists an open neighborhood O(b)

such that O(b) ⊂ �A ⊂ �B, contradicting the assumption that b ∈ ΞB. On the other hand,

if no part of ΞB lies strictly inside �A but b ∈ ∂�A, then ΞB must be tangent to ∂�A. This

means that the generator of ∂�B through b must coincide with the corresponding generator

of ∂�A. Since this generator must extend all the way to the boundary, it terminates on

∂♦B and simultaneously on ∂♦A; but this contradicts our assumption that ∂♦A∩∂♦B = ∅.
This argument also shows that the boundaries of the two causal wedges cannot coincide at

any point, so �A must be strictly inside �B.

Having proved that �A lies strictly inside �B and that ΞB lies outside �A, the argument

that ΞA and ΞB must be spacelike-separated proceeds analogously: w.l.o.g. suppose that

there exists a future-directed causal curve γ+
b→a (the proof for past-directed curves proceeds

analogously) connecting a point b ∈ ΞB and a point a ∈ ΞA. Then there is a causal curve

γb = γ+
b→a + γ̃+

a→♦A
through b which ends in ♦A ∈ ♦B\∂♦B, again a contradiction. Finally,

since ΞA and ΞB are spacelike-separated and ΞB lies outside �A, it immediately follows

that ΞB lies deeper than ΞA. �

(3). Causal wedge inclusion for overlapping regions: Suppose that A and B over-

lap, so that A∩B 6= ∅, with A\B 6= ∅ and B\A 6= ∅. Then A∩B is a proper subset of each

of A and B which are in turn each a proper subset of A∪B, and we can directly apply the

results of property (2) discussed above. In particular, ♦A∩B ⊂ {♦A,♦B} ⊂ ♦A∪B, so that

�A∩B ⊂ {�A,�B} ⊂ �A∪B, and moreover ΞA∩B and ΞA∪B are spacelike-separated, with

ΞA∪B lying deeper than ΞA∩B.

To see the ‘intermediate’ inclusions, it is evident that �A∩�B ⊂ {�A,�B} ⊂ �A∪�B,

and all that remains to show is that �A∩B ⊂ �A ∩ �B and that �A ∪ �B ⊂ �A∪B. The

arguments are similar to the ones used above: if p ∈ �A∩B, then there exists a causal curve

γp which starts and ends in ♦A∩B, so it necessarily also starts and ends in each of ♦A and

♦B, and therefore p lies in both �A and �B — which implies that p ∈ �A ∩ �B. The other

inclusion is similarly manifest. �
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(4). Causal wedge cannot penetrate event horizon: This statement follows im-

mediately from the definition of an event horizon: since there is no future-directed causal

curve from inside the black hole which can make out it to the AdS boundary, no point

inside the black hole can lie inside the causal wedge of any boundary region. Correspond-

ingly, the causal information surface ΞA for any sub-region A of the total boundary space

must lie outside the event horizon.23

In asymptotically global AdS spacetimes, there is a slight subtlety: as we take A to

cover the entire spatial section of the boundary, ♦A jumps discontinuously from having

finite time-extent (given by the size of the boundary sphere) to having infinite time extent

(and covering the entire boundary spacetime). In this special case the causal wedge �A
is an open set, its boundary coincides with the event horizon, and ΞA then lies along the

event horizon bifurcation surface. On the other hand, for A being a proper subset of the

boundary Cauchy slice, the finiteness of ♦A implies that ΞA can reach only to within a finite

(albeit quantitatively small) distance from the horizon; we saw an example in section 2.4.

Now that we have discussed the relational properties between the causal wedges and the

causal information surfaces for two regions, let us briefly turn to the causal holographic

information χ. Recall that this quantity is potentially the one most directly accessible from

the field theory.

(5). Additivity: If A ∩ B = ∅, then by property (1), �A ∩ �B = ∅, so ΞA and ΞB
are disjoint. Hence ΞA∪B = ΞA ∪ ΞB, and the individual areas then simply add up,

χA∪B = χA + χB. Note that each of the terms is divergent, with l.h.s. inheriting all the

divergences from r.h.s. .

(6). Subadditivity: If A ∩ B 6= ∅, then A ∪ B is not simply composed of two disjoint

regions as in property (5) above. Instead, the surface area of this region is strictly smaller

than the sum of the individual surface areas, Area(∂[A ∪ B]) < Area(∂[A]) + Area(∂[B]),

because the r.h.s. has additional contribution from Area(∂[A ∩ B]). Now, since χA has

its leading divergence proportional to Area(∂[A]) and similarly for other regions, the Sub-

additivity inequality χA∪B ≤ χA + χB is satisfied trivially — i.e. the r.h.s. has stronger

divergence. On the other hand, as noted in section 3.1, the property of Strong Subaddi-

tivity, where the leading divergences cancel, is actually not necessarily satisfied.

Properties (5) and (6), along with the basic feature of being (quarter of) the proper

area of a co-dimension two surface, make it tempting to compare the causal holographic

information χA with the entanglement entropy SA. The failure of χA to satisfy strong

subadditivity is the strongest evidence that it cannot correspond to a von Neumann entropy.

23 As an aside, note that this property of remaining outside the black hole does not generically hold

for extremal surfaces, due to the teleological nature of the event horizon: an extremal surface cannot be

sensitive to its exact location in dynamically evolving spacetimes, and therefore can probe inside the black

hole; explicit examples have already been seen in [20, 32] and will be further discussed in [33]. (In contrast,

as pointed out in [17], in static spacetimes extremal surfaces don’t penetrate the event horizon either.

Nevertheless, any extremal surface EA must lie outside a causal wedge �A as we show in Property 8.)
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Finally, let us close with two properties which have been observed previously, and deal

with extremal surfaces.

(7). ΞA is a minimal surface on ∂�A: We can in fact view this property as an alter-

nate definition of ΞA, which is conceptually useful for considering the causal holographic

information χA. However, to establish the result, we use the definition (1.2), that ΞA
belongs to both ∂+(�A) and ∂−(�A). The proof assumes null energy condition and uses

a crucial observation about null congruences which generate the causal wedge boundary:

the null congruences ∂±(�A) must have non-negative (and generically positive) expansion

in the outgoing (towards the boundary) direction. For if they had negative expansion,

Raychaudhuri equation would imply that they caustic before reaching the AdS boundary,

in contradiction to them generating the boundary of a causal past/future of ♦A ∈ ∂M.

Let us first restrict attention to the case where �A is topologically trivial, i.e. ΞA
is a single connected surface anchored on ∂A. Consider any other surface ΥA ⊆ ∂�A
which is anchored on ∂A. We want to show that ΥA cannot have smaller area than ΞA.

We can obtain a subset24 of ΥA from ΞA by flowing a certain distance λ along the null

generators. Let us for the moment assume that ΥA ∈ ∂+(�A); then we can perform a

constant rescaling of the affine parameter of each null generator individually, such that ΥA
lies at constant affine parameter λ0 along the null generators of ∂+(�A). Now, using the

fact that the expansion of the null generators of ∂+(�A) cannot be negative towards the

boundary, we know that the area of constant λ slices of ∂+(�A) must be monotonically

increasing function of λ; in particular, Area(ΥA) ≥ Area(ΞA). (The presence of caustics in

∂+(�A) would only strengthen this inequality, since the area of the remaining part of ΥA,

which does not lie along generators from ΞA, is positive.) Same argument would apply

for ΥA lying on ∂−(�A), as the past-directed null generators again expand towards the

boundary. If ΥA lies partly on ∂+(�A) and partly on ∂−(�A), then we can separate ΨA
into domains, separated by ΥA ∩ ΞA, and run the argument for each domain separately.

Hence in all cases, any surface ΥA cannot have smaller area than ΨA, which means that

ΞA is the minimal surface on ∂�A.

Let us now turn to the topologically non-trivial case, such as discussed in section 2.1,

where �A has a hole and ΞA consists of several disconnected surfaces. Then the statement of

minimality of ΞA has to be made more precise, as clearly there are surfaces ΥA ⊆ ∂�A with

∂ΥA = ∂A with smaller area than ΞA — as a trivial example, take just the connected part

of ΞA anchored on ∂A, or a small deformation thereof. However, if in addition to ∂ΥA = ∂A
we require that ΞA and ΥA are homotopic to each other within ∂�A, then our arguments

above go through: any generator of ∂�A which starts from ΞA must intersect ΥA, where

the positive expansion of the generators guarantees that the latter has larger area. �

The fact that ΞA is a minimal (and therefore extremal) surface on ∂�A however does

not mean that it is an extremal surface in the full bulk spacetime, as emphasized previously

in [13, 20]. The final property will show this explicitly, by providing a relational property

between EA and �A.

24 Recall that new generators can enter ∂�A at caustics, so if ΥA lies closer to the boundary than the

first caustic, all generators from ΞA pass through ΥA but in addition some new ones do as well.
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(8). Extremal surface is generically outside causal wedge: This is a generalization

of the proof presented in [13] (see also [34]), which was formulated on a given spacelike slice

of the bulk rather than the full Lorentzian geometry.25 The reasoning here is similar; the

crux is to argue that if the extremal surface came within the causal wedge, it would have

to be tangent to the boundary of a nested causal wedge corresponding to some sub-region.

Once this is established, we can obtain a contradiction from comparing the expansions for

the extremal surface and a tangent slice of a causal wedge boundary.

Suppose that an extremal surface EA has a sub-region e which lies strictly inside �A.

We claim that then somewhere along e, there exists a point p at which EA is tangent to

∂�B corresponding to some smaller boundary region B ⊆ A. There may in fact be infinitely

many of such points, but our proof only requires one. The existence of one follows easily

if one can foliate �A by ∂�α for a family of nested regions Aα, parameterized by some

parameter α, which we can choose to be α = 0 at ∂�A and monotonically growing as

the size of Aα decreases.26 For then this foliation specifies a function α on EA (given by

the particular ∂�α intersected by our surface EA at any specified point). Since α = 0 at

EA ∩ ∂�A, i.e. on ∂e, and positive inside e, there is a point p ∈ e where α takes extremal

value. At this point p, EA is tangent to ∂�α.27

Since the above argument followed from the existence of a foliation of �A by ∂�α, we

now pause to briefly consider how generally does such a foliation exist. First of all, it is not

hard to see that for static spacetimes, a foliation of �A is indeed guaranteed to exist; as

a canonical example (which includes caustics and potentially non-trivial topology of �A),

consider the Schwarzschild-AdS example discussed in section 2.1. Since the projections of

ΞA(ϕA) on the Poincaré disk for different ϕA indicated in figure 4 foliate the entire region

of the Poincaré disk which is in the largest causal wedge, this spatial foliation lifts trivially

to the full Lorentzian region inside the largest causal wedge.28 More generally, we can

argue that such a foliation must exist for any static spacetime as follows. Let us w.l.o.g.

fix A to lie at t = 0 on the boundary. We first pick a convenient foliation of the region A
by slicing ∂♦A by constant t = α surfaces and projecting to the t = 0 slice. Denote each

25 In that more limited context, one can equivalently say that the extremal surface EA reaches deeper

than the causal information surface ΞA; however, in general highly dynamical spacetimes such statement

need not be meaningful when EA and ΞA are not spacelike-separated.
26 For example, one convenient parameterization is by the depth to which Ξα reaches, α = rΞα − rΞA .

Alternately, for spherically symmetric spacetimes such as considered in section 2.1, we can simply take

α = ϕA − ϕα.
27A potential loophole is that ∂�α might be non-smooth at the point of intersection with EA, e.g, p could

be one of the cusps seen in figure 4. In such cases there are two potential ways to extend our arguments.

One is that we could consider other foliations of A on the boundary to ensure that the intersection of the

extremal surface with the causal wedge boundary is at a regular point. More simply however, we could also

note that even at the cusps the expansion of the null congruence towards the boundary while divergent is

manifestly positive definite (and we only need the correct sign for our argument to go through). We thank

Matt Headrick and Aron Wall for useful discussions on this point.
28Here we envision that ♦A is compact on the boundary. The issue is more subtle if we take A to be a

complete Cauchy slice of the boundary ESU; as noted in footnote 8, ♦A is the entire boundary spacetime

and its causal wedge does not admit such a foliation (as apparent from both figure 4 and figure 6 (right

panel)).
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leaf of A’s foliation by α and the enclosed subregions by Aα. In case of circular regions,

α ∈ (0, ϕA). Notice that the causal wedge �α for a given sub-region Aα can be obtained by

simply rigidly sliding ∂+(�A) and ∂−(�A) towards each other in time. Now consider some

point p ∈ �A. Since there is a unique point in ∂±(�A) whose temporal projection coincides

with that of p, ∃!α by which we can slide ∂±(�A) such that p ∈ ∂�α. In other words,

this rigid time-translation of ∂±(�A) towards each other defines a natural foliation of �A.

We believe that it is possible to extend this proof to more general spacetimes, although we

leave a rigorous argument for future investigation.

Let us now return to the main argument, having established that if a region e ⊂ EA
lies within �A, then there exists a point p ∈ e at which EA is tangent to ∂�B for some sub-

region B. In fact, we can construct a spacelike surface ΨB within ∂�B which is tangent to

EA at p and is anchored on ∂B. At this point, outgoing null normal to EA coincides with the

outgoing null normal to ΨB (which is the corresponding generator of ∂�B). Now consider

the expansions ΘE and ΘΨ of the two tangent surfaces EA and ΨB at p. By definition of

extremal surface, we know ΘE = 0. On the other hand, since ∂B is a boundary of a causal

set, ΘΨ ≥ 0 towards the boundary. This is however a contradiction, since the way in which

these surfaces are tangent to each other (with E bending away from the boundary more

than Ψ) implies that ΘE > ΘΨ. The reader is encouraged to consult figure 5 of [13] for a

pictorial sketch of this argument.

Since the assumption that EA reaches inside �A produced a contradiction, we conclude

that EA must lie outside (or at best on the boundary of) �A. �

In the generic situation where ΞA is spacelike-separated from EA, it then immediately

follows that EA reaches deeper than ΞA. However, having established that an extremal

surface EA cannot lie within the causal wedge, we should note that this does not automati-

cally imply that EA is necessarily causally disconnected from ♦A (although this is the case

in generic situations, when EA and ΞA are spacelike separated). Apart from the obvious

special examples where EA and ΞA coincide, as pointed out in footnote 21, in the case of

thin shell Vaidya-AdS explored in [20] we saw that they can be null-separated.

4 Implications for bulk extremal surfaces

So far, we have been discussing the causal wedge and related constructs in the bulk space-

time, which as yet have no independently defined construction in the dual CFT. In this

section we point out that our results nevertheless bear on a more familiar context where

we do have a conjectured duality. In particular, they surprisingly turn out to be relevant

for the entanglement entropy SA, which is conjectured [15, 16, 21] to be given by (quarter

of) the area of the extremal surface EA which (i) is anchored on the entangling surface,

∂EA = ∂A, (ii) is homologous to A, and (iii) in case of multiple such surfaces is the

minimal-area one.

In the previous section, we have further justified the anticipated result that no extremal

surface EA can lie within the causal wedge �A (Property 8). While we have presented this as

a property of causal wedges, we can conversely think of it as a property of extremal surfaces.

As already mentioned in section 1 the consequence that extremal surfaces penetrate deeper
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into the bulk than causal wedges bears on the question of how much of the bulk does a

given boundary region in the CFT describe. But quite apart from this discussion, there

is a more remarkable and surprising consequence of Property 8, when combined with the

observation of section 2 that causal wedges can have holes: in a global eternal black hole

spacetime, if the causal wedge �A for a given boundary region A has a hole, then there

cannot exist a connected extremal surface EA anchored on ∂A which is homologous to A.

To see why this is the case, let us first consider the homology requirement. Suppose

we take a region A which covers more than half of the boundary, such as the case indicated

in figure 3. If area minimization was the only constraint on the desired extremal surface

EA anchored on ∂A, then the extremal surface passing around the opposite side of the

black hole from A (i.e. through ϕ = π) would be the relevant one; let us denote it as

EAc . However, such a surface is not homologous to A, since there does not exist a co-

dimension one bulk smooth hypersurface whose only boundary are EA and A — such

hypersurface would have to pass through the black hole, and would either encounter the

black hole curvature singularity, or pass through the Einstein-Rosen bridge, in which case

it would have further boundaries. The upshot is that, to satisfy the homology requirement,

we should either take a surface EA which goes on A’s side of the black hole (i.e. passes

through ϕ = 0), or a pair of disconnected extremal surfaces, EAc and the bifurcation surface

H of the event horizon r = rh.

Now let us consider what happens when the causal wedge has a hole, as in figure 3. A

connected spacelike29 surface anchored at ∂A would then either have to stay at larger radial

position than the connected part of ΞA (which is ruled out by the homology requirement),

or it must pass around the black hole, in which case it must enter the causal wedge. To

justify the latter more formally, in order to pass through ϕ = 0 and remain outside the

causal wedge there, EA would have to attain smaller radial value than the deepest reach of

the disconnected part of ΞA, so it would have to pass through the radial region traversed

by the causal wedge caustics (C± in figure 3). Since this radial region is contained within

the causal wedge at all angles, this suffices to guarantee the passage though the causal

wedge. But since that would violate Property 8, no such connected extremal surface EA
homologous to A can exist. �

Comparing this result to the behaviour of spacelike geodesics in BTZ (cf. the right

panel of figure 6), the non-existence of requisite extremal surfaces in higher dimensions

might seem rather surprising — in fact, we are not aware of this effect having been noticed

previously. Given that these surfaces exist only for sufficiently small ϕA, and reach deeper

into the bulk as ϕA increases, one might naturally wonder what happens as we try to

push this deepest reach rE further towards the horizon. This is examined in detail in [26],

with the curious result that the corresponding ϕA does not behave monotonically; instead

it oscillates between certain maximal and minimal values. Even more curiously, ϕA(rE)

oscillates infinitely many times as rE → rh, exhibiting a self-similar behaviour. In other

29 Since the bulk geometry is static, in this case of an eternal black hole we can in fact w.l.o.g. take the

extremal surface (which is anchored at constant t on the boundary) to lie at constant t in the bulk. (In more

complicated geometries such as discussed in [35] where there could be more general extremal surfaces, the

homology requirement would no longer rule out EAc [26], so the present consideration would be irrelevant.)
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words, for a fixed region A with ϕA in a certain range, there are in fact infinitely many

extremal surfaces (all outside the causal wedge) anchored on ∂A and homologous to A.

But conversely for large enough ϕA, there are none.

Let us now ask what are the implications of these results for the entanglement entropy.

As discussed in [26], we learn that the entanglement entropy cannot be a smooth function

of ϕA. At some critical ϕA, the relevant surface which determines entanglement entropy

switches from the EA to the EAc +H family, at which point S(ϕA) has a kink and satu-

rates onto a plateau. This phenomenon has been described as holographic entanglement

plateau in [26], whose figure 9 shows the various critical curves for ϕA(rh) in the case of

Schwarzschild-AdS5 black holes. We note that these authors choose to display the result

in terms of α = 1
π (ϕA − sinϕA cosϕA); for the casual wedges this is a rescaled version

of our figure 5. We must emphasize that the critical point ϕA(rh) for the entanglement

plateau transition of [26] is only weakly determined by the casual wedge topology (in-

deed the presence of such an effect has been widely argued for since the inception of the

holographic entanglement entropy proposal [21, 36]). This has to do with the fact that

while non-trivial topology in the causal wedge is sufficient for the entanglement plateaux

to develop, it certainly is not necessary. To ascertain the onset of the plateau phenomenon

one requires detailed dynamics of minimal surfaces, and indeed as in any first order phase

transition the exchange of dominance between the EA to the EAc +H families occurs before

it is mandated by causal wedge topology.

5 Discussion

We have examined global properties of causal wedges and related constructs, proving a

number of useful relational statements valid in arbitrary causal asymptotically AdS bulk

spacetime. While from the CFT standpoint, the causal wedge might have been hitherto

viewed as a rather esoteric construct, the preceding section demonstrated that its properties

bear on more familiar CFT quantities such as the entanglement entropy. Nevertheless, the

ultimate goal of this exercise is to use these properties to try to propose or actually construct

the CFT dual of the causal wedge or associated quantities. The relational statements we

discuss in section 3 are physically quite reasonable, and indeed unsurprising; the most

curious feature, analyzed in section 2, is the topologically non-trivial nature of the causal

wedge �A for simple regions A.

Bolstered by the remarkable ease with which we have been able to produce ‘holes in the

causal wedge’, the reader might well wonder whether this is perhaps the generic situation,

namely whether in any bulk geometry satisfying the genericity condition, we could identify

some region A for which ΞA would have disconnected components. This would have strong

implications for any putative CFT dual.

Since for the Schwarzschild-AdSd+1 family of solutions, the case which was guaranteed

to have disconnected ΞA was the one with maximal A = Sd−1\i0, i.e. ϕA = π−, let us

examine this situation for general bulk geometries. What is the generic form of ΞA and

�A? Note that domain of dependence30 ♦A in this case coincides with the AdS Poincaré

30 Typically domain of dependence ♦Σ is defined for a closed achronal surface Σ; whereas in the present
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wedge boundary, and in particular includes the Poincaré wedge spatial infinity vertex i0.

Moreover the tips q∧,∨ of ♦A correspond to i± of the Poincaré wedge. This in turn implies

that �A does include i0, and since this point lies both on ∂−(�A) and ∂+(�A) (joined to

q∧,∨ by the boundary null geodesics), it is contained in ΞA. Now the question is, is ΞA just

that one point i0, or does it reach into the bulk? In other words, are there points on bulk

Cauchy slice anchored at tA which don’t lie in �A?

For black holes the answer is clearly yes; but even for causally trivial spacetimes,

one might naively expect that the answer is generically yes, with pure AdS being the only

exception. The motivation for this expectation is as follows: consider a near-boundary point

p just radially in from i0. In AdS, J±(p) intersects the boundary within ♦A only near q∧,∨.

When we excite the CFT state by a bulk deformation (satisfying the null energy condition),

these bulk geodesics are time-delayed [2, 3] so that they don’t make it to ♦A. Hence p would

seem not to lie in �A; but since �A does contain the entire boundary sphere, it should

have a hole around p. This would lead us to expect that ΞA generically reaches into the

bulk (presumably in some teardrop-like shape anchored on the single boundary point i0).

However, there is a subtlety with this reasoning, having to do with the presence of

caustics in ∂�A. It is easy to see that radial null geodesics are time-delayed by some finite

amount when traversing the bulk with some gravitational potential well. However, these

are irrelevant, because generically they exit ∂�A and enter inside the causal wedge at a

caustic point formed by null geodesics with ‘angular momentum’31 ±ε, for some ε � 1.

The geodesics which we need to focus on are the ones with maximal angular momentum.

These are repelled by the centrifugal potential and as such stay close to the boundary

feeling thereby less influenced by the deformation in the core (IR) region of the geometry.32

This suggests that the relevant geodesics to consider are the near-boundary geodesics with

angular momentum ` = ±(1− ε).
Null geodesics through deformed AdS (for a static spherically symmetric metric cor-

responding to a “star” geometry) were examined by [10] in the context of bulk cone sin-

gularities. Let us consider a null congruence emanating from a specified point q∨ on the

boundary. In pure AdS, each null geodesic in this congruence would reach the boundary at

the antipodal point, with33 ∆ϕ = π and ∆t = π. When the geometry has a gravitational

potential well, the geodesics exhibit the usual time-delay and light-bending effect, which

leads to a deformation of the future endpoint (∆ϕ,∆t) of each geodesic, parameterized

case A is open. However, since ♦Σ is defined as the set of all points from which every timelike curve

intersects Σ, it should still be true in the present case that ♦Σ is closed.
31 Angular momentum along geodesics is a well-defined constant of motion only in presence of orbital

Killing field; but as a warm-up to address part of the genericity question, we will focus on spherically

symmetric spacetimes in this discussion.
32 We saw this behaviour in figure 3, but one can also verify this explicitly in more general static

spherically symmetric examples: the larger angular momentum geodesics are less time delayed than the

smaller angular momentum ones (including the radial one), so they will remain on ∂�A longer, covering up

the smaller-angular momentum geodesics under a seam of caustics.
33 Note that [10] considered equatorial geodesics with polar angle ϕ ∈ [0, 2π), whereas here we are using

ϕ ∈ [0, π] to represent the azimuthal angle. However, as explained in section 2.1 due to spherical symmetry

the geodesic equations are of course identical, so we can conflate the two for direct comparison.
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by the reduced angular momentum ` ∈ (0, 1). A parametric plot of ∆t(∆ϕ) of geodesic

endpoints for typical static spherically symmetric deformations of AdS were plotted in [10]

(cf., their figure 5); the slope of the curve (parameterized by `) in the (∆ϕ,∆t) plane rep-

resenting null geodesic endpoints is simply `. This means that in general, near-boundary

null geodesics reach the boundary at a more spatially than temporally shifted endpoint,

∆ϕ > ∆t. This would seem to imply that the ±` geodesics in the same (future or past)

congruence intersect each other ‘before’ (i.e. closer to ♦A) than they intersect the corre-

sponding ` geodesic from the other congruence.

One can check these expectations explicitly in a given deformed bulk geometry. For

example, consider the bulk metric (2.2) with g(ρ) = 1 − ν cos4 ρ with ν � 1. This is a

causally trivial asymptotically AdS geometry with a gravitational potential well given by

ν, with pure AdS corresponding to ν = 0. The causal wedge indeed remains topologically

trivial, with a seam of caustics reaching all the way to i0. In fact, this is to be expected

from the black hole result of section 2.1: the shape of (the connected component of) ΞA
for large enough ϕA should be determined only by the asymptotic geometry, and should

therefore be the same for corresponding to either a black hole or a star of the same mass.

From figure 4 we see that as ϕA → π (cf. the purple curves on the left), ΞA does not

approach a tear-drop shape. In particular, without the disconnected component around

the horizon, ΞA would indeed simply retract to i0 as ϕA → π. So we expect that in order

to obtain causal wedges with non-trivial topology, the bulk spacetime has to be sufficiently

deformed from pure AdS.

Said another way, there is an interesting tension between two competing effects. Had

the time-delay effect been the only operative feature, we would have concluded that holes

in the causal wedge would have been generic. On the other hand, if centrifugal repulsion

which forces attention on near-boundary geodesics were to be the primary effect, there

would be no room for non-trivial topology. It is then clear that the natural place to look

for non-trivial causal wedge topology is when the two effects are competing, and indeed our

prototypical example of Schwarzschild-AdS provides one such setting. Naively then, we can

abstract from the above discussion an essential requirement for the causal wedge to develop

holes: the spacetime must admit null circular orbits.34 For it is in this case that there

is some non-trivial interplay between the two effects discussed above and they precisely

offset each other at the circular orbit. Indeed we saw that the critical transition point for

Schwarzschild-AdS was effectively determined by the null circular orbit in section 2.1. The

justification provided there leads us to conjecture that in spherically symmetric spacetimes

the presence of the null circular orbits is a necessary condition for non-trivial causal wedge

topology. It would be useful to prove this statement rigorously; we hope to return to this

interesting problem in the near future.

One lesson of our explorations which we wish to emphasize is that while studies of

global AdS contain the Poincaré AdS case (as a limit), the converse is not true. Not only

is the global case much richer (as can be expected already from the metric being more

34 Of course, this can only be a requirement for spherically symmetric spacetimes, where such orbits may

exist in the first place. In absence of any symmetries, we would have to formulate a more robust criterion.
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complicated), but it gives us novel insight into important observables. Over the years

we have learnt many interesting lessons by examining field theories on compact spatial

geometries and we believe that there is indeed much more to be learned from similar

explorations.
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